Science.gov

Sample records for abcb1 gene expression

  1. Sex differences in cyclosporine pharmacokinetics and ABCB1 gene expression in mononuclear blood cells in African American and Caucasian renal transplant recipients.

    PubMed

    Tornatore, Kathleen M; Brazeau, Daniel; Dole, Kiran; Danison, Ryan; Wilding, Gregory; Leca, Nicolae; Gundroo, Aijaz; Gillis, Kathryn; Zack, Julia; DiFrancesco, Robin; Venuto, Rocco C

    2013-10-01

    Cyclosporine exhibits pharmacokinetic and pharmacodynamic variability in renal transplant recipients (RTR) attributed to P-glycoprotein (P-gp), an ABCB1 efflux transporter that influences bioavailability and intracellular distribution. Data on race and sex influences on P-gp in RTR are lacking. We investigated sex and race influences on cyclosporine pharmacokinetics and ABCB1 gene expression in peripheral blood mononuclear cells (PBMC). Fifty-four female and male African American and Caucasian stable RTR receiving cyclosporine and mycophenolic acid completed a 12-hour study. ABCB1 gene expression was assessed in PBMCs pre-dose and 4 hours after cyclosporine. Statistical analysis used mixed effects models on transformed, normalized ABCB1 expression and cyclosporine pharmacokinetics. Sex and race differences were observed for the dose-normalized area under the concentration curve (AUC0-12 /Dose) [P = .0004], apparent clearance [P = .0004] and clearance/body mass index (CL/BMI) [P = .027] with slowest clearance and greatest drug exposure in females. Sex and race differences were found pre-dose and 4 hours for ABCB1 [P < .0001] with females having less expression than males. ABCB1 differences were observed between pre-dose and 4 hours [P = .0009]. Female RTR had slower cyclosporine clearance and lower ABCB1 gene expression in PBMC suggesting reduced efflux activity and greater intracellular drug exposure.

  2. Influence of a time-restricted feeding schedule on the daily rhythm of abcb1a gene expression and its function in rat intestine.

    PubMed

    Hayashi, Yohei; Ushijima, Kentarou; Ando, Hitoshi; Yanagihara, Hayato; Ishikawa, Eiko; Tsuruoka, Shu-Ichi; Sugimoto, Ko-Ichi; Fujimura, Akio

    2010-11-01

    P-glycoprotein (P-gp) is one of the ATP-binding cassette transporters and acts as an efflux pump for cytotoxic substances. P-gp mRNA expression and transporting activity show the daily rhythm and contribute to the chrono-pharmacokinetic profiles of many drugs. It is reported that the daily rhythm of abcb1a mRNA is regulated by a circadian clock-controlled output pathway. Time-restricted feeding is well known to shift the peripheral circadian phase of clock gene expression without changing the central clock function. This study was undertaken to examine the influence of a time-restricted feeding procedure during the light phase on the daily rhythms of abcb1a mRNA expression and P-gp activity. The abcb1a mRNA and P-gp activity showed a daily rhythm with a peak early in the dark phase in rat intestine under ad libitum feeding. Time-restricted feeding during the light phase shifted these rhythms to 12-h advance. The mRNA expression of clock genes (DBP and HLF, the transcript activators of abcb1a) also showed daily rhythms, and their phases were shifted by the time-restricted feeding procedure. The peak time of DBP mRNA expression was similar to that of abcb1a mRNA expression under ad libitum feeding and time-restricted feeding conditions. These results indicate that a time-restricted feeding procedure changes DBP mRNA expression, which in turn influences abcb1a mRNA expression and P-gp activity.

  3. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme

    PubMed Central

    2013-01-01

    Background Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis. Beside promoter methylation of the O 6 -methylguanine-DNA-methyltransferase (MGMT) gene the efflux transporters ABCB1 and ABCG2 have been suggested as pivotal factors contributing to drug resistance, but the methylation of ABCB1 and ABCG2 has not been assessed before in GBM. Methods Therefore, we evaluated the proportion and prognostic significance of promoter methylation of MGMT, ABCB1 and ABCG2 in 64 GBM patient samples using pyrosequencing technology. Further, the single nucleotide polymorphisms MGMT C-56 T (rs16906252), ABCB1 C3435T (rs1045642) and ABCG2 C421A (rs2231142) were determined using the restriction fragment length polymorphism method (RFLP). To study a correlation between promoter methylation and gene expression, we analyzed MGMT, ABCB1 and ABCG2 expression in 20 glioblastoma and 7 non-neoplastic brain samples. Results Despite a significantly increased MGMT and ABCB1 promoter methylation in GBM tissue, multivariate regression analysis revealed no significant association between overall survival of glioblastoma patients and MGMT or ABCB1 promoter methylation. However, a significant negative correlation between promoter methylation and expression could be identified for MGMT but not for ABCB1 and ABCG2. Furthermore, MGMT promoter methylation was significantly associated with the genotypes of the MGMT C-56 T polymorphism showing a higher methylation level in the T allele bearing GBM. Conclusions In summary, the data of this study confirm the previous published relation of MGMT promoter methylation and gene expression, but argue for no pivotal role of MGMT, ABCB1 and ABCG2 promoter methylation in GBM patients’ survival. PMID:24380367

  4. Novel and functional ABCB1 gene variant in sporadic Parkinson's disease.

    PubMed

    Li, Yuequn; Li, Yonghua; Pang, Shuchao; Huang, Wenhui; Zhang, Aimei; Hawley, Robert G; Yan, Bo

    2014-04-30

    Parkinson's disease (PD) is a common progressive neurodegenerative disease. Most cases of PD are sporadic, which is caused by interaction of genetic and environmental factors. To date, genetic causes for sporadic PD remain largely unknown. ATP-binding cassette sub-family B member 1 (ABCB1) is a membrane-associated protein that acts as an efflux transporter for many substrates, including chemotherapeutic agents, anti-epilepsy medicine, antibiotics and drugs for PD. ABCB1 gene is widely expressed in human tissues, including endothelial cells of capillary blood vessels at blood-brain barrier sites. In PD patients, decreased ABCB1 levels have been reported. We speculated that misregulation of ABCB1 gene expression, caused by DNA sequence variants (DSVs) within its regulatory regions, may be involved in PD development. In this study, we genetically and functionally analyzed the proximal promoter of the human ABCB1 gene, which is required for constitutive expression, in sporadic PD patients and healthy controls. The results showed that a novel and heterozygous DSV g.117077G>A was identified in one PD patient, but in none of the controls. This DSV significantly altered the transcriptional activity of the ABCB1 gene promoter in transiently transfected HEK-293 cells. A heterozygous DSV g.116347T>C was only found in one control. Four single-nucleotide polymorphisms, g.116154T>C (rs28746504), g.117130A>G (rs2188524), g.117356C>G (rs34976462) and g.117372T>C (rs3213619), and one heterozygous deletion DSV g.116039del were found in PD patients and controls with similar frequencies. Therefore, our findings suggest that ABCB1 gene promoter DSVs may contribute to PD development as a rare risk factor. PMID:24572589

  5. The Multidrug Resistance 1 Gene Abcb1 in Brain and Placenta: Comparative Analysis in Human and Guinea Pig

    PubMed Central

    Pappas, Jane J.; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G.; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain. PMID:25353162

  6. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  7. Regulation of expression of ABCB1 and LRP genes by mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and its role in generation of side population cells in canine lymphoma cell lines.

    PubMed

    Tomiyasu, Hirotaka; Watanabe, Manabu; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Sugano, Sumio; Tsujimoto, Hajime

    2013-06-01

    The concept of the cancer stem cell (CSC) has been recognized as key for elucidation of the mechanisms that confer the multidrug resistance (MDR) phenotype to tumor cells, and the side population (SP) fraction has been shown to be enriched by cells with the CSC phenotype. The purpose of the present study was to identify the mechanism that induces a difference of phenotype between the SP and the remaining major population (MP) using two canine lymphoma cell lines. Expression levels of ABCB1 and LRP genes, which encode efflux pumps, were significantly higher in the SP than in the MP. Microarray analysis revealed up-regulation of the expression of transforming growth factor-β (TGF-β) type II receptor in SP compared with MP, and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was more up-regulated in the SP than in the MP. Stimulation of the MAPK/ERK pathway significantly increased the mRNA expression of both ABCB1 and LRP genes. These results indicate increased expression of the efflux pumps through the MAPK/ERK pathway in SP cells.

  8. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer

    PubMed Central

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E.; Bowtell, David; Bowtell, David; Chenevix-Trench, Georgia; deFazio, Anna; Gertig, Dorota; Green, Adle; Webb, Penelope; Hung, Jillian; Moore, Sue; Traficante, Nadia; Fereday, Sian; Harrap, Karen; Sadkowsky, Troy; Pandeya, Nirmala; Stuart-Harris, Robin; Kirsten, Fred; Rutovitz, Josie; Clingan, Peter; Glasgow, Amanda; Proietto, Anthony; Braye, Stephen; Otton, Greg; Shannon, Jennifer; Bonaventura, Tony; Stewart, James; Begbie, Stephen; Friedlander, Michael; Bell, David; Baron-Hay, Sally; Ferrier, Alan; Gard, Greg; Nevell, David; Pavlakis, Nick; Valmadre, Sue; Young, Barbara; Camaris, Catherine; Crouch, Roger; Edwards, Lyndal; Hacker, Neville; Marsden, Donald; Robertson, Greg; Beale, Phillip; Beith, Jane; Carter, Jonothan; Dalrymple, Chris; Hamilton, Anne; Houghton, Roger; Russell, Peter; Links, Matthew; Grygiel, John; Hill, Jane; Brand, Alison; Byth, Karen; Jaworski, Richard; Harnett, Paul; Sharma, Raghwa; Achen, Anita; Wain, Gerard; Ward, Bruce; Papadimos, David; Crandon, Alex; Cummings, Margaret; Horwood, Ken; Obermair, Andreas; Perrin, Lew; Wyld, David; Nicklin, Jim; Davy, Margaret; Oehler, Martin K; Hall, Chris; Dodd, Tom; Healy, Tabitha; Pittman, Ken; Henderson, Doug; Miller, John; Pierdes, John; Blomfield, Penny; Challis, David; McIntosh, Robert; Parker, Andrew; Brown, Bob; Rome, Robert; Allen, David; Grant, Peter; Hyde, Simon; Laurie, Rohan; Robbie, Melissa; Healy, David; Jobling, Tom; Manolitsas, Tom; McNealage, Jane; Rogers, Peter; Susil, Beatrice; Sumithran, Eric; Simpson, Ian; Phillips, Kelly; Rischin, Danny; Fox, Stephen; Johnson, Daryl; Waring, Paul; Lade, Stephen; Loughrey, Maurice; O’Callaghan, Neil; Murray, William; Billson, Virginia; Pyman, Jan; Neesham, Debra; Quinn, Michael; Underhill, Craig; Bell, Richard; Ng, Leong-Fook; Blum, Robert; Ganju, Vinod; Hammond, Ian; Leung, Yee; McCartney, Anthony; Buck, Martin; Haviv, Izak; Purdie, David; Whiteman, David; Zeps, Nikolajs; Malt, Mary-Rose; Mellon, Anne; Robertson, Randall; Bergh, Trish Vanden; Jones, Marian; Mackenzie, Patricia; Maidens, Jane; Nattress, Kath; Chiew, Yoke-Eng; Stenlake, Annie; Sullivan, Helen; Alexander, Barbara; Ashover, Pat; Brown, Sue; Corrish, Tracy; Green, Lyn; Jackman, Leah; Ferguson, Kaltin; Martin, Karen; Martyn, Adam; Ranieri, Barbara; White, Jo; Jayde, Victoria; Bowes, Leanne; Mamers, Pamela; Galletta, Laura; Giles, Debra; Hendley, Joy; Alsop, Katherine; Schmidt, Trudy; Shirley, Helen; Ball, Colleen; Young, Cherry; Viduka, Suzanna; Tran, Hoa; Bilic, Sanela; Glavinas, Lydia; Brooks, Julia; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L.; deFazio, Anna

    2014-01-01

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells. PMID:24810093

  9. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior.

    PubMed

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-04-28

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case-control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10(-7)) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample.

  10. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior

    PubMed Central

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-01-01

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case–control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10−7) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample. PMID:25918995

  11. MDR1/ABCB1 gene polymorphisms in patients with chronic myeloid leukemia

    PubMed Central

    Lardo, Mabel; Castro, Marcelo; Moiraghi, Beatriz; Rojas, Francisca; Borda, Natalia; Rey, Jorge A

    2015-01-01

    Background Tyrosine kinase inhibitors (TKIs) are the recommended treatment for patients with chronic myeloid leukemia (CML). The MDR1/ABCB1 gene plays a role in resistance to a wide spectrum of drugs, including TKIs. However, the association of MDR1/ABCB1 gene polymorphisms (SNPs) such as C1236T, G2677T/A, and C3435T with the clinical therapeutic evolution of CML has been poorly studied. We investigated these gene polymorphisms in CML-patients treated with imatinib, nilotinib and/or dasatinib. Methods ABCB1-SNPs were studied in 22 CML-patients in the chronic phase (CP) and 2 CML-patients in blast crisis (BC), all of whom were treated with TKIs, and compared with 25 healthy controls using nested-PCR and sequencing techniques. Results Seventeen different haplotypes were identified: 7 only in controls, 6 only in CML-patients, and the remaining 4 in both groups. The distribution ratios of homozygous TT-variants present on each exon between controls and CML-patients were 2.9 for exon 12, and 0.32 for the other 2 exons. Heterozygous T-variants were observed in all controls (100%) and 75% of CML-patients. Wt-haplotype (CC-GG-CC) was observed in 6 CML-patients (25%). In this wt-group, two were treated with nilotinib and reached a major molecular response. The remaining 4 cases had either a minimal or null molecular response, or developed bone marrow aplasia. Conclusion Our results suggest that SNPs of the MDR1/ABCB1 gene could help to characterize the prognosis and the clinical-therapeutic evolution of CML-patients treated with TKIs. Wt-haplotype could be associated with a higher risk of developing CML, and a worse clinical-therapeutic evolution. PMID:26457282

  12. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats.

    PubMed

    Saljé, Karen; Lederer, Kirstin; Oswald, Stefan; Dazert, Eike; Warzok, Rolf; Siegmund, Werner

    2012-08-01

    It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.

  13. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway

    PubMed Central

    Hung, Tsai-Hsien; Hsu, Sheng-Chi; Cheng, Ching-Yi; Choo, Kong-Bung; Tseng, Ching-Ping; Chen, Tse-Ching; Lan, Ying-Wei; Huang, Tsung-Teng; Lai, Hsin-Chih; Chen, Chuan-Mu; Chong, Kowit-Yu

    2014-01-01

    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples. PMID:25401518

  14. Wnt pathway activation and ABCB1 expression account for attenuation of Proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells

    PubMed Central

    Chong, Kowit Yu; Hsu, Chih-Jung; Hung, Tsai-Hsien; Hu, Han-Shu; Huang, Tsung-Teng; Wang, Tzu-Hao; Wang, Chihuei; Chen, Chuan-Mu; Choo, Kong Bung; Tseng, Ching-Ping

    2015-01-01

    Multiple drug resistance (MDR) is a major obstacle to attenuating the effectiveness of chemotherapy to many human malignancies. Proteasome inhibition induces apoptosis in a variety of cancer cells and is recognized as a novel anticancer therapy approach. Despite its success, some multiple myeloma patients are resistant or become refractory to ongoing treatment by bortezomib suggesting that chemoresistant cancer cells may have developed a novel mechanism directed against the proteasome inhibitor. The present study aimed to investigate potential mechanism(s) of attenuation in a MDR cell line, MES-SA/Dx5. We found that compared to the parental human uterus sarcoma cell line MES-SA cells, MES-SA/Dx5 cells highly expressed the ABCB1 was more resistant to MG132 and bortezomib, escaping the proteasome inhibitor-induced apoptosis pathway. The resistance was reversed by co-treatment of MG132 and the ABCB1 inhibitor verapamil. The data indicated that ABCB1 might play a role in the efflux of MG132 from the MES-SA/Dx5 cells to reduce MG132-induced apoptosis. Furthermore, the canonical Wnt pathway was found activated only in the MES-SA/Dx5 cells through active β-catenin and related transactivation activities. Western blot analysis demonstrated that Wnt-targeting genes, including c-Myc and cyclin D1, were upregulated and were relevant in inhibiting the expression of p21 in MES-SA/Dx5 cells. On the other hand, MES-SA cells expressed high levels of p21 and downregulated cyclin D1 and caused cell cycle arrest. Together, our study demonstrated the existence and participation of ABCB1 and the Wnt pathway in an MDR cell line that attenuated proteasome inhibitor-induced apoptosis. PMID:25590413

  15. Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women.

    PubMed

    2010-04-01

    Menopausal hormone therapy (HT) is associated with an increased breast cancer risk among postmenopausal women. In this study, we investigated genetic effect modification of HT associated breast cancer risk in 3,149 postmenopausal breast cancer patients and 5,489 controls from the two German population-based case-control studies MARIE and GENICA. Twenty-eight polymorphisms of 14 candidate genes including two drug and hormone transporter genes (ABCB1/MDR1 and SHBG), four genes involved in cell cycle regulation (BRCA1, P21/CDKN1A, STK15/AURKA and TP53), six cytokine genes (IGFBP3, IL6, TGFB1, TNF, LTA and IGF1), and two cytokine receptor genes (EGFR and ERBB2) were genotyped using validated methods. Conditional logistic regression was used to assess multiplicative statistical interaction between polymorphisms and duration of estrogen-progestagen therapy and estrogen monotherapy use with regard to breast cancer risk assuming log-additive and co-dominant modes of inheritance. Women homozygous for the major ABCB1_rs2214102_G allele were found to be at a significantly increased breast cancer risk associated with combined estrogen-progestagen therapy [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.12-1.23, P (interaction) = 0.022]. Additionally, risk associated with estrogen monotherapy was modified by BRCA1_rs799917. We observed a trend with increasing minor T alleles leading to the highest risk in homozygous carriers of the minor allele [OR (95% CI) = 1.17 (0.98-1.39), 1.06 (0.98-1.14), and 1.02 (0.94-1.11) for homozygous minor, heterozygous, and homozygous major allele carriers, respectively; P (interaction) = 0.032]. Our results suggest that genetic variants in ABCB1 and BRCA1 may modify the effect of HT on postmenopausal breast cancer risk.

  16. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  17. A comprehensive study of polymorphisms in the ABCB1, ABCC2, ABCG2, NR1I2 genes and lymphoma risk

    PubMed Central

    Campa, Daniele; Butterbach, Katja; Slager, Susan L; Skibola, Christine F; de Sanjosé, Silvia; Benavente, Yolanda; Becker, Nikolaus; Foretova, Lenka; Maynadie, Marc; Cocco, Pierluigi; Staines, Anthony; Kaaks, Rudolf; Boffetta, Paolo; Brennan, Paul; Conde, Lucia; Bracci, Paige M; Caporaso, Neil E; Strom, Sara S; Camp, Nicola J; Cerhan, James R; Canzian, Federico; Nieters, Alexandra

    2012-01-01

    Owing to their role in controlling the efflux of toxic compounds, transporters are central players in the process of detoxification and elimination of xenobiotics, which in turn is related to cancer risk. Among these transporters, ATP-binding cassette B1/multidrug resistance 1 (ABCB1/MDR1), ABCC2/multidrug resistance protein 2 (MRP2), and ABCG2/breast cancer resistance protein (BCRP) affect susceptibility to many hematopoietic malignancies. The maintenance of regulated expression of these transporters is governed through the activation of intracellular “xenosensors” like the nuclear receptor 1I2/pregnane X receptor (NR1I2/PXR). SNPs in genes encoding these regulators have also been implicated in the risk of several cancers. Using a tagging approach, we tested the hypothesis that common polymorphisms in the transporter genes ABCB1, ABCC2, ABCG2, and the regulator gene NR1I2 could be implicated in lymphoma risk. We selected 68 SNPs in the 4 genes, and we genotyped them in 1,481 lymphoma cases and 1,491 controls of the European cases-control study (EpiLymph) using the Illumina™ GoldenGate assay technology.Carriers of the SNP rs6857600 minor allele in ABCG2, was associated with a decrease in risk of B-cell lymphoma (B-NHL) overall (p<0.001). Furthermore, a decreased risk of chronic lymphocytic leukemia (CLL) was associated with the ABCG2 rs2231142 variant (p=0.0004), which could be replicated in an independent population. These results suggest a role for this gene in B-NHL susceptibility, especially for CLL. PMID:21918980

  18. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines.

    PubMed

    Shimomura, Masanori; Yaoi, Takeshi; Itoh, Kyoko; Kato, Daishiro; Terauchi, Kunihiko; Shimada, Junichi; Fushiki, Shinji

    2012-04-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  19. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines

    PubMed Central

    SHIMOMURA, MASANORI; YAOI, TAKESHI; ITOH, KYOKO; KATO, DAISHIRO; TERAUCHI, KUNIHIKO; SHIMADA, JUNICHI; FUSHIKI, SHINJI

    2012-01-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  20. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  1. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  2. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  3. Wallichinine reverses ABCB1-mediated cancer multidrug resistance.

    PubMed

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  4. Wallichinine reverses ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  5. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients.

    PubMed

    Au, Anthony; Aziz Baba, Abdul; Goh, Ai Sim; Wahid Fadilah, S Abdul; Teh, Alan; Rosline, Hassan; Ankathil, Ravindran

    2014-04-01

    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients. PMID:24581936

  6. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter

    PubMed Central

    Qiu, Jian-Ge; Zhang, Yao-Jun; Li, Yong; Zhao, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Shi, Zhi

    2015-01-01

    Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR mediated by ABC transporters. Trametinib significantly potentiated the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in cancer cells overexpressed ABCB1, but not ABCC1 and ABCG2. Furthermore, trametinib did not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, trametinib potently blocked the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. Importantly, trametinib remarkably enhanced the effect of vincristine against the xenografts of ABCB1-overexpressing cancer cells in nude mice. The predicted binding mode showed the hydrophobic interactions of trametinib within the large drug binding cavity of ABCB1. Consequently, our findings may have important implications for use of trametinib in combination therapy for cancer treatment. PMID:25915534

  7. Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function.

    PubMed

    Katayama, Kazuhiro; Yamaguchi, Miho; Noguchi, Kohji; Sugimoto, Yoshikazu

    2014-04-01

    P-glycoprotein (P-gp)/ABCB1 is a key molecule of multidrug resistance in cancer. Protein phosphatase (PP) 2A, regulatory subunit B, gamma (PPP2R3C), which is a regulatory subunit of PP2A and PP5, was identified as a binding candidate to P-gp. Immunoprecipitation-western blotting revealed that PP5 and PPP2R3C were coprecipitated with P-gp, while PP2A was not. PP5/PPP2R3C dephosphorylated protein kinase A/protein kinase C-phosphorylation of P-gp. Knockdown of PP5 and/or PPP2R3C increased P-gp expression and lowered the sensitivity to vincristine and doxorubicin. Consequently, our results indicate that PP5/PPP2R3C negatively regulates P-gp expression and function.

  8. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    PubMed Central

    Kus, Tulay; Aktas, Gokmen; Kalender, Mehmet Emin; Demiryurek, Abdullah Tuncay; Ulasli, Mustafa; Oztuzcu, Serdar; Sevinc, Alper; Kul, Seval; Camci, Celaletdin

    2016-01-01

    Background Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001–3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. Conclusion ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy. PMID:27574448

  9. The Influence of C3435T Polymorphism of the ABCB1 Gene on Genetic Susceptibility to Depression and Treatment Response in Polish Population - Preliminary Report

    PubMed Central

    Jeleń, Agnieszka Maria; Sałagacka, Aleksandra; Żebrowska, Marta Karolina; Mirowski, Marek; Talarowska, Monika; Gałecki, Piotr; Balcerczak, Ewa Izabela

    2015-01-01

    Background: Despite the high prevalence of depression, the mechanism of the origin of this disease as well as the causes of resistance to therapy in some patients are still not fully understood. Increasingly, the possible role of genetic factors is considered. One of them is polymorphisms in the ABCB1 (MDR1) gene which encodes P-glycoprotein, responsible for the transport of xenobiotics, including antidepressant drugs, through the blood-brain barrier. Methods: C3435T was evaluated in 90 patients with recurrent depressive disorders (rDD). Genotyping was performed using a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Results: The obtained results indicate that the TT genotype occurred more frequently among patients with rDD than in healthy volunteers (p=0.0441). Also, at least one C allele was present significantly less frequent in the study group than in healthy individuals (p=0.0300). The severity of depressive symptoms was higher among patient with the CC genotype in comparison with the other genotypes (p=0.0106) but treatment response to antidepressants was better in this group than among patients with CT or TT genotypes (p=0.0301). Likewise, patients with the T allele have a significantly lower severity of symptoms (p=0.0026) and decreased therapy effectiveness (p=0.0142) than C allele carriers. Conclusions: This study suggests that C3435T polymorphisms in the ABCB1 gene are strongly associated with a predisposition to depression development, the severity of depressive symptoms and the effectiveness of therapy with using different groups of antidepressant agents. PMID:26664259

  10. Complete Knockout of Endogenous Mdr1 (Abcb1) in MDCK Cells by CRISPR-Cas9.

    PubMed

    Simoff, Ivailo; Karlgren, Maria; Backlund, Maria; Lindström, Anne-Christine; Gaugaz, Fabienne Z; Matsson, Pär; Artursson, Per

    2016-02-01

    Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.

  11. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens.

    PubMed

    Satake, Kazuhiro; Tsukamoto, Megumi; Mitani, Yuji; Regasini, Luis Octavio; da Silva Bolzani, Vanderlan; Efferth, Thomas; Nakagawa, Hiroshi

    2015-01-01

    Multidrug resistance (MDR) caused by human ABCB1 (P-glycoprotein/MDR1) is one of the major obstacles in chemotherapy. To understand the mechanism of MDR by ABCB1 and circumvent the MDR, in the present study, we established human ABCB1-expressing cells (Flp-In-293/ABCB1 cells) and examined the cytotoxic effects of four guanidine alkaloids from Pterogyne nitens (galegine, nitensidine A, pterogynidine and pterogynine) using Flp-In-293/Mock and Flp-In-293/ABCB1 cells. The activity of ABCB1 in Flp-In-293/ABCB1 cells were confirmed by typical substrates for ABCB1 (taxol and vinblastine) in MTT assay. Flp-In-293/ABCB1 cells were also resistant to the four guanidine alkaloids as well as taxol and vinblastine compared to Flp-In-293/Mock cells although the four guanidine alkaloids exhibited cytotoxicity against the two Flp-In-293 cells. Furthermore, the four guanidine alkaloids were also found to stimulate the ATPase activity of ABCB1 in ATPase assays. These results suggest that ABCB1 can confer the resistance to the cytotoxic guanidine alkaloids by transporting them.

  12. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment

    PubMed Central

    Tulsyan, Sonam; Mittal, Rama Devi; Mittal, Balraj

    2016-01-01

    The ABCB1 gene encodes a permeability glycoprotein, which is one of the most extensively studied human adenosine-triphosphate (ATP)-dependent efflux transporters. Permeability glycoprotein is expressed in the apical membranes of tissues such as intestine, liver, blood–brain barrier, kidney, placenta, and testis and contributes to intracellular drug disposition. It is also highly expressed in tumor cells conferring drug resistance, which is one of the major problems in the efficacy of cancer chemotherapy treatment. ABCB1 is highly polymorphic, and three well-known single-nucleotide polymorphisms such as 1236C>T, 2677G>T/A, and 3435C>T have been found to be associated with altered messenger RNA levels, protein folding, and drug pharmacokinetics. Many association studies and meta-analyses have demonstrated the clinical impact of ABCB1 polymorphisms in breast cancer treatment outcomes with respect to therapeutic response, chemotoxicity, and overall survival. Therefore, the aim of this review was to evaluate the effects of ABCB1 polymorphisms on the outcome of breast cancer treatment which, in future, would be important for tailoring individualized anticancer therapy. PMID:27175090

  13. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment.

    PubMed

    Tulsyan, Sonam; Mittal, Rama Devi; Mittal, Balraj

    2016-01-01

    The ABCB1 gene encodes a permeability glycoprotein, which is one of the most extensively studied human adenosine-triphosphate (ATP)-dependent efflux transporters. Permeability glycoprotein is expressed in the apical membranes of tissues such as intestine, liver, blood-brain barrier, kidney, placenta, and testis and contributes to intracellular drug disposition. It is also highly expressed in tumor cells conferring drug resistance, which is one of the major problems in the efficacy of cancer chemotherapy treatment. ABCB1 is highly polymorphic, and three well-known single-nucleotide polymorphisms such as 1236C>T, 2677G>T/A, and 3435C>T have been found to be associated with altered messenger RNA levels, protein folding, and drug pharmacokinetics. Many association studies and meta-analyses have demonstrated the clinical impact of ABCB1 polymorphisms in breast cancer treatment outcomes with respect to therapeutic response, chemotoxicity, and overall survival. Therefore, the aim of this review was to evaluate the effects of ABCB1 polymorphisms on the outcome of breast cancer treatment which, in future, would be important for tailoring individualized anticancer therapy. PMID:27175090

  14. ABCB1, ABCC2, SCN1A, SCN2A, GABRA1 gene polymorphisms and drug resistant epilepsy in the Chinese Han population.

    PubMed

    Zhou, Luo; Cao, Yuze; Long, Hongyu; Long, Lili; Xu, Lin; Liu, Zhaoqian; Zhang, Ying; Xiao, Bo

    2015-06-01

    Drug resistance is common in epilepsy despite multiple available medications. Single nucleotide polymorphisms (SNP) may influence drug efficacy in epilepsy. We therefore aimed to clarify the association between polymorphisms of several controversial SNP loci and drug resistance in Chinese Han epilepsy patients from central China. Among all the 391 recruited subjects, 235 and 156 patients were classified into a drug responsive and resistant group, respectively, according to the definition of drug resistance proposed by the International League Against Epilepsy. The candidate SNP loci, including ATP-binding cassette (ABC) subfamily gene ABCB1 rs2032582 and rs1045642; ABC subfamily gene ABCC2 rs717620 and rs2273697; sodium channel subunit gene SCN1A rs3812718, SCN2A rs2304016; γ-amino butyric acid type A (GABAA) receptor subunit subtype gene GABRA1 rs2279020 were genotyped following the Illumina protocols. There were no significant differences in allelic or genotypic frequencies between the drug responsive and resistant patients. The polymorphisms of the above SNP loci may not be associated with drug resistance of epilepsy in the Chinese Han population.

