Science.gov

Sample records for abcg2-mediated multidrug resistance

  1. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2

    PubMed Central

    Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J.; Robey, Robert W.; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T.; Bates, Susan E.; Ambudkar, Suresh V.; Chen, Zhe-Sheng

    2014-01-01

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients. PMID:24980828

  2. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance.

    PubMed

    Shi, Zhi; Tiwari, Amit K; Shukla, Suneet; Robey, Robert W; Singh, Satyakam; Kim, In-Wha; Bates, Susan E; Peng, Xingxiang; Abraham, Ioana; Ambudkar, Suresh V; Talele, Tanaji T; Fu, Li-Wu; Chen, Zhe-Sheng

    2011-04-15

    Sildenafil is a potent and selective inhibitor of the type 5 cGMP (cyclic guanosine 3',5'-monophosphate)-specific phosphodiesterase that is used clinically to treat erectile dysfunction and pulmonary arterial hypertension. Here, we report that sildenafil has differential effects on cell surface ABC transporters such as ABCB1, ABCC1, and ABCG2 that modulate intracompartmental and intracellular concentrations of chemotherapeutic drugs. In ABCB1-overexpressing cells, nontoxic doses of sildenafil inhibited resistance and increased the effective intracellular concentration of ABCB1 substrate drugs such as paclitaxel. Similarly, in ABCG2-overexpressing cells, sildenafil inhibited resistance to ABCG2 substrate anticancer drugs, for example, increasing the effective intracellular concentration of mitoxantrone or the fluorescent compound BODIPY-prazosin. Sildenafil also moderately inhibited the transport of E(2)17βG and methotrexate by the ABCG2 transporter. Mechanistic investigations revealed that sildenafil stimulated ABCB1 ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin (IAAP), whereas it only slightly stimulated ABCG2 ATPase activity and inhibited photolabeling of ABCG2 with [(125)I]-IAAP. In contrast, sildenafil did not alter the sensitivity of parental, ABCB1-, or ABCG2-overexpressing cells to non-ABCB1 and non-ABCG2 substrate drugs, nor did sildenafil affect the function of another ABC drug transporter, ABCC1. Homology modeling predicted the binding conformation of sildenafil within the large cavity of the transmembrane region of ABCB1. Overall, we found that sildenafil inhibits the transporter function of ABCB1 and ABCG2, with a stronger effect on ABCB1. Our findings suggest a possible strategy to enhance the distribution and potentially the activity of anticancer drugs by jointly using a clinically approved drug with known side effects and drug-drug interactions. PMID:21402712

  3. A-803467, a tetrodotoxin-resistant sodium channel blocker, modulates ABCG2-mediated MDR in vitro and in vivo

    PubMed Central

    Patel, Atish; Zhang, Yun-Kai; Wang, Yi-Jun; Shukla, Suneet; Kathawala, Rishil J.; Kumar, Priyank; Gupta, Pranav; Ambudkar, Suresh V.; Wurpel, John N. D.; Chen, Zhe-Sheng

    2015-01-01

    ATP-binding cassette subfamily G member 2 (ABCG2) is a member of the ABC transporter superfamily proteins, which has been implicated in the development of multidrug resistance (MDR) in cancer, apart from its physiological role to remove toxic substances out of the cells. The diverse range of substrates of ABCG2 includes many antineoplastic agents such as topotecan, doxorubicin and mitoxantrone. ABCG2 expression has been reported to be significantly increased in some solid tumors and hematologic malignancies, correlated to poor clinical outcomes. In addition, ABCG2 expression is a distinguishing feature of cancer stem cells, whereby this membrane transporter facilitates resistance to the chemotherapeutic drugs. To enhance the chemosensitivity of cancer cells, attention has been focused on MDR modulators. In this study, we investigated the effect of a tetrodotoxin-resistant sodium channel blocker, A-803467 on ABCG2-overexpressing drug selected and transfected cell lines. We found that at non-toxic concentrations, A-803467 could significantly increase the cellular sensitivity to ABCG2 substrates in drug-resistant cells overexpressing either wild-type or mutant ABCG2. Mechanistic studies demonstrated that A-803467 (7.5 μM) significantly increased the intracellular accumulation of [3H]-mitoxantrone by inhibiting the transport activity of ABCG2, without altering its expression levels. In addition, A-803467 stimulated the ATPase activity in membranes overexpressed with ABCG2. In a murine model system, combination treatment of A-803467 (35 mg/kg) and topotecan (3 mg/kg) significantly inhibited the tumor growth in mice xenografted with ABCG2-overexpressing cancer cells. Our findings indicate that a combination of A-803467 and ABCG2 substrates may potentially be a novel therapeutic treatment in ABCG2-positive drug resistant cancers. PMID:26515463

  4. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors.

    PubMed

    Minocha, Mukul; Khurana, Varun; Qin, Bin; Pal, Dhananjay; Mitra, Ashim K

    2012-09-15

    The objectives of this study were (i) to characterize the interaction of vandetanib with P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) in vitro and in vivo (ii) to study the modulation of P-gp and BCRP mediated efflux of vandetanib with specific transport inhibitors and m-TOR inhibitors, everolimus and temsirolimus. Cellular accumulation and bi-directional transport studies in MDCKII cell monolayers were conducted to delineate the role of efflux transporters on disposition of vandetanib. Brain distribution studies were conducted in male FVB wild-type mice with vandetanib administered intravenously either alone or in the presence of specific inhibitors and m-TOR inhibitors. In vitro studies suggested that vandetanib is a high affinity substrate of Bcrp1 but is not transported by P-gp. Interestingly, in vivo brain distribution studies in FVB wild type mice indicated that vandetanib penetration into the brain is restricted by both Bcrp1 and P-gp mediated active efflux at the blood brain barrier (BBB). Co-administration of elacridar, a dual P-gp/BCRP inhibitor increased the brain to plasma concentration ratio of vandetanib upto 5 fold. Of the two m-TOR pathway inhibitors examined; everolimus showed potent effect on modulating vandetanib brain penetration whereas no significant affect on vandetanib brain uptake was observed following temsirolimus co-administration. This finding could be clinically relevant as everolimus can provide synergistic pharmacological effect in addition to primary role of vandetanib efflux modulation at BBB for the treatment of brain tumors. PMID:22633931

  5. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists

    PubMed Central

    To, Kenneth K W; Tomlinson, Brian

    2013-01-01

    Background and Purpose Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. Experimental Approach Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. Key Results The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. Conclusions and Implications Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal. PMID:24032744

  6. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    PubMed Central

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-01-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment. PMID:27157787

  7. Multidrug Resistant Acinetobacter

    PubMed Central

    Manchanda, Vikas; Sanchaita, Sinha; Singh, NP

    2010-01-01

    Emergence and spread of Acinetobacter species, resistant to most of the available antimicrobial agents, is an area of great concern. It is now being frequently associated with healthcare associated infections. Literature was searched at PUBMED, Google Scholar, and Cochrane Library, using the terms ‘Acinetobacter Resistance, multidrug resistant (MDR), Antimicrobial Therapy, Outbreak, Colistin, Tigecycline, AmpC enzymes, and carbapenemases in various combinations. The terms such as MDR, Extensively Drug Resistant (XDR), and Pan Drug Resistant (PDR) have been used in published literature with varied definitions, leading to confusion in the correlation of data from various studies. In this review various mechanisms of resistance in the Acinetobacter species have been discussed. The review also probes upon the current therapeutic options, including combination therapies available to treat infections due to resistant Acinetobacter species in adults as well as children. There is an urgent need to enforce infection control measures and antimicrobial stewardship programs to prevent the further spread of these resistant Acinetobacter species and to delay the emergence of increased resistance in the bacteria. PMID:20927292

  8. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters.

    PubMed

    Tiwari, Amit K; Sodani, Kamlesh; Wang, Si-Rong; Kuang, Ye-Hong; Ashby, Charles R; Chen, Xiang; Chen, Zhe-Sheng

    2009-07-15

    Nilotinib, a BCR-Abl tyrosine kinase inhibitor (TKI), was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia positive chronic myelogenous leukemia. Recently, it was shown that several human multidrug resistance (MDR) ATP-binding cassette (ABC) proteins could be modulated by specific TKIs. MDR can produce cancer chemotherapy failure, typically due to overexpression of ABC transporters, which are involved in the extrusion of therapeutic drugs. Here, we report for the first time that nilotinib potentiates the cytotoxicity of widely used therapeutic substrates of ABCG2, such as mitoxantrone, doxorubicin, and ABCB1 substrates including colchicine, vincristine, and paclitaxel. Nilotinib also significantly enhances the accumulation of paclitaxel in cell lines overexpressing ABCB1. Similarly, nilotinib significantly increases the intracellular accumulation of mitoxantrone in cells transfected with ABCG2. Furthermore, nilotinib produces a concentration-dependent inhibition of the ABCG2-mediated transport of methotrexate (MTX), as well as E(2)17betaG a physiological substrate of ABCG2. Uptake studies in membrane vesicles overexpressing ABCG2 have indicated that nilotinib inhibits ABCG2 similar to other established TKIs as well as fumitremorgin C. Nilotinib is a potent competitive inhibitor of MTX transport by ABCG2 with a K(i) value of 0.69+/-0.083 microM as demonstrated by kinetic analysis of nilotinib. Overall, our results indicate that nilotinib could reverse ABCB1- and ABCG2-mediated MDR by blocking the efflux function of these transporters. These findings may be used to guide the design of present and future clinical trials with nilotinib, elucidating potential pharmacokinetic interactions. Also, these findings may be useful in clinical practice for cancer combination therapy with nilotinib.

  9. Multidrug-Resistant TB

    PubMed Central

    Cox, Helen; Coomans, Fons

    2016-01-01

    Abstract The right to enjoy the benefits of scientific progress (REBSP) is a little-known but potentially valuable right that can contribute to rights-based approaches to addressing multidrug-resistant TB (MDR-TB). We argue that better understanding of the REBSP may help to advance legal and civil society action for health rights. While the REBSP does not provide an individual entitlement to have a new drug developed for MDR-TB, it sets up entitlements to expect a state to establish a legislative and policy framework aimed at developing scientific capacity to address the most important health issues and at disseminating the outcomes of scientific research. By making scientific findings available and accessible, people can be enabled to claim the use of science for social benefits. Inasmuch as the market fails to address neglected diseases such as MDR-TB, the REBSP provides a potential counterbalance to frame a positive obligation on states to both marshal their own resources and to coordinate the actions of multiple other actors towards this goal, including non-state actors. While the latter do not hold the same level of accountability as states, the REBSP can still enable the recognition of obligations at a level of “soft law” responsibilities. PMID:27780997

  10. Telatinib reverses chemotherapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo

    PubMed Central

    Sodani, Kamlesh; Patel, Atish; Anreddy, Nagaraju; Singh, Satyakam; Yang, Dong-Hua; Kathawala, Rishil J; Kumar, Priyank; Talele, Tanaji T; Chen, Zhe-Sheng

    2014-01-01

    Multidrug resistance (MDR) is a phenomenon where cancer cells become simultaneously resistant to anticancer drugs with different structures and mechanisms of action. MDR has been shown to be associated with overexpression of ATP-binding cassette (ABC) transporters. Here, we report that telatinib, a small molecule tyrosine kinase inhibitor, enhances the anticancer activity of ABCG2 substrate anticancer drugs by inhibiting ABCG2 efflux transporter activity. Co-incubation of ABCG2-overexpressing drug resistant cell lines with telatinib and ABCG2 substrate anticancer drugs significantly reduced cellular viability, whereas telatinib alone did not significantly affect drug sensitive and drug resistant cell lines. Telatinib at 1 μM did not significantly alter the expression of ABCG2 in ABCG2-overexpressing cell lines. Telatinib at 1 μM significantly enhanced the intracellular accumulation of [3H]-mitoxantrone (MX) in ABCG2-overexpressing cell lines. In addition, telatinib at 1 μM significantly reduced the rate of [3H]-MX efflux from ABCG2-overexpressing cells. Furthermore, telatinib significantly inhibited ABCG2-mediated transport of [3H]-E217βG in ABCG2 overexpressing membrane vesicles. Telatinib stimulated the ATPase activity of ABCG2 in a concentration-dependent manner, indicating that telatinib might be a substrate of ABCG2. Binding interactions of telatinib were found to be in transmembrane region of homology modeled human ABCG2. In addition, telatinib (15 mg/kg) with doxorubicin (1.8 mg/kg) significantly decreased the growth rate and tumor size of ABCG2 overexpressing tumors in a xenograft nude mouse model. These results, provided that they can be translated to humans, suggesting that telatinib, in combination with specific ABCG2 substrate drugs may be useful in treating tumors that overexpress ABCG2. PMID:24565910

  11. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model.

    PubMed

    Halwachs, Sandra; Schäfer, Ingo; Kneuer, Carsten; Seibel, Peter; Honscha, Walther

    2016-08-15

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim, chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B>A) directed transport of [(14)C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2 substrates

  12. A combination of curcumin with either gramicidin or ouabain selectively kills cells that express the multidrug resistance-linked ABCG2 transporter.

    PubMed

    Rao, Divya K; Liu, Haiyan; Ambudkar, Suresh V; Mayer, Michael

    2014-11-01

    This paper introduces a strategy to kill selectively multidrug-resistant cells that express the ABCG2 transporter (also called breast cancer resistance protein, or BCRP). The approach is based on specific stimulation of ATP hydrolysis by ABCG2 transporters with subtoxic doses of curcumin combined with stimulation of ATP hydrolysis by Na(+),K(+)-ATPase with subtoxic doses of gramicidin A or ouabain. After 72 h of incubation with the drug combinations, the resulting overconsumption of ATP by both pathways inhibits the efflux activity of ABCG2 transporters, leads to depletion of intracellular ATP levels below the viability threshold, and kills resistant cells selectively over cells that lack ABCG2 transporters. This strategy, which was also tested on a clinically relevant human breast adenocarcinoma cell line (MCF-7/FLV1), exploits the overexpression of ABCG2 transporters and induces caspase-dependent apoptotic cell death selectively in resistant cells. This work thus introduces a novel strategy to exploit collateral sensitivity (CS) with a combination of two clinically used compounds that individually do not exert CS. Collectively, this work expands the current knowledge on ABCG2-mediated CS and provides a potential strategy for discovery of CS drugs against drug-resistant cancer cells.

  13. Role of multidrug resistance in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.

    1992-06-01

    Multidrug resistance in cancer chemotherapy is a well established phenomenon. One of the most common phenotypical changes in acquired or intrinsic multidrug resistance in human tumor cells is the overexpression of the mdrl gene product P-glycoprotein, which acts as an active efflux pump. Increased levels of P-glycoprotein are associated with resistance to a variety of anticancer drugs commonly used in tumor chemotherapy like anthracyclins, vinca- alcaloids, epipodophyllotoxins or actinomycin D. We investigated the efficacy or photodynamic therapy in the treatment of tumor cells expressing the multidrug resistance phenotype. Our data show that multidrug resistant cells are highly cross resistant to the phototoxic stain rhodamine 123 but exhibit only low degrees of cross resistance (2 - 3 -folds) to the photosensitizers Photosan-3, Clorin-2, methylene blue and meso-tetra (4- sulfonatophenyl) porphine (TPPS4). Resistance is associated with a decrease in intracellular accumulation of the photosensitizer. Verapamil, a membrane active compound known to enhance drug sensitivity in multidrug resistant cells by inhibition of P-glycoprotein, also increases phototoxicity in multidrug resistant cells. Our results imply that tumors expressing the multidrug resistance phenotype might fail to respond to photochemotherapy with rhodamine 123. On the other hand, multidrug resistance may not play an important role in photodynamic therapy with Photosan-3, Chlorin-2, methylene blue or TPPS4.

  14. Multidrug resistance: an emerging crisis.

    PubMed

    Tanwar, Jyoti; Das, Shrayanee; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as "super bugs." Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections. PMID:25140175

  15. Multidrug resistance: an emerging crisis.

    PubMed

    Tanwar, Jyoti; Das, Shrayanee; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as "super bugs." Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections.

  16. Bifendate-chalcone hybrids: a new class of potential dual inhibitors of P-glycoprotein and breast cancer resistance protein.

    PubMed

    Gu, Xiaoke; Ren, Zhiguang; Peng, Hui; Peng, Sixun; Zhang, Yihua

    2014-12-12

    We previously described bifendate-chalcone hybrids as potent P-glycoprotein inhibitors. In the present work, we determine whether these compounds could reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance using HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. Results indicated that compounds 8d, 8f, 8g and 8h could significantly enhance mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP drug efflux function. The most active compound 8g exhibited little intrinsic cytotoxicity (IC₅₀>100 μM), and could reverse BCRP-mediated drug resistance independent of decreasing BCRP expression level. Notably, 8g had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. The present findings, together with the previous results, suggest that 8g might be act as dual inhibitors of P-gp and BCRP.

  17. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.

    PubMed Central

    Rattan, A.; Kalia, A.; Ahmad, N.

    1998-01-01

    Multidrug-resistant strains of Mycobacterium tuberculosis seriously threaten tuberculosis (TB) control and prevention efforts. Molecular studies of the mechanism of action of antitubercular drugs have elucidated the genetic basis of drug resistance in M. tuberculosis. Drug resistance in M. tuberculosis is attributed primarily to the accumulation of mutations in the drug target genes; these mutations lead either to an altered target (e.g., RNA polymerase and catalase-peroxidase in rifampicin and isoniazid resistance, respectively) or to a change in titration of the drug (e.g., InhA in isoniazid resistance). Development of specific mechanism-based inhibitors and techniques to rapidly detect multidrug resistance will require further studies addressing the drug and drug-target interaction. PMID:9621190

  18. Multidrug resistance: Physiological principles and nanomedical solutions.

    PubMed

    Kunjachan, Sijumon; Rychlik, Błażej; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-11-01

    Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies.

  19. [Travellers and multi-drug resistance bacteria].

    PubMed

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers. PMID:22413540

  20. MDRO - Multidrug-Resistant Organisms

    MedlinePlus

    ... MRSA in the workplace, see: Methicillin-resistan t Staphylococcus aure us (MRSA) . Provides links with general information, ... of these organisms include: MRSA - Methicillin/oxacillin-resistant Staphylococcus aureus VRE - Vancomycin-resistant enterococci ESBLs - Extended-spectrum ...

  1. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  2. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ). PMID:16922629

  3. Multidrug Resistance Proteins (MRPs) and Cancer Therapy.

    PubMed

    Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Chen, Zhe-Sheng

    2015-07-01

    The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed. PMID:25840885

  4. Multidrug Resistance Proteins (MRPs) and Cancer Therapy.

    PubMed

    Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Chen, Zhe-Sheng

    2015-07-01

    The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed.

  5. Phosphorylation of the multidrug resistance associated glycoprotein

    SciTech Connect

    Mellado, W.; Horwitz, S.B.

    1987-11-03

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistant phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl/sub 2/ was enhanced a minimum of 2-fold by 10 ..mu..M cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by (..gamma..-/sup 32/P)ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance.

  6. Congenital Transmission of Multidrug-Resistant Tuberculosis

    PubMed Central

    Espiritu, Nora; Aguirre, Lino; Jave, Oswaldo; Sanchez, Luis; Kirwan, Daniela E.; Gilman, Robert H.

    2014-01-01

    This article presents a case of multidrug-resistant tuberculosis (TB) in a Peruvian infant. His mother was diagnosed with disseminated TB, and treatment commenced 11 days postpartum. The infant was diagnosed with TB after 40 days and died at 2 months and 2 days of age. Congenital transmission of TB to the infant was suspected, because direct postpartum transmission was considered unlikely; also, thorough screening of contacts for TB was negative. Spoligotyping confirmed that both mother and baby were infected with identical strains of the Beijing family (SIT1). PMID:24821847

  7. Prolonged weightlessness affects promyelocytic multidrug resistance.

    PubMed

    Piepmeier, E H; Kalns, J E; McIntyre, K M; Lewis, M L

    1997-12-15

    An immortalized promyelocytic cell line was studied to detect how doxorubicin uptake is affected by microgravity. The purpose of this experiment was to identify the effect that microgravity may have on multidrug resistance in leukocytes. HL60 cells and HL60 cells resistant to anthracycline (HL60/AR) were grown in RPMI and 10% FBS. Upon reaching orbit in the Space Shuttle Endeavour, the cells were robotically mixed with doxorubicin. Three days after mixing, cells were fixed with paraformaldehyde/glutaraldehyde. Ground control experiments were conducted concurrently using a robot identical to the one used on the Shuttle. Fixed cells were analyzed within 2 weeks of launch. Confocal micrographs identified changes in cell structure (transmittance), drug distribution (fluorescence), and microtubule polymerization (fluorescence). Flight cells showed a lack of cytoskeletal polymerization resulting in an overall amorphic globular shape. Doxorubicin distribution in ground cells included a large numbers of vesicles relative to flight cells. There was a greater amount of doxorubicin present in flight cells (85% +/- 9.7) than in ground control cells (43% +/- 26) as determined by image analysis. Differences in microtubule formation between flight cells and ground cells could be partially responsible for the differences in drug distribution. Cytoskeletal interactions are critical to the function of P-glycoprotein as a drug efflux pump responsible for multidrug resistance.

  8. [Innovative treatments for multidrug-resistant bacteria].

    PubMed

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria. PMID:26427289

  9. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'.

    PubMed

    Khan, Shahper N; Khan, Asad U

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.

  10. Nanopreparations to overcome multidrug resistance in cancer.

    PubMed

    Patel, Niravkumar R; Pattni, Bhushan S; Abouzeid, Abraham H; Torchilin, Vladimir P

    2013-11-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail. PMID:23973912

  11. NANOPREPARATIONS TO OVERCOME MULTIDRUG RESISTANCE IN CANCER

    PubMed Central

    Patel, Niravkumar R.; Pattni, Bhushan S.; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2013-01-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing micro tumor tissues in vitro are discussed in detail. PMID:23973912

  12. Epidemiology and Treatment of Multidrug Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Appleton, Sasha C.; Shin, Sonya S.

    2010-01-01

    Multidrug resistant tuberculosis is now thought to afflict between 1 and 2 million patients annually. Although significant regional variability in the distribution of disease has been recorded, surveillance data are limited by several factors. The true burden of disease is likely underestimated. Nevertheless, the estimated burden is substantial enough to warrant concerted action. A range of approaches is possible, but all appropriate interventions require scale-up of laboratories and early treatment with regimens containing a sufficient number of second-line drugs. Ambulatory treatment for most patients, and improved infection control, can facilitate scale-up with decreased risk of nosocomial transmission. Several obstacles have been considered to preclude worldwide scale-up of treatment, mostly attributable to inadequate human, drug, and financial resources. Further delays in scale-up, however, risk continued generation and transmission of resistant tuberculosis, as well as associated morbidity and mortality. PMID:18810684

  13. Diversity among multidrug-resistant enterococci.

    PubMed Central

    Murray, B. E.

    1998-01-01

    Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge. PMID:9452397

  14. Management of multidrug-resistant tuberculosis.

    PubMed

    Iseman, M D

    1999-01-01

    Drug-resistant tuberculosis (TB) originally is the product of inadequate therapy; this may entail noncompliance with treatment, interrupted drug supplies, or inappropriate prescription. Patients may sequentially acquire resistance to several drugs through repetition of this process. Loss of activity of the major drugs greatly compromises the treatment process; most problematic is resistance to both isoniazid and rifampicin, so-called 'multidrug-resistant tuberculosis' (MDR-TB). Recent evidence indicates that MDR-TB is being transmitted to others, and particularly to persons with HIV infection/AIDS. Other situations in which epidemic spread of MDR-TB occurs include hospitals and prisons. In several areas of the world, ominous levels of MDR-TB have been identified in a recent WHO survey. Treatment of MDR-TB entails the use of poorly tolerated, second-line medications that are often toxic, and the duration of treatment must be extended to the range of two years. Resectional surgery may be required to effect cures in patients with advanced disease in which most of the first-line agents have been lost to resistance.

  15. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance.

    PubMed

    Jaspers, Janneke E; Sol, Wendy; Kersbergen, Ariena; Schlicker, Andreas; Guyader, Charlotte; Xu, Guotai; Wessels, Lodewyk; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2015-02-15

    Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.

  16. [Management of multidrug-resistant tuberculosis].

    PubMed

    Tritar, F; Daghfous, H; Ben Saad, S; Slim-Saidi, L

    2015-01-01

    The emergence of drug-resistant TB in many countries has become a major public health problem and an obstacle to effective tuberculosis control. Multidrug-resistant tuberculosis (MDR-TB), which is most often the result of poor adherence, is a particularly dangerous form of tuberculosis because it is caused by bacilli resistant to at least isoniazid and rifampicin, the two most effective anti-tuberculosis drugs. Techniques for rapid diagnosis of resistance have greatly improved the care of patients by allowing early treatment which remains complex and costly establishment, and requires skills and resources. The treatment is not standardized but it includes in all cases attack phase with five drugs (there must be an injectable agent and a fluoroquinolone that form the basis of the regimen) for eight months and a maintenance phase (without injectable agent) with a total duration of 20 months on average. Surgery may be beneficial as long as the lesions are localized and the patient has a good cardiorespiratory function. Evolution of MDR-TB treated is less favorable than tuberculosis with germ sensitive. The cure rate varies from 60 to 75% for MDR-TB, and drops to 30 to 40% for XDR-TB. Mortality remains high, ranging from 20 to 40% even up to 70-90% in people co-infected with HIV.

  17. Nosocomial transmission of multidrug-resistant tuberculosis.

    PubMed

    Crudu, V; Merker, M; Lange, C; Noroc, E; Romancenco, E; Chesov, D; Günther, G; Niemann, S

    2015-12-01

    Nosocomial transmission of multidrug-resistant tuberculosis (MDR-TB) was ascertained by 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and spoligotyping at four hospitals in the Republic of Moldova, a high MDR-TB burden country. Overall, 5.1% of patients with pan-susceptible TB at baseline were identified with MDR-TB during in-patient treatment. In 75% of cases, the MDR-TB strain was genetically distinct from the non-MDR-TB strain at baseline, suggesting a high rate of nosocomial transmission of MDR-TB. The highest proportion (40.3%) of follow-up MDR-TB isolates was associated with the M. tuberculosis URAL 163-15 strain.

  18. Nanomedicine to overcome cancer multidrug resistance.

    PubMed

    Yang, Xi; Yi, Cheng; Luo, Na; Gong, Changyang

    2014-01-01

    Cancer is still considered to be one of the most severe diseases so far. Multidrug resistance (MDR) is a major obstacle against curative cancer chemotherapy. The over-expression of drug efflux pumps in cellular membrane plays a critical role in preventing cancer cells from conventional chemotherapy. Nanotechnology is emerging as a class of therapeutics for MDR. This review mainly focuses on some pivotal strategies to combat MDR, including the enhanced permeability and retention (EPR) effect, stealth nanoparticles to prolong circulation time, endosomal escape, active drug delivery, stimuli sensitive drug release, and targeted co-delivery of different compounds. While convinced challenges need combatting, large numbers of preclinical studies strongly suggest that nanomedicine formations have potential application for improving the treatment of MDR. PMID:25255871

  19. Mechanisms of multidrug resistance in cancer.

    PubMed

    Gillet, Jean-Pierre; Gottesman, Michael M

    2010-01-01

    The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by numerous mechanisms including decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA repair mechanisms, evasion of drug-induced apoptosis, etc. In the first part of this chapter, we briefly summarize the current knowledge on individual cellular mechanisms responsible for MDR, with a special emphasis on ATP-binding cassette transporters, perhaps the main theme of this textbook. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been crowned with success. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing clinical samples could help to predict the development of resistance and lead to treatments designed to circumvent it. Our thoughts about translational research needed to achieve significant progress in the understanding of this complex phenomenon are therefore discussed in a third section. The pleotropic response of cancer cells to chemotherapy is summarized in a concluding diagram. PMID:19949920

  20. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  1. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB. PMID:26488585

  2. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia

    PubMed Central

    Volchenkov, Grigory V.; Kaminski, Dorothy A.; Somova, Tatiana R.; Kuznetsova, Tatiana A.; Kaunetis, Natalia V.; Cegielski, J. Peter; Kurbatova, Ekaterina V.

    2015-01-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB. PMID:26488585

  3. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB.

  4. Characterization of a Multidrug-Resistant, Novel Bacteroides Genomospecies

    PubMed Central

    Salipante, Stephen J.; Kalapila, Aley; Pottinger, Paul S.; Hoogestraat, Daniel R.; Cummings, Lisa; Duchin, Jeffrey S.; Sengupta, Dhruba J.; Pergam, Steven A.; Cookson, Brad T.

    2015-01-01

    Metronidazole- and carbapenem-resistant Bacteroides fragilis are rare in the United States. We isolated a multidrug-resistant anaerobe from the bloodstream and intraabdominal abscesses of a patient who had traveled to India. Whole-genome sequencing identified the organism as a novel Bacteroides genomospecies. Physicians should be aware of the possibility for concomitant carbapenem- and metronidazole-resistant Bacteroides infections. PMID:25529016

  5. Reversal of multidrug resistance by 7-O-benzoylpyripyropene A in multidrug-resistant tumor cells.

    PubMed

    Rho, M C; Hayashi, M; Fukami, A; Obata, R; Sunazuka, T; Tomoda, H; Komiyama, K; Omura, S

    2000-10-01

    7-O-Benzoylpyripyropene A (7-O-BzP), a semi-synthetic analog of pyripyropene, was investigated for its reversing effect on multidrug-resistant (MDR) tumor cells. 7-O-BzP (6.25 microg/ml) completely reversed resistance against vincristine and adriamycin in vincristine-resistant KB cells (VJ-300) and adriamycin-resistant P388 cells (P388/ADR), respectively. 7-O-BzP alone had no effect on the growth of drug sensitive and drug-resistant cells. 7-O-BzP (6.25 microg/ml) significantly enhanced accumulation of [3H]vincristine in VJ-300 cells and completely inhibited the binding of [3H]azidopine to the P-glycoprotein in VJ-300 cells and P388/ADR cells. The result suggests that 7-O-BzP effectively reverses P-glycoprotein-related MDR by interacting directly with P-glycoprotein in drug resistant VJ-300 and P388/ADR cells. PMID:11132967

  6. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    PubMed Central

    Basak, Silpi; Singh, Priyanka; Rajurkar, Monali

    2016-01-01

    Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance. PMID:26942013

  7. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    PubMed

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  8. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    PubMed

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion.

  9. Multidrug Resistant Shigella flexneri Infection Simulating Intestinal Intussusception.

    PubMed

    Sreenivasan, Srirangaraj; Kali, Arunava; Pradeep, Jothimani

    2016-01-01

    Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone. PMID:27013815

  10. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    PubMed

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  11. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    PubMed Central

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  12. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    PubMed

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  13. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    PubMed Central

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  14. Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany

    PubMed Central

    Prenger-Berninghoff, Ellen; Weiss, Reinhard; van der Reijden, Tanny; van den Broek, Peterhans; Baljer, Georg; Dijkshoorn, Lenie

    2011-01-01

    An increase in prevalence of multidrug-resistant Acinetobacter spp. in hospitalized animals was observed at the Justus-Liebig-University (Germany). Genotypic analysis of 56 isolates during 2000–2008 showed 3 clusters that corresponded to European clones I–III. Results indicate spread of genotypically related strains within and among veterinary clinics in Germany. PMID:21888812

  15. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  16. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    PubMed Central

    Kumar, Sanath; Mukherjee, Mun Mun; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. PMID:25750934

  17. [Investigation of extensive drug resistance in multidrug resistance tuberculosis isolates].

    PubMed

    Bektöre, Bayhan; Haznedaroğlu, Tunçer; Baylan, Orhan; Ozyurt, Mustafa; Ozkütük, Nuri; Satana, Dilek; Cavuşoğlu, Cengiz; Seber, Engin

    2013-01-01

    Increasing number of drug resistant tuberculosis (TB) cases, observed in recent years, is an important public health problem. Extensively drug resistant TB (XDR-TB) is the development of resistance against any fluoroquinolones and at least one of the injectable second line anti-TB drugs in addition to resistance against isoniazide and rifampicin which are the first line anti-TB drugs [definition of multidrug resistant TB (MDR-TB)]. Anti-TB therapy failed with first-line anti-TB drugs due to MDR-TB cases is being planned according to second-line anti-TB drug susceptibility test results if available and if not, standart treatment protocols are used. Although it is recommended that individual anti-TB therapy should be designed according to the isolate's susceptibility test results, standart therapeutic protocols are always needed since second-line anti-TB drug susceptibility testing generally could not be performed in developing countries like Turkey. For this reason, nationwide and regional surveillance studies to determine the resistance patterns are always needed to make decisions about the standard therapy algorithms. In this study, it was aimed to investigate the presence of extensive drug resistance among 81 MDR-TB isolates obtained from various health care facilities from Istanbul, Izmir and Manisa and to determine the XDR-TB incidence in Marmara and Aegean regions. Furthermore, we aimed to provide epidemiological data to clinicians to support their choice of second-line anti-TB drugs for MDR-TB infections. Susceptibility testing of isolates for the first and the second-line anti-TB drugs were performed by using modified Middlebrook 7H9 broth in fluorometric BACTEC MGIT 960 system (Becton Dickinson, USA). Eighty-one MDR-TB isolates included in this study were isolated from 43 (53.1%) patients residing in Istanbul, 26 (32.1%) in Izmir and 12 (14.8%) in Manisa provinces. We could not find any isolate consistent with XDR-TB definition in this study. Second

  18. Brazilian experience in the management of multidrug-resistance.

    PubMed

    de Melo, Fernando Augusto Fiuza

    2010-01-01

    In this article the author reviews the evolution of the approach to multidrug-resistant tuberculosis (MDR-TB) in Brazil following the introduction of rifampicin associated to isoniazid and pyrazinamide (RHZ). It shows Brazil was one of the world's first countries to use the RHZ regimen within a treatment system, with a first line regimen, another one specific for meningo-encephalic forms, for re-treatment of recurrences or of patients who returned with active tuberculosis after abandoning treatment, and a reserve regimen. The system was applied nationwide with guaranteed cost-free provision of medication, and self-administered. The author evaluates the growth of drug resistance, the emergence of multidrug-resistance and how management of this form of the disease has been organised.

  19. [Old and new antibiotics for therapy of multidrug resistant bacteria].

    PubMed

    Pintado, V

    2016-09-01

    The lack of new antibiotics for multidrug-resistant bacteria is a matter of concern in microorganisms such as Pseudomonas aeruginosa, ESBL- and carbapenemase-producing Enterobacteriaceae, Acinetobacter baumannii, methicillin-resistant Staphylococcous aureus and vancomycin-resistant Enterococcus faecium. This situation has conditioned the reuse of "old" antibiotics (colistin, fosfomycin), the use of more recent antibiotics with new indications or dosage regimens (tigecycline, meropenem) and the introduction of "new" antibiotics (β-lactams, lipoglycopeptides, oxazolidinones) that are the subject of this review. PMID:27608312

  20. Drug treatment for multidrug-resistant Acinetobacter baumannii infections.

    PubMed

    Bassetti, Matteo; Righi, Elda; Esposito, Silvano; Petrosillo, Nicola; Nicolini, Laura

    2008-12-01

    Acinetobacter baumannii has emerged in the last decades as a major cause of healthcare-associated infections and nosocomial outbreaks. Multidrug-resistant (MDR) A. baumannii is a rapidly emerging pathogen in healthcare settings, where it causes infections that include bacteremia, pneumonia, meningitis, and urinary tract and wound infections. Antimicrobial resistance poses great limits for therapeutic options in infected patients, especially if the isolates are resistant to the carbapenems. Other therapeutic options include sulbactam, aminoglycosides, polymixyns and tigecycline. The discovery of new therapies coupled with the development of controlled clinical trial antibiotic testing combinations and the prevention of transmission of MDR Acinetobacter infection are essential to face this important hospital problem.

