Science.gov

Sample records for abcb1-mediated doxorubicin-resistant plhc-1

  1. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Huang, Bao-Yuan; Zeng, Yu; Li, Ying-Jie; Huang, Xiao-Jun; Hu, Nan; Yao, Nan; Chen, Min-Feng; Yang, Zai-Gang; Chen, Zhe-Sheng; Zhang, Dong-Mei; Zeng, Chang-Qing

    2017-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents. PMID:28534954

  2. Tangeretin, a citrus pentamethoxyflavone, antagonizes ABCB1-mediated multidrug resistance by inhibiting its transport function.

    PubMed

    Feng, Sen-Ling; Yuan, Zhong-Wen; Yao, Xiao-Jun; Ma, Wen-Zhe; Liu, Liang; Liu, Zhong-Qiu; Xie, Ying

    2016-08-01

    Multidrug resistance (MDR) and tumor metastasis are the main causes of chemotherapeutic treatment failure and mortality in cancer patients. In this study, at achievable nontoxic plasma concentrations, citrus flavonoid tangeretin has been shown to reverse ABCB1-mediated cancer resistance to a variety of chemotherapeutic agents effectively. Co-treatment of cells with tangeretin and paclitaxel activated apoptosis as well as arrested cell cycle at G2/M-phase. Tangeretin profoundly inhibited the ABCB1 transporter activity since it significantly increased the intracellular accumulation of doxorubicin, and flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the expression of ABCB1. Moreover, it stimulated the ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. The molecular docking results indicated a favorable binding of tangeretin with the transmemberane region site 1 of homology modeled ABCB1 transporter. The overall results demonstrated that tangeretin could sensitize ABCB1-overexpressing cancer cells to chemotherapeutical agents by directly inhibiting ABCB1 transporter function, which encouraged further animal and clinical studies in the treatment of resistant cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells.

    PubMed

    Zhang, Xiao-Yu; Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Zeng, Leli; Xu, Megan; Wang, Xiu-Qi; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-09-15

    In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.

  4. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  5. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  6. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    SciTech Connect

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M.

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD formore » 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.« less

  7. The combined use of the PLHC-1 cell line and the recombinant yeast assay to assess the environmental quality of estuarine and coastal sediments.

    PubMed

    Schnell, Sabine; Olivares, Alba; Piña, Benjamin; Echavarri-Erasun, Beatriz; Lacorte, Silvia; Porte, Cinta

    2013-12-15

    Sediment contamination poses a potential risk for both ecosystems and human health. Risk assessment is troublesome as sediments contain complex mixtures of toxicants, and traditional chemical analyses can neither provide information about potential hazards to organisms nor identify and measure all present contaminants. This work combines the use of the PLHC-1 cell line and the recombinant yeast assay (RYA) to assess the environmental quality of estuarine and coastal sediments. The application of multiple endpoints (cytotoxicity, generation of oxidative stress, presence of CYP1A inducing agents, micronucleus formation and estrogenicity) revealed that the organic extracts of those sediments affected by industrial activities or collected near harbours and untreated urban discharges showed significant cytotoxicity, micronuclei and CYP1A induction. The study highlights the usefulness of the applied bioassays to identify those sediments that could pose risk to aquatic organisms and that require further action to improve their environmental quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Forced Expression of Heat Shock Protein 27 (Hsp27) Reverses P-Glycoprotein (ABCB1)-mediated Drug Efflux and MDR1 Gene Expression in Adriamycin-resistant Human Breast Cancer Cells*

    PubMed Central

    Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J.; Ilangovan, Govindasamy

    2011-01-01

    Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G2/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846

  9. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells.

    PubMed

    Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy

    2011-09-23

    Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.

  10. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1.

    PubMed

    Lammel, Tobias; Boisseaux, Paul; Navas, José M

    2015-09-01

    Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard. © 2014 Wiley Periodicals, Inc.

  11. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase,more » and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in

  12. Involvement of HIF-1α activation in the doxorubicin resistance of human osteosarcoma cells.

    PubMed

    Roncuzzi, Laura; Pancotti, Fabia; Baldini, Nicola

    2014-07-01

    Osteosarcoma is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, survival outcomes remain unsatisfactory, particularly in patients with metastatic and/or recurrent disease. Unfortunately, treatment failure is commonly due to the development of chemoresistance, for which the underlying molecular mechanisms remain unclear. The aim of the present study was to investigate the role of hypoxia-inducible factor 1α (HIF‑1α) and its signalling pathways as mediators of drug-resistance in human osteosarcoma. Toward this aim, we established two osteosarcoma cell lines selected for resistance to doxorubicin, a drug of choice in the treatment of this tumour. Our results showed that the multidrug resistance (MDR) phenotype was also mediated by HIF-1α, the most important regulator of cell adaptation to hypoxia. Our data showed that this transcription factor promoted the outward transport of intracellular doxorubicin by activating the P-glycoprotein (P-gp) expression in osteosarcoma cells maintained in normoxic conditions. In addition, it hindered doxorubicin-induced apoptosis by regulating the expression of c-Myc and p21. Finally, we observed that the doxorubicin-resistant cells maintained for 2 months of continuous culture in a drug-free medium, lost their drug-resistance and this effect was associated with the absence of HIF-1α expression. The emerging role of HIF-1α in osteosarcoma biology indicates its use as a valuable therapeutic target.

  13. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells

    PubMed Central

    Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong

    2016-01-01

    Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542

  14. Anti-cancer effect of oncolytic adenovirus-armed shRNA targeting MYCN gene on doxorubicin-resistant neuroblastoma cells.

    PubMed

    Li, Yuan; Zhuo, Baobiao; Yin, Yiyu; Han, Tao; Li, Shixian; Li, Zhengwei; Wang, Jian

    2017-09-09

    Chemotherapy is one of the few effective choices for patients with neuroblastoma. However, the development of muti-drug resistance (MDR) to chemotherapy is a major obstacle to the effective treatment of advanced or recurrent neuroblastoma. The muti-drug resistance-associated protein (MRP), which encodes a transmembrane glycoprotein, is a key regulator of MDR. The expression of MRP is a close correlation with MYCN oncogene in neuroblastoma. We have recently shown ZD55-shMYCN (oncolytic virus armed with shRNA against MYCN) can down-regulate MYCN to inhibit tumor cells proliferation and induce apoptosis in neuroblastoma. Here we further report ZD55-shMYCN re-sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and inhibited cell migration), and reduced the in vivo growth rate of neuroblastoma xenografts by down-regulation of MRP expression. Sequential therapy with doxorubicin did not affect the replication of ZD55-shMYCN in doxorubicin-resistant neuroblastoma cells, but decreased the expression of Bcl-2, Bcl-X L , MMP-1. Thus, this synergistic effect of ZD55-shMYCN in combination with doxorubicin provides a novel therapy strategy for doxorubicin-resistant neuroblastoma, and is a promising approach for further clinical development. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells

    PubMed Central

    Takwi, Apana A; Wang, Yue-Ming; Wu, Jing; Michaelis, Martin; Cinatl, Jindrich; Chen, Taosheng

    2013-01-01

    Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is down-regulated in resistant cells. miR-137 over-expression resulted in down-regulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 down-regulates CAR expression and CAR down-regulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance. PMID

  16. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-05

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    SciTech Connect

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ► Systemic corticosteroids are weak P-gp inducers. ► Mineralocorticoids not affected by P-gp mediated efflux.« less

  18. Furanodiene Induces Extrinsic and Intrinsic Apoptosis in Doxorubicin-Resistant MCF-7 Breast Cancer Cells via NF-κB-Independent Mechanism.

    PubMed

    Zhong, Zhang-Feng; Yu, Hai-Bing; Wang, Chun-Ming; Qiang, Wen-An; Wang, Sheng-Peng; Zhang, Jin-Ming; Yu, Hua; Cui, Liao; Wu, Tie; Li, De-Qiang; Wang, Yi-Tao

    2017-01-01

    Chemotherapy is used as a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur when chemotherapy is used clinically, resulting in poor prognosis and recurrence. Currently, Chinese medicine may provide insight into the design of new therapies to overcome chemo-resistance. Furanodiene, as a heat-sensitive sesquiterpene, is isolated from the essential oil of Rhizoma Curcumae . Even though mounting evidence claiming that furanodiene possesses anti-cancer activities in various types of cancers, the underlying mechanisms against chemo-resistant cancer are not fully clear. Our study found that furanodiene could display anti-cancer effects by inhibiting cell viability, inducing cell cytotoxicity, and suppressing cell proliferation in doxorubicin-resistant MCF-7 breast cancer cells. Furthermore, furanodiene preferentially causes apoptosis by interfering with intrinsic/extrinsic-dependent and NF-κB-independent pathways in doxorubicin-resistant MCF-7 cells. These observations also prompt that furanodiene may be developed as a promising natural product for multidrug-resistant cancer therapy in the future.

  19. Epstein-Barr virus EBNA2 directs doxorubicin resistance of B cell lymphoma through CCL3 and CCL4-mediated activation of NF-κB and Btk.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Hong, Jung Yong; Ryu, Kung Ju; Kim, Seok Jin; Park, Chaehwa

    2017-01-17

    Epstein-Barr virus (EBV)-encoded nuclear antigen, EBNA2, expressed in EBV-infected B lymphocytes is critical for lymphoblastoid cell growth. Microarray profiling and cytokine array screening revealed that EBNA2 is associated with upregulation of the chemokines CCL3 and CCL4 in lymphoma cells. Depletion or inactivation of CCL3 or CCL4 sensitized DLBCL cells to doxorubicin. Our results indicate that EBV influences cell survival via an autocrine mechanism whereby EBNA2 increases CCL3 and CCL4, which in turn activate the Btk and NF-κB pathways, contributing to doxorubicin resistance of B lymphoma cells. Western blot data further confirmed that CCL3 and CCL4 direct activation of Btk and NF-κB. Based on these findings, we propose that a pathway involving EBNA2/Btk/NF-κB/CCL3/CCL4 plays a key role in doxorubicin resistance, and therefore, inhibition of specific components of this pathway may sensitize lymphoma cells to doxorubicin. Evaluation of the relationship between CCL3 expression and EBV infection revealed high CCL3 levels in EBV-positive patients. Our data collectively suggest that doxorubicin treatment for EBNA2-positive DLBCL cells may be effectively complemented with a NF-κB or Btk inhibitor. Moreover, evaluation of the CCL3 and CCL4 levels may be helpful for selecting DLBCL patients likely to benefit from doxorubicin treatment in combination with the velcade or ibrutinib.

  20. Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells.