  15. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively.

  16. Butorphanol, a synthetic opioid, sensitizes ABCB1-mediated multidrug resistance via inhibition of the efflux function of ABCB1 in leukemia cells.

    PubMed

    Wen, Jing; Zhang, Tao; Shan, Zhi-Ming; Qi, Min-Yue; Xiu, Huan-Huan; Liu, Lei; Wu, Shi-Zhe; Jia, Zhen; Xu, Kang-Qing

    2015-08-01

    Multidrug resistance (MDR) remains a formidable challenge in the use of chemotherapy and represents a powerful obstacle to the treatment of leukemia. ATP-binding cassette subfamily B member 1 (ABCB1) is a recognized factor which causes MDR and is closely related to poor outcome and relapse in leukemia. Ongoing research concerning the strategy for inhibiting the abnormally high activity of the ABCB1 transporter is critically needed. In the present study, we sought to elucidate the interaction between ABCB1 transporter and butorphanol. Our results showed that butorphanol significantly antagonized ABCB1-mediated drug efflux and increased the intracellular drug concentration by inhibiting the transport activity of ABCB1 in leukemia cells. Mechanistic investigations demonstrated that butorphanol did not alter the protein expression or localization of ABCB1 in HL60/VCR and K562/ADR cells. Furthermore, homology modeling indicated that butorphanol could fit into the large drug-binding cavity of ABCB1 and form a binding conformation. In conclusion, butorphanol reversed the ABCB1-mediated MDR in leukemia cells by directly suppressing the efflux activity of ABCB1. PMID:26062728

  17. Semi-synthetic ocotillol analogues as selective ABCB1-mediated drug resistance reversal agents

    PubMed Central

    Zhang, Guan-Nan; Wang, Yi-Jun; Kathawala, Rishil J.; Si, Rui; Patel, Bhargav A.; Xu, Jinyi; Chen, Zhe-Sheng

    2015-01-01

    Overexpression of ATP-Binding Cassette transporters leads to multidrug resistance in cancer cells and results in the failure of chemotherapy. In this in-vitro study, we investigated whether or not (20S, 24R/S)-epoxy-12β, 25-dihydroxy-dommarane-3β-amine (ORA and OSA), a pair of semi-synthetic ocotillol analogue epimers, could inhibit the ABCB1 transporter. ORA (1 μM and 3 μM) significantly reversed the resistance to paclitaxel and vincristine in ABCB1-overexpressing SW620/Ad300 and HEK/ABCB1 cells, whereas OSA had no significant effects. In addition, ORA (3 μM) significantly increased the intracellular accumulation of [3H]-paclitaxel by suppressing the efflux function of ABCB1. Meanwhile, both ORA (3 μM) and OSA (3 μM) did not significantly alter the expression level or the subcellular location of ABCB1 protein. Moreover, the ABCB1 ATPase study suggested that ORA had a stronger stimulatory effect on the ATPase activity than OSA. ORA also exhibited a higher docking score as compared with OSA inside transmembrane domain of ABCB1. Overall, we concluded that ORA reverse ABCB1-mediated MDR by competitively inhibiting the ABCB1 drug efflux function. PMID:26296969

  18. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature.

    PubMed

    Wolking, Stefan; Schaeffeler, Elke; Lerche, Holger; Schwab, Matthias; Nies, Anne T

    2015-07-01

    ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.

  19. ABCB1 in children's brain tumours.

    PubMed

    Coyle, Beth; Kessler, Maya; Sabnis, Durgagauri H; Kerr, Ian D

    2015-10-01

    Tumours of the central nervous system are the most common solid tumour, accounting for a quarter of the 1500 cases of childhood cancer diagnosed each year in the U.K. They are the most common cause of cancer-related death in children. Treatment consists of surgery followed by adjuvant chemotherapy and/or radiotherapy. Survival rates have generally increased, but many survivors suffer from radiotherapy-related neurocognitive and endocrine side effects as well as an increased risk of secondary cancer. Adjuvant chemotherapy is normally given in combination to circumvent chemoresistance, but several studies have demonstrated it to be ineffective in the absence of radiotherapy. The identification of children with drug-resistant disease at the outset could allow stratification of those that are potentially curable by chemotherapy alone. Ultimately, however, what is required is a means to overcome this drug resistance and restore the effectiveness of chemotherapy. Medulloblastomas and ependymomas account for over 30% of paediatric brain tumours. Advances in neurosurgery, adjuvant radiotherapy and chemotherapy have led to improvements in 5-year overall survival rates. There remain, however, significant numbers of medulloblastoma patients that have intrinsically drug-resistant tumours and/or present with disseminated disease. Local relapse in ependymoma is also common and has an extremely poor prognosis with only 25% of children surviving first relapse. Each of these is consistent with the acquisition of drug and radiotherapy resistance. Since the majority of chemotherapy drugs currently used to treat these patients are transport substrates for ATP-binding cassette sub-family B member 1 (ABCB1) we will address the hypothesis that ABCB1 expression underlies this drug resistance. PMID:26517917

  20. Knockdown of c-MET induced apoptosis in ABCB1-overexpressed multidrug-resistance cancer cell lines.

    PubMed

    Hung, T-H; Li, Y-H; Tseng, C-P; Lan, Y-W; Hsu, S-C; Chen, Y-H; Huang, T-T; Lai, H-C; Chen, C-M; Choo, K-B; Chong, K-Y

    2015-05-01

    Inappropriate c-MET signaling in cancer can enhance tumor cell proliferation, survival, motility, and invasion. Inhibition of c-MET signaling induces apoptosis in a variety of cancers. It has also been recognized as a novel anticancer therapy approach. Furthermore, reports have also indicated that constitutive expression of P-glycoprotein (ABCB1) is involved in the HGF/c-MET-related pathway of multidrug resistance ABCB1-positive human hepatocellular carcinoma cell lines. We previously reported that elevated expression levels of PKCδ and AP-1 downstream genes, and HGF receptor (c-MET) and ABCB1, in the drug-resistant MES-SA/Dx5 cells. Moreover, leukemia cell lines overexpressing ABCB1 have also been shown to be more resistant to the tyrosine kinase inhibitor imatinib mesylate. These findings suggest that chemoresistant cancer cells may also develop a similar mechanism against chemotherapy agents. To circumvent clinical complications arising from drug resistance during cancer therapy, the present study was designed to investigate apoptosis induction in ABCB1-overexpressed cancer cells using c-MET-targeted RNA interference technology in vitro and in vivo. The results showed that cell viability decreased and apoptosis rate increased in c-MET shRNA-transfected HGF/c-MET pathway-positive MES-SA/Dx5 and MCF-7/ADR2 cell lines in a dose-dependent manner. In vivo reduction of tumor volume in mice harboring c-MET shRNA-knockdown MES-SA/Dx5 cells was clearly demonstrated. Our study demonstrated that downregulation of c-MET by shRNA-induced apoptosis in a multidrug resistance cell line.

  1. Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells.

    PubMed

    Zhang, Xiao-Yu; Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Zeng, Leli; Xu, Megan; Wang, Xiu-Qi; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-01-01

    In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers. PMID:27649127

  2. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    PubMed

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  3. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells

    PubMed Central

    Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; Wah To, Kenneth Kin; Gu, Yong; Fu, Liwu

    2015-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients. PMID:26506420

  4. Combined analysis of circulating β-endorphin with gene polymorphisms in OPRM1, CACNAD2 and ABCB1 reveals correlation with pain, opioid sensitivity and opioid-related side effects

    PubMed Central

    2013-01-01

    Background Opioids are associated with wide inter-individual variability in the analgesic response and a narrow therapeutic index. This may be partly explained by the presence of single nucleotide polymorphisms (SNPs) in genes encoding molecular entities involved in opioid metabolism and receptor activation. This paper describes the investigation of SNPs in three genes that have a functional impact on the opioid response: OPRM1, which codes for the μ-opioid receptor; ABCB1 for the ATP-binding cassette B1 transporter enzyme; and the calcium channel complex subunit CACNA2D2. The genotyping was combined with an analysis of plasma levels of the opioid peptide β-endorphin in 80 well-defined patients with chronic low back pain scheduled for spinal fusion surgery, and with differential sensitivity to the opioid analgesic remifentanil. This patient group was compared with 56 healthy controls. Results The plasma β-endorphin levels were significantly higher in controls than in pain patients. A higher incidence of opioid-related side effects and sex differences was found in patients with the minor allele of the ABCB1 gene. Further, a correlation between increased opioid sensitivity and the major CACNA2D2 allele was confirmed. A tendency of a relationship between opioid sensitivity and the minor allele of OPRM1 was also found. Conclusions Although the sample cohort in this study was limited to 80 patients it appears that it was possible to observe significant correlations between polymorphism in relevant genes and various items related to pain sensitivity and opioid response. Of particular interest is the new finding of a correlation between increased opioid sensitivity and the major CACNA2D2 allele. These observations may open for improved strategies in the clinical treatment of chronic pain with opioids. PMID:23402298

  5. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  6. Genomewide analysis of ABCBs with a focus on ABCB1 and ABCB19 in Malus domestica.

    PubMed

    Ma, Juan Juan; Han, Mingyu

    2016-03-01

    The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon-intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots ofM9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple. PMID:27019441

  7. Identification of a putatively multixenobiotic resistance related Abcb1 transporter in amphipod species endemic to the highly pristine Lake Baikal.

    PubMed

    Pavlichenko, Vasiliy V; Protopopova, Marina V; Timofeyev, Maxim; Luckenbach, Till

    2015-04-01

    The fauna of Lake Baikal in Eastern Siberia, the largest freshwater body on Earth, is characterized by high degrees of biodiversity and endemism. Amphipods, a prominent taxon within the indigenous fauna, occur in an exceptionally high number of endemic species. Considering the specific water chemistry of Lake Baikal with extremely low levels of potentially toxic natural organic compounds, it seems conceivable that certain adaptions to adverse environmental factors are missing in endemic species, such as cellular defense mechanisms mitigating toxic effects of chemicals. The degree to which the endemic fauna is affected by the recently occurring anthropogenic water pollution of Lake Baikal may depend on the existence of such cellular defense mechanisms in those species. We here show that endemic amphipods express transcripts for Abcb1, a major component of the cellular multixenobiotic resistance (MXR) defense against toxic chemicals. Based on a partial abcb1 cDNA sequence from Gammarus lacustris, an amphipod species common across Northern Eurasia but only rarely found in Lake Baikal, respective homologous sequences were cloned from five amphipods endemic to Lake Baikal, Eulimnogammarus verrucosus, E. vittatus, E. cyaneus, E. marituji, and Gmelinoides fasciatus, confirming that abcb1 is transcribed in those species. The effects of thermal (25 °C) and chemical stress (1-2 mg L(-1) phenanthrene) in short-term exposures (up to 24 h) on transcript levels of abcb1 and heat shock protein 70 (hsp70), used as a proxy for cellular stress in the experiments, were exemplarily examined in E. verrucosus, E. cyaneus, and Gammarus lacustris. Whereas increases of abcb1 transcripts upon treatments occurred only in the Baikalian species E. verrucosus and E. cyaneus but not in Gammarus lacustris, changes of hsp70 transcript levels were seen in all three species. At least for species endemic to Lake Baikal, the data thus indicate that regulation of the identified amphipod abcb1 is

  8. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption.

    PubMed

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W

    2013-02-01

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding cassette (ABC) family member ABCB1 (P-glycoprotein), did not depend on actin, neither in ABCB1 over expressing murine National Institutes of Health (NIH) 3T3 MDR1 G185 cells nor in human SK-N-FI cells, which endogenously express ABCB1. Disruption of the actin cytoskeleton, upon treatment of the cells with latrunculin B or cytochalasin D, caused severe changes in cell and membrane morphology, and concomitant changes in the subcellular distribution of ABCB1, as revealed by confocal laser scanning and electron microscopy. Nevertheless, irrespective of actin perturbation, the cell surface pool of ABCB1 remained unaltered. In NIH 3T3 MDR1 G185 cells, ABCB1 is partly localized in detergent-free lipid rafts, which partitioned in two different density gradient regions, both enriched in cholesterol and sphingolipids. Interestingly, disruption of the actin cytoskeleton did not change the density gradient distribution of ABCB1. Our data demonstrate that the functioning of ABCB1 as an efflux pump does not depend on actin, which is due to its distribution in both cell surface-localized non-raft membrane areas and lipid raft domains, which do not depend on actin stabilization.

  9. Effect of FosPeg® mediated photoactivation on P-gp/ABCB1 protein expression in human nasopharyngeal carcinoma cells.

    PubMed

    Wu, R W K; Chu, E S M; Huang, Z; Xu, C S; Ip, C W; Yow, C M N

    2015-07-01

    Multidrug resistance (MDR) refers to the ability of cancer cells to develop cross resistance to a range of anticancer drugs which are structurally and functionally unrelated. P-glycoprotein (P-gp) is the best studied MDR phenotype in photodynamic therapy (PDT) treated cells. Our pervious study demonstrated that FosPeg® mediated PDT is effective to NPC cell line models. In this in vitro study, the expression of MDR1 gene and its product P-gp in undifferentiated, poorly differentiated and well differentiated human nasopharyngeal carcinoma (NPC) cells were investigated. The influence of P-gp efflux activities on photosensitizer FosPeg® was also examined. Regardless of the differentiation status, PDT tested NPC cell lines all expressed P-gp protein. Results indicated that FosPeg® photoactivation could heighten the expression of MDR1 gene and P-gp transporter protein in a dose dependent manner. Up to 2-fold increase of P-gp protein expression were seen in NPC cells after FosPeg® mediated PDT. Interestingly, our finding demonstrated that FosPeg® mediated PDT efficiency is independent to the MDR1 gene and P-gp protein expression in NPC cells. FosPeg® itself is not the substrate of P-gp transporter protein and no efflux of FosPeg® were observed in NPC cells. Therefore, the PDT efficiency would not be affected even though FosPeg® mediated PDT could induce MDR1 gene and P-gp protein expression in NPC cells. FosPeg® mediated PDT could be a potential therapeutic approach for MDR cancer patients. PMID:25900553

  10. Genetic Polymorphisms of Multidrug Resistance Gene-1 (MDR1/ABCB1) and Glutathione S-Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients

    PubMed Central

    Senhaji, Nezha; Kassogue, Yaya; Fahimi, Mina; Serbati, Nadia; Badre, Wafaa; Nadifi, Sellama

    2015-01-01

    Inflammatory bowel diseases (IBD) are multifactorial disorders resulting from environmental and genetic factors. Polymorphisms in MDR1 and GSTs genes might explain individual differences in susceptibility to IBD. We carried out a case-control study to examine the association of MDR1 (C1236T and C3435T), GSTT1, and GSTM1 polymorphisms with the risk of IBD. Subjects were genotyped using PCR-RFLP for MDR1 gene and multiplex PCR for GSTT1 and GSTM1. Meta-analysis was performed to test the association of variant allele carriage with IBD risk. We report that GSTT1 null genotype is significantly associated with the risk of CD (OR: 2.5, CI: 1.2–5, P = 0.013) and UC (OR: 3.5, CI: 1.5–8.5, P = 0.004) and can influence Crohn's disease behavior. The interaction between GSTT1 and GSTM1 genes showed that the combined null genotypes were associated with the risk of UC (OR: 3.1, CI: 1.1–9, P = 0.049). Furthermore, when compared to combined 1236CC/CT genotypes, the 1236TT genotype of MDR1 gene was associated with the risk of UC (OR: 3.7, CI: 1.3–10.7, P = 0.03). Meta-analysis demonstrated significantly higher frequencies of 3435T carriage in IBD patients. Our results show that GSTT1 null and MDR1 polymorphisms could play a role in susceptibility to IBD. PMID:26604430

  11. Membrane Assays to Characterize Interaction of Drugs with ABCB1.

    PubMed

    Fekete, Zsolt; Rajnai, Zsuzsanna; Nagy, Tünde; Jakab, Katalin Tauberné; Kurunczi, Anita; Gémes, Katalin; Herédi-Szabó, Krisztina; Fülöp, Ferenc; Tóth, Gábor K; Czerwinski, Maciej; Loewen, Greg; Krajcsi, Peter

    2015-12-01

    ATP-binding cassette sub-family B member 1 (ABCB1) [P-glycoprotein (P-gp), multidrug resistance protein 1 (MDR1)] can affect the pharmacokinetics, safety, and efficacy of drugs making it important to identify compounds that interact with ABCB1. The ATPase assay and vesicular transport (VT) assay are membrane based assays that can be used to measure the interaction of compounds with ABCB1 at a lower cost and higher throughput compared to cellular-based assays and therefore can be used earlier in the drug development process. To that end, we tested compounds previously identified as ABCB1 substrates and inhibitors for interaction with ABCB1 using the ATPase and VT assays. All compounds tested interacted with ABCB1 in both the ATPase and VT assays. All compounds previously identified as ABCB1 substrates activated ABCB1-mediated ATPase activity in the ATPase assay. All compounds previously identified as ABCB1 inhibitors inhibited the ABCB1-mediated transport in the VT assay. Interestingly, six of the ten compounds previously identified as ABCB1 inhibitors activated the basal ATPase activity in activation assays suggesting that the compounds are substrates of ABCB1 but can inhibit ABCB1 in inhibition assays. Importantly, for ATPase activators the EC50 of activation correlated with the IC50 values from the VT assay showing that interactions of compounds with ABCB1 can be measured with similar levels of potency in either assay. For ATPase nonactivators the IC50 values from the ATPase inhibition and VT inhibition assay showed correlation. These results demonstrate the utility of membrane assays as tools to detect and rank order drug-transporter interactions. PMID:25926125

  12. An update on ABCB1 pharmacogenetics: insights from a 3D model into the location and evolutionary conservation of residues corresponding to SNPs associated with drug pharmacokinetics.

    PubMed

    Wolf, S J; Bachtiar, M; Wang, J; Sim, T S; Chong, S S; Lee, C G L

    2011-10-01

    The human ABCB1 protein, (P-glycoprotein or MDR1) is a membrane-bound glycoprotein that harnesses the energy of ATP hydrolysis to drive the unidirectional transport of substrates from the cytoplasm to the extracellular space. As a large range of therapeutic agents are known substrates of ABCB1 protein, its role in the onset of multidrug resistance has been the focus of much research. This role has been of particular interest in the field of pharmacogenomics where genetic variation within the ABCB1 gene, particularly in the form of single nucleotide polymorphisms (SNPs), is believed to contribute to inter-individual variation in ABCB1 function and drug response. In this review we provide an update on the influence of coding region SNPs within the ABCB1 gene on drug pharmacokinetics. By utilizing the crystal structure of the mouse ABCB1 homolog (Abcb1a), which is 87% homologous to the human sequence, we accompany this discussion with a graphical representation of residue location for amino acids corresponding to human ABCB1 coding region SNPs. Also, an assessment of residue conservation, which is calculated following multiple sequence alignment of 11 confirmed sequences of ABCB1 homologs, is presented and discussed. Superimposing a 'heat map' of residue homology to the Abcb1a crystal structure has permitted additional insights into both the conservation of individual residues and the conservation of their immediate surroundings. Such graphical representation of residue location and conservation supplements this update of ABCB1 pharmacogenetics to help clarify the often confounding reports on the influence of ABCB1 polymorphisms on drug pharmacokinetics and response.

  13. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells.

    PubMed

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-12-22

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs.

  14. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells

    PubMed Central

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-01-01

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs. PMID:26689156

  15. Association between ABCB1 genetic polymorphism and the effect on epilepsy following phenytoin treatment

    PubMed Central

    Sun, Fei; Cao, Bo-Qiang; Wang, Bo; Wu, Shi-Qiang; Jiang, De-Hua

    2016-01-01

    The aim of the study was to analyze the effect of ABCB1 genetic polymorphisms on the efficacy of phenytoin (PHT) treatment in epilepsy patients. In total, 200 epilepsy patients who were administered PHT were divided into the responsive and pharmaco-resistance groups depending on the clinical data of PHT treatment in epilepsy patients. The serum concentration of PHT was detected by high-performance liquid chromatography (HPLC). ABCB1 polymorphisms were analyzed by the polymerase chain reaction restriction-fragment length polymorphism method. The C1236T, C3435T and G2677T/A haplotypes were reconstructed for the ABCB1 gene using SHEsis programs. One-way analysis of variance was used for data analysis. In ABCB1 C1236T, the rate of the CC genotype in pharmaco-resistance (17.5%) was higher than that of the responsive group (2.1%), while the rate of the TT genotype in pharmaco-resistance (41.6%) was lower than that of the responsive group (55.4%) (P<0.05). In ABCB1 G2677T/A, the rate of the GG genotype in pharmaco-resistance (29.6%) was higher than that of the responsive group (9.7%), while the rate of the TT genotype in pharmaco-resistance (4.6%) was lower than that of the responsive group (30.4%) (P<0.05). The rate of the TTC haploid in pharmaco-resistance (24.1%) was higher than that of the responsive group (8.8%) (P<0.05). The PHT serum concentration had no statistical significance in the patients with different genotypes. In conclusion, there was no association between ABCB1 genetic polymorphism and PHT serum concentration, although the polymorphisms affected the efficacy of PHT treatment in patients with epilepsy. PMID:27602091

  16. Association between ABCB1 genetic polymorphism and the effect on epilepsy following phenytoin treatment

    PubMed Central

    Sun, Fei; Cao, Bo-Qiang; Wang, Bo; Wu, Shi-Qiang; Jiang, De-Hua

    2016-01-01

    The aim of the study was to analyze the effect of ABCB1 genetic polymorphisms on the efficacy of phenytoin (PHT) treatment in epilepsy patients. In total, 200 epilepsy patients who were administered PHT were divided into the responsive and pharmaco-resistance groups depending on the clinical data of PHT treatment in epilepsy patients. The serum concentration of PHT was detected by high-performance liquid chromatography (HPLC). ABCB1 polymorphisms were analyzed by the polymerase chain reaction restriction-fragment length polymorphism method. The C1236T, C3435T and G2677T/A haplotypes were reconstructed for the ABCB1 gene using SHEsis programs. One-way analysis of variance was used for data analysis. In ABCB1 C1236T, the rate of the CC genotype in pharmaco-resistance (17.5%) was higher than that of the responsive group (2.1%), while the rate of the TT genotype in pharmaco-resistance (41.6%) was lower than that of the responsive group (55.4%) (P<0.05). In ABCB1 G2677T/A, the rate of the GG genotype in pharmaco-resistance (29.6%) was higher than that of the responsive group (9.7%), while the rate of the TT genotype in pharmaco-resistance (4.6%) was lower than that of the responsive group (30.4%) (P<0.05). The rate of the TTC haploid in pharmaco-resistance (24.1%) was higher than that of the responsive group (8.8%) (P<0.05). The PHT serum concentration had no statistical significance in the patients with different genotypes. In conclusion, there was no association between ABCB1 genetic polymorphism and PHT serum concentration, although the polymorphisms affected the efficacy of PHT treatment in patients with epilepsy.

  17. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer.

    PubMed

    Ghafouri, Houshiyar; Ghaderi, Bayazid; Amini, Sabrieh; Nikkhoo, Bahram; Abdi, Mohammad; Hoseini, Abdolhakim

    2016-06-01

    The possible interaction between gene polymorphisms and risk of cancer progression is very interesting. Polymorphisms in multi-drug resistance genes have an important role in response to anti-cancer drugs. The present study was aimed to evaluate the possible effects of ABCB1 C3435T and ABCG2 C421A single nucleotide polymorphisms on clinical and pathological outcomes of Kurdish patients with breast cancer. One hundred breast cancer patients and 200 healthy controls were enrolled in this case-control study. Clinical and pathological findings of all individuals were reported, and immunohistochemistry staining was used to assess the tissue expression of specific breast cancer proteins. The ABCB1 C3435T and ABCG2 C421 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). The distribution of different genotypes between patient and control groups was only significant for ABCG2 C421A. A allele of ABCG2 C421A polymorphisms were significantly higher in patients than in controls. Patients with AA genotype of ABCG2 C421A were at higher risk of progressing breast cancer. Patients with A allele of ABCG2 had complete response to chemotherapeutic agents. There was no statistically significant association between ABCB1 C3435T and ABCG2 C421A polymorphisms and tissue expression of ER, PR, Her2/neu, and Ki67. The ABCB1 C3435T has no correlation with clinical findings and treatment with chemotherapy drugs. The A allele of ABCG2 C421A may be a risk factor for progression of breast cancer in Kurdish patients. In addition, breast cancer patients with C allele of this polymorphism have weaker response to treatments with anthracyclines and Paclitaxol.

  18. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    PubMed

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  19. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    PubMed

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes. PMID:26820614

  20. The multidrug resistance pump ABCB1 is a substrate for the ubiquitin ligase NEDD4-1

    PubMed Central

    Akkaya, Begum G.; Zolnerciks, Joseph K.; Ritchie, Tasha K.; Bauer, Bjoern; Hartz, Anika M.S.; Sullivan, James A.; Linton, Kenneth J.

    2016-01-01

    The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer's disease. The surface density of many membrane proteins is regulated by ubiquitination catalysed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from E. coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996-998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer's disease. PMID:26006083

  1. Inhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma

    PubMed Central

    Ryu, Keinosuke; Choy, Edwin; Hornicek, Francis J.; Mankin, Henry; Milane, Lara; Amiji, Mansoor M.; Duan, Zhenfeng

    2010-01-01

    Background The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy. Methodology/Principal Findings In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOSR2 and U-2OSR2) were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp) expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines. Conclusions/Significance Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma. PMID:20520719

  2. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin.

    PubMed

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  3. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  4. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    PubMed Central

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-01-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment. PMID:27157787

  5. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing

    PubMed Central

    Yang, Yang; Qiu, Jian-Ge; Li, Yong; Di, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Huang, Jia-Rong; Wang, Kun; Shi, Zhi

    2016-01-01

    The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR. PMID:27725879

  6. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  7. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  8. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  9. Abcb and Abcc transporter homologs are expressed and active in larvae and adults of zebra mussel and induced by chemical stress.

    PubMed

    Navarro, Anna; Weißbach, Susann; Faria, Melissa; Barata, Carlos; Piña, Benjamin; Luckenbach, Till

    2012-10-15

    Multixenobiotic resistance (MXR) of aquatic invertebrates has so far been associated with cellular efflux activity mediated by P-glycoprotein (ABCB1) and MRP (multidrug resistance protein; ABCC) type ABC (ATP binding cassette) transporters. Expression and activity of an abcb1/Abcb1 homolog has been shown in eggs and larvae of the zebra mussel Dreissena polymorpha. Here we report identification of a partial cDNA sequence of an abcc/Abcc homolog from zebra mussel that is transcribed and active as a cellular efflux transporter in embryos and gill tissue of adult mussels. Transcript expression levels were comparatively low in eggs and sharply increased after fertilization, then maintaining high expression levels in 1 and 2 dpf (days post fertilization) larvae. MK571, a known inhibitor of mammalian ABCC transporters, blocks efflux of calcein-am in larvae and gill tissue as indicated by elevated calcein fluorescence; this indicates the presence of active Abcc protein in cells of the larvae and gills. Dacthal and mercury used as chemical stressors both induced expression of abcb1 and abcc mRNAs in larvae; accordingly, assays with calcein-am and ABCB1 inhibitor reversin 205 and ABCC inhibitor MK571 indicated enhanced Abcb1 and Abcc efflux activities. Responses to chemicals were different in gills, where abcb1 transcript abundances were enhanced in dacthal and mercury treatments, whereas abcc mRNA was only increased with mercury. Abcb1 and Abcc activities did not in all cases show increases that were according to respective mRNA levels; thus, Abcc activity was significantly higher with dacthal, whereas Abcb1 activity was unchanged with mercury. Our data indicate that abcb1/Abcb1 and abcc/Abcc transporters are expressed and active in larvae and adult stages of zebra mussel. Expression of both genes is induced as cellular stress response, but regulation appears to differ in larvae and tissue of adult stages. PMID:22819804

  10. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity.

    PubMed

    Ballent, M; Wilkens, M R; Maté, L; Muscher, A S; Virkel, G; Sallovitz, J; Schröder, B; Lanusse, C; Lifschitz, A

    2013-12-01

    The role of the transporter P-glycoprotein (P-gp) in the disposition kinetics of different drugs therapeutically used in veterinary medicine has been demonstrated. Considering the anatomo-physiological features of the ruminant species, the constitutive expression of P-gp (ABCB1) along the sheep gastrointestinal tract was studied. Additionally, the effect of repeated dexamethasone (DEX) administrations on the ABCB1 gene expression in the liver and small intestine was also assessed. The ABCB1 mRNA expression was determined by real-time quantitative PCR. P-gp activity was evaluated in diffusion chambers to determine the efflux of rhodamine 123 (Rho 123) in the ileum from experimental sheep. The constitutive ABCB1 expression was 65-fold higher in the liver than in the intestine (ileum). The highest ABCB1 mRNA expression along the small intestine was observed in the ileum (between 6- and 120-fold higher). The treatment with DEX did not elicit a significant effect on the P-gp gene expression levels in any of the investigated gastrointestinal tissues. Consistently, no significant differences were observed in the intestinal secretion of Rho 123, between untreated control (Peff S-M = 3.99 × 10(-6)  ± 2.07 × 10(-6) ) and DEX-treated animals (Peff S-M = 6.00 × 10(-6)  ± 2.5 × 10(-6) ). The understanding of the efflux transporters expression and activity along the digestive tract may help to elucidate clinical implications emerging from drug interactions in livestock.