  1. Multidrug-resistant Fusarium keratitis: diagnosis and treatment considerations.

    PubMed

    Sara, Sergio; Sharpe, Kendall; Morris, Sharon

    2016-01-01

    Mycotic keratitis is an ocular infective process derived from any fungal species capable of corneal invasion. Despite its rarity in developed countries, its challenging and elusive diagnosis may result in keratoplasty or enucleation following failed medical management. Filamentous fungi such as Fusarium are often implicated in mycotic keratitis. Bearing greater morbidity than its bacterial counterpart, mycotic keratitis requires early clinical suspicion and initiation of antifungal therapy to prevent devastating consequences. We describe a case of multidrug-resistant mycotic keratitis in a 46-year-old man who continued to decline despite maximal therapy and therapeutic keratoplasty. Finally, enucleation was performed as a means of source control preventing dissemination of a likely untreatable fungal infection into the orbit. Multidrug-resistant Fusarium is rare, and may progress to endophthalmitis. We discuss potential management options which may enhance diagnosis and outcome in this condition. PMID:27489066

  2. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-01-01

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics. PMID:27452236

  3. Metal nanobullets for multidrug resistant bacteria and biofilms.

    PubMed

    Chen, Ching-Wen; Hsu, Chia-Yen; Lai, Syu-Ming; Syu, Wei-Jhe; Wang, Ting-Yi; Lai, Ping-Shan

    2014-11-30

    Infectious diseases were one of the major causes of mortality until now because drug-resistant bacteria have arisen under broad use and abuse of antibacterial drugs. These multidrug-resistant bacteria pose a major challenge to the effective control of bacterial infections and this threat has prompted the development of alternative strategies to treat bacterial diseases. Recently, use of metallic nanoparticles (NPs) as antibacterial agents is one of the promising strategies against bacterial drug resistance. This review first describes mechanisms of bacterial drug resistance and then focuses on the properties and applications of metallic NPs as antibiotic agents to deal with antibiotic-sensitive and -resistant bacteria. We also provide an overview of metallic NPs as bactericidal agents combating antibiotic-resistant bacteria and their potential in vivo toxicology for further drug development.

  4. Draft Genome Sequence of Neisseria gonorrhoeae Sequence Type 1407, a Multidrug-Resistant Clinical Isolate

    PubMed Central

    Anselmo, A.; Ciammaruconi, A.; Carannante, A.; Neri, A.; Fazio, C.; Fortunato, A.; Palozzi, A. M.; Vacca, P.; Fillo, S.; Lista, F.

    2015-01-01

    Gonorrhea may become untreatable due to the spread of resistant or multidrug-resistant strains. Cefixime-resistant gonococci belonging to sequence type 1407 have been described worldwide. We report the genome sequence of Neisseria gonorrhoeae strain G2891, a multidrug-resistant isolate of sequence type 1407, collected in Italy in 2013. PMID:26272575

  5. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae.

    PubMed

    Golparian, Daniel; Shafer, William M; Ohnishi, Makoto; Unemo, Magnus

    2014-06-01

    The contribution of drug efflux pumps in clinical isolates of Neisseria gonorrhoeae that express extensively drug-resistant or multidrug-resistant phenotypes has heretofore not been examined. Accordingly, we assessed the effect on antimicrobial resistance of loss of the three gonococcal efflux pumps associated with a known capacity to export antimicrobials (MtrC-MtrD-MtrE, MacA-MacB, and NorM) in such clinical isolates. We report that the MIC of several antimicrobials, including seven previously and currently recommended for treatment was significantly impacted. PMID:24733458

  6. Environmental contamination by multidrug-resistant microorganisms after daily cleaning.

    PubMed

    Gavaldà, Laura; Pequeño, Sandra; Soriano, Ana; Dominguez, M Angeles

    2015-07-01

    We analyzed 91 samples of high-touch surfaces obtained within the first hour after daily cleaning in intensive care unit rooms occupied with patients with multidrug-resistant organisms (MDROs). We determined that 22% of high-touch surfaces in rooms with methicillin-resistant Staphylococcus aureus patients and 5% of high-touch surfaces in rooms with multiresistant Pseudomonas aeruginosa patients were colonized with the same strain as the patient. We postulated that textile cleaning wipes could be contaminated with MDROs and may contribute to its spreading within the room.

  7. Nanotechnology approaches for personalized treatment of multidrug resistant cancers.

    PubMed

    Minko, Tamara; Rodriguez-Rodriguez, Lorna; Pozharov, Vitaly

    2013-11-01

    The efficacy of chemotherapy is substantially limited by the resistance of cancer cells to anticancer drugs that fluctuates significantly in different patients. Under identical chemotherapeutic protocols, some patients may receive relatively ineffective doses of anticancer agents while other individuals obtain excessive amounts of drugs that induce severe adverse side effects on healthy tissues. The current review is focused on an individualized selection of drugs and targets to suppress multidrug resistance. Such selection is based on the molecular characteristics of a tumor from an individual patient that can potentially improve the treatment outcome and bring us closer to an era of personalized medicine. PMID:24120655

  8. Gut colonization by multidrug-resistant and carbapenem-resistant Acinetobacter baumannii in neonates.

    PubMed

    Roy, S; Viswanathan, R; Singh, A; Das, P; Basu, S

    2010-12-01

    Infections caused by Acinetobacter baumannii are a threat to neonates because of its resistance to antimicrobials, including carbapenems. In 2007, A. baumannii emerged as an important aerobic Gram-negative bacillus (12.5%, 4/32) that caused sepsis in our unit. A. baumannii from the gut of the neonates was analyzed, as this could be indicative of the antibiotic resistance of the organisms. The study attempts to understand the gut colonization with multidrug-resistant A. baumannii among hospitalized neonates with special reference to carbapenem resistance. A. baumannii was found in the gut of 11% of babies. Interestingly, 60.7% (17/28) and 21.4% (6/28) of the isolates from the gut were multidrug-resistant and carbapenem-resistant, respectively. The number of multidrug-resistant and carbapenem-resistant isolates from blood cultures were 3/4 and 1/4, respectively. The study reports for the first time OXA-23 and OXA-58 carbapenemases in A. baumannii from India. Pulsed field gel electrophoresis (PFGE) patterns indicated that the strains were diverse and no epidemic clone existed. Though A. baumannii gut colonization could not be implicated as a risk factor for subsequent sepsis, the high rate of isolation of multidrug-resistant and carbapenem-resistant isolates indicates that these therapeutic options might be drastically reduced among neonates in the future.

  9. Diversity and evolution of the small multidrug resistance protein family

    PubMed Central

    Bay, Denice C; Turner, Raymond J

    2009-01-01

    Background Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four α-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger α-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite transporter (DMT) superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa) was performed to expand upon previous evolutionary studies of the SMR protein family and its origins. Results A thorough annotation of unidentified/putative SMR sequences was performed placing sequences into each of the three SMR protein subclass designations, namely small multidrug proteins (SMP), suppressor of groEL mutations (SUG), and paired small multidrug resistance (PSMR) using protein alignments and phylogenetic analysis. Examination of SMR subclass distribution within Bacteria and Archaea taxa identified specific Bacterial classes that uniquely encode for particular SMR subclass members. The extent of selective pressure acting upon each SMR subclass was determined by calculating the rate of synonymous to non-synonymous nucleotide substitutions using Syn-SCAN analysis. SUG and SMP subclasses are maintained under moderate selection pressure in comparison to integron and plasmid encoded SMR homologues. Conversely, PSMR sequences are maintained under lower levels of selection pressure, where one of the two PSMR pairs diverges in sequence more rapidly than the other. SMR genomic loci surveys identified potential SMR efflux substrates based on its gene association to putative operons that encode for genes regulating amino acid biogenesis and QAC-like metabolites. SMR subclass protein transmembrane domain

  10. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    Moitra, Karobi

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  11. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014–2015

    PubMed Central

    Poramathikul, Kamonporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-01-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. PMID:27532684

  12. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015.

    PubMed

    Poramathikul, Kamonporn; Bodhidatta, Ladaporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-09-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. PMID:27532684

  13. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.

    PubMed

    Rai, M K; Deshmukh, S D; Ingle, A P; Gade, A K

    2012-05-01

    In the present scenario, pharmaceutical and biomedical sectors are facing the challenges of continuous increase in the multidrug-resistant (MDR) human pathogenic microbes. Re-emergence of MDR microbes is facilitated by drug and/or antibiotic resistance, which is acquired way of microbes for their survival and multiplication in uncomfortable environments. MDR bacterial infections lead to significant increase in mortality, morbidity and cost of prolonged treatments. Therefore, development, modification or searching the antimicrobial compounds having bactericidal potential against MDR bacteria is a priority area of research. Silver in the form of various compounds and bhasmas have been used in Ayurveda to treat several bacterial infections since time immemorial. As several pathogenic bacteria are developing antibiotic resistance, silver nanoparticles are the new hope to treat them. This review discusses the bactericidal potential of silver nanoparticles against the MDR bacteria. This multiactional nanoweapon can be used for the treatment and prevention of drug-resistant microbes.

  14. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  15. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  16. Prevalence of Multidrug Resistant Pulmonary Tuberculosis in North Bihar

    PubMed Central

    Kumar, Rajesh; Singh, Surya Deo

    2015-01-01

    Introduction Multidrug resistant tuberculosis (MDR-TB) is caused by Infection with Mycobacterium tuberculosis which is resistant to both isoniazid (INH) and rifampicin (RIF), with or without any other anti tubercular drug. It is caused by resistant mutant strains due to inadequate treatment and poor compliance. Due to time taking conventional diagnostic methods, drug resistant strains continue to spread. Therefore rapid diagnosis and treatment of MDR-TB strains are prerequisites for the worldwide fight against TB. Objective To determine the prevalence of MDR TB in North Bihar by molecular diagnostic method and to facilitate early diagnosis and treatment. Also, to find out the number of those diagnosed cases who were successfully initiated the treatment in MDR TB Centre of DMCH. Materials and Methods This six month observational study was carried out in IRL Darbhanga, Damien TB research Centre of the Darbhanga Medical College and Hospital, Bihar, India. During the period of February-July 2014, 256 sputum samples were collected from suspected cases of multidrug resistant tuberculosis, from 6 districts of North Bihar around Darbhanga. These samples were subjected to routine microscopy and culture to detect Mycobacterium tuberculosis. Positive cases were subjected to drug sensitivity test by a molecular diagnostic method, Using Genotype MTBDR plus kit. Result Out of 256 sputum samples from suspected cases of MDR TB, 122 cases were microscopy positive for tuberculosis. Among these 122 cases, tuberculosis was confirmed by PCR in 114 cases. Finally with the help of Line Probe Assay (LPA), 39(15%) samples were found to have resistance to both INH and Rifampicin. Male female ratio was 4:1. Conclusion The Prevalence of Multi drug resistant pulmonary tuberculosis in North Bihar is 15%. It needs early diagnosis by molecular diagnostic method and prompt treatment to reduce the spread of MDR TB cases. PMID:26674711

  17. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  18. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    PubMed

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs. PMID:27608311

  19. Treatment for patients with multidrug resistant Acinetobacter baumannii pulmonary infection

    PubMed Central

    PAN, TAO; LIU, XIAOYUN; XIANG, SHOUGUI; JI, WENLI

    2016-01-01

    Bacterial infections are common but have become increasingly resistant to drugs. The aim of the present study was to examine the combined treatment of traditional Chinese and Western medicine in 30 cases of pulmonary infection with multidrug resistant Acinetobacter baumannii. Patients were divided into groups A and B according to drug treatments. Cefoperazone or sulbactam and tanreqing were administered in group A, and cefoperazone or sulbactam in group B. The curative effect and prognosis of the two groups were recorded and the remaining treatments were performed routinely in the clinic. For the combined therapy group, which was administered sulperazone and tanreqing, 8 patients were recovered, 6 patients had significant effects, 3 patients exhibited some improvement and 1 patient had no response. One of the patients did not survive after 28 days. By contrast, there were 4 patients that were successfully treated, 3 patients with significant effects, 2 patients with some improvement and 2 patients had no response in the sulperazone group, and 4 patients did not survive after 28 days. In conclusion, the combined therapy of cefoperazone or sulbactam supplemented with tanreqing was identified to be more effective than cefoperazone or sulbactam as monotherapy, for treating multidrug resistant Acinetobacter baumannii. PMID:27073447

  20. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections. PMID:26111644

  1. Characterization of a multidrug resistant C. difficile meat isolate.

    PubMed

    Mooyottu, Shankumar; Flock, Genevieve; Kollanoor-Johny, Anup; Upadhyaya, Indu; Jayarao, Bhushan; Venkitanarayanan, Kumar

    2015-01-01

    Clostridium difficile is a pathogen of significant public health concern causing a life-threatening, toxin-mediated enteric disease in humans. The incidence and severity of the disease associated with C. difficile have increased in the US with the emergence of hypervirulent strains and community associated outbreaks. The detection of genotypically similar and identical C. difficile strains implicated from human infections in foods and food animals indicates the potential role of food as a source of community associated C. difficile disease. One hundred samples each of ground beef, pork and chicken obtained from geographically distant grocery stores in Connecticut were tested for C. difficile. Positive isolates were characterized by ribotyping, antibiotic susceptibility, toxin production and whole genome sequencing. Of the 300 meat samples, only two pork samples tested positive for C. difficile indicating a very low prevalence of C. difficile in meat. The isolates were non toxigenic; however, genome characterization revealed the presence of several antibiotic resistance genes and mobile elements that can potentially contribute to generation of multidrug resistant toxigenic C. difficile by horizontal gene transfer. Further studies are warranted to investigate potential food-borne transmission of the meat isolates and development of multi-drug resistance in these strains.

  2. Multidrug-resistant organisms, wounds and topical antimicrobial protection.

    PubMed

    Bowler, Philip G; Welsby, Sarah; Towers, Victoria; Booth, Rebecca; Hogarth, Andrea; Rowlands, Victoria; Joseph, Alexis; Jones, Samantha A

    2012-08-01

    Multidrug-resistant organisms (MDROs) are increasingly implicated in both acute and chronic wound infections. The limited therapeutic options are further compromised by the fact that wound bacteria often co-exist within a biofilm community which enhances bacterial tolerance to antibiotics. As a consequence, topical antiseptics may be an important consideration for minimising the opportunity for wound infections involving MDROs. The objective of this research was to investigate the antimicrobial activity of a silver-containing gelling fibre dressing against a variety of MDROs in free-living and biofilm states, using stringent in vitro models designed to simulate a variety of wound conditions. MDROs included Acinetobacter baumannii, community-associated methicillin-resistant Staphylococcus aureus, and extended-spectrum beta-lactamase-producing bacteria. Clostridium difficile was also included in the study because it carries many of the characteristics seen in MDROs and evidence of multidrug resistance is emerging. Sustained in vitro antimicrobial activity of the silver-containing dressing was shown against 10 MDROs in a simulated wound fluid over 7 days, and inhibitory and bactericidal effects against both free-living and biofilm phenotypes were also consistently shown in simulated colonised wound surface models. The in vitro data support consideration of the silver-containing gelling fibre dressing as part of a protocol of care in the management of wounds colonised or infected with MDROs.

  3. Breaking the Spell: Combating Multidrug Resistant ‘Superbugs’

    PubMed Central

    Khan, Shahper N.; Khan, Asad U.

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to “escape” from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing. PMID:26925046

  4. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing.

    PubMed

    Kalokhe, Ameeta S; Shafiq, Majid; Lee, James C; Ray, Susan M; Wang, Yun F; Metchock, Beverly; Anderson, Albert M; Nguyen, Minh Ly T

    2013-02-01

    Multidrug-resistant tuberculosis (MDR TB), defined by resistance to the 2 most effective first-line drugs, isoniazid and rifampin, is on the rise globally and is associated with significant morbidity and mortality. Despite the increasing availability of novel rapid diagnostic tools for Mycobacterium tuberculosis (Mtb) drug susceptibility testing, the clinical applicability of these methods is unsettled. In this study, the mechanisms of action and resistance of Mtb to isoniazid and rifampin, and the utility, advantages and limitations of the available Mtb drug susceptibility testing tools are reviewed, with particular emphasis on molecular methods with rapid turnaround including line probe assays, molecular beacon-based real-time polymerase chain reaction and pyrosequencing. The authors conclude that neither rapid molecular drug testing nor phenotypic methods are perfect in predicting Mtb drug susceptibility and therefore must be interpreted within the clinical context of each patient.

  5. Immunotherapy: A useful strategy to help combat multidrug resistance

    PubMed Central

    Curiel, Tyler J.

    2012-01-01

    Multidrug resistance (MDR) renders cancer cells relatively invulnerable to treatment with many standard cytotoxic anti-cancer agents. Cancer immunotherapy could be an important adjunct other strategies to treat MDR positive cancers, as resistance to immunotherapy generally is unrelated to mechanisms of resistance to cytotoxic agents. Immunotherapy to combat MDR positive tumors could use any of the following strategies: direct immune attack against MDR positive cells, using MDR as an immune target to deliver cytotoxic agents, capitalization on other immune properties of MDR positive cells, or conditional immunotoxins expressed under MDR control. Additional insights into the immunogenic potential of some cytotoxic agents can also be brought to bear on these strategies. This review will highlight key concepts in cancer immunotherapy and illustrate immune principles and strategies that have been or could be used to help destroy MDR positive tumor cells, either alone or in rational combinations. PMID:22483359

  6. Nanodrug delivery in reversing multidrug resistance in cancer cells

    PubMed Central

    Kapse-Mistry, Sonali; Govender, Thirumala; Srivastava, Rohit; Yergeri, Mayur

    2014-01-01

    Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp), multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective, and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB. “Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent, and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  7. Draft Genome of the Multidrug-Resistant Acinetobacter baumannii Strain A155 Clinical Isolate

    PubMed Central

    Arivett, Brock A.; Fiester, Steven E.; Ream, David C.; Centrón, Daniela; Ramírez, Maria S.; Tolmasky, Marcelo E.

    2015-01-01

    Acinetobacter baumannii is a bacterial pathogen with serious implications on human health, due to increasing reports of multidrug-resistant strains isolated from patients. Total DNA from the multidrug-resistant A. baumannii strain A155 clinical isolate was sequenced to greater than 65× coverage, providing high-quality contig assemblies. PMID:25814610

  8. Multidrug resistance in a human leukemic cell line selected for resistance to trimetrexate.

    PubMed

    Arkin, H; Ohnuma, T; Kamen, B A; Holland, J F; Vallabhajosula, S

    1989-12-01

    Trimetrexate (TMQ) is a lipophilic antifolate shown to have antitumor activity in humans. TMQ-resistant sublines of the MOLT-3 human acute lymphoblastic leukemia cell line were developed and were designated as MOLT-3/TMQ200, MOLT-3/TMQ800, and MOLT-3/TMQ2500 based on degrees of resistance to TMQ. The TMQ resistance was accompanied by 5- to 7-fold increases in dihydrofolate reductase activity and markedly reduced cellular TMQ accumulation. Methotrexate accumulation was not impaired in TMQ-resistant cells. TMQ retention (efflux) was unchanged in these TMQ-resistant cells. Verapamil enhanced the TMQ accumulation in the resistant cells to the level seen in the parent cells but had no effects on the TMQ retention. These sublines were cross-resistant not only to methotrexate but also to vincristine, doxorubicin, daunorubicin, and mitoxantrone. There was no cross-resistance to bleomycin or cisplatin. Resistance to vincristine, doxorubicin, daunorubicin, and mitoxantrone was reversed by verapamil. TMQ resistance was only minimally reversed by verapamil and methotrexate resistance not affected at all. Both cellular accumulation and retention of vincristine and daunorubicin in the TMQ-resistant cells were markedly decreased. Verapamil enhanced both accumulation and retention of the drug. Plasma membrane fractions of the TMQ-resistant cells analyzed by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by staining with Coomassie Blue revealed the presence of a distinct band with a molecular weight of 170,000. Immunoblot analysis with 125I-labeled monoclonal antibody raised against P-glycoprotein of multidrug-resistant Chinese hamster ovary cells (C219) cross-reacted with the Mr 170,000 protein of the TMQ-resistant cells. These results show that the TMQ-resistant cells displayed not only decreased TMQ uptake and increased dihydrofolate reductase but also characteristics associated with a classical multidrug-resistant phenotype. Multidrug resistance

  9. Cell biological mechanisms of multidrug resistance in tumors.

    PubMed

    Simon, S M; Schindler, M

    1994-04-26

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  10. Early Biomarkers and Regulatory Innovation in Multidrug-Resistant Tuberculosis.

    PubMed

    Wallis, Robert S; Peppard, Thomas

    2015-10-15

    Biomarkers play an essential role in accelerating drug development. Sputum culture conversion using solid medium is the best-characterized tuberculosis biomarker, having been examined at the patient and trial levels in studies with thousands of subjects, and having recently been validated using data from 3 unsuccessful phase 3 trials. We presently are poised at the threshold of regulatory innovation for antibacterials to treat drug-resistant infections, in which Special Medical Use authorization restricted to patients with limited options could be based on the results of small clinical trials. Patients worldwide would be well served by licensing of new regimens for multidrug-resistant tuberculosis based on biomarker evidence commensurate with the urgency of the current global crisis. PMID:26409278

  11. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    NASA Astrophysics Data System (ADS)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  12. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  13. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages.

    PubMed

    Zarrilli, Raffaele; Pournaras, Spyros; Giannouli, Maria; Tsakris, Athanassios

    2013-01-01

    The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance. PMID:23127486

  14. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance.

    PubMed

    Bottery, Michael J; Wood, A Jamie; Brockhurst, Michael A

    2016-04-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  15. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    PubMed Central

    Wood, A. Jamie; Brockhurst, Michael A.

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  16. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  17. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D; Sifuentes-Osornio, José; Cave, M Donald; Ponce de León, Alfredo; Alland, David

    2006-08-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  18. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  19. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae.

    PubMed

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.

  20. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe.

    PubMed

    Cole, M J; Spiteri, G; Chisholm, S A; Hoffmann, S; Ison, C A; Unemo, M; Van de Laar, M

    2014-11-13

    Neisseria gonorrhoeae has consistently developed resistance to antimicrobials used therapeutically for gonorrhoea and few antimicrobials remain for effective empiric first-line therapy. Since 2009 the European gonococcal antimicrobial surveillance programme (Euro-GASP) has been running as a sentinel surveillance system across Member States of the European Union (EU) and European Economic Area (EEA) to monitor antimicrobial susceptibility in N. gonorrhoeae. During 2011, N. gonorrhoeae isolates were collected from 21 participating countries, and 7.6% and 0.5% of the examined gonococcal isolates had in vitro resistance to cefixime and ceftriaxone, respectively. The rate of ciprofloxacin and azithromycin resistance was 48.7% and 5.3%, respectively. Two (0.1%) isolates displayed high-level resistance to azithromycin, i.e. a minimum inhibitory concentration (MIC) ≥256 mg/L. The current report further highlights the public health need to implement the European response plan, including further strengthening of Euro-GASP, to control and manage the threat of multidrug resistant N. gonorrhoeae.

  1. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe.

    PubMed

    Cole, M J; Spiteri, G; Chisholm, S A; Hoffmann, S; Ison, C A; Unemo, M; Van de Laar, M

    2014-01-01

    Neisseria gonorrhoeae has consistently developed resistance to antimicrobials used therapeutically for gonorrhoea and few antimicrobials remain for effective empiric first-line therapy. Since 2009 the European gonococcal antimicrobial surveillance programme (Euro-GASP) has been running as a sentinel surveillance system across Member States of the European Union (EU) and European Economic Area (EEA) to monitor antimicrobial susceptibility in N. gonorrhoeae. During 2011, N. gonorrhoeae isolates were collected from 21 participating countries, and 7.6% and 0.5% of the examined gonococcal isolates had in vitro resistance to cefixime and ceftriaxone, respectively. The rate of ciprofloxacin and azithromycin resistance was 48.7% and 5.3%, respectively. Two (0.1%) isolates displayed high-level resistance to azithromycin, i.e. a minimum inhibitory concentration (MIC) ≥256 mg/L. The current report further highlights the public health need to implement the European response plan, including further strengthening of Euro-GASP, to control and manage the threat of multidrug resistant N. gonorrhoeae. PMID:25411689

  2. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  3. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae

    PubMed Central

    Delgado-Valverde, Mercedes; Sojo-Dorado, Jesús; Pascual, Álvaro

    2013-01-01

    Enterobacteriaceae showing resistance to cephalosporins due to extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC enzymes, and those producing carbapenemases have spread worldwide during the last decades. Many of these isolates are also resistant to other first-line agents such as fluoroquinolones or aminoglycosides, leaving few available options for therapy. Thus, older drugs such as colistin and fosfomycin are being increasingly used. Infections caused by these bacteria are associated with increased morbidity and mortality compared with those caused by their susceptible counterparts. Most of the evidence supporting the present recommendations is from in vitro data, animal studies, and observational studies. While carbapenems are considered the drugs of choice for ESBL and AmpC producers, recent data suggest that certain alternatives may be suitable for some types of infections. Combined therapy seems superior to monotherapy in the treatment of invasive infections caused by carbapenemase-producing Enterobacteriaceae. Optimization of dosage according to pharmacokinetics/pharmacodynamics data is important for the treatment of infections caused by isolates with borderline minimum inhibitory concentration due to low-level resistance mechanisms. The increasing frequency and the rapid spread of multidrug resistance among the Enterobacteriaceae is a true and complex public health problem. PMID:25165544

  4. Clonality of multidrug-resistant nontypeable strains of Haemophilus influenzae.

    PubMed Central

    Fusté, M C; Pineda, M A; Palomar, J; Viñas, M; Lorén, J G

    1996-01-01

    The genetic structure of a population of multidrug-resistant nontypeable (unencapsulated) Haemophilus influenzae strains isolated at a hospital in Barcelona, Spain, was investigated by using multilocus enzyme electrophoresis to determine the allelic variation in 15 structural loci. In our study we have also included some antimicrobial agent-susceptible strains isolated at the same hospital. All enzymes were polymorphic for two to eight electromorphs, and the analysis revealed 43 distinct electrophoretic types among the 44 isolates. The mean genetic diversity of the entire population was 0.55. Multilocus linkage disequilibrium analysis of the isolates revealed a strong association between alleles, suggesting little possibility of recombination. Furthermore, the dendrogram and the allele mismatch distribution are typical of a population with no extensive genetic mixing. PMID:8897179

  5. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  6. Bacteriophages: biosensing tools for multi-drug resistant pathogens.

    PubMed

    Tawil, N; Sacher, E; Mandeville, R; Meunier, M

    2014-03-21

    Pathogen detection is of utmost importance in many sectors, such as in the food industry, environmental quality control, clinical diagnostics, bio-defence and counter-terrorism. Failure to appropriately, and specifically, detect pathogenic bacteria can lead to serious consequences, and may ultimately be lethal. Public safety, new legislation, recent outbreaks in food contamination, and the ever-increasing prevalence of multidrug-resistant infections have fostered a worldwide research effort targeting novel biosensing strategies. This review concerns phage-based analytical and biosensing methods targeted towards theranostic applications. We discuss and review phage-based assays, notably phage amplification, reporter phage, phage lysis, and bioluminescence assays for the detection of bacterial species, as well as phage-based biosensors, including optical (comprising SPR sensors and fiber optic assays), electrochemical (comprising amperometric, potentiometric, and impedimetric sensors), acoustic wave and magnetoelastic sensors.

  7. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  8. An outbreak of multidrug-resistant tuberculosis among a family.

    PubMed

    Iliaz, Sinem; Caglar, Emel; Koksalan, Orhan Kaya; Chousein, Efsun Gonca Ugur

    2016-04-01

    Tuberculosis is a major public health problem and it may be complicated by multidrug-resistant tuberculosis (MDR-TB). Wide transmission among immunocompetent contacts of the index case is possible. If you detect tuberculosis in two contacts of the index case, it is called an outbreak. The aim of our paper is to evaluate the characteristics of a MDR-TB outbreak affecting 7 people in a family treated during 2012-2014 in Istanbul Yedikule Training and Research Hospital for Chest Disease and Thoracic Surgery, Turkey. The cultures, spoligotyping, and DNA fingerprinting revealed the same Mycobacterium tuberculosis species as T1 genotype and ST53 subtype. All patients were negative for human immunodeficiency virus and free of other underlying diseases. PMID:27451825

  9. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants.

    PubMed

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; Pinto, José Paes de Almeida Nogueira; Bersot, Luciano dos Santos

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp.

  10. Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates

    PubMed Central

    2014-01-01

    Background Klebsiella pneumoniae is a frequent nosocomial pathogen, with the multidrug-resistant (MDR) K. pneumoniae being a major public health concern, frequently causing difficult-to-treat infections worldwide. The aim of this study was to investigate the molecular characterization of clinical MDR Klebsiella pneumoniae isolates. Methods A total of 27 non-duplicate MDR K. pneumoniae isolates with a CTX-CIP-AK resistance pattern were investigated for the prevalence of antimicrobial resistance genes including extended spectrum β-lactamase genes (ESBLs), plasmid-mediated quinolone resistance (PMQR) genes, 16S rRNA methylase (16S-RMTase) genes, and integrons by polymerase chain reaction (PCR) amplification and DNA sequencing. Plasmid replicons were typed by PCR-based replicon typing (PBRT). Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were carried out to characterize the strain relatedness. Results All the isolates co-harbored 3 or more resistance determinants. OqxAB, CTX-M-type ESBLs and RmtB were the most frequent determinants, distributed among19 (70.4%),18 (66.7%) and 8 (29.6%) strains. Fourteen isolates harbored class 1 integrons, with orfD-aacA4 being the most frequent gene cassette array. Class 3 integrons were less frequently identified and contained the gene cassette array of blaGES-1-blaOXA-10-aac(6′)-Ib. IncFII replicon was most commonly found in this collection. One cluster was observed with ≥80% similarity among profiles obtained by PFGE, and one sequence type (ST) by MLST, namely ST11, was observed in the cluster. Conclusion K. pneumoniae carbapenemase (KPC)–producing ST11 was the main clone detected. Of particular concern was the high prevalence of multiple resistance determinants, classs I integrons and IncFII plasmid replicon among these MDR strains, which provide advantages for the rapid development of MDR strains. PMID:24884610

  11. ATP7B expression confers multidrug resistance through drug sequestration.

    PubMed

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-04-19

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells.In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin.In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin.ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype.Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly.We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  12. Heteroresistance to Colistin in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Li, Jian; Rayner, Craig R.; Nation, Roger L.; Owen, Roxanne J.; Spelman, Denis; Tan, Kar Eng; Liolios, Lisa

    2006-01-01

    Multidrug-resistant Acinetobacter baumannii has emerged as a significant clinical problem worldwide and colistin is being used increasingly as “salvage” therapy. MICs of colistin against A. baumannii indicate its significant activity. However, resistance to colistin in A. baumannii has been reported recently. Clonotypes of 16 clinical A. baumannii isolates and ATCC 19606 were determined by pulsed-field gel electrophoresis (PFGE), and colistin MICs were measured. The time-kill kinetics of colistin against A. baumannii ATCC 19606 and clinical isolate 6 were investigated, and population analysis profiles (PAPs) were conducted. Resistance development was investigated by serial passaging with or without exposure to colistin. Five different PFGE banding patterns were found in the clinical isolates. MICs of colistin against all isolates were within 0.25 to 2 μg/ml. Colistin showed early concentration-dependent killing, but bacterial regrowth was observed at 24 h. PAPs revealed that heteroresistance to colistin occurred in 15 of the 16 clinical isolates. Subpopulations (<0.1% from inocula of 108 to 109 CFU/ml) of ATCC 19606, and most clinical isolates grew in the presence of colistin 3 to 10 μg/ml. Four successive passages of ATCC 19606 in broth containing colistin (up to 200 μg/ml) substantially increased the proportion of the resistant subpopulations able to grow in the presence of colistin at 10 μg/ml from 0.000023 to 100%; even after 16 passages in colistin-free broth, the proportion only decreased to 2.1%. This represents the first demonstration of heterogeneous colistin-resistant A. baumannii in “colistin-susceptible” clinical isolates. Our findings give a strong warning that colistin-resistant A. baumannii may be observed more frequently due to potential suboptimal dosage regimens recommended in the product information of some products of colistin methanesulfonate. PMID:16940086

  13. ATP7B expression confers multidrug resistance through drug sequestration

    PubMed Central

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-01-01

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells. In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin. In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin. ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype. Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly. We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  14. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  15. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    PubMed

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  16. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis.

    PubMed

    van Rijn, Sander P; van Altena, Richard; Akkerman, Onno W; van Soolingen, Dick; van der Laan, Tridia; de Lange, Wiel C M; Kosterink, Jos G W; van der Werf, Tjip S; Alffenaar, Jan-Willem C

    2016-04-01

    Treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) is becoming more challenging because of increased levels of drug resistance against second-line TB drugs. One promising group of antimicrobial drugs is carbapenems. Ertapenem is an attractive carbapenem for the treatment of MDR- and XDR-TB because its relatively long half-life enables once-daily dosing.A retrospective study was performed for all patients with suspected MDR-TB at the Tuberculosis Center Beatrixoord of the University Medical Center Groningen (Haren, the Netherlands) who received ertapenem as part of their treatment regimen between December 1, 2010 and March 1, 2013. Safety and pharmacokinetics were evaluated.18 patients were treated with 1000 mg ertapenem for a mean (range) of 77 (5-210) days. Sputum smear and culture were converted in all patients. Drug exposure was evaluated in 12 patients. The mean (range) area under the concentration-time curve up to 24 h was 544.9 (309-1130) h·mg·L(-1) The mean (range) maximum observed plasma concentration was 127.5 (73.9-277.9) mg·L(-1)In general, ertapenem treatment was well tolerated during MDR-TB treatment and showed a favourable pharmacokinetic/pharmacodynamic profile in MDR-TB patients. We conclude that ertapenem is a highly promising drug for the treatment of MDR-TB that warrants further investigation. PMID:26743484

  17. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    PubMed

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected. PMID:26289547

  18. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    PubMed

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  19. Draft genome sequence of Acinetobacter baumannii strain NCTC 13423, a multidrug-resistant clinical isolate.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Acinetobacter baumannii is a pathogen that is becoming increasingly important and causes serious hospital-acquired infections. We sequenced the genome of A. baumannii NCTC 13423, a multidrug-resistant strain belonging to the international clone II group, isolated from a human infection in the United Kingdom in 2003. The 3,937,944 bp draft genome has a GC-content of 39.0 % and a total of 3672 predicted protein-coding sequences. The availability of genome sequences of multidrug-resistant A. baumannii isolates will fuel comparative genomic studies to help understand the worrying spread of multidrug resistance in this pathogen. PMID:27594976

  20. Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.