    PubMed

    Wang, Tian-Xiao; Yang, Xiao-Hong

    2008-05-01

    This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to determine the expression level of mdrl gene and P-gp in MCF-7/DOX cells to elucidate resistant character of MCF-7/DOX cells. The activity of isotetrandine to enhance doxorubicin cytotoxicity was tested using MTT (3-(4, 5-dimethyhthiazol)-2,5 -diphenyltetrazolium bromide) assay and was evaluated by the reversal fold (RF) values. Intracellular accumulation of doxorubicin was assessed by the determination of doxorubicin-associated fluorescence intensity. Effect of isotetrandrine on the expression level of P-gp in MCF-7/DOX cells was then determined by immunity histochemistry assay. The ability of isotetrandrine to inhibit P-gp function was evaluated by detecting the accumulation and efflux of rhodamine 123 (Rh123) with flow cytometry (FCM). Verapamil was employed as a comparative agent in whole experiment. The results indicated that MCF-7/DOX cells had phenotype of MDR and that the positive expression of P-gp was their resistant character. 10 microg x mL(-1) isotetrandrine could distinctly enhance cytotoxicity of DOX in MCF-7/DOX cells and reversal fold (RF) was significantly higher than that of verapamil (P < 0.05), but it hardly affected cytotoxicity of DOX in MCF-7 cells and the expression level of P-gp in MCF-7/DOX cells. The ability of isotetrandrine to inhibit P-gp function was reversible, because incubation of MCF-7/DOX cells with isotetrandrine caused a marked increase in uptake and a notable decrease in efflux of Rh123 and a marked increase of intracellular DOX concentrations. In conclusion, isotetrandrine exhibited potent effect on the reversal of P-gp-mediated MDR in vitro, suggesting that it might become a candidate of effective MDR reversing agent in cancer

  1. The combination of temozolomide-irinotecan regresses a doxorubicin-resistant patient-derived orthotopic xenograft (PDOX) nude-mouse model of recurrent Ewing's sarcoma with a FUS-ERG fusion and CDKN2A deletion: Direction for third-line patient therapy.

    PubMed

    Miyake, Kentaro; Murakami, Takashi; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Miyake, Masuyo; Li, Yunfeng; Nelson, Scott D; Dry, Sarah M; Bouvet, Michael; Elliott, Irmina A; Russell, Tara A; Singh, Arun S; Eckardt, Mark A; Hiroshima, Yukihiko; Momiyama, Masashi; Matsuyama, Ryusei; Chishima, Takashi; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2017-11-28

    The aim of the present study was to determine the usefulness of a patient-derived orthotopic xenograft (PDOX) nude-mouse model of a doxorubicin-resistant metastatic Ewing's sarcoma, with a unique combination of a FUS-ERG fusion and CDKN2A deletion, to identify effective drugs for third-line chemotherapy of the patient. Our previous study showed that cyclin-dependent kinase 4/6 (CDK4/6) and insulin-like growth factor-1 receptor (IGF-1R) inhibitors were effective on the Ewing's sarcoma PDOX, but not doxorubicin, similar to the patient's resistance to doxorubicin. The results of the previous PDOX study were successfully used for second-line therapy of the patiend. In the present study, the PDOX mice established with the Ewing's sarcoma in the right chest wall were randomized into 5 groups when the tumor volume reached 60 mm 3 : untreated control; gemcitabine combined with docetaxel (intraperitoneal [i.p.] injection, weekly, for 2 weeks); irinotecan combined with temozolomide (irinotecan: i.p. injection; temozolomide: oral administration, daily, for 2 weeks); pazopanib (oral administration, daily, for 2 weeks); yondelis (intravenous injection, weekly, for 2 weeks). All mice were sacrificed on day 15. Body weight and tumor volume were assessed 2 times per week. Tumor weight was measured after sacrifice. Irinotecan combined with temozolomide was the most effective regimen compared to the untreated control group (p=0.022). Gemcitabine combined with docetaxel was also effective (p=0.026). Pazopanib and yondelis did not have significant efficacy compared to the untreated control (p=0.130, p=0.818). These results could be obtained within two months after the physician's request and were used for third-line therapy of the patient.

  2. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells.

    PubMed

    Saint-Pol, Julien; Candela, Pietra; Boucau, Marie-Christine; Fenart, Laurence; Gosselet, Fabien

    2013-06-23

    It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Organic Isothiocyanates: Dietary Modulators of Doxorubicin Resistance in Breast Cancer

    DTIC Science & Technology

    2004-06-01

    al. (30) have dem- isothiocyanates: chemistry and mechanisms. Cancer Res. 54: onstrated the inhibition of renal clearance of colchicine by 1976s-1981s... Chemistry , Uni- possibility of flip-flop kinetics (absorption being slower versity at Buffalo) for his assistance in internal standard than elimination) in...Anticarcinogenic activities of organic sult fi’om interindividual variability and limited subject isothiocyanates: chemistry and mechanisms, Cancer Res. 54 (1994

  4. GLUCOCORTICOID-XENOBIOTIC INTERACTIONS: DEXAMETHASONE POTENTIATION OF CYTOCHROME P4501A INDUCTION BY BETA-NAPHTHOFLAVONE IN A FISH HEPATOMA CELL LINE (PLHC-1). (R823889)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. CYTOCHROME P4501A INDUCTION AND INHIBITION BY 3,3',4,4'-TETRACHLOROBIPHENYL IN AN AH RECEPTOR-CONTAINING FISH HEPATOMA CELL LINE (PLHC-1). (R823881)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    PubMed

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  7. Abnormally banded chromosomal regions in doxorubicin-resistant B16-BL6 murine melanoma cells.

    PubMed

    Slovak, M L; Hoeltge, G A; Ganapathi, R

    1986-08-01

    B16-BL6 murine melanoma cells were selected for cytogenetic evaluation during the stepwise development of increasing resistance in vitro to the antitumor antibiotic, doxorubicin (DOX). Karyotypic studies demonstrated extensive heteroploidy with both numerical and structural abnormalities which were not present in the parental DOX-sensitive B16-BL6 cells. Trypsin-Giemsa banding revealed the presence of several marker chromosomes containing abnormally banding regions (ABRs) in the 44-fold B16-BL6 DOX-resistant subline. These ABRs appeared to be more homogeneously staining at the higher DOX concentrations. Length measurements (ABR index) in seven banded metaphases indicated a direct correlation with increasing DOX concentration. When the DOX-resistant cells were grown in drug-free medium for 1 yr, the drug-resistant phenotype gradually declined in parallel with the level of resistance and the ABR index. DOX-induced cytogenetic damage examined by sister chromatid exchange methodology in parental B16-BL6 cells indicated a linear sister chromatid exchange:DOX dose-response relationship. However, after continuous treatment of parental B16-BL6 cells with DOX (0.01 microgram/ml) for 30 days, sister chromatid exchange scores were found to return to base-line values. The B16-BL6 resistant cells demonstrated a cross-resistant phenotype with N-trifluoroacetyladriamycin-14-valerate, actinomycin D, and the Vinca alkaloids but not with 1-beta-D-arabinofuranosylcytosine. The results suggest that ABR-containing chromosomes in DOX-resistant sublines may represent cytogenetic alterations of specific amplified genes involved in the expression of DOX resistance. Further studies are required to identify and define the possible gene products and to correlate their relationship to the cytotoxic action of doxorubicin.

  8. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells

    SciTech Connect

    Yu, S.-T.; National Center of Excellence for Clinical Trial and Research, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Chen, T.-M.

    2007-06-22

    Development of agents to overcome multidrug resistance (MDR) is important in cancer chemotherapy. Up to date, few chemicals have been reported to down-regulate MDR1 gene expression. We evaluated the effect of tryptanthrin on P-glycoprotein (P-gp)-mediated MDR in a breast cancer cell line MCF-7. Tryptanthrin could depress overexpression of MDR1 gene. We observed reduction of P-gp protein in parallel with decreases in mRNA in MCF-7/adr cells treated with tryptanthrin. Tryptanthrin suppressed the activity of MDR1 gene promoter. Tryptanthrin also enhanced interaction of the nuclear proteins with the negatively regulatory CAAT region of MDR1 gene promoter in MCF-7/adr. It might result inmore » suppression of MDR1 gene. In addition, tryptanthrin decreased the amount of mutant p53 protein with decreasing mutant p53 protein stability. It might contribute to negative regulation of MDR1 gene. In conclusion, tryptanthrin exhibited MDR reversing effect by down-regulation of MDR1 gene and might be a new adjuvant agent for chemotherapy.« less

  9. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    PubMed

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reversal of Doxorubicin Resistance in Human Breast Adenocarcinoma (MCF-7) Cells by Liposomal Monensin

    DTIC Science & Technology

    2005-06-01

    Qimaging, Burnaby, BC , Canada). Statistical analysis Assessment of apoptosis in MCF-7/dox cells One-way analysis of variance followed by Tukey’s...labelling of P-gp by azidopine. Wood etal classes of drug. we observed that our MCF-7/dox cells (1996) proposed that the drug resistance modification by...adMRi in -7du cedells.ted expressin (1994) Mobile ionophores are a novel class of P-glycoprotein ofdMDR l and MRPI in MCF-7idox cellso inhibitors. The

  11. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation.

    PubMed

    VanKlompenberg, Monica K; Leyden, Emily; Arnason, Anne H; Zhang, Jian-Ting; Stefanski, Casey D; Prosperi, Jenifer R

    2017-11-28

    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT; Apc Min/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT; Apc Min/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT; Apc Min/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

  12. CYTOCHROMES P450 (CYP) IN THE POECILIOPSIS LUCIDA HEPATOCELLULAR CARCINOMA CELL LINE (PLHC-1): DOSE- AND TIME-DEPENDENT GLUCOCORTICOID POTENTIATION OF CYP1A INDUCTION WITHOUT INDUCTION OF CYP3A. (R823889)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    PubMed

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  14. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal.

    PubMed

    Xiang, Shulin; Dauchy, Robert T; Hauch, Adam; Mao, Lulu; Yuan, Lin; Wren, Melissa A; Belancio, Victoria P; Mondal, Debasis; Frasch, Tripp; Blask, David E; Hill, Steven M

    2015-08-01

    Chemotherapeutic resistance, particularly to doxorubicin (Dox), represents a major impediment to successfully treating breast cancer and is linked to elevated tumor metabolism and tumor over-expression and/or activation of various families of receptor- and non-receptor-associated tyrosine kinases. Disruption of circadian time structure and suppression of nocturnal melatonin production by dim light exposure at night (dLEN), as occurs with shift work, and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of an array of diseases, including breast cancer. Melatonin inhibits human breast cancer growth via mechanisms that include the suppression of tumor metabolism and inhibition of expression or phospho-activation of the receptor kinases AKT and ERK1/2 and various other kinases and transcription factors. We demonstrate in tissue-isolated estrogen receptor alpha-positive (ERα+) MCF-7 human breast cancer xenografts, grown in nude rats maintained on a light/dark cycle of LD 12:12 in which dLEN is present during the dark phase (suppressed endogenous nocturnal melatonin), a significant shortening of tumor latency-to-onset, increased tumor metabolism and growth, and complete intrinsic resistance to Dox therapy. Conversely, a LD 12:12 dLEN environment incorporating nocturnal melatonin replacement resulted in significantly lengthened tumor latency-to-onset, tumor regression, suppression of nighttime tumor metabolism, and kinase and transcription factor phosphorylation, while Dox sensitivity was completely restored. Melatonin acts as both a tumor metabolic inhibitor and circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to Dox and drive tumor regression, indicating that dLEN-induced circadian disruption of nocturnal melatonin production contributes to a complete loss of tumor sensitivity to Dox chemotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Eribulin regresses a doxorubicin-resistant Ewing's sarcoma with a FUS-ERG fusion and CDKN2A-deletion in a patient-derived orthotopic xenograft (PDOX) nude mouse model.