  11. ABCB1 Overexpression Is a Key Initiator of Resistance to Tyrosine Kinase Inhibitors in CML Cell Lines.

    PubMed

    Eadie, Laura N; Hughes, Timothy P; White, Deborah L

    2016-01-01

    The tyrosine kinase inhibitor (TKI) imatinib has resulted in excellent responses in the majority of Chronic Myeloid Leukaemia (CML) patients; however, resistance is observed in 20-30% of patients. More recently, resistance to the second generation TKIs, nilotinib and dasatinib, has also been observed albeit at a lower incidence. ABCB1 has previously been implicated in TKI export and its overexpression linked to TKI resistance. In this study the dynamics of nilotinib resistance was studied in CML cell lines with particular focus on ABCB1 expression levels during development of resistance. Results revealed ABCB1 overexpression is likely an important initiator of nilotinib resistance in vitro. ABCB1 overexpression was also observed in cell lines as an intermediate step during development of resistance to imatinib and dasatinib in vitro. We conclude that ABCB1 overexpression may provide an initial platform to facilitate development of additional mechanisms for resistance to TKIs. This provides a rationale for investigating this phenomenon in patients undergoing TKI therapy. PMID:27536777

  12. ABCB1 Overexpression Is a Key Initiator of Resistance to Tyrosine Kinase Inhibitors in CML Cell Lines

    PubMed Central

    Hughes, Timothy P.; White, Deborah L.

    2016-01-01

    The tyrosine kinase inhibitor (TKI) imatinib has resulted in excellent responses in the majority of Chronic Myeloid Leukaemia (CML) patients; however, resistance is observed in 20–30% of patients. More recently, resistance to the second generation TKIs, nilotinib and dasatinib, has also been observed albeit at a lower incidence. ABCB1 has previously been implicated in TKI export and its overexpression linked to TKI resistance. In this study the dynamics of nilotinib resistance was studied in CML cell lines with particular focus on ABCB1 expression levels during development of resistance. Results revealed ABCB1 overexpression is likely an important initiator of nilotinib resistance in vitro. ABCB1 overexpression was also observed in cell lines as an intermediate step during development of resistance to imatinib and dasatinib in vitro. We conclude that ABCB1 overexpression may provide an initial platform to facilitate development of additional mechanisms for resistance to TKIs. This provides a rationale for investigating this phenomenon in patients undergoing TKI therapy. PMID:27536777

  13. Impact of ABCB1 1236C > T-2677G > T-3435C > T polymorphisms on the anti-proliferative activity of imatinib, nilotinib, dasatinib and ponatinib

    PubMed Central

    Dessilly, Géraldine; Panin, Nadtha; Elens, Laure; Haufroid, Vincent; Demoulin, Jean-Baptiste

    2016-01-01

    Overexpression of ABCB1 (also called P-glycoprotein) confers resistance to multiple anticancer drugs, including tyrosine kinase inhibitors (TKIs). Several ABCB1 single nucleotide polymorphisms affect the transporter activity. The most common ABCB1 variants are 1236C > T, 2677G > T, 3435C > T and have been associated with clinical response to imatinib in chronic myelogenous leukaemia (CML) in some studies. We evaluated the impact of these polymorphisms on the anti-proliferative effect and the intracellular accumulation of TKIs (imatinib, nilotinib, dasatinib and ponatinib) in transfected HEK293 and K562 cells. ABCB1 overexpression increased the resistance of cells to doxorubicin, vinblastine and TKIs. Imatinib anti-proliferative effect and accumulation were decreased to a larger extent in cells expressing the ABCB1 wild-type protein compared with the 1236T-2677T-3435T variant relatively to control cells. By contrast, ABCB1 polymorphisms influenced the activity of nilotinib, dasatinib and ponatinib to a much lesser extent. In conclusion, our data suggest that wild-type ABCB1 exports imatinib more efficiently than the 1236T-2677T-3435T variant protein, providing a molecular basis for the reported association between ABCB1 polymorphisms and the response to imatinib in CML. Our results also point to a weaker impact of ABCB1 polymorphisms on the activity of nilotinib, dasatinib and ponatinib. PMID:27405085

  14. Association of single nucleotide polymorphisms of ABCB1, OPRM1 and COMT with pain perception in cancer patients.

    PubMed

    Wang, Xu-shi; Song, Hai-bin; Chen, Si; Zhang, Wei; Liu, Jia-qi; Huang, Chao; Wang, Hao-ran; Chen, Yuan; Chu, Qian

    2015-10-01

    Pain perception is influenced by multiple factors. The single nucleotide polymorphisms (SNPs) of some genes were found associated with pain perception. This study aimed to examine the association of the genotypes of ABCB1 C3435T, OPRM1 A118G and COMT V108/158M (valine 108/158 methionine) with pain perception in cancer patients. We genotyped 146 cancer pain patients and 139 cancer patients without pain for ABCB1 C3435T (rs1045642), OPRM1 A118G (rs1799971) and COMT V108/158M (rs4680) by the fluorescent dye-terminator cycle sequencing method, and compared the genotype distribution between groups with different pain intensities by chi-square test and pain scores between groups with different genotypes by non-parametric test. The results showed that in these cancer patients, the frequency of variant T allele of ABCB1 C3435T was 40.5%; that of G allele of OPRM1 A118G was 38.5% and that of A allele of COMT V108/158M was 23.3%. No significant difference in the genotype distribution of ABCB1 C3435T (rs1045642) and OPRM1 A118G (rs1799971) was observed between cancer pain group and control group (P=0.364 and 0.578); however, significant difference occurred in the genotype distribution of COMT V108/158M (rs4680) between the two groups (P=0.001). And the difference could not be explained by any other confounding factors. Moreover, we found that the genotypes of COMT V108/158M and ABCB1 C3435T were associated with the intensities of pain in cancer patients. In conclusion, our results indicate that the SNPs of COMT V108/158M and ABCB1 C3435T significantly influence the pain perception in Chinese cancer patients.

  15. The FLT3 and PDGFR inhibitor crenolanib is a substrate of the multidrug resistance protein ABCB1 but does not inhibit transport function at pharmacologically relevant concentrations.

    PubMed

    Mathias, Trevor J; Natarajan, Karthika; Shukla, Suneet; Doshi, Kshama A; Singh, Zeba N; Ambudkar, Suresh V; Baer, Maria R

    2015-04-01

    Background Crenolanib (crenolanib besylate, 4-piperidinamine, 1-[2-[5-[(3-methyl-3-oxetanyl)methoxy]-1H-benzimidazol-1-yl]-8-quinolinyl]-, monobenzenesulfonate) is a potent and specific type I inhibitor of fms-like tyrosine kinase 3 (FLT3) that targets the active kinase conformation and is effective against FLT3 with internal tandem duplication (ITD) with point mutations induced by, and conferring resistance to, type II FLT3 inhibitors in acute myeloid leukemia (AML) cells. Crenolanib is also an inhibitor of platelet-derived growth factor receptor alpha and beta and is in clinical trials in both gastrointestinal stromal tumors and gliomas. Methods We tested crenolanib interactions with the multidrug resistance-associated ATP-binding cassette proteins ABCB1 (P-glycoprotein), ABCG2 (breast cancer resistance protein) and ABCC1 (multidrug resistance-associated protein 1), which are expressed on AML cells and other cancer cells and are important components of the blood-brain barrier. Results We found that crenolanib is a substrate of ABCB1, as evidenced by approximate five-fold resistance of ABCB1-overexpressing cells to crenolanib, reversal of this resistance by the ABCB1-specific inhibitor PSC-833 and stimulation of ABCB1 ATPase activity by crenolanib. In contrast, crenolanib was not a substrate of ABCG2 or ABCC1. Additionally, it did not inhibit substrate transport by ABCB1, ABCG2 or ABCC1, at pharmacologically relevant concentrations. Finally, incubation of the FLT3-ITD AML cell lines MV4-11 and MOLM-14 with crenolanib at a pharmacologically relevant concentration of 500 nM did not induce upregulation of ABCB1 cell surface expression. Conclusions Thus ABCB1 expression confers resistance to crenolanib and likely limits crenolanib penetration of the central nervous system, but crenolanib at therapeutic concentrations should not alter cellular exposure to ABC protein substrate chemotherapy drugs.

  16. Association of Extrarenal Adverse Effects of Posttransplant Immunosuppression With Sex and ABCB1 Haplotypes

    PubMed Central

    Venuto, Rocco C.; Meaney, Calvin J.; Chang, Shirley; Leca, Nicolae; Consiglio, Joseph D.; Wilding, Gregory E.; Brazeau, Daniel; Gundroo, Aijaz; Nainani, Neha; Morse, Sarah E.; Cooper, Louise M.; Tornatore, Kathleen M.

    2015-01-01

    Abstract Extrarenal adverse effects (AEs) associated with calcineurin inhibitor (CNI) and mycophenolic acid (MPA) occur frequently but are unpredictable posttransplant complications. AEs may result from intracellular CNI accumulation and low activity of P-glycoprotein, encoded by the ABCB1 gene. Since ABCB1 single nucleotide polymorphisms (SNPs) and sex influence P-glycoprotein, we investigated haplotypes and extrarenal AEs. A prospective, cross-sectional study evaluated 149 patients receiving tacrolimus and enteric coated mycophenolate sodium or cyclosporine and mycophenolate mofetil. Immunosuppressive AE assessment determined individual and composite gastrointestinal, neurologic, aesthetic, and cumulative AEs. Lipids were quantitated after 12-hour fast. ABCB1 SNPs: c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642) were determined with haplotype associations computed using the THESIAS program, and evaluated by immunosuppression, sex and race using multivariate general linear models. Tacrolimus patients exhibited more frequent and higher gastrointestinal AE scores compared with cyclosporine with association to CTT (P = 0.018) and sex (P = 0.01). Aesthetic AE score was 3 times greater for cyclosporine with TTC haplotype (P = 0.005). Females had higher gastrointestinal (P = 0.022), aesthetic (P < 0.001), neurologic (P = 0.022), and cumulative AE ratios (P < 0.001). Total cholesterol (TCHOL), low-density lipoproteins (LDL), and triglycerides were higher with cyclosporine. The TTC haplotype had higher TCHOL (P < 0.001) and LDL (P = 0.005). Higher triglyceride (P = 0.034) and lower high-density lipoproteins (P = 0.057) were associated with TTT with sex-adjusted analysis. ABCB1 haplotypes and sex were associated with extrarenal AEs. Using haplotypes, certain female patients manifested more AEs regardless of CNI. Haplotype testing may identify patients with greater susceptibility to AEs and facilitate CNI

  17. Involvement of ABCB1 and ABCC1 transporters in sea urchin Echinometra lucunter fertilization.

    PubMed

    Silva-Neta, Helena Lima; Torrezan, Elis; de Araújo Leite, Jocelmo Cássio; Santi-Gadelha, Tatiane; Marques-Santos, Luis Fernando

    2012-12-01

    Fertilization is an ordered sequence of cellular interactions that promotes gamete fusion to form a new individual. Since the pioneering work of Oskar Hertwig conducted on sea urchins, echinoderms have contributed to the understanding of cellular and molecular aspects of the fertilization processes. Studies on sea urchin spermatozoa reported the involvement of a plasma membrane protein that belongs to the ABC proteins superfamily in the acrosome reaction. ABC transporters are expressed in membranes of eukaryotic and prokaryotic cells, and are associated with the transport of several compounds or ions across biomembranes. We aimed to investigate ABCB1 and ABCC1 transporter activity in sea urchin spermatozoa and their involvement in fertilization. Our results indicate that Echinometra lucunter spermatozoa exhibit a low intracellular calcein accumulation (18.5% stained cells); however, the ABC blockers reversin205, verapamil, and MK571 increased dye accumulation (93.0-96.6% stained cells). We also demonstrated that pharmacologically blocking ABCB1 and ABCC1 decreased spermatozoa fertilizing capacity (70% inhibition), and this phenotype was independent of extracellular calcium. These data suggest that functional spermatozoa ABCB1 and ABCC1 transporters are crucial for a successful fertilization. Additional studies must be performed to investigate the involvement of membrane lipid homeostasis in the fertilization process.

  18. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice.

    PubMed

    Xie, Jing-Dun; Huang, Yang; Chen, Dong-Tai; Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.

  19. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo

    PubMed Central

    Hu, Jing; Zhang, Xu; Wang, Fang; Wang, Xiaokun; Yang, Ke; Xu, Meng; To, Kenneth K.W.

    2015-01-01

    Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in phase III clinical trial for the treatment of non-small cell lung cancer. Here, we found that ceritinib remarkably enhanced the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 over-expressing cancer cells in vitro and in vivo. Ceritinib significantly increased the intracellular accumulation of chemotherapeutic agents such as doxorubicin (DOX) by inhibiting ABCB1 or ABCG2-mediated drug efflux in the transporters-overexpressing cells. Mechanistically, ceritinib is likely a competitive inhibitor of ABCB1 and ABCG2 because it competed with [125I]-iodoarylazidoprazosin for photo affinity labeling of the transporters. On the other hand, at the transporters-inhibiting concentrations, ceritinib did not alter the expression level of ABCB1 and ABCG2, and phosphorylation status of AKT and ERK1/2. Thus the findings advocate further clinical investigation of combination chemotherapy of ceritinib and other conventional chemotherapeutic drugs in chemo-refractory cancer patients. PMID:26556876

  20. Association between ABCB1 polymorphisms and haplotypes and Alzheimer's disease: a meta-analysis.

    PubMed

    Zhong, Xin; Liu, Ming-Yan; Sun, Xiao-Hong; Wei, Min-Jie

    2016-01-01

    Although several epidemiological studies have investigated the association between ATP-binding cassette subfamily B member 1 (ABCB1) gene polymorphisms and Alzheimer's disease (AD) susceptibility, controversial results exist. Here, we performed a meta-analysis to assess whether ABCB1 polymorphisms 3435C > T (rs1045642), 2677G > T/A (rs2032582), 1236C > T (rs1128503) and haplotypes were associated with AD risk. Nine independent publications were included and analyzed. Crude odds ratio (OR) and 95% confidence interval (CI) were applied to investigate the strength of the association. Sensitivity analysis was conducted to measure the robustness of our analysis. A funnel plot and trim and fill method were used to test and adjust for publication bias. The results showed a significant association between the 3435C > T single nucleotide polymorphism (SNP) and AD susceptibility (CT vs. CC: OR = 1.24, 95% CI = 1.06-1.45, P = 0.01; CT + TT vs. CC: OR = 1.21, 95% CI = 1.04-1.41, P = 0.01) in the total population, as well as in Caucasian subgroup. The 2677G > T/A SNP was related to a decreased AD risk in Caucasian subgroup (TT + TA + AA vs. GT + GA + GG: OR = 0.68, 95% CI = 0.47-0.98, P = 0.04). Moreover, the ABCB1 haplotype analysis showed that the 1236T/2677T/3435C haplotype was associated with a higher risk of AD (OR = 1.99, 95% CI = 1.24-3.18, P = 0.00). Our results suggest that the ABCB1 3435C > T SNP, the 2677G > T/A SNP and 1236T/2677T/3435C haplotype are significantly associated with AD susceptibility. PMID:27600024

  1. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a meta-analysis

    PubMed Central

    Zhong, Xin; Liu, Ming-Yan; Sun, Xiao-Hong; Wei, Min-Jie

    2016-01-01

    Although several epidemiological studies have investigated the association between ATP-binding cassette subfamily B member 1 (ABCB1) gene polymorphisms and Alzheimer’s disease (AD) susceptibility, controversial results exist. Here, we performed a meta-analysis to assess whether ABCB1 polymorphisms 3435C > T (rs1045642), 2677G > T/A (rs2032582), 1236C > T (rs1128503) and haplotypes were associated with AD risk. Nine independent publications were included and analyzed. Crude odds ratio (OR) and 95% confidence interval (CI) were applied to investigate the strength of the association. Sensitivity analysis was conducted to measure the robustness of our analysis. A funnel plot and trim and fill method were used to test and adjust for publication bias. The results showed a significant association between the 3435C > T single nucleotide polymorphism (SNP) and AD susceptibility (CT vs. CC: OR = 1.24, 95% CI = 1.06–1.45, P = 0.01; CT + TT vs. CC: OR = 1.21, 95% CI = 1.04–1.41, P = 0.01) in the total population, as well as in Caucasian subgroup. The 2677G > T/A SNP was related to a decreased AD risk in Caucasian subgroup (TT + TA + AA vs. GT + GA + GG: OR = 0.68, 95% CI = 0.47–0.98, P = 0.04). Moreover, the ABCB1 haplotype analysis showed that the 1236T/2677T/3435C haplotype was associated with a higher risk of AD (OR = 1.99, 95% CI = 1.24–3.18, P = 0.00). Our results suggest that the ABCB1 3435C > T SNP, the 2677G > T/A SNP and 1236T/2677T/3435C haplotype are significantly associated with AD susceptibility. PMID:27600024

  2. A novel screening strategy to identify ABCB1 substrates and inhibitors.

    PubMed

    von Richter, Oliver; Glavinas, Hristos; Krajcsi, Peter; Liehner, Stephanie; Siewert, Beate; Zech, Karl

    2009-01-01

    We tested the hypothesis whether data on ABCB1 ATPase activity and passive permeability can be used in combination to identify ABCB1 substrates and inhibitors. We determined passive permeability using an artificial membrane permeability assay (HDM-PAMPA) and ABCB1 function, i.e., vanadate-sensitive ATPase activity for a training set (40 INN drugs) and a validation set (26 development compounds). In parallel experiments, we determined ABCB1 function, i.e., vectorial transport in a Caco-2 cell monolayer, and ABCB1 inhibition, i.e., calcein AM extrusion out of K562-MDR cells, to cross-validate the results with cellular assays. We found that compounds that did not modulate ABCB1-ATPase did also not affect calcein AM extrusion and were not actively transported by ABCB1 in Caco-2 cell monolayers. The results corroborated the effect of passive permeability as an important covariate of active transport: active transport in Caco-2 monolayer was only apparent for compounds showing low passive permeability (<5.0 cmx10(-6)/s) in the HDM-PAMPA assay whereas compounds with high passive permeability (>50 cmx10(-6)/s) were shown to inhibit calcein AM efflux with IC50 values close to their respective Km value obtained for ABCB1-ATPase. The use of HDM-PAMPA in combination with ABCB1-ATPase offers a simple, inexpensive experimental approach capable of identifying ABCB1 inhibitors as well as transported substrates.

  3. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies. PMID:26557010

  4. High-throughput flow cytometry to detect selective inhibitors of ABCB1, ABCC1, and ABCG2 transporters.

    PubMed

    Ivnitski-Steele, Irena; Larson, Richard S; Lovato, Debbie M; Khawaja, Hadya M; Winter, Stuart S; Oprea, Tudor I; Sklar, Larry A; Edwards, Bruce S

    2008-04-01

    Up-regulation of pump (transporter) expression and selection of resistant cancer cells result in cancer multidrug resistance to diverse substrates of these transporters. While more than 48 members of the ATP binding cassette (ABC) transporter superfamily have been identified, up to now only three human ABC transporters-ABCB1, ABCC1, and ABCG2-have unambiguously been shown to contribute to cancer multidrug resistance. The use of low-toxicity and high-specificity agents as a targeted transporter inhibition strategy is necessary to effectively overcome multiple drug resistance. An objective of the present studies was to develop and validate HyperCyt (IntelliCyt, Albuquerque, NM) flow cytometry high-throughput screeening assays to assess the specificity of test compounds that inhibited transporters as an integral part of the screen. Two separate duplex assays were constructed: one in which ABCB1 and ABCG2 transporters were evaluated in parallel using fluorescent J-aggregate-forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide as substrate, and the other in which ABCB1 and ABCC1 transporters were evaluated in parallel using fluorescent calcein acetoxymethyl ester as substrate. ABCB1-expressing cells were color-coded to allow their distinction from cells expressing the alternate transporter. The assays were validated in a screen of the Prestwick Chemical Library (Illkirch, France). Three novel selective inhibitors of the ABCC1 transporter were identified in the screen, and the activity of each was confirmed in follow-up chemosensitivity shift and reversal studies. This high-throughput screening assay provides an efficient approach for identifying selective inhibitors of individual ABC transporters, promising as probes of transporter function and therapeutic tools for treating chemotherapy-resistant cancers. PMID:18205550

  5. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia

    PubMed Central

    Lu, Y; Kham, S K Y; Ariffin, H; Oei, A M I; Lin, H P; Tan, A M; Quah, T C; Yeoh, A E J

    2014-01-01

    Background: Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL. Methods: We investigated the associations between 20 germline variations and various clinical end points in 463 children with ALL. Results: After adjusting for known prognostic factors, variants in two genes were found to be independently associated with poorer EFS: ABCB1 T/T at either 2677 (rs2032582) or 3435 (rs1045642) position (P=0.003) and IL15 67276493G/G (rs17015014; P=0.022). These variants showed a strong additive effect affecting outcome (P<0.001), whereby patients with both risk genotypes had the worst EFS (P=0.001), even after adjusting for MRD levels at the end of remission induction. The adverse effect of ABCB1 T/T genotypes was most pronounced in patients with favourable cytogenetics (P=0.011) while the IL15 67276493G/G genotype mainly affected patients without common chromosomal abnormalities (P=0.022). In both cytogenetic subgroups, increasing number of such risk genotypes still predicted worsening outcome (P<0.001 and=0.009, respectively). Conclusion: These results point to the prognostic importance of host genetic variants, although the specific mechanisms remain unclarified. Inclusion of ABCB1 and IL15 variants may help improve risk assignment strategies in paediatric ALL. PMID:24434428

  6. Structural determinants of peripheral O-arylcarbamate FAAH inhibitors render them dual substrates for Abcb1 and Abcg2 and restrict their access to the brain

    PubMed Central

    Moreno-Sanz, Guillermo; Barrera, Borja; Armirotti, Andrea; Bertozzi, Sine M.; Scarpelli, Rita; Bandiera, Tiziano; Prieto, Julio G.; Duranti, Andrea; Tarzia, Giorgio; Merino, Gracia

    2014-01-01

    The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family – Breast Cancer Resistance Protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) – play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3′-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested – even those able to enter the CNS in vivo – were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS. PMID:24993496

  7. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration.

    PubMed

    Iusuf, Dilek; Teunissen, Sebastiaan F; Wagenaar, Els; Rosing, Hilde; Beijnen, Jos H; Schinkel, Alfred H

    2011-06-01

    P-glycoprotein (P-gp, ABCB1) is a highly efficient drug efflux pump expressed in brain, liver, and small intestine, but also in tumor cells, that affects pharmacokinetics and confers therapy resistance for many anticancer drugs. The aim of this study was to investigate the impact of P-gp on tamoxifen and its primary active metabolites, 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. We used in vitro transport assays and Abcb1a/1b(-/-) mice to investigate the impact of P-gp on the oral availability and brain penetration of tamoxifen and its metabolites. Systemic exposure of tamoxifen and its metabolites after oral administration of tamoxifen (50 mg/kg) was not changed in the absence of P-gp. However, brain accumulation of tamoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen were modestly, but significantly (1.5- to 2-fold), increased. Endoxifen, however, displayed a 9-fold higher brain penetration at 4 h after administration. Endoxifen was transported by P-gp in vitro. Upon direct oral administration of endoxifen (20 mg/kg), systemic exposure was slightly decreased in Abcb1a/1b(-/-) mice, but brain accumulation of endoxifen was dramatically increased (up to 23-fold at 4 h after administration). Shortly after high-dose intravenous administration (5 or 20 mg/kg), endoxifen brain accumulation was increased only 2-fold in Abcb1a/1b(-/-) mice compared with wild-type mice, suggesting a partial saturation of P-gp at the blood-brain barrier. Endoxifen, the clinically most relevant metabolite of tamoxifen, is a P-gp substrate in vitro and in vivo, where P-gp limits its brain penetration. P-gp might thus be relevant for tamoxifen/endoxifen resistance of P-gp-positive breast cancer and tumors positioned behind a functional blood-brain barrier. PMID:21378205

  8. Vatalanib sensitizes ABCB1 and ABCG2-overexpressing multidrug resistant colon cancer cells to chemotherapy under hypoxia.

    PubMed

    To, Kenneth K W; Poon, Daniel C; Wei, Yuming; Wang, Fang; Lin, Ge; Fu, Li-wu

    2015-09-01

    Cancer microenvironment is characterized by significantly lower oxygen concentration. This hypoxic condition is known to reduce drug responsiveness to cancer chemotherapy via multiple mechanisms, among which the upregulation of the ATP-binding cassette (ABC) efflux transporters confers resistance to a wide variety of structurally unrelated anticancer drugs. Vatalanib (PTK787/ZK22584) is a multitargeted tyrosine kinase inhibitor for all isoforms of VEGFR, PDGFR and c-Kit, which exhibit potent anticancer activity in vitro and in vivo. We investigated the potentiation effect of vatalanib on the anticancer activity of conventional cytotoxic drugs in colon cancer cell lines under both normoxic and hypoxic conditions. Mechanistically, vatalanib was found to inhibit ABCG2 and ABCB1 efflux activity, presumably by acting as a competitive inhibitor and interfering with their ATPase activity. Under hypoxic growth condition, ABCG2 and ABCB1-overexpressing cells sorted out by FACS technique as side population (SP) were found to be significantly more responsive to SN-38 (ABCG2 and ABCB1 substrate anticancer drug) in the presence of vatalanib. The anchorage independent soft agar colony formation capacity of the SP cells was remarkably reduced upon treatment with a combination of SN-38 and vatalanib, compared to SN-38 alone. However, vatalanib, at concentrations that produced the circumvention of the transporters-mediated resistance, did not appreciably alter ABCG2/ABCB1 mRNA or protein expression levels or the phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2). Our study thus advocates the further investigation of vatalanib for use in combination chemotherapy to eradicate drug-resistant cancer cells under hypoxia. PMID:26206183

  9. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells.

    PubMed

    Saint-Pol, Julien; Candela, Pietra; Boucau, Marie-Christine; Fenart, Laurence; Gosselet, Fabien

    2013-06-23

    It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry.

  10. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance.

    PubMed

    Shi, Zhi; Tiwari, Amit K; Shukla, Suneet; Robey, Robert W; Singh, Satyakam; Kim, In-Wha; Bates, Susan E; Peng, Xingxiang; Abraham, Ioana; Ambudkar, Suresh V; Talele, Tanaji T; Fu, Li-Wu; Chen, Zhe-Sheng

    2011-04-15

    Sildenafil is a potent and selective inhibitor of the type 5 cGMP (cyclic guanosine 3',5'-monophosphate)-specific phosphodiesterase that is used clinically to treat erectile dysfunction and pulmonary arterial hypertension. Here, we report that sildenafil has differential effects on cell surface ABC transporters such as ABCB1, ABCC1, and ABCG2 that modulate intracompartmental and intracellular concentrations of chemotherapeutic drugs. In ABCB1-overexpressing cells, nontoxic doses of sildenafil inhibited resistance and increased the effective intracellular concentration of ABCB1 substrate drugs such as paclitaxel. Similarly, in ABCG2-overexpressing cells, sildenafil inhibited resistance to ABCG2 substrate anticancer drugs, for example, increasing the effective intracellular concentration of mitoxantrone or the fluorescent compound BODIPY-prazosin. Sildenafil also moderately inhibited the transport of E(2)17βG and methotrexate by the ABCG2 transporter. Mechanistic investigations revealed that sildenafil stimulated ABCB1 ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin (IAAP), whereas it only slightly stimulated ABCG2 ATPase activity and inhibited photolabeling of ABCG2 with [(125)I]-IAAP. In contrast, sildenafil did not alter the sensitivity of parental, ABCB1-, or ABCG2-overexpressing cells to non-ABCB1 and non-ABCG2 substrate drugs, nor did sildenafil affect the function of another ABC drug transporter, ABCC1. Homology modeling predicted the binding conformation of sildenafil within the large cavity of the transmembrane region of ABCB1. Overall, we found that sildenafil inhibits the transporter function of ABCB1 and ABCG2, with a stronger effect on ABCB1. Our findings suggest a possible strategy to enhance the distribution and potentially the activity of anticancer drugs by jointly using a clinically approved drug with known side effects and drug-drug interactions. PMID:21402712

  11. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  12. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    PubMed

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas.

  13. Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport

    PubMed Central

    Michaelis, Martin; Rothweiler, Florian; Wurglics, Mario; Aniceto, Natália; Dittrich, Michaela; Zettl, Heiko; Wiese, Michael; Wass, Mark; Ghafourian, Taravat; Schubert-Zsilavecz, Manfred; Cinatl, Jindrich

    2016-01-01

    Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport. PMID:26887049

  14. ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Trumpi, K.; Emmink, B.L.; Prins, A.M.; van Oijen, M.G.H.; van Diest, P.J.; Punt, C.J.A.; Koopman, M.; Kranenburg, O.; Rinkes, I.H.M. Borel

    2015-01-01

    Background: Active efflux of irinotecan by ATP-binding cassette (ABC)-transporters, in particular ABCB1 and ABCG2, is a well-established drug resistance mechanism in vitro and in pre-clinical mouse models, but its relevance in colorectal cancer (CRC) patients is unknown. Therefore, we assessed the association between ABC-transporter expression and tumour response to irinotecan in patients with metastatic CRC. Methods: Tissue microarrays of a large cohort of metastatic CRC patients treated with irinotecan in a prospective study (CAIRO study; n=566) were analysed for expression of ABCB1 and ABCG2 by immunohistochemistry. Kaplan-Meier and Cox proportional hazard regression analyses were performed to assess the association of ABC transporter expression with irinotecan response. Gene expression profiles of 17 paired tumours were used to assess the concordance of ABCB1/ABCG2 expression in primary CRC and corresponding metastases. Results: The response to irinotecan was not significantly different between primary tumours with positive versus negative expression of ABCB1 (5.8 vs 5.7 months, p=0.696) or ABCG2 (5.7 vs 6.1 months, p=0.811). Multivariate analysis showed neither ABCB1 nor ABCG2 were independent predictors for progression free survival. There was a mediocre to poor concordance between ABC-transporter expression in paired tumours. Conclusion: In metastatic CRC, ABC-transporter expression in the primary tumour does not predict irinotecan response. PMID:26516354

  15. ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation.