    PubMed

    Frappier, F; Jossang, A; Soudon, J; Calvo, F; Rasoanaivo, P; Ratsimamanga-Urverg, S; Saez, J; Schrevel, J; Grellier, P

    1996-06-01

    Ten naturally occurring bisbenzylisoquinolines (BBIQ) and two dihydro derivatives belonging to five BBIQ subgroups were evaluated in vitro for their ability to inhibit Plasmodium falciparum growth and, in drug combination, to reverse the resistance to chloroquine of strain FcB1. The same alkaloids were also assessed in vitro for their potentiating activity against vinblastine with the multidrug-resistant clone CCRF-CEM/VLB, established from lymphoblastic acute leukemia. Three of the BBIQ tested had 50% inhibitory concentrations of less than 1 microM. The most potent antimalarial agent was cocsoline (50% inhibitory concentration, 0.22 microM). Regarding the chloroquine-potentiating effect, fangchinoline exhibited the highest biological activity whereas the remaining compounds displayed either antagonistic or slight synergistic effects. Against the multidrug-resistant cancer cell line, fangchinoline was also by far the most active compound. Although there were clear differences between the activities of tested alkaloids, no relevant structure-activity relationship could be established. Nevertheless, fangchinoline appears to be a new biochemical tool able to help in the comprehension of the mechanism of both chloroquine resistance in P. falciparum and multidrug resistance in tumor cells. PMID:8726022

  1. Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.

    PubMed Central

    Frappier, F; Jossang, A; Soudon, J; Calvo, F; Rasoanaivo, P; Ratsimamanga-Urverg, S; Saez, J; Schrevel, J; Grellier, P

    1996-01-01

    Ten naturally occurring bisbenzylisoquinolines (BBIQ) and two dihydro derivatives belonging to five BBIQ subgroups were evaluated in vitro for their ability to inhibit Plasmodium falciparum growth and, in drug combination, to reverse the resistance to chloroquine of strain FcB1. The same alkaloids were also assessed in vitro for their potentiating activity against vinblastine with the multidrug-resistant clone CCRF-CEM/VLB, established from lymphoblastic acute leukemia. Three of the BBIQ tested had 50% inhibitory concentrations of less than 1 microM. The most potent antimalarial agent was cocsoline (50% inhibitory concentration, 0.22 microM). Regarding the chloroquine-potentiating effect, fangchinoline exhibited the highest biological activity whereas the remaining compounds displayed either antagonistic or slight synergistic effects. Against the multidrug-resistant cancer cell line, fangchinoline was also by far the most active compound. Although there were clear differences between the activities of tested alkaloids, no relevant structure-activity relationship could be established. Nevertheless, fangchinoline appears to be a new biochemical tool able to help in the comprehension of the mechanism of both chloroquine resistance in P. falciparum and multidrug resistance in tumor cells. PMID:8726022

  2. Human multidrug-resistant Mycobacterium bovis infection in Mexico.

    PubMed

    Vazquez-Chacon, Carlos A; Martínez-Guarneros, Armando; Couvin, David; González-Y-Merchand, Jorge A; Rivera-Gutierrez, Sandra; Escobar-Gutierrez, Alejandro; De-la-Cruz López, Juan J; Gomez-Bustamante, Adriana; Gonzalez-Macal, Gabriela A; Gonçalves Rossi, Livia Maria; Muñiz-Salazar, Raquel; Rastogi, Nalin; Vaughan, Gilberto

    2015-12-01

    Here, we describe the molecular characterization of six human Mycobacterium bovis clinical isolates, including three multidrug resistant (MDR) strains, collected in Mexico through the National Survey on Tuberculosis Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. The genetic background of bovine M. bovis strains identified in three different states of Mexico was studied in parallel to assess molecular relatedness of bovine and human strains. Additionally, resistance to first and second line anti-tuberculosis (TB) drugs and molecular identification of mutations conferring drug resistance was also performed. All strains were characterized by spoligotyping and 24-loci MIRU-VNTRs, and analyzed using the SITVIT2 (n = 112,000 strains) and SITVITBovis (n = 25,000 strains) proprietary databases of Institut Pasteur de la Guadeloupe. Furthermore, data from this study (n = 55 isolates), were also compared with genotypes recorded for M. bovis from USA (n = 203), Argentina (n = 726), as well as other isolates from Mexico (independent from the present study; n = 147), to determine any evidence for genetic relatedness between circulating M. bovis strains. The results showed that all human M. bovis cases were not genetically related between them or to any bovine strain. Interestingly, a high degree of genetic variability was observed among bovine strains. Several autochthonous and presumably imported strains were identified. The emergence of drug-resistant M. bovis is an important public health problem that jeopardizes the success of TB control programs in the region.

  3. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  4. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates.

    PubMed

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX' and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  5. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates

    PubMed Central

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX’ and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  6. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates.

    PubMed

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX' and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  7. Global dissemination of a multidrug resistant Escherichia coli clone

    PubMed Central

    Petty, Nicola K.; Ben Zakour, Nouri L.; Stanton-Cook, Mitchell; Skippington, Elizabeth; Totsika, Makrina; Forde, Brian M.; Phan, Minh-Duy; Gomes Moriel, Danilo; Peters, Kate M.; Davies, Mark; Rogers, Benjamin A.; Dougan, Gordon; Rodriguez-Baño, Jesús; Pascual, Alvaro; Pitout, Johann D. D.; Upton, Mathew; Paterson, David L.; Walsh, Timothy R.; Schembri, Mark A.; Beatson, Scott A.

    2014-01-01

    Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000–2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL–resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen. PMID:24706808

  8. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  9. Audiological Evaluation of Patients Taking Kanamycin for Multidrug Resistant Tuberculosis

    PubMed Central

    Sharma, Vishal; Bhagat, Sanjeev; Verma, Bhimsain; Singh, Ravinder; Singh, Surinderpal

    2016-01-01

    Introduction: The incidence of multidrug resistant tuberculosis is increasing in developing countries. Aminoglycosides are an integral part of second-line drugs, however ototoxicity is a major limitation for their use. This study aims to determine the extent of hearing loss in patients taking one of the commonly prescribed drugs for Multidrug resistant tuberculosis (MDR-TB), Kanamycin, at a Government Medical College, Patiala, Punjab, India, which is a 1200 bed tertiary care hospital. Materials and Methods: A total of 100 patients (68 males and 32 females) with confirmed diagnosis of MDR-TB were included in this study conducted between January 2012 and February 2014. Subjects were between 15 to 60 years of age, with a mean age of 37.46 ± 10.1. Pure tone audiometry (PTA) was performed before the start of the therapy, as a baseline, and was repeated after 1 week and 6 weeks of Kanamycin use to assess hearing loss as an effect of therapy. Results: Of the 100 patients examined, ototoxicity was found in 18 subjects post therapy. Incidence of high frequency hearing loss was 2% at week 1, and 12% after 6 weeks of follow up. However, 4% of the cases developed flat loss at week 6. The hearing loss was bilateral in 13 patients and unilateral in 5 patients. Ototoxicity was more common in males (66.67%) compared to females (33.3%). Maximum cases were found in the age group of 36 to 45 years (36.8%), the majority being from a rural background (83.3%). The association with socioeconomic status (P=0.024) and co-morbid conditions like diabetes and hypertension (P=0.001) reached statistical significance. Conclusion: Lack of specific guidelines to monitor patients taking aminoglycosides makes ototoxicity a major adverse effect of their use in MDR-TB. More studies are mandated to study the risk factors associated with the development of ototoxicity and for the development of alternate drugs for the treatment of MDR-TB. PMID:27429949

  10. [Fosfomycin--its significance for treatment of diseases due to multidrug-resistant bacteria].

    PubMed

    Stock, Ingo

    2015-01-01

    Fosfomycin is a bactericidal phosphonic acid derivative, which engages by inhibiting pyruvyltransferase at an early stage in the peptidoglycan synthesis. It shows a broad spectrum of activity that includes many multidrug-resistant gram-negative and gram-positive bacteria. Fosfomycin is active against most strains of Pseudomonas aeruginosa and several multidrug-resistant Enterobacteriaceae, e.g., Escherichia coli strains expressing extended spectrum beta-lactamases (ESBL) and Klebsiella pneumoniae strains with decreased susceptibilities to carbapenems. Most methicillin-resistant Staphylococcus aureus (MRSA) strains as well as enterococci with and without vancomycin resistance are also sensitive to fosfomycin. During the last decade, a variety of studies showed that fosfomycin is not only suitable for treating uncomplicated urinary tract diseases, but also for the treatment of many other diseases caused by bacterial pathogens with and without multidrug resistance. However, large controlled studies demonstrating the efficacy of the drug to treat diseases caused by multidrug-resistant bacteria are still missing. Considering the low number of antibacterial agents with good activity against multidrug-resistant bacteria, fosfomycin should be evaluated as an important antibiotic for the treatment of several severe illnesses due to these pathogens. However, because some multidrug-resistant bacteria are also resistant to fosfomycin, this agent should only be applied if the pathogen is sensitive to this drug. In addition, because rapid development of resistance cannot be excluded if fosfomycin will be applied alone, this drug should only be given in combination with other effective drugs for the treatment of serious systemic diseases due to multidrug-resistant bacterial pathogens.

  11. Treatment of multidrug-resistant tuberculosis in China.

    PubMed

    Zhang, L X

    1996-01-01

    During the past decade the number and gravity of tuberculosis (TB) cases has continued to increase, both in developing and industrialized nations. Coupled with the recent emergence of multidrug-resistant tuberculosis (MDR-TB), the possibility that untreatable forms of the disease may become widespread has arisen. In China, the prevalence rate of smear-positive cases from three national surveys in 1979, 1984-1985 and 1990 was 187, 156 and 134/100,000, respectively, thus giving an annual average reduction rate of only 3.0%. This may be due to the accumulation of chronic cases, which is not surprising given that as many as 84.3% of new smear-positive cases received non-organized chemotherapy. To counteract this situation, a strategy was developed in Beijing to practice fully supervised chemotherapy for all new smear-positive cases. This is now 90% with a cure rate also of 90%. As a result, the prevalence rate of smear-positive cases has dropped, with an average annual reduction of 17%. Building upon this success, the World Bank Loan TB Control Project in China has been carried out in 12 provinces with 550 million people since 1992. The main objective of this project is to provide fully supervised, 6-month short-course chemotherapy for all newly detected smear-positive cases. The cure rate based on cohort analysis was 88% in 1993. Complete data are not available on resistance although the initial and acquired resistance rates were 28.1 and 41.1%, respectively. MDR-TB treated with ofloxacin has been increasing since 1992, with 317 cases reported during the period 1992-1995, of which 77% showed sputum conversion.

  12. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    PubMed

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-01-01

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848

  13. The emergence and outbreak of multidrug-resistant typhoid fever in China

    PubMed Central

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-01-01

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848

  14. Mutagenesis of SugE, a small multidrug resistance protein.

    PubMed

    Son, Mike S; Del Castilho, Colin; Duncalf, Karen A; Carney, Dominic; Weiner, Joel H; Turner, Raymond J

    2003-12-26

    The small multidrug resistance protein family has two subclasses. In this study we used a mutation approach to see what is necessary to convert a SUG subgroup member into a quaternary ammonium compound (QAC) transporter. We chose four key residues (H24, M39, I43, and A44) conserved within SUGs but conserved differently within the QAC transporters. Altogether, seven mutants were generated in Citrobacter freundii SugE. Surprisingly, the mutated SugE demonstrated an increased sensitivity to representative QACs. Additionally, ethidium uptake is found to be more prominent in the hypersensitive mutants. We conducted orientation studies using topology reporter gene fusions which indicated that SugE and the QAC transporter EmrE both have their N- and C-termini in the cytoplasm as predicted. The results imply that SugE can be converted to a QAC transporter with only a single mutation. However, because hypersensitivity was observed, the SugE mutant proteins are behaving as importers rather than as exporters. PMID:14651958

  15. Wallichinine reverses ABCB1-mediated cancer multidrug resistance.

    PubMed

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  16. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter

    PubMed Central

    Qiu, Jian-Ge; Zhang, Yao-Jun; Li, Yong; Zhao, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Shi, Zhi

    2015-01-01

    Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR mediated by ABC transporters. Trametinib significantly potentiated the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in cancer cells overexpressed ABCB1, but not ABCC1 and ABCG2. Furthermore, trametinib did not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, trametinib potently blocked the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. Importantly, trametinib remarkably enhanced the effect of vincristine against the xenografts of ABCB1-overexpressing cancer cells in nude mice. The predicted binding mode showed the hydrophobic interactions of trametinib within the large drug binding cavity of ABCB1. Consequently, our findings may have important implications for use of trametinib in combination therapy for cancer treatment. PMID:25915534

  17. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  18. Intracellular pH and the Control of Multidrug Resistance

    NASA Astrophysics Data System (ADS)

    Simon, Sanford; Roy, Deborshi; Schindler, Melvin

    1994-02-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments-e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux.

  19. Demonstrating a multi-drug resistant Mycobacterium tuberculosis amplification microarray.

    PubMed

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G; Chandler, Darrell P

    2014-04-25

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.

  20. Endobronchial valve treatment of destructive multidrug-resistant tuberculosis

    PubMed Central

    Levin, A.; Felker, I.; Tceymach, E.; Krasnov, D.

    2016-01-01

    SUMMARY BACKGROUND: In accordance with the existing hypothesis, the application of an endobronchial valve (EbV) leads to selective curative atelectasis of the affected part of the lung, contributing to early closure of cavities. OBJECTIVE: To assess the effect of EbV treatment on the course of tuberculosis (TB). METHODS: We compared the efficacy of EbV treatment and complex second-line treatment in treating patients with destructive pulmonary multidrug-resistant TB (MDR-TB). Bacteriological conversion and closure of cavities were selected as criteria to assess the effectiveness of EbV application. A total of 102 patients with destructive MDR-TB were enrolled into the study and randomly divided into two groups: 49 patients had an EbV installed (intervention group) and 53 patients received complex second-line treatment (control group). Complex chemotherapy was administered to both groups throughout the study period. RESULTS: The cure rate in the short- and long-term follow-up periods in the intervention group was shown to be much higher, 95.9% by bacteriological conversion and 67.3% by cavity closure. On comparison with the control group, this was respectively 37.7% and 20.7% (P < 0.0001). CONCLUSIONS: The application of EbV treatment can significantly improve the effectiveness of second-line chemotherapy regimens in MDR-TB patients. PMID:27776598

  1. Gatifloxacin for short, effective treatment of multidrug-resistant tuberculosis.

    PubMed

    Chiang, C-Y; Van Deun, A; Rieder, H L

    2016-09-01

    The 9-month regimen for the treatment of multidrug-resistant tuberculosis (MDR-TB) piloted in Bangladesh and used, with modifications, in Cameroon and Niger, has achieved treatment success in a very large proportion of patients; gatifloxacin (GFX) is likely to have played a critical role in this success. Two months after the publication of a study reporting that GFX and not moxifloxacin (MFX) was associated with dysglycaemia, the manufacturer announced the withdrawal of GFX from the market. The findings of that study may have less significance for the majority of MDR-TB patients living in high-incidence countries who are much younger, have a lower risk of dysglycaemia and suffer from a highly fatal condition. The problem of dysglycaemia is not limited to GFX use and may occur with other fluoroquinolones; furthermore, GFX-associated dysglycemia was manageable among those MDR-TB patients in Bangladesh and Niger in whom it occurred. GFX has now become unavailable in Bangladesh, Cameroon, Niger and other countries piloting the shorter MDR-TB regimens, depriving resource-poor countries of an efficacious, effective and inexpensive drug with a demonstrated good safety profile for the given indication. There is little reason not to make GFX available for MDR-TB treatment as long as the superiority of non-GFX-based MDR-TB regimens is not demonstrated. PMID:27510237

  2. Wallichinine reverses ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  3. Status of Serum Zinc in Multidrug Resistant Tuberculosis.

    PubMed

    Barman, N; Haque, M A; Uddin, M N; Ghosh, D; Rahman, M W; Islam, M T; Rahman, M Q; Rob, M A; Hossain, M A

    2016-01-01

    Zinc plays a vital role in the immune status. Its deficiency affects host defense by reducing the number of circulating T cells and phagocytosis activity of other cells which ultimately impair cell mediated immunity. The cell-mediated immunity plays a major role in the causation of pulmonary tuberculosis. The present study was carried out to estimate serum zinc level in newly detected multidrug resistant tuberculosis (MDR-TB) in adult population. In this study total fifty (50) MDR-TB patients were enrolled conveniently from the in-patients departments of National Institute of Diseases of the Chest Hospital (NIDCH), Bangladesh. Serum zinc was estimated by atomic absorption spectrophotometry method from early morning fasting blood sample. Serum zinc level was assessed according to normal cut-off value 70-120 μgm/dl and 76% studied population were found lower than this value. The mean±SD serum zinc level was observed 60.40±8.91 μgm/dl. No associations were found between serum zinc level with age (p=0.11) and with sex (p=0.085) of the study population respectively. The low level of serum zinc in MDR-TB patients suggested impaired immune status of our study population.

  4. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-01-01

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds. PMID:27399665

  5. Multidrug resistant citrobacter: an unusual cause of liver abscess.

    PubMed

    Kumar, Prabhat; Ghosh, Soumik; Rath, Deepak; Gadpayle, A K

    2013-01-01

    Liver abscesses are infectious, space occupying lesions in the liver, the two most common abscesses being pyogenic and amoebic. A pyogenic liver abscess (PLA) is a rare condition with a reported incidence of 20 per 100 000 hospital admissions in the western population. The right lobe of the liver is the most common site in both types of liver abscess. Clinical presentation is elusive with complaints of fever, right upper quadrant pain in the abdomen and hepatomegaly with or without jaundice. The aetiology of PLA has changed in the past few decades and may be of biliary, portal, arterial or traumatic origin, but many cases are still cryptogenic. The most common organisms causing PLA are Gram-negative aerobes, especially Escherichia coli and Klebsiella pneumoniae. Studies have shown a high degree of antimicrobial susceptibility of isolated organism resulting in an overall lower mortality in PLA. Here, we present a case of PLA caused by multidrug-resistant Citrobacter freundii, which is an unusual organism to be isolated.

  6. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    PubMed

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  7. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  8. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients.

    PubMed

    Cândido, Pedro Henrique Campanini; Nunes, Luciana de Souza; Marques, Elizabeth Andrade; Folescu, Tânia Wrobel; Coelho, Fábrice Santana; de Moura, Vinicius Calado Nogueira; da Silva, Marlei Gomes; Gomes, Karen Machado; Lourenço, Maria Cristina da Silva; Aguiar, Fábio Silva; Chitolina, Fernanda; Armstrong, Derek T; Leão, Sylvia Cardoso; Neves, Felipe Piedade Gonçalves; Mello, Fernanda Carvalho de Queiroz; Duarte, Rafael Silva

    2014-08-01

    Worldwide, nontuberculous mycobacteria (NTM) have become emergent pathogens of pulmonary infections in cystic fibrosis (CF) patients, with an estimated prevalence ranging from 5 to 20%. This work investigated the presence of NTM in sputum samples of 129 CF patients (2 to 18 years old) submitted to longitudinal clinical supervision at a regional reference center in Rio de Janeiro, Brazil. From June 2009 to March 2012, 36 NTM isolates recovered from 10 (7.75%) out of 129 children were obtained. Molecular identification of NTM was performed by using PCR restriction analysis targeting the hsp65 gene (PRA-hsp65) and sequencing of the rpoB gene, and susceptibility tests were performed that followed Clinical and Laboratory Standards Institute recommendations. For evaluating the genotypic diversity, pulsed-field gel electrophoresis (PFGE) and/or enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) was performed. The species identified were Mycobacterium abscessus subsp. bolletii (n = 24), M. abscessus subsp. abscessus (n = 6), Mycobacterium fortuitum (n = 3), Mycobacterium marseillense (n = 2), and Mycobacterium timonense (n = 1). Most of the isolates presented resistance to five or more of the antimicrobials tested. Typing profiles were mainly patient specific. The PFGE profiles indicated the presence of two clonal groups for M. abscessus subsp. abscessus and five clonal groups for M. abscesssus subsp. bolletii, with just one clone detected in two patients. Given the observed multidrug resistance patterns and the possibility of transmission between patients, we suggest the implementation of continuous and routine investigation of NTM infection or colonization in CF patients, including countries with a high burden of tuberculosis disease. PMID:24920766

  9. Principles for designing future regimens for multidrug-resistant tuberculosis.

    PubMed

    Brigden, Grania; Nyang'wa, Bern-Thomas; du Cros, Philipp; Varaine, Francis; Hughes, Jennifer; Rich, Michael; Horsburgh, C Robert; Mitnick, Carole D; Nuermberger, Eric; McIlleron, Helen; Phillips, Patrick P J; Balasegaram, Manica

    2014-01-01

    Fewer than 20% of patients with multidrug-resistant (MDR) tuberculosis are receiving treatment and there is an urgent need to scale up treatment programmes. One of the biggest barriers to scale-up is the treatment regimen, which is lengthy, complex, ineffective, poorly tolerated and expensive. For the first time in over 50 years, new drugs have been developed specifically to treat tuberculosis, with bedaquiline and potentially delamanid expected to be available soon for treatment of MDR cases. However, if the new drugs are merely added to the current treatment regimen, the new regimen will be at least as lengthy, cumbersome and toxic as the existing one. There is an urgent need for strategy and evidence on how to maximize the potential of the new drugs to improve outcomes and shorten treatment. We devised eight key principles for designing future treatment regimens to ensure that, once they are proven safe in clinical trials, they will be clinically effective and programmatically practicable. Regimens should contain at least one new class of drug; be broadly applicable for use against MDR and extensively drug-resistant Mycobacterium tuberculosis complex strains; contain three to five effective drugs, each from a different drug class; be delivered orally; have a simple dosing schedule; have a good side-effect profile that allows limited monitoring; last a maximum of 6 months; and have minimal interaction with antiretrovirals. Following these principles will maximize the potential of new compounds and help to overcome the clinical and programmatic disadvantages and scale-up constraints that plague the current regimen.

  10. Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens

    PubMed Central

    Deslouches, Berthony; Steckbeck, Jonathan D.; Craigo, Jodi K.; Doi, Yohei; Burns, Jane L.

    2014-01-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. PMID:25421473

  11. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    PubMed Central

    Yu, Choo Yee; Ang, Geik Yong; Cheng, Huey Jia; Cheong, Yuet Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. PMID:26981402

  12. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells

    SciTech Connect

    Horio, M.; Gottesman, M.M.; Pastan, I. )

    1988-05-01

    Resistance of human cancer cells to multiple cytotoxic hydrophobic agents (multidrug resistance) is due to overexpression of the MDR1 gene, whose product is the plasma membrane P-glycoprotein. Plasma membrane vesicles partially purified from multidrug-resistant human KB carcinoma cells, but not from drug-sensitive cells, accumulate ({sup 3}H)vinblastine in an ATP-dependent manner. This transport is osmotically sensitive, with an apparent K{sub m} of 38 {mu}M for ATP and of {approx} 2 {mu}M for vinblastine. The nonhydrolyzable analog adenosine 5{prime}-({beta},{gamma}-imido)triphosphate does not substitute for ATP but is a competitive inhibitor of ATP for the transport process. Vanadate, and ATPase inhibitor, is a potent noncompetitive inhibitor of transport. These results indicate that hydrolysis of ATP is probably required for active transport vinblastine. Several other drugs to which multidrug-resistant cell lines are resistant inhibit transport, with relative potencies as follows: vincristine > actinomycin D > daunomycin > colchicine = puromycin. Verapamil and quinidine, which reverse the multidrug-resistance phenotype, are good inhibitors of the transport process. These results confirm that multidrug-resistant cells express an energy-dependent plasma membrane transporter for hydrophobic drugs, and establish a system for the detailed biochemical analysis of this transport process.

  13. Multidrug resistant Acinetobacter baumannii in veterinary medicine--emergence of an underestimated pathogen?

    PubMed

    Müller, Stefanie; Janssen, Traute; Wieler, Lothar H

    2014-01-01

    The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.

  14. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma.

    PubMed

    Kim, Shin-Hee; Wei, Cheng-I; Tzou, Ywh-Min; An, Haejung

    2005-10-01

    Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of beta-lactamase in the K. pneumoniae isolates played a major role in the resistance to beta-lactam agents. Most isolates (96%) possessed bla(SHV1). Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) beta-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.

  15. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  16. [Multidrug-resistant germs in neurological early rehabilitation (2004-2013)].

    PubMed

    Rollnik, J D; Samady, A-M; Grüter, L

    2014-10-01

    Multidrug-resistant germs are an increasing problem in neurological and neurosurgical early rehabilitation but reliable data is missing. The present study examined the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and multidrug-resistant gram negative germs (MRGN) in a German neurological early rehabilitation facility (BDH Clinic Hessisch Oldendorf). Observation period was 2004-2013 (10 years). MRSA prevalence on admission was 11.4%, MRGN prevalence during rehabilitation 11.8%. A combination of different multidrug-resistant germs (MRSA plus MRGN) was observed in 3.8% of all cases. VRE were first detected in 2009, prevalence was as low as 0.1%. High prevalence of MRSA and MRGN raises major financial, medical, and ethical problems in early rehabilitation facilities. The authors encourage further multi-center studies and suggest a better recompense for this group of patients in the German DRG-system (Diagnosis Related Groups).

  17. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain.

    PubMed

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-05-11

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally.

  18. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain

    PubMed Central

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-01-01

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally. PMID:25960343

  19. Colonization of multidrug resistant pathogens in a hybrid pediatric cardiac surgery center

    PubMed Central

    Haponiuk, Ireneusz; Steffens, Mariusz; Arlukowicz, Elzbieta; Irga-Jaworska, Ninela; Chojnicki, Maciej; Kwasniak, Ewelina; Zielinski, Jacek

    2016-01-01

    Introduction The incidence of multidrug resistant microorganisms worldwide is increasing. The aim of the study was to present institutional experience with the multidrug resistant microorganism colonization patterns observed in children with congenital heart diseases hospitalized in a hybrid pediatric cardiac surgery center. Material and methods Microbiological samples were routinely collected in all children admitted to our department. All microbiological samples were analyzed with regard to multidrug resistant microorganisms: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Gram-negative rods producing extended-spectrum beta-lactamases (ESBL), multidrug resistant Gram-negative rods (MDR-GNRs), carbapenemase-producing Klebsiella pneumoniae (KPC), carbapenem-resistant Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA). Results In 30 (9%) swabs ‘alert’ pathogens from the above group of listed microorganisms were found. All positive swabs were isolated in 19 (16.1%) children. Multidrug resistant pathogen colonization was statistically significantly more often observed in children admitted from other medical facilities than in children admitted from home (38% vs. 10%, p = 0.0089). In the group of children younger than 6 months ‘alert’ pathogen were more often observed than in older children (34.1% vs. 5.4%, p < 0.001). Conclusions Preoperative multidrug resistant pathogen screening in children admitted and referred for congenital heart disease procedures may be of great importance since many of these patients are colonized with resistant bacteria. Knowledge of the patient's microbiome is important in local epidemiological control along with tailoring the most effective preoperative prophylactic antibiotic for each patient. The impact of preoperative screening on postoperative infections and other complications requires further analysis. PMID:27279859

  20. Multidrug-resistant tuberculosis” may be nontuberculous mycobacteria

    PubMed Central

    Shahraki, Abdolrazagh Hashemi; Heidarieh, Parvin; Bostanabad, Saeed Zaker; Khosravi, Azar Dokht; Hashemzadeh, Mohammad; Khandan, Solmaz; Biranvand, Maryam; Schraufnagel, Dean E.; Mirsaeidi, Mehdi

    2015-01-01

    Introduction Multidrug resistant tuberculosis (MDR-TB) presents a great challenge to public health, especially for developing countries. Some nontuberculous mycobacteria (NTM) cause the similar clinical and radiological characteristics with tuberculosis. We aimed to identify the frequency of NTM infections among subjects who were suspected to have MDR-TB due to lack of response to anti-TB treatment. Methods This retrospective study evaluated patients with suspected MDR-TB due to lack of sputum conversion after 2–3 months therapy with first line anti-TB treatment from 2009 through 2014. Cultures for mycobacteria were performed and identification was done to species level by phenotypic and molecular tests. The outcome of the patients with NTM disease and related risk factors for poor outcome were evaluated. Results Out of 117 consecutive strains isolated from suspected MDR-TB subjects, 35 (30%) strains were identified as NTM by using conventional and molecular approaches. Of these patients with positive NTM cultures, 32 (27%) patients met ATS/IDSA diagnostic criteria. Out of 32, 29 (90%) individuals with confirmed NTM diseases had underlying disorders including 8 subjects with malignancy, 5 with organ transplantations, and 4 with the human immunodeficiency virus. No known underlying disorder was found in 3 (9%) subjects. Treatment outcomes were available for 27 subjects, 17 (63%) of whom were cured and 10 (37%) had poor outcome including 6 (60%) who failed and 4 (40%) who died during treatment. Conclusion The high costs to the patient and society should lead health care providers to consider NTM in all patients suspected of having TB. PMID:25784643

  1. Redox Regulation of Multidrug Resistance in Cancer Chemotherapy: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    2009-01-01

    Abstract The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed. Antioxid. Redox Signal. 11, 99–133. PMID:18699730

  2. A Novel Nitrobenzoate Microtubule Inhibitor that Overcomes Multidrug Resistance Exhibits Antitumor Activity.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Wu, Shu-Ying; Li, Yi; Xu, Xian-Dong; Shang, Bo-Yang; Zhou, Jin-Ming; Zhu, Zhi-Ling; Si, Shu-Yi; Zhen, Yong-Su

    2016-01-01

    Multidrug resistance is a major limitation for microtubule-binding agents in cancer treatment. Here we report a novel microtubule inhibitor (2-morpholin-4-yl-5-nitro-benzoic acid 4-methylsulfanyl-benzyl ester, IMB5046), its cytotoxicity against multidrug-resistant cell lines and its antitumor efficacy in animal models. IMB5046 disrupted microtubule structures in cells and inhibited purified tubulin polymerization in vitro. It bound to the colchicine pocket of tubulin. IMB5046 displayed potent cytotoxicity against multiple tumor cell lines with an IC50 range of 0.037-0.426 μM. Notably, several multidrug-resistant cell lines which were resistant to colchicine, vincristine and paclitaxel remained sensitive to IMB5046. IMB5046 was not a P-glycoprotein substrate. IMB5046 blocked cell cycle at G2/M phase and induced cell apoptosis. Microarray assay indicated that the differentially expressed genes after IMB5046 treatment were highly related to immune system, cell death and cancer. In a mouse xenograft model IMB5046 inhibited the growth of human lung tumor xenograft by 83% at a well-tolerated dose. It is concluded that IMB5046 is a tubulin polymerization inhibitor with novel chemical structure and can overcome multidrug resistance. It is a promising lead compound for cancer chemotherapy, especially for treatment of multidrug-resistant tumors. PMID:27510727

  3. A Novel Nitrobenzoate Microtubule Inhibitor that Overcomes Multidrug Resistance Exhibits Antitumor Activity

    PubMed Central

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Wu, Shu-Ying; Li, Yi; Xu, Xian-Dong; Shang, Bo-Yang; Zhou, Jin-Ming; Zhu, Zhi-Ling; Si, Shu-Yi; Zhen, Yong-Su

    2016-01-01

    Multidrug resistance is a major limitation for microtubule-binding agents in cancer treatment. Here we report a novel microtubule inhibitor (2-morpholin-4-yl-5-nitro-benzoic acid 4-methylsulfanyl-benzyl ester, IMB5046), its cytotoxicity against multidrug-resistant cell lines and its antitumor efficacy in animal models. IMB5046 disrupted microtubule structures in cells and inhibited purified tubulin polymerization in vitro. It bound to the colchicine pocket of tubulin. IMB5046 displayed potent cytotoxicity against multiple tumor cell lines with an IC50 range of 0.037–0.426 μM. Notably, several multidrug-resistant cell lines which were resistant to colchicine, vincristine and paclitaxel remained sensitive to IMB5046. IMB5046 was not a P-glycoprotein substrate. IMB5046 blocked cell cycle at G2/M phase and induced cell apoptosis. Microarray assay indicated that the differentially expressed genes after IMB5046 treatment were highly related to immune system, cell death and cancer. In a mouse xenograft model IMB5046 inhibited the growth of human lung tumor xenograft by 83% at a well-tolerated dose. It is concluded that IMB5046 is a tubulin polymerization inhibitor with novel chemical structure and can overcome multidrug resistance. It is a promising lead compound for cancer chemotherapy, especially for treatment of multidrug-resistant tumors. PMID:27510727

  4. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    PubMed Central

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L.; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L.; L’Abée-Lund, Trine M.; Rudi, Knut

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance. PMID:26507767

  5. [Relevance of animal models in the development of compounds targeting multidrug resistant cancer].

    PubMed

    Füredi, András; Tóth, Szilárd; Hámori, Lilla; Nagy, Veronika; Tóvári, József; Szakács, Gergely

    2015-12-01

    Anticancer compounds are typically identified in in vitro screens. Unfortunately, the in vitro drug sensitivity of cell lines does not reflect treatment efficiency in animal models, and neither show acceptable correlation to clinical results. While cell lines and laboratory animals can be readily "cured", the treatment of malignancies remains hampered by the multidrug resistance (MDR) of tumors. Genetically engineered mouse models (GEMMs) giving rise to spontaneous tumors offer a new possibility to characterize the evolution of drug resistance mechanisms and to target multidrug resistant cancer. PMID:26665195

  6. Multidrug resistance-associated protein 4 is a determinant of arsenite resistance.

    PubMed

    Yuan, Bo; Yoshino, Yuta; Fukushima, Hisayo; Markova, Svetlana; Takagi, Norio; Toyoda, Hiroo; Kroetz, Deanna L

    2016-01-01

    Although arsenic trioxide (arsenite, As(III)) has shown a remarkable efficacy in the treatment of acute promyelocytic leukemia patients, multidrug resistance is still a major concern for its clinical use. Multidrug resistance-associated protein 4 (MRP4), which belongs to the ATP-binding cassette (ABC) superfamily of transporters, is localized to the basolateral membrane of hepatocytes and the apical membrane of renal proximal tubule cells. Due to its characteristic localization, MRP4 is proposed as a candidate in the elimination of arsenic and may contribute to resistance to As(III). To test this hypothesis, stable HEK293 cells overexpressing MRP4 or MRP2 were used to establish the role of these two transporters in As(III) resistance. The IC50 values of As(III) in MRP4 cells were approximately 6-fold higher than those in MRP2 cells, supporting an important role for MRP4 in resistance to As(III). The capacity of MRP4 to confer resistance to As(III) was further confirmed by a dramatic decrease in the IC50 values with the addition of MK571, an MRP4 inhibitor, and cyclosporine A, a well-known broad-spectrum inhibitor of ABC transporters. Surprisingly, the sensitivity of the MRP2 cells to As(III) was similar to that of the parent cells, although insufficient formation of glutathione and/or Se conjugated arsenic compounds in the MRP2 cells might limit transport. Given that MRP4 is a major contributor to arsenic resistance in vitro, further investigation into the correlation between MRP4 expression and treatment outcome of leukemia patients treated with arsenic-based regimens is warranted. PMID:26497925

  7. Virulence and Genomic Feature of Multidrug Resistant Campylobacter jejuni Isolated from Broiler Chicken

    PubMed Central

    Hao, Haihong; Ren, Ni; Han, Jing; Foley, Steven L.; Iqbal, Zahid; Cheng, Guyue; Kuang, Xiuhua; Liu, Jie; Liu, Zhenli; Dai, Menghong; Wang, Yulian; Yuan, Zonghui

    2016-01-01

    The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655). The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline, and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g., pTet) and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence. PMID:27790202

  8. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.