    PubMed

    Miyake, Kentaro; Murakami, Takashi; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Li, Yunfeng; Singh, Arun S; Dry, Sarah M; Eckardt, Mark A; Hiroshima, Yukihiko; Momiyama, Masashi; Matsuyama, Ryusei; Chishima, Takashi; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2018-01-01

    Ewing's sarcoma is a recalcitrant tumor greatly in need of more effective therapy. The aim of this study was to determine the efficacy of eribulin on a doxorubicin (DOX)-resistant Ewing's sarcoma patient derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma PDOX model was previously established in the right chest wall of nude mice from tumor resected form the patient's right chest wall. In the previous study, the Ewing's sarcoma PDOX was resistant to doxorubicin (DOX) and sensitive to palbociclib and linsitinib. In the present study, the PDOX models were randomized into three groups when the tumor volume reached 60 mm 3 : G1, untreated control (n = 6); G2, DOX treated (n = 6), intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, Eribulin treated (n = 6, intravenous (i.v.) injection, weekly for 2 weeks). All mice were sacrificed on day 15. Changes in body weight and tumor volume were assessed two times per week. Tumor weight was measured after sacrifice. DOX did not suppress tumor growth compared to the control group (P = 0.589), consistent with the previous results in the patient and PDOX. Eribulin regressed tumor size significantly compared to G1 and G2 (P = 0.006, P = 0.017) respectively. No significant difference was observed in body weight among any group. Our results demonstrate that eribulin is a promising novel therapeutic agent for Ewing's sarcoma. © 2017 Wiley Periodicals, Inc.

  16. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model

    PubMed Central

    Murakami, Takashi; Singh, Arun S.; Kiyuna, Tasuku; Dry, Sarah M.; Li, Yunfeng; James, Aaron W.; Igarashi, Kentaro; Kawaguchi, Kei; DeLong, Jonathan C.; Zhang, Yong; Hiroshima, Yukihiko; Russell, Tara; Eckardt, Mark A.; Yanagawa, Jane; Federman, Noah; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C.; Hoffman, Robert M.

    2016-01-01

    Ewing's sarcoma is a rare and aggressive malignancy. In the present study, tumor from a patient with a Ewing's sarcoma with cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss and FUS-ERG fusion was implanted in the right chest wall of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. The aim of the present study was to determine efficacy of cyclin-dependent kinase 4/6 (CDK4/6) and insulin-like growth factor-1 receptor (IGF-1R) inhibitors on the Ewing's sarcoma PDOX. The PDOX models were randomized into the following groups when tumor volume reached 50 mm3: G1, untreated control; G2, doxorubicin (DOX) (intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, CDK4/6 inhibitor (palbociclib, PD0332991, per oral (p.o.), daily, for 14 days); G4, IGF-1R inhibitor (linsitinib, OSI-906, p.o., daily, for 14 days). Tumor growth was significantly suppressed both in G3 (palbociclib) and in G4 (linsitinib) compared to G1 (untreated control) at all measured time points. In contrast, DOX did not inhibit tumor growth at any time point, which is consistent with the failure of DOX to control tumor growth in the patient. The results of the present study demonstrate the power of the PDOX model to identify effective targeted molecular therapy of a recalcitrant DOX-resistant Ewing's sarcoma with specific genetic alterations. The results of this study suggest the potential of PDOX models for individually-tailored, effective targeted therapy for recalcitrant cancer. PMID:27286459

  17. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism.

    PubMed

    Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang

    2018-07-30

    In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters by two ways, to lessen the ABC protein efflux by weakening their functionality, or to reduce the quantity of ABC gene and protein expression. Copyright © 2018. Published by Elsevier B.V.

  18. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model.

    PubMed

    Murakami, Takashi; Singh, Arun S; Kiyuna, Tasuku; Dry, Sarah M; Li, Yunfeng; James, Aaron W; Igarashi, Kentaro; Kawaguchi, Kei; DeLong, Jonathan C; Zhang, Yong; Hiroshima, Yukihiko; Russell, Tara; Eckardt, Mark A; Yanagawa, Jane; Federman, Noah; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2016-07-26

    Ewing's sarcoma is a rare and aggressive malignancy. In the present study, tumor from a patient with a Ewing's sarcoma with cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss and FUS-ERG fusion was implanted in the right chest wall of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. The aim of the present study was to determine efficacy of cyclin-dependent kinase 4/6 (CDK4/6) and insulin-like growth factor-1 receptor (IGF-1R) inhibitors on the Ewing's sarcoma PDOX. The PDOX models were randomized into the following groups when tumor volume reached 50 mm3: G1, untreated control; G2, doxorubicin (DOX) (intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, CDK4/6 inhibitor (palbociclib, PD0332991, per oral (p.o.), daily, for 14 days); G4, IGF-1R inhibitor (linsitinib, OSI-906, p.o., daily, for 14 days). Tumor growth was significantly suppressed both in G3 (palbociclib) and in G4 (linsitinib) compared to G1 (untreated control) at all measured time points. In contrast, DOX did not inhibit tumor growth at any time point, which is consistent with the failure of DOX to control tumor growth in the patient. The results of the present study demonstrate the power of the PDOX model to identify effective targeted molecular therapy of a recalcitrant DOX-resistant Ewing's sarcoma with specific genetic alterations. The results of this study suggest the potential of PDOX models for individually-tailored, effective targeted therapy for recalcitrant cancer.

  19. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  20. Quantitative Proteomics Analysis Identifies Mitochondria as Therapeutic Targets of Multidrug-Resistance in Ovarian Cancer

    PubMed Central

    Chen, Xiulan; Wei, Shasha; Ma, Ying; Lu, Jie; Niu, Gang; Xue, Yanhong; Chen, Xiaoyuan; Yang, Fuquan

    2014-01-01

    Doxorubicin is a widely used chemotherapeutic agent for the treatment of a variety of solid tumors. However, resistance to this anticancer drug is a major obstacle to the effective treatment of tumors. As mitochondria play important roles in cell life and death, we anticipate that mitochondria may be related to drug resistance. Here, stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic strategy was applied to compare mitochondrial protein expression in doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI_ADR/RES cells. A total of 2085 proteins were quantified, of which 122 proteins displayed significant changes in the NCI_ADR/RES cells. These proteins participated in a variety of cell processes including cell apoptosis, substance metabolism, transport, detoxification and drug metabolism. Then qRT-PCR and western blot were applied to validate the differentially expressed proteins quantified by SILAC. Further functional studies with RNAi demonstrated TOP1MT, a mitochondrial protein participated in DNA repair, was involved in doxorubicin resistance in NCI_ADR/RES cells. Besides the proteomic study, electron microscopy and fluorescence analysis also observed that mitochondrial morphology and localization were greatly altered in NCI_ADR/RES cells. Mitochondrial membrane potential was also decreased in NCI_ADR/RES cells. All these results indicate that mitochondrial function is impaired in doxorubicin-resistant cells and mitochondria play an important role in doxorubicin resistance. This research provides some new information about doxorubicin resistance, indicating that mitochondria could be therapeutic targets of doxorubicin resistance in ovarian cancer cells. PMID:25285166

  1. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials.

    PubMed

    Bermejo-Nogales, A; Fernández-Cruz, M L; Navas, J M

    2017-11-01

    Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO 2 -NM = SiO 2 -NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Tubic, Aleksandra; Ivancev-Tumbas, Ivana; Kovacevic, Radmila; Samardzija, Dragana; Andric, Nebojsa; Kaisarevic, Sonja

    2016-05-01

    Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Assessment of toxic potency of complex mixtures of PAHs from Lincoln Creek, Milwaukee, WI

    SciTech Connect

    Villeneuve, D.; Crunkilton, R.; DeVita, W.

    1995-12-31

    An assay of cytochrome P4501A catalytic activity in PLHC-1 fish hepatoma cells was used to evaluate the toxic potency of dialysates from triolein filled semipermeable polymeric membrane devices (SPMDS) exposed for variable durations and under various flow regimes to water from Lincoln Creek. Toxic potency was expressed as 2,3,7,8 tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) calculated from bioassay results. Dose-dependent responses in measured ethoxyresorufin-o-deethylase (EROD) activity of PLHC-1 cells exposed to SPMD dialysates were shown. Toxic potency of dialysates, expressed as bioassay derived TCDD equivalents, increased with duration of SPMD exposure in Lincoln Creek from 2.0 pg/uL for a 2 day exposure tomore » 19.5 pg/uL for a 30 day exposure. This corresponded to an increase in dialysate polycyclic aromatic hydrocarbon (PAH) concentration from 8.82 ug/g after a 2 day exposure to 24.14 ug/g after 30 days. Dialysates from SPMDs exposed to Lincoln Creek stormflow had higher toxic potencies and total PAH concentrations than those exposed to baseflow only, These results suggest that levels of PAH contamination, particularly those associated with stormflow, in Lincoln Creek have potential to accumulate in fish to levels significant enough to elicit a measurable biological response (cytochrome P4501 A induction) at a potency level approaching 0.08% that of TCDD.« less

  4. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms.

    PubMed

    Wu, Min; Li, Tingting; Chen, Lilan; Peng, Sugang; Liao, Wei; Bai, Ruolan; Zhao, Xue; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-03-02

    Angelicae dahurica (Hoffm.) Benth. & Hook.f.ex Franch. & Sav combined with Pueraria and Gastrodia elata Bl. combined with Inula japonica Thunb. are widely used in herb-pairs of traditional chinese medicine. Previous studies have shown that Angelicae dahuricae essential oil (ADO) enhanced puerarin internalization into ABCB1-overexpressed Caco-2 cells. These findings suggest the possibility that essential oils may enhance the absorption via certain mechanisms related to ABCB1 and reverse multidrug resistance (MDR). ADO and essential oils from Inula japonica (IJO) may reverse ABCB1-mediated MDR, but this ability has not been investigated in detail in the well-established cancer cell lines. In this study, the underlying molecular mechanisms were further investigated to examine how IJO and ADO reverse MDR in the resistant human breast cancer cell line of MCF-7/ADR. Also this work may help uncover the conceivable compatibility mechanisms of above herb-pairs involved in ABCB1. The MDR human breast cancer MCF-7/ADR cells were treated with IJO, its sesquiterpene component isoalantolactone (ISO) or ADOat non- cytotoxic concentrations. The MDR ability was examined by measuring the sensitivity to doxorubicin (DOX), DOX accumulation and efflux, ABCB1 ATPase activity, ABCB1 expression, membrane fluidity, and stability and localization of lipid rafts and caveolae. Finally, the molecular modeling was performed to postulate how ISO interacts with ABCB1. Treating MCF-7/ADR cells with IJ oil, ISO or AD oil reversed MDR 2- to 3-fold, without affecting the sensitivity of the non-MDR parental cell line. Mechanistic studies showed that these oils down-regulated mRNA and protein expression of ABCB1, and reduced the stability of lipid rafts in the cell membrane, which has previously been shown to reduce ABCB1-mediated transport. On the other hand, IJO, ISO and ADO did not inhibit ABCB1 ATPase activity, and fluorescence polarization experiments showed that low concentrations of the oils did

  5. Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs).