    PubMed

    Asano, Takeshi; Takahashi, Kenji A; Fujioka, Mikihiro; Inoue, Shigehiro; Okamoto, Masahiko; Sugioka, Nobuyuki; Nishino, Hoyoku; Tanaka, Takashi; Hirota, Yoshio; Kubo, Toshikazu

    2003-11-01

    Advances in transplantation technology have brought about great benefits to patients suffering from organ failure, but the problem still remains of complications induced by steroids used for post-transplant immunosuppression. Among the side-effects caused by steroids, non-traumatic osteonecrosis of the femoral head (ONF) constitutes a serious problem. The same protocol for steroid administration induces ONF in some patients, but not in others, indicating the presence of individual difference in steroid sensitivity. We hypothesized that this difference might be mediated by the drug-transport protein, P-glycoprotein (P-gp), and investigated the relationship between single nucleotide polymorphisms in the multidrug resistance gene 1 (ABCB1, MDR1) encoding P-gp and ONF. Subjects comprised 136 patients receiving kidney transplantation. Thirty patients developed post-transplant ONF. Genomic DNA was extracted from peripheral blood, and genotypes of ABCB1 C3435T (exon 26) and G2677T/A (exon 21) were determined by direct sequencing. Multivariate analyses based on clinical information were performed to determine the relationship between ABCB1 genotypes and ONF. The dose/concentration (D/C) ratios of tacrolimus were also determined to estimate the activity of P-gp in patients with different genotypes of ABCB1 C3435T (CC, CT, TT), and in those who did and did not develop ONF. The ABCB1 3435TT genotype showed a significantly lower incidence of ONF (adjusted odds ratio = 0.10, P = 0.034). The D/C ratio in the 3435TT genotype was significantly higher than that in the 3435CC genotype. The D/C ratio in patients developing ONF was significantly higher than in those patients who did not develop ONF. The results suggest increased activity of P-gp in patients with the 3435TT genotype and in those who did not develop ONF. The ABCB1 2677 homozygous variant type also showed a lower incidence of ONF (adjusted odds ratio = 0.26, P = 0.056). The 3435T and 3435C alleles were in linkage

  16. Development and characterization of P-glycoprotein 1 (Pgp1, ABCB1)-mediated doxorubicin-resistant PLHC-1 hepatoma fish cell line

    SciTech Connect

    Zaja, Roko; Caminada, Daniel; Loncar, Jovica; Fent, Karl; Smital, Tvrtko

    2008-03-01

    The development of the multidrug resistance (MDR) phenotype in mammals is often mediated by the overexpression of the P-glycoprotein1 (Pgp, ABCB1) or multidrug resistance-associated protein (MRP)-like ABC transport proteins. A similar phenomenon has also been observed and considered as an important part of the multixenobiotic resistance (MXR) defence system in aquatic organisms. We have recently demonstrated the presence of ABC transporters in the widely used in vitro fish model, the PLHC-1 hepatoma cell line. In the present study we were able to select a highly resistant PLHC-1 sub-clone (PLHC-1/dox) by culturing the wild-type cells in the presence of 1 {mu}M doxorubicin. Using quantitative PCR a 42-fold higher expression of ABCB1 gene was determined in the PLHC-1/dox cells compared to non-selected wild-type cells (PLHC-1/wt). The efflux rates of model fluorescent Pgp1 substrates rhodamine 123 and calcein-AM were 3- to 4-fold higher in the PLHC-1/dox in comparison to the PLHC-1/wt cells. PLHC-1/dox were 45-fold more resistant to doxorubicin cytotoxicity than PLHC-1/wt. Similarly to mammalian cell lines, typical cross-resistance to cytotoxicity of other chemotherapeutics such as daunorubicin, vincristine, vinblastine, etoposide and colchicine, occurred. Furthermore, cyclosporine A, verapamil and PSC833, specific inhibitors of Pgp1 transport activity, completely reversed resistance of PLHC-1/dox cells to all tested drugs, resulting in EC50 values similar to the EC50 values found for PLHC-1/wt. In contrast, MK571, a specific inhibitor of MRP type of efflux transporters, sensitized PLHC-1/dox cells, neither to doxorubicin, nor to any other of the chemotherapeutics used in the study. These data demonstrate for the first time that a specific Pgp1-mediated doxorubicin resistance mechanism is present in the PLHC-1 fish hepatoma cell line. In addition, the fact that low micromolar concentrations of specific inhibitors may completely reverse a highly expressed doxorubicin

  17. Effect of ABCB1 polymorphisms and atorvastatin on sitagliptin pharmacokinetics in healthy volunteers

    PubMed Central

    Aquilante, Christina L.; Wempe, Michael F.; Sidhom, Maha S.; Kosmiski, Lisa A.; Predhomme, Julie A.

    2013-01-01

    Objectives The objectives of this study were to determine if ABCB1 polymorphisms are associated with interindividual variability in sitagliptin pharmacokinetics, and if atorvastatin alters the pharmacokinetic disposition of sitagliptin in healthy volunteers. Methods In this open-label, randomized, two-phase crossover study, healthy volunteers were prospectively stratified according to ABCB1 1236/2677/3435 diplotype (n=9, CGC/CGC; n=10, CGC/TTT; and n=10, TTT/TTT). In one phase, participants received a single 100 mg dose of sitagliptin. In the other phase, participants received 40 mg of atorvastatin for five days, with a single 100 mg dose of sitagliptin administered on day 5. A 24 hour pharmacokinetic study followed each sitagliptin dose, and the study phases were separated by a 14-day washout period. Results Sitagliptin pharmacokinetic parameters did not differ significantly between ABCB1 CGC/CGC, CGC/TTT, and TTT/TTT diplotype groups during the monotherapy phase. Atorvastatin administration did not significantly affect sitagliptin pharmacokinetics, with GMRs (90% CIs) for sitagliptin Cmax, AUC0-∞, CLR, and fe of 0.93 (0.86, 1.01), 0.96 (0.91, 1.01), 1.02 (0.93, 1.12), and 0.98 (0.90, 1.06), respectively. Conclusions ABCB1 CGC/CGC, CGC/TTT, and TTT/TTT diplotypes did not influence sitagliptin pharmacokinetics in healthy volunteers. Furthermore, atorvastatin had no effect on the pharmacokinetics of sitagliptin in the setting of ABCB1 CGC/CGC, CGC/TTT, and TTT/TTT diplotypes. PMID:23407853

  18. Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier

    PubMed Central

    Bauer, M; Römermann, K; Karch, R; Wulkersdorfer, B; Stanek, J; Philippe, C; Maier‐Salamon, A; Haslacher, H; Jungbauer, C; Wadsak, W; Jäger, W; Löscher, W; Hacker, M; Zeitlinger, M

    2016-01-01

    ABCB1 and ABCG2 work together at the blood–brain barrier (BBB) to limit brain distribution of dual ABCB1/ABCG2 substrates. In this pilot study we used positron emission tomography (PET) to assess brain distribution of two model ABCB1/ABCG2 substrates ([11C]elacridar and [11C]tariquidar) in healthy subjects without (c.421CC) or with (c.421CA) the ABCG2 single‐nucleotide polymorphism (SNP) c.421C>A. Subjects underwent PET scans under conditions when ABCB1 and ABCG2 were functional and during ABCB1 inhibition with high‐dose tariquidar. In contrast to the ABCB1‐selective substrate (R)‐[11C]verapamil, [11C]elacridar and [11C]tariquidar showed only moderate increases in brain distribution during ABCB1 inhibition. This provides evidence for a functional interplay between ABCB1 and ABCG2 at the human BBB and suggests that both ABCB1 and ABCG2 need to be inhibited to achieve substantial increases in brain distribution of dual ABCB1/ABCG2 substrates. During ABCB1 inhibition c.421CA subjects had significantly higher increases in [11C]tariquidar brain distribution than c.421CC subjects, pointing to impaired cerebral ABCG2 function. PMID:26940368

  19. The Central Cavity of ABCB1 Undergoes Alternating Access During ATP Hydrolysis

    PubMed Central

    McDevitt, Christopher A.; Thomson, Andrew J.; Kerr, Ian D.; MacMillan, Fraser; Callaghan, Richard

    2016-01-01

    Understanding the process that underlies multi-drug recognition and efflux by P-glycoprotein (ABCB1) remains a key biological challenge. Structural data has recently become available for the murine and C. elegans homologues of ABCB1; however all structures were obtained in the absence of nucleotide. A feature of these structures was the presence of a central cavity that is inaccessible from the extracellular face of the protein. To determine the conformational dynamics of this region several residues in transmembrane helices TM6 (331, 343 and 354) and TM12 (980) were mutated to cysteine. Based upon structural predictions these residues are proposed to line, or reside proximal to, the central cavity. The mutant isoforms were labelled with a paramagnetic probe enabling the application of electron paramagnetic resonance (EPR) spectroscopic methods. Power saturation EPR spectra were recorded in the presence of hydrophobic (O2) or hydrophilic (NiEDDA) quenching agents to study the local environment of each residue. ABCB1 was trapped in both its nucleotide bound and post-hydrolytic conformations and EPR spectra were again recorded in the presence and absence of quenching agents. The EPR line shapes provide information on the movements of these residues within TM6 and TM12 during ATP hydrolysis. Rationalisation of the data with molecular dynamic simulations indicate that the cavity is converted to a configuration open to the aqueous phase following nucleotide binding, thereby suggesting alternating access to the cavity on opposite sides of the membrane during translocation. PMID:24597976

  20. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue.

    PubMed

    Faria, Melissa; Pavlichenko, Vasiliy; Burkhardt-Medicke, Kathleen; Soares, Amadeu M V M; Altenburger, Rolf; Barata, Carlos; Luckenbach, Till

    2016-04-15

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil) and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. PMID:26929997

  1. Targeting ABCB1 and ABCC1 with their Specific Inhibitor CBT-1® can Overcome Drug Resistance in Osteosarcoma.

    PubMed

    Fanelli, Marilù; Hattinger, Claudia Maria; Vella, Serena; Tavanti, Elisa; Michelacci, Francesca; Gudeman, Beth; Barnett, Daryl; Picci, Piero; Serra, Massimo

    2016-01-01

    Clinical treatment response achievable with conventional chemotherapy in high-grade osteosarcoma (OS) is severely limited by the presence of intrinsic or acquired drug resistance, which in previous studies has been mainly addressed for overexpression of ABCB1 (MDR1/P-glycoprotein). This study was aimed to estimate the impact on OS drug resistance of a group of ATP binding cassette (ABC) transporters, which in other human tumors have been associated with unresponsiveness to the drugs that represent the backbone of multidrug treatment regimens for OS (doxorubicin, methotrexate, cisplatin). By using a group of 6 drug-sensitive and 20 drug-resistant human OS cell lines, the most relevant transporter which proved to be associated with the degree of drug resistance in OS cells, in addition to ABCB1, was ABCC1. We therefore evaluated the in vitro activity of the orally administrable ABCB1/ABCC1 inhibitor CBT-1(®) (Tetrandrine, NSC-77037). We found that in our OS cell lines this agent was able to revert the ABCB1/ABCC1-mediated resistance against doxorubicin, as well as against the drugs used in second-line OS treatments that are substrates of these transporters (taxotere, etoposide, vinorelbine). Our findings indicated that inhibiting ABCB1 and ABCC1 with CBT-1(®), used in association with conventional chemotherapeutic drugs, may become an interesting new therapeutic option for unresponsive or relapsed OS patients. PMID:26548759

  2. Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice

    PubMed Central

    Hudachek, Susan F.

    2015-01-01

    Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration–time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates. PMID:23616082

  3. Rheumatoid Arthritis Disease Activity Is Determinant for ABCB1 and ABCG2 Drug-Efflux Transporters Function

    PubMed Central

    Atisha-Fregoso, Yemil; Lima, Guadalupe; Pascual-Ramos, Virginia; Baños-Peláez, Miguel; Fragoso-Loyo, Hilda; Jakez-Ocampo, Juan; Contreras-Yáñez, Irazú; Llorente, Luis

    2016-01-01

    Objective To compare drug efflux function of ABCB1 and ABCG2 transporters in rheumatoid arthritis (RA) patients with active disease and in remission. Methods Twenty two active RA patients (DAS28 ≥3.2) and 22 patients in remission (DAS28<2.6) were selected from an early RA clinic. All patients were evaluated at study inclusion and six months later. ABCB1 and ABCG2 functional activity was measured in peripheral lymphocytes by flow cytometry. The percentage of cells able to extrude substrates for ABCB1 and ABCG2 was recorded. Results Active patients had higher ABCB1 and ABCG2 activity compared with patients in remission (median [interquartile range]): 3.9% (1.4–22.2) vs (1.3% (0.6–3.2), p = 0.003 and 3.9% (1.1–13.3) vs 0.9% (0.5–1.9) p = 0.006 respectively. Both transporters correlated with disease activity assessed by DAS28, rho = 0.45, p = 0.002 and rho = 0.47, p = 0.001 respectively. Correlation was observed between the time from the beginning of treatment and transporter activity: rho = 0.34, p = 0.025 for ABCB1 and rho = 0.35, p = 0.018 for ABCG2. The linear regression model showed that DAS28 and the time from the onset of treatment are predictors of ABCB1 and ABCG2 functional activity, even after adjustment for treatment. After six months we calculated the correlation between change in DAS28 and change in the functional activity in both transporters and found a moderate and significant correlation for ABCG2 (rho = 0.28, p = 0.04) and a non-significant correlation for ABCB1 (rho = 0.22, p = 0.11). Conclusions Patients with active RA have an increased function of ABCB1 and ABCG2, and disease activity is the main determinant of this phenomena. PMID:27442114

  4. VEGF, eNOS, and ABCB1 genetic polymorphisms may increase the risk of osteonecrosis of the femoral head.

    PubMed

    Zhou, Z C; Gu, S Z; Wu, J; Liang, Q W

    2015-01-01

    We investigated the associations between vascular endothelial growth factors (VEGF), endothelial nitric oxide synthase (eNOS), and ATP-binding cassette subfamily B member 1 transporter (ABCB1) polymorphisms and the risk of osteonecrosis of the femoral head (ONFH). Published studies were reviewed and analyzed based on predefined selection criteria. The strength of the association between VEGF, eNOS, and ABCB1 polymorphisms and ONFH risk was evaluated based on the odds ratio with corresponding 95%CIs. Meta-analysis was performed using the Comprehensive Meta-analysis 2.0 software. A total of 135 relevant articles were retrieved, of which 10 studies met the selection criteria, and included a total of 1025 patients with ONFH and 1730 healthy controls. The meta-analysis study results revealed that the VEGF rs2010963 G>C polymorphism increased the risk of ONFH, while the VEGF rs2010963 G>C and ABCB1 rs1045642 C>T polymorphisms increased the risk of ONFH under the allele model. In conclusion, the VEGF, eNOS, and ABCB1 polymorphisms may contribute to ONFH, but further studies including larger sample sizes are needed to confirm the results. PMID:26535684

  5. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer

    PubMed Central

    García, María I.; García-Alfonso, Pilar; Robles, Luis; Grávalos, Cristina; González-Haba, Eva; Marta, Pellicer; Sanjurjo, María; López-Fernández, Luis A.

    2015-01-01

    Adverse reactions to capecitabine-based chemotherapy limit full administration of cytotoxic agents. Likewise, genetic variations associated with capecitabine-related adverse reactions are associated with controversial results and a low predictive value. Thus, more evidence on the role of these variations is needed. We evaluated the association between nine polymorphisms in MTHFR, CDA, TYMS, ABCB1, and ENOSF1 and adverse reactions, dose reductions, treatment delays, and overall toxicity in 239 colorectal cancer patients treated with capecitabine-based regimens. The ABCB1*1 haplotype was associated with a high risk of delay in administration or reduction in the dose of capecitabine, diarrhea, and overall toxicity. CDA rs2072671 A was associated with a high risk of overall toxicity. TYMS rs45445694 was associated with a high risk of delay in administration or reduction in the dose of capecitabine, HFS >1 and HFS >2. Finally, ENOSF1 rs2612091 was associated with HFS >1, but was a poorer predictor than TYMS rs45445694. A score based on ABCB1-CDA polymorphisms efficiently predicts patients at high risk of severe overall toxicity (PPV, 54%; sensitivity, 43%) in colorectal cancer patients treated with regimens containing capecitabine. Polymorphisms in ABCB1, CDA, ENOSF1,and TYMS could help to predict specific and overall severe adverse reactions to capecitabine. PMID:25691056

  6. Ensemble Rule-Based Classification of Substrates of the Human ABC-Transporter ABCB1 Using Simple Physicochemical Descriptors.

    PubMed

    Demel, Michael A; Kraemer, Oliver; Ettmayer, Peter; Haaksma, Eric; Ecker, Gerhard F

    2010-03-15

    Within the last decades, the detailed knowledge on the impact of membrane bound drug efflux transporters of the ATP binding cassette (ABC) protein family on the pharmacological profile of drugs has enormously increased. Especially, ABCB1 (P-glycoprotein, P-gp, MDR1) has attracted particular interest in medicinal chemistry, since it determines the clinical efficacy, side effects and toxicity risks of drug candidates. Based on this, the development of in silico models that provide rapid and cost-effective screening tools for the classification of substrates and nonsubstrates of ABCB1 is an urgent need in contemporary ADMET profiling. A characteristic hallmark feature of this transporter is its polyspecific ligand recognition pattern. In this study we describe a method for classifying ABCB1 ligands in terms of simple, conjunctive rules (RuleFit) based on interpretable ADMET features. The retrieved results showed that models based on large, very diverse data sets gave better classification performance than models based on smaller, more homogenous training sets. The best model achieved gave a correct classification rate of 0.90 for an external validation set. Furthermore, from the interpretation of the best performing model it could be concluded that in comparison to nonsubstrates ABCB1 substrates generally show a higher number of hydrogen-bond acceptors, are more flexible and exhibit higher logP values.

  7. Improving the stability and function of purified ABCB1 and ABCA4: the influence of membrane lipids.

    PubMed

    Pollock, Naomi L; McDevitt, Christopher A; Collins, Richard; Niesten, Petronella H M; Prince, Stephen; Kerr, Ian D; Ford, Robert C; Callaghan, Richard

    2014-01-01

    ATP Binding Cassette (ABC) transporters play prominent roles in numerous cellular processes and many have been implicated in human diseases. Unfortunately, detailed mechanistic information on the majority of ABC transporters has not yet been elucidated. The slow rate of progress of molecular and high resolution structural studies may be attributed to the difficulty in the investigation of integral membrane proteins. These difficulties include the expression of functional, non-aggregated protein in heterologous systems. Furthermore, the extraction of membrane proteins from source material remains a major bottle-neck in the process since there are relatively few guidelines for selection of an appropriate detergent to achieve optimal extraction. Whilst affinity tag strategies have simplified the purification of membrane proteins; many challenges remain. For example, the chromatographic process and associated steps can rapidly lead to functional inactivation, random aggregation, or even precipitation of the target protein. Furthermore, optimisation of high yield and purity, does not guarantee successful structure determination. Based on this series of potential issues, any investigation into structure-function of membrane proteins requires a systematic evaluation of preparation quality. In particular, the evaluation should focus on function, homogeneity and mono-dispersity. The present investigation provides a detailed assessment of the quality of purified ATP Binding Cassette (ABC) transporters; namely ABCB1 (P-gp) and ABCA4 (ABCR). A number of suggestions are provided to facilitate the production of functional, homogeneous and mono-disperse preparations using the insect cell expression system. Finally, the ABCA4 samples have been used to provide structural insights into this essential photo-receptor cell protein. PMID:24036079

  8. Pharmacokinetics of a Once-Daily Dose of Tacrolimus Early After Liver Transplantation: With Special Reference to CYP3A5 and ABCB1 Single Nucleotide Polymorphisms.

    PubMed

    Miyata, Yoichi; Akamatsu, Nobuhisa; Sugawara, Yasuhiko; Kaneko, Junichi; Yamamoto, Takehito; Suzuki, Hiroshi; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Tamura, Sumihito; Kokudo, Norihiro

    2016-01-01

    BACKGROUND The aim of the present study was to investigate the pharmacokinetics of the once-daily tacrolimus formulation (QD form) in relation to polymorphisms of the donor cytochrome P450 family 3 sub-family A polypeptide 5 (CYP3A5) gene and recipient adenosine triphosphate-binding cassette sub-family B member 1 (ABCB1) gene. MATERIAL AND METHODS A total of 80 consecutive living-donor liver transplant (LDLT) recipients were started on the QD form of tacrolimus (day 1), and 60 patients were completely followed for 7 days early after liver transplantation in order to evaluate the pharmacokinetics. RESULTS The concentration/dose (C/D) ratio in recipients with the donor CYP3A5 *1 allele was significantly lower throughout the observation period compared with those with the CYP3A5 genotype *3/*3 (p<0.001), while no effect of single-nucleotide polymorphisms (SNPs) of ABCB1 was observed. The administered doses required to achieve the target trough level were significantly higher on day 7 than on day 1 among all groups, regardless of the differences in the SNPs, especially among those with donor CYP3A5 *1 allele. The tacrolimus concentration was kept within the targeted level all through the study regardless of SNPs. CONCLUSIONS The donor CYP3A5 *1 allele correlated with the lower C/D ratio after administration of the QD form, and higher doses of QD-form tacrolimus and careful monitoring for the trough level should be considered, especially in recipients with the donor CYP3A5 *1 allele. PMID:27503662

  9. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction.

    PubMed

    Christoffersen, Dorte J; Damkier, Per; Feddersen, Søren; Möller, Sören; Thomsen, Jørgen L; Brasch-Andersen, Charlotte; Brøsen, Kim

    2016-10-01

    Sudden death due to acute intoxication occurs frequently in patients with opioid addiction (OA). To examine whether certain genotypes were associated with this, we examined the frequencies of 29 SNPs located in candidate genes related to opioid pharmacology: ABCB1, OPRM1, UGT2B7, CYP3A5, CYP2B6, CYP2C19, CYP2D6, COMT, KCNJ6 and SCN9A in 274 deceased patients with OA (DOA), 309 living patients with OA (LOA) and in 394 healthy volunteers (HV). The main hypothesis of the study was that subjects homozygous for the variant 3435T in ABCB1 (rs1045642) occur more frequently in DOA than in LOA and HV because morphine and methadone more readily cross the blood barrier in these subjects due to a lower efflux transporter activity of the ABCB1 (p-glycoprotein) transporter. Our results did not support this hypothesis, because no statistically significant difference (p = 0.506) in the frequency of the TT genotype of rs1045642 was observed between the DOA, LOA and HV cohorts. However, for another ABCB1 variant, rs9282564, we found that the frequencies of the AG and TT genotypes were 13, 21 and 25% in DOA, LOA and HV, respectively, and after correcting for age, sex and multiple testing, the differences between DOA and LOA were statistically significantly different (p = 0.027). The COMT rs4680 AA genotype frequencies were 25%, 35% and 31% in DOA, LOA and HV, respectively, and the difference between DOA and LOA was also statistically significant (p = 0.0028). In conclusion, this study generated two hypotheses suggesting possible associations of a reduced risk of death and carrying, respectively, the ABCB1 rs9282564 AG and TT genotypes and the COMT rs4680 AA genotype among patients with OA. These findings should be confirmed in independent cohorts, and if a causal relationship between these variants and fatal poisoning in OA is confirmed, then it may be possible at least in theory to personalize prevention of sudden death in this patient group.

  10. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation

    PubMed Central

    Aldonza, Mark Borris D.; Hong, Ji-Young; Alinsug, Malona V.; Song, Jayoung; Lee, Sang Kook

    2016-01-01

    Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the

  11. Epigenetics and gene expression.

    PubMed

    Gibney, E R; Nolan, C M

    2010-07-01

    Transcription, translation and subsequent protein modification represent the transfer of genetic information from the archival copy of DNA to the short-lived messenger RNA, usually with subsequent production of protein. Although all cells in an organism contain essentially the same DNA, cell types and functions differ because of qualitative and quantitative differences in their gene expression. Thus, control of gene expression is at the heart of differentiation and development. Epigenetic processes, including DNA methylation, histone modification and various RNA-mediated processes, are thought to influence gene expression chiefly at the level of transcription; however, other steps in the process (for example, translation) may also be regulated epigenetically. The following paper will outline the role epigenetics is believed to have in influencing gene expression.

  12. The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts.

    PubMed

    Sheu, Ming-Jyh; Teng, Yu-Ning; Chen, Ying-Yi; Hung, Chin-Chuan

    2014-01-01

    Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications.

  13. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model.

    PubMed

    Zhou, Zhi-Yong; Wan, Li-Li; Yang, Quan-Jun; Han, Yong-Long; Li, Dan; Lu, Jin; Guo, Cheng

    2016-09-30

    The BCR-Abl tyrosine kinase inhibitor (TKI), nilotinib, was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia-positive chronic myelogenous leukemia. Recent studies have shown that nilotinib induces potent sensitization to anticancer agents by blocking the functions of ABCB1/P-glycoprotein (P-gp) in multidrug resistance (MDR). However, changes in P-gp expression or function affect the cardiac disposition and prolong the presence of both doxorubicin (DOX) and doxorubicinol (DOXol) in cardiac tissue, thus, enhancing the risk of cardiotoxicity. In this study, we used a MDR xenograft model to evaluate the antitumor activity, tissue distribution and cardiotoxicity of DOX when co-administered with nilotinib. This information will provide more insight into the pharmacological role of nilotinib in MDR reversal and the risk of DOX cardiotoxicity. Our results showed that nilotinib significantly enhanced DOX cytotoxicity and increased intracellular rhodamine 123 accumulation in MG63/DOX cells in vitro and strongly enhanced DOX inhibition of growth of P-gp-overexpressing MG63/DOX cell xenografts in nude mice. Additionally, nilotinib significantly increased DOX and DOXol accumulation in serum, heart, liver and tumor tissues. Importantly, nilotinib induced a disproportionate increase in DOXol in cardiac tissue. In the co-administration group, CBR1 and AKR1A1 protein levels were significantly increased in cardiac tissue, with more severe necrosis and vacuole formation. These results indicate that nilotinib reverses P-gp- mediated MDR by blocking the efflux function and potentiates DOX-induced cardiotoxicity. These findings represent a guide for the design of future clinical trials and studies of pharmacokinetic interactions and may be useful in guiding the use of nilotinib in combination therapy of cancer in clinical practice.

  14. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis.

    PubMed

    Qosa, Hisham; Lichter, Jessica; Sarlo, Mark; Markandaiah, Shashirekha S; McAvoy, Kevin; Richard, Jean-Philippe; Jablonski, Michael R; Maragakis, Nicholas J; Pasinelli, Piera; Trotti, Davide

    2016-08-01

    The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313.

  15. A gene expression screen.

    PubMed Central

    Wang, Z; Brown, D D

    1991-01-01

    A gene expression screen identifies mRNAs that differ in abundance between two mRNA mixtures by a subtractive hybridization method. The two mRNA populations are converted to double-stranded cDNAs, fragmented, and ligated to linkers for polymerase chain reaction (PCR) amplification. The multiple cDNA fragments isolated from any given gene can be treated as alleles in a genetic screen. Probability analysis of the frequency with which multiple alleles are found provides an estimation of the total number of up- and down-regulated genes. We have applied this method to genes that are differentially expressed in amphibian tadpole tail tissue in the first 24 hr after thyroid hormone treatment, which ultimately induces tail resorption. We estimate that there are about 30 up-regulated genes; 16 have been isolated. Images PMID:1722336

  16. Nickel-induced cell death and survival pathways in cultured renal proximal tubule cells: roles of reactive oxygen species, ceramide and ABCB1.

    PubMed

    Dahdouh, Faouzi; Raane, Maximilian; Thévenod, Frank; Lee, Wing-Kee

    2014-04-01

    Nickel and nickel compounds are carcinogens that target the lungs and kidneys causing cell death or cell survival adaptation. The multidrug resistance P-glycoprotein ABCB1 protects cells against toxic metabolites and xenobiotics and is upregulated in many cancer cell types. Here, we investigated the role of ABCB1 in nickel-induced stress signaling mediated by reactive oxygen species (ROS) and ceramides. In renal proximal tubule cells, nickel chloride (0.1-0.25 mM) increased both ROS formation, detected by 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and cellular ceramides, which were determined by lipid dot blot and surface immunostaining, culminating in decreased cell viability, increased DNA fragmentation, augmented PARP-1 cleavage, and increased ABCB1 mRNA and protein. Inhibitors of the de novo ceramide synthesis pathway (fumonisin B1, L-cycloserine) and an antioxidant (α-tocopherol) attenuated nickel-induced toxicity as well as induction of ABCB1. ABCB1 protects against nickel toxicity as PSC833, an ABCB1 blocker, augmented the decrease in cell viability by nickel. Moreover, nickel toxicity was attenuated in renal MDCK cells stably overexpressing ABCB1. In agreement with previous data that demonstrated extrusion of (glucosyl)ceramides by ABCB1 (Lee et al. in Toxicol Sci 121:343, 2011), PSC833 increased total cellular ceramides by >2-fold after nickel treatment. Further, glucosylceramide synthase (GCS) mRNA is upregulated by nickel at 3 h by ~1.5-fold but declined with prolonged exposures (6-24 h). Inhibition of GCS with C9DGJ or knockdown of GCS with siRNA significantly attenuated nickel toxicity. In conclusion, nickel induces a ROS-ceramide pathway to cause apoptotic cell death as well as activate adaptive survival responses, including upregulation of ABCB1, which improves cell survival by extruding proapoptotic (glucosyl)ceramides. PMID:24448832

  17. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5)

    PubMed Central

    Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg

    2007-01-01

    Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828

  18. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant

    PubMed Central

    Hawwa, Ahmed F; McKiernan, Patrick J; Shields, Michael; Millership, Jeff S; Collier, Paul S; McElnay, James C

    2009-01-01

    AIMS The aim of this study was to investigate the influence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation. METHODS Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular filtration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes. RESULTS The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (≥30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls, P= 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%, P= 0.057). Carriers of the G2677->T variant allele also had a significant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P= 0.031). Haplotype analysis showed a significant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P= 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were significantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation. CONCLUSIONS These findings suggest that ABCB1 polymorphisms in the native intestine significantly influence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the first year post-transplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and

  19. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  20. Multiple Transport-Active Binding Sites Are Available for a Single Substrate on Human P-Glycoprotein (ABCB1)

    PubMed Central

    Chufan, Eduardo E.; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T.; Durell, Stewart R.; Ambudkar, Suresh V.