    PubMed

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; Morais, Marcia Maria Camargo de; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-12-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

  9. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  10. Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Strain from Chile

    PubMed Central

    Lopes, Bruno S.; García, Patricia; Domínguez Yévenes, Mariana; Lima, Celia; Bello-Toledo, Helia; González-Rocha, Gerardo; Amyes, Sebastian G. B.

    2015-01-01

    Acinetobacter baumannii strain Ab5 was isolated in the year 2007 in Chile, being one of the first multidrug-resistant (MDR) cases reported in the country. Here, we present the very first draft genome sequence of an MDR Chilean strain, which shows the presence of diverse resistance and acquired virulence genes. PMID:26139713

  11. Primary multidrug-resistant Mycobacterium tuberculosis in 2 regions, Eastern Siberia, Russian Federation.

    PubMed

    Zhdanova, Svetlana; Heysell, Scott K; Ogarkov, Oleg; Boyarinova, Galina; Alexeeva, Galina; Pholwat, Suporn; Zorkaltseva, Elena; Houpt, Eric R; Savilov, Eugeniy

    2013-10-01

    Of 235 Mycobacterium tuberculosis isolates from patients who had not received tuberculosis treatment in the Irkutsk oblast and the Sakha Republic (Yakutia), eastern Siberia, 61 (26%) were multidrug resistant. A novel strain, S 256, clustered among these isolates and carried eis-related kanamycin resistance, indicating a need for locally informed diagnosis and treatment strategies. PMID:24047678

  12. Pre-multidrug-resistant Mycobacterium tuberculosis Beijing strain associated with disseminated tuberculosis in a pet dog.

    PubMed

    Botelho, Ana; Perdigão, João; Canto, Ana; Albuquerque, Teresa; Leal, Nuno; Macedo, Rita; Portugal, Isabel; Cunha, Mónica V

    2014-01-01

    Resistance to isoniazid, ethambutol, and streptomycin was detected in a Mycobacterium tuberculosis strain, belonging to the Beijing family lineage, isolated from two nodule exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts medical practitioners to the risk of dissemination of pre-multidrug-resistant tuberculosis (preMDR-TB) through exposure to M. tuberculosis-shedding pets.

  13. Comparative genomics of the IncA/C multidrug resistance plasmid family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we...

  14. Draft Genome Sequence of the Multidrug-Resistant Clinical Isolate Dermabacter hominis 1368

    PubMed Central

    Albersmeier, Andreas; Bomholt, Christina; Glaub, Alina; Rückert, Christian; Soriano, Francisco; Fernández-Natal, Isabel

    2014-01-01

    Dermabacter hominis is a common colonizer of the healthy human skin and is rarely detected as an opportunistic human pathogen. The genome sequence of the multidrug-resistant D. hominis strain 1368, isolated from blood cultures of a pyelonephritis patient, provides insights into the repertoire of antibiotic resistance genes. PMID:25059872

  15. ACSSuT Multi-Drug Resistance Among Salmonella Isolates of Animal Origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Multi-drug resistant (MDR) Salmonella Typhimurium DT104 (DT104) emerged in the mid-1990’s in humans and animals with infection resulting in increased morbidity and mortality. DT104 was characterized by resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfa, and Tetracycline (AC...

  16. Transmission of multidrug-resistant and extensively drug-resistant tuberculosis in rural Bangladesh: lessons learnt.

    PubMed

    Gumusboga, A; Aung, K J M; Rigouts, L; Van Deun, A

    2012-09-21

    We report community transmission of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) documented by fingerprinting, with secondary cases appearing over a period of 10 years. The index case failed MDR-TB treatment, with amplification to XDR-TB after refusing treatment when first diagnosed and developing pre-XDR-TB on private treatment. Some of the first MDR-TB patients were not started on appropriate treatment due to delayed diagnosis or to excessively rigid application of National TB Programme guidelines. Early presumptive MDR- and XDR-TB diagnosis and removal of barriers, such as obligatory hospitalisation, could have stopped this trend of resistance amplification and transmission.

  17. Enterococcus faecalis as multidrug resistance strains in clinical isolates in Imam Reza Hospital in Kermanshah, Iran.

    PubMed

    Mohammadi, F; Ghafourian, S; Mohebi, R; Taherikalani, M; Pakzad, I; Valadbeigi, H; Hatami, V; Sadeghifard, N

    2015-01-01

    The current study aimed to investigate the prevalence of vancomycin-resistant Enterococcus in E. faecalis and E. faecium and antimicrobial susceptibility patterns, then dominant genes responsible for vancomycin resistance were determined. For this propose, 180 clinical isolates of Enterococcus were subjected for identification and antibiotic susceptibility assay. Then, the gene responsible vancomycin resistant strains were determined. The results demonstrated the E. faecalis as a dominant Enterococcus. Resistance to erythromycin was dominant and multidrug resistance strains observed in E. faecalis. vanA was responsible for vancomycin resistance. In conclusion, a high rate of resistance to antibiotics in Enterococcus is clearly problematic, and a novel strategy is needed to decrease resistance in Enterococcus.

  18. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    SciTech Connect

    Mehta, B.M.; Rosa, E.; Biedler, J.L.

    1994-07-01

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium ({sup 3}H) uptake following injection of {sup 3}H-CHC. The present studies were carried out in xenografted animals using {sup 14}C-CHC which may be more indicative of {sup 11}C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-{sup 11}C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p < 0.05) at 60 min following intravenous injection of {sup 14}C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based on uptake of an injected MDR drug using a{sup 14}C-labeled CHC at the same position and of comparable specific activity to a {sup 11}C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs.

  19. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.

    PubMed

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-09-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.

  20. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer

    PubMed Central

    HUANG, YINGHONG; COLE, SUSAN P.C.; CAI, TIANGE; CAI, YU

    2016-01-01

    Multidrug resistance (MDR) to chemotherapy presents a major obstacle in the treatment of cancer patients, which directly affects the clinical success rate of cancer therapy. Current research aims to improve the efficiency of chemotherapy, whilst reducing toxicity to prolong the lives of cancer patients. As with good biocompatibility, high stability and drug release targeting properties, nanodrug delivery systems alter the mechanism by which drugs function to reverse MDR, via passive or active targeting, increasing drug accumulation in the tumor tissue or reducing drug elimination. Given the potential role of nanodrug delivery systems used in multidrug resistance, the present study summarizes the current knowledge on the properties of liposomes, lipid nanoparticles, polymeric micelles and mesoporous silica nanoparticles, together with their underlying mechanisms. The current review aims to provide a reliable basis and useful information for the development of new treatment strategies of multidrug resistance reversal using nanodrug delivery systems. PMID:27347092

  1. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  2. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter.

    PubMed

    Cole, Susan P C

    2014-11-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.

  3. Modulation of multidrug resistance gene expression in human breast cancer cells by (-)-gossypol-enriched cottonseed oil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P-glycoprotein, the product of the multidrug resistance 1 gene, acts as an efflux pump and prevents sufficient intracellular accumulation of several anticancer agents. Thus, it plays a major role in multidrug cancer resistance. Using the non-radioactive cell proliferation MTS assay, none of three ...

  4. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants

    PubMed Central

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; de Almeida Nogueira Pinto, José Paes; dos Santos Bersot, Luciano

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp. PMID:26887244

  5. Fatal skin and soft tissue infection of multidrug resistant Acinetobacter baumannii: A case report

    PubMed Central

    Ali, Aqsa; Botha, John; Tiruvoipati, Ravindranath

    2014-01-01

    INTRODUCTION Acinetobacter baumannii is usually associated with respiratory tract, urinary tract and bloodstream infections. Recent reports suggest that it is increasingly causing skin and soft tissue infections. It is also evolving as a multidrug resistant organism that can be difficult to treat. We present a fatal case of multidrug resistant A. baumannii soft tissue infection and review of relevant literature. PRESENTATION OF CASE A 41 year old morbidly obese man, with history of alcoholic liver disease presented with left superficial pre-tibial abrasions and cellulitis caused by multidrug resistant (MDR) A. baumannii. In spite of early antibiotic administration he developed extensive myositis and fat necrosis requiring extensive and multiple surgical debridements. He deteriorated despite appropriate antibiotic therapy and multiple surgical interventions with development of multi-organ failure and died. DISCUSSION Managing Acinetobacter infections remains difficult due to the array of resistance and the pathogens ability to develop new and ongoing resistance. The early diagnosis of necrotizing soft tissue infection may be challenging, but the key to successful management of patients with necrotizing soft tissue infection are early recognition and complete surgical debridement. CONCLUSION A. baumannii is emerging as an important cause of severe, life-threatening soft tissue infections. Multidrug resistant A. baumannii soft tissue infections may carry a high mortality in spite of early and aggressive treatment. Clinicians need to consider appropriate early empirical antibiotic coverage or the use of combination therapy to include MDR A. baumannii as a cause of skin and soft tissue infections. PMID:25016080

  6. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants.

    PubMed

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; Pinto, José Paes de Almeida Nogueira; Bersot, Luciano dos Santos

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp. PMID:26887244

  7. Combination of amikacin and doxycycline against multidrug-resistant and extensively drug-resistant tuberculosis.

    PubMed

    Gonzalo, Ximena; Casali, Nicola; Broda, Agnieszka; Pardieu, Claire; Drobniewski, Francis

    2015-04-01

    The objective of this study was to assess the activity of amikacin in combination with doxycycline against clinical strains of Mycobacterium tuberculosis in the search for new strategies against multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. The study included 28 clinical M. tuberculosis strains, comprising 5 fully susceptible, 1 isoniazid-resistant, 17 MDR, 1 poly-resistant (streptomycin/isoniazid), 1 rifampicin-resistant and 3 XDR isolates, as well as the laboratory strain M. tuberculosis H37Rv. Minimum inhibitory concentrations (MICs) were determined using a modified chequerboard methodology in a BACTEC™ MGIT™ 960 System. Fractional inhibitory concentration indices (FICIs) were calculated, and synergy, indifference or antagonism was assessed. Whole-genome sequencing was performed to investigate the genetic basis of synergy, indifference or antagonism. The MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were, respectively, 0.5 mg/L and 1.0 mg/L for amikacin and 8 mg/L and 16 mg/L for doxycycline. The combination of amikacin and doxycycline showed a synergistic effect in 18 of the 29 strains tested and indifference in 11 strains. Antagonism was not observed. A streptomycin resistance mutation (K43R) was associated with indifference. In conclusion, the benefit of addition of doxycycline to an amikacin-containing regimen should be explored since in vitro results in this study indicate either synergy or indifference. Moreover, doxycycline also has immunomodulatory effects.

  8. Household Risk Factors for Colonization with Multidrug-Resistant Staphylococcus aureus Isolates

    PubMed Central

    Davis, Meghan F.; Peterson, Amy E.; Julian, Kathleen G.; Greene, Wallace H.; Price, Lance B.; Nelson, Kenrad; Whitener, Cynthia J.; Silbergeld, Ellen K.

    2013-01-01

    Antimicrobial resistance, particularly in pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), limits treatment options and increases healthcare costs. To understand patient risk factors, including household and animal contact, potentially associated with colonization with multidrug-resistant MRSA isolates, we performed a prospective study of case patients colonized with MRSA on admission to a rural tertiary care hospital. Patients were interviewed and antimicrobial resistance patterns were tested among isolates from admitted patients colonized with MRSA in 2009–10. Prevalence of resistance was compared by case-patient risk factors and length-of-stay outcome among 88 MRSA case patients. Results were compared to NHANES 2003–04. Overall prevalence of multidrug resistance (non-susceptibility to ≥four antimicrobial classes) in MRSA nasal isolates was high (73%) and was associated with a 1.5-day increase in subsequent length of stay (p = 0.008). History of hospitalization within the past six months, but not antimicrobial use in the same time period, was associated with resistance patterns. Within a subset of working-age case patients without recent history of hospitalization, animal contact was potentially associated with multidrug resistance. History of hospitalization, older age, and small household size were associated with multidrug resistance in NHANES data. In conclusion, recent hospitalization of case patients was predictive of antimicrobial resistance in MRSA isolates, but novel risk factors associated with the household may be emerging in CA-MRSA case patients. Understanding drivers of antimicrobial resistance in MRSA isolates is important to hospital infection control efforts, relevant to patient outcomes and to indicators of the economic burden of antimicrobial resistance. PMID:23359808

  9. Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1.

    PubMed

    Marin, Michel A; Fonseca, Erica L; Andrade, Bruno N; Cabral, Adriana C; Vicente, Ana Carolina P

    2014-01-01

    In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage.

  10. Emergence of Multidrug Resistance in Ubiquitous and Dominant Pseudomonas aeruginosa Serogroup O:11

    PubMed Central

    Tassios, Panayotis T.; Gennimata, Vassiliki; Maniatis, Anthony N.; Fock, Caroline; Legakis, Nicholas J.; Group, The Greek Pseudomonas aeruginosa Study

    1998-01-01

    The serotypes of 88 nonreplicate nosocomial Pseudomonas aeruginosa isolates from 11 Greek hospitals were studied in relation to their antibiotic susceptibilities. Rates of resistance to β-lactams, aminoglycosides, and quinolones ranged from 31 to 65%, except for those to ceftazidime (15%) and imipenem (21%). Four serotypes were dominant: O:12 (25% of isolates), O:1 (17%), O:11 (16%), and O:6 (10%). Multidrug resistance rates in the major serogroups O:12 (91%) and O:11 (79%) were higher than those in serogroups O:1 (40%) and O:6 (43%). Further typing with respect to pulsed-field gel electrophoresis patterns following XbaI digestion of genomic DNA discriminated the isolates into 74 types. Pulsed-field gel electrophoresis revealed that the ubiquitous O:12 group was genetically homogeneous, since 95% of strains belonged to two clusters of genotypic similarity, while the O:11 strains, present in 8 of the 11 hospitals, were distributed among five such clusters. Therefore, apart from the already reported O:12 multidrug-resistant European clone, an O:11 population, characterized by a serotype known to be dominant in the environment and the hospital in several parts of the world, but previously not associated with multidrug resistance to antibiotics, has progressed to a multidrug-resistant state. PMID:9542905

  11. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains

    PubMed Central

    Gilmore, Michael S.; Rauch, Marcus; Ramsey, Matthew M.; Himes, Paul R.; Varahan, Sriram; Manson, Janet M.; Lebreton, Francois; Hancock, Lynn Ernest

    2015-01-01

    Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains. PMID:26039987

  12. Hospital-acquired infections due to multidrug-resistant organisms in Hungary, 2005-2010.

    PubMed

    Caini, S; Hajdu, A; Kurcz, A; Borocz, K

    2013-01-10

    Healthcare-associated infections caused by multidrug-resistant organisms are associated with prolonged medical care, worse outcome and costly therapies. In Hungary, hospital-acquired infections (HAIs) due to epidemiologically important multidrug-resistant organisms are notifiable by law since 2004. Overall, 6,845 case-patients (59.8% men; median age: 65 years) were notified in Hungary from 2005 to 2010. One third of case-patients died in hospital. The overall incidence of infections increased from 5.4 in 2005 to 14.7 per 100,000 patient-days in 2010. Meticillin-resistant Staphylococcus aureus (MRSA) was the most frequently reported pathogen (52.2%), but while its incidence seemed to stabilise after 2007, notifications of multidrug-resistant Gram-negative organisms have significantly increased from 2005 to 2010. Surgical wound and bloodstream were the most frequently reported sites of infection. Although MRSA incidence has seemingly reached a plateau in recent years, actions aiming at reducing the burden of HAIs with special focus on Gram-negative multidrug-resistant organisms are needed in Hungary. Continuing promotion of antimicrobial stewardship, infection control methodologies, reinforced HAI surveillance among healthcare and infection control practitioners, and engagement of stakeholders, hospital managers and public health authorities to facilitate the implementation of existing guidelines and protocols are essential.

  13. Imatinib resistance in multidrug-resistant K562 human leukemic cells.

    PubMed

    Assef, Yanina; Rubio, Fernanda; Coló, Georgina; del Mónaco, Silvana; Costas, Mónica A; Kotsias, Basilio A

    2009-05-01

    The multidrug resistance phenotype (MDR) is one of the major causes of failure in cancer chemotherapy and it is associated with the over-expression of P-glycoprotein (P-gp or MDR1) in tumor cell membranes. A constitutive NF-kappaB activity has been observed in several haematological malignancies and this is associated with its anti-apoptotic role. In the present work, the relationship between NF-kappaB and MDR phenotype was evaluated in wild type K562 human leukemic cells (K562-WT) and in its vincristine-resistant counterpart, K562-Vinc cells. These data showed that K562-Vinc cells, which express an active P-gp, exhibited MDR phenotype. The resistant indexes (IC(50)(K562-Vinc)/IC(50)(K562-WT)) for structurally unrelated drugs like imatinib, doxorubicin and colchicine were 8.0+/-0.3, 2.8+/-0.4 and 44.8+/-8.8, respectively. The imatinib resistance was reversed by P-gp blockade suggesting the involvement of P-gp in imatinib transport. We observed that NF-kappaB was constitutively activated in both cell lines but in a lesser extent in K562-Vinc. The inhibition of NF-kappaB with BAY 11-7082 increased the cytotoxicity of imatinib in K562-Vinc cells but not in K562-WT. Further, the co-administration of imatinib and BAY 11-7082 sensitized multidrug-resistant K562 cells to cell death as detected by increased percentage of annexin V positive cells. The induced cell death in K562-Vinc cells was associated with activation of caspases 9 and 3. Finally, we provide data showing that BAY 11-7082 down-regulates the expression of P-gp suggesting that the activity of NF-kappaB could be functionally associated to this protein in K562 cells. Our results indicate that the vincristine-resistant K562 cells which developed MDR phenotype, exhibited resistance to imatinib associated with a functional P-gp over-expression. This resistance could be partially overcome by the inhibition of NF-kappaB pathway.

  14. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin.

    PubMed

    Su, Yu-bin; Peng, Bo; Han, Yi; Li, Hui; Peng, Xuan-xian

    2015-03-01

    Edwardsiella tarda, the causative agent of Edwardsiellosis, imposes medical challenges in both the clinic and aquaculture. The emergence of multidrug resistant strains makes antibiotic treatment impractical. The identification of molecules that facilitate or promote antibiotic efficacy is in high demand. In the present study, we aimed to identify small molecules whose abundance is correlated with kanamycin resistance in E. tarda by gas chromatography-mass spectrometry. We found that the abundance of fructose was greatly suppressed in kanamycin-resistant strains. The incubation of kanamycin-resistant bacteria with exogenous fructose sensitized the bacteria to kanamycin. Moreover, the fructose also functioned in bacteria persisters and biofilm. The synergistic effects of fructose and kanamycin were validated in a mouse model. Furthermore, the mechanism relies on fructose in activating TCA cycle to produce NADH, which generates proton motive force to increase the uptake of the antibiotics. Therefore, we present a novel approach in fighting against multidrug resistant bacteria through exploration of antibiotic-suppressed molecules.

  15. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  16. Multidrug-resistant to extensively drug resistant tuberculosis: what is next?

    PubMed

    Jain, Amita; Dixit, Pratima

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory,co-morbitidy of HIV and tuberculosis,new anti-TB drug regimens, better diagnostic tests,international standards for second line drugs (SLD)-susceptibility testing,invention of newer anti- tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB. PMID:19208985

  17. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India.

    PubMed

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for bla CTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored bla CTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIP(R)SXT(R)GEN(R)) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS.

  18. Antibiotic exposure can induce various bacterial virulence phenotypes in multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is one of the most prevalent bacterial foodborne diseases in the United States and causes an estimated 1 million human cases every year. Multidrug-resistant (MDR) Salmonella has emerged as a public health issue as it has been associated with increased morbidity in humans and mortality in...

  19. Multidrug-Resistant Pseudomonas aeruginosa Infection in a Child with Cystic Fibrosis.

    PubMed

    Ang, Jocelyn Y; Abdel-Haq, Nahed; Zhu, Frank; Thabit, Abrar K; Nicolau, David P; Satlin, Michael J; van Duin, David

    2016-10-01

    We describe a pediatric cystic fibrosis patient who developed a pulmonary exacerbation due to two multidrug-resistant (MDR) Pseudomonas aeruginosa isolates. In addition to these MDR organisms, the case was further complicated by β-lactam allergy. Despite the MDR phenotype, both isolates were susceptible to an antimicrobial combination. PMID:27664282

  20. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  1. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  2. Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance.

    PubMed

    Su, Chia-Wei; Chen, San-Yuan; Liu, Dean-Mo

    2013-05-01

    A newly-designed drug carrier with enzyme-triggered release behavior and the ability to circumvent multidrug resistance was successfully developed. By optimizing the ratio of lecithin and polysaccharide in reverse micelles, encapsulation efficiency and encapsulation stability can be significantly improved.

  3. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    PubMed Central

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  4. Molecular typing of multidrug-resistant Salmonella Blockley outbreak isolates from Greece.

    PubMed Central

    Tassios, P. T.; Chadjichristodoulou, C.; Lambiri, M.; Kansouzidou-Kanakoudi, A.; Sarandopoulou, Z.; Kourea-Kremastinou, J.; Tzouvelekis, L. S.; Legakis, N. J.

    2000-01-01

    During 1998, a marked increase (35 cases) in human gastroenteritis due to Salmonella Blockley, a serotype rarely isolated from humans in the Western Hemisphere, was noted in Greece. The two dominant multidrug-resistance phenotypes (23 of the 29 isolates studied) were associated with two distinct DNA fingerprints, obtained by pulsed-field gel electrophoresis of genomic DNA. PMID:10653572

  5. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2014-10-17

    Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in

  6. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    PubMed Central

    Choi, Cheol-Hee

    2005-01-01

    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. PMID:16202168

  7. An etoposide-resistant lung cancer subline overexpresses the multidrug resistance-associated protein.

    PubMed Central

    Doyle, L. A.; Ross, D. D.; Ordonez, J. V.; Yang, W.; Gao, Y.; Tong, Y.; Belani, C. P.; Gutheil, J. C.

    1995-01-01

    We have characterised an etoposide-resistant subline of the small-cell lung cancer cell line, UMCC-1, derived at our centre. Subline UMCC-1/VP was developed by culturing the parent line in increasing concentrations of etoposide over 16 months. UMCC-1/VP is 20-fold resistant to etoposide by MTT assays, relative to the parent line, and is cross-resistant to doxorubicin, vincristine and actinomycin D, but not to taxol, cisplatin, melphalan, thiotepa or idarubicin. Topoisomerase II immunoblotting demonstrates a 50% reduction of the protein in the resistant subline. The UMCC-1/VP subline demonstrates a marked decrease in the accumulation of [3H]etoposide relative to the parent line, as well as a modest reduction in the accumulation of daunorubicin. Reverse transcription-polymerase chain reaction assays demonstrate no detectable mdr1 expression but marked expression of the multidrug resistance-associated protein (MRP) gene in the resistant subline. Northern blotting with an MRP cDNA probe confirms marked overexpression of the MRP gene only in the UMCC-1/VP subline. Western blotting with antisera against MRP peptide confirms a 195 kDa protein band in the UMCC-1/VP subline. Southern blotting experiments demonstrate a 10-fold amplification of the MRP gene in the resistant subline. Depletion of glutathione with buthionine sulphoximine sensitised UMCC-1/VP cells to daunorubicin and etoposide. Our studies indicate that MRP gene expression may be induced by etoposide and may lead to reduced accumulation of the drug. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7669558

  8. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence

    PubMed Central

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L.

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals’ and plants’ pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial–host interactions during infection. PMID:27708632

  9. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis

    PubMed Central

    Rezai, Mohammad Sadegh; Pourmousa, Rostam; Dadashzadeh, Roksana; Ahangarkani, Fatemeh

    2016-01-01

    Background: Treatment of chronic sinusitis is complicated due to increase of antibiotic-resistant bacteria. The aim of this study was to determine the multidrug resistance (MDR) pattern of the bacteria causing chronic sinusitis in north of Iran. Methods: This cross-sectional study was carried out on patients with chronic sinusitis. Bacterial susceptibility to antimicrobial agents was determined according to the CLSI 2013 standards. Double-disk synergy (DDS) test was performed for the detection of extended-spectrum beta-lactamase (ESBL) producing bacteria; also methicillin-resistant Staphylococcus (MRSA) strains were identified by MRSA screen agar. The MDR isolates were defined as resistant to 3 or more antibiotics. Data were analyzed using SPSS 17 software. Descriptive statistics was used to describe the features of the data in this study. Results: The rate of ESBL-producing bacteria was 28.75-37.03% among enterobacteriaceae and the rate of MRSA was 42.75%-60% among Staphylococcus strains. The most detectable rate of the MDR bacterial isolates was Gram-negative bacteria 39 (76.47%) and Enterobacter spp. 19(70.37%) was the most multidrug resistant isolate among Gram negative bacteria. Also 36 (73.46%) of the gram positive bacterial isolated were multidrug resistance and Staphylococcus aureus 9(90%) was the most MDR among Gram positive bacteria. Conclusion: Antimicrobial resistance is increasing in chronic bacterial sinusitis. The emergence of MRSA and ESBL bacteria causing chronic sinusitis is increasing. PMID:27386063

  10. [Antiviral therapy for patients with chronic hepatitis B with multi-drug resistance to nucleoside analogues].

    PubMed

    Ozeki, Itaru; Hige, Shuhei; Karino, Yoshiyasu; Kimura, Mutsuumi; Arakawa, Tomohiro; Nakajima, Tomoaki; Kuwata, Yasuaki; Ohmura, Takumi; Sato, Takahiro; Toyota, Joji

    2013-01-01

    In 18 of 547 patients who had received nucleoside analogue preparations for 1 year or more, multi-drug resistance was detected, after a median follow-up of 53 months. No patient showed liver failure related to multi-drug resistance acquisition. Multi-drug resistance was associated with entecavir (ETV) therapy in 7 lamivudine (LAM) -resistant patients, combination therapy with adefovir dipivoxil (ADV) in 8 LAM-resistant patients, LAM switching to ETV in 2 patients, and initial ETV administration in 1. For treatment, combination therapy with LAM and ADV was performed. In non-responders, combination therapy with ADV and ETV was employed. In all LAM- and ADV-resistant patients, and the HBV DNA level decreased to 3.0LC/ml or less. However, a similar decrease was noted in 7 (58.3%) of 12 LAM- and ETV-resistant patients. Of the 18 patients, 1 did not respond to combination therapy with ADV and ETV. Therapy with tenofovir disoproxil fumarate (TDF) was required.

  11. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  12. Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water.

    PubMed

    Koc, Serkan; Kabatas, Burak; Icgen, Bulent

    2013-08-01

    A surface water isolate of Raoultella sp. having both multidrug- and multimetal-resistant ability was isolated and identified as Raoultella planticola. R. planticola displayed resistance to 15 drugs like ampicillin, amoxicillin/clavulanic acid, aztreonam, erythromycin, imipenem, oxacillin, pefloxacin, penicillin, piperacillin, piperacillin/tazobactam, rifampin, sulbactam/cefoperazone, ticarsillin, ticarsillin/clavulanic acid, vancomycin, and to 11 heavy metals like aluminum, barium, copper, iron, lead, lithium, manganese, nickel, silver, strontium, and tin. The multidrug and multi-metal-resistant R. planticola may remain present in the environment for a long time. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  13. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.

    PubMed

    Zhang, Jiuyang; Chen, Yung Pin; Miller, Kristen P; Ganewatta, Mitra S; Bam, Marpe; Yan, Yi; Nagarkatti, Mitzi; Decho, Alan W; Tang, Chuanbing

    2014-04-01

    Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs.

  14. Epidemiology of Carbapenem Resistance among Multi-drug Resistant Enterobacteriaceae in Uganda

    PubMed Central

    Ampaire, Lucas M.; Katawera, Victoria; Nyehangane, Dan; Boum, Yap; Bazira, Joel

    2015-01-01

    Background Multi-drug resistant (MDR) Enterobacteriaceae are on the increase worldwide and their spread has become a global challenge. Escalating the challenge is the possibility that many of these are Carbapenemase-producing Enterobacteriaceae (CPE). This further complicates patient management. The magnitude of MDR-CPE in many developed settings has been reported, however, there is paucity of data from resource limited settings. We evaluated the epidemiology of MDR-CPE of clinical origin in South Western Uganda. Methods From September 2013 to June 2014, all Enterobacteriaceae isolated from diverse specimens obtained from patients attending Mbarara Regional Referral Hospital, South-western Uganda, were screened for MDR in a laboratory-based cross sectional study. Isolates found to be MDR were screened for carbapenem susceptibility/resistance phenotypically by Kirby Bauer disc diffusion method following CLSI guidelines and genetically using the multiplex real-time Polymerase Chain Reaction (RT-PCR). Results Of the 658 strains isolated, 183 (27.8%) were MDR and 68 (37.15%) of those MDR exhibited at least one form of carbapenem resistance with 23 (12.57%) and 56 (30.60%) isolates expressing phenotypic and genetic resistance, respectively. Eleven MDR-CPE (6.01%) isolates exhibited both phenotypic and genotypic resistance to carbapenems. Only blaVIM and blaOXA-48 genes were detected among the genetically resistant isolates. Conclusion The high prevalence of MDR-CPE calls for aggressive infection control and prevention strategies, including reinforcement of hand hygiene, using contact precautions and early detection of CPE through use of targeted surveillance and molecular techniques in resource limited settings. PMID:26605152

  15. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  16. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  17. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  18. Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries

    PubMed Central

    Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E.; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y.; Volchenkov, Grigory V.; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V.; Cegielski, J. Peter

    2015-01-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5–6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2–4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  19. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    PubMed

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance.

  20. A Case of Disseminated Multidrug-Resistant Tuberculosis involving the Brain

    PubMed Central

    Chang, Ji Young; Lee, Yoon Pyo; Chung, Min Kyung; Seo, Eui Kyo; Koo, Hea Soo

    2016-01-01

    We report a case of a 23-year-old female immigrant from China who was diagnosed with multidrug-resistant tuberculosis affecting her lung and brain, resistant to the standard first-line therapeutics and streptomycin. She was treated with prothionamide, moxifloxacin, cycloserine, and kanamycin. However, her headache and brain lesion worsened. After the brain biopsy, the patient was confirmed with intracranial tuberculoma. Linezolid was added to intensify the treatment regimen, and steroid was added for the possibility of paradoxical response. Kanamycin was discontinued 6 months after initiation of the treatment; she was treated for 18 months with susceptible drugs and completely recovered. To our knowledge, this case is the first multidrug-resistant tuberculosis that disseminated to the brain in Korea. PMID:27104015

  1. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    PubMed

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  2. Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy

    PubMed Central

    Kuss, Sabine; Polcari, David; Geissler, Matthias; Brassard, Daniel; Mauzeroll, Janine

    2013-01-01

    The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell’s environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1–dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6]3+ serving as electrochemical indicators, are used to establish a kinetic “map” of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux. PMID:23686580

  3. Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy.

    PubMed

    Kuss, Sabine; Polcari, David; Geissler, Matthias; Brassard, Daniel; Mauzeroll, Janine

    2013-06-01

    The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell's environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1-dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6](3+) serving as electrochemical indicators, are used to establish a kinetic "map" of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux. PMID:23686580

  4. [Should we screen for colonization to control the spread of multidrug resistant bacteria?].

    PubMed

    Lepelletier, D; Perron, S; Huguenin, H; Picard, M; Bemer, P; Caillon, J; Juvin, M-E; Drugeon, H

    2003-10-01

    Should we screen for colonization to control the spread of multidrug-resistant bacteria? A multidrug-resistant bacteria surveillance program was performed in 1999 at Laënnec Hospital (Nantes, France). After a 3-year period, the results permit us to determine the strategy to strengthen their spread. In 2001, Staphylococcus aureus resistant to methicillin represented 45% of the 202 multidrug-resistant bacteria isolated. The global incidence rate per 100 admissions remained stable between 1999 and 2001 (0.42%), but those of infections acquired in our institution decreased significantly from 0.27% in 1999 to 0.18% in 2001 (P < 0.05), particularly in medical care units (P < 0.04). In spite of this surveillance program and hygiene trainings, the global incidence remained stable during the study period, even if our action contributed to decrease the incidence of S. aureus resistant to methicillin acquired in our institution. Isolation precautions and screening for colonization policy in intensive care units are not sufficient to control the spread of MRB at hospital level. They should be strengthened by procedures for the transfer of infected or colonized patients and by antibiotic use control. PMID:14568591

  5. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein. PMID:15826647

  6. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.

    PubMed

    Zheng, Nannan; Gao, Yanan; Ji, Hongyu; Wu, Linhua; Qi, Xuejing; Liu, Xiaona; Tang, Jingling

    2016-08-01

    The multidrug resistance (MDR), including intrinsic and acquired multidrug resistance, is a major problem in tumor chemotherapy. Here, we proposed a strategy for modulating intrinsic and/or acquired multidrug resistance by altering the levels of Bax and Bcl-2 expression and inhibiting the transport function of P-gp, increasing the intracellular concentration of its substrate anticancer drugs. Vitamin E derivative-based nanoemulsions containing paclitaxel (MNEs-PTX) were fabricated in this study, and in vitro anticancer efficacy of the nanoemulsion system was evaluated in the paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. The MNEs-PTX exhibited a remarkably enhanced antiproliferation effect on A2780/Taxol cells than free paclitaxel (PTX) (p < 0.01). Compared with that in the Taxol group, MNEs-PTX further decreased mitochondrial potential. Vitamin E derivative-based multifunctional nanoemulsion (MNEs) obviously increased intracellular accumulation of rhodamine 123 (P-gp substrate). Overexpression of Bcl-2 is generally associated with tumor drug resistance, we found that MNEs could reduce Bcl-2 protein level and increase Bax protein level. Taken together, our findings suggest that anticancer drugs associated with MNEs could play a role in the development of MDR in cancers. PMID:26710274

  7. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics

    PubMed Central

    Yao, Hong; Shen, Zhangqi; Wang, Yang; Deng, Fengru; Liu, Dejun; Naren, Gaowa; Dai, Lei; Su, Chih-Chia; Wang, Bing; Wang, Shaolin; Wu, Congming; Yu, Edward W.