    PubMed

    Louiz, I; Kinani, S; Gouze, M-E; Ben-Attia, M; Menif, D; Bouchonnet, S; Porcher, J M; Ben-Hassine, O K; Aït-Aïssa, S

    2008-09-01

    We used an array of in vitro cell-based bioassays to assess dioxin-like, estrogenic and (anti-)androgenic activities in organic extracts of sediments from the Bizerta lagoon, one of the largest Tunisian lagoons subjected to various anthropogenic and industrial pressures. The sediments were sampled both in winter and summer 2006 in 6 stations differently impacted and in one reference station located in the seawards entrance of Ghar el Melh lagoon. Chemical analyses of the 16 priority PAHs showed that the sediments were low to moderately contaminated (2-537 ng/g dry weight). By using the estrogen- (MELN) and androgen-responsive (MDA-kb2) reporter cell lines, significant estrogenic and anti-androgenic activities were detected only in the Menzel Bourguiba (MB) site, the most contaminated site, both in winter and summer. By using 7-ethoxyresorufin-O-deethylase (EROD) induction in the fish PLHC-1 cell line after both 4 and 24 h of cell exposure, dioxin-like activities were detected in all analysed samples. Dioxin-like activities were higher after 4 h exposure, and varied according to the sites and the sampling season. While highly significant correlation was observed between bioassay- and chemical analyses-derived toxic equivalents (TEQs), PAHs accounted for only a small part (up to 4%) of the detected biological activities, suggesting that other readily metabolised EROD-inducing compounds were present. This study argues for the use of short time exposure to assess biological TEQs in low contaminated samples and provides new induction equivalent factors (IEF(4h)) for 16 PAHs in the PLHC-1 cell line. Finally, our results stress the need to further characterise the nature of organic chemical contamination as well as its long-term impacts on aquatic wildlife in the Bizerta lagoon.

  6. Abcb1a but not Abcg2 played a predominant role in limiting the brain distribution of Huperzine A in mice.

    PubMed

    Li, Jiajun; Yue, Mei; Zhou, Dandan; Wang, Meiyu; Zhang, Hongjian

    2017-09-01

    Huperzine A has been used for improving symptoms of Alzheimer's disease. Its cholinergic side effect is thought to be an exaggerated pharmacological outcome linked to its high brain or CNS concentrations. Although Huperzine A is brain penetrable, its interaction with efflux transporters (ABCB1 and ABCG2) has not been fully investigated. The aim of the present study was to characterize roles of ABCB1 and ABCG2 in the transmembrane transport of Huperzine A and identify a rate limiting step in its brain distribution. Data obtained from stably transfected MDCK II cells showed that Huperzine A is a substrate of ABCB1 but not ABCG2. ABCB1 inhibitors significantly inhibited ABCB1 mediated efflux of Huperzine A. In Abcb1a -/- mice, the brain to plasma concentration ratio of Huperzine A was significantly increased as compared to the wild type mice, while there were no obvious differences between the wild type and Abcg2 -/- mice. Taken together, the present study demonstrated that ABCB1 but not ABCG2 played a predominant role in the efflux of Huperzine A across BBB. The current finding is clinically relevant as changes in ABCB1 activity in the presence of ABCB1 inhibitors or genetic polymorphism may affect efficacy and safety of Huperzine A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma

    PubMed Central

    Besse, A; Stolze, S C; Rasche, L; Weinhold, N; Morgan, G J; Kraus, M; Bader, J; Overkleeft, H S; Besse, L; Driessen, C

    2018-01-01

    Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients’ bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ. PMID:28676669

  8. Systematic Characterization of the Molecular Mechanisms That Regulate and Mediate Alternative Lengthening of Telomeres in Breast Carcinoma

    DTIC Science & Technology

    2014-04-01

    von Werder A, Opitz OG (2013) Inhibition of telomerase induces alternative lengthening of telomeres during human esophageal carcinogenesis. Cancer ...MIDDLE DN 16 -0.79292 KANG DOXORUBICIN RESISTANCE UP 47 -0.78178 AMUNDSON GAMMA RADIATION RESPONSE 34 -0.77391 FINETTI BREAST CANCER KINOME RED 14...Telomeres in Breast Carcinoma PRINCIPAL INVESTIGATOR: Yaara Zwang CONTRACTING ORGANIZATION: Dana-Farber Cancer Institute Boston, MA 02115-6013

  9. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    PubMed

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for

  10. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2.

    PubMed

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V

    2007-12-01

    Vitamin K3 (menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2, which are essential for blood clotting. The naturally occurring structural analogue of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We here report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). Vitamin K3 and plumbagin inhibited the binding of [(125)I]iodoarylazidoprazosin, a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC(50) values of 7.3 and 22.6 micromol/L, respectively, but had no effect on the binding of the photoaffinity analogue to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of the ABCG2 transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared with the control cells, suggesting that they are substrates of this transporter. Collectively, these data show for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function.

  11. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  12. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo.

    PubMed

    Zhao, Xiao-qin; Xie, Jing-dun; Chen, Xing-gui; Sim, Hong May; Zhang, Xu; Liang, Yong-ju; Singh, Satyakam; Talele, Tanaji T; Sun, Yueli; Ambudkar, Suresh V; Chen, Zhe-Sheng; Fu, Li-wu

    2012-07-01

    Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner (IC(50) = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function.

  13. Neratinib Reverses ATP-Binding Cassette B1-Mediated Chemotherapeutic Drug Resistance In Vitro, In Vivo, and Ex Vivo

    PubMed Central

    Zhao, Xiao-qin; Xie, Jing-dun; Chen, Xing-gui; Sim, Hong May; Zhang, Xu; Liang, Yong-ju; Singh, Satyakam; Talele, Tanaji T.; Sun, Yueli; Ambudkar, Suresh V.; Chen, Zhe-Sheng

    2012-01-01

    Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [125I]iodoarylazidoprazosin in a concentration-dependent manner (IC50 = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function. PMID:22491935

  14. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro.

    PubMed

    Hsiao, Sung-Han; Lu, Yu-Jen; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung; Wu, Chung-Pu

    2016-06-06

    The effectiveness of cancer chemotherapy is often circumvented by multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (MDR1, P-glycoprotein). Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown previously capable of modulating the function of ABCB1 and reversing ABCB1-mediated MDR in human cancer cells. Furthermore, some TKIs are transported by ABCB1, which results in low oral bioavailability, reduced distribution, and the development of acquired resistance to these TKIs. In this study, we investigated the interaction between ABCB1 and osimertinib, a novel selective, irreversible third-generation EGFR TKI that has recently been approved by the U.S. Food and Drug Administration. We also evaluated the potential impact of ABCB1 on the efficacy of osimertinib in cancer cells, which can present a therapeutic challenge to clinicians in the future. We revealed that although osimertinib stimulates the ATPase activity of ABCB1, overexpression of ABCB1 does not confer resistance to osimertinib. Our results suggest that it is unlikely that the overexpression of ABCB1 can be a major contributor to the development of osimertinib resistance in cancer patients. More significantly, we revealed an additional action of osimertinib that directly inhibits the function of ABCB1 without affecting the expression level of ABCB1, enhances drug-induced apoptosis, and reverses the MDR phenotype in ABCB1-overexpressing cancer cells. Considering that osimertinib is a clinically approved third-generation EGFR TKI, our findings suggest that a combination therapy with osimertinib and conventional anticancer drugs may be beneficial to patients with MDR tumors.

  15. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  16. Induction of EROD and BFCOD activities in tissues of barbel (Barbus callensis) from a water reservoir in Algeria.

    PubMed

    Habila, Safia; Leghouchi, Essaid; Valdehita, Ana; Bermejo-Nogales, Azucena; Khelili, Smail; Navas, José M

    2017-08-01

    EROD and BFCOD activities were measured in liver and gills of barbel (Barbus callensis, a native North African species) captured at Beni Haroun lake, the most important water reservoir in Algeria. This lake receives wastewater from different origins. Thus, we assessed the level of pollution through the induction of detoxification activities in tissues of barbel, evaluating simultaneously the suitability of this species to be used as a sentinel. Fish were collected between March 2015 and January 2016 at three locations taking into account the pollution sources and accessibility. In liver, EROD and BFCOD showed the highest induction in October specially in the location of the dam that received pollutants. In gills, only EROD, but not BFCOD, activity was detected. Maximal EROD induction was noted in samples from January. Fish cell lines (RTG-2 and PLHC-1) were exposed to sediments extracts collected at Beni Haroun lake and enzyme activities (EROD and BFCOD, respectively) were measured. Sediment extracts did not induce BFCOD activity. The EROD induction observed in RTG-2 cells was in line with the results observed in fish tissues. Our results suggest that the lake is at risk from pollution and that Barbus callensis is a good sentinel species. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of quality of sediments from Paranaguá Bay (Brazil) by combined in vitro bioassays and chemical analyses.

    PubMed

    Rizzi, Juliane; Pérez-Albaladejo, Elisabet; Fernandes, Denise; Contreras, Javier; Froehner, Sandro; Porte, Cinta

    2017-07-01

    The present study characterizes the quality of sediments from the Paranaguá Estuarine Complex (South Brazil). Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were determined in sediment samples together with a series of different in vitro bioassays. The fish hepatoma cell line (PLHC-1) was used to determine the presence of cytotoxic compounds and CYP1A- and oxidative stress-inducing agents in sediment extracts. Ovarian microsomal fractions from sea bass (Dicentrarchus labrax) were used to detect the presence of endocrine disrupters that interfered with the synthesis of estrogens (ovarian CYP19). Despite the relatively low levels of pollutants and no evidence of negative effects based on guideline levels, sediments collected close to harbors were enriched with CYP1A-inducing agents and they showed higher cytotoxicity. In contrast, sediments from internal areas inhibited CYP19 activity, which suggests the presence of endocrine disrupters at these sites. Overall, the selected bioassays and the chemistry data led to the identification of potentially impacted areas along the Paranaguá Estuarine Complex that would require further action to improve their environmental quality. Environ Toxicol Chem 2017;36:1811-1819. © 2016 SETAC. © 2016 SETAC.