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate

  1. Gene structure and expression

    SciTech Connect

    Hawkins, J. )

    1990-01-01

    This book describes the structure of genes in molecular terms and summarizes present knowledge about how their activity is regulated. It covers a range of topics, including a review of the structure and replication of DNA, transcription and translation, prokaryotic and eukaryotic gene organization and expression, retroviruses and oncogenes. The book also includes a chapter on the methodology of DNA manipulation including sections on site-directed mutagenesis, the polymerase chain reaction, reporter genes and restriction fragment length polymorphisms. The hemoglobin gene system and the genetics of the proteins of the immune system are presented in the latter half of the book to show the structure and expression of the most well-studied systems in higher eukaryotes. The final chapter reviews the differences between prokaryotic and the eukaryotic genomes.

  2. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    PubMed

    Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  3. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine

    PubMed Central

    Howard, Jeremy T.; O’Nan, Audrey T.; Maltecca, Christian; Baynes, Ronald E.; Ashwell, Melissa S.

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  4. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    PubMed

    Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  5. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson's disease

    PubMed Central

    Huang, Hongbin; Peng, Cong; Liu, Yong; Liu, Xu; Chen, Qicong; Huang, Zunnan

    2016-01-01

    Abstract Background: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Previous publications have investigated the association of NOS1 and ABCB1 polymorphisms with PD risk. However, those studies have provided some contradictory results. Methods: Literature searches were performed using PubMed, Embase, PDgene, China National Knowledge Infrastructure database, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of association. Results: The analysis results indicated that NOS1 exon18 polymorphism was associated with developing PD in 4 genetic models (allelic: OR = 1.25, 95%CI 1.09–1.44, P = 0.001; homozygous: OR = 1.79, 95%CI 1.32–2.45, P < 0.001; recessive: OR = 1.70, 95%CI 1.26–2.28, P < 0.001; dominant: OR = 1.22, 95%CI 1.02–1.46, P = 0.03), whereas exon29 polymorphism was not correlated to PD susceptibility. In addition, ABCB1 1236C/T polymorphism was related to PD in the recessive (OR = 0.80, 95%CI 0.66–0.97, P = 0.025) and overdominant (OR = 1.21, 95%CI 1.03–1.43, P = 0.02) models, which might indicate the opposite effects of 2 minor variants of this locus on Parkinson's disease. However, this associated result was not robust enough to withstand statistically significant correction. On the other hand, no association was found between ABCB1 3435C/T polymorphism and the predisposition to PD in 5 genetic models, and such an absence of relationship was further confirmed by subgroup analysis in Caucasians and Asians. Whether the polymorphisms of these 4 loci were linked to PD or not, our study provided some interesting findings that differ from the previous results with regard to their genetic susceptibility. Conclusion: The NOS1 exon18 and ABCB1 1236C/T variants might play a role in the risk of Parkinson's disease, whereas NOS1 exon29 and ABCB1 3435C/T polymorphisms might not contribute to PD susceptibility. PMID

  6. Influence of ABCB1 polymorphisms and docetaxel pharmacokinetics on pathological response to neoadjuvant chemotherapy in breast cancer patients.

    PubMed

    Lévy, Pierre; Gligorov, Joseph; Antoine, Martine; Rezai, Keyvan; Lévy, Eric; Selle, Frédéric; Saintigny, Pierre; Lokiec, François; Avenin, Danielle; Beerblock, Karine; Lotz, Jean-Pierre; Bernaudin, Jean-François; Fajac, Anne

    2013-06-01

    We have previously reported an association between ABCB1 C3435T polymorphism and docetaxel pharmacokinetics in breast cancer patients. We therefore investigated whether these parameters could account for variations in pathological response. Five ABCB1 polymorphisms including C3435T polymorphism were analyzed in breast cancer patients receiving neoadjuvant chemotherapy with doxorubicin and docetaxel (n = 101). Pathological response was assessed using the Sataloff classification. Pharmacokinetic analysis was performed for the first course of docetaxel (n = 84). No significant association was found between ABCB1 polymorphisms or docetaxel pharmacokinetics and pathological complete response. C3435T genotype was an independent predictive factor of good response in breast (response >50 %, i.e., Sataloff T-A and T-B): OR: 4.6 (95 % CI: 1.3-16.1), p = 0.015, for TT patients versus CT and CC patients. Area under the plasma concentration-time curve (AUC) of docetaxel was the only independent predictive factor of the total absence of response in breast (Sataloff T-D): OR: 14.3, (95 % CI: 1.7-118), p = 0.015, for AUC of docetaxel <3,500 μg h/L versus ≥3,500 μg h/L. These results suggest that C3435T polymorphism and docetaxel exposure are involved in the response to neoadjuvant chemotherapy in breast cancer patients and may be useful to optimize individualized therapy.

  7. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in abcb1-overexpressing human colon cancer cells

    PubMed Central

    Wu, Shaoyu; Guo, Zhijian; Hopkins, Chad D.; Wei, Ning; Chu, Edward; Wipf, Peter; Schmitz, John C.

    2015-01-01

    The novel, chemically stabilized disorazole analog, (−)-CP2-disorazole C1 (1) displayed potent anti-proliferative activity against a broad-spectrum of human colorectal cancer cells. HCT15 and H630R1 cell lines expressing high basal levels of the ABCB1 protein, known to cause multi-drug resistance, were also sensitive to growth inhibition by 1 but were resistant to both vincristine and docetaxel, two commonly used microtubule inhibitors. Compound 1 exhibited strong inhibition of tubulin polymerization at a level comparable to vincristine. In addition, treatment with 1 resulted in decreased protein levels of β-tubulin but not α-tubulin. An analysis of cellular proteins known to interact with microtubules showed that 1 caused decreased expression of c-Myc, APC, Rb, and additional key cellular signaling pathways in CRC cells. Treatment with compound 1 also resulted in G2/M cell cycle arrest and induction of apoptosis, but not senescence. Furthermore, endothelial spheroid sprouting assays demonstrated that 1 suppressed angiogenesis and can, therefore, potentially prevent cancer cells from spreading and metastasizing. Taken together, these findings suggest that the microtubule disruptor 1 may be a potential drug candidate for the treatment of mCRC. PMID:26506423

  8. ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen

    PubMed Central

    Sensorn, Insee; Sukasem, Chonlaphat; Sirachainan, Ekaphop; Chamnanphon, Montri; Pasomsub, Ekawat; Trachu, Narumol; Supavilai, Porntip; Pinthong, Darawan; Wongwaisayawan, Sansanee

    2016-01-01

    Background Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. Methods Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G), CYP2D6 (100C>T), ABCB1 (3435C>T), and ABCC2 (−24C>T) were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan–Meier method and Cox regression analysis. Results In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0.004; hazard ratio [HR] =3.05; 95% confidence interval [CI], 1.44–6.47). In the multivariate analysis, tumor size >5 cm remained predictive of distant metastasis (P<0.001; HR=5.49; 95% CI, 2.30–13.10). ABCC2 −24CC were shown to be associated with increased risk of distant metastasis (P=0.040; adjusted HR=2.34; 95% CI, 1.04–5.27). The combined genotype of ABCC2 −24CC − ABCB1 3435 CT+TT was associated with increased risk of distant and bone metastasis (P=0.020; adjusted HR=2.46; 95% CI, 1.15–5.26 and P=0.040; adjusted HR=3.70; 95% CI, 1.06–12.89, respectively). Conclusion This study indicates that polymorphisms of ABCC2 and ABCB1 are independently associated with bone metastasis. Further prospective studies with larger sample sizes are needed to verify this finding. PMID:27110128

  9. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar.

    PubMed

    Tang, Seng Chuan; Nguyen, Luan N; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2014-03-15

    Crizotinib is an oral tyrosine kinase inhibitor approved for treating patients with non-small cell lung cancer (NSCLC) containing an anaplastic lymphoma kinase (ALK) rearrangement. We used knockout mice to study the roles of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in plasma pharmacokinetics and brain accumulation of oral crizotinib, and the feasibility of improving crizotinib kinetics using coadministration of the dual ABCB1/ABCG2 inhibitor elacridar. In vitro, crizotinib was a good transport substrate of human ABCB1, but not of human ABCG2 or murine Abcg2. With low-dose oral crizotinib (5 mg/kg), Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice had an approximately twofold higher plasma AUC than wild-type mice, and a markedly (~40-fold) higher brain accumulation at 24 hr. Also at 4 hr, crizotinib brain concentrations were ∼25-fold, and brain-to-plasma ratios ~14-fold higher in Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice than in wild-type mice. High-dose oral crizotinib (50 mg/kg) resulted in comparable plasma pharmacokinetics between wild-type and Abcb1a/1b(-/-) mice, suggesting saturation of intestinal Abcb1. Nonetheless, brain accumulation at 24 hr was still ~70-fold higher in Abcb1a/1b(-/-) than in wild-type mice. Importantly, oral elacridar coadministration increased the plasma and brain concentrations and brain-to-plasma ratios of crizotinib in wild-type mice, equaling the levels in Abcb1a/1b;Abcg2(-/-) mice. Our results indicate that crizotinib oral availability and brain accumulation were primarily restricted by Abcb1 at a non-saturating dose, and that coadministration of elacridar with crizotinib could substantially increase crizotinib oral availability and delivery to the brain. This principle might be used to enhance therapeutic efficacy of crizotinib against brain metastases in NSCLC patients.

  10. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  11. Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation

    PubMed Central

    Ma, Jun; Divers, Jasmin; Palmer, Nicholette D.; Julian, Bruce A.; Israni, Ajay K.; Schladt, David; Pastan, Stephen O.; Chattrabhuti, Kryt; Gautreaux, Michael D.; Hauptfeld, Vera; Bray, Robert A.; Kirk, Allan D.; Brown, W. Mark; Gaston, Robert S.; Rogers, Jeffrey; Farney, Alan C.; Orlando, Giuseppe; Stratta, Robert J.; Guan, Meijian; Palanisamy, Amudha; Reeves-Daniel, Amber M.; Bowden, Donald W.; Langefeld, Carl D.; Hicks, Pamela J.; Ma, Lijun; Freedman, Barry I.

    2015-01-01

    Variants in donor multidrug resistance protein 1 (ABCB1) and caveolin 1 (CAV1) genes are associated with renal allograft failure after transplantation in Europeans. Here we assessed transplantation outcomes of kidneys from 368 African American (AA) and 314 European American (EA) deceased donors based on 38 single nucleotide polymorphisms (SNPs) spanning ABCB1 and 16 SNPs spanning CAV1, including previously associated index and haplotype-tagging SNPs. Tests for association with time to allograft failure were performed for the 1,233 resultant kidney transplantations, adjusting for recipient age, sex, ethnicity, cold ischemia time, PRA, HLA match, expanded-criteria donation, and APOL1- nephropathy variants in AA donors. Interaction analyses between APOL1 with ABCB1 and CAV1 were performed. In a meta-analysis of all transplantations, ABCB1 index SNP rs1045642 was associated with time to allograft failure and other ABCB1 SNPs were nominally associated, but not CAV1 SNPs. ABCB1 SNP rs1045642 showed consistent effects with the 558 transplantations from EA donors, but not with the 675 transplantations from AA donors. ABCB1 SNP rs956825 and CAV1 SNP rs6466583 interacted with APOL1 in transplants from AA donors. Thus, the T allele at ABCB1 rs1045642 is associated with shorter renal allograft survival for kidneys from American donors. Interactions between ABCB1 and CAV1 with APOL1 may influence allograft failure for transplanted kidneys from AA donors. PMID:25853335

  12. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  13. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome. PMID:25421600

  14. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  15. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  16. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  17. Gene expression and fractionation resistance

    PubMed Central

    2014-01-01

    Background Previous work on whole genome doubling in plants established the importance of gene functional category in provoking or suppressing duplicate gene loss, or fractionation. Other studies, particularly in Paramecium have correlated levels of gene expression with vulnerability or resistance to duplicate loss. Results Here we analyze the simultaneous effect of function category and expression in two plant data sets, rosids and asterids. Conclusion We demonstrate function category and expression level have independent effects, though expression does not play the dominant role it does in Paramecium. PMID:25573431

  18. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway

    PubMed Central

    Riganti, Chiara; Salaroglio, Iris Chiara; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2013-01-01

    Background Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. Methods A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. Results Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine–phosphate–guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. Conclusions Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling. PMID:23897632

  19. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells

    SciTech Connect

    Lambert, Carine B.; Spire, Catherine Claude, Nancy; Guillouzo, Andre

    2009-02-01

    Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p {<=} 0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches.

  20. Regulation of Neuronal Gene Expression

    NASA Astrophysics Data System (ADS)

    Thiel, Gerald; Lietz, Michael; Leichter, Michael

    Humans as multicellular organisms contain a variety of different cell types where each cell population must fulfill a distinct function in the interest of the whole organism. The molecular basis for the variations in morphology, biochemistry, molecular biology, and function of the various cell types is the cell-type specific expression of genes. These genes encode proteins necessary for executing the specialized functions of each cell type within an organism. We describe here a regulatory mechanism for the expression of neuronal genes. The zinc finger protein REST binds to the regulatory region of many neuronal genes and represses neuronal gene expression in nonneuronal tissues. A negative regulatory mechanism, involving a transcriptional repressor, seems to play an important role in establishing the neuronal phenotype.

  1. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes

    PubMed Central

    Benson, Eric A.; Eadon, Michael T.; Desta, Zeruesenay; Liu, Yunlong; Lin, Hai; Burgess, Kimberly S.; Segar, Matthew W.; Gaedigk, Andrea; Skaar, Todd C.

    2016-01-01

    Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. Methods: In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. Results: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < −0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. Conclusion

  2. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    PubMed

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  3. Nutritional regulation of gene expression.

    PubMed

    Cousins, R J

    1999-01-25

    Genes are regulated by complex arrays of response elements that influence the rate of transcription. Nutrients and hormones either act directly to influence these rates or act indirectly through specialized signaling pathways. Metabolites of vitamins A and D, fatty acids, some sterols, and zinc are among the nutrients that influence transcription directly. Components of dietary fiber may influence gene expression indirectly through changes in hormonal signaling, mechanical stimuli, and metabolites produced by the intestinal microflora. In addition, consumption of water-soluble fibers may lead to changes in gene expression mediated through indirect mechanisms that influence transcription rates. In the large intestine, short-chain fatty acids, including butyric acid, are produced by microflora. Butyric acid can indirectly influence gene expression. Some sources of fiber limit nutrient absorption, particularly of trace elements. This could have direct or indirect effects on gene expression. Identification of genes in colonic epithelial cells that are differentially regulated by dietary fiber will be an important step toward understanding the role of dietary factors in colorectal cancer progression.

  4. Hepatic gene expression analysis of 2-aminoanthracene exposed Fisher-344 rats reveal patterns indicative of liver carcinoma and type 2 diabetes.

    PubMed

    Gato, Worlanyo E; Hales, Dale B; Means, Jay C

    2012-01-01

    The goal of the present study was to examine hepatic differential gene expression patterns in Fisher-344 rats in response to dietary 2-aminoanthracene (2AA) ingestion for 14 and 28 days. Twenty four post-weaning 3-4 week old F-344 male rats were exposed to 0 mgkg(-1)-diet (control), 50 mgkg(-1)-diet (low dose), 75 mgkg(-1)-diet (medium dose) and 100 mgkg(-1)-diet (high dose) 2AA for 14 and 28 days. This was followed by analysis of the liver for global gene expression changes. In both time points, the numbers of genes affected seem to correlate with the dose of 2AA. Sixteen mRNAs were differentially expressed in all treatment groups for the short-term exposure group. Similarly, 51 genes were commonly expressed in all 28-day exposure group. Almost all the genes seem to have higher expression relative to the controls. In contrast, cytochrome P450 family 4, subfamily a, polypeptide 8 (Cyp4a8), and monocyte to macrophage differentiation-associated (Mmd2) were down-regulated relative to controls. Differentially expressed mRNAs were further analyzed for associations via DAVID. GO categories show the effect of 2AA to be linked with genes responsible for carbohydrate utilization and transport, lipid metabolic processes, stress responses such as inflammation and apoptosis processes, immune system response, DNA damage response, cancer processes and circadian rhythm. The data from the current study identified altered hepatic gene expression profiles that may be associated with carcinoma, autoimmune response, and/or type 2 diabetes. Possible biomarkers due to 2AA toxicity in the liver for future study include Abcb1a, Nhej1, Adam8, Cdkn1a, Mgmt, and Nrcam. PMID:23038007

  5. Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle

    PubMed Central

    Frank, Gabriel A.; Shukla, Suneet; Rao, Prashant; Borgnia, Mario J.; Bartesaghi, Alberto; Merk, Alan; Mobin, Aerfa; Esser, Lothar; Earl, Lesley A.; Gottesman, Michael M.; Xia, Di

    2016-01-01

    The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP. PMID:27190212

  6. Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle.

    PubMed

    Frank, Gabriel A; Shukla, Suneet; Rao, Prashant; Borgnia, Mario J; Bartesaghi, Alberto; Merk, Alan; Mobin, Aerfa; Esser, Lothar; Earl, Lesley A; Gottesman, Michael M; Xia, Di; Ambudkar, Suresh V; Subramaniam, Sriram

    2016-07-01

    The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP.

  7. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  8. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    .5. RESULTS Among the redox homeostasis genes examined, metallothionein showed a significant down regulation in the radiation treated group (-3.85 fold) and a trend toward down regulation in the high Fe + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications

  9. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  10. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor.

    PubMed

    Sun, Nian-Kang; Huang, Shang-Lang; Lu, Hsing-Pang; Chang, Ting-Chang; Chao, Chuck C-K

    2015-09-29

    A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPβ, ERα, HNF4α, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4`)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

  11. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  12. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy.

    PubMed

    Ortega-Vázquez, A; Dorado, P; Fricke-Galindo, I; Jung-Cook, H; Monroy-Jaramillo, N; Martínez-Juárez, I E; Familiar-López, I; Peñas-Lledó, E; LLerena, A; López-López, M

    2016-06-01

    We aimed to explore the possible influence of CYP2C9 (*2, *3 and IVS8-109 A>T), CYP2C19 (*2, *3 and *17) and ABCB1 (1236C>T, 2677G>A/T and 3435C>T) on phenytoin (PHT) plasma concentrations in 64 Mexican Mestizo (MM) patients with epilepsy currently treated with PHT in mono- (n=25) and polytherapy (n=39). Genotype and allele frequencies of these variants were also estimated in 300 MM healthy volunteers. Linear regression models were used to assess associations between the dependent variables (PHT plasma concentration and dose-corrected PHT concentration) with independent variables (CYP2C9, CYP2C19 and ABCB1 genotypes, ABCB1 haplotypes, age, sex, weight, and polytherapy). In multivariate models, CYP2C9 IVS8-109 T was significantly associated with higher PHT plasma concentrations (t(64)=2.27; P=0.03). Moreover, this allele was more frequent in the supratherapeutic group as compared with the subtherapeutic group (0.13 versus 0.03, respectively; P=0.05, Fisher's exact test). Results suggest that CYP2C9 IVS8-109 T allele may decrease CYP2C9 enzymatic activity on PHT. More research is needed to confirm findings.

  13. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  14. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  15. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    PubMed

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  16. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    SciTech Connect

    Crowe, Andrew Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  17. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  18. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  19. Biochemical and pharmacological properties of an allosteric modulator site of the human P-glycoprotein (ABCB1).

    PubMed

    Maki, Nazli; Dey, Saibal

    2006-07-14

    The drug-transport function of the human P-glycoprotein (Pgp or ABCB1) is inhibited by a number of structurally unrelated compounds, known as modulators or reversing agents. Among them, the thioxanthene derivative flupentixol inhibits Pgp-mediated drug transport by an allosteric mechanism. Unlike most other Pgp modulators, the cis isomer of flupentixol [cis-(Z)-flupentixol] facilitates interaction of Pgp with its transport-substrate [125I]iodoarylazidoprazosin (or [125I]IAAP), yet inhibits transport. In this study, we show that the flupentixol site acts as a common site of interaction for the tricyclic ring-containing modulators thioxanthenes and phenothiazines. The allosteric stimulation of [125I]IAAP binding to Pgp occurs independent of the phosphorylation status of the transporter. Stimulation is retained in purified Pgp reconstituted into proteoliposomes, suggesting no involvement of any other cellular protein in the phenomenon. However, perturbation of the lipid environment of the reconstituted Pgp by nonionic detergent octylglucoside abolishes stimulation by cis-(Z)-flupentixol of [125I]IAAP binding. Extensive trypsin digestion of the [125I]IAAP-labeled Pgp generates a 5.5 kDa fragment with 80% of the stimulated level of labeling associated with it. Sensitivity to inhibition by transport-substrate vinblastine and competitive modulator cyclosporin A suggests that the elevated level of [125I]IAAP binding to the fragment represents a functionally relevant interaction with the substrate site of Pgp. In summary, we demonstrate that allosteric modulation by cis-(Z)-flupentixol is mediated through its interaction with Pgp at a site specific for tricyclic ring-containing Pgp modulators of thioxanthene and phenothiazine backbone, independent of other cellular components and the phosphorylation status of the protein.

  20. Duplicate genes increase gene expression diversity within and between species.

    PubMed

    Gu, Zhenglong; Rifkin, Scott A; White, Kevin P; Li, Wen-Hsiung

    2004-06-01

    Using microarray gene expression data from several Drosophila species and strains, we show that duplicated genes, compared with single-copy genes, significantly increase gene expression diversity during development. We show further that duplicate genes tend to cause expression divergences between Drosophila species (or strains) to evolve faster than do single-copy genes. This conclusion is also supported by data from different yeast strains.

  1. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  2. Improvement of the cellular quality of cryopreserved bovine blastocysts accompanied by enhancement of the ATP-binding cassette sub-family B member 1 expression.

    PubMed

    Mori, Miyuki; Kasa, Shojiro; Isozaki, Yoshihiro; Kamori, Tsugumitsu; Yamaguchi, Shoichiro; Ueda, Shuji; Kuwano, Toshio; Eguchi, Minako; Isayama, Keishiro; Nishimura, Shotaro; Tabata, Shoji; Yamauchi, Nobuhiko; Hattori, Masa-aki

    2013-01-01

    The ATP-binding cassette sub-family B member 1 (ABCB1) plays a critical role in maintaining the metabolic capability of cells as an efflux transporter that pumps xenobiotics out of cells. We investigated the effects of highly expressed ABCB1 on the development and viability of cryopreserved bovine embryos. The ABCB1 level in cultured bovine embryos was decreased during development to blastocyst-stage compared to germinal vesicle- and second metaphase-stage oocytes. When bovine embryos were cultured with forskolin and/or rifampicin, the ABCB1 level was significantly increased in blastocysts but embryo development was not significantly improved. After embryo cryopreservation, highly ABCB1-expressed blastocysts exhibited significant increases in viability and hatching rates. The high viability of the cryopreserved blastocysts was accompanied by a significant increase in cell proliferation during culture for 48 h. Thus, ABCB1 is expressed in bovine oocytes and embryos, and the cellular quality of bovine blastocysts is improved by the enhancement of ABCB1 expression. PMID:23164983

  3. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  4. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  5. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  6. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    PubMed

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.

  7. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  8. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression

    PubMed Central

    Jourdain, Alexis A.; Boehm, Erik; Maundrell, Kinsey

    2016-01-01

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized “mitochondrial RNA granules,” mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  9. Germline genetic variants in ABCB1, ABCC1, and ALDH1A1 and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer

    PubMed Central

    Yao, Song; Sucheston, Lara E.; Zhao, Hua; Barlow, William E.; Zirpoli, Gary; Liu, Song; Moore, Halle C.F.; Budd, G. Thomas; Hershman, Dawn L.; Davis, Warren; Ciupak, Gregory L.; Stewart, James A.; Isaacs, Claudine; Hobday, Timothy J.; Salim, Muhammad; Hortobagyi, Gabriel N.; Gralow, Julie R.; Livingston, Robert B.; Albain, Kathy S.; Hayes, Daniel F.; Ambrosone, Christine B.

    2013-01-01

    Hematological and gastrointestinal toxicities are common among patients treated with cyclophosphamide and doxorubicin for breast cancer. To examine whether single nucleotide polymorphisms (SNPs) in key pharmacokinetic genes were associated with risk of hematological or gastrointestinal toxicity, we analyzed 78 SNPs in ABCB1, ABCC1 and ALDH1A1 in 882 breast cancer patients enrolled in the SWOG trial S0221 and treated with cyclophosphamide and doxorubicin. A two-SNP haplotype in ALDH1A1 was associated with an increased risk of grade 3 and 4 hematological toxicity (odds ratio [OR]=1.44, 95% confidence interval [CI]=1.16-1.78), which remained significant after correction for multiple comparisons. In addition, 4 SNPs in ABCC1 were associated with gastrointestinal toxicity. Our findings provide evidence that SNPs in pharmacokinetic genes may have an impact on the development of chemotherapy-related toxicities. This is a necessary first step towards building a clinical tool that will help assess risk of adverse outcomes prior to administration of chemotherapy. PMID:23999597

  10. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters.

    PubMed

    Tiwari, Amit K; Sodani, Kamlesh; Wang, Si-Rong; Kuang, Ye-Hong; Ashby, Charles R; Chen, Xiang; Chen, Zhe-Sheng

    2009-07-15

    Nilotinib, a BCR-Abl tyrosine kinase inhibitor (TKI), was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia positive chronic myelogenous leukemia. Recently, it was shown that several human multidrug resistance (MDR) ATP-binding cassette (ABC) proteins could be modulated by specific TKIs. MDR can produce cancer chemotherapy failure, typically due to overexpression of ABC transporters, which are involved in the extrusion of therapeutic drugs. Here, we report for the first time that nilotinib potentiates the cytotoxicity of widely used therapeutic substrates of ABCG2, such as mitoxantrone, doxorubicin, and ABCB1 substrates including colchicine, vincristine, and paclitaxel. Nilotinib also significantly enhances the accumulation of paclitaxel in cell lines overexpressing ABCB1. Similarly, nilotinib significantly increases the intracellular accumulation of mitoxantrone in cells transfected with ABCG2. Furthermore, nilotinib produces a concentration-dependent inhibition of the ABCG2-mediated transport of methotrexate (MTX), as well as E(2)17betaG a physiological substrate of ABCG2. Uptake studies in membrane vesicles overexpressing ABCG2 have indicated that nilotinib inhibits ABCG2 similar to other established TKIs as well as fumitremorgin C. Nilotinib is a potent competitive inhibitor of MTX transport by ABCG2 with a K(i) value of 0.69+/-0.083 microM as demonstrated by kinetic analysis of nilotinib. Overall, our results indicate that nilotinib could reverse ABCB1- and ABCG2-mediated MDR by blocking the efflux function of these transporters. These findings may be used to guide the design of present and future clinical trials with nilotinib, elucidating potential pharmacokinetic interactions. Also, these findings may be useful in clinical practice for cancer combination therapy with nilotinib.

  11. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid.

    PubMed

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Chufan, Eduardo E; Patel, Bhargav A; Wang, Yi-Jun; Chen, Zhe-Sheng; Ambudkar, Suresh V; Talele, Tanaji T

    2014-05-22

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [(125)I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp.

  12. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid.

    PubMed

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Chufan, Eduardo E; Patel, Bhargav A; Wang, Yi-Jun; Chen, Zhe-Sheng; Ambudkar, Suresh V; Talele, Tanaji T

    2014-05-22

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [(125)I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp. PMID:24773054

  13. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    PubMed

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.

  14. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  16. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  17. Profiling Gene Expression in Germinating Brassica Roots.

    PubMed

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  18. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  19. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  20. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors.

  1. The gene expression signatures of melanoma progression

    PubMed Central

    Haqq, Christopher; Nosrati, Mehdi; Sudilovsky, Daniel; Crothers, Julia; Khodabakhsh, Daniel; Pulliam, Brian L.; Federman, Scot; Miller, James R.; Allen, Robert E.; Singer, Mark I.; Leong, Stanley P. L.; Ljung, Britt-Marie; Sagebiel, Richard W.; Kashani-Sabet, Mohammed

    2005-01-01

    Because of the paucity of available tissue, little information has previously been available regarding the gene expression profiles of primary melanomas. To understand the molecular basis of melanoma progression, we compared the gene expression profiles of a series of nevi, primary melanomas, and melanoma metastases. We found that metastatic melanomas exhibit two dichotomous patterns of gene expression, which unexpectedly reflect gene expression differences already apparent in comparing laser-capture microdissected radial and vertical phases of a large primary melanoma. Unsupervised hierarchical clustering accurately separated nevi and primary melanomas. Multiclass significance analysis of microarrays comparing normal skin, nevi, primary melanomas, and the two types of metastatic melanoma identified 2,602 transcripts that significantly correlated with sample class. These results suggest that melanoma pathogenesis can be understood as a series of distinct molecular events. The gene expression signatures identified here provide the basis for developing new diagnostics and targeting therapies for patients with malignant melanoma. PMID:15833814

  2. Evaluation of CYP2C19, P2Y12, and ABCB1 polymorphisms and phenotypic response to clopidogrel in healthy Indian adults

    PubMed Central

    Sridharan, Kannan; Kataria, Rachna; Tolani, Drishti; Bendkhale, Shital; Gogtay, Nithya J.; Thatte, Urmila M.