    2016-01-01

    ABSTRACT Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of “super” efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC) of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics. PMID:27651364

  8. Moxifloxacin Improves Treatment Outcomes in Patients with Ofloxacin-Resistant Multidrug-Resistant Tuberculosis.

    PubMed

    Chien, Jung-Yien; Chien, Shun-Tien; Chiu, Wei-Yih; Yu, Chong-Jen; Hsueh, Po-Ren

    2016-08-01

    It is unclear whether the use of moxifloxacin (MFX), a newer synthetic fluoroquinolone, results in better outcomes in patients with ofloxacin (OFX)-resistant multidrug-resistant tuberculosis (MDR-TB). During the period from April 2006 to December 2013, a total of 2,511 patients with culture-confirmed tuberculosis (TB) were treated at a TB referral hospital in southern Taiwan. Of the 2,511 patients, 325 (12.9%) had MDR-TB, and of those 325 patients, 81 (24.9%) had OFX-resistant MDR-TB and were included in the study. Among the 81 patients with OFX-resistant MDR-TB, 50 (61.7%) were successfully treated and 31 (38.3%) had unfavorable outcomes, including treatment failure (n = 25; 30.9%), loss to follow-up (n = 2; 2.5%), and death (n = 4; 4.9%). Patients treated with MFX had a significantly higher rate of treatment success (77.3% versus 43.2%; odds ratio [OR] = 4.46, 95% confidence interval [CI] = 1.710 to 11.646, P = 0.002) than patients not treated with MFX, especially among those infected with MFX-susceptible isolates (40.7%) or isolates with low-level resistance to MFX (28.4%). Multivariate logistic regression analysis showed that treatment with MFX (adjusted odds ratio = 6.54, 95% CI = 1.44 to 29.59, P = 0.015) was the only independent factor associated with treatment success. Mutation at codon 94 in the gyrA gene was the most frequent mutation (68.0%) associated with high-level MFX resistance. Multivariate Cox proportional hazards regression analysis showed that treatment with MFX was also an independent factor associated with early culture conversion (hazard ratio = 3.12, 95% CI = 1.48 to 6.54, P = 0.003). Our results show that a significant proportion of OFX-resistant MDR-TB isolates were susceptible or had low-level resistance to MFX, indicating that patients with OFX-resistant MDR-TB benefit from treatment with MFX. PMID:27216062

  9. Resistance to the antimitotic drug estramustine is distinct from the multidrug resistant phenotype.

    PubMed Central

    Speicher, L. A.; Sheridan, V. R.; Godwin, A. K.; Tew, K. D.

    1991-01-01

    Following EMS mutagenesis, three estramustine (EM) resistant DU 145 human prostatic carcinoma cell lines were clonally selected by exposure to incrementally increasing concentrations of the drug. Although only low levels of resistance (approximately 3-fold) were attainable, this resistance was stable in the absence of continuous drug exposure. These EM-resistant clones (EMR 4,9,12) did not exhibit cross resistance to vinblastine, taxol, or adriamycin, and had collateral sensitivity to cytochalasin B. None of the lines had elevated expression of P-glycoprotein mRNA or glutathione S-transferase activity, suggesting a phenotype distinct from the classic multi-drug resistance phenotype. This conclusion was supported further by the observation that two MDR cell lines (FLC mouse erythroleukaemic and SKOV3 human ovarian carcinoma cells) showed sensitivity to EM. Fluorescent activated cell sorting analysis of the effects of EM on cell cycle traverse revealed that at EM concentrations up to 20 microM an increasing percentage of wild type cells were blocked in G2/M; no such effect occurred in EMR lines. Differential interference contrast microscopy was employed to study EM's effect on mitosis. EMR lines were able to form functional, albeit smaller, spindles at EM concentrations that resulted in chromosomal disorganisation and inhibition of mitotic progression in wild type cells. EMR lines were able to progress through mitosis and cytokinesis at the same rate as untreated cells. Tritiated EM was used to evaluate potential drug uptake/efflux mutations in ERM clones. EMR 4 and 9 incorporate less EM than wild type cells; however, they have significantly decreased cellular volumes. The initial efflux rate constants for EMR clones were greater than for wild type cells. Within 5 min greater than 70% of the drug was lost from resistant cells compared to a 50% loss by the wild type. Although the specific mechanisms of resistance have yet to be defined, the lack of collateral

  10. Presence of multidrug-resistant enteric bacteria in dairy farm topsoil.

    PubMed

    Burgos, J M; Ellington, B A; Varela, M F

    2005-04-01

    In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant

  11. Abrupt Emergence of a Single Dominant Multidrug-Resistant Strain of Escherichia coli

    PubMed Central

    Johnson, James R.; Tchesnokova, Veronika; Johnston, Brian; Clabots, Connie; Roberts, Pacita L.; Billig, Mariya; Riddell, Kim; Rogers, Peggy; Qin, Xuan; Butler-Wu, Susan; Price, Lance B.; Aziz, Maliha; Nicolas-Chanoine, Marie-Hélène; DebRoy, Chitrita; Robicsek, Ari; Hansen, Glen; Urban, Carl; Platell, Joanne; Trott, Darren J.; Zhanel, George; Weissman, Scott J.; Cookson, Brad T.; Fang, Ferric C.; Limaye, Ajit P.; Scholes, Delia; Chattopadhyay, Sujay; Hooper, David C.; Sokurenko, Evgeni V.

    2013-01-01

    Background. Fluoroquinolone-resistant Escherichia coli are increasingly prevalent. Their clonal origins—potentially critical for control efforts—remain undefined. Methods. Antimicrobial resistance profiles and fine clonal structure were determined for 236 diverse-source historical (1967–2009) E. coli isolates representing sequence type ST131 and 853 recent (2010–2011) consecutive E. coli isolates from 5 clinical laboratories in Seattle, Washington, and Minneapolis, Minnesota. Clonal structure was resolved based on fimH sequence (fimbrial adhesin gene: H subclone assignments), multilocus sequence typing, gyrA and parC sequence (fluoroquinolone resistance-determining loci), and pulsed-field gel electrophoresis. Results. Of the recent fluoroquinolone-resistant clinical isolates, 52% represented a single ST131 subclonal lineage, H30, which expanded abruptly after 2000. This subclone had a unique and conserved gyrA/parC allele combination, supporting its tight clonality. Unlike other ST131 subclones, H30 was significantly associated with fluoroquinolone resistance and was the most prevalent subclone among current E. coli clinical isolates, overall (10.4%) and within every resistance category (11%–52%). Conclusions. Most current fluoroquinolone-resistant E. coli clinical isolates, and the largest share of multidrug-resistant isolates, represent a highly clonal subgroup that likely originated from a single rapidly expanded and disseminated ST131 strain. Focused attention to this strain will be required to control the fluoroquinolone and multidrug-resistant E. coli epidemic. PMID:23288927

  12. Fitness landscapes emerging from pharmacodynamic functions in the evolution of multidrug resistance.

    PubMed

    Engelstädter, J

    2014-05-01

    Adaptive evolution often involves beneficial mutations at more than one locus. In this case, the trajectory and rate of adaptation is determined by the underlying fitness landscape, that is, the fitness values and mutational connectivity of all genotypes under consideration. Drug resistance, especially resistance to multiple drugs simultaneously, is also often conferred by mutations at several loci so that the concept of fitness landscapes becomes important. However, fitness landscapes underlying drug resistance are not static but dependent on drug concentrations, which means they are influenced by the pharmacodynamics of the drugs administered. Here, I present a mathematical framework for fitness landscapes of multidrug resistance based on Hill functions describing how drug concentrations affect fitness. I demonstrate that these 'pharmacodynamic fitness landscapes' are characterized by pervasive epistasis that arises through (i) fitness costs of resistance (even when these costs are additive), (ii) nonspecificity of resistance mutations to drugs, in particular cross-resistance, and (iii) drug interactions (both synergistic and antagonistic). In the latter case, reciprocal drug suppression may even lead to reciprocal sign epistasis, so that the doubly resistant genotype occupies a local fitness peak that may be difficult to access by evolution. Simulations exploring the evolutionary dynamics on some pharmacodynamic fitness landscapes with both constant and changing drug concentrations confirm the crucial role of epistasis in determining the rate of multidrug resistance evolution.

  13. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges.

    PubMed

    Günther, Gunar

    2014-06-01

    Multidrug-resistant and extensively drug-resistant tuberculosis are recent global health issues, which makes tuberculosis - after the success of short course treatment during the second half of the last century - a major health challenge. Globalisation, health inequalities, competing economic interests and political instability contribute substantially to the spread of drug-resistant strains, which are associated with high rates of morbidity and mortality. Issues such as increasing transmission of drug-resistant strains, poor diagnostic coverage and a lengthy, toxic treatment need to be overcome by innovative approaches to tuberculosis control, prevention, diagnostics and treatment. This review addresses recent developments and future concepts.

  14. In vitro Antibacterial Activity of Aqueous and Ethanol Extracts of Aristolochia indica and Toddalia asiatica Against Multidrug-Resistant Bacteria.

    PubMed

    Venkatadri, B; Arunagirinathan, N; Rameshkumar, M R; Ramesh, Latha; Dhanasezhian, A; Agastian, P

    2015-01-01

    Bacteria have developed multidrug resistance against available antimicrobial agents. Infectious diseases caused by these multidrug-resistant bacteria are major causes of morbidity and mortality in human beings. Synthetic drugs are expensive and inadequate for the treatment of diseases, causing side effects and ineffective against multidrug-resistant bacteria. The medicinal plants are promising to have effective antimicrobial property due to presence of phytochemical compounds like alkaloids, flavanoids, tannins and phenolic compounds. The present study aimed to find the antimicrobial activity of medicinal plants against multidrug-resistant bacteria. Multidrug-resistant bacteria were identified by Kirby-Bauer disc diffusion method. Production of β-lactamases (extended spectrum β-lactamases, metallo β-lactamase and AmpC β-lactamase) were identified by combination disc method. Antibacterial activity of aqueous and ethanol extract of Aristolochia indica and Toddalia asiatica were detected by agar well diffusion assay and minimum inhibitory concentration. All bacteria used in this study showed antibiotic resistance to ≥3 antibiotics. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis and Vibrio cholerae were found to be positive for β-lactamase production. Ethanol extract of Aristolochia indica showed more significant antibacterial activity against multidrug-resistant bacteria than Toddalia asiatica. Ethanol extracts of Aristolochia indica and Toddalia asiatica showed minimum inhibitory concentration values of 50-100 μg/ml and 100-200 μg/ml, respectively against multidrug-resistant bacteria. From this study, it was concluded that Aristolochia indica has more potential to treat multidrug-resistant bacteria than Toddalia asiatica. PMID:26997710

  15. [Epidemiology of multi-drug resistant gramnegative bacilli].

    PubMed

    Ruiz-Garbajosa, P; Cantón, R

    2016-09-01

    Current antimicrobial resistance in Gram negative bacilli is particularly worrisome due to development of resistance to all available antimicrobial agents. This situation dramatically limits therapeutic options. The microorganisms acquire a multiresistance phenotype as a consequence of different complex processes in which the antimicrobials acts as selective driver of resistance. Dissemination of multiresistant bacteria is driven by the expansion of the high-risk clones. These clones can be selected in the presence of antimicrobials allowing their persistence over time. PMID:27608308

  16. Multidrug-resistant Gram-negative bacterial infections: the emerging threat and potential novel treatment options.

    PubMed

    Vergidis, Paschalis I; Falagas, Matthew E

    2008-02-01

    Gram-negative bacterial infections constitute an emerging threat because of the development of multidrug-resistant organisms. There is a relative shortage of new drugs in the antimicrobial development pipeline that have been tested in vitro and evaluated in clinical studies. Antibiotics that are in the pipeline for the treatment of serious Gram-negative bacterial infections include the cephalosporins, ceftobiprole, ceftarolin and FR-264205. Tigecycline is the first drug approved from a new class of antibiotics called glycylcyclines, and there has been renewed interest in this drug for the treatment of some multidrug-resistant Gram-negative organisms. Carbapenems in the pipeline include tomopenem, with the approved drugs doripenem and faropenem, an oral agent, under evaluation for activity against multidrug-resistant Gram-negative bacterial infections. Polymyxins are old antibiotics traditionally considered to be toxic, but which are being used because of their activity against resistant Gram-negative organisms. New pharmacokinetic and pharmacodynamic data are available regarding the use of these agents. Finally, antimicrobial peptides and efflux pump inhibitors are two new classes of agents under development. This review of investigational antibiotics shows that several new agents will become available in the coming years, even though the pace of antimicrobial research is far from ideal. PMID:18246520

  17. Functionalized Multiwalled Carbon Nanotubes as Carriers of Ruthenium Complexes to Antagonize Cancer Multidrug Resistance and Radioresistance.

    PubMed

    Wang, Ni; Feng, Yanxian; Zeng, Lilan; Zhao, Zhennan; Chen, Tianfeng

    2015-07-15

    Multidrug resistance and radioresistance are major obstacles for successful cancer therapy. Due to the unique characteristics of high surface area, improved cellular uptake, and the possibility to be easily bound with therapeutics, carbon nanotubes (CNTs) have attracted increasing attention as potential nanodrug delivery systems. In this study, a CNT-based radiosensitive nanodrug delivery system was rationally designed to antagonize the multidrug resistance in hepatocellular carcinoma. The nanosystem was loaded with a potent anticancer ruthenium polypyridyl complex (RuPOP) via π-π interaction and formation of a hydrogen bond. The functionalized nanosystem (RuPOP@MWCNTs) enhanced the cellular uptake of RuPOP in liver cancer cells, especially drug-resistant R-HepG2 cells, through endocytosis. Consistently, the selective cellular uptake endowed the nanosystem amplified anticancer efficacy against R-HepG2 cells but not in normal cells. Interestingly, RuPOP@MWCNTs significantly enhanced the anticancer efficacy of clinically used X-ray against R-HepG2 cells through induction of apoptosis and G0/G1 cell cycle arrest, with the involvement of ROS overproduction, which activated several downstream signaling pathways, including DNA damage-mediated p53 phosphorylation, activation of p38, and inactivation of AKT and ERK. Moreover, the nanosystem also effectively reduces the toxic side effects of loaded drugs and prolongs the blood circulation in vivo. Taken together, the results demonstrate the rational design of functionalized carbon nanotubes and their application as effective nanomedicine to overcome cancer multidrug resistance.

  18. Overcoming multidrug resistance with mesoporous silica nanorods as nanocarrier of doxorubicin.

    PubMed

    Li, Linlin; Huang, Xinglu; Liu, Tianlong; Liu, Huiyu; Hao, Nanjing; Chen, Dong; Zhang, Yanqi; Li, Laifeng; Tang, Fangqiong

    2012-06-01

    Multidrug resistance (MDR) is a major obstacle to the effective chemotherapy in many human malignancies. Nanoparticulate drug delivery systems (NDDSs) have been reported to be able to bypass MDR, but the cancer therapeutic efficacy is still limited. In this study, we firstly designed the nonspherical mesoporous silica nanorods (MSNRs) with aspect ratio (AR) of 1.5 and 5 as drug delivery systems of doxorubicin to overcome multidrug resistance. For drug loading, the long-rod MSNRs (NLR, AR = 5) showed higher drug loading capacity of doxorubicin (DOX) than the short-rod MSNRs (NSR, AR = 1.5). NLR encapsulated DOX had increased intracellular DOX accumulation in drug-resistant Chinese hamster ovary (CHO) cells compared with free DOX by observablly increased cellular uptake and significantly prolonged intracellular drug retention. It further exhibited increased cytotoxicity compared with free DOX under different drug concentrations. These findings may provide a new perspective for designing high-performance nanoparticulate drug delivery systems for bypassing multidrug resistance of cancer therapy.

  19. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    PubMed

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-01

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB. PMID:24307692

  20. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  1. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development.

    PubMed

    Moitra, K; Lou, H; Dean, M

    2011-04-01

    Stem cells possess the dual properties of self-renewal and pluripotency. Self-renewal affords these populations the luxury of self-propagation, whereas pluripotency allows them to produce the multitude of cell types found in the body. Protection of the stem cell population from damage or death is critical because these cells need to remain intact throughout the life of an organism. The principal mechanism of protection is through expression of multifunctional efflux transporters--the adenosine triphosphate-binding cassette (ABC) transporters that are the "guardians" of the stem cell population. Ironically, it has been shown that these ABC efflux pumps also afford protection to cancer stem cells (CSCs), shielding them from the adverse effects of chemotherapeutic insult. It is therefore imperative to gain a better understanding of the mechanisms involved in the resistance of stem cells to chemotherapy, which could lead to the discovery of new therapeutic targets and improvement of current anticancer strategies. PMID:21368752

  2. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation.

    PubMed

    Sharma, C; Kumar, N; Pandey, R; Meis, J F; Chowdhary, A

    2016-09-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L).

  3. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria

    PubMed Central

    Piddock, Laura J. V.

    2006-01-01

    Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed. PMID:16614254

  4. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa.

    PubMed

    Iwu, Chinwe Juliana; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Basson, Albertus Kotze; Okoh, Anthony Ifeanyi

    2016-07-01

    The exposure of farm animals to antimicrobials for treatment, prophylaxis, or growth promotion can select for resistant bacteria that can be transmitted to humans, and Salmonella as an important zoonotic pathogen can act as a potential reservoir of antimicrobial resistance determinants. We assessed the antibiogram profiles of Salmonella species isolated from pig herds in two commercial farms in South Africa. Two hundred fifty-eight presumptive Salmonella isolates were recovered from the fecal samples of 500 adult pigs. Specific primers targeting Salmonella serogroups A, B, C1, C2, and D were used to determine the prevalence of different serogroups. Only serogroup A (n = 48) was detected, while others were not. Antimicrobial susceptibility of the confirmed Salmonella serogroup A isolates was performed by using the disk diffusion method against a panel of 18 antibiotics. All the 48 isolates were resistant to tetracycline and oxytetracycline, while 75% were resistant to ampicillin, sulphamethoxazole-trimethoprim, nalidixic acid, and streptomycin. All the isolates exhibited multidrug resistance, with the predominant phenotype being against 11 antibiotics, and multiple antibiotic resistance index ranged between 0.3 and 0.6. The incidence of genes encoding resistance against ampicillin (ampC), tetracycline (tetA), and streptomycin (strA) were 54, 61, and 44%, respectively. We conclude that healthy pigs are potential reservoirs of multidrug-resistant Salmonella that could be transmitted to humans through the food chain and, hence, a significant public health threat.

  5. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa.

    PubMed

    Iwu, Chinwe Juliana; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Basson, Albertus Kotze; Okoh, Anthony Ifeanyi

    2016-07-01

    The exposure of farm animals to antimicrobials for treatment, prophylaxis, or growth promotion can select for resistant bacteria that can be transmitted to humans, and Salmonella as an important zoonotic pathogen can act as a potential reservoir of antimicrobial resistance determinants. We assessed the antibiogram profiles of Salmonella species isolated from pig herds in two commercial farms in South Africa. Two hundred fifty-eight presumptive Salmonella isolates were recovered from the fecal samples of 500 adult pigs. Specific primers targeting Salmonella serogroups A, B, C1, C2, and D were used to determine the prevalence of different serogroups. Only serogroup A (n = 48) was detected, while others were not. Antimicrobial susceptibility of the confirmed Salmonella serogroup A isolates was performed by using the disk diffusion method against a panel of 18 antibiotics. All the 48 isolates were resistant to tetracycline and oxytetracycline, while 75% were resistant to ampicillin, sulphamethoxazole-trimethoprim, nalidixic acid, and streptomycin. All the isolates exhibited multidrug resistance, with the predominant phenotype being against 11 antibiotics, and multiple antibiotic resistance index ranged between 0.3 and 0.6. The incidence of genes encoding resistance against ampicillin (ampC), tetracycline (tetA), and streptomycin (strA) were 54, 61, and 44%, respectively. We conclude that healthy pigs are potential reservoirs of multidrug-resistant Salmonella that could be transmitted to humans through the food chain and, hence, a significant public health threat. PMID:27357044

  6. Clinical Management of an Increasing Threat: Outpatient Urinary Tract Infections Due to Multidrug-Resistant Uropathogens.

    PubMed

    Walker, Emily; Lyman, Alessandra; Gupta, Kalpana; Mahoney, Monica V; Snyder, Graham M; Hirsch, Elizabeth B

    2016-10-01

    Urinary tract infections (UTIs) are among the most commonly treated bacterial infections. Over the past decade, antimicrobial resistance has become an increasingly common factor in the management of outpatient UTIs. As treatment options for multidrug-resistant (MDR) uropathogens are limited, clinicians need to be aware of specific clinical and epidemiological risk factors for these infections. Based on available literature, the activity of fosfomycin and nitrofurantoin remain high for most cases of MDR Escherichia coli UTIs. Trimethoprim-sulfamethoxazole retains clinical efficacy, but resistance rates are increasing internationally. Beta-lactam agents have the highest rates of resistance and lowest rates of clinical success. Fluoroquinolones have high resistance rates among MDR uropathogens and are being strongly discouraged as first-line agents for UTIs. In addition to accounting for local resistance rates, consideration of patient risk factors for resistance and pharmacological principles will help guide optimal empiric treatment of outpatient UTIs.

  7. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  8. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1)

    SciTech Connect

    DeGorter, Marianne K.; Conseil, Gwenaelle; Deeley, Roger G.; Campbell, Robert L.; Cole, Susan P.C.

    2008-01-04

    Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr{sup 324} in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.

  9. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  10. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-06-20

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.

  11. Multidrug resistant Kluyvera ascorbata septicemia in an adult patient: a case report

    PubMed Central

    2010-01-01

    Introduction Kluyvera ascorbata has become increasingly significant due to its potential to cause a wide range of infections, as well as its ability to transfer gene encoding for CTX-M- type extended spectrum B-lactamases (ESBLs) to other Enterobacteriaceae. Case presentation We report the case of a 64-year-old African-American male diagnosed with severe sepsis due to a multidrug resistant Kluyvera ascorbata, which was isolated from his blood. He was treated with meropenem and had a favorable outcome. Conclusion To the best of our knowledge, this is the first case report of a multidrug resistant Kluyvera ascorbata isolated from the blood in an adult patient with sepsis. PMID:20587055

  12. Effects of sarA inactivation on the intrinsic multidrug resistance mechanism of Staphylococcus aureus.

    PubMed

    O'Leary, Jessica O; Langevin, Mark J; Price, Christopher T D; Blevins, Jon S; Smeltzer, Mark S; Gustafson, John E

    2004-08-15

    The sarA locus of Staphylococccus aureus regulates the synthesis of over 100 genes on the S. aureus chromosome. We now report the effects of sarA inactivation on intrinsic multidrug resistance expression by S. aureus. In a strain-dependent fashion, sarA::kan mutants of three unrelated strains of S. aureus demonstrated significantly increased susceptibility to five or more of the following substances: the antibiotics ciprofloxacin, fusidic acid, and vancomycin; the DNA-intercalating agent ethidium; and four common household cleaner formulations. In addition, all three sarA::kan mutants demonstrated significantly increased accumulation of ciprofloxacin and one sarA::kan mutant demonstrated increased ethidium accumulation. Our data therefore indicate that sarA plays a role in the intrinsic multidrug resistance mechanism expressed by S. aureus, in part by regulating drug accumulation.

  13. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  14. Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line.

    PubMed

    Al-Omar, A; Abdou, S; De Robertis, L; Marsura, A; Finance, C

    1999-04-19

    Ability of molecular complexes of [Doxorubicin (DX)-cyclodextrin (Cd)] to enhance the anticellular activity of antineoplastic drug Doxorubicin and to reverse its multidrug resistance has been investigated. A spectroscopic study of the alpha, beta, and gamma-[DX-Cds] complexes has been investigated in relation to their biological effects on a multidrug resistant (MDR) human rectal adenocarcinoma cell line (HRT-18). A ten fold enhancement of DX anticellular activity in presence of beta-cyclodextrin alone was detected. PMID:10328296

  15. Pyrazinamide Resistance among South African Multidrug-Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Mphahlele, Matsie; Syre, Heidi; Valvatne, Håvard; Stavrum, Ruth; Mannsåker, Turid; Muthivhi, Tshilidzi; Weyer, Karin; Fourie, P. Bernard; Grewal, Harleen M. S.

    2008-01-01

    Pyrazinamide is important in tuberculosis treatment, as it is bactericidal to semidormant mycobacteria not killed by other antituberculosis drugs. Pyrazinamide is also one of the cornerstone drugs retained in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, due to technical difficulties, routine drug susceptibility testing of Mycobacterium tuberculosis for pyrazinamide is, in many laboratories, not performed. The objective of our study was to generate information on pyrazinamide susceptibility among South African MDR and susceptible M. tuberculosis isolates from pulmonary tuberculosis patients. Seventy-one MDR and 59 fully susceptible M. tuberculosis isolates collected during the national surveillance study (2001 to 2002, by the Medical Research Council, South Africa) were examined for pyrazinamide susceptibility by the radiometric Bactec 460 TB system, pyrazinamidase activity (by Wayne's assay), and sequencing of the pncA gene. The frequency of pyrazinamide resistance (by the Bactec system) among the MDR M. tuberculosis isolates was 37 of 71 (52.1%) and 6 of 59 (10.2%) among fully sensitive isolates. A total of 25 unique mutations in the pncA gene were detected. The majority of these were point mutations that resulted in amino acid substitutions. Twenty-eight isolates had identical mutations in the pncA gene, but could be differentiated from each other by a combination of the spoligotype patterns and 12 mycobacterial interspersed repetitive-unit loci. A high proportion of South African MDR M. tuberculosis isolates were resistant to pyrazinamide, suggesting an evaluation of its role in patients treated previously for tuberculosis as well as its role in the treatment of MDR-TB. PMID:18753350

  16. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  17. Overcoming drug resistance in multi-drug resistant cancers and microorganisms

    PubMed Central

    Avner, Benjamin S.; Fialho, Arsenio M.; Chakrabarty, Ananda M.

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens—including bacteria such as Pseudomonas aeruginosa, viruses, and parasites—and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of

  18. Multidrug-resistant Salmonella enterica serotype Typhi, Gulf of Guinea Region, Africa.

    PubMed

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid.

  19. Multidrug-resistant Salmonella enterica serotype Typhi, Gulf of Guinea Region, Africa.

    PubMed

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307

  20. Effect of honey on multidrug resistant organisms and its synergistic action with three common antibiotics.

    PubMed

    Karayil, S; Deshpande, S D; Koppikar, G V

    1998-01-01

    A total of 15 bacterial strains (7 Pseudomonas & 8 Klebsiella species) isolated from various samples which showed multi-drug resistance were studied to verify in vitro antibacterial action of honey on the principle of Minimum Inhibitory Concentration (MIC) & its synergism with 3 common antibiotics--Gentamicin, Amikacin & Ceftazidime. The MIC of honey with saline for both organisms was found to be 1:2. The synergistic action was seen in the case of Pseudomonas spp. and not with Klebsiella spp. PMID:10703581

  1. Multidrug resistance-reversal effects of resin glycosides from Dichondra repens.

    PubMed

    Song, Wei-Bin; Wang, Wen-Qiong; Zhang, Shu-Wei; Xuan, Li-Jiang

    2015-02-15

    Investigation of hydrophobic extract of Dichondra repens (Convolvulaceae) led to the isolation of three new resin glycosides dichondrins A-C (1-3), and three known resin glycosides cus-1, cus-2, and cuse 3. All the isolated resin glycosides with an acyclic core were evaluated for their multidrug resistance reversal activities, and the combined use of these compounds at a concentration of 25μM increased the cytotoxicity of vincristine by 1.03-1.78-fold.

  2. IMPACT OF SEPSIS CLASSIFICATION AND MULTIDRUG RESISTANCE STATUS ON OUTCOME AMONG PATIENTS TREATED WITH APPROPRIATE THERAPY

    PubMed Central

    Burnham, Jason P.; Lane, Michael A.; Kollef, Marin H.

    2015-01-01

    Objective To assess the impact of sepsis classification and multidrug resistance status on outcome in patients receiving appropriate initial antibiotic therapy. Design A retrospective cohort study. Setting Barnes-Jewish Hospital, a 1250-bed teaching hospital. Patients Individuals with Enterobacteriaceae sepsis, severe sepsis, and septic shock that received appropriate initial antimicrobial therapy between June 2009 and December 2013. Interventions Clinical outcomes were compared according to multidrug resistance status, sepsis classification, demographics, severity of illness, comorbidities, and antimicrobial treatment. Measurements and Main Results We identified 510 patients with Enterobacteriaceae bacteremia and sepsis, severe sepsis, or septic shock. Sixty-seven patients (13.1%) were non-survivors. Mortality increased significantly with increasing severity of sepsis (3.5%, 9.9%, and 28.6%, for sepsis, severe sepsis, and septic shock, respectively, p<0.05). Time to antimicrobial therapy was not significantly associated with outcome. APACHE II was more predictive of mortality than age-adjusted Charlson comorbidity index. Multidrug resistance status did not result in excess mortality. Length of intensive care unit and hospital stay increased with more severe sepsis. In multivariate logistic regression analysis, African-American race, sepsis severity, APACHE II score, solid organ cancer, cirrhosis, and transfer from an outside hospital were all predictors of mortality. Conclusions Our results support sepsis severity, but not multidrug resistance status as being an important predictor of death when all patients receive appropriate initial antibiotic therapy. Future sepsis trials should attempt to provide appropriate antimicrobial therapy and take sepsis severity into careful account when determining outcomes. PMID:25855900

  3. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance

    SciTech Connect

    Cheng Jinping; Meziani, Mohammed J.; Sun Yaping; Cheng, Shuk Han

    2011-01-15

    The acquisition of multidrug resistance poses a serious problem in chemotherapy, and new types of transporters have been actively sought to overcome it. In the present study, poly(ethylene glycol)-conjugated (PEGylated) multi-walled carbon nanotubes (MWCNTs) were prepared and explored as drug carrier to overcome multidrug resistance. The prepared PEGylated MWCNTs penetrated into mammalian cells without damage plasma membrane, and its accumulation did not affect cell proliferation and cell cycle distribution. More importantly, PEGylated MWCNTs accumulated in the multidrug-resistant cancer cells as efficient as in the sensitive cancer cells. Intracellular translocation of PEGylated MWCNTs was visualized in both multidrug-resistant HepG2-DR cells and sensitive HepG2 cells, as judged by both fluorescent and transmission electron microscopy. PEGylated MWCNTs targeted cancer cells efficiently and multidrug-resistant cells failed to remove the intracellular MWCNTs. However, if used in combination with drugs without conjugation, PEGylated MWCNTs prompted drug efflux in MDR cells by stimulating the ATPase activity of P-glycoprotein. This study suggests that PEGylated MWCNTs can be developed as an efficient drug carrier to conjugate drugs for overcoming multidrug resistance in cancer chemotherapy.

  4. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells

    PubMed Central

    LING, SUNBIN; TIAN, YU; ZHANG, HAIQUAN; JIA, KAIQI; FENG, TINGTING; SUN, DEGUANG; GAO, ZHENMING; XU, FEI; HOU, ZHAOYUAN; LI, YAN; WANG, LIMING

    2014-01-01

    Metformin exhibits anti-proliferative effects in tumor cells in vitro and in vivo. The present study investigated the ability of metformin to reverse multidrug resistance (MDR) in human hepatocellular carcinoma Bel-7402/5-fluorouracil (5-Fu; Bel/Fu) cells. The synergistic anti-proliferative effect of metformin combined with 5-Fu was evaluated using a Cell Counting kit-8 assay. The variation in apoptotic rates and cell cycle distribution were evaluated using a flow cytometric assay and variations in target gene and protein expression were monitored using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that metformin had a synergistic anti-proliferative effect with 5-Fu in the Bel/Fu cells. The variations in the number of apoptotic cells and distribution of the cell cycle were consistent with the variability in cell viability. Metformin targeted the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, suppressed the expression of hypoxia-inducible factor-1α (HIF-1α) and transcriptionally downregulated the expression of multidrug resistance protein 1/P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Collectively, these findings suggested that metformin may target the AMPK/mTOR/HIF-1α/P-gp and MRP1 pathways to reverse MDR in hepatocellular carcinoma. PMID:25310259

  5. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells

    PubMed Central

    Fu, Rong-Jie; Lv, Ya-Ping; Jin, Wei; Meng, Chao; Chen, Guo-Qiang; Huang, Lei

    2016-01-01

    China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC) is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2) is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC) transporter genes such as ABCB1. Moreover, ABC transporters’ inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells. PMID:27760172

  6. Genomic structure, gene expression, and promoter analysis of human multidrug resistance-associated protein 7

    SciTech Connect

    Kao, Hsin-Hsin; Chang, Ming-Shi; Cheng, Jan-Fang; Huang, Jin-Ding

    2002-03-15

    The multidrug resistance-associated protein (MRP) subfamily transporters associated with anticancer drug efflux are attributed to the multidrug-resistance of cancer cells. The genomic organization of human multidrug resistance-associated protein 7 (MRP7) was identified. The human MRP7 gene, consisting of 22 exons and 21 introns, greatly differs from other members of the human MRP subfamily. A splicing variant of human MRP7, MRP7A, expressed in most human tissues, was also characterized. The 1.93-kb promoter region of MRP7 was isolated and shown to support luciferase activity at a level 4- to 5-fold greater than that of the SV40 promoter. Basal MRP7 gene expression was regulated by 2 regions in the 5-flanking region at 1,780 1,287 bp, and at 611 to 208 bp. In Madin-Darby canine kidney (MDCK) cells, MRP7 promoter activity was increased by 226 percent by genotoxic 2-acetylaminofluorene and 347 percent by the histone deacetylase inhibitor, trichostatin A. The protein was expressed in the membrane fraction of transfected MDCK cells.

  7. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  8. Reducing the price of treatment for multidrug-resistant tuberculosis through the Global Drug Facility

    PubMed Central

    Cordier-Lassalle, Thierry; Keravec, Joel

    2015-01-01

    Abstract Problem Many countries have limited experience of securing the best prices for drugs and have little negotiating power. This is particularly true for the complex, lengthy and expensive regimens used to treat multidrug-resistant tuberculosis. Approach The Stop TB Partnership’s Global Drug Facility is dedicated to improving worldwide access to antituberculosis medicines and diagnostic techniques that meet international quality standards. Local setting The Global Drug Facility is able to secure price reductions through competitive tendering among prequalified drug manufacturers and by consolidating orders to achieve large purchase volumes. Consolidating the market in this way increases the incentives for suppliers of quality-assured medicines. Relevant changes In 2013 the Global Drug Facility reduced the price of the second-line drugs it supplies for multidrug-resistant tuberculosis: the overall cost of the longest and most expensive treatment regimen for a patient decreased by 26% – from 7890 United States dollars (US$) in 2011 to US$ 5822 in 2013. Lessons learnt The price of treatment for multidrug-resistant tuberculosis supplied by the Global Drug Facility was reduced by consolidating orders to achieve large purchase volumes, by international, competitive bidding and by the existence of donor-funded medicine stockpiles. The rise in the number of suppliers of internationally quality-assured drugs was also important. The savings achieved from lower drug costs could be used to increase the number of patients on high-quality treatment. PMID:26229192

  9. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    PubMed

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold.

  10. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  11. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells.