  18. Methadone, commonly used as maintenance medication for outpatient treatment of opioid dependence, kills leukemia cells and overcomes chemoresistance.

    PubMed

    Friesen, Claudia; Roscher, Mareike; Alt, Andreas; Miltner, Erich

    2008-08-01

    The therapeutic opioid drug methadone (d,l-methadone hydrochloride) is the most commonly used maintenance medication for outpatient treatment of opioid dependence. In our study, we found that methadone is also a potent inducer of cell death in leukemia cells and we clarified the unknown mechanism of methadone-induced cell killing in leukemia cells. Methadone inhibited proliferation in leukemia cells and induced cell death through apoptosis induction and activated apoptosis pathways through the activation of caspase-9 and caspase-3, down-regulation of Bcl-x(L) and X chromosome-linked inhibitor of apoptosis, and cleavage of poly(ADP-ribose) polymerase. In addition, methadone induced cell death not only in anticancer drug-sensitive and apoptosis-sensitive leukemia cells but also in doxorubicin-resistant, multidrug-resistant, and apoptosis-resistant leukemia cells, which anticancer drugs commonly used in conventional therapies of leukemias failed to kill. Depending on caspase activation, methadone overcomes doxorubicin resistance, multidrug resistance, and apoptosis resistance in leukemia cells through activation of mitochondria. In contrast to leukemia cells, nonleukemic peripheral blood lymphocytes survived after methadone treatment. These findings show that methadone kills leukemia cells and breaks chemoresistance and apoptosis resistance. Our results suggest that methadone is a promising therapeutic approach not only for patients with opioid dependence but also for patients with leukemias and provide the foundation for new strategies using methadone as an additional anticancer drug in leukemia therapy, especially when conventional therapies are less effective.

  19. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    PubMed

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  20. miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism

    PubMed Central

    Tang, Xian-ye; Zheng, Wei; Ding, Min; Guo, Kai-jin; Yuan, Feng; Feng, Hu; Deng, Bin; Sun, Wei; Hou, Yang; Gao, Lu

    2016-01-01

    Chondrosarcoma is the second most common type of primary bone malignancy in the United States after osteosarcoma. Surgical resections of these tumors are the only effective treatment to chondrosarcoma patients due to their resistance to conventional chemo- and radiotherapy. In this study, miR-125b was found to perform its tumor-suppressor function to inhibit glucose metabolism via the direct targeting of oncogene, ErbB2. We report miR-125b was downregulated in both chondrosarcoma patient samples and cell lines. The total 20 Asian chondrosarcoma patients showed significantly downregulated miR-125b expression compared with normal tissues. Meanwhile, miR-125 was downregulated in chondrosarcoma cells and doxorubicin resistant cells. Overexpression of miR-125 enhanced the sensitivity of both parental and doxorubicin resistant cells to doxorubicin through direct targeting on the ErbB2-mediated upregulation of glycolysis in chondrosarcoma cells. Moreover, restoration of the expression of ErbB2 and glucose metabolic enzymes in miR-125 pretransfected cells recovered the susceptibility to doxorubicin. Our study will provide a novel aspect on the overcoming chemoresistance in human chondrosarcoma cells and may help in the development of therapeutic strategies for the treatments of patients. PMID:26966351

  1. miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism.

    PubMed

    Tang, Xian-ye; Zheng, Wei; Ding, Min; Guo, Kai-jin; Yuan, Feng; Feng, Hu; Deng, Bin; Sun, Wei; Hou, Yang; Gao, Lu

    2016-01-01

    Chondrosarcoma is the second most common type of primary bone malignancy in the United States after osteosarcoma. Surgical resections of these tumors are the only effective treatment to chondrosarcoma patients due to their resistance to conventional chemo- and radiotherapy. In this study, miR-125b was found to perform its tumor-suppressor function to inhibit glucose metabolism via the direct targeting of oncogene, ErbB2. We report miR-125b was downregulated in both chondrosarcoma patient samples and cell lines. The total 20 Asian chondrosarcoma patients showed significantly downregulated miR-125b expression compared with normal tissues. Meanwhile, miR-125 was downregulated in chondrosarcoma cells and doxorubicin resistant cells. Overexpression of miR-125 enhanced the sensitivity of both parental and doxorubicin resistant cells to doxorubicin through direct targeting on the ErbB2-mediated upregulation of glycolysis in chondrosarcoma cells. Moreover, restoration of the expression of ErbB2 and glucose metabolic enzymes in miR-125 pretransfected cells recovered the susceptibility to doxorubicin. Our study will provide a novel aspect on the overcoming chemoresistance in human chondrosarcoma cells and may help in the development of therapeutic strategies for the treatments of patients.

  2. Decursin in Angelica gigas Nakai (AGN) Enhances Doxorubicin Chemosensitivity in NCI/ADR-RES Ovarian Cancer Cells via Inhibition of P-glycoprotein Expression.

    PubMed

    Choi, Hyeong Sim; Cho, Sung-Gook; Kim, Min Kyoung; Kim, Min Soo; Moon, Seung Hee; Kim, Il Hwan; Ko, Seong-Gyu

    2016-12-01

    Angelica gigas Nakai (AGN, Korean Dang-gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug-resistant phenotype-reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin-resistant NCI/ADR-RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR-RES cells. These combinations increased the number of cells at sub-G1 phase when cells were stained with Annexin V-fluorescein isothiocyanate. We also found that these combinations activated caspase-9, caspase-8, and caspase-3 and increased cleaved PARP level. Moreover, an inhibition of P-glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR-RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin-resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P-glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258.

    PubMed

    Liu, Wen; Moulay, Mohammed; Willenbrock, Saskia; Roolf, Catrin; Junghanss, Christian; Ngenazahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2015-04-01

    Canine prostate cancer represents a spontaneous animal model for the human counterpart. Cells with stem cell-like character are considered to play a major role in therapeutic resistance and tumor relapse. Thus, the identification of markers allowing for recognition and characterization of these cells is essential. Expression of 12 stem cell marker genes in the canine prostate cancer cell line CT1258 and spheroid cells generated from these was analyzed by quantitative real-time PCR. In CT1258 and the generated spheroid cells, CD44 and CD133 expression was analyzed by flow cytometry, as well as proliferation and doxorubicin resistance. Integrin alpha-6 (ITGA6) expression and metabolic activity were significantly up-regulated in CT1258-derived spheroid cells, while doxorubicin resistance remained comparable. ITGA6 de-regulation and metabolic activity appear to be characteristic of the generated spheres, indicating potential intervention targets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Bacterial delivery of RNAi effectors: transkingdom RNAi.

    PubMed

    Lage, Hermann; Krühn, Andrea

    2010-08-18

    RNA interference (RNAi) represents a high effective mechanism for specific inhibition of mRNA expression. Besides its potential as a powerful laboratory tool, the RNAi pathway appears to be promising for therapeutic utilization. For development of RNA interference (RNAi)-based therapies, delivery of RNAi-mediating agents to target cells is one of the major obstacles. A novel strategy to overcome this hurdle is transkingdom RNAi (tkRNAi). This technology uses non-pathogenic bacteria, e.g. Escherichia coli, to produce and deliver therapeutic short hairpin RNA (shRNA) into target cells to induce RNAi. A first-generation tkRNAi-mediating vector, TRIP, contains the bacteriophage T7 promoter for expression regulation of a therapeutic shRNA of interest. Furthermore, TRIP has the Inv locus from Yersinia pseudotuberculosis that encodes invasin, which permits natural noninvasive bacteria to enter beta1-integrin-positive mammalian cells and the HlyA gene from Listeria monocytogenes, which produces listeriolysin O. This enzyme allows the therapeutic shRNA to escape from entry vesicles within the cytoplasm of the target cell. TRIP constructs are introduced into a competent non-pathogenic Escherichia coli strain, which encodes T7 RNA polymerase necessary for the T7 promoter-driven synthesis of shRNAs. A well-characterized cancer-associated target molecule for different RNAi strategies is ABCB1 (MDR1/P-glycoprotein, MDR1/P-gp). This ABC-transporter acts as a drug extrusion pump and mediates the "classical" ABCB1-mediated multidrug resistance (MDR) phenotype of human cancer cells which is characterized by a specific cross resistance pattern. Different ABCB1-expressing MDR cancer cells were treated with anti-ABCB1 shRNA expression vector bearing E. coli. This procedure resulted in activation of the RNAi pathways within the cancer cells and a considerable down regulation of the ABCB1 encoding mRNA as well as the corresponding drug extrusion pump. Accordingly, drug accumulation was

  5. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms.

    PubMed

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R

    2013-02-15

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cytochrome P450 1A expression in midwater fishes: Potential effects of chemical contaminants in remote oceanic zones

    USGS Publications Warehouse

    Stegeman, John J.; Schlezinger, Jennifer J.; Craddock, James E.; Tillitt, Donald E.

    2001-01-01

    Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are aryl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A activity, was detected in liver from all species in 1977/78. In some, including Gonostoma elongatum, AHH was inhibited by the CYP1A inhibitor ??-naphthoflavone. CYP1A-dependent ethoxyresorufin O-deethylase (EROD) was detected in liver microsomes of all species in 1993; rates were highest in G. elongatum and Argyropelecus aculeatus. Immunoblot analysis with the CYP1A-specific monoclonal antibody 1-12-3 detected a single microsomal protein band in most 1993 samples; the highest content was in G. elongatum. Immunohistochemical analysis showed CYP1A staining in gill, heart, kidney, and/or liver of several species. Extracts of the 1993 G. elongatum and A. aculeatus, when applied to fish hepatoma cells (PLHC-1) in culture, elicited a significant induction of EROD in those cells. The capacity of the extracts to induce CYP1A correlated with the content of PCBs measured in the same fish (2-4.6 ng/g total body weight). Mesopelagic fish in the western North Atlantic, which experience no direct exposure to surface waters or sediments, are exposed chronically to inducers of CYP1A at levels that appear to be biochemically active in those fish.Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are awl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A

  7. Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway

    PubMed Central

    Gao, Ai-Mei; Zhang, Xiao-Yu; Ke, Zun-Ping

    2017-01-01

    Chemo-resistance is one of the main obstacle in hepatocellular carcinoma therapy. Apigenin as a natural bioflavonoid has been exhibited anti-cancer properties in various malignant cancers. The aim of this study is to evaluate the potential chemo-sensitization effect of apigenin in doxorubicin-resistant hepatocellular carcinoma cell line BEL-7402/ADM and to investigate its possible mechanism. We found that apigenin significantly reversed doxorubicin sensitivity and induced caspase-dependent apoptosis in BEL-7402/ADM cells. Furthermore, apigenin induced miR-101 expression, and overexpression of miR-101 mimicked the doxorubicin-sensitizing effect of apigenin. Importantly, we showed that miR-101 was able to target the 3′-UTR of Nrf2. The results suggested that apigenin sensitizes BEL-7402/ADM cells to doxorubicin through miR-101/Nrf2 pathway, which furtherly supports apigenin as a potential chemo-sensitizer for hepatocellular carcinoma. PMID:29137246

  8. Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence.