    2016-01-01

    Introduction: CYP2C19 and P2Y12 polymorphisms have been claimed to alter the pharmacodynamic response to clopidogrel. ABCB1 polymorphism has been associated with the efflux of clopidogrel resulting in decreased bioavailability. Due to paucity of data from Indian population, the present study was undertaken to evaluate the association of genetic polymorphisms of CYP2C19, P2Y12, and ABCB1 with inhibition of platelet aggregation (IPA) by clopidogrel. Methods: Healthy adults (n = 90) of either gender were administered single dose of 300 mg clopidogrel. Baseline, 4 h postdose, and day 7 assessment of platelet aggregation and genotype of CYP2C19, P2Y12, and ABCB1 were carried out using standardized laboratory methods. The difference in the maximum platelet aggregation (MPA) between baseline and 4 h postdose was considered as delta-MPA (DMPA), and percentage change of MPA at 4 h from baseline was considered as IPA. Those with an IPA of <30% were considered as poor responders. Inferential statistics was applied to find out significant difference of these parameters between various groups of genetic polymorphisms. Results: Mean (standard deviation [SD]) of MPA (%) at baseline, 4 h postdose, and day 7 were 78 (5), 56 (16), and 71 (8), respectively. Similarly, mean (SD) of DMPA (%) and IPA (%) were 23 (17) and 29 (21), respectively. A total of 54/90 (60%) cases were found to be poor responders to clopidogrel. A wild genotype (*1/*1) of CYP2C19 was observed in 35 (40.2%), 42 (48.3%) had *1/*2, 2 (2.3%) individuals had *1/*3, and 8 (9.2%) had *2/*2 mutant genotypes. Although statistically not significant (P = 0.09), a trend was observed in having decreased inhibition values (both MPA and IPA) as we proceed from wild genotype (*1/*1) to mutant genotypes in the order of *1/*2, *1/*3, and *2/*2. Similarly, in P2Y12, a wild haplotype (H1/H1) was present in 77 (89.5%) and 9 (10.5%) individuals had H1/H2 type. A statistically significant difference in DMPA and IPA was observed with

  3. The Mouse Gene Expression Database (GXD)

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Begley, Dale A.; Corradi, John P.; McCright, Ingeborg J.; Hayamizu, Terry F.; Hill, David P.; Kadin, James A.; Richardson, Joel E.

    2001-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml. PMID:11125060

  4. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  5. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  6. Do drug transporter (ABCB1) SNPs and P-glycoprotein function influence cyclosporine and macrolides exposure in renal transplant patients? Results of the pharmacogenomic substudy within the symphony study.

    PubMed

    Llaudó, Inés; Colom, Helena; Giménez-Bonafé, Pepita; Torras, Joan; Caldés, Anna; Sarrias, Maria; Cruzado, Josep M; Oppenheimer, Federico; Sánchez-Plumed, Jaime; Gentil, Miguel Ángel; Ekberg, Henrik; Grinyó, Josep M; Lloberas, Núria

    2013-02-01

    The function of the efflux pump P-glycoprotein (Pgp) and ABCB1 single nucleotide polymorphisms (SNPs) should be considered as important tools to deepen knowledge of drug nephrotoxicity and disposition mechanisms. The aim of this study is to investigate the association of C3435T, G2677T, C1236T, and T129C ABCB1 SNPs with Pgp activity and exposure to different immunosuppressive drugs in renal transplant patients. Patients included in the Symphony Pharmacogenomic substudy were genotyped for ABCB1 SNPs. According to the design, patients were randomized into four immunosuppressive regimens: low and standard dose of cyclosporine (n = 30), tacrolimus (n = 13), and sirolimus (n = 23) concomitantly with mycophenolate and steroids. Pgp activity was evaluated in PBMC using the Rhodamine 123 efflux assay. TT carrier patients on C3435T, G2677T, and C1236T SNPs (Pgp-low pumpers) showed lower Pgp activity than noncarriers. Pgp-high pumpers treated with cyclosporine showed lower values of Pgp function than macrolides. There was a negative correlation between cyclosporine AUC and Pgp activity at 3 months. Results did not show any correlation between tacrolimus and sirolimus AUC and Pgp activity at 3 months. We found an important role of the ABCB1 SNPs Pgp function in CD3(+) peripheral blood lymphocytes from renal transplant recipients. Pgp activity was influenced by cyclosporine but not macrolides exposure.

  7. Gene expression correlates of unexplained fatigue.

    PubMed

    Whistler, Toni; Taylor, Renee; Craddock, R Cameron; Broderick, Gordon; Klimas, Nancy; Unger, Elizabeth R

    2006-04-01

    Quantitative trait analysis (QTA) can be used to test whether the expression of a particular gene significantly correlates with some ordinal variable. To limit the number of false discoveries in the gene list, a multivariate permutation test can also be performed. The purpose of this study is to identify peripheral blood gene expression correlates of fatigue using quantitative trait analysis on gene expression data from 20,000 genes and fatigue traits measured using the multidimensional fatigue inventory (MFI). A total of 839 genes were statistically associated with fatigue measures. These mapped to biological pathways such as oxidative phosphorylation, gluconeogenesis, lipid metabolism, and several signal transduction pathways. However, more than 50% are not functionally annotated or associated with identified pathways. There is some overlap with genes implicated in other studies using differential gene expression. However, QTA allows detection of alterations that may not reach statistical significance in class comparison analyses, but which could contribute to disease pathophysiology. This study supports the use of phenotypic measures of chronic fatigue syndrome (CFS) and QTA as important for additional studies of this complex illness. Gene expression correlates of other phenotypic measures in the CFS Computational Challenge (C3) data set could be useful. Future studies of CFS should include as many precise measures of disease phenotype as is practical.

  8. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  9. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  10. Nucleosome repositioning underlies dynamic gene expression

    PubMed Central

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-01-01

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  11. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  12. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described. PMID:26615435

  13. Inhibition of Multidrug Resistance-Linked P-Glycoprotein (ABCB1) Function by 5′-Fluorosulfonylbenzoyl 5′-Adenosine: Evidence for an ATP Analog That Interacts With Both Drug-Substrate- and Nucleotide-Binding Sites†

    PubMed Central

    Ohnuma, Shinobu; Chufan, Eduardo; Nandigama, Krishnamachary; Miller Jenkins, Lisa M.; Durell, Stewart R.; Appella, Ettore; Sauna, Zuben E.; Ambudkar, Suresh V.

    2011-01-01

    5′-fluorosulfonylbenzonyl 5′-adenosine (FSBA) is an ATP analog that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC50= 0.21 mM) and the binding of 8-azido[α–32P]ATP (IC50= 0.68 mM). In addition, 14C-FSBA crosslinks to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photocrosslinking of P-gp with [125I]-Iodoaryl-azidoprazosin (IAAP; IC50 = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs, but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA crosslinks to residues within or nearby the NBDs but not in the transmembrane domains and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analog that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated crosslinking is observed only at the NBDs. PMID:21452853

  14. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  15. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  16. Optogenetic Control of Gene Expression in Drosophila

    PubMed Central

    Chan, Yick-Bun; Alekseyenko, Olga V.; Kravitz, Edward A.

    2015-01-01

    To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes. PMID:26383635

  17. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  18. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  19. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  20. Gene Positioning Effects on Expression in Eukaryotes.

    PubMed

    Nguyen, Huy Q; Bosco, Giovanni

    2015-01-01

    The packaging and organization of the genome within the eukaryotic interphase nucleus directly influence how the genes are expressed. An underappreciated aspect of genome structure is that it is highly dynamic and that the physical positioning of a gene can impart control over its transcriptional status. In this review, we assess the current knowledge of how gene positioning at different levels of genome organization can directly influence gene expression during interphase. The levels of organization discussed include chromatin looping, topologically associated domains, chromosome territories, and nuclear compartments. We discuss specific studies demonstrating that gene positioning is a dynamic and highly regulated feature of the eukaryotic genome that allows for the essential spatiotemporal regulation of genes.

  1. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  2. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  3. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  5. Mechanisms of control of gene expression

    SciTech Connect

    Cullen, B.; Gage, L.P.; Siddiqui, M.A.Q.; Skalka, A.M.; Weissbach, H.

    1987-01-01

    This book examines an array of topics on the regulation of gene expression, including an examination of DNA-protein interactions and the role of oncogene proteins in normal and abnormal cellular responses. The book focuses on the control of mRNA transcription in eykaryotes and delineates other areas including gene regulation in prokaryotes and control of stable RNA synthesis.

  6. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  7. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  8. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  9. Inducible gene expression in transgenic Xenopus embryos.

    PubMed

    Wheeler, G N; Hamilton, F S; Hoppler, S

    2000-07-13

    The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.

  10. Assessing Gene Expression of the Endocannabinoid System.

    PubMed

    Pucci, Mariangela; D'Addario, Claudio

    2016-01-01

    Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR), a major development of PCR technology, is a powerful and sensitive gene analysis technique that revolutionized the field of measuring gene expression. Here, we describe in detail RNA extraction, reverse transcription (RT), and relative quantification of genes belonging to the endocannabinoid system in mouse, rat, or human samples. PMID:27245909

  11. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  12. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  13. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  14. Thyroid-specific gene expression in chondrocytes.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2011-12-16

    Previously, we demonstrated that Runx2 (Cbfa1/AML3), a chondrocyte-specific transcription factor, is expressed in thyroid glands of mice, where it stimulates expression of the thyroglobulin (Tg) gene. Here, we reverse transcribed thyroid transcription factor-1 (TTF-1), Pax-8, Tg, thyroid peroxidase (TPO) and Na(+)/I(-) symporter (NIS) cDNAs from mouse trachea and bronchus RNA samples, but were unable to recover these cDNAs from mouse liver RNA samples. Tg mRNA levels in trachea and bronchus were about 5.1% and 2.1% of those in thyroid glands. ATDC-5 cells, cultured chondrocytes, expressed about 30-fold more Tg mRNA than undifferentiated cells. Gel shift and Tg gene reporter assay revealed that TTF-1 stimulated Tg gene expression in these cells. These results indicate that chondrocytes turn on some aspects of the thyroid gene expression program and that TTF-1 plays important roles in Tg gene expression in chondrocyte. PMID:21945616

  15. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  16. Intergrin gene expression profiles of humanhepatocellular carcinoma

    PubMed Central

    Liu, Lian-Xin; Jiang, Hong-Chi; Liu, Zhi-Hua; Zhou, Jing; Zhang, Wei-Hui; Zhu, An-Long; Wang, Xiu-Qin; Wu, Min

    2002-01-01

    AIM: To investigate gene expression profiles of intergrin genes in hepatocellular carcinoma (HCC) through the usage of Atlas Human Cancer Array membranes, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Northern blot. METHODS: Hybridization of cDNA array membrane was performed with α 32P-labeled cDNA probes synthesized from RNA isolated from hepatocellular carcinoma and adjacent non-cirrhotic liver. AtlasImage, which is a software specific to array, was used to analyze the result. RT-PCR of 24 pairs specimen and Northern blot of 4 pairs specimen were used to confirm the expression pattern of some intergrin genes identified by Atlas arrays hybridization. RESULTS: Among 588 genes spotted in membrane, 17 genes were related to intergrin. Four genes were up-regulated, such as intergrin alpha8, beta1, beta7 and beta8 in HCC. Whereas there were no genes down-regulated in HCC. RT-PCR and Northern blot analysis of intergrin beta1 gene gave results consistent with cDNA array findings. CONCLUSION: Investigation of these intergrin genes should help to disclose the molecular mechanism of the cell adhesion, invasive and metastasis of HCC. A few genes are reported to have changed in HCC for the first time. The quick and high-throughout method of profiling gene expression by cDNA array provides us overview of key factors that may involved in HCC, and may find the clue of the study of HCC metastasis and molecular targets of anti-metastasis therapy. The precise relationship between the altered genes and HCC is a matter of further investigation. PMID:12174369

  17. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  18. Soybean physiology and gene expression during drought.

    PubMed

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  19. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  20. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  1. [Expression and regulation of the SOST gene].

    PubMed

    Qin, Long-Juan; Ding, Da-Xia; Cui, Lu-Lu; Huang, Qing-Yang

    2013-08-01

    Sclerostin(SOST), mainly expressed in osteocytes, is a negative regulator of bone formation. Hormones PTH and E2 inhibit the expression of the SOST gene. Transcription factors Osterix, Runx2, and Mef2c promote the SOST expression, while Sirt1 negatively regulates the SOST expression. In addition, the expression of the SOST gene is regulated by epigenetic mechanisms, such as DNA methylation and microRNA. Mutations in the SOST gene, which cause sclerosteosis and Van Buchem diseases, are associated with osteoporosis. Wnt and BMP are two important signaling pathways in bone metabolic regulation. SOST can regulate osteoblastic differentiation and bone formation by binding type I/II receptors and co-receptor LRP5/6 to inhibit BMP and Wnt signaling pathways. Suppression of SOST provides a new approach for osteoporosis treatment. This review covers the structure, function and expression regulation of the SOST gene, human disease association, mechanism in the regulation of bone metabolism and prospect in clinical application.

  2. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  3. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  4. Inducible gene expression systems for plants.

    PubMed

    Borghi, Lorenzo

    2010-01-01

    Several systems for induction of transgene expression in plants have been described recently. Inducible systems were used mainly in tobacco, rice, Arabidopsis, tomato, and maize. Inducible systems offer researchers the possibility to deregulate gene expression levels at particular stages of plant development and in particular tissues of interest. The more precise temporal and spatial control, obtained by providing the transgenic plant with the appropriate chemical compound or treatment, permits to analyze also the function of those genes required for plant viability. In addition, inducible systems allow promoting local changes in gene expression levels without causing gross alterations to the whole plant development. Here, protocols will be presented to work with five different inducible systems: AlcR/AlcA (ethanol inducible); GR fusions, GVG, and pOp/LhGR (dexamethasone inducible); XVE/OlexA (beta-estradiol inducible); and heat shock induction. PMID:20734254

  5. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  6. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  7. Comparative gene expression profiling by oligonucleotide fingerprinting.

    PubMed Central

    Meier-Ewert, S; Lange, J; Gerst, H; Herwig, R; Schmitt, A; Freund, J; Elge, T; Mott, R; Herrmann, B; Lehrach, H

    1998-01-01

    The use of hybridisation of synthetic oligonucleotides to cDNAs under high stringency to characterise gene sequences has been demonstrated by a number of groups. We have used two cDNA libraries of 9 and 12 day mouse embryos (24 133 and 34 783 clones respectively) in a pilot study to characterise expressed genes by hybridisation with 110 hybridisation probes. We have identified 33 369 clusters of cDNA clones, that ranged in representation from 1 to 487 copies (0.7%). 737 were assigned to known rodent genes, and a further 13 845 showed significant homologies. A total of 404 clusters were identified as significantly differentially represented (P < 0.01) between the two cDNA libraries. This study demonstrates the utility of the fingerprinting approach for the generation of comparative gene expression profiles through the analysis of cDNAs derived from different biological materials. PMID:9547283

  8. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  9. Gene expression profile of Clonorchis sinensis metacercariae.

    PubMed

    Cho, Pyo Yun; Kim, Tae Im; Whang, Seong Man; Hong, Sung-Jong

    2008-01-01

    Clonorchis sinensis develop through miracidium, sporocyst, redia, cercaria, and metacercaria stages before becoming egg-laying adult flukes. The authors undertook this analysis of gene expression profiles during developmental stages to increase our understanding of the biology of C. sinensis and of host-parasite relationships. From a C. sinensis metacercariae complementary deoxyribonucleic acid library, 419 expressed sequence tags (ESTs) of average length of 668 bp were collected and assembled into 322 genes containing 70 clusters and 252 singletons. The genes were annotated using BLAST searches and categorized into ten major functional categories. Genes expressed abundantly were those of proteases and metabolic, transcription, and translation housekeeping proteins. Genes expressed higher in C. sinensis metacercariae than in adults coded structural and cytoskeletal proteins, transcription and translation machinery proteins, and energy metabolism-related proteins. This EST information supports the notion that C. sinensis metacercariae in fish hosts have a physiology and metabolism that is quite different from that of its adult form in mammals. PMID:17924144

  10. Optogenetics for gene expression in mammalian cells.

    PubMed

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  11. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  12. Genes Expressed in Human Tumor Endothelium

    NASA Astrophysics Data System (ADS)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  13. Chromatin modifications remodel cardiac gene expression.

    PubMed

    Mathiyalagan, Prabhu; Keating, Samuel T; Du, Xiao-Jun; El-Osta, Assam

    2014-07-01

    Signalling and transcriptional control involve precise programmes of gene activation and suppression necessary for cardiovascular physiology. Deep sequencing of DNA-bound transcription factors reveals a remarkable complexity of co-activators or co-repressors that serve to alter chromatin modification and regulate gene expression. The regulated complexes characterized by genome-wide mapping implicate the recruitment and exchange of proteins with specific enzymatic activities that include roles for histone acetylation and methylation in key developmental programmes of the heart. As for transcriptional changes in response to pathological stress, co-regulatory complexes are also differentially utilized to regulate genes in cardiac disease. Members of the histone deacetylase (HDAC) family catalyse the removal of acetyl groups from proteins whose pharmacological inhibition has profound effects preventing heart failure. HDACs interact with a complex co-regulatory network of transcription factors, chromatin-remodelling complexes, and specific histone modifiers to regulate gene expression in the heart. For example, the histone methyltransferase (HMT), enhancer of zeste homolog 2 (Ezh2), is regulated by HDAC inhibition and associated with pathological cardiac hypertrophy. The challenge now is to target the activity of enzymes involved in protein modification to prevent or reverse the expression of genes implicated with cardiac hypertrophy. In this review, we discuss the role of HDACs and HMTs with a focus on chromatin modification and gene function as well as the clinical treatment of heart failure. PMID:24812277

  14. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  15. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  16. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  17. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  18. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    PubMed

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  19. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  20. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  1. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  2. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  3. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  4. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  5. Functionalization of a protosynaptic gene expression network

    PubMed Central

    Conaco, Cecilia; Bassett, Danielle S.; Zhou, Hongjun; Arcila, Mary Luz; Degnan, Sandie M.; Degnan, Bernard M.; Kosik, Kenneth S.

    2012-01-01

    Assembly of a functioning neuronal synapse requires the precisely coordinated synthesis of many proteins. To understand the evolution of this complex cellular machine, we tracked the developmental expression patterns of a core set of conserved synaptic genes across a representative sampling of the animal kingdom. Coregulation, as measured by correlation of gene expression over development, showed a marked increase as functional nervous systems emerged. In the earliest branching animal phyla (Porifera), in which a nearly complete set of synaptic genes exists in the absence of morphological synapses, these “protosynaptic” genes displayed a lack of global coregulation although small modules of coexpressed genes are readily detectable by using network analysis techniques. These findings suggest that functional synapses evolved by exapting preexisting cellular machines, likely through some modification of regulatory circuitry. Evolutionarily ancient modules continue to operate seamlessly within the synapses of modern animals. This work shows that the application of network techniques to emerging genomic and expression data can provide insights into the evolution of complex cellular machines such as the synapse. PMID:22723359

  6. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  7. Gene Expression Commons: An Open Platform for Absolute Gene Expression Profiling

    PubMed Central

    Seita, Jun; Sahoo, Debashis; Rossi, Derrick J.; Bhattacharya, Deepta; Serwold, Thomas; Inlay, Matthew A.; Ehrlich, Lauren I. R.; Fathman, John W.; Dill, David L.; Weissman, Irving L.

    2012-01-01

    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named “Gene Expression Commons” (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples. PMID:22815738

  8. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  9. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  10. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  11. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  12. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  13. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  14. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  15. Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    PubMed Central

    Fonseca, Francina; de la Torre, Rafael; Díaz, Laura; Pastor, Antonio; Cuyàs, Elisabet; Pizarro, Nieves; Khymenets, Olha; Farré, Magí; Torrens, Marta

    2011-01-01

    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements. PMID:21589866

  16. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  17. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  18. P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) restrict brain accumulation of the JAK1/2 inhibitor, CYT387.

    PubMed

    Durmus, S; Xu, N; Sparidans, R W; Wagenaar, E; Beijnen, J H; Schinkel, A H

    2013-10-01

    CYT387 is an orally bioavailable, small molecule inhibitor of Janus family of tyrosine kinases (JAK) 1 and 2. It is currently undergoing Phase I/II clinical trials for the treatment of myelofibrosis and myeloproliferative neoplasms. We aimed to establish whether the multidrug efflux transporters P-glycoprotein (P-gp; MDR1; ABCB1) and breast cancer resistance protein (BCRP;ABCG2) restrict oral availability and brain penetration of CYT387. In vitro, CYT387 was efficiently transported by both human MDR1 and BCRP, and very efficiently by mouse Bcrp1 and its transport could be inhibited by specific MDR1 inhibitor, zosuquidar and/or specific BCRP inhibitor, Ko143. CYT387 (10 mg/kg) was orally administered to wild-type (WT), Bcrp1(-/-), Mdr1a/1b(-/-) and Bcrp1;Mdr1a/1b(-/-) mice and plasma and brain concentrations were analyzed. Over 8h, systemic exposure of CYT387 was similar between all the strains, indicating that these transporters do not substantially limit oral availability of CYT387. Despite the similar systemic exposure, brain accumulation of CYT387 was increased 10.5- and 56-fold in the Bcrp1;Mdr1a/1b(-/-) mice compared to the WT strain at 2 and 8h after CYT387 administration, respectively. In single Bcrp1(-/-) mice, brain accumulation of CYT387 was more substantially increased than in Mdr1a/1b(-/-) mice, suggesting that CYT387 is a slightly better substrate of Bcrp1 than of Mdr1a at the blood-brain barrier. These results indicate a marked and additive role of Bcrp1 and Mdr1a/1b in restricting brain penetration of CYT387, potentially limiting efficacy of this compound against brain (micro) metastases positioned behind a functional blood-brain barrier.

  19. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  20. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  1. Gene expression pattern in canine mammary osteosarcoma.

    PubMed

    Pawłowski, K M; Majewska, A; Szyszko, K; Dolka, I; Motyl, T; Król, M

    2011-01-01

    Canine mammary sarcomas are usually very aggressive and easily metastasize. Unfortunately the biology of this type of tumor is not well known because they are a very rare type of tumors. The aim of this study was to find differences in gene expression patterns in canine mammary osteosarcomas (malignant) versus osteomas (benign) using DNA microarrays. Our microarray experiment showed that 11 genes were up-regulated in osteosarcoma in comparison to osteoma whereas 36 genes were down-regulated. Among the up-regulated genes were: PDK1, EXT1, and EIF4H which are involved in AKT/PI3K and GLI/Hedgehog pathways. These genes play an important role in cell biology (cancer cell proliferation) and may be essential in osteosarcoma formation and development. Analyzing the down-regulated genes, the most interesting seemed to be HSPB8 and SEPP1. HSPB8 is a small heat shock protein that plays an important role in cell cycle regulation, apoptosis, and breast carcinogenesis. Also SEPP1 may play a role in carcinogenesis, as its down-regulation may induce oxidative stress possibly resulting in carcinogenesis. The preliminary results of the present study indicate that the up-regulation of three genes EXT1, EIF4H, and PDK1 may play an essential role in osteosarcoma formation, development and proliferation. In our opinion the cross-talk between GLI/Hedgehog and PI3K/AKT pathways may be a key factor to increase tumor proliferation and malignancy. PMID:21528706

  2. Pathophysiological factors affecting CAR gene expression.

    PubMed

    Pascussi, Jean Marc; Dvorák, Zdenek; Gerbal-Chaloin, Sabine; Assenat, Eric; Maurel, Patrick; Vilarem, Marie José

    2003-11-01

    The body defends itself against potentially harmful compounds, such as drugs and toxic endogenous compounds and their metabolites, by inducing the expression of enzymes and transporters involved in their metabolism and elimination. The orphan nuclear receptor CAR (NR1I3 controls phase I (CYP2B, CYP2C, CYP3A), phase II (UGT1A1), and transporter (SLC21A6, MRP2) genes involved in drug metabolism and bilirubin clearance. Constitutive androstane receptor (CAR) is activated by xenobiotics, such as phenobarbital, but also by toxic endogenous compounds such as bilirubin metabolite(s). To better understand the inter- and intravariability in drug detoxification, we studied the molecular mechanisms involved in CAR gene expression in human hepatocytes. We clearly identified CAR as a glucocorticoid receptor (GR) target gene, and we proposed the hypothesis of a signal transduction where the activation of GR plays a critical function in CAR-mediated cellular response. According to our model, chemicals or pathophysiological factors that affect GR function should decrease CAR function. To test this hypothesis, we recently investigated the effect of microtubule disrupting agents (MIAs) or proinflammatory cytokines. These compounds are well-known inhibitors of GR transactivation property. MIAs activate c-Jun N-terminal kinase (JNK), which phosphorylates and inactivates GR, whereas proinflammatory cytokines, such as IL-6 or IL1beta, induce AP-1 or NF-kB activation, respectively, leading to GR inhibition. As expected, we observed that these molecules inhibit both CAR gene expression and phenobarbital-mediated CYP gene expression in human hepatocytes. PMID:14705859

  3. Gene expression profiles in skeletal muscle after gene electrotransfer

    PubMed Central

    Hojman, Pernille; Zibert, John R; Gissel, Hanne; Eriksen, Jens; Gehl, Julie

    2007-01-01

    Background Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in the muscles 2 weeks

  4. Decomposition of Gene Expression State Space Trajectories

    PubMed Central

    Mar, Jessica C.; Quackenbush, John

    2009-01-01

    Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005) which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005) build on the work of Kauffman (2004) who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions—core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005) dataset. PMID:20041215

  5. Insights into SAGA function during gene expression

    PubMed Central

    Rodríguez-Navarro, Susana

    2009-01-01

    Histone modifications are a crucial source of epigenetic control. SAGA (Spt–Ada–Gcn5 acetyltransferase) is a chromatin-modifying complex that contains two distinct enzymatic activities, Gcn5 and Ubp8, through which it acetylates and deubiquitinates histone residues, respectively, thereby enforcing a pattern of modifications that is decisive in regulating gene expression. Here, I discuss the latest contributions to understanding the roles of the SAGA complex, highlighting the characterization of the SAGA-deubiquitination module, and emphasizing the functions newly ascribed to SAGA during transcription elongation and messenger-RNA export. These findings suggest that a crosstalk exists between chromatin remodelling, transcription and messenger-RNA export, which could constitute a checkpoint for accurate gene expression. I focus particularly on the new components of human SAGA, which was recently discovered and confirms the conservation of the SAGA complex throughout evolution. PMID:19609321

  6. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  7. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  8. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  9. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  10. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo.

    PubMed

    Wang, Yubang; Qin, Heng; Zhang, Chengxiang; Huan, Fei; Yan, Ting; Zhang, Lulu

    2015-12-29

    This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  11. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.

  12. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  13. Expression of foreign genes in filamentous cyanobacteria

    SciTech Connect

    Kuritz, T.; Wolk, C.P. )

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believe that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.

  14. [Transcriptomes for serial analysis of gene expression].

    PubMed

    Marti, Jacques; Piquemal, David; Manchon, Laurent; Commes, Thérèse

    2002-01-01

    The availability of the sequences for whole genomes is changing our understanding of cell biology. Functional genomics refers to the comprehensive analysis, at the protein level (proteome) and at the mRNA level (transcriptome) of all events associated with the expression of whole sets of genes. New methods have been developed for transcriptome analysis. Serial Analysis of Gene Expression (SAGE) is based on the massive sequential analysis of short cDNA sequence tags. Each tag is derived from a defined position within a transcript. Its size (14 bp) is sufficient to identify the corresponding gene and the number of times each tag is observed provides an accurate measurement of its expression level. Since tag populations can be widely amplified without altering their relative proportions, SAGE may be performed with minute amounts of biological extract. Dealing with the mass of data generated by SAGE necessitates computer analysis. A software is required to automatically detect and count tags from sequence files. Criterias allowing to assess the quality of experimental data can be included at this stage. To identify the corresponding genes, a database is created registering all virtual tags susceptible to be observed, based on the present status of the genome knowledge. By using currently available database functions, it is easy to match experimental and virtual tags, thus generating a new database registering identified tags, together with their expression levels. As an open system, SAGE is able to reveal new, yet unknown, transcripts. Their identification will become increasingly easier with the progress of genome annotation. However, their direct characterization can be attempted, since tag information may be sufficient to design primers allowing to extend unknown sequences. A major advantage of SAGE is that, by measuring expression levels without reference to an arbitrary standard, data are definitively acquired and cumulative. All publicly available data can thus

  15. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  16. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  17. GLAST: gene expression regulation by phorbol esters.

    PubMed

    Espinoza-Rojo, M; López-Bayghen, E; Ortega, A

    2000-08-21

    The gene expression regulation of the Na+-dependent high affinity glutamate/aspartate transporter GLAST expressed in cultured Bergmann glia cells from chick cerebellum was studied. A 679 bp fragment of the chick GLAST cDNA was cloned and sequenced. Specific PCR primers were used to quantify chick GLAST mRNA levels. Treatment of the cells with the Ca2+/diacylglycerol dependent protein kinase C (PKC) activator, phorbol 12-tetradecanoyl-13-acetate (TPA) produced a decrease in transporter mRNA levels, without an effect in its mRNA half life, suggesting a transcriptional down regulation. Activation of the cAMP pathway results in a transient decrease in GLAST mRNA levels, in contrast with the TPA effect. These findings suggest that GLAST expression is under control of distinct signaling pathways.