    PubMed

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jéro Me; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-01-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  12. Microbiological evaluation of the efficacy of two new biodetergents on multidrug-resistant nosocomial pathogens

    PubMed Central

    2009-01-01

    Background In the last few years, several outbreaks of nosocomial infections caused by multidrug-resistant pathogenic agents have been observed, and various biocides products were developed in order to control this phenomenon. We investigated the efficacy of two natural biodetergents composed of plants and kelps extracts, BATT1 and BATT2, against multidrug-resistant strains. Methods In-vitro antibacterial efficacy of BATT1 and BATT2 against nosocomial multidrug-resistant isolates was assessed using a suspension-inhibition test, with and without bovine serum albumin (BSA). The test was also carried out on glass surfaces with and without BSA. Results In vitro tests with both biocidal disinfectants at 25% concentration demonstrated an overall drop in bacterial, mould and yeast counts after 10 min of contact with or without organic substances. For Pseudomonas aeruginosa, it was necessary to use undiluted disinfectants with and without an organic substance. The same results were obtained in tests carried out on glass surfaces for all strains. Conclusions The natural products BATT1 and BATT2 behave like good biocides even in presence of organic substances. The use of both disinfectants may be beneficial for reducing hospital-acquired pathogens that are not susceptible to disinfectants. However, it has to be stressed that all these experiments were carried out in vitro and they still require validation from use in clinical practice. PMID:20015394

  13. Noma Neonatorum From Multidrug-Resistant Pseudomonas aeruginosa: An Underestimated Threat?

    PubMed

    Raimondi, Francesco; Veropalumbo, Claudio; Coppola, Clara; Maddaluno, Sergio; Ferrara, Teresa; Cangiano, Giancarlo; Capasso, Letizia

    2015-09-01

    We present the case of an extremely low birth weight infant with diffuse gingival noma, initially misdiagnosed as thrush. Multidrug-resistant Pseudomonas aeruginosa strain was cultured and treated with systemic and local colistin with complete healing. Noma neonatorum from multidrug-resistant pathogens may appear in neonatal intensive care units. Old antibiotics may help.Noma (cancrum oris) is a devastating gangrenous disease that leads to destruction of facial tissue with significant morbidity and mortality in children and young adults. Noma has virtually disappeared from Europe and North America, but it is still common among children and young adults in India, Africa, and South America. Noma is a polymicrobial opportunistic infection related to malnutrition and immune dysfunction. In the neonate, a similar but distinct condition, known as "noma neonatorum" was described in 1977, in which gangrenous lesions involve the mucocutaneous junctions of oral, nasal, and anal area, and, occasionally, the eyelids and the scrotum. The neonatal disease has been linked to Pseudomonas aeruginosa, prematurity, and low birth weight. There is no established treatment, and mortality is almost inevitable in the few reported cases. In this study, we present the first European case of noma neonatorum from a multidrug-resistant strain of P aeruginosa.

  14. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  15. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells.

    PubMed

    Sun, Yan Fang; Wink, Michael

    2014-01-01

    The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy. PMID:24856768

  16. A genome-wide analysis of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis Beijing genotype.

    PubMed

    Wu, Wei; Zheng, Huajun; Zhang, Lu; Wen, Zilu; Zhang, Shulin; Pei, Hao; Yu, Guohua; Zhu, Yongqiang; Cui, Zhenling; Hu, Zhongyi; Wang, Honghai; Li, Yao

    2013-09-01

    The Beijing genotype of Mycobacterium tuberculosis (MTB) is one of the most successful MTB lineages that has disseminated in the world. In China, the rate of multidrug-resistant (MDR) tuberculosis is significantly higher than the global average rate, and the Beijing genotype strains take the largest share of MDR strains. To study the genetic basis of the epidemiological findings that Beijing genotype has often been associated with tuberculosis outbreaks and drug resistance, we determined the genome sequences of four clinical isolates: two extensively drug resistant (XDR1219, XDR1221) and two multidrug resistant (WX1, WX3), using whole-genome sequencing. A large number of individual and shared SNPs of the four Beijing strains were identified. Our isolates harbored almost all classic drug resistance-associated mutations. The mutations responsible for drug resistance in the two XDR strains were consistent with the clinical quantitative drug resistance levels. COG analysis revealed that Beijing strains have significantly higher abundances of the mutations responsible for cell wall/membrane/envelope biogenesis (COG M), secondary metabolites biosynthesis, transport and catabolism (COG Q), lipid transport and metabolism (COG I) and defense mechanisms (COG V). The shared mutated genes of the four studied Beijing strains were significantly overrepresented in three DNA repair pathways. Our analyses promote the understanding of the genome polymorphism of the Beijing family strains and provide the molecular genetic basis for their wide dissemination capacity and drug resistance.

  17. Nanobiotechnological Approaches Against Multidrug Resistant Bacterial Pathogens: An Update.

    PubMed

    Shaikh, Sibhghatulla; Shakil, Shazi; Abuzenadah, Adel M; Rizvi, Syed Mohd Danish; Roberts, Philip Michael; Mushtaq, Gohar; Kamal, Mohammad Amjad

    2015-01-01

    Multiple drug resistant bacteria remain the greatest challenge in public health care. Globally, infections produced by such resistant strains are on the rise. Recent advent of genetic tolerance to antibiotics in many pathogens such as multiple drug resistant Staphylococcus aureus is a matter of concern, prompting researchers and pharmaceutical companies to search for new molecules and unconventional antibacterial agents. Recent advances in nanotechnology offer new opportunities to develop formulations based on metallic nanoparticles with different shapes and sizes and variable antimicrobial properties. This article is an extensive literature review that covers the latest approaches in the development of new and unconventional antibacterial agents using nanobiotechnological approaches which will better equip scientists and clinicians to face the challenges in view of dwindling stocks of effective and potent antimicrobial agents and formulations. PMID:26419545

  18. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan.

    PubMed

    Sato, Maiko; Ahmed, Ashraf M; Noda, Ayako; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, beta-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  19. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    PubMed Central

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, β-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another. PMID:19930691

  20. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  1. Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar.

    PubMed

    Aung, Htin Lin; Tun, Thanda; Moradigaravand, Danesh; Köser, Claudio U; Nyunt, Wint Wint; Aung, Si Thu; Lwin, Thandar; Thinn, Kyi Kyi; Crump, John A; Parkhill, Julian; Peacock, Sharon J; Cook, Gregory M; Hill, Philip C

    2016-09-01

    Drug-resistant tuberculosis (TB) is a major health threat in Myanmar. An initial study was conducted to explore the potential utility of whole-genome sequencing (WGS) for the diagnosis and management of drug-resistant TB in Myanmar. Fourteen multidrug-resistant Mycobacterium tuberculosis isolates were sequenced. Known resistance genes for a total of nine antibiotics commonly used in the treatment of drug-susceptible and multidrug-resistant TB (MDR-TB) in Myanmar were interrogated through WGS. All 14 isolates were MDR-TB, consistent with the results of phenotypic drug susceptibility testing (DST), and the Beijing lineage predominated. Based on the results of WGS, 9 of the 14 isolates were potentially resistant to at least one of the drugs used in the standard MDR-TB regimen but for which phenotypic DST is not conducted in Myanmar. This study highlights a need for the introduction of second-line DST as part of routine TB diagnosis in Myanmar as well as new classes of TB drugs to construct effective regimens. PMID:27530852

  2. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR.

  3. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    PubMed

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents.

  4. Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen

    PubMed Central

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J.; Gotoh, Naomasa; Thomson, Nicholas R.; Ewbank, Jonathan J.; Hayashi, Tetsuya

    2014-01-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. PMID:25070509

  5. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  6. Multidrug-Resistant Escherichia coli in Bovine Animals, Europe

    PubMed Central

    Brennan, Evan; Martins, Marta; McCusker, Matthew P.; Wang, Juan; Alves, Bruno Martins; Hurley, Daniel; El Garch, Farid; Woehrlé, Frédérique; Miossec, Christine; McGrath, Leisha; Srikumar, Shabarinath; Wall, Patrick

    2016-01-01

    Of 150 Escherichia coli strains we cultured from specimens taken from cattle in Europe, 3 had elevated MICs against colistin. We assessed all 3 strains for the presence of the plasmid-mediated mcr-1 gene and identified 1 isolate as mcr-1–positive and co-resistant to β-lactam, florfenicol, and fluoroquinolone antimicrobial compounds. PMID:27533105

  7. Multidrug-Resistant Escherichia coli in Bovine Animals, Europe.

    PubMed

    Brennan, Evan; Martins, Marta; McCusker, Matthew P; Wang, Juan; Alves, Bruno Martins; Hurley, Daniel; El Garch, Farid; Woehrlé, Frédérique; Miossec, Christine; McGrath, Leisha; Srikumar, Shabarinath; Wall, Patrick; Fanning, Séamus

    2016-09-01

    Of 150 Escherichia coli strains we cultured from specimens taken from cattle in Europe, 3 had elevated MICs against colistin. We assessed all 3 strains for the presence of the plasmid-mediated mcr-1 gene and identified 1 isolate as mcr-1-positive and co-resistant to β-lactam, florfenicol, and fluoroquinolone antimicrobial compounds. PMID:27533105

  8. Vancomycin for multi-drug resistant Enterococcus faecium cholangiohepatitis in a cat.

    PubMed

    Pressel, Michelle A; Fox, Leslie E; Apley, Michael D; Simutis, Frank J

    2005-10-01

    A 12-year-old, neutered male domestic shorthair cat was evaluated with a life-long history of intermittent, predominantly small bowel diarrhea and a 3 day history of hematochezia. At presentation, the cat had increased liver enzyme activities and an inflammatory leukogram. Histopathology demonstrated inflammatory bowel disease (IBD), cholangiohepatitis and pancreatitis. The cholangiohepatitis was associated with a multi-drug resistant Enterococcus faecium. Gallbladder agenesis was also documented. Treatment with vancomycin was safely instituted for 10 days. Clinical signs resolved, however, cure of the bacterial cholangiohepatitis was not achieved. The risk of vancomycin resistant enterococci (VRE) in human and veterinary medicine is discussed. PMID:16182186

  9. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    PubMed

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.

  10. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    PubMed

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  11. Identification and Deconvolution of Cross-Resistance Signals from Antimalarial Compounds Using Multidrug-Resistant Plasmodium falciparum Strains

    PubMed Central

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A.; Wicht, Kathryn J.; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G.; Egan, Timothy J.; Malhotra, Pawan; Sutherland, Colin J.; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas

    2014-01-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  12. Chloroquine resistance in Plasmodium falciparum is not reversed by BIBW-22, a compound reversing the multidrug resistance phenotype in mammalian cancer cells.

    PubMed

    Dieckmann-Schuppert, A; Bamberger, U; Schwarz, R T

    1993-10-19

    The pteridine derivative BIBW-22 (4-[N-(2-hydroxy-2-methyl-propyl)-ethanolamino]-2,7-bis(cis-2,6-di methyl-morpholino)-6-phenylpteridine), which had been developed for the treatment of multidrug-resistant cancer and binds to P-glycoprotein, was tested against chloroquine resistant Plasmodium falciparum strains in culture. Based on the result that BIBW-22 enhanced rather than lowered chloroquine resistance in vitro, it is concluded that chloroquine resistance in malaria parasites may not be mechanistically linked to the multidrug-resistant phenotype of chloroquine resistant P. falciparum. PMID:8240391

  13. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis.

    PubMed

    Eldholm, Vegard; Rieux, Adrien; Monteserin, Johana; Lopez, Julia Montana; Palmero, Domingo; Lopez, Beatriz; Ritacco, Viviana; Didelot, Xavier; Balloux, Francois

    2016-01-01

    The tuberculosis (TB) epidemic is fueled by a parallel Human Immunodeficiency Virus (HIV) epidemic, but it remains unclear to what extent the HIV epidemic has been a driver for drug resistance in Mycobacterium tuberculosis (Mtb). Here we assess the impact of HIV co-infection on the emergence of resistance and transmission of Mtb in the largest outbreak of multidrug-resistant TB in South America to date. By combining Bayesian evolutionary analyses and the reconstruction of transmission networks utilizing a new model optimized for TB, we find that HIV co-infection does not significantly affect the transmissibility or the mutation rate of Mtb within patients and was not associated with increased emergence of resistance within patients. Our results indicate that the HIV epidemic serves as an amplifier of TB outbreaks by providing a reservoir of susceptible hosts, but that HIV co-infection is not a direct driver for the emergence and transmission of resistant strains. PMID:27502557

  14. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.

    PubMed

    Cnubben, Nicole H P; Wortelboer, Heleen M; van Zanden, Jelmer J; Rietjens, Ivonne M C M; van Bladeren, Peter J

    2005-08-01

    Membrane transport proteins belonging to the ATP-binding cassette (ABC) family of transport proteins play a central role in the defence of organisms against toxic compounds, including anticancer drugs. However, for compounds that are designed to display a toxic effect, this defence system diminishes their effectiveness. This is typically the case in the development of cellular resistance to anticancer drugs. Inhibitors of these transporters are thus potentially useful tools to reverse this transporter-mediated cellular resistance to anticancer drugs and, eventually, to enhance the effectiveness of the treatment of patients with drug-resistant cancer. This review highlights the various types of inhibitors of several multidrug resistance-related ABC proteins, and demonstrates that the metabolism of inhibitors, as illustrated by recent data obtained for various natural compound inhibitors, may have considerable implications for their effect on drug transport and their potential for treatment of drug resistance.

  15. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  16. The prevention and management of infections due to multidrug resistant organisms in haematology patients

    PubMed Central

    Trubiano, Jason A; Worth, Leon J; Thursky, Karin A; Slavin, Monica A

    2015-01-01

    Infections due to resistant and multidrug resistant (MDR) organisms in haematology patients and haematopoietic stem cell transplant recipients are an increasingly complex problem of global concern. We outline the burden of illness and epidemiology of resistant organisms such as gram-negative pathogens, vancomycin-resistant Enterococcus faecium (VRE), and Clostridium difficile in haematology cohorts. Intervention strategies aimed at reducing the impact of these organisms are reviewed: infection prevention programmes, screening and fluoroquinolone prophylaxis. The role of newer therapies (e.g. linezolid, daptomycin and tigecycline) for treatment of resistant and MDR organisms in haematology populations is evaluated, in addition to the mobilization of older agents (e.g. colistin, pristinamycin and fosfomycin) and the potential benefit of combination regimens. PMID:24341410

  17. Cytotoxicity of Salvia miltiorrhiza Against Multidrug-Resistant Cancer Cells.

    PubMed

    Wu, Ching-Fen; Bohnert, Stefan; Thines, Eckhard; Efferth, Thomas

    2016-01-01

    Salvia miltiorrhiza Bunge (Lamiaceae) is a well-known Chinese herb that possesses numerous therapeutic activities, including anticancer effects. In this study, the cytotoxicity and the biological mechanisms of S. miltiorrhiza (SM) root extract on diverse resistant and sensitive cancer cell lines were investigated. CEM/ADR5000 cells were 1.68-fold resistant to CCRF-CEM cells, while HCT116 (p53[Formula: see text] and U87.MG[Formula: see text]EGFR cells were hypersensitive (collateral sensitive) compared to their parental cells. SM root extract stimulated ROS generation, cell cycle S phase arrest and apoptosis. The induction of the intrinsic apoptotic pathway was validated by increased cleavage of caspase 3, 7, 9 and poly ADP-ribose polymerase (PARP). MAP kinases including JNK, ERK1/2 and p38 were obviously phosphorylated and nuclear P65 was downregulated upon SM treatment. Transcriptome-wide COMPARE analysis revealed that the expression of encoding genes with diverse functions were associated with the cellular response to cryptotanshinone, one of the main constituents of SM root extract. In conclusion, SM root extract exerted profound cytotoxicity towards various sensitive and resistant cancer cells and induced the intrinsic apoptotic pathway. PMID:27222067

  18. Trps1 is associated with the multidrug resistance of osteosarcoma by regulating MDR1 gene expression.

    PubMed

    Jia, Ming; Hu, Jing; Li, Weiwei; Su, Peng; Zhang, Hui; Zhang, Xiaofang; Zhou, Gengyin

    2014-03-01

    Multidrug resistance (MDR) is a significant clinical problem in the chemotherapy of osteosarcoma and has been linked to the cellular expression of several multidrug-efflux transporters such as MDR1/P-gp. Our inhibition of the transcription factor Trps1 led to repression of MDR1/P-gp while its overexpression resulted in upregulation of MDR1/P-gp. Flow cytometric analysis suggested Trps1 increased the release of several anti-cancer drugs, thus decreasing their accumulation. Immunohistochemical analysis of clinical samples indicated that the expression of Trps1 directly correlated with MDR1/P-gp. Trps1 inhibited TGFbeta-1 and directly bound to the MDR1 promoter. Our data demonstrate a role for Trps1 in the regulation of MDR1 expression in osteosarcoma. PMID:24491996

  19. Management of multidrug-resistant TB: novel treatments and their expansion to low resource settings

    PubMed Central

    Sloan, Derek J.; Lewis, Joseph M.

    2016-01-01

    Despite overall progress in global TB control, the rising burden of multidrug-resistant TB (MDR-TB) threatens to undermine efforts to end the worldwide epidemic. Of the 27 countries classified as high burden for MDR-TB, 17 are in ‘low’ or ‘low–middle’ income countries. Shorter, all oral and less toxic multidrug combinations are required to improve treatment outcomes in these settings. Suitability for safe co-administration with HIV drugs is also desirable. A range of strategies and several new drugs (including bedaquiline, delamanid and linezolid) are currently undergoing advanced clinical evaluations to define their roles in achieving these aims. However, several clinical questions and logistical challenges need to be overcome before these new MDR-TB treatments fulfil their potential. PMID:26884496

  20. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance

    PubMed Central

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  1. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance.

    PubMed

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  2. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  3. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups.

    PubMed

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique; Brisse, Sylvain

    2014-11-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected.

  4. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups.

    PubMed

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique; Brisse, Sylvain

    2014-11-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126

  5. A data-driven approach to modeling the tripartite structure of multidrug resistance efflux pumps.

    PubMed

    Phillips, Joshua L; Gnanakaran, S

    2015-01-01

    Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next-generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram-negative bacteria. An atomic-level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data-driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm.

  6. [Reversal effect of cinobufacini on multidrug resistance of Raji/ADR cells and its mechanisms].

    PubMed

    Zhang, Cheng; Wan, Ding-Ming; Cao, Wei-Jie

    2014-10-01

    The aim of this study was to explore the reversing effect of cinobufacini on multidrug resistance of Raji/ADR cells and its mechanisms. The growth inhibitory rate, half inhibitory concentration (IC50), reversing multiples to adriamycin- resistance were detected by MTT, and the curve of growth inhibitory rate was drawn; the MDR-1 and MRP-1 gene transcription was determined by RT-PCR; the expressions of P-gp and MRP-1 proteins were assayed by Western blot and flow cytometry. The results showed that the inhibitory rates of cinobufacini on Raji and Raji/ADR cells at 72 h were 75.6% and 69.3% respectively, the IC50 were 3.9 mmol/L and 4.6 mmol/L without significant difference (P > 0.05). The reversing multiples to adriamycin-resistance were 255.7 multiples, the transcription of mdr-1 and mrp-1 genes and the expression of P-gp and MRP-1 proteins significantly decreased (P < 0.05) in Raji/ADR cells after the treatment with cinobufotalin. It is concluded that cinobufotalin can reverse the adriamycin-resistance in Raji/ADR cells and the expression of P-gp and MRP-1 proteins were down-regulated through the transcriptional pathway. The cinobufotalin is an effective reversal agent for the multidrug resistance of tumors.

  7. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii

    PubMed Central

    Weber, Brent S.; Ly, Pek Man; Irwin, Joshua N.; Pukatzki, Stefan; Feldman, Mario F.

    2015-01-01

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria. PMID:26170289

  8. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

    PubMed

    Weber, Brent S; Ly, Pek Man; Irwin, Joshua N; Pukatzki, Stefan; Feldman, Mario F

    2015-07-28

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.

  9. Diffusion and persistence of multidrug resistant Salmonella Typhimurium strains phage type DT120 in southern Italy.

    PubMed

    De Vito, Danila; Monno, Rosa; Nuccio, Federica; Legretto, Marilisa; Oliva, Marta; Coscia, Maria Franca; Dionisi, Anna Maria; Calia, Carla; Capolongo, Carmen; Pazzani, Carlo

    2015-01-01

    Sixty-two multidrug resistant Salmonella enterica serovar Typhimurium strains isolated from 255 clinical strains collected in Southern Italy in 2006-2008 were characterised for antimicrobial resistance genes, pulsotype, and phage type. Most strains (83.9%) were resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT) encoded in 88.5% by the Salmonella genomic island (SGI1) and in 11.5% by the InH-like integron (bla OXA-30-aadA1) and catA1, sul1, and tet(B) genes. STYMXB.0061 (75%) and DT120 (84.6%) were the prevalent pulsotype and phage type identified in these strains, respectively. Five other resistance patterns were found either in single or in a low number of isolates. The pandemic clone DT104 (ACSSuT encoded by SGI1) has been identified in Italy since 1992, while strains DT120 (ACSSuT encoded by SGI1) have never been previously reported in Italy. In Europe, clinical strains DT120 have been reported from sporadic outbreaks linked to the consumption of pork products. However, none of these strains were STYMXB.0061 and SGI1 positive. The prevalent identification and persistence of DT120 isolates would suggest, in Southern Italy, a phage type shifting of the pandemic DT104 clone pulsotype STYMXB.0061. Additionally, these findings raise epidemiological concern about the potential diffusion of these emerging multidrug resistant (SGI linked) DT120 strains.

  10. Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups

    PubMed Central

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique

    2014-01-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126

  11. Multidrug resistance to Mycobacterium tuberculosis in a tertiary hospital.

    PubMed Central

    Kehinde, Aderemi Oludiran; Obaseki, Felix Ariebuwa; Ishola, Oluponle Christiana; Ibrahim, Kolo Doko

    2007-01-01

    OBJECTIVE: The magnitude of drug-resistant Mycobacterium tuberculosis infection (MDR-TB) in Nigeria, the most populous country in sub-Saharan Africa, is largely unknown. This information would assist policymakers to develop intervention strategies against tuberculosis (TB) in the country. MATERIALS AND METHODS: This is a one-year laboratory-based study. Specimens from suspected new TB patients sent to the TB laboratory of the Department of Medical Microbiology, University College Hospital Ibadan, Nigeria from May 1, 2005 to April 27, 2006 were processed and analyzed. The specimens were stained with Ziehl-Neelsen (Z-N) reagents and cultured on Lowenstein-Jensen medium, incubated at 37 degrees C for 6-8 weeks. Isolates were confirmed as MDR-TB by Z-N reactions and biochemical methods. Drug susceptibility to streptomycin, ethambutol, rifampicin and isoniazid was done using Bactec 460 TB radiometric method. RESULTS: Of the 1,120 specimens processed, 80 (7.1%) were smear positive, while 56 (5.0%) were culture positive, even though the association was not statistically significant (p > 0.05). Culture contamination rate was 8.8%. Thirty (53.6%) of the culture positive isolates were resistant to both isoniazid and rifampicin, while 26 (46.4%) were susceptible. About half--53.3%--of the resistant isolates were from the antiretroviral clinic, while 10 (33.4%) were from peripheral centers. CONCLUSION: This study shows that MDR-TB is emerging in Nigeria. Further studies on MDR-TB are urgently needed in the country to ascertain the magnitude of the problem and to proffer solutions to it. PMID:17987922

  12. Nested Case-Control Study of the Emergence of Tigecycline Resistance in Multidrug-Resistant Klebsiella pneumoniae

    PubMed Central

    Nigo, Masayuki; Cevallos, Catalina Salinas; Woods, Krystina; Flores, Vicente Maco; Francis, Gweneth; Perlman, David C.; Revuelta, Manuel; Mildvan, Donna; Waldron, Mary; Gomez, Tessa; Koshy, Sanjana; Jodlowski, Tomasz; Riley, William

    2013-01-01

    We performed a nested case-control study (ratio of 1:4) on the emergence of tigecycline-resistant multidrug-resistant Klebsiella pneumoniae (TR-MDRKP) isolates among patients who initially presented with a tigecycline-susceptible MDRKP isolate. Out of 260 patients, 24 (9%) had a subsequent clinical culture positive for a TR-MDRKP isolate within the 90-day follow-up period. On logistic regression analyses, receipt of tigecycline (adjusted odds ratio [OR], 5.06; 95% confidence interval [CI], 1.80 to 14.23; P = 0.002) was the only independent predictor of subsequent isolation of a TR strain. PMID:23979745

  13. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  14. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts

    PubMed Central

    Porse, Andreas; Schønning, Kristian; Munck, Christian; Sommer, Morten O.A.

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts. PMID:27501945

  15. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    PubMed

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-01-01

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  16. Multidrug-resistant Staphylococcus hominis subsp. novobiosepticus causing septicemia in patients with malignancy.

    PubMed

    Roy, Priyamvada; Ahmed, Nishat Hussain; Biswal, Indu; Grover, Rajesh Kumar

    2014-01-01

    A new subspecies of Staphylococcus hominis described by Kloos et al. in 1998 and named S. hominis subsp. novobiosepticus (SHN) has been implicated in nosocomial outbreaks. Multidrug resistance, including resistance to novobiocin and oxacillin, is a particularly important feature of SHN. In our institute, we encountered 13 cases of S. hominis subsp. hominis in cancer patients with septicemia, of which seven were methicillin resistant. The isolates were identified by VITEK ® 2 compact automated system, using GP REF 21342 identification card and antimicrobial susceptibility testing card P-628. The biochemical reactions and antibiotic susceptibility pattern of the seven methicillin-resistant isolates were re-analyzed and patient details were re-checked to finally identify them as SHN. The increasing number of cases reporting isolation of SHN from biological specimens point to potential virulence and clinical importance of this bacterium.

  17. First Report of an OXA-48-Producing Multidrug-Resistant Proteus mirabilis Strain from Gaza, Palestine

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Mediavilla, Jose R.; Jacobs, Michael R.; Bonomo, Robert A.

    2015-01-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the blaOXA-48-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene blaOXA-48, extended spectrum β-lactamase gene blaCTX-M-14, and aminoglycoside resistance genes strA, strB, and aph(3′)-VIb. PMID:25896692

  18. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    PubMed

    Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David S

    2016-03-29

    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy.

  19. Molecular Characterization of the Multidrug Resistant Escherichia coli ST131 Clone

    PubMed Central

    Schembri, Mark A.; Ben Zakour, Nouri L.; Phan, Minh-Duy; Forde, Brian M.; Stanton-Cook, Mitchell; Beatson, Scott A.

    2015-01-01

    Escherichia coli ST131 is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections in both community and clinical settings. The most common group of ST131 strains are defined by resistance to fluoroquinolones and possession of the type 1 fimbriae fimH30 allele. Here we provide an update on our recent work describing the globally epidemiology of ST131. We review the phylogeny of ST131 based on whole genome sequence data and highlight the important role of recombination in the evolution of this clonal lineage. We also summarize our findings on the virulence of the ST131 reference strain EC958, and highlight the use of transposon directed insertion-site sequencing to define genes associated with serum resistance and essential features of its large antibiotic resistance plasmid pEC958. PMID:26131613

  20. Genome sequencing and annotation of a Campylobacter coli strain isolated from milk with multidrug resistance.

    PubMed

    Liu, Kun C; Jinneman, Karen C; Neal-McKinney, Jason; Wu, Wen-Hsin; Rice, Daniel H

    2016-06-01

    As the most prevalent bacterial cause of human gastroenteritis, food-borne Campylobacter infections pose a serious threat to public health. Whole Genome Sequencing (WGS) is a tool providing quick and inexpensive approaches for analysis of food-borne pathogen epidemics. Here we report the WGS and annotation of a Campylobacter coli strain, FNW20G12, which was isolated from milk in the United States in 1997 and carries multidrug resistance. The draft genome of FNW20G12 (DDBJ/ENA/GenBank accession number LWIH00000000) contains 1, 855,435 bp (GC content 31.4%) with 1902 annotated coding regions, 48 RNAs and resistance to aminoglycoside, beta-lactams, tetracycline, as well as fluoroquinolones. There are very few genome reports of C. coli from dairy products with multidrug resistance. Here the draft genome of FNW20G12, a C. coli strain isolated from raw milk, is presented to aid in the epidemiology study of C. coli antimicrobial resistance and role in foodborne outbreak. PMID:27257607

  1. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  2. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    PubMed

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR. PMID:25956050

  3. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    PubMed

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR.

  4. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation.

    PubMed

    Chapin, Amy; Rule, Ana; Gibson, Kristen; Buckley, Timothy; Schwab, Kellogg

    2005-02-01

    The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans.

  5. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in Colombian hospitals: dominance of a single unique multidrug-resistant clone.

    PubMed

    Gomes, A R; Sanches, I S; Aires de Sousa, M; Castañeda, E; de Lencastre, H

    2001-01-01

    The first study on the molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates from Colombia was performed as part of a global surveillance established by the CEM/NET Initiative, under Project RESIST. Seventy-six MRSA isolates recovered from five hospitals during 1996-1998 were analyzed by the hybridization of ClaI restriction digests with mecA- and Tn554-specific probes, and by pulsed-field gel electrophoresis (PFGE) of chromosomal SmaI digests. All MRSA isolates, with one exception, belonged to a single clonal type II::NH::D. This clone, which was previously described among MRSA isolates recovered in the early 1990s in European and New York and South American hospitals, showed resistance to beta-lactam antibiotics only and appeared to be associated almost exclusively with pediatric infections ("Pediatric clone" of MRSA). While sharing identical molecular typing properties with the Pediatric clone, the Colombian isolates differed by extensive multidrug resistance and were recovered from patients of all ages. It is also noteworthy that the Brazilian clone of MRSA (XI::B::B), another multidrug-resistant international clone currently widely spread in Brazil, Argentina, Uruguay, Chile, and also in several European countries, was completely absent from this set of isolates from Colombia.

  6. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    PubMed

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  7. Autophagy and Transporter-Based Multi-Drug Resistance

    PubMed Central

    Kumar, Priyank; Zhang, Dong-Mei; Degenhardt, Kurt; Chen, Zhe-Sheng

    2012-01-01

    All the therapeutic strategies for treating cancers aim at killing the cancer cells via apoptosis (programmed cell death type I). Defective apoptosis endow tumor cells with survival. The cell can respond to such defects with autophagy. Autophagy is a cellular process by which cytoplasmic material is either degraded to maintain homeostasis or recycled for energy and nutrients in starvation. A plethora of evidence has shown that the role of autophagy in tumors is complex. A lot of effort is needed to underline the functional status of autophagy in tumor progression and treatment, and elucidate how to tweak autophagy to treat cancer. Furthermore, during the treatment of cancer, the limitation for the cure rate and survival is the phenomenon of multi drug resistance (MDR). The development of MDR is an intricate process that could be regulated by drug transporters, enzymes, anti-apoptotic genes or DNA repair mechanisms. Reports have shown that autophagy has a dual role in MDR. Furthermore, it has been reported that activation of a death pathway may overcome MDR, thus pointing the importance of other death pathways to regulate tumor cell progression and growth. Therefore, in this review we will discuss the role of autophagy in MDR tumors and a possible link amongst these phenomena. PMID:24710490

  8. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Wu, Minghuo; Yang, Ling; Zou, Hanfa

    2010-03-23

    Multidrug resistance (MDR), which is related to cancer chemotherapy, tumor stem cells, and tumor metastasis, is a huge obstacle for the effective cancer therapy. One of the underlying mechanisms of MDR is the increased efflux of anticancer drugs by overexpressed P-glycoprotein (P-gp) of multidrug resistant cells. In this work, the antibody of P-gp (anti-P-gp) functionalized water-soluble single-walled carbon nanotubes (Ap-SWNTs) loaded with doxorubicin (Dox), Dox/Ap-SWNTs, were synthesized for challenging the MDR of K562 human leukemia cells. The resulting Ap-SWNTs could not only specifically recognize the multidrug resistant human leukemia cells (K562R), but also demonstrate the effective loading and controllable release performance for Dox toward the target K562R cells by exposing to near-infrared radiation (NIR). The recognition capability of Ap-SWNTs toward the K562R cells was confirmed by flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The binding affinity of Ap-SWNTs toward drug-resistant K562R cells was ca. 23-fold higher than that toward drug-sensitive K562S cells. Additionally, CLSM indicated that Ap-SWNTs could specifically localize on the cell membrane of K562R cells and the fluorescence of Dox in K562R cells could be significantly enhanced after the employment of Ap-SWNTs as carrier. Moreover, the composite of Dox and Ap-SWNTs (Dox/Ap-SWNTs) expressed 2.4-fold higher cytotoxicity and showed the significant cell proliferation suppression toward K562R leukemia cells (p < 0.05) as compared with free Dox which is popularly employed in clinic trials. These results suggest that the Ap-SWNTs are the promising drug delivery vehicle for overcoming the MDR induced by the overexpression of P-gp on cell membrane. Ap-SWNTs loaded with drug molecules could be used to suppress the proliferation of multidrug resistant cells, destroy the tumor stem cells, and inhibit the metastasis of tumor.

  9. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI.

    PubMed

    Kappell, Anthony D; DeNies, Maxwell S; Ahuja, Neha H; Ledeboer, Nathan A; Newton, Ryan J; Hristova, Krassimira R

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (bla OXA, bla SHV, and bla PSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and bla OXA than isolates from urban waterway. These results indicate that Milwaukee's urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  10. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    PubMed Central

    Kappell, Anthony D.; DeNies, Maxwell S.; Ahuja, Neha H.; Ledeboer, Nathan A.; Newton, Ryan J.; Hristova, Krassimira R.

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance. PMID:25972844

  11. Establishment of a human hepatoma multidrug resistant cell line in vitro

    PubMed Central

    Zhou, Yuan; Ling, Xian-Long; Li, Shi-Wei; Li, Xin-Qiang; Yan, Bin

    2010-01-01

    AIM: To establish a multidrug-resistant hepatoma cell line (SK-Hep-1), and to investigate its biological characteristics. METHODS: A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma, also known as malignant hepatoma was incubated with a high concentration of cisplatin (CDDP) to establish a CDDP-resistant cell subline (SK-Hep-1/CDDP). The 50% inhibitory dose (IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and the growth curve of cells were all evaluated using cell counting kit-8 assays. The distribution of the cell cycles were detected by flow cytometry. Expression of acquired multidrug resistance P-glycoprotein (MDR1, ABCB1) and multidrug resistance-associated protein 1 (MRP1, ABCC1) was compared with that in parent cells by Western blotting and immunofluorescence combined with laser scanning confocal microscopy. RESULTS: The SK-Hep-1/CDDP cells (IC50 = 70.61 ± 1.06 μg/mL) was 13.76 times more resistant to CDDP than the SK-Hep-1 cells (IC50 = 5.13 ± 0.09 μg/mL), and CDDP-resistant cells also demonstrated cross-resistance to many anti-tumor agents such as doxorubicin, 5-fluorouracil and vincristine. Similar morphologies were determined in both SK-Hep-1 and SK-Hep-1/CDDP groups. The cell cycle distribution of the SK-Hep-1/CDDP cell line exhibited a significantly increased percentage of cells in S (42.2% ± 2.65% vs 27.91% ± 2.16%, P < 0.01) and G2/M (20.67% ± 5.69% vs 12.14% ± 3.36%, P < 0.01) phases in comparison with SK-Hep-1 cells, while the percentage of cells in the G0/G1 phase decreased (37.5% ± 5.05% vs 59.83% ± 3.28%, P < 0.01). The levels of MDR1 and MRP1 were overexpressed in the SK-Hep-1/CDDP cells exhibiting the MDR phenotype. CONCLUSION: Multiple drug resistance of multiple drugs in the human hepatoma cell line SK-Hep-1/CDDP was closely related to the overexpression of MDR1 and MRP1. PMID:20458768

  12. Multidrug-resistant bacteria in unaccompanied refugee minors arriving in Frankfurt am Main, Germany, October to November 2015.