    PubMed

    Zhu, Cuige; Zuo, Yinglin; Wang, Ruimin; Liang, Baoxia; Yue, Xin; Wen, Gesi; Shang, Nana; Huang, Lei; Chen, Yu; Du, Jun; Bu, Xianzhang

    2014-08-14

    A series of new ortho-aryl chalcones have been designed and synthesized. Many of these compounds were found to exhibit significant antiproliferation activity toward a panel of cancer cell lines. Selected compounds show potent cytotoxicity against several drug resistant cell lines including paclitaxel (Taxol) resistant human ovarian carcinoma cells, vincristine resistant human ileocecum carcinoma cells, and doxorubicin resistant human breast carcinoma cells. Further investigation revealed that active analogues could inhibit the microtubule polymerization by binding to colchicine site and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. Furthermore, affinity-based fluorescence enhancement was observed during the binding of active compounds with tubulin, which greatly facilitated the determination of tubulin binding site of the compounds. Finally, selected compound 26 was found to exhibit obvious in vivo antitumor activity in A549 tumor xenografts model. Our systematic studies implied a new scaffold targeting tubulin and mitosis for novel antitumor drug discovery.

  9. Relationship between structure and P-glycoprotein inhibitory activity of dimeric peptides related to the Dmt-Tic pharmacophore.

    PubMed

    Ambo, Akihiro; Ohkatsu, Hiromichi; Minamizawa, Motoko; Watanabe, Hideko; Sugawara, Shigeki; Nitta, Kazuo; Tsuda, Yuko; Okada, Yoshio; Sasaki, Yusuke

    2012-03-15

    To develop novel inhibitors of P-glycoprotein (P-gp), dimeric peptides related to an opioid peptide containing the Dmt-Tic pharmacophore were synthesized and their P-gp inhibitory activities were analyzed. Of the 30 analogs synthesized, N(α),N(ε)-[(CH(3))(2)Mle-Tic](2)Lys-NH(2) and its D-Lys analog were found to exhibit potent P-gp inhibitory activity, twice that of verapamil, in doxorubicin-resistant K562 cells. Structure-activity studies indicated that the correct hydrophobicity and spacer length between two aromatic rings are important structural elements in this series of analogs for inhibition of P-gp. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Multimodal transfer of MDR by exosomes in human osteosarcoma.

    PubMed

    Torreggiani, Elena; Roncuzzi, Laura; Perut, Francesca; Zini, Nicoletta; Baldini, Nicola

    2016-07-01

    Exosomes are extracellular vesicles released by both normal and tumour cells which are involved in a new intercellular communication pathway by delivering cargo (e.g., proteins, microRNAs, mRNAs) to recipient cells. Tumour-derived exosomes have been shown to play critical roles in different stages of tumour growth and progression. In this study, we investigated the potential role of exosomes to transfer the multidrug resistance (MDR) phenotype in human osteosarcoma cells. Exosomes were isolated by differential centrifugation of culture media from multidrug resistant human osteosarcoma MG-63DXR30 (Exo/DXR) and MG-63 parental cells (Exo/S). Exosome purity was examined by transmission electron microscopy and confirmed by immunoblot analysis for the expression of specific exosomal markers. Our data showed that exosomes derived from doxorubicin-resistant osteosarcoma cells could be taken up into secondary cells and induce a doxorubicin-resistant phenotype. The incubation of osteosarcoma cells with Exo/DXR decreased the sensitivity of parental cells to doxorubicin, while exposure with Exo/S was ineffective. In addition, we demonstrated that Exo/DXR expressed higher levels of MDR-1 mRNA and P-glycoprotein compared to Exo/S (p=0.03). Interestingly, both MDR-1 mRNA and P-gp increased in MG-63 cells after incubation with Exo/DXR, suggesting this as the main mechanism of exosome-mediated transfer of drug resistance. Our findings suggest that multidrug resistant osteosarcoma cells are able to spread their ability to resist the effects of doxorubicin treatment on sensitive cells by transferring exosomes carrying MDR-1 mRNA and its product P-glycoprotein.

  11. Mesenchymal change and drug resistance in neuroblastoma.

    PubMed

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Binding of galectin-1 to integrin β1 potentiates drug resistance by promoting survivin expression in breast cancer cells.

    PubMed

    Nam, KeeSoo; Son, Seog-Ho; Oh, Sunhwa; Jeon, Donghwan; Kim, Hyungjoo; Noh, Dong-Young; Kim, Sangmin; Shin, Incheol

    2017-05-30

    Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.

  13. The use of semipermeable membrane devices (SPMDs) to concentrate inducers of fish hepatic mixed function oxygenase (MFO): Chapter 12

    USGS Publications Warehouse

    Parrott, Joanne L.; Tillitt, Donald E.

    1997-01-01

    Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those

  14. Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling.

    PubMed

    Kaowinn, Sirichat; Jun, Seung Won; Kim, Chang Seok; Shin, Dong-Myeong; Hwang, Yoon-Hwae; Kim, Kyujung; Shin, Bosung; Kaewpiboon, Chutima; Jeong, Hyeon Hee; Koh, Sang Seok; Krämer, Oliver H; Johnston, Randal N; Chung, Young-Hwa

    2017-12-01

    Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by

  15. Green tea, red wine and lemon extracts reduce experimental tumor growth and cancer drug toxicity.

    PubMed

    Zaletok, S P; Gulua, L; Wicker, L; Shlyakhovenko, V A; Gogol, S; Orlovsky, O; Karnaushenko, O V; Verbinenko, A; Milinevska, V; Samoylenko, O; Todor, I; Turmanidze, T

    2015-12-01

    To evaluate antitumor effect of plant polyphenol extracts from green tea, red wine lees and/or lemon peel alone and in combination with antitumor drugs on the growth of different transplanted tumors in experimental animals. Green tea extract (GTE) was prepared from green tea infusion. GTE-based composites of red wine (GTRW), lemon peel (GTRWL) and/or NanoGTE as well as corresponding nanocomposites were prepared. The total polyphenolics of the different GTE-based extracts ranged from 18.0% to 21.3%. The effects of GTE-based extracts were studied in sarcoma 180, Ehrlich carcinoma, B16 melanoma, Ca755 mammary carcinoma, P388 leukemia, L1210 leukemia, and Guerin carcinoma (original, cisplatin-resistant and doxorubicin-resistant variants). The extracts were administered as 0.1% solution in drinking water (0.6-1.0 mg by total polyphenolics per mouse per day and 4.0-6.3 mg per rat per day). Tumor growth inhibition (TGI) in mice treated with NanoGTE, cisplatin or cisplatin + NanoGTE was 27%, 55% and 78%, respectively, in Sarcoma 180%, 21%, 45% and 59%, respectively, in Ehrlich carcinoma; and 8%, 13% and 38%, respectively in B16 melanoma. Composites of NanoGTE, red wine, and lemon peel (NanoGTRWL) enhanced the antitumor effects of cyclophosphamide in mice with Ca755 mammary carcinoma. The treatment with combination of NanoGTE and inhibitors of polyamines (PA) synthesis (DFMO + MGBG) resulted in significant TGI of P388 leukemia (up to 71%) and L1210 leukemia. In rats transplanted with Guerin carcinoma (parental strain), treatment with GTRW or GTE alone resulted in 25-28% TGI vs. 55-68% TGI in cisplatin-treated animals. The inhibition observed in the case of combination of GTE or GTRW with cisplatin was additive giving 81-88% TGI. Similar effects were observed when combinations of the cytostatics with GTE (or NanoGTE) were tested against cisplatin- or doxorubicin-resistant Guerin carcinoma. Moreover, the plant extracts lowered side toxicity of the drugs. Treatment with GTE

  16. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress

    PubMed Central

    Isham, Crescent R.; Tibodeau, Jennifer D.; Jin, Wendy; Xu, Ruifang; Timm, Michael M.

    2007-01-01

    Chaetocin, a thiodioxopiperazine natural product previously unreported to have anticancer effects, was found to have potent antimyeloma activity in IL-6–dependent and –independent myeloma cell lines in freshly collected sorted and unsorted patient CD138+ myeloma cells and in vivo. Chaetocin largely spares matched normal CD138− patient bone marrow leukocytes, normal B cells, and neoplastic B-CLL (chronic lymphocytic leukemia) cells, indicating a high degree of selectivity even in closely lineage-related B cells. Furthermore, chaetocin displays superior ex vivo antimyeloma activity and selectivity than doxorubicin and dexamethasone, and dexamethasone- or doxorubicin-resistant myeloma cell lines are largely non–cross-resistant to chaetocin. Mechanistically, chaetocin is dramatically accumulated in cancer cells via a process inhibited by glutathione and requiring intact/unreduced disulfides for uptake. Once inside the cell, its anticancer activity appears mediated primarily through the imposition of oxidative stress and consequent apoptosis induction. Moreover, the selective antimyeloma effects of chaetocin appear not to reflect differential intracellular accumulation of chaetocin but, instead, heightened sensitivity of myeloma cells to the cytotoxic effects of imposed oxidative stress. Considered collectively, chaetocin appears to represent a promising agent for further study as a potential antimyeloma therapeutic. PMID:17090648

  17. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells.

    PubMed

    Wagner, W; Kania, K D; Blauz, A; Ciszewski, W M

    2017-08-01

    The lactate receptor, also known as hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), plays a vital role in cancer biology. Recently, HCAR1 was reported to enhance metastasis, cell growth, and survival of pancreatic, breast, and cervical cancer cells. This study showed, for the first time, the mechanism of HCAR1-mediated chemoresistance to doxorubicin through regulation of ABCB1 transporter. We observed the HCAR1 agonists L-lactate, D-lactate and 3,5-dihydroxybenzoic acid (DHBA) induced up-regulation of ABCB1. HCAR1 silencing decreased ABCB1 mRNA and protein by 80% and 40%, respectively. Moreover, cellular doxorubicin accumulation decreased by 30% after DHBA treatment, while HCAR1 silencing increased accumulation of ABCB1 substrates by nearly 2-fold. Based on growth inhibition assays, cell cycle analysis, and annexin V staining assays, we demonstrated that HCAR1 enhances cell survival and doxorubicin resistance. Finally, DHBA-stimulated up-regulation of ABCB1 functionality was suppressed by pharmacological inhibition of the PKC pathway. Taken together, our study shows the novel role of HCAR1 in development of chemoresistance in cervical carcinoma HeLa cells via ABCB1 transporter up-regulation.