  18. Murine erythropoietin gene: cloning, expression, and human gene homology.

    PubMed Central

    Shoemaker, C B; Mitsock, L D

    1986-01-01

    The gene for murine erythropoietin (EPO) was isolated from a mouse genomic library with a human EPO cDNA probe. Nucleotide sequence analysis permitted the identification of the murine EPO coding sequence and the prediction of the encoded amino acid sequence based on sequence conservation between the mouse and human EPO genes. Both the coding DNA and the amino acid sequences were 80% conserved between the two species. Transformation of COS-1 cells with a mammalian cell expression vector containing the murine EPO coding region resulted in secretion of murine EPO with biological activity on both murine and human erythroid progenitor cells. The transcription start site for the murine EPO gene in kidneys was determined. This permitted tentative identification of the transcription control region. The region included 140 base pairs upstream of the cap site which was over 90% conserved between the murine and human genes. Surprisingly, the first intron and much of the 5'- and 3'-untranslated sequences were also substantially conserved between the genes of the two species. Images PMID:3773894

  19. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    PubMed

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  20. Identification of Common Prognostic Gene Expression Signatures with Biological Meanings from Microarray Gene Expression Datasets

    PubMed Central

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W. K. Alfred; Weinstein, John N.

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures. PMID:23029298

  1. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  2. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  3. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.

  4. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  5. Gene Expression in First Trimester Preeclampsia Placenta

    PubMed Central

    Founds, Sandra A.; Terhorst, Lauren A.; Conrad, Kirk P.; Hogge, W. Allen; Jeyabalan, Arun; Conley, Yvette P.

    2013-01-01

    Background The goal of this study was to further validate eight candidate genes identified in a microarray analysis of first trimester placentas in preeclampsia. Material and method Surplus chorionic villus sampling (CVS) specimens of 4 women subsequently diagnosed with preeclampsia (PE) and 8 control women (C) without preeclampsia analyzed previously by microarray and 24 independent additional control samples (AS) were submitted for confirmatory studies by quantitative real-time polymerase chain reaction (qRT-PCR). Results Downregulation was significant in FSTL3 in PE as compared to C and AS (p = .04). PAEP was downregulated, but the difference was only significant between C and AS (p = .002) rather than between PE and either of the control groups. Expression levels for CFH, EPAS1, IGFBP1, MMP12, and SEMA3C were not statistically different among groups, but trends were consistent with microarray results; there was no anti-correlation. S100A8 was not measurable in all samples, probably because different probes and primers were needed. Conclusions This study corroborates reduced FSTL3 expression in the first trimester of preeclampsia. Nonsignificant trends in the other genes may require follow-up in studies powered for medium or medium/large effect sizes. qRT-PCR verification of the prior microarray of CVS may support the placental origins of preeclampsia hypothesis. Replication is needed for the candidate genes as potential biomarkers of susceptibility, early detection, and/or individualized care of maternal–infant preeclampsia. PMID:21044967

  6. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  7. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.

  8. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  9. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  10. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  11. Inferring gene expression dynamics via functional regression analysis

    PubMed Central

    Müller, Hans-Georg; Chiou, Jeng-Min; Leng, Xiaoyan

    2008-01-01

    Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches. PMID:18226220

  12. TNF-α gene polymorphisms and expression.

    PubMed

    El-Tahan, Radwa R; Ghoneim, Ahmed M; El-Mashad, Noha

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine with an important role in the pathogenesis of several diseases. Its encoding gene is located in the short arm of chromosome 6 in the major histocompatibility complex class III region. Most of the TNF-α gene polymorphisms are located in its promoter region and they are thought to affect the susceptibility and/or severity of different human diseases. This review summarizes the data related to the association between TNF-α gene and its receptor polymorphisms, and the development of autoimmune diseases. Among these polymorphisms the -308G/A TNF-α promotor polymorphism has been associated several times with the the development of autoimmune diseases, however some discrepant results have been recorded. The other TNF-α gene polymorphisms had little or no association with autoimmune diseases. Current results about the molecules controlling TNF-α expression are also presented. The discrepancy between different records could be related partly to either the differences in the ethnic origin or number of the studied individuals, or the abundance and activation of other molecules that interact with the TNF-α promotor region or other elements. PMID:27652081

  13. Hyperbaric oxygen treatment induces antioxidant gene expression.

    PubMed

    Godman, Cassandra A; Joshi, Rashmi; Giardina, Charles; Perdrizet, George; Hightower, Lawrence E

    2010-06-01

    Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.

  14. Expressing exogenous genes in newts by transgenesis.

    PubMed

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  15. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms.

  16. Approaches for gene targeting and targeted gene expression in plants.

    PubMed

    Husaini, Amjad Masood; Rashid, Zerka; Mir, Reyaz-ul Rouf; Aquil, Bushra

    2011-01-01

    Transgenic science and technology are fundamental to state-of-the-art plant molecular genetics and crop improvement. The new generation of technology endeavors to introduce genes 'stably' into 'site-specific' locations and in 'single copy' without the integration of extraneous vector 'backbone' sequences or selectable markers and with a 'predictable and consistent' expression. Several similar strategies and technologies, which can push the development of 'smart' genetically modified plants with desirable attributes, as well as enhance their consumer acceptability, are discussed in this review.

  17. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  18. Regulation of gene expression by hypoxia.

    PubMed

    Kenneth, Niall Steven; Rocha, Sonia

    2008-08-15

    Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.

  19. Network Completion for Static Gene Expression Data

    PubMed Central

    Nakajima, Natsu

    2014-01-01

    We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data. PMID:24826192

  20. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  1. Expression of cytochromes P450 3A and P-glycoprotein in human large intestine in paired tumour and normal samples.

    PubMed

    Canaparo, Roberto; Nordmark, Anna; Finnström, Niklas; Lundgren, Stefan; Seidegård, Janeric; Jeppsson, Bengt; Edwards, Robert J; Boobis, Alan R; Rane, Anders

    2007-04-01

    Our objective was to investigate the expression of different cytochromes P450 3A (CYP3A4, CYP3A5, and CYP3A7) and P-glycoprotein (ABCB1) genes along the human large intestine in paired tumour and normal samples. Real-time reverse transcriptase-polymerase chain reaction was used to measure CYP3A4-, CYP3A5-, CYP3A7- and ABCB1-specific mRNA expression, and Western blot analysis was used to measure membrane protein levels of CYP3A4/7, CYP3A5 and P-glycoprotein. Levels of mRNA and membrane protein fractions in the large intestine were compared with those of normal human liver. The mRNA expressions of CYP3A4, CYP3A5, CYP3A7 and ABCB1 in the large intestine were found to be highly variable, but overall the levels were significantly lower than those measured in liver (P < 0.0001, P < 0.001, P < 0.0001 and P < 0.01, respectively). At the membrane protein level, CYP3A4/7 was detected in all large intestine samples examined and the levels were substantially higher than those of the liver (P < 0.01). Although expression of CYP3A5 was detected in all large intestine samples, in most the levels were too low to allow quantification. P-glycoprotein was readily detected at levels slightly higher than those of liver (P < 0.05). Comparison between paired samples of normal and tumour in large intestine showed no significant differences in either the mRNA or membrane protein levels of these genes. In conclusion, this work suggests a potential role of the large intestine in the absorption and metabolism of xenobiotics and nutrients and no difference in the CYP3A and P-glycoprotein membrane protein fractions and mRNA expression between normal and tumour tissues.

  2. Streptomyces coelicolor as an expression host for heterologous gene clusters.

    PubMed

    Gomez-Escribano, Juan Pablo; Bibb, Mervyn J

    2012-01-01

    The expression of a gene or a set of genes from one organism in a different species is known as "heterologous expression." In actinomycetes, prolific producers of natural products, heterologous gene expression has been used to confirm the clustering of secondary metabolite biosynthetic genes, to analyze natural product biosynthesis, to produce variants of natural products by genetic engineering, and to discover new compounds by screening genomic libraries. Recent advances in DNA sequencing have enabled the rapid and affordable sequencing of actinomycete genomes and revealed a large number of secondary metabolite gene clusters with no known products. Heterologous expression of these cryptic gene clusters combined with comparative metabolic profiling provides an important means to identify potentially novel compounds. In this chapter, the methods and strategies used to heterologously express actinomycete gene clusters, including the techniques used for cloning secondary metabolite gene clusters, the Streptomyces hosts used for their expression, and the techniques employed to analyze their products by metabolic profiling, are described.

  3. Repeatability of published microarray gene expression analyses.

    PubMed

    Ioannidis, John P A; Allison, David B; Ball, Catherine A; Coulibaly, Issa; Cui, Xiangqin; Culhane, Aedín C; Falchi, Mario; Furlanello, Cesare; Game, Laurence; Jurman, Giuseppe; Mangion, Jon; Mehta, Tapan; Nitzberg, Michael; Page, Grier P; Petretto, Enrico; van Noort, Vera

    2009-02-01

    Given the complexity of microarray-based gene expression studies, guidelines encourage transparent design and public data availability. Several journals require public data deposition and several public databases exist. However, not all data are publicly available, and even when available, it is unknown whether the published results are reproducible by independent scientists. Here we evaluated the replication of data analyses in 18 articles on microarray-based gene expression profiling published in Nature Genetics in 2005-2006. One table or figure from each article was independently evaluated by two teams of analysts. We reproduced two analyses in principle and six partially or with some discrepancies; ten could not be reproduced. The main reason for failure to reproduce was data unavailability, and discrepancies were mostly due to incomplete data annotation or specification of data processing and analysis. Repeatability of published microarray studies is apparently limited. More strict publication rules enforcing public data availability and explicit description of data processing and analysis should be considered.

  4. Regulation of gene expression by hypoxia.

    PubMed

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  5. Insulin-glycerolipid mediators and gene expression

    SciTech Connect

    Standaert, M.L.; Pollet, R.J. )

    1988-06-01

    Insulin is an anabolic polypeptide hormone with pleiotrophic effects. During the decades since the initial description by Banting and Best, the acute effects of insulin have been widely studied with particular focus on the mechanism or mechanisms of insulin activation of hexose transport and regulation of metabolic enzyme activity. However, recently there has been a major expansion of investigation to include insulin regulation of gene expression with multiple insulin-sensitive specific mRNAs now reported. In this review, we explore the involvement of insulin-induced changes in plasma membrane glycerolipid metabolism in the transmembrane signaling process required for insulin regulation of mRNA levels. Insulin increase diacylglycerol levels in insulin-responsive cells, and synthetic diacylglycerols or their phorbol ester diacylglycerol analogs, such as 4{beta}, 9{alpha}, 12{beta}, 13{alpha}, 20-pentahydroxytiglia-1,6-dien-3-one 12{beta}-myristate 13-acetate (TPA), mimic insulin regulation of ornithine decarboxylase mRNA, c-fos mRNA, and phosphoenolpyruvate carboxykinase mRNA levels. This suggests that insulin regulation of specific mRNA levels may be mediated by insulin-induced changes in phospholipid metabolism and that diacylglycerol may play a pivotal role in insulin regulation of gene expression.

  6. Gene transfer and expression in plants.

    PubMed

    Lorence, Argelia; Verpoorte, Robert

    2004-01-01

    Until recently, agriculture and plant breeding relied solely on the accumulated experience of generations of farmers and breeders that is, on sexual transfer of genes between plant species. However, recent developments in plant molecular biology and genomics now give us access to knowledge and understanding of plant genomes and the possibility of modifying them. This chapter presents an updated overview of the two most powerful technologies for transferring genetic material (DNA) into plants: Agrobacterium-mediated transformation and microparticle bombardment (biolistics). Some of the topics that are discussed in detail are the main variables controlling the transformation efficiency that can be achieved using each one of these approaches; the advantages and limitations of each methodology; transient versus stable transformation approaches; the potential of some in planta transformation systems; alternatives to developing transgenic plants without selection markers; the availability of diverse genetic tools generated as part of the genome sequencing of different plant species; transgene expression, gene silencing, and their association with regulatory elements; and prospects and ways to possibly overcome some transgene expression difficulties, in particular the use of matrix-attachment regions (MARs).

  7. Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL

    PubMed Central

    Souza, Paloma S.; Madigan, James P.; Gillet, Jean-Pierre; Kapoor, Khyati; Ambudkar, Suresh V.; Maia, Raquel C.; Gottesman, Michael M.; Fung, King Leung

    2015-01-01

    Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells. PMID:26101157

  8. Coactivators in PPAR-Regulated Gene Expression

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Vluggens, Aurore; Borensztajn, Jayme; Xu, Jianming; Reddy, Janardan K.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism. PMID:20814439

  9. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  10. Predicting cellular growth from gene expression signatures.

    PubMed

    Airoldi, Edoardo M; Huttenhower, Curtis; Gresham, David; Lu, Charles; Caudy, Amy A; Dunham, Maitreya J; Broach, James R; Botstein, David; Troyanskaya, Olga G

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  11. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  12. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  13. Global analysis of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Background Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. Results We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Conclusion Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions. PMID:17645804

  14. Melatonin regulation of antioxidant enzyme gene expression.

    PubMed

    Mayo, J C; Sainz, R M; Antoli, I; Herrera, F; Martin, V; Rodriguez, C

    2002-10-01

    Antioxidant enzymes (AOEs) are part of the primary cellular defense against free radicals induced by toxins and/or spontaneously formed in cells. Melatonin (MLT) has received much attention in recent years due to its direct free radical scavenging and antioxidant properties. In the present work we report that MLT, at physiological serum concentrations (1 nM), increases the mRNA of both superoxide dismutases (SODs) and glutathione peroxidase (GPx) in two neuronal cell lines. The MLT effect on both SODs and GPx mRNA was mediated by a de novo synthesized protein. MLT alters mRNA stability for Cu-Zn SOD and GPx. Experiments with a short time treatment (pulse action) of MLT suggest that the regulation of AOE gene expression is likely to be receptor mediated, because 1-h treatment with MLT results in the same response as a 24-h treatment.

  15. Gene expression during fruit ripening in avocado.

    PubMed

    Christoffersen, R E; Warm, E; Laties, G G

    1982-06-01

    The poly(A) (+)RNA populations from avocado fruit (Persea americana Mill cv. Hass) at four stages of ripening were isolated by two cycles of oligo-dT-cellulose chromatography and examined by invitro translation, using the rabbit reticulocyte lysate system, followed by two-dimensional gel electrophoresis (isoelectric focusing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the resulting translation products. Three mRNAs increased dramatically with the climacteric rise in respiration and ethylene production. The molecular weights of the corresponding translation products from the ripening-related mRNAs are 80,000, 36,000, and 16,500. These results indicate that ripening may be linked to the expression of specific genes.

  16. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  17. Optimizing retroviral gene expression for effective therapies.

    PubMed

    Antoniou, Michael N; Skipper, Kristian Alsbjerg; Anakok, Omer

    2013-04-01

    With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.

  18. Phenotypic plasticity and divergence in gene expression.

    PubMed

    Healy, Timothy M; Schulte, Patricia M

    2015-07-01

    The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. ; Pfennig et al. ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci ). In this issue of Molecular Ecology, Dayan et al. () provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. A) and F. grandis are minnows that inhabit estuarine marshes (Fig. B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. () address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity? PMID:26096949

  19. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  20. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  1. Many body theory of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    The regulation of expression states of genes in cells is a stochastic process. The relatively small numbers of protein molecules of a given type present in the cell and the nonlinear nature of chemical reactions result in behaviours, which are hard to anticipate without an appropriate mathematical development. In this dissertation, I develop theoretical approaches based on methods of statistical physics and many-body theory, in which protein and operator state dynamics are treated stochastically and on an equal footing. This development allows me to study the general principles of how noise arising on different levels of the regulatory system affects the complex collective characteristics of systems observed experimentally. I discuss simple models and approximations, which allow for, at least some, analytical progress in these problems. These have allowed us to understand how the operator state fluctuations may influence the steady state properties and lifetimes of attractors of simple gene systems. I show, that for fast binding and unbinding from the DNA, the operator state may be taken to be in equilibrium for highly cooperative binding, when predicting steady state properties as is traditionally done. Nevertheless, if proteins are produced in bursts, the DNA binding state fluctuations must be taken into account explicitly. Furthermore, even when the steady state probability distributions are weakly influenced by the operator state fluctuations, the escape rate in biologically relevant regimes strongly depends on transcription factor-DNA binding rates.

  2. Expression profiling identifies genes involved in emphysema severity.

    PubMed

    Francis, Santiyagu M Savarimuthu; Larsen, Jill E; Pavey, Sandra J; Bowman, Rayleen V; Hayward, Nicholas K; Fong, Kwun M; Yang, Ian A

    2009-01-01

    Chronic obstructive pulmonary disease (COPD) is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients.Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR) if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples.Class comparison identified 98 differentially expressed genes (p < 0.01). Fifty-one of those genes had been previously evaluated in differentiation between normal and severe emphysema lung. qRT-PCR confirmed the direction of change in expression in 29 of the 51 genes and 11 of those validated, remaining significant at p < 0.05. Biological replication in an independent cohort confirmed the altered expression of eight genes, with seven genes differentially expressed by greater than 1.3 fold, identifying these as candidate determinants of emphysema severity.Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3. PMID:19723343

  3. Expression profiling identifies genes involved in emphysema severity

    PubMed Central

    2009-01-01

    Chronic obstructive pulmonary disease (COPD) is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR) if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p < 0.01). Fifty-one of those genes had been previously evaluated in differentiation between normal and severe emphysema lung. qRT-PCR confirmed the direction of change in expression in 29 of the 51 genes and 11 of those validated, remaining significant at p < 0.05. Biological replication in an independent cohort confirmed the altered expression of eight genes, with seven genes differentially expressed by greater than 1.3 fold, identifying these as candidate determinants of emphysema severity. Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3. PMID:19723343

  4. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  5. Structure and expression of the ATFa gene.

    PubMed

    Goetz, J; Chatton, B; Mattei, M G; Kedinger, C

    1996-11-22

    The human ATFa proteins belong to the ATF/CREB family of transcription factors. We have previously shown that they mediate the transcriptional activation by the largest E1a protein and can heterodimerize with members of the Jun/Fos family. ATFa proteins have also been found tightly associated with JNK2, a stress-activated kinase. We now report on the structure of the ATFa gene, which mapped to chromosome 12 (band 12q13). Sequence analysis revealed that ATFa isoforms are generated by alternative splice donor site usage. A minimal promoter region of approximately 200 base pairs was identified that retained nearly full transcriptional activity. Binding sites for potential transcription factors were delineated within a GC-rich segment by DNase I footprinting. Expression studies revealed that ATFa accumulates in the nuclei of transfected cells, and the nuclear localization signal was defined next to the leucine zipper domain. As revealed by hybridization with mouse ATFa sequences, low levels of ATFa mRNAs were ubiquitously distributed in fetal or adult mice, with enhanced expression in particular tissues, like squamous epithelia and specific brain cell layers. The possible significance of coexpression of ATFa, ATF-2, and Jun at similar sites in the brain is discussed. PMID:8939888

  6. Laser capture microdissection for gene expression analysis.

    PubMed

    Bidarimath, Mallikarjun; Edwards, Andrew K; Tayade, Chandrakant

    2015-01-01

    Laser capture microdissection (LCM) is an excellent and perhaps the only platform to isolate homogeneous cell populations from specific microscopic regions of heterogeneous tissue section, under direct microscopic visualization. The basic operations of the LCM system are based on (a) microscopic visualization of phenotypically identified cells of interest, (b) selective adherence of cells to a melting thermolabile film/membrane using a low-energy infrared laser (IR system) or photovolatization of cells within a selected region (UV system), (c) capturing or catapulting of structurally intact cells from a stained tissue section. RNA/DNA or protein can be extracted from the cell or tissue fragments for downstream applications to quantitatively study gene expression. This method can be applied to many downstream analyses including but not limited to quantitative real-time polymerase chain reaction (PCR), microarray, DNA genotyping, RNA transcript profiling, generation of cDNA library, mass spectrometry analysis, and proteomic discovery.The application of LCM is described here to specifically and reliably obtain a homogeneous cell population in order to extract RNA to study microRNA expression by quantitative real-time PCR.

  7. Laser capture microdissection for gene expression analysis.

    PubMed

    Bidarimath, Mallikarjun; Edwards, Andrew K; Tayade, Chandrakant

    2015-01-01

    Laser capture microdissection (LCM) is an excellent and perhaps the only platform to isolate homogeneous cell populations from specific microscopic regions of heterogeneous tissue section, under direct microscopic visualization. The basic operations of the LCM system are based on (a) microscopic visualization of phenotypically identified cells of interest, (b) selective adherence of cells to a melting thermolabile film/membrane using a low-energy infrared laser (IR system) or photovolatization of cells within a selected region (UV system), (c) capturing or catapulting of structurally intact cells from a stained tissue section. RNA/DNA or protein can be extracted from the cell or tissue fragments for downstream applications to quantitatively study gene expression. This method can be applied to many downstream analyses including but not limited to quantitative real-time polymerase chain reaction (PCR), microarray, DNA genotyping, RNA transcript profiling, generation of cDNA library, mass spectrometry analysis, and proteomic discovery.The application of LCM is described here to specifically and reliably obtain a homogeneous cell population in order to extract RNA to study microRNA expression by quantitative real-time PCR. PMID:25308266

  8. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  9. Genetic basis of differential opsin gene expression in cichlid fishes.

    PubMed

    Carleton, K L; Hofmann, C M; Klisz, C; Patel, Z; Chircus, L M; Simenauer, L H; Soodoo, N; Albertson, R C; Ser, J R

    2010-04-01

    Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans-acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis-regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.

  10. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  11. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  12. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  13. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  14. Faster-X evolution of gene expression in Drosophila.

    PubMed

    Meisel, Richard P; Malone, John H; Clark, Andrew G

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA-seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the "faster-X" effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals.

  15. Variation in Gene Expression Patterns in Human Gastric Cancers

    PubMed Central

    Chen, Xin; Leung, Suet Y.; Yuen, Siu T.; Chu, Kent-Man; Ji, Jiafu; Li, Rui; Chan, Annie S.Y.; Law, Simon; Troyanskaya, Olga G.; Wong, John; So, Samuel; Botstein, David; Brown, Patrick O.

    2003-01-01

    Gastric cancer is the world's second most common cause of cancer death. We analyzed gene expression patterns in 90 primary gastric cancers, 14 metastatic gastric cancers, and 22 nonneoplastic gastric tissues, using cDNA microarrays representing ∼30,300 genes. Gastric cancers were distinguished from nonneoplastic gastric tissues by characteristic differences in their gene expression patterns. We found a diversity of gene expression patterns in gastric cancer, reflecting variation in intrinsic properties of tumor and normal cells and variation in the cellular composition of these complex tissues. We identified several genes whose expression levels were significantly correlated with patient survival. The variations in gene expression patterns among cancers in different patients suggest differences in pathogenetic pathways and potential therapeutic strategies. PMID:12925757

  16. Ordered expression of virulence genes in Salmonella enterica serovar typhimurium.

    PubMed

    Papezova, K; Gregorova, D; Jonuschies, J; Rychlik, I

    2007-01-01

    Using transcriptional promoter fusions, we investigated the expression of selected SPI-1 and SPI-2 genes of Salmonella enterica serovar Typhimurium (S. Typhimurium). Promoters of genes related to the invasion of the epithelial cell (hilA, hilC, hilD, invF, sicA, sopA, sopB and sopE2) were active in Luria-Bertani (LB) medium and LB with butyrate but were suppressed by bile salts and in glucose minimal (M9) medium. Genes related to S. Typhimurium intracellular survival (phoP, ssrA, ssaB, ssaG, sifA, sifB and pipB) were characterized by their expression in stationary phase in LB and M9 medium. Activity of phoP and ssrA promoters indicated that these might be expressed inside the gut. SPI-1 genes were expressed on the transition to stationary phase while SPI-2 genes were expressed in stationary phase. Among SPI-1 genes, those with regulatory functions preceded in expression the effector genes and sop genes were expressed in the order of sopA, sopB and sopE2, showing hierarchy in the expression of S. Typhimurium virulence genes.

  17. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  18. Impact of ABCB1 and CYP2B6 Genetic Polymorphisms on Methadone Metabolism, Dose and Treatment Response in Patients with Opioid Addiction: A Systematic Review and Meta-Analysis

    PubMed Central

    Dennis, Brittany B.; Bawor, Monica; Thabane, Lehana; Sohani, Zahra; Samaan, Zainab

    2014-01-01

    Background Genetic variability may influence methadone metabolism, dose requirements, and risk of relapse. Objectives To determine whether the CYP2B6*6 or ABCB1 (rs1045642) polymorphisms are associated with variation in methadone response (plasma concentration, dose, or response to treatment). Methods Two independent reviewers searched Medline, EMBASE, CINAHL, PsycINFO, and Web of Science databases. We included studies that reported methadone plasma concentration, methadone response, or methadone dose in relation to the CYP2B6*6 or ABCB1 polymorphisms. Results We screened 182 articles and extracted 7 articles for inclusion in the meta-analysis. Considerable agreement was observed between the two independent raters on the title (kappa, 0.82), abstract (kappa, 0.43), and full text screening (kappa, 0.43). Trough (R) methadone plasma concentration was significantly higher in CYP2B6*6 homozygous carriers when compared to non-carriers (standardized mean difference [SMD] = 0.53, 95% confidence interval [CI], 0.05–1.00, p = 0.03) with minimal heterogeneity (I2 = 0%). Similarly, trough (S) methadone plasma concentration was higher in homozygous carriers of the *6 haplotype when compared to non-carriers, (SMD = 1.44, 95% CI 0.27–2.61, p = 0.02) however significant heterogeneity was observed (I2 = 69%). Carriers of the CYP2B6*6 haplotype were not found to be significantly different from non-carriers with respect to dose or response to treatment. We found no significant association between the ABCB1 polymorphism and the trough (R), (S) plasma concentrations, methadone dose, or methadone response. Conclusion Although the number of studies included and sample size were modest, this is the first meta analysis to show participants homozygous for the CYP2B6*6 genotype have higher trough (R) and (S) methadone plasma concentrations, suggesting that methadone metabolism is significantly slower in *6 homozygous carriers. PMID:24489693

  19. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.

  20. Gammaherpesvirus Lytic Gene Expression as Characterized by DNA Array

    PubMed Central

    Ahn, Joo Wook; Powell, Kenneth L.; Kellam, Paul; Alber, Dagmar G.

    2002-01-01

    Gammaherpesviruses are associated with a number of diseases including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) constitutes the most amenable animal model for this family of pathogens. However experimental characterization of gammaherpesvirus gene expression, at either the protein or RNA level, lags behind that of other, better-studied alpha- and beta-herpesviruses. We have developed a cDNA array to globally characterize MHV-68 gene expression profiles, thus providing an experimental supplement to a genome that is chiefly annotated by homology. Viral genes started to be transcribed as early as 3 h postinfection (p.i.), and this was followed by a rapid escalation of gene expression that could be seen at 5 h p.i. Individual genes showed their own transcription profiles, and most genes were still being expressed at 18 h p.i. Open reading frames (ORFs) M3 (chemokine-binding protein), 52, and M9 (capsid protein) were particularly noticeable due to their very high levels of expression. Hierarchical cluster analysis of transcription profiles revealed four main groups of genes and allowed functional predictions to be made by comparing expression profiles of uncharacterized genes to those of genes of known function. Each gene was also categorized according to kinetic class by blocking de novo protein synthesis and viral DNA replication in vitro. One gene, ORF 73, was found to be expressed with α-kinetics, 30 genes were found to be expressed with β-kinetics, and 42 genes were found to be expressed with γ-kinetics. This fundamental characterization furthers the development of this model and provides an experimental basis for continued investigation of gammaherpesvirus pathology. PMID:12021358

  1. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    PubMed Central

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  2. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies

    PubMed Central

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0–120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48–120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs

  3. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.

  4. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards

  5. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  6. Assembly and Expression of Shark Ig Genes.

    PubMed

    Hsu, Ellen

    2016-05-01

    Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression. PMID:27183649

  7. Redox regulation of photosynthetic gene expression

    PubMed Central

    Queval, Guillaume; Foyer, Christine H.

    2012-01-01

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability. PMID:23148274

  8. Gene expression profiling of anticancer immune responses.

    PubMed

    Wang, Ena; Panelli, Monica C; Monsurró, Vladia; Marincola, Francesco M

    2004-06-01

    Anticancer immune responses can be enhanced by immune manipulation, however, the biological mechanism responsible for these immune responses remains largely unexplained. Conventional immunology researchers have extensively studied specific interactions between immune and cancer cells, and additional investigations have identified co-factors that may enhance the effectiveness of such interactions. As the molecular understanding of individual interactions increases, it is becoming apparent that no single mechanism can explain the phenomenon of tumor rejection. The contribution of several components of the innate and adaptive immune response is likely to be required for successful tumor rejection. These components may be variably recruited and activated by molecules with immune modulatory properties being produced by tumor and bystander cells within the tumor micro-environment. Such complexity can only be appreciated and solved by high-throughput tools capable of providing a global view of biological processes as they occur. This review will present selected examples of how high-throughput gene expression profiling may contribute to the understanding of anticancer immune responses. As reviews on technological aspects of the genomic analysis of cancer are already available, this review will provide a speculative discussion about their potential usefulness.

  9. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  10. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  11. Microdissection of the gene expression codes driving nephrogenesis

    PubMed Central

    Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  12. Microdissection of the gene expression codes driving nephrogenesis.

    PubMed

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  13. The role of gene expression in ecological speciation

    PubMed Central

    Pavey, Scott A; Collin, Hélène; Nosil, Patrik; Rogers, Sean M

    2010-01-01

    Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied. PMID:20860685

  14. An Exercise to Estimate Differential Gene Expression in Human Cells

    ERIC Educational Resources Information Center

    Chaudhry, M. Ahmad

    2006-01-01

    The expression of genes in cells of various tissue types varies considerably and is correlated with the function of a particular organ. The pattern of gene expression changes in diseased tissues, in response to therapy or infection and exposure to environmental mutagens, chemicals, ultraviolet light, and ionizing radiation. To better understand…

  15. MEPD: medaka expression pattern database, genes and more

    PubMed Central

    Alonso-Barba, Juan I.; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L.

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  16. MEPD: medaka expression pattern database, genes and more.