    PubMed

    Heudorf, Ursel; Krackhardt, Bernhard; Karathana, Maria; Kleinkauf, Niels; Zinn, Christian

    2016-01-01

    Many refugees arriving in Germany originate or have travelled through countries with high prevalence of multidrug-resistant Gram-negative organisms. Therefore, all unaccompanied refugee minors (<18 years-old) arriving in Frankfurt am Main between 12 October and 6 November 2015, were screened for multidrug-resistant Enterobacteriaceae in stool samples. Enterobacteriaceae with extended spectrum beta-lactamases (ESBL) were detected in 42 of 119 (35%) individuals, including nine with additional resistance to fluoroquinolones (8% of total screened), thus exceeding the prevalences in the German population by far. PMID:26838714

  13. TPGS/Phospholipids Mixed Micelles for Delivery of Icariside II to Multidrug-Resistant Breast Cancer.

    PubMed

    Song, Jie; Huang, Houcai; Xia, Zhi; Wei, Yingjie; Yao, Nan; Zhang, Li; Yan, Hongmei; Jia, Xiaobin; Zhang, Zhenhai

    2016-09-01

    The biggest challenge for the treatment of multidrug resistant cancer is to deliver a high concentration of anticancer drugs to cancer cells. Icariside II is a flavonoid from Epimedium koreanum Nakai with remarkable anticancer properties, but poor solubility and significant efflux from cancer cells limited its clinical use. In our previous study, a self-assembled mixture of micelles (TPGS-Icariside II-phospholipid complex) was successfully constructed, which could substantially increase the solubility of Icariside II and inhibit the efflux on Caco-2 cells. In this study, we evaluate the anticancer effect of the mixed micelles encapsulating Icariside II (Icar-MC) on MCF-7/ADR, a multidrug-resistant breast cancer cell line. The cellular uptake of the micelles was confirmed by fluorescent coumarin-6-loaded micelles. The IC50 of Icar-MC in MCF-7/ADR was 2-fold less than the free drug. The in vitro study showed Icar-MC induced more apoptosis and lactate dehydrogenase release. Intravenous injection of Icar-MC into nude mice bearing MCF-7/ADR xenograft resulted in a better antitumor efficacy compared with the administration of free drug, without causing significant body weight changes in mice. The antitumor effect was further verified by magnetic resonance imaging and immunohistochemical assays for Ki-67, a proliferative indicator. Moreover, Icar-MC treatment also elevated Bax/Bcl-2 ratio and the expressions of cleaved caspase-3, -8, -9 and AIFM1 in tumors. This study suggests that phospholipid/TPGS mixed micelles might be a suitable drug delivery system for Icariside II to treat multidrug resistant breast cancer. PMID:26293804

  14. Role of serum interleukin-6 in deciding therapy for multidrug resistant oral lichen planus

    PubMed Central

    Marwah, Akanksha; Kaushik, Smita; Garg, Vijay K.; Gupta, Sunita

    2015-01-01

    Background Oral lichen planus (OLP) is a T cell mediated immune response. T cells locally present in the involved tissues release cytokines like interleukin-6 (IL-6), which contributes to pathogenesis of OLP. Also IL-6 has been associated with multidrug resistance protein (MRP) expression by keratinocytes. Correspondingly, upregulation of MRP was found in OLP. We conducted this study to evaluate the effects of various drugs on serum IL-6 in OLP; and correlation of these effects with the nature of clinical response and resistance pattern seen in OLP lesions with various therapeutic modalities. Thus we evaluated the role of serum IL-6 in deciding therapy for multidrug resistant OLP. Material and Methods Serum IL-6 was evaluated in 42 erosive OLP (EOLP) patients and 10 normal mucosa and 10 oral squamous cell carcinoma cases using ELISA technique. OLP patients were randomly divided into 3 groups of 14 patients each and were subjected to Pimecrolimus local application, oral Mycophenolate Mofetil (MMF) and Methotrexate (MTX) alongwith Pimecrolimus local application. IL-6 levels were evaluated before and after treatment. Results Serum IL-6 levels were raised above 3pg/ml in 26.19% erosive OLP (EOLP) cases (mean- 3.72±8.14). EOLP (5%) cases with IL-6 levels above 5pg/ml were resistant in MTX group. However significant decrease in serum IL-6 corresponding with the clinical resolution was seen in MMF group. Conclusions Significantly raised IL-6 levels in EOLP reflect the chronic inflammatory nature of the disease. As serum IL-6 levels significantly decreased in MMF group, correspondingly no resistance to treatment was noted. However with MTX there was no significant decrease in IL-6 and resistance to treatment was noted in some, especially plaque type lesions. Thus IL-6 can be a possible biomarker in deciding the best possible therapy for treatment resistant OLP. Key words:Lichen planus, biological markers, cytokines, enzyme-linked immunosorbent assay, immunosuppressive

  15. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    PubMed

    Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Lukowski, Samuel W; Allsopp, Luke P; Gomes Moriel, Danilo; Achard, Maud E S; Totsika, Makrina; Marshall, Vikki M; Upton, Mathew; Beatson, Scott A; Schembri, Mark A

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.

  16. The Serum Resistome of a Globally Disseminated Multidrug Resistant Uropathogenic Escherichia coli Clone

    PubMed Central

    Phan, Minh-Duy; Peters, Kate M.; Sarkar, Sohinee; Lukowski, Samuel W.; Allsopp, Luke P.; Moriel, Danilo Gomes; Achard, Maud E. S.; Totsika, Makrina; Marshall, Vikki M.; Upton, Mathew; Beatson, Scott A.; Schembri, Mark A.

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease. PMID

  17. Undomesticated animals as a reservoir of multidrug-resistant Enterococcus in eastern Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Kostruba, Anna

    2014-07-01

    To assess implications for public health we compared the resistance of Enterococcus spp. strains to antibacterial drugs in wild and exotic animals with strains originating in domesticated animals and characterized correlations between Enterococcus species, the source of the isolate, and the degree of resistance to selected antibiotics. All strains, regardless of source, were susceptible to β-lactams, gentamicin, linezolid, and teicoplanin; the highest resistance was to kanamycin, quinupristin, and rifampicin. Thirteen strains from undomesticated animals were resistant to vancomycin, and one strain, from a fox, was resistant to streptomycin (high-dose). Multidrug-resistant strains accounted for 46% of the strains from wild animals and 59% of the strains from an exotic animal (the Russian tortoise; Testudo horsfieldii). Despite the relatively low level of resistance in the strains isolated from wild and exotic animals, the large number of intermediately susceptible strains in these groups is an indication of the evolutionary character of the development of resistance, suggesting that these animals may be potential reservoirs of Enterococcus strains resistant to a wide panel of currently used antibiotics.

  18. Differences in the motility phenotype of multidrug-resistant Salmonella enterica serovar Typhimurium exposed to various antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most prevalent foodborne-associated bacteria in humans and livestock, and over 35 per cent of these isolates are resistant to three or more antibiotics. This is a concern as multidrug-resistant (MDR) Salmonella has been associat...

  19. Place of Colistin-Rifampicin Association in the Treatment of Multidrug-Resistant Acinetobacter Baumannii Meningitis: A Case Study

    PubMed Central

    Souhail, Dahraoui; Bouchra, Belefquih; Belarj, Badia; Laila, Rar; Mohammed, Frikh; Nassirou, Oumarou Mamane; Azeddine, Ibrahimi; Haimeur, Charki; Lemnouer, Abdelhay; Elouennass, Mostafa

    2016-01-01

    Treatment of Acinetobacter baumannii meningitis is an important challenge due to the accumulation of resistance of this bacteria and low meningeal diffusion of several antimicrobial requiring use of an antimicrobial effective combination to eradicate these species. We report a case of Acinetobacter baumannii multidrug-resistant nosocomial meningitis which was successfully treated with intravenous and intrathecal colistin associated with rifampicin. PMID:27064923

  20. Draft Genome Sequence of a Multidrug-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Isolate from a Clinical Source

    PubMed Central

    Morris, Andrew R.; Krapp, Fiorella; Henry, Christopher S.; Tyo, Keith E.; Hauser, Alan R.

    2016-01-01

    We report here the draft genome sequence of a multidrug-resistant clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae, KP_Z4175. This strain, isolated as part of a hospital infection-control screening program, is resistant to multiple β-lactam antibiotics, aminoglycosides, and trimethoprim-sulfamethoxazole. PMID:27231362

  1. Partial synthesis and biological evaluation of bisbenzylisoquinoline alkaloids derivatives: potential modulators of multidrug resistance in cancer.

    PubMed

    He, Ping; Sun, Hua; Jian, Xi-Xian; Chen, Qiao-Hong; Chen, Dong-Lin; Liu, Geng-Tao; Wang, Feng-Peng

    2012-01-01

    A series of new bisbenzylisoquinoline alkaloids was partially synthesized from tetrandrine and fangchinoline and evaluated for their ability to reverse P-glycoprotein-mediated multidrug resistance (MDR) in cancer cells. All the test compounds increased the intracellular accumulation rate of rhodamine 123 in MDR cells (Bel7402 and HCT8), and most exhibited more potent MDR-reversing activity relative to the reference compound verapamil. Compounds 8, 10, 13, and 14 enhanced intracellular accumulation of doxorubicin in Bel7402 and HCT8 cells. PMID:22587798

  2. Diterpene Constituents of Euphorbia exigua L. and Multidrug Resistance Reversing Activity of the Isolated Diterpenes.

    PubMed

    Rédei, Dóra; Boros, Klára; Forgo, Peter; Molnár, Joseph; Kele, Zoltán; Pálinkó, István; Pinke, Gyula; Hohmann, Judit

    2015-08-01

    Phytochemical investigation of the MeOH extract obtained from the aerial parts of the annual weed Euphorbia exigua L. resulted in the isolation of two novel (1, 2) and one known (3) jatrophane diterpenes. Their structures were established by extensive 1D- and 2D-NMR spectroscopy and HR-ESI-MS. The isolated compounds were evaluated for multidrug resistance (MDR) reversing activity on human MDR gene-transfected L5178 mouse lymphoma cells; and all three compounds were found to modulate the intracellular drug accumulation.

  3. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968.

  4. The Race Is On To Shorten the Turnaround Time for Diagnosis of Multidrug-Resistant Tuberculosis

    PubMed Central

    Somoskovi, Akos

    2015-01-01

    To realize the most benefit from multidrug-resistant tuberculosis (MDR-TB) screening, all nucleic acid amplification test (NAAT)-positive respiratory specimens should be universally tested. Once an MDR-TB diagnosis is established, additional testing is warranted to provide details about the detected mutations. The lab-on-chip technology described by A. M. Cabibbe et al. (J Clin Microbiol 53:3876–3880, 2015, http://dx.doi.org/10.1128/JCM.01824-15) potentially provides this much needed information. PMID:26378276

  5. [Advances in the research of treating multi-drug resistant bacterial infections].

    PubMed

    Peng, Y; Fu, Y X

    2016-09-20

    It is imperative to research the treatment strategy for infections caused by multi-drug resistant (MDR) bacteria, as there are increasing reports showing that more and more patients are decimated by the infections of MDR bacteria and the development of antimicrobial drugs is in downturn. Current researches mainly focus on the following three aspects: developing new antimicrobial agents with the aid of basic scientific achievements in finding new antibacterial targets, achieving antimicrobial purpose by specific lysis of host bacteria with phages of high specificity, and killing bacteria potently by destroying its cytomembrane using broad-spectrum antimicrobial peptides. PMID:27647070

  6. The multidrug resistance (mdr1) gene product functions as an ATP channel.

    PubMed Central

    Abraham, E H; Prat, A G; Gerweck, L; Seneveratne, T; Arceci, R J; Kramer, R; Guidotti, G; Cantiello, H F

    1993-01-01

    The multidrug resistance (mdr1) gene product, P-glycoprotein, is responsible for the ATP-dependent extrusion of a variety of compounds, including chemotherapeutic drugs, from cells. The data presented here show that cells with increased levels of the P-glycoprotein release ATP to the medium in proportion to the concentration of the protein in their plasma membrane. Furthermore, measurements of whole-cell and single-channel currents with patch-clamp electrodes indicate that the P-glycoprotein serves as an ATP-conducting channel in the plasma membrane. These findings suggest an unusual role for the P-glycoprotein. PMID:7678345

  7. [Monotherapy vs. combined therapy in the treatment of multi-drug resistance gramnegative bacteria].

    PubMed

    Martínez-Sagasti, F; González-Gallego, M A; Moneo-González, A

    2016-09-01

    The increasing number of multidrug resistant gram negative bacteria, particularly in patients with risk factors, but in those who suffer community infections as well, is doing more and more difficult to choose the appropriate treatment. The most challenging cases are due to the production of extended-spectrum-β-lactamases (ESBL) and carbapenemases. This mini-review will discuss the adequacy of administering carbapenems when suspecting infections due to ESBL that could be modified after knowing the MIC of the isolated bacteria and the combined therapy in cases of carbapenemases, being particularly important to include a carbapenem and/or colistine at high dosages in this combination. PMID:27608313

  8. Ventilator-Associated Pneumonia (VAP) with Multidrug-Resistant (MDR) Pathogens: Optimal Treatment?

    PubMed

    Bailey, Kristina L; Kalil, Andre C

    2015-08-01

    Ventilator-associated pneumonia (VAP) due to multidrug-resistant bacteria (MDR) is an emerging problem worldwide. Both gram-negative and gram-positive microorganisms are associated with VAP. We first describe the magnitude of the problem of MDR VAP followed by its clinical impact on survival outcomes, with the primary aim to review the optimal antibiotic choices to treat patients with MDR VAP. We discuss the challenges of intravenous and inhaled antibiotic treatments, as well as of monotherapy and combination antimicrobial therapies.

  9. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias.

    PubMed

    Wan, Q Q; Ye, Q F; Yuan, H

    2015-03-01

    Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.

  10. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain

    PubMed Central

    Halim, Mohd Zakihalani A.; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-01-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  11. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Strassle, Paula; Thom, Kerri A; Johnson, J Kristie; Johnsonm, J Kristie; Leekha, Surbhi; Lissauer, Matthew; Zhu, Jingkun; Harris, Anthony D

    2012-12-01

    We evaluated the prevalence of multidrug-resistant Acinetobacter baumannii environmental contamination before and after discharge cleaning in rooms of infected/colonized patients. 46.9% of rooms and 15.3% of sites were found contaminated precleaning, and 25% of rooms and 5.5% of sites were found contaminated postcleaning. Cleaning significantly decreased environmental contamination of A baumannii; however, persistent contamination represents a significant risk factor for transmission. Further studies on this and more effective cleaning methods are needed.

  12. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  13. First Two Cases of Fungal Infections Associated with Multi-drug Resistant Yeast, Fereydounia khargensis.

    PubMed

    Tap, Ratna Mohd; Ramli, Nur Yasmin; Sabaratnam, Parameswari; Hashim, Rohaidah; Bakri, Ahmed Rafezzan Ahmed; Bee, Lim Bee; Ginsapu, Stephanie Jane; Ahmad, Rahimah; Razak, Mohd Fuat Abd; Ahmad, Norazah

    2016-08-01

    The number of new fungal pathogens is increasing due to growing population of immunocompromised patients and advanced identification techniques. Fereydounia khargensis is a yeast and was first described in 2014 from environmental samples. As far as we know, this is the first report of human infections associated with F. khargensis. The yeasts were isolated from blood of a HIV-positive patient and pleural fluid of chronic renal failure patient. Amplification and sequencing of the internal transcribed spacer and the large subunit regions confirmed the identity of the isolates. Both isolates showed multi-drug resistance to antifungal agents tested. PMID:27010640

  14. Genetic diversity of multidrug resistant Staphylococcus aureus isolated from clinical and non clinical samples in Egypt.

    PubMed

    Bendary, M M; Solyman, S M; Azab, M M; Mahmoud, N F; Hanora, A M

    2016-01-01

    In recent years, the increasing incidence of diseases caused by Staphylococcus aureus (S. aureus) has been noted in the university hospitals of El-Sharkia and Assuit governorates - Egypt. Therefore, we studied the genetic relatedness of multidrug resistant S. aureus isolates from different sources in the above mentioned governorates. One hundred and fifty six S. aureus isolates were divided into 5 different groups, 1 non clinical isolates from different food products and 4 different clinical isolates of human and animal sources in the 2 different governorates. Epidemiological characteristics of 156 S. aureus isolates were determined by phenotypic methods including quantitative antibiogram typing and biofilm production. Genetic typing of 35 multidrug resistant (MDR) isolates (7 from each group) based on 16S rRNA gene sequence, virulence and antimicrobial resistance gene profiles was done. The genetic relatedness of the highest virulent strain from each group was detected based on different single locus sequence typing and multi-locus sequence typing (MLST). S. aureus strains isolated from different sources and geographical areas showed high diversity. The genetic typing revealed different sequence types and different sequences of coa and spa genes. S. aureus isolates were found highly diverse in Egypt. PMID:27609475

  15. Implication of the RD(Rio) Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal.

    PubMed

    David, Susana; Duarte, Elsa L; Leite, Clarice Queico Fugimura; Ribeiro, João-Nuno; Maio, José-Nuno; Paixão, Eleonora; Portugal, Clara; Sancho, Luísa; Germano de Sousa, José

    2012-10-01

    Multidrug and extensively drug resistant Mycobacterium tuberculosis are a threat to tuberculosis control programs. Genotyping methods, such as spoligotyping and MIRU-VNTR typing (Mycobacterial Interspersed Repetitive Units), are useful in monitoring potentially epidemic strains and estimating strain phylogenetic lineages and/or genotypic families. M. tuberculosis Latin American Mediterranean (LAM) family is a major worldwide contributor to tuberculosis (TB). LAM specific molecular markers, Ag85C(103) single nucleotide polymorphism (SNP) and RD(Rio) long-sequence polymorphism (LSP), were used to characterize spoligotype signatures from 859 patient isolates from Portugal. LAM strains were found responsible for 57.7% of all tuberculosis cases. Strains with the RD(Rio) deletion (referred to as RD(Rio)) were estimated to represent 1/3 of all the strains and over 60% of the multidrug resistant (MDR) strains. The major spoligotype signature SIT20 belonging to the LAM1 RD(Rio) sublineage, represented close to 1/5th of all the strains, over 20% of which were MDR. Analysis of published datasets according to stipulated 12loci MIRU-VNTR RD(Rio) signatures revealed that 96.3% (129/134) of MDR and extensively drug resistant (XDR) clusters were RD(Rio). This is the first report associating the LAM RD(Rio) sublineage with MDR. These results are an important contribution to the monitoring of these strains with heightened transmission for future endeavors to arrest MDR-TB and XDR-TB.

  16. Multidrug-Resistance Transporter AbcA Secretes Staphylococcus aureus Cytolytic Toxins.

    PubMed

    Yoshikai, Hirono; Kizaki, Hayato; Saito, Yuki; Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-15

    Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence.

  17. Multidrug-Resistance Transporter AbcA Secretes Staphylococcus aureus Cytolytic Toxins.

    PubMed

    Yoshikai, Hirono; Kizaki, Hayato; Saito, Yuki; Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-15

    Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence. PMID:26160745

  18. Long-term molecular surveillance of multidrug-resistant tuberculosis in Spain.

    PubMed

    Gavín, Patricia; Iglesias, María José; Jiménez, María Soledad; Rodríguez-Valín, Elena; Ibarz, Daniel; Lezcano, María Antonia; Revillo, María José; Martín, Carlos; Samper, Sofía

    2012-06-01

    The data presented here span 11 years (1998-2008) of monitoring of multidrug-resistant tuberculosis (MDR-TB) clustering through molecular typing techniques in Spain. The molecular and epidemiological data of 480 multidrug-resistant Mycobacterium tuberculosis complex isolates were analyzed. Thirty-one clusters involving 157 (32.7%) patients were identified. The proportion of immigrants increased substantially over the study period reaching 65% in 2008; however, the clustering rate remained stable indicating that local transmission was little influenced by imported MDR-TB. The three major clusters respond to the persistence of two autochthonous strains throughout the study period and an extensively drug-resistant (XDR) Mycobacterium bovis outbreak with only two cases was reported since 2002. Molecular and epidemiological evidence for the importation of new strains and their spread within the community was found. Immigrant-only clusters most often grouped patients infected abroad with strains belonging to rare spoligotypes. Conversely, widespread spoligotypes of the Latin-American and Mediterranean (LAM) and Haarlem families were responsible for the majority of the MDR-TB local transmission. The demonstration of clusters spanning several Spanish regions that have been ongoing throughout the study period makes it advisable to maintain a continuous molecular surveillance in order to monitor the spread of MDR-TB. PMID:21669301

  19. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    PubMed

    Li, Lan-Hui; Yen, Muh-Yong; Ho, Chao-Chi; Wu, Ping; Wang, Chien-Chun; Maurya, Pawan Kumar; Chen, Pai-Shan; Chen, Wei; Hsieh, Wan-Yu; Chen, Huei-Wen

    2013-01-01

    The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226). Silver nanoparticles (Ag NPs, 120 nm) showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml) and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae. PMID:23705013

  20. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  1. Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1, ABCC1).

    PubMed

    Schmitt, Sven Marcel; Stefan, Katja; Wiese, Michael

    2016-04-14

    Five series of pyrrolo[3,2-d]pyrimidines were synthesized and evaluated with respect to potency and selectivity toward multidrug resistance-associated protein 1 (MRP1, ABCC1). This transport protein is a major target to overcome multidrug resistance in cancer patients. We investigated differently substituted pyrrolopyrimidines using the doxorubicin selected and MRP1 overexpressing small cell lung cancer cell line H69 AR in a calcein AM and daunorubicin cell accumulation assay. New compounds with high potency and selectivity were identified. Piperazine residues at position 4 bearing large phenylalkyl side chains proved to be beneficial for MRP1 inhibition. Its replacement by an amino group led to decreased activity. Aliphatic and aliphatic-aromatic variations at position 5 and 6 revealed compounds with IC50 values in high nanomolar range. All investigated compounds had low affinity toward P-glycoprotein (P-gp, ABCB1). Pyrrolopyrimidines with small substituents showed moderate inhibition against breast cancer resistance protein (BCRP, ABCG2). PMID:26943020

  2. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology.

    PubMed

    Xue, Xue; Liang, Xing-Jie

    2012-02-01

    Multidrug resistance (MDR), which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated. Well known P-glycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure. Innovative theranostic (therapeutic and diagnostic) strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits. In this review, we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  3. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation.

    PubMed

    Sharma, C; Kumar, N; Pandey, R; Meis, J F; Chowdhary, A

    2016-09-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L). PMID:27617098

  4. Do mobile phones of patients, companions and visitors carry multidrug-resistant hospital pathogens?

    PubMed

    Tekerekoǧlu, Mehmet Sait; Duman, Yucel; Serindağ, Ayfer; Cuǧlan, Serpil Semiha; Kaysadu, Halim; Tunc, Emine; Yakupogullari, Yusuf

    2011-06-01

    A cross-sectional study was conducted to determine bacterial colonization on the mobile phones (MPs) used by patients, patients' companions, visitors, and health care workers (HCWs). Significantly higher rates of pathogens (39.6% vs 20.6%, respectively; P = .02) were found in MPs of patients' (n = 48) versus the HCWs' (n = 12). There were also more multidrug pathogens in the patents' MPs including methicillin-resistant Staphylococcus aureus, extended-spectrum β-lactamase-producing Escherichia coli, and Klebsiella spp, high-level aminoglycoside-resistant Enterococcus spp, and carabepenem-resistant Acinetobacter baumanii. Our findings suggest that mobile phones of patients, patients' companions, and visitors represent higher risk for nosocomial pathogen colonization than those of HCWs. Specific infection control measures may be required for this threat.

  5. Global Introduction of New Multidrug-Resistant Tuberculosis Drugs-Balancing Regulation with Urgent Patient Needs.

    PubMed

    Sullivan, Timothy; Ben Amor, Yanis

    2016-03-01

    New treatments for multidrug-resistant tuberculosis (MDR TB) are urgently needed. Two new drugs, bedaquiline and delamanid, have recently been released, and several new drugs and treatment regimens are in the pipeline. Misuse of TB drugs is a principal cause of drug resistance. As new drugs and regimens reach the market, the need to make them available to patients must be balanced with regulation of their use so that resistance to the new drugs can be prevented. To foster the rational use of new drugs, we propose 1) expanding/strengthening the capacity for drug susceptibility testing, beginning with countries with a high TB burden; 2) regulating prescribing practices by banning over-the-counter sale of TB drugs and enacting an accreditation system whereby providers must be certified to prescribe new drugs; and 3) decentralizing MDR TB care in rural communities by employing trained community health workers, using promising mobile technologies, and enlisting the aid of civil society organizations.

  6. Cell structure and cytokinesis alterations in multidrug-resistant Leishmania (Leishmania) amazonensis.

    PubMed

    Borges, V M; Lopes, U G; De Souza, W; Vannier-Santos, M A

    2005-01-01

    Multidrug-resistant Leishmania (Leishmania) amazonensis may be obtained by in vitro selection with vinblastine. In order to determine whether this phenotype is linked to structural alterations, we analyzed the cell architecture by electron microscopy. The vinblastine resistant CL2 clone of L. (L.) amazonensis, but not wild-type parasites, showed a cytokinesis dysfunction. The CL2 promastigotes had multiple nuclei, kinetoplasts and flagella, suggesting that vinblastine resistance may be associated with truncated cell division. The subpellicular microtubule plasma membrane connection was also affected. Wild-type parasites treated with vinblastine displayed similar alterations, presenting lobulated and multinucleated cells. Taken together, these data indicate that antimicrotubule drug-selected parasites may show evidence of the mutation of cytoskeleton proteins, impairing normal cell function. PMID:15592939

  7. Global Introduction of New Multidrug-Resistant Tuberculosis Drugs—Balancing Regulation with Urgent Patient Needs

    PubMed Central

    Sullivan, Timothy

    2016-01-01

    New treatments for multidrug-resistant tuberculosis (MDR TB) are urgently needed. Two new drugs, bedaquiline and delamanid, have recently been released, and several new drugs and treatment regimens are in the pipeline. Misuse of TB drugs is a principal cause of drug resistance. As new drugs and regimens reach the market, the need to make them available to patients must be balanced with regulation of their use so that resistance to the new drugs can be prevented. To foster the rational use of new drugs, we propose 1) expanding/strengthening the capacity for drug susceptibility testing, beginning with countries with a high TB burden; 2) regulating prescribing practices by banning over-the-counter sale of TB drugs and enacting an accreditation system whereby providers must be certified to prescribe new drugs; and 3) decentralizing MDR TB care in rural communities by employing trained community health workers, using promising mobile technologies, and enlisting the aid of civil society organizations. PMID:26889711

  8. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Li, Jian; Nation, Roger L; Turnidge, John D; Milne, Robert W; Coulthard, Kingsley; Rayner, Craig R; Paterson, David L

    2006-09-01

    Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.

  9. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis.

    PubMed

    Yadav, Sankalp; Rawal, Gautam; Baxi, Mudit

    2016-08-01

    The developing countries are having an abruptly growing number of drug resistant tuberculosis cases. Multidrug-resistant tuberculosis (MDR-TB) is a type of TB in which the strain of Mycobacterium tuberculosis is resistant to at least Isoniazid and Rifampicin, the two most effective of the four first-line TB drugs (the other two drugs being Ethambutol and Pyrazinamide). The management of such cases is complex and requires a treatment for 24-27 months. The current guidelines available for the management of this type of TB are largely based on the second line TB drugs which are relatively costly, less efficacious and are associated with greater side-effects. The introduction of newer drugs to cater to the high mortality and early sputum culture conversion in the MDR-TB cases is an absolute essential. In the present article, the authors discuss about the introduction of a newer drug named Bedaquiline for the control of MDR-TB. PMID:27656462

  10. Multidrug-Resistant Tuberculosis in Admitted Patients at a Tertiary Referral Hospital of Bangladesh

    PubMed Central

    Banu, Sayera; Mahmud, Asif Mujtaba; Rahman, Md. Toufiq; Hossain, Arman; Uddin, Mohammad Khaja Mafij; Ahmed, Tahmeed; Khatun, Razia; Akhanda, Wahiduzzaman; Brosch, Roland

    2012-01-01

    Background This study was set out to investigate the magnitude, patterns and molecular characterization of drug-resistant Mycobacterium tuberculosis strains at a tertiary referral hospital in Bangladesh. Methods Pulmonary tuberculosis (TB) patients admitted at National Institute of Diseases of the Chest and Hospital from February 2002 to September 2005 with or without previous history of TB and/or other complications were randomly interviewed. Among 265 participants enrolled, M. tuberculosis isolates from 189 patients were finally tested for susceptibility to rifampicin (RMP), isoniazid (INH), ethambutol (ETM) and streptomycin (STM). Genotyping of M. tuberculosis was done using deletion analysis and spoligotyping. Results Eighty-eight percent (n = 167) of the patients had history of previous anti-TB treatment while the remaining 12% were new TB cases. Of the 189 isolates, 9% were fully susceptible to the first line anti-TB drugs and 73.5% were multi-drug resistant TB. Other susceptibility results showed 79.4%, 77.2%, 76.7% and 78.8% resistance to INH, RMP, ETM and STM respectively. Multi-drug resistance was significantly higher among the 130 (78%) patients with previous history of anti-tuberculosis treatment (95% confidence interval, p = 0.001). Among the 189 analyzed isolates, 69% were classified as “modern” M. tuberculosis strains (i.e. TbD1- strains, lacking the M. tuberculosis-deletion region TbD1), whereas the remaining 31% were found to belong to the “ancestal” TbD1+ M. tuberculosis lineages. One hundred and five different spoligotype patterns were identified in which 16 clusters contained 100 strains and 89 strains had unique pattern. Strains with a spoligotype characteristic for the “Beijing” cluster were predominant (19%) and most of these strains (75%) were multi-drug resistant (MDR). Conclusions A high level of drug resistance observed among the re-treatment patients poses a threat of transmission of resistant strains to susceptible

  11. Multi-drug resistant tuberculosis burden and risk factors: an update.

    PubMed

    Marahatta, S B

    2010-01-01

    Multi-drug resistant (MDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least two anti-tubercular drugs Isoniazid and Rifampicin. Recent surveillance data have revealed that prevalence of the drug resistant tuberculosis has risen to the highest rate ever recorded in the history. Drug resistant tuberculosis generally arises through the selection of mutated strains by inadequate therapy. The most powerful predictor of the presence of MDR-TB is a history of treatment of TB. Shortage of drugs has been one of the most common reasons for the inadequacy of the initial anti-TB regimen, especially in resource poor settings. Other major issues significantly contributing to the higher complexity of the treatment of MDR-TB is the increased cost of treatment. Other factors also play important role in the development of MDR-TB such as poor administrative control on purchase and distribution of the drugs with no proper mechanism on quality control and bioavailability tests. Tuberculosis control program implemented in past has also partially contributed to the development of drug resistance due to poor follow up and infrastructure. The association known for centuries between TB and poverty also applies to MDR-TB, a rather significant inverse association with MDR-TB. Various treatment strategies have been employed, including the use of standardised treatment regimens based upon representative local susceptibility patterns, empirical treatment based upon previous treatment history and local Drug Susceptibility Test (DST) patterns, and individualised treatment designed on the basis of individual DST results.Treatment outcomes among MDR-TB cases have varied widely; a recent survey of five Green Line Committee (GLC) approved sites in resource-limited countries found treatment success rates of 70%. Treatment continues to be limited in the resource poor countries where the demand is high. The ultimate strategy to control multidrug

  12. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    PubMed

    Lu, Yan; Zhao, Hongyu; Sun, Jian; Liu, Yuqi; Zhou, Xuping; Beier, Ross C; Wu, Guojuan; Hou, Xiaolin

    2014-01-01

    A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE). There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2%) possessed the blaTEM, floR, tetA, strA and aac (6')-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310), with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039). The int1, blaTEM, floR, tetA, strA and aac (6')-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone. PMID:24788434

  13. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  14. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    PubMed

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented. PMID:25450263

  15. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    PubMed

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.

  16. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.

  17. Multidrug-resistant Commensal Escherichia coli in Children, Peru and Bolivia

    PubMed Central

    Pallecchi, Lucia; Benedetti, Marta; Fernandez, Connie; Vallejos, Yolanda; Guzman, Elisa; Villagran, Ana Liz; Mantella, Antonia; Lucchetti, Chiara; Bartalesi, Filippo; Strohmeyer, Marianne; Bechini, Angela; Gamboa, Herlan; Rodríguez, Hugo; Falkenberg, Torkel; Kronvall, Göran; Gotuzzo, Eduardo; Paradisi, Franco; Rossolini, Gian Maria

    2006-01-01

    Using a rapid screening method, we investigated the prevalence of fecal carriage of antimicrobial drug–resistant Escherichia coli in 3,174 healthy children from 4 urban settings in Peru and Bolivia. High resistance rates were observed for ampicillin (95%), trimethoprim-sulfamethoxazole (94%), tetracycline (93%), streptomycin (82%), and chloramphenicol (70%). Lower resistance rates were observed for nalidixic acid (35%), kanamycin (28%), gentamicin (21%), and ciprofloxacin (18%); resistance to ceftriaxone and amikacin was uncommon (<0.5%). In a random sample of 1,080 resistant E. coli isolates, 90% exhibited a multidrug-resistance (MDR) phenotype. The 2 most common MDR phenotypes (ampicillin/tetracycline/trimethoprim-sulfamethoxazole and ampicillin/tetracycline/trimethoprim-sulfamethoxazole/chloramphenicol) could be transferred en bloc in conjugation experiments. The most common acquired resistance genes were blaTEM, tet(A), tet(B), drfA8, sul1, sul2, and catI. These findings underscore the magnitude of the problem of antimicrobial drug resistance in low-resource settings and the urgent need for surveillance and control of this phenomenon. PMID:16707045

  18. Molecular Characterization of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China

    PubMed Central

    Zhao, Li-Li; Chen, Yan; Liu, Hai-Can; Xia, Qiang; Wu, Xiao-Cui; Sun, Qing; Zhao, Xiu-Qin; Li, Gui-Lian; Liu, Zhi-Guang

    2014-01-01

    To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China. PMID:24419342

  19. High prevalence of multidrug-resistance uropathogenic Escherichia coli strains, Isfahan, Iran

    PubMed Central

    Dehbanipour, Razieh; Rastaghi, Sedighe; Sedighi, Mansour; Maleki, Nafiseh; Faghri, Jamshid

    2016-01-01

    Background and Objectives: Urinary tract infection (UTI) is one of the most frequent infectious diseases and can occur in all age groups. Escherichia coli is the main cause of this infection. Multiple resistances to antimicrobial agents are increasing quickly in E. coli isolates and may complicate therapeutic strategies for UTI. The aim of this study was to determine the antibiotic resistance pattern and the multidrug-resistance (MDR) phenotypes in uropathogenic E. coli (UPEC). Materials and Methods: A total of 135 UPEC isolates were collected from both outpatients (91 isolates) and inpatients (44 isolates) between September, 2012 and February, 2013. In order to determine the MDR among UPEC isolates, we have tested 15 antimicrobial agents and antibiotic susceptibility was done by Kirby-Bauer disk diffusion method. Results: The percentage of MDR isolates (resistant to at least three drug classes such as aminoglycosides, fluoroquinolones, penicillins, cephalosporins, or carbapenems) was 68% in the inpatients and 61% in the outpatients. Antibiotic resistance to ampicillin, ceftazidim, nalidixic acid, and trimethoprim/sulfamethoxazole were higher than 50%. Amikacin, nitrofurantoin, and gentamicin showed markedly greater activity (89.1%, 85.9%, and 82.4% sensitivity, respectively) than other antimicrobial agents. Resistance to meropenem did show either in outpatients or in inpatients. Interpretation and Conclusions: The high prevalence of drug resistance among UTI patients calls for continuous monitoring of the incidence of drug resistance for appropriate empiric selection of antibiotic therapy. Empirical treatment of UTIs should be relied on susceptibility patterns from local studies. PMID:27003964

  20. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein.