  18. Metabolic changes during development of Walker-256 carcinosarcoma resistance to doxorubicin.

    PubMed

    Todor, I N; Lukyanova, N Yu; Shvets, Yu V; Lozovska, Yu V; Chekhun, V F

    2015-03-01

    To study indices of energy metabolism, content of K(+) and Mg(++) both in peripheral blood and in Walker-256 carcinosarcoma during development of resistance to doxorubicin. Resistance of Walker-256 carcinosarcoma to doxorubicin has been developed through 12 subsequent transplantations of tumor after the chemotherapy. Parental strain was inhibited by drug by 65%, while transitional resistant substrains - by 30% and 2%, respectively. Determination of biochemical indices in blood serum and homogenates of tumor tissue, level of potassium, magnesium, lactate, glucose, activities of lactate dehydrogenase and glucose-6-phosphate dehydrogenase was performed with the help of biochemical and immune-enzyme analyzer GBG ChemWell 2990 (USA) using standard kits. Polarography was used to determine indices of mitochondrial oxidative phosphorylation. Study of mitochondrial membrane potential was carried out on flow cytometer Beckman Coulter Epics XL using dye JC-1. It has been determined that development of drug resistance causes the decrease of K(+), Mg(++), glucose content in blood serum and increase of these indices in tumor tissue. At the same time, gradual tumor's loss of sensitivity is characterized by decrease of glycolysis activity in it and activation of mitochondrial oxidative phosphorylation and pentose phosphate pathway of glucose degradation, which causes more intensive formation of NADPH. Development of drug resistance of tumor causes certain metabolic changes in organism and tumor. Further study of such changes will make possible to determine tumor and extratumor markers of resistance.

  19. Remodulating effect of doxorubicin on the state of iron-containing proteins, and redox characteristics of tumor with allowance for its sensitivity to cytostatic agents.

    PubMed

    Chekhun, V F; Lozovska, Yu V; Burlaka, A P; Ganusevich, L I; Shvets, Yu V; Lukyanova, N Yu; Todor, I M; Tregubova, N A; Naleskina, L A

    2016-01-01

    The study was aimed at determining the changes of metal-containing proteins in blood serum and tumor tissue of animals with parental and doxorubicin-resistant strains of Walker-256 carcinosarcoma before and after the cytostatic administration. It has been shown that upon doxorubicin action the levels of total iron and transferrin in the tissues from the both groups of animals decreased while that of ferritine simultaneously increased with more pronounced pattern in the group of animals with resistant tumor strain. It has been shown that upon the action of doxorubicin in tumor tissue of animals with different sensitivity to the cytostatic there could be observed oppositely directed changes in the redox state of these cells that in turn determined the content of “ free iron” complexes, RO S generation and concentration of active forms of matrix metaloproteinase- 2 and matrix metaloproteinase-9, namely, the increase of these indexes in animals with parental strain and their decrease in animals with the resistant one. So, our study has demonstrated the remodulating effect of doxorubicin on the state of metal-containing proteins and redox characteristics of tumor dependent on its sensitivity to cytostatic, at the levels of the tumor and an organism. These data may serve as a criterion for the development of programs for the correction of malfunction of iron metabolism aimed at elevating tumor sensitivity to cytostatic agents.

  20. Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

    PubMed Central

    Ma, Yonghao; Ha, Chang Seung; Hwang, Seok Won; Lee, Hae June; Kim, Gyoo Cheon; Lee, Kyo-Won; Song, Kiwon

    2014-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells. PMID:24759730

  1. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  2. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer

    PubMed Central

    Bharali, Dhruba J; Yalcin, Murat; Davis, Paul J; Mousa, Shaker A

    2013-01-01

    Aim The aim was to evaluate tetraiodothyroacetic acid (tetrac), a thyroid hormone analog of l-thyroxin, conjugated to poly(lactic-co-glycolic acid) nanoparticles (T-PLGA-NPs) both in vitro and in vivo for the treatment of drug-resistant breast cancer. Materials & methods The uptake of tetrac and T-PLGA-NPs in doxorubicin-resistant MCF7 (MCF7-Dx) cells was evaluated using confocal microscopy. Cell proliferation assays and a chick chorioallantoic membrane model of FGF2-induced angiogenesis were used to evaluate the anticancer effects of T-PLGA-NPs. In vivo efficacy was examined in a MCF7-Dx orthotopic tumor BALBc nude mouse model. Results T-PLGA-NPs were restricted from entering into the cell nucleus, and T-PLGA-NPs inhibited angiogenesis by 100% compared with 60% by free tetrac. T-PLGA-NPs enhanced inhibition of tumor-cell proliferation at a low-dose equivalent of free tetrac. In vivo treatment with either tetrac or T-PLGA-NPs resulted in a three- to five-fold inhibition of tumor weight. Conclusion T-PLGA-NPs have high potential as anticancer agents, with possible applications in the treatment of drug-resistant cancer. PMID:23448245

  3. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    PubMed

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  4. Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis.

    PubMed

    Gao, Ai-Mei; Zhang, Xiao-Yu; Hu, Juan-Ni; Ke, Zun-Ping

    2018-01-25

    Chemo-resistance is a serious obstacle for successful treatment of cancer. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in various malignant cancers. This study aimed to investigate the potential chemo-sensitization effect of apigenin in doxorubicin-resistant hepatocellular carcinoma cell line BEL-7402/ADM. We observed that apigenin significantly enhanced doxorubicin sensitivity, induced miR-520b expression and inhibited ATG7-dependent autophagy in BEL-7402/ADM cells. In addition, we also showed that miR-520b mimics increased doxorubicin sensitivity and inhibited ATG7-dependent autophagy. Meanwhile, we indicated that ATG7 was a potential target of miR-520b. Furthermore, APG inhibited the growth of hepatocellar carcinoma xenografts in nude mice by up-regulating miR-520b and inhibiting ATG7. Our finding provides evidence that apigenin sensitizes BEL-7402/ADM cells to doxorubicin through miR-520b/ATG7 pathway, which furtherly supports apigenin as a potential chemo-sensitizer for hepatocellular carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer.

    PubMed

    Füredi, András; Szebényi, Kornélia; Tóth, Szilárd; Cserepes, Mihály; Hámori, Lilla; Nagy, Veronika; Karai, Edina; Vajdovich, Péter; Imre, Tímea; Szabó, Pál; Szüts, Dávid; Tóvári, József; Szakács, Gergely

    2017-09-10

    Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1 -/- ;p53 -/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Interaction of Flavonoids from Woodwardia unigemmata with Bovine Serum Albumin (BSA): Application of Spectroscopic Techniques and Molecular Modeling Methods.

    PubMed

    Ma, Rui; Pan, Hong; Shen, Tao; Li, Peng; Chen, Yanan; Li, Zhenyu; Di, Xiaxia; Wang, Shuqi

    2017-08-09

    Phytochemical investigation on the methanol extract of Woodwardia unigemmata resulted in the isolation of seven flavonoids, including one new flavonol acylglycoside ( 1 ). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison of literature data. The multidrug resistance (MDR) reversing activity was evaluated for the isolated compounds using doxorubicin-resistant K562/A02 cells model. Compound 6 showed comparable MDR reversing effect to verapamil. Furthermore, the interaction between compounds and bovine serum albumin (BSA) was investigated by spectroscopic methods, including steady-state fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular docking approach. The experimental results indicated that the seven flavonoids bind to BSA by static quenching mechanisms. The negative ΔH and ΔS values indicated that van der Waals interactions and hydrogen bonds contributed in the binding of compounds 2 - 6 to BSA. In the case of compounds 1 and 7 systems, the hydrophobic interactions play a major role. The binding of compounds to BSA causes slight changes in the secondary structure of BSA. There are two binding sites of compound 6 on BSA and site I is the main site according to the molecular docking studies and the site marker competitive binding assay.

  7. Identification of multidrug resistant protein 1 of mouse leukemia P388 cells on a PVDF membrane using 6-aminoquinolyl-carbamyl (AQC)-amino acid analysis and World Wide Web (WWW)-accessible tools.

    PubMed

    Shindo, N; Fujimura, T; Nojima-Kazuno, S; Mineki, R; Furusawa, S; Sasaki, K; Murayama, K

    1998-11-15

    Multidrug resistant protein 1 (MDR1) in a doxorubicin-resistant mouse leukemia cell line (P388/DOX) was identified using its amino acid composition combined with protein database searching (ExPASy and EMBL PROPSEARCH) via the World Wide Web. The proteins were separated by one-dimensional SDS-polyacrylamide gel electrophoresis, blotted onto a polyvinylidene fluoride membrane, and stained with Coomassie brilliant blue. A 160-kDa protein band was acid-hydrolyzed in the vapor phase (6 N HC1) and converted to 6-aminoquinolyl-carbamyl (AQC)-amino acids without extraction of the amino acids from the membrane. The amino acid composition of the protein was determined using the sensitive AQC-amino acid analysis method, improving our previously described method. The improved method involved using a Cosmosil 5C8-MS column instead of a Pegasil C8; replacement of the mobile phase A, constituent, 75 mM ammonium phosphate (pH 7.5), with 30 mM sodium phosphate buffer (pH 7.2); and slight modification of the separation program (9). All manipulations for protein hydrolysis and AQC derivatization were carried out in a hood using clean tools. This minimized contamination of amino acids at the low femtomolar level. A database search was carried out with bovine serum albumin as a calibration protein. MDR1 in P388/DOX was ranked first by both databases with high reliability (score 14 for ExPASy, distance 1.34 for EMBL).

  8. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer.

    PubMed

    Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar

    2017-07-01

    Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.

  9. Curcumin Enhances the Efficacy of Chemotherapy by Tailoring p65NFκB-p300 Cross-talk in Favor of p53-p300 in Breast Cancer*

    PubMed Central

    Sen, Gouri Sankar; Mohanty, Suchismita; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Banerjee, Shuvomoy; Chakraborty, Juni; Saha, Shilpi; Ray, Pallab; Bhattacharjee, Pushpak; Mandal, Debaprasad; Bhattacharya, Arindam; Chattopadhyay, Samit; Das, Tanya; Sa, Gaurisankar

    2011-01-01

    Breast cancer cells often develop multiple mechanisms of drug resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. High constitutive activation of NFκB has been found in different cancers, creating an environment conducive for chemotherapeutic resistance. Here we report that doxorubicin-induced SMAR1-dependent transcriptional repression and SMAR1-independent degradation of IkBα resulted in nuclear translocation of p65NFκB and its association with p300 histone acetylase and subsequent transcription of Bcl-2 to impart protective response in drug-resistant cells. Consistently SMAR1-silenced drug-resistant cells exhibited IkBα-mediated inhibition of p65NFκB and induction of p53-dependent apoptosis. Interestingly, curcumin pretreatment of drug-resistant cells alleviated SMAR1-mediated p65NFκB activation and hence restored doxorubicin sensitivity. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic death cascade. Importantly, promyelocyte leukemia-mediated SMAR1 sequestration that relieved the repression of apoptosis-inducing genes was indispensable for such chemo-sensitizing ability of curcumin. A simultaneous decrease in drug-induced systemic toxicity by curcumin might also have enhanced the efficacy of doxorubicin by improving the intrinsic defense machineries of the tumor-bearer. Overall, the findings of this preclinical study clearly demonstrate the effectiveness of curcumin to combat doxorubicin-resistance. We, therefore, suggest curcumin as a potent chemo-sensitizer to improve the therapeutic index of this widely used anti-cancer drug. Taken together, these results suggest that curcumin can be developed into an adjuvant chemotherapeutic drug. PMID:22013068

  10. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    PubMed

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. The role of reactive oxygen species in WP 631-induced death of human ovarian cancer cells: a comparison with the effect of doxorubicin.