    PubMed

    Alonso-Barba, Juan I; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  17. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  18. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    PubMed

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  19. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  20. The effect of negative autoregulation on eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  1. Features of Gene Expression of Bacillus pumilus Metalloendopeptidase.

    PubMed

    Rudakova, N L; Sabirova, A R; Balaban, N P; Tikhonova, A O; Sharipova, M R

    2016-08-01

    Features of gene expression of the secreted Bacillus pumilus metalloendopeptidase belonging to the adamalysin/reprolysin family were investigated. In the regulatory region of the gene, we identified hypothetical binding sites for transcription factors CcpA and TnrA. We found that the expression of the metalloendopeptidase gene is controlled by mechanisms of carbon and nitrogen catabolite repression. In experiments involving nitrogen metabolism regulatory protein mutant strains, we found that the control of the metalloendopeptidase gene expression involves proteins of ammonium transport GlnK and AmtB interacting with the TnrA-regulator. PMID:27677556

  2. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  3. Correlation between gene expression and GO semantic similarity.

    PubMed

    Sevilla, José L; Segura, Víctor; Podhorski, Adam; Guruceaga, Elizabeth; Mato, José M; Martínez-Cruz, Luis A; Corrales, Fernando J; Rubio, Angel

    2005-01-01

    This research analyzes some aspects of the relationship between gene expression, gene function, and gene annotation. Many recent studies are implicitly based on the assumption that gene products that are biologically and functionally related would maintain this similarity both in their expression profiles as well as in their Gene Ontology (GO) annotation. We analyze how accurate this assumption proves to be using real publicly available data. We also aim to validate a measure of semantic similarity for GO annotation. We use the Pearson correlation coefficient and its absolute value as a measure of similarity between expression profiles of gene products. We explore a number of semantic similarity measures (Resnik, Jiang, and Lin) and compute the similarity between gene products annotated using the GO. Finally, we compute correlation coefficients to compare gene expression similarity against GO semantic similarity. Our results suggest that the Resnik similarity measure outperforms the others and seems better suited for use in Gene Ontology. We also deduce that there seems to be correlation between semantic similarity in the GO annotation and gene expression for the three GO ontologies. We show that this correlation is negligible up to a certain semantic similarity value; then, for higher similarity values, the relationship trend becomes almost linear. These results can be used to augment the knowledge provided by clustering algorithms and in the development of bioinformatic tools for finding and characterizing gene products.

  4. Distribution of population-averaged observables in stochastic gene expression.

    PubMed

    Bhattacharyya, Bhaswati; Kalay, Ziya

    2014-01-01

    Observation of phenotypic diversity in a population of genetically identical cells is often linked to the stochastic nature of chemical reactions involved in gene regulatory networks. We investigate the distribution of population-averaged gene expression levels as a function of population, or sample, size for several stochastic gene expression models to find out to what extent population-averaged quantities reflect the underlying mechanism of gene expression. We consider three basic gene regulation networks corresponding to transcription with and without gene state switching and translation. Using analytical expressions for the probability generating function of observables and large deviation theory, we calculate the distribution and first two moments of the population-averaged mRNA and protein levels as a function of model parameters, population size, and number of measurements contained in a data set. We validate our results using stochastic simulations also report exact results on the asymptotic properties of population averages which show qualitative differences among different models. PMID:24580265

  5. Fundamental principles of energy consumption for gene expression.

    PubMed

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  6. An Mpeg (macrophage expressed gene) from the Pacific oyster Crassostrea gigas: molecular characterization and gene expression.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2011-03-01

    Mpegs (macrophage expressed genes) encode members of the MACPF (membrane-attack complex/perforin) protein superfamily that play essential roles in innate immunity. In the present study, a homolog of Mpeg1 was identified in Crassostrea gigas and designed Cg-Mpeg1. The complete cDNA of Cg-Mpeg1 is 2781 bp in length, containing an ORF of 2226 bp, which encodes a putative protein of 742 amino acids with a predicted 19-aa hydrophobic signal peptide, an MACPF domain, and a transmembrane domain. Phylogenetic analysis shows that Cg-Mpeg1 is similar to other mollusk MACPF proteins and might originate in an ancient ancestor gene before the divergence of protostomes and deuterostomes. Localization study revealed that Cg-Mpeg1 protein is found primarily in late endosomes. The MACPF domain from Cg-Mpeg1 exhibits significant antibacterial activity to both Gram-negative and positive bacteria. Furthermore, Real-time Quantitative PCR analysis showed that Cg-Mpeg1 is expressed in all tissues detected with highest expression in gill and gonads. Moreover, Mpeg1 mRNA levels are significantly up-regulated following infection with Vibrio alginolyticus. These results highlight that Cg-Mpeg1 plays an essential role in host defense and elimination of pathogens in C. gigas.

  7. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  8. Identifying gene expression modules that define human cell fates.

    PubMed

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E

    2016-05-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results.

  9. Expression of homeobox genes in human erythroleukemia cells.

    PubMed

    Shen, W F; Largman, C; Lowney, P; Hack, F M; Lawrence, H J

    1989-01-01

    Because homeobox-containing genes play a major role in embryogenesis and tissue identity in Drosophila and because similar genes encode tissue-specific transcription factors in mammalian cells, we hypothesized that homeobox genes might plan a role in hematopoietic differentiation and lineage commitment. We therefore surveyed a number of human leukemic cell lines for expression of homeobox-containing genes by Northern gel analysis with probes from the Hox 2 cluster of homeobox genes on chromosome 17. We observed transcripts for Hox 2.1, 2.2, 2.3 and 2.6 in the erythroid line HEL and for Hox 2.3 and 2.6 in the erythroid line K562. Using homeobox-specific probes we confirmed that the transcripts visualized contained the homeodomains for each gene as well as the flanking sequences. The myeloid lines HL60, KG1 and U937 did not express specific transcripts for any of the 4 genes studied. However, all these cell lines demonstrated bands when probed at low stringency with certain Hox 2 probes, indicating the expression of other homologous but as yet unidentified homeobox genes. Expression of Hox 2.3 and 2.6 was seen in some T and B lymphoid cell lines. Induction of differentiation in HEL cells resulted in complex modulation of expression of the Hox 2 genes. We have therefore observed erythroid-restricted expression of certain Hox 2 homeobox containing genes in human erythroid cell lines and modulation of that expression with differentiation, suggesting a role for these genes in the regulation of hematopoiesis. Different homeobox genes appear to be expressed in non-erythroid leukemic cell lines.

  10. Peripheral blood gene expression profiles in COPD subjects.

    PubMed

    Bhattacharya, Soumyaroop; Tyagi, Shivraj; Srisuma, Sorachai; Demeo, Dawn L; Shapiro, Steven D; Bueno, Raphael; Silverman, Edwin K; Reilly, John J; Mariani, Thomas J

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.Tests for gene expression changes that discriminate between COPD cases (FEV1< 70% predicted, FEV1/FVC < 0.7) and controls (FEV1> 80% predicted, FEV1/FVC > 0.7) were performed using Significance Analysis of Microarrays (SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM median FDR = 0 or BADGE p < 0.01) we identified differential expression for 45 known genes. Correlation of gene expression with lung function measurements (FEV1 & FEV1/FVC), using both Pearson and Spearman correlation coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation (p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of patients with COPD and may provide insight into potential mechanisms involved in the disease. PMID:21884629

  11. Transcript length mediates developmental timing of gene expression across Drosophila.

    PubMed

    Artieri, Carlo G; Fraser, Hunter B

    2014-11-01

    The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we tested the impact of intron delay on the Drosophila developmental transcriptome. We find that long zygotically expressed genes show substantial delay in expression relative to their shorter counterparts, which is not observed for maternally deposited transcripts. Patterns of RNA-seq coverage along transcripts show that this delay is consistent with their inability to completely transcribe long transcripts, but not with transcriptional initiation-based regulatory control. We further show that highly expressed zygotic genes maintain compact transcribed regions across the Drosophila phylogeny, allowing conservation of embryonic expression patterns. We propose that the physical constraints of intron delay affect patterns of expression and the evolution of gene structure of a substantial portion of the Drosophila transcriptome.

  12. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  13. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  14. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  15. Differential Bacterial Gene Expression During Experimental Pneumococcal Endophthalmitis

    PubMed Central

    Thornton, Justin A.; Tullos, Nathan A.; Sanders, Melissa E.; Ridout, Granger; Wang, Yong-Dong; Taylor, Sidney D.; McDaniel, Larry S.; Marquart, Mary E.

    2015-01-01

    Streptococcus pneumoniae (pneumococcus) is a potential cause of bacterial endophthalmitis in humans that can result in ocular morbidity. We sought to identify pneumococcal genes that are differentially expressed during growth in the vitreous humor of the eye in an experimental endophthalmitis model. Microarray analysis was used to identify genes that were differentially expressed when pneumococci replicated in the vitreous of rabbit eyes as compared with bacteria grown in vitro in Todd Hewitt medium. Array results were verified by quantitative real-time PCR analysis of representative genes. Select genes potentially playing a role in virulence during endophthalmitis were deleted and mutants were tested for reduced eye pathogenesis and altered adhesion to host cells. Array analysis identified 134 genes that were differentially expressed during endophthalmitis. 112 genes demonstrated increased expression during growth in the eye whereas 22 were down-regulated. Real-time analysis verified increased expression of neuraminidase A (SP1693), neuraminidase B (SP1687), and serine protease (SP1954), and decreased expression of RlrA (SP0461) and choline transporter (SP1861). Mutation of neuraminidases A and B had no major effect on pathogenesis. Loss of SP1954 led to increased adherence to host cells. S. pneumoniae enhances and represses expression of a variety of genes during endophthalmitis. While some of these genes reflect changes in metabolic requirements, some appear to play a role in immune evasion and pathogenesis in the eye. PMID:25791614

  16. Expression profile of genes associated with mastitis in dairy cattle

    PubMed Central

    2009-01-01

    In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis. PMID:21637453

  17. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies

    PubMed Central

    Chapman, Joanne R.; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies. PMID:26555275

  18. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    PubMed

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  19. Gene Expression Atlas at the European Bioinformatics Institute

    PubMed Central

    Kapushesky, Misha; Emam, Ibrahim; Holloway, Ele; Kurnosov, Pavel; Zorin, Andrey; Malone, James; Rustici, Gabriella; Williams, Eleanor; Parkinson, Helen; Brazma, Alvis

    2010-01-01

    The Gene Expression Atlas (http://www.ebi.ac.uk/gxa) is an added-value database providing information about gene expression in different cell types, organism parts, developmental stages, disease states, sample treatments and other biological/experimental conditions. The content of this database derives from curation, re-annotation and statistical analysis of selected data from the ArrayExpress Archive of Functional Genomics Data. A simple interface allows the user to query for differential gene expression either (i) by gene names or attributes such as Gene Ontology terms, or (ii) by biological conditions, e.g. diseases, organism parts or cell types. The gene queries return the conditions where expression has been reported, while condition queries return which genes are reported to be expressed in these conditions. A combination of both query types is possible. The query results are ranked using various statistical measures and by how many independent studies in the database show the particular gene-condition association. Currently, the database contains information about more than 200 000 genes from nine species and almost 4500 biological conditions studied in over 30 000 assays from over 1000 independent studies. PMID:19906730

  20. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  1. Protamine stimulates bone sialoprotein gene expression.

    PubMed

    Zhou, Liming; Matsumura, Hiroyoshi; Mezawa, Masaru; Takai, Hideki; Nakayama, Yohei; Mitarai, Makoto; Ogata, Yorimasa

    2013-03-10

    Protamine is a small, arginine-rich, nuclear protein that replaces histone late in the haploid phase of spermatogenesis and is believed to be essential for sperm head condensation and DNA stabilization. Protamine has many biological activities and has roles in hematopoiesis, immune responses, the nervous system and bone metabolism. Bone sialoprotein (BSP) is a mineralized connective tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. Protamine (71.35 ng/ml) increased BSP mRNA levels by 6h in osteoblast-like ROS 17/2.8 cells. In a transient transfection assay, protamine (71.35 ng/ml) increased luciferase activity of the construct (-116 to +60) in ROS 17/2.8 cells and rat bone marrow stromal cells. Luciferase activities induced by protamine were blocked by protein kinase A, tyrosine kinase and ERK1/2 inhibitors. Introduction of 2 bp mutations to the luciferase constructs showed that the effects of protamine were mediated by a cAMP response element (CRE), a fibroblast growth factor 2 response element (FRE) and a homeodomain protein-binding site (HOX). Gel shift analyses showed that protamine (71.35 ng/ml) increased the nuclear protein binding to CRE, FRE and HOX. CREB, phospho-CREB, c-Fos, c-Jun, JunD and Fra2 antibodies disrupted the formation of CRE-protein complexes. Dlx5, Msx2, Runx2 and Smad1 antibodies disrupted FRE- and HOX-protein complex formations. These studies demonstrate that protamine induces BSP transcription by targeting CRE, FRE and HOX sites in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB, c-Fos, c-Jun, JunD, Fra2, Dlx5, Msx2, Runx2 and Smadl transcription factors appear to be key regulators of protamine effects on BSP transcription.

  2. Skin aging, gene expression and calcium.

    PubMed

    Rinnerthaler, Mark; Streubel, Maria Karolin; Bischof, Johannes; Richter, Klaus

    2015-08-01

    The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging. PMID:25262846

  3. Adaptive gene expression divergence inferred from population genomics.

    PubMed

    Holloway, Alisha K; Lawniczak, Mara K N; Mezey, Jason G; Begun, David J; Jones, Corbin D

    2007-10-01

    Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data--analyzed in a phylogenetic context--with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3' flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5' cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.

  4. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  5. An atlas of gene expression and gene co-regulation in the human retina

    PubMed Central

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-01-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  6. Reference genes for the normalization of gene expression in eucalyptus species.

    PubMed

    de Oliveira, Luisa Abruzzi; Breton, Michèle Claire; Bastolla, Fernanda Macedo; Camargo, Sandro da Silva; Margis, Rogério; Frazzon, Jeverson; Pasquali, Giancarlo

    2012-02-01

    Gene expression analysis is increasingly important in biological research, with reverse transcription-quantitative PCR (RT-qPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Considering the increased sensitivity, reproducibility and large dynamic range of this method, the requirements for proper internal reference gene(s) for relative expression normalization have become much more stringent. Given the increasing interest in the functional genomics of Eucalyptus, we sought to identify and experimentally verify suitable reference genes for the normalization of gene expression associated with the flower, leaf and xylem of six species of the genus. We selected 50 genes that exhibited the least variation in microarrays of E. grandis leaves and xylem, and E. globulus xylem. We further performed the experimental analysis using RT-qPCR for six Eucalyptus species and three different organs/tissues. Employing algorithms geNorm and NormFinder, we assessed the gene expression stability of eight candidate new reference genes. Classic housekeeping genes were also included in the analysis. The stability profiles of candidate genes were in very good agreement. PCR results proved that the expression of novel Eucons04, Eucons08 and Eucons21 genes was the most stable in all Eucalyptus organs/tissues and species studied. We showed that the combination of these genes as references when measuring the expression of a test gene results in more reliable patterns of expression than traditional housekeeping genes. Hence, novel Eucons04, Eucons08 and Eucons21 genes are the best suitable references for the normalization of expression studies in the Eucalyptus genus. PMID:22197885

  7. Identification and validation of reference genes for gene expression studies in water buffalo.

    PubMed

    Terzi, V; Morcia, C; Spini, M; Tudisco, R; Cutrignelli, M I; Infascelli, F; Stanca, A M; Faccioli, P

    2010-06-01

    In gene expression analysis, a key step to obtain informative data from reverse transcription quantitative PCR (RT qPCR) assay is normalization, that is usually achieved by ratio to correct the abundance of the gene of interest against that of an endogenous reference gene. The finding of such reference genes, ideally expressed in a stable way in multiple tissue samples and in different experimental conditions, is a non-trivial problem. In this work, a set of genes potentially useful as reference for gene expression studies in water buffalo has been identified and evaluated. In the first step, a publicly available Bos taurus expressed sequence tags database has been downloaded from the TIGR Gene Index and mined by some simple frequency algorithms to find out which tentative consensuses are present in a remarkable number of different cDNA libraries and, consequently, are more suitable to be included in a starter set of candidate reference genes. To validate the potential of such candidates for their use as normalizers in buffalo gene expression analysis, an RT qPCR analysis has been carried out, in which the expression stability of these genes has been evaluated on a panel of buffalo tissues and organs. Our results indicate that ribosomal proteins L4 and L5 and Gek protein encoding genes can be useful as normalizers to compare gene expression levels across tissues and organs in buffalo.

  8. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  9. Eucalypt MADS-Box Genes Expressed in Developing Flowers

    PubMed Central

    Southerton, Simon G.; Marshall, Heidi; Mouradov, Aidyn; Teasdale, Robert D.

    1998-01-01

    Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed. PMID:9765522

  10. Expression of HOX C homeobox genes in lymphoid cells.

    PubMed

    Lawrence, H J; Stage, K M; Mathews, C H; Detmer, K; Scibienski, R; MacKenzie, M; Migliaccio, E; Boncinelli, E; Largman, C

    1993-08-01

    The class I homeobox genes located in four clusters in mammalian genomes (HOX A, HOX B, HOX C, and HOX D) appear to play a major role in fetal development. Previous surveys of homeobox gene expression in human leukemic cell lines have shown that certain HOX A genes are expressed only in myeloid cell lines, whereas HOX B gene expression is largely restricted to cells with erythroid potential. We now report a survey of the expression patterns of 9 homeobox genes from the HOX C locus in a panel of 24 human and 7 murine leukemic cell lines. The most striking observation is the lymphoid-specific pattern of expression of HOX C4, located at the 3' end of the locus. A major transcript of 1.9 kilobases is observed in both T-cell and B-cell lines. HOX C4 expression is also detected in normal human marrow and peripheral blood lymphocytes, but not in mature granulocytes or monocytes. HOX C8 is also expressed in human lymphoid cells but is expressed in other blood cell types as well. However, the HOX C8 transcript pattern is lineage specific. These data, in conjunction with earlier findings, suggest that homeobox gene expression influences lineage determination during hematopoiesis.

  11. Organization, structure and expression of murine interferon alpha genes.

    PubMed

    Zwarthoff, E C; Mooren, A T; Trapman, J

    1985-02-11

    Using a human interferon-alpha probe we have isolated recombinant phages containing murine interferon-alpha (Mu IFN-alpha) genes from a genomic library. One of these phages contained two complete Mu IFN-alpha genes and part of a third gene. The insert of a second phage held two IFN genes. This indicates that the Mu IFN-alpha genes are clustered in the genome as is the case for the analogous human genes. The nucleotide sequences of these 5 genes were determined. They show that the genes are all different, albeit highly homologous. The deduced amino acid sequences show that four of the five genes contain a putative glycosylation site. Three genes were transiently expressed in COS cells and they gave rise to protein products showing antiviral properties. The expression of the five Mu IFN-alpha genes and the Mu IFN-beta gene was studied in virus-induced mouse L cells. The individual mRNAs were visualized in a nuclease S1 experiment, using a specific probe for each gene. In RNA preparations from induced cells mRNAs for each of the five alpha genes and the beta gene were present. However, substantial differences in the amounts of the individual mRNAs were observed.

  12. Evaluation of Quantitative PCR Reference Genes for Gene Expression Studies in Tribolium castaneum After Fungal Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate gene expression in Tribolium castaneum exposed to Beauveria bassiana, reference genes for qPCR were evaluated. Of these, the widely used genes for ß-actin, a-tubulin, and RPS6 were not stable. The most stable were ribosomal protein genes, RPS3, RPS18, and RPL13a. Syntaxin1, syntaxin6...

  13. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  14. IDENTIFICATION OF BIOLOGICALLY RELEVANT GENES USING A DATABASE OF RAT LIVER AND KIDNEY BASELINE GENE EXPRESSION

    EPA Science Inventory

    Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...

  15. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  16. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  17. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  18. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  19. Chromatin mechanisms in the developmental control of imprinted gene expression.

    PubMed

    Sanli, Ildem; Feil, Robert

    2015-10-01

    Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  20. Microarray Analysis of Pneumococcal Gene Expression during Invasive Disease

    PubMed Central

    Orihuela, Carlos J.; Radin, Jana N.; Sublett, Jack E.; Gao, Geli; Kaushal, Deepak; Tuomanen, Elaine I.

    2004-01-01

    Streptococcus pneumoniae is a leading cause of invasive bacterial disease. This is the first study to examine the expression of S. pneumoniae genes in vivo by using whole-genome microarrays available from The Institute for Genomic Research. Total RNA was collected from pneumococci isolated from infected blood, infected cerebrospinal fluid, and bacteria attached to a pharyngeal epithelial cell line in vitro. Microarray analysis of pneumococcal genes expressed in these models identified body site-specific patterns of expression for virulence factors, transporters, transcription factors, translation-associated proteins, metabolism, and genes with unknown function. Contributions to virulence predicted for several unknown genes with enhanced expression in vivo were confirmed by insertion duplication mutagenesis and challenge of mice with the mutants. Finally, we cross-referenced our results with previous studies that used signature-tagged mutagenesis and differential fluorescence induction to identify genes that are potentially required by a broad range of pneumococcal strains for invasive disease. PMID:15385455

  1. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  2. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  3. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  4. Rapid evolution of male-biased gene expression in Drosophila.

    PubMed

    Meiklejohn, Colin D; Parsch, John; Ranz, José M; Hartl, Daniel L

    2003-08-19

    A number of genes associated with sexual traits and reproduction evolve at the sequence level faster than the majority of genes coding for non-sex-related traits. Whole genome analyses allow this observation to be extended beyond the limited set of genes that have been studied thus far. We use cDNA microarrays to demonstrate that this pattern holds in Drosophila for the phenotype of gene expression as well, but in one sex only. Genes that are male-biased in their expression show more variation in relative expression levels between conspecific populations and two closely related species than do female-biased genes or genes with sexually monomorphic expression patterns. Additionally, elevated ratios of interspecific expression divergence to intraspecific expression variation among male-biased genes suggest that differences in rates of evolution may be due in part to natural selection. This finding has implications for our understanding of the importance of sexual dimorphism for speciation and rates of phenotypic evolution.

  5. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  6. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  7. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  8. Adult mouse brain gene expression patterns bear an embryologic imprint.

    PubMed

    Zapala, Matthew A; Hovatta, Iiris; Ellison, Julie A; Wodicka, Lisa; Del Rio, Jo A; Tennant, Richard; Tynan, Wendy; Broide, Ron S; Helton, Rob; Stoveken, Barbara S; Winrow, Christopher; Lockhart, Daniel J; Reilly, John F; Young, Warren G; Bloom, Floyd E; Lockhart, David J; Barlow, Carrolee

    2005-07-19

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org).

  9. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  10. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses

    PubMed Central

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-01-01

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses. PMID:25391499

  11. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses.

    PubMed

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-01-01

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses. PMID:25391499

  12. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses.

    PubMed

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-11-13

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses.

  13. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  14. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  15. Anterior-posterior regionalized gene expression in the Ciona notochord

    PubMed Central

    Veeman, Michael

    2014-01-01

    Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133

  16. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation.

    PubMed

    Liu, Chenlin; Wu, Guangting; Huang, Xiaohang; Liu, Shenghao; Cong, Bailin

    2012-05-01

    Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.

  17. Gene Expression Profiling of Breast Cancer Brain Metastasis

    PubMed Central

    Lee, Ji Yun; Park, Kyunghee; Lee, Eunjin; Ahn, TaeJin; Jung, Hae Hyun; Lim, Sung Hee; Hong, Mineui; Do, In-Gu; Cho, Eun Yoon; Kim, Duk-Hwan; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    The biology of breast cancer brain metastasis (BCBM) is poorly understood. We aimed to explore genes that are implicated in the process of brain metastasis of primary breast cancer (BC). NanoString nCounter Analysis covering 252 target genes was used for comparison of gene expression levels between 20 primary BCs that relapsed to brain and 41 BCBM samples. PAM50-based intrinsic subtypes such as HER2-enriched and basal-like were clearly over-represented in BCBM. A panel of 22 genes was found to be significantly differentially expressed between primary BC and BCBM. Five of these genes, CXCL12, MMP2, MMP11, VCAM1, and MME, which have previously been associated with tumor progression, angiogenesis, and metastasis, clearly discriminated between primary BC and BCBM. Notably, the five genes were significantly upregulated in primary BC compared to BCBM. Conversely, SOX2 and OLIG2 genes were upregulated in BCBM. These genes may participate in metastatic colonization but not in primary tumor development. Among patient-matched paired samples (n = 17), a PAM50 molecular subtype conversion was observed in eight cases (47.1%), with a trend toward unfavorable subtypes in patients with the distinct gene expression. Our findings, although not conclusive, reveal differentially expressed genes that might mediate the brain metastasis process. PMID:27340107

  18. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  19. Differential network analysis from cross-platform gene expression data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes.

  20. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  1. Real-Time PCR for Gene Expression Quantification in Asthma.

    PubMed

    Segundo-Val, Ignacio San; García-Solaesa, Virginia; García-Sánchez, Asunción

    2016-01-01

    The quantitative real-time PCR (qPCR) has become the reference technique for studying gene expression in recent years. The application of qPCR to the study of asthma provides very useful information regarding the gene expression mechanisms. The quantification of RNA from cDNA can be performed by using fluorescent dyes or specific sequence probes. Here, we describe the protocol to quantify gene expression levels using SYBR Green as fluorescent dye. The protocol starts with the RNA extraction, followed by reverse transcription to obtain cDNA, quantification and finally data analysis.

  2. Real-Time PCR for Gene Expression Quantification in Asthma.

    PubMed

    Segundo-Val, Ignacio San; García-Solaesa, Virginia; García-Sánchez, Asunción

    2016-01-01

    The quantitative real-time PCR (qPCR) has become the reference technique for studying gene expression in recent years. The application of qPCR to the study of asthma provides very useful information regarding the gene expression mechanisms. The quantification of RNA from cDNA can be performed by using fluorescent dyes or specific sequence probes. Here, we describe the protocol to quantify gene expression levels using SYBR Green as fluorescent dye. The protocol starts with the RNA extraction, followed by reverse transcription to obtain cDNA, quantification and finally data analysis. PMID:27300530

  3. Membrane channel gene expression in human costal and articular chondrocytes.

    PubMed

    Asmar, A; Barrett-Jolley, R; Werner, A; Kelly, R; Stacey, M

    2016-04-01

    Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca(2+) activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  4. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  5. Control of alphavirus-based gene expression using engineered riboswitches.

    PubMed

    Bell, Christie L; Yu, Dong; Smolke, Christina D; Geall, Andrew J; Beard, Clayton W; Mason, Peter W

    2015-09-01

    Alphavirus-based replicons are a promising nucleic acid vaccine platform characterized by robust gene expression and immune responses. To further explore their use in vaccination, replicons were engineered to allow conditional control over their gene expression. Riboswitches, comprising a ribozyme actuator and RNA aptamer sensor, were engineered into the replicon 3' UTR. Binding of ligand to aptamer modulates ribozyme activity and, therefore, gene expression. Expression from DNA-launched and VRP-packaged replicons containing riboswitches was successfully regulated, achieving a 47-fold change in expression and modulation of the resulting type I interferon response. Moreover, we developed a novel control architecture where riboswitches were integrated into the 3' and 5' UTR of the subgenomic RNA region of the TC-83 virus, leading to an 1160-fold regulation of viral replication. Our studies demonstrate that the use of riboswitches for control of RNA replicon expression and viral replication holds promise for development of novel and safer vaccination strategies.

  6. Control of alphavirus-based gene expression using engineered riboswitches.

    PubMed

    Bell, Christie L; Yu, Dong; Smolke, Christina D; Geall, Andrew J; Beard, Clayton W; Mason, Peter W

    2015-09-01

    Alphavirus-based replicons are a promising nucleic acid vaccine platform characterized by robust gene expression and immune responses. To further explore their use in vaccination, replicons were engineered to allow conditional control over their gene expression. Riboswitches, comprising a ribozyme actuator and RNA aptamer sensor, were engineered into the replicon 3' UTR. Binding of ligand to aptamer modulates ribozyme activity and, therefore, gene expression. Expression from DNA-launched and VRP-packaged replicons containing riboswitches was successfully regulated, achieving a 47-fold change in expression and modulation of the resulting type I interferon response. Moreover, we developed a novel control architecture where riboswitches were integrated into the 3' and 5' UTR of the subgenomic RNA region of the TC-83 virus, leading to an 1160-fold regulation of viral replication. Our studies demonstrate that the use of riboswitches for control of RNA replicon expression and viral replication holds promise for development of novel and safer vaccination strategies. PMID:26005949

  7. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    PubMed Central

    You, Na; Mou, Peng; Qiu, Ting; Kou, Qiang; Zhu, Huaijin; Chen, Yuexi; Wang, Xueqin

    2012-01-01

    Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration. PMID:23365528

  8. The Role of Nuclear Bodies in Gene Expression and Disease

    PubMed Central

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  9. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  10. Integration of biological networks and gene expression data using Cytoscape.

    PubMed

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

  11. Structure and expression of canary myc family genes.

    PubMed Central

    Collum, R G; Clayton, D F; Alt, F W

    1991-01-01

    We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons. Images PMID:1996121

  12. Genetic alteration and gene expression modulation during cancer progression

    PubMed Central

    Garnis, Cathie; Buys, Timon PH; Lam, Wan L

    2004-01-01

    Cancer progresses through a series of histopathological stages. Progression is thought to be driven by the accumulation of genetic alterations and consequently gene expression pattern changes. The identification of genes and pathways involved will not only enhance our understanding of the biology of this process, it will also provide new targets for early diagnosis and facilitate treatment design. Genomic approaches have proven to be effective in detecting chromosomal alterations and identifying genes disrupted in cancer. Gene expression profiling has led to the subclassification of tumors. In this article, we will describe the current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the genes and pathways implicated in the progression of preneoplastic and early stage cancer. PMID:15035667

  13. A model