    PubMed Central

    Quesada, A. R.; García Grávalos, M. D.; Fernández Puentes, J. L.

    1996-01-01

    The effects of several members of the family of lamellarins, polyaromatic alkaloids isolated from tunicates belonging to the genus Didemnum, on the growth of several tumour cell lines and on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR), were investigated. Cytotoxicity experiments of lamellarins were performed on a panel of tumour cell lines, including two multidrug-resistant cell lines. Some lamellarins showed good anti-tumour activity, with similar levels of cytotoxicity against both the resistant and their corresponding parental cell lines. Two lamellarins displayed a high potency against lung carcinoma cells. Studies of the resistance modifier activity of the different lamellarins at non-toxic concentrations were also carried out in cells exhibiting MDR, and lamellarin I was selected for the highest chemosensitising activity. At non-toxic doses, verapamil and lamellarin I effectively increased the cytotoxicity of doxorubicin, vinblastine and daunorubicin in a concentration-dependent manner in multidrug-resistant cells, but the potency of lamellarin I as a MDR modulator was 9- to 16-fold higher than that of verapamil. In vitro measurements of rhodamine 123 accumulation in the multidrug-resistant Lo Vo/Dx cells suggest that lamellarin I reverses MDR by directly inhibiting the P-gp-mediated drug efflux. This work underscores the possibility of using these marine-derived compounds as a potential new source of anti-tumoral drugs active on resistant cells as well as of non-toxic modulators of the MDR phenotype. PMID:8795567

  1. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    PubMed Central

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  2. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs.

    PubMed

    Gandolfi-Decristophoris, Paola; Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered.

  3. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    PubMed Central

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  4. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005-2010.

    PubMed

    Smith, Sarah E; Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O; Shemyakin, Igor G; Kurbatova, Ekaterina; Cegielski, J Peter

    2015-06-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005-2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  5. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005-2010.

    PubMed

    Smith, Sarah E; Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O; Shemyakin, Igor G; Kurbatova, Ekaterina; Cegielski, J Peter

    2015-06-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005-2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs.

  6. In silico identified targeted inhibitors of P-glycoprotein overcome multidrug resistance in human cancer cells in culture.

    PubMed

    Follit, Courtney A; Brewer, Frances K; Wise, John G; Vogel, Pia D

    2015-10-01

    Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells. P-gp thus confers multidrug resistance to a majority of drugs currently available for the treatment of cancers and diseases like HIV/AIDS. The search for P-gp inhibitors for use as co-therapeutics to combat multidrug resistances has had little success to date. In a previous study (Brewer et al., Mol Pharmacol 86: 716-726, 2014), we described how ultrahigh throughput computational searches led to the identification of four drug-like molecules that specifically interfere with the energy harvesting steps of substrate transport and inhibit P-gp catalyzed ATP hydrolysis in vitro. In the present study, we demonstrate that three of these compounds reversed P-gp-mediated multidrug resistance of cultured prostate cancer cells to restore sensitivity comparable to naïve prostate cancer cells to the chemotherapeutic drug, paclitaxel. Potentiation concentrations of the inhibitors were <3 μmol/L. The inhibitors did not exhibit significant toxicity to noncancerous cells at concentrations where they reversed multidrug resistance in cancerous cells. Our results indicate that these compounds with novel mechanisms of P-gp inhibition are excellent leads for the development of co-therapeutics for the treatment of multidrug resistances. PMID:26516582

  7. In silico identified targeted inhibitors of P-glycoprotein overcome multidrug resistance in human cancer cells in culture

    PubMed Central

    Follit, Courtney A; Brewer, Frances K; Wise, John G; Vogel, Pia D

    2015-01-01

    Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells. P-gp thus confers multidrug resistance to a majority of drugs currently available for the treatment of cancers and diseases like HIV/AIDS. The search for P-gp inhibitors for use as co-therapeutics to combat multidrug resistances has had little success to date. In a previous study (Brewer et al., Mol Pharmacol 86: 716–726, 2014), we described how ultrahigh throughput computational searches led to the identification of four drug-like molecules that specifically interfere with the energy harvesting steps of substrate transport and inhibit P-gp catalyzed ATP hydrolysis in vitro. In the present study, we demonstrate that three of these compounds reversed P-gp-mediated multidrug resistance of cultured prostate cancer cells to restore sensitivity comparable to naïve prostate cancer cells to the chemotherapeutic drug, paclitaxel. Potentiation concentrations of the inhibitors were <3 μmol/L. The inhibitors did not exhibit significant toxicity to noncancerous cells at concentrations where they reversed multidrug resistance in cancerous cells. Our results indicate that these compounds with novel mechanisms of P-gp inhibition are excellent leads for the development of co-therapeutics for the treatment of multidrug resistances. PMID:26516582

  8. Characterization of Multidrug-Resistant Escherichia coli Isolates Associated with Nosocomial Infections in Dogs

    PubMed Central

    Sanchez, Susan; McCrackin Stevenson, M. A.; Hudson, Charlene R.; Maier, Marie; Buffington, Tameka; Dam, Quyen; Maurer, John J.

    2002-01-01

    Multidrug-resistant opportunistic pathogens have become endemic to the veterinary hospital environment. Escherichia coli isolates resistant to 12 antibiotics were isolated from two dogs that were housed in the intensive care unit at The University of Georgia Veterinary Teaching Hospital within 48 h of each other. Review of 21 retrospective and prospective hospital-acquired E. coli infections revealed that the isolates had similar antibiotic resistance profiles, characterized by resistance to most cephalosporins, β-lactams, and the β-lactamase inhibitor clavulanic acid as well as resistance to tetracycline, spectinomycin, sulfonamides, chloramphenicol, and gentamicin. E. coli isolates with similar resistance profiles were also isolated from the environment in the intensive care unit and surgery wards. Multiple E. coli genetic types were endemic to the hospital environment, with the pulsed-field gel electrophoresis fingerprint identified among E. coli isolates from diseased animals and the hospital environment matching. The extended-spectrum cephalosporin resistance in these nosocomial E. coli isolates was attributed to the cephamycinase-encoding gene, blaCMY2. Chloramphenicol resistance was due in part to the dissemination of the florfenicol resistance gene, flo, among these isolates. Resistance encoded by both genes was self-transmissible. Although blaCMY2 and flo were common to the polyclonal, nosocomial E. coli isolates, there was considerable diversity in the genetic compositions of class 1 integrons, especially among isolates belonging to the same genetic type. Two or more integrons were generally present in these isolates. The gene cassettes present within each integron ranged in size from 0.6 to 2.4 kb, although a 1.7-kb gene cassette was the most prevalent. The 1.7-kb gene cassette contained spectinomycin resistance gene aadA5 and trimethoprim resistance gene dfrA17. PMID:12354850

  9. [Resistance to second-line drugs in migrants with multidrug-resistant tuberculosis in the Berlin region].

    PubMed

    Otto-Knapp, R; Bös, L; Schönfeld, N; Wagner, S; Starzacher, A K; Weiss, T; Vesenbeckh, S; Glaser-Paschke, G; Mauch, H; Rüssmann, H; Bauer, T T

    2014-07-01

    The empiric therapy of multidrug-resistant (MDR) tuberculosis (TB) after rapid molecular testing is rendered difficult by an often several weeks-long period of uncertainty, because results of susceptibility testing for second-line TB drugs are pending. The analysis of regional resistance patterns could lead to a more targeted empiric treatment for migrants depending on their country of origin. The results of the susceptibility testing from 2008 to 2013 of all mycobacteria sent to the Institute of Microbiology, working with the department of Pneumology, Heckeshorn Lung Clinic, Berlin, were reanalysed and tested for regional differences. We found 39 multidrug-resistant Mycobacterium tuberculosis strains among the examined strains. More than half of these strains tested susceptible to the following second line drugs namely, linezolid (97%), clofazimine (95%), cycloserine (95%), capreomycin (90%), p-aminosalicylic acid (82%), moxifloxacin (79%) and amikacin (79%). The proportion of strains susceptible to pyrazinamide (44%), ethambutol (28%), prothionamide (15%), rifabutin (8%) and streptomycin (8%) was lower. The mycobacterial cultures of the Chechen patients (n = 14) showed significantly different susceptibilities to amikacin (57%) and prothionamide (36%) compared to the strains from migrants of other regions. In this study, the regional differences in mycobacterial susceptibility to second line drugs suggest that the initial MDR TB therapy of migrants should be tailored to their country of origin.

  10. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    NASA Astrophysics Data System (ADS)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  11. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay.

    PubMed

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-12-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  12. Molecular Epidemiology of Multi-Drug Resistant Acinetobacter baumannii Isolated in Shandong, China

    PubMed Central

    Jiang, Meijie; Liu, Lijuan; Ma, Yunhua; Zhang, Zhijun; Li, Ning; Zhang, Fusen; Zhao, Shuping

    2016-01-01

    Acinetobacter baumannii is an emerging nosocomial pathogen prevalent in hospitals worldwide. In order to understand the molecular epidemiology of multi-drug resistant (MDR) A. baumannii, we investigated the genotypes of A. baumannii isolated from 10 hospitals in Shandong, China, from August 2013 to December 2013, by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antimicrobial resistance genes were analyzed by PCR and DNA sequencing. By PFGE analysis, we discovered 11 PFGE types in these 10 hospitals. By MLST, we assigned these isolates to 12 sequence types (STs), 10 of which belong to the cloning complex CC92, including the prevalent ST369, ST208, ST195, and ST368. Two new STs, namely ST794 and ST809, were detected only in one hospital. All isolates of the MDR A. baumannii were resistant to carbapenem, except 2 isolates, which did not express the blaOXA-23 carbapenemase gene, indicating blaOXA-23 is the major player for carbapenem resistance. We also discovered armA is likely to be responsible for amikacin resistance, and may play a role in gentamicin and tobramycin resistance. aac(3)-I is another gene responsible for gentamicin and tobramycin resistance. In summary, we discovered that the majority of the isolates in Shandong, China, were the STs belonging to the CC92. Besides, two new STs were detected in one hospital. These new STs should be further investigated for prevention of outbreaks caused by A. baumannii.

  13. Multidrug resistance-associated ABC transporters - too much of one thing, good for nothing.

    PubMed

    Prochazkova, Jirina; Lanova, Martina; Pachernik, Jiri

    2012-08-01

    Abstract Overexpression of ATP-binding cassette (ABC) transporters in cancer cells results in multidrug resistance (MDR) which leads to unsuccessful chemotherapy. The most important MDR-associated members of ABC superfamily are ABC B1/P-glycoprotein/MDR1, ABC C1/multidrug resistance associated protein 1 (MRP1), and ABC G2/BCRP. This study is not only focused on function, substrates, and localization of these popular proteins but also on other ABC C family members such as ABC C2-6/MRP2-6 and ABC C7/CFTR. Current research is mainly oriented on the cancer-promoting role of these proteins, but important lessons could also be learned from the physiological roles of these proteins or from polymorphisms affecting their function. Thorough knowledge of structure and detailed mechanism of efflux can aid in the discovery of new chemotherapy targets in the future. Although the best way on how to deal with MDR would be to prevent its development, we describe some new promising strategies on how to conquer both inherited and induced MDRs.

  14. Discovering Natural Product Modulators to Overcome Multidrug Resistance in Cancer Chemotherapy

    PubMed Central

    Wu, Chung-Pu; Ohnuma, Shinobu; Ambudkar, Suresh V.

    2012-01-01

    Multidrug resistance caused by the overexpression of ABC drug transporters is a major obstacle in clinical cancer chemotherapy. For several years, it appeared that direct inhibition of ABC transporters would be the cheapest and most efficient way to combat this problem. Unfortunately, progress in finding a potent, selective inhibitor to modulate ABC transporters and restore drug sensitivity in multidrug-resistant cancer cells has been slow and challenging. Candidate drugs should ideally be selective, potent and relatively non-toxic. Many researchers in recent years have turned their attention to utilizing natural products as the building blocks for the development of the next generation of inhibitors, especially after the disappointing results obtained from inhibitors of the first three generations at the clinical trial stage. The first step is to discover natural substances (distinct from the first three generation inhibitors) that are potent, selective and relatively non-toxic in order to be used clinically. Here, we present a brief overview of the prospect of using natural products to modulate the function of ABC drug transporters clinically and their impact on human physiology and pharmacology. PMID:21118092

  15. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    PubMed Central

    Gomà, Alba; Mir, Roser; Martínez-Soler, Fina; Tortosa, Avelina; Vidal, August; Condom, Enric; Pérez–Tomás, Ricardo; Giménez-Bonafé, Pepita

    2014-01-01

    Background One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP. PMID:25525371

  16. Imaging Features of Pulmonary CT in Type 2 Diabetic Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Jiang, Hongbo; Ren, Yanwei; Lu, Xiwei

    2016-01-01

    Background Until now, radiographic manifestations of multidrug-resistant pulmonary tuberculosis (MDR- TB) in patients with diabetes mellitus (DM) have not been reported. We conducted a study to investigate the imaging features of pulmonary computed tomography (CT) for type 2 diabetic (T2DM) patients with MDR-TB. Methods The clinical data and pulmonary CT findings of 39 type 2 diabetic patients with MDR-TB, 46 type 2 diabetic patients with drug-susceptible tuberculosis (DS-TB), and 72 pure drug-susceptible TB cases (without T2DM and MDR) treated at Dalian Tuberculosis Hospital from 2012 to 2015 were collected, and the clinical features and imaging differences of the three groups were compared. Results The clinical characteristics of the three groups of patients were not significantly different except with respect to age and previous treatment history. However, on imaging, the patients with MDR-TB showed consolidation in and above the pulmonary segments was significantly more extensive than that seen in the DS-TB group with or without T2DM. Conclusion Consolidation in or above multiple pulmonary segments with multiple mouth-eaten cavities and bronchial damage on pulmonary CT images in type 2 diabetic patients with tuberculosis suggests the possibility of multi-drug resistance. PMID:27022735

  17. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus.

    PubMed

    Singh, Vigyasa; Pal, Anirban; Darokar, Mahendra P

    2015-10-01

    Glabridin a polyphenolic flavonoid from Glycyrrhiza glabra is known to possess several therapeutic properties. In the present study, we report for the first time the in vitro antibacterial activity (MIC values ranging from 3.12 to 25 μg/mL) of glabridin against multidrug-resistant clinical isolates of S. aureus by inducing oxidative stress. Increased levels of H2O2 and NO were observed in a dose-dependent manner after treatment of glabridin that further affected macromolecules such as DNA, lipids, and proteins. Surprisingly, glabridin was found to possess antioxidant properties when used at lower concentrations using three different methods including DPPH, FRAP, and SOD assays. These observations were further validated through the expression analysis of oxidative stress-responsive genes using qRT-PCR wherein glabridin was observed to up- and down-regulate these genes at lower and higher concentrations, respectively. In in vitro combination experiments, glabridin was found to reduce the MIC of different antibiotics such as norfloxacin, oxacillin, and vancomycin by up to 4-fold, while the MIC of glabridin itself was found to be reduced by up to 8-fold in the presence of antibiotics. A synergistic interaction was observed between norfloxacin and glabridin when used in combination against multidrug-resistant clinical isolate SA 4627 of Staphylococcus aureus at much lower concentrations, indicating the suitability of glabridin in combination therapy. PMID:26117328

  18. Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients.

    PubMed

    Khan, Taj Ali; Mazhar, Humaira; Saleha, Shamim; Tipu, Hamid Nawaz; Muhammad, Niaz; Abbas, Muhammad Nasser

    2016-01-01

    Background. Mycobacterium tuberculosis (M. tuberculosis) that causes tuberculosis (TB) kills millions of infected people annually especially multidrug-resistant tuberculosis (MDR-TB). On infection, macrophages recognize the mycobacteria by toll-like receptor (TLR) followed by phagocytosis and control of mycobacteria. In addition, macrophages also secrete IL-12 to induce IFN-γ production by T, which, in turn, increases the phagocytosis and oxidative burst. Individuals with defects in innate or adaptive immunity exhibit increased susceptibility to M. tuberculosis. Understanding these immunologic mechanisms will help in TB control. We aimed to investigate the immunopathologic mechanisms in MDR-TB and role of recombinant human interferon-gamma (rhIFN-γ). Study Design and Methods. Monocyte-derived macrophages (MDMs) were generated from peripheral blood mononuclear cells of MDR-TB patients and healthy subjects and were investigated for immunologic response by ELISA and flow cytometry. Results. Different functional and molecular anomalies were observed in macrophages. In addition, a defective immune response to M. tuberculosis from the patient's MDMs was characterized, which in turn improved by pretreatment with rhIFN-γ. Conclusion. This work highlights the fact that rhIFN-γ improves macrophages function against M. tuberculosis and treatment of patients with poor responsiveness to TB therapy may be needed in future to include IFN-γ as adjuvant therapy after the full characterization of pathological and molecular mechanisms in these and in other more multidrug-resistant TB patients. PMID:27478636

  19. Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients

    PubMed Central

    Mazhar, Humaira; Muhammad, Niaz; Abbas, Muhammad Nasser

    2016-01-01

    Background. Mycobacterium tuberculosis (M. tuberculosis) that causes tuberculosis (TB) kills millions of infected people annually especially multidrug-resistant tuberculosis (MDR-TB). On infection, macrophages recognize the mycobacteria by toll-like receptor (TLR) followed by phagocytosis and control of mycobacteria. In addition, macrophages also secrete IL-12 to induce IFN-γ production by T, which, in turn, increases the phagocytosis and oxidative burst. Individuals with defects in innate or adaptive immunity exhibit increased susceptibility to M. tuberculosis. Understanding these immunologic mechanisms will help in TB control. We aimed to investigate the immunopathologic mechanisms in MDR-TB and role of recombinant human interferon-gamma (rhIFN-γ). Study Design and Methods. Monocyte-derived macrophages (MDMs) were generated from peripheral blood mononuclear cells of MDR-TB patients and healthy subjects and were investigated for immunologic response by ELISA and flow cytometry. Results. Different functional and molecular anomalies were observed in macrophages. In addition, a defective immune response to M. tuberculosis from the patient's MDMs was characterized, which in turn improved by pretreatment with rhIFN-γ. Conclusion. This work highlights the fact that rhIFN-γ improves macrophages function against M. tuberculosis and treatment of patients with poor responsiveness to TB therapy may be needed in future to include IFN-γ as adjuvant therapy after the full characterization of pathological and molecular mechanisms in these and in other more multidrug-resistant TB patients. PMID:27478636

  20. Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases

    PubMed Central

    Chen, Zhe-Sheng; Tiwari, Amit K.

    2011-01-01

    The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the ‘C’ subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called Multidrug Resistance Proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C4 and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this review article, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed. PMID:21740521

  1. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  2. Reversal of Multidrug Resistance and Computational Studies of Pistagremic Acid Isolated from Pistacia integerrima.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Raza, Muslim; Ahmad, Aftab; Jehan, Noor; Ahmad, Bashir; Nisar, Muhammad; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Khan, Ajmal; Farooq, Umar; Noor, Mah

    2016-01-01

    Pistagremic acid (PA) is a bioactive triterpenoid isolated from various parts of Pistacia integerrima plants. The aim of this research was to investigate PA for reversion of multidrug resistant (MDR) mediated by P-glycoprotein using rhodamine-123 exclusion study on a multidrug resistant human ABCB1 (ATP-binding cassette, sub-family B, member 1) gene-transfected mouse T-lymphoma cell line in vitro. Results were similar to those with verapamil as a positive control. Docking studies of PA and standard Rhodamine123 were carried out against a P-gp crystal structure which showed satisfactory results. Actually, PA cannot bind exactly where co-crystallized ligand of P-gp is already present. However, the docking study predicted that if a compound gives a lesser score then it may have some potency. The docking scores of PA and Rhodamine were similar. Therefore, we can conclude that there are certain important chemical features of PA which are responsible for the inhibiting potency of P-gp. PMID:27221936

  3. Reversal of Multidrug Resistance in Mouse Lymphoma Cells by Extracts and Flavonoids from Pistacia integerrima.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Raza, Muslim; Ahmad, Bashir; Jehan, Noor; Siddiqui, Bina S; Molnar, Joseph; Csonka, Akos; Szabo, Diana

    2016-01-01

    Phytochemical investigation of Pistacia integerrima has highlighted isolation of two known compounds naringenin (1) and dihydrokaempferol (2). A crude extract and these isolated compounds were here evaluated for their effects on reversion of multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). The multidrug resistance P-glycoprotein is a target for chemotherapeutic drugs from cancer cells. In the present study rhodamine- 123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma cells showed excellent MDR reversing effects in a dose dependent manner. In-silico molecular docking investigations demonstrated a common binding site for Rhodamine123, and compounds naringenin and dihydrokaempferol. Our results showed that the relative docking energies estimated by docking softwares were in satisfactory correlation with the experimental activities. Preliminary interaction profile of P-gp docked complexes were also analysed in order to understand the nature of binding modes of these compounds. Our computational investigation suggested that the compounds interactions with the hydrophobic pocket of P-gp are mainly related to the inhibitory activity. Moreover this study s a platform for the discovery of novel natural compounds from herbal origin, as inhibitor molecules against the P-glycoprotein for the treatment of cancer. PMID:26838254

  4. An outbreak of multidrug-resistant Salmonella enterica serotype Newport infections linked to the consumption of imported horse meat in France.

    PubMed

    Espié, E; De Valk, H; Vaillant, V; Quelquejeu, N; Le Querrec, F; Weill, F X

    2005-04-01

    In 2003, 14 cases of multidrug-resistant Salmonella Newport infections were reported. This is the first documented foodborne outbreak of multidrug-resistant S. Newport in France. The blaCMY gene was present in all isolates. All cases reported having eaten horse meat from a common wholesaler. The country of origin of the imported meat could not be identified.

  5. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    PubMed

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.

  6. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds.

    PubMed

    Emeka, Lorina Badger; Emeka, Promise Madu; Khan, Tahir Mehmood

    2015-11-01

    Microbial resistance to existing antibiotics has led to an increase in the use of medicinal plants that show beneficial effects for various infectious diseases. The study evaluates the susceptibility of multidrug resistant Staphylococcus aureus to Nigella sativa oil. Staphylococcus aureus was isolated from 34 diabetic patient's wounds attending the Renaissance hospital, Nsukka, Southeast Nigeria. The isolates were characterized and identified using standard microbiological techniques. Isolates were cultured and a comparative In vitro antibiotic susceptibility test was carried out using the disk diffusion method. Of the 34 samples collected, 19(56%) showed multidrug resistance to the commonly used antibiotics. Nigella sativa oil was then studied for antibacterial activity against these multidrug resistant isolates of Staphylococcus aureus in varying concentration by well diffusion method. The oil showed pronounced dose dependent antibacterial activity against the isolates. Out of 19 isolates, 8(42%) were sensitive to undiluted oil sample; 4(21%) of these showed sensitivity at 200 mg/ml, 400 mg/ml and 800 mg/ml respectively. Eleven (58%) of the isolates were completely resistant to all the oil concentrations. The present study, reports the isolation of multi-drug resistant S. aureus from diabetic wounds and that more than half of isolates were susceptible to different concentrations N. sativa oil.

  7. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds.

    PubMed

    Emeka, Lorina Badger; Emeka, Promise Madu; Khan, Tahir Mehmood

    2015-11-01

    Microbial resistance to existing antibiotics has led to an increase in the use of medicinal plants that show beneficial effects for various infectious diseases. The study evaluates the susceptibility of multidrug resistant Staphylococcus aureus to Nigella sativa oil. Staphylococcus aureus was isolated from 34 diabetic patient's wounds attending the Renaissance hospital, Nsukka, Southeast Nigeria. The isolates were characterized and identified using standard microbiological techniques. Isolates were cultured and a comparative In vitro antibiotic susceptibility test was carried out using the disk diffusion method. Of the 34 samples collected, 19(56%) showed multidrug resistance to the commonly used antibiotics. Nigella sativa oil was then studied for antibacterial activity against these multidrug resistant isolates of Staphylococcus aureus in varying concentration by well diffusion method. The oil showed pronounced dose dependent antibacterial activity against the isolates. Out of 19 isolates, 8(42%) were sensitive to undiluted oil sample; 4(21%) of these showed sensitivity at 200 mg/ml, 400 mg/ml and 800 mg/ml respectively. Eleven (58%) of the isolates were completely resistant to all the oil concentrations. The present study, reports the isolation of multi-drug resistant S. aureus from diabetic wounds and that more than half of isolates were susceptible to different concentrations N. sativa oil. PMID:26639493

  8. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production.

    PubMed

    Shi, Zhi; Yang, Wei-Min; Chen, Li-Pai; Yang, Dong-Hua; Zhou, Qi; Zhu, Jin; Chen, Jun-Jiang; Huang, Ruo-Chun; Chen, Zhe-Sheng; Huang, Ruo-Pan

    2012-10-01

    Drug resistance remains a major hurdle to successful cancer treatment. Many mechanisms such as overexpression of multidrug-resistance related proteins, increased drug metabolism, decreased apoptosis, and impairment of signal transduction pathway can contribute multidrug resistance (MDR). Recent studies strongly suggest a close link between cytokines and drug resistance. To identify new targets involved in drug resistance, we established a multidrug-resistant human breast cancer cell line MCF-7/R and examined the cytokine profile using cytokine antibody array technology. Among 120 cytokines/chemokines screened, IL-6, IL-8, and 13 other proteins were found to be markedly increased in drug-resistant MCF-7/R cell line as compared to sensitive MCF-7/S cell line, while 7 proteins were specifically reduced in drug-resistant MCF-7/R cells. Neutralizing antibodies against IL-6 and IL-8 partially reversed the drug resistance of MCF-7/R to paclitaxel and doxorubicin, while a neutralizing antibody against MCP-1 had no significant effect. Inhibition of endogenous IL-6 or IL-8 by siRNA technology significantly enhanced drug sensitivity of MCF-7/R cells. Furthermore, overexpression of IL-6 or IL-8 expression by transfection increased the ADM resistance in MCF-7/S cells. Our data suggest that increased expression levels of IL-6 and IL-8 may contribute to MDR in human breast cancer cells.

  9. Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance

    PubMed Central

    Kandi, Venkataramana; Kandi, Sabitha

    2015-01-01

    OBJECTIVES: The emergence of multi-drug resistance among various microbial pathogens has been a cause of serious concern to the medical world, limiting the choice of antibiotics. Considering that it may take decades to synthesize new antimicrobial drugs that combat resistant pathogens, the search for alternatives to conventional antimicrobial agents has begun. METHODS: In his paper we attempted to review the physico-chemical properties of nanoparticles, their modes of action and potential use in medicine and research with special reference to antimicrobial properties. RESULTS: Nanomolecules and nanoparticles have in recent years been extensively studied for their utility not only as antibiotics but also as vehicles to carry antibiotics or other agents such as cancer chemotherapeutics to target sites and limit damage to host cells. CONCLUSION: Nanomolecules were positively evaluated for their antimicrobial activities. Anti-biofilm activities of nanoparticles, utility of nanomaterials as carrier agents of drugs signifies their importance in medicine and research. PMID:25968114

  10. Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance.

    PubMed

    Yuan, Yue; Wang, Lin; Du, Wei; Ding, Zhanling; Zhang, Jia; Han, Tao; An, Linna; Zhang, Huafeng; Liang, Gaolin

    2015-08-10

    Multidrug resistance (MDR) remains the biggest challenge in treating cancers. Herein we propose the intracellular self-assembly of nanodrugs as a new strategy for overcoming MDR. By employing a biocompatible condensation reaction, we rationally designed a taxol derivative Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys(taxol)-2-cyanobenzothiazole (CBT-Taxol) which could be subjected to furin-controlled condensation and self-assembly of taxol nanoparticles (Taxol-NPs). In vitro and in vivo studies indicated that, compared with taxol, CBT-Taxol showed a 4.5-fold or 1.5-fold increase in anti-MDR effects, respectively, on taxol-resistant HCT 116 cancer cells or tumors without being toxic to the cells or the mice. Our results demonstrate that structuring protease-susceptible agents and assembling them intracellularly into nanodrugs could be a new optimal strategy for overcoming MDR.

  11. Potent galloyl-based selective modulators targeting multidrug resistance associated protein 1 and P-glycoprotein.

    PubMed

    Pellicani, Raffaella Zoe; Stefanachi, Angela; Niso, Mauro; Carotti, Angelo; Leonetti, Francesco; Nicolotti, Orazio; Perrone, Roberto; Berardi, Francesco; Cellamare, Saverio; Colabufo, Nicola Antonio

    2012-01-12

    The multifactorial nature of chemotherapy failure in controlling cancer is often associated with the occurrence of multidrug resistance (MDR), a phenomenon likely related to the increased expression of members of the ATP binding cassette (ABC) transporter superfamily. In this respect, the most extensively characterized MDR transporters include ABCB1 (also known as MDR1 or P-glycoprotein) and ABCC1 (also known as MRP1) whose inhibition remains a priority to circumvent drug resistance. Herein, we report how the simple galloyl benzamide scaffold can be easily and properly decorated for the preparation of either MRP1 or P-gp highly selective inhibitors. In particular, some gallamides and pyrogallol-1-monomethyl ethers showed remarkable affinity and selectivity toward MRP1. On the other hand, trimethyl ether galloyl anilides, with few exceptions, exhibited moderate to very high and selective P-gp inhibition.

  12. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field

    PubMed Central

    Golberg, Alexander; Broelsch, G. Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R.; Austen, William G.; Sheridan, Robert L.; Yarmush, Martin L.

    2014-01-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  13. Global Progress and Challenges in Implementing New Medications for Treating Multidrug-Resistant Tuberculosis

    PubMed Central

    Brigden, Grania; Lessem, Erica; Rich, Michael; Vaughan, Laura; Lynch, Sharonann

    2016-01-01

    Two new drugs—bedaquiline and delamanid—have recently been approved by stringent regulatory authorities to treat multidrug-resistant tuberculosis (TB) and recommended by the World Health Organization for use under defined programmatic conditions. Introducing the medications in TB programs worldwide has not kept pace with the need for these drugs. In response, the DR-TB STAT (Drug-Resistant TB Scale-up Treatment Action Team) task force was formed in April 2015 to monitor progress and help overcome challenges. Information was collected from multiple sources and assessed monthly. Some progress has been made in introducing bedaquiline: as of October 2015, a total of 1,258 persons were on the medication under programmatic conditions. For delamanid, >100 patients, but few under programmatic conditions, have received the medication. Coordinated global action might help assist making these medications accessible for persons who need them most. PMID:26885674

  14. New strain multidrug resistant tuberculosis G24767 in Puerto Rico: Old disease a continuous threat.

    PubMed

    Maldonado, Hiram José; Cruz, Michael; Nieves, Joel; Rivera, Kelvin; Fernández, Ricardo; Colón, Miguel; Fernández, Francisco

    2016-01-01

    Multidrug resistant tuberculosis (MDR-TB) is defined as a Mycobacterium tuberculosis strain resistant to two or more first-line anti-tuberculous drugs. Tuberculosis (TB) is a global threat to society despite improvement in therapy as it continues to be an economic burden especially in underdeveloped countries. The downfall of global economics and growing travel destinations in developing countries has escalade the exposure of organism not previously encountered in industrialized nations. Most cases of MDR-TB are reported on immunosuppressed patients with risk factors and from endemic areas. Nevertheless new strains with higher transmission degree are emerging as a threat in patients who have low risk factors for the development of MDR-TB.

  15. Codelivery of Chemotherapeutics via Crosslinked Multilamellar Liposomal Vesicles to Overcome Multidrug Resistance in Tumor

    PubMed Central

    Joo, Kye-Il; Wong, Michael K.; Wang, Pin

    2014-01-01

    Multidrug resistance (MDR) is a significant challenge to effective cancer chemotherapy treatment. However, the development of a drug delivery system that allows for the sustained release of combined drugs with improved vesicle stability could overcome MDR in cancer cells. To achieve this, we have demonstrated codelivery of doxorubicin (Dox) and paclitaxel (PTX) via a crosslinked multilamellar vesicle (cMLV). This combinatorial delivery system achieves enhanced drug accumulation and retention, in turn resulting in improved cytotoxicity against tumor cells, including drug-resistant cells. Moreover, this delivery approach significantly overcomes MDR by reducing the expression of P-glycoprotein (P-gp) in cancer cells, thus improving antitumor activity in vivo. Thus, by enhancing drug delivery to tumors and lowering the apoptotic threshold of individual drugs, this combinatorial delivery system represents a potentially promising multimodal therapeutic strategy to overcome MDR in cancer therapy. PMID:25330237

  16. New strain multidrug resistant tuberculosis G24767 in Puerto Rico: Old disease a continuous threat.

    PubMed

    Maldonado, Hiram José; Cruz, Michael; Nieves, Joel; Rivera, Kelvin; Fernández, Ricardo; Colón, Miguel; Fernández, Francisco

    2016-01-01

    Multidrug resistant tuberculosis (MDR-TB) is defined as a Mycobacterium tuberculosis strain resistant to two or more first-line anti-tuberculous drugs. Tuberculosis (TB) is a global threat to society despite improvement in therapy as it continues to be an economic burden especially in underdeveloped countries. The downfall of global economics and growing travel destinations in developing countries has escalade the exposure of organism not previously encountered in industrialized nations. Most cases of MDR-TB are reported on immunosuppressed patients with risk factors and from endemic areas. Nevertheless new strains with higher transmission degree are emerging as a threat in patients who have low risk factors for the development of MDR-TB. PMID:27547724

  17. Human ABCG2: structure, function, and its role in multidrug resistance

    PubMed Central

    Mo, Wei; Zhang, Jian-Ting

    2012-01-01

    Human ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily and is known to contribute to multidrug resistance (MDR) in cancer chemotherapy. Among ABC transporters that are known to cause MDR, ABCG2 is particularly interesting for its potential role in protecting cancer stem cells and its complex oligomeric structure. Recent studies have also revealed that the biogenesis of ABCG2 could be modulated by small molecule compounds. These modulators, upon binding to ABCG2, accelerate the endocytosis and