    PubMed

    Rogalska, Aneta; Gajek, Arkadiusz; Szwed, Marzena; Jóźwiak, Zofia; Marczak, Agnieszka

    2011-12-01

    In the present study, we investigated the anticancer activity of WP 631, a new anthracycline analog, in weakly doxorubicin-resistant SKOV-3 ovarian cancer cells. We studied the time-course of apoptotic and necrotic events: the production of reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in human ovarian cancer cells exposed to WP 631 in the presence and absence of an antioxidant, N-acetylcysteine (NAC). The effect of WP 631 was compared with the activity of doxorubicin (DOX), the best known first-generation anthracycline. Cytotoxic activity was determined by the MTT assay. The morphological changes characteristic of apoptosis and necrosis in drug-treated cells were analyzed by double staining with Hoechst 33258 and propidium iodide (PI) using fluorescence microscopy. The production of reactive oxygen species and changes in mitochondrial membrane potential were studied using specific fluorescence probes: DCFH2-DA and JC-1, respectively. The experiments showed that WP 631 was three times more cytotoxic than DOX in the tested cell line. It was found that the new anthracycline analog induced mainly apoptosis and, marginally, necrosis. Apoptotic cell death was associated with morphological changes and a decrease in mitochondrial membrane potential. In comparison to DOX, the novel bisanthracycline induced a significantly higher level of ROS and a greater drop in the membrane potential. The results provide direct evidence that the novel anthracycline WP 631 is considerably more cytotoxic to human SKOV-3 ovarian cancer cells than doxorubicin. The drug can produce ROS, which are immediately involved in the induction of apoptotic cell death. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    PubMed

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interference of P-REX2a may inhibit proliferation and reverse the resistance of SGC7901 cells to doxorubicin.

    PubMed

    Ai, Yaowei; Zhou, Qiaohui; Li, Ling; Pan, Zhihong; Guo, Mingwen; Han, Jingbo

    2018-03-01

    Drug resistance inhibits the efficacy of doxorubicin in gastric cancer. Phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by binding to and inactivating phosphatase and tensin homolog (PTEN), which functions as a tumor promoter in a number of types of cancer. However, there is no research concerning the association between P-REX2a expression and drug resistance in gastric cancer. In the present study, the expression of P-REX2a in clinical gastric cancer tissues was detected, and the mechanism of doxorubicin resistance in the gastric cancer cell line SGC7901 was investigated. Using reverse transcription-quantitative polymerase chain reaction and western blotting, it was demonstrated that the mRNA and protein expression of P-REX2a was increased in gastric cancer tissues. MTT assays were also used to determine proliferation, and proliferation was revealed to be reduced following transfection of P-REX2a small interfering (si)RNA. When the cells were treated with 0.3 µM doxorubicin for 24 h, the rate of apoptosis in the siRNA-transfected groups significantly increased and no marked changes in of PTEN and Akt expression were observed. By contrast, the activity of PTEN increased, and the expression of p-Akt (S473) decreased in the P-REX2a siRNA-transfected group compared with the control. The detection of PTEN enzymatic activity in the present study was based on phosphatidylinositol-3,4,5-trisphosphate. Therefore, it was concluded that P-REX2a may participate in the generation of resistance to doxorubicin in gastric cancer, and this may be associated with the upregulation of the PI3K/Akt signaling pathway via inactivation of PTEN.

  14. Release of the cyano moiety in the crystal structure of N-cyanomethyl-N-(2-methoxyethyl)-daunomycin complexed with d(CGATCG).

    PubMed

    Saminadin, P; Dautant, A; Mondon, M; Langlois D'estaintot, B; Courseille, C; Précigoux, G

    2000-01-01

    Doxorubicin is among the most widely used anthracycline in cancer chemotherapy. In an attempt to avoid the cardiotoxicity and drug resistance of doxorubicin therapy, several analogues were synthesized. The cyanomorpholinyl derivative is the most cytotoxic. They differ greatly from their parent compound in their biological and pharmacological properties, inducing cross-links in drug DNA complexes. The present study concerns N-cyanomethyl-N-(2-methoxyethyl)-daunomycin (CMDa), a synthetic analogue of cyanomorpholino-daunomycin. Compared to doxorubicin, CMDa displays a cytotoxic activity on L1210 leukemia cells at higher concentration but is effective on doxorubicin resistant cells. The results of fluorescence quenching experiments as well as the melting temperature (DeltaTm = 7.5 degrees C) studies are consistent with a drug molecule which intercalates between the DNA base pairs and stabilizes the DNA double helix. The crystal structure of CMDa complexed to the hexanucleotide d(CGATCG) has been determined at 1.5 A resolution. The complex crystallizes in the space group P41212 and is similar to other anthracycline-hexanucleotide complexes. In the crystal state, the observed densities indicate the formation of N-hydroxymethyl-N-(2-methoxyethyl)-daunomycin (HMDa) with the release of the cyano moiety without DNA alkylation. The formation of this degradation compound is discussed in relation with other drug modifications when binding to DNA. Comparison with two other drug-DNA crystal structures suggests a correlation between a slight change in DNA conformation and the nature of the amino sugar substituents at the N3' position located in the minor groove.

  15. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA

    PubMed Central

    Rahman, M.; Veigas, Maria; Williams, Paul J.; Fernandes, Gabriel

    2013-01-01

    Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil (FO), rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA treated mice as compared to EPA treated mice. Finally, doxorubicin resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone

  16. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation

    PubMed Central

    Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan

    2017-01-01

    Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and

  17. Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity.

    PubMed

    Patel, S; Sprung, A U; Keller, B A; Heaton, V J; Fisher, L M

    1997-10-01

    Doxorubicin is a therapeutically useful anticancer drug that exerts multiple biological effects. Its antitumor and cardiotoxic properties have been ascribed to anthracycline-mediated free radical damage to DNA and membranes. Evidence for this idea comes in part from the selection by doxorubicin from stationary phase yeast cells of mutants (petites) deficient in mitochondrial respiration and therefore defective in free radical generation. However, doxorubicin also binds to DNA topoisomerase II, converting the enzyme into a DNA damaging agent through the trapping of a covalent enzyme-DNA complex termed the 'cleavable complex.' We have used yeast to determine whether stabilization of cleavable complexes plays a role in doxorubicin action and cytotoxicity. A plasmid-borne yeast TOP2 gene was mutagenized with hydroxylamine and used to transform drug-permeable yeast strain JN394t2-4, which carries a temperature-sensitive top2-4 mutation in its chromosomal TOP2 gene. Selection in growth medium at the nonpermissive temperature of 35 degrees in the presence of doxorubicin resulted in the isolation of plasmid-borne top2 mutants specifying functional doxorubicin-resistant DNA topoisomerase II. Single-point changes of Gly748 to Glu or Ala642 to Ser in yeast topoisomerase II, which lie in and adjacent to the CAP-like DNA binding domain, respectively, were identified as responsible for resistance to doxorubicin, implicating these regions in drug action. None of the mutants selected in JN394t2-4, which has a rad52 defect in double-strand DNA break repair, was respiration-deficient. We conclude that topoisomerase II is an intracellular target for doxorubicin and that the genetic background and/or cell proliferation status can determine the relative importance of topoisomerase II- versus free radical-killing.

  18. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria).

    PubMed

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  19. Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    PubMed Central

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  20. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    PubMed

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p <0.001), indicating P-glycoprotein transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Emodin: One Main Ingredient of Shufeng Jiedu Capsule Reverses Chemoresistance of Lung Cancer Cells Through Inhibition of EMT.

    PubMed

    Ying, Yuan; Qingwu, Liao; Mingming, Xue; Zhenju, Song; Chaoyang, Tong; Zhengang, Tao

    2017-01-01

    Chemoresistance has become a an important worldwide problem to cancer treatment. Understanding the mechanism of drug resistance is the key to solve this problem and improve the survival of the patient. Doxorubicin and its analogues are widely used as antitumor drugs but many doxorubicin resistant cases have been identified in recent years. Doxorubicin (Dox) resistance is a very serious phenomenon in lung cancer treatment. As we could show previously, Shufeng Jiedu Capsule (SFJDC) can effectively reverse H69AR cells resistance to Dox, thus, the present study was designed to explore the mechanism underlying the effects of the main ingredient Emodin on chemosensitivity of H69AR cells to Dox. First, the growth inhibition rate of lung cancer cells and normal bronchial epithelial cells (BECs) was determined by MTT. Then, the resistance-induced epithelial-mesenchymal transition (EMT) of H69AR cells was examined by western blot and the effect of Emodin on Twist, Snail or Slug was assayed by Real-time PCR and Western blot. The activation of NF-kappa B was assayed by Western blot. Proliferation, apoptosis, migration and invasion of H69AR cells induced by Twist, Snail and Slug were also assayed by flow cytometry and transwell chamber. The results showed that after administration of Dox (10µM) with different concentrations of Emodin, the cells exhibited a dose-dependent inhibition action to H69AR cells at 48 hours. H69AR induced the expression of Twist, Snail, and Slug when compared with Dox-sensitive H69 cells. The expression of Twist, Snail, and Slug can be effectively inhibited by combination of Dox and Emodin. The reversal of resistance was associated with the inhibition of NF-kappa B. Twist, Snail and Slug promoted proliferation, migration and invasion and inhibited apoptosis. Our data suggest that Emodin can effectively reverse the resistance of H69AR to Dox, an effect paralleled by inhibition of EMT, cell proliferation, apoptosis, migration and invasion. © 2017 The

  2. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative.

    PubMed

    González, María L; Vera, D Mariano A; Laiolo, Jerónimo; Joray, Mariana B; Maccioni, Mariana; Palacios, Sara M; Molina, Gabriela; Lanza, Priscila A; Gancedo, Samanta; Rumjanek, Vivian; Carpinella, María C

    2017-01-01

    P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC 50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also

  3. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.

    PubMed

    Das, Chandan Kanta; Linder, Benedikt; Bonn, Florian; Rothweiler, Florian; Dikic, Ivan; Michaelis, Martin; Cinatl, Jindrich; Mandal, Mahitosh; Kögel, Donat

    2018-03-01

    Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549 r DOX 20 ) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468 r 5-FU 2000 ) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549 r DOX 20 and MDA-MB-468 r 5-FU 2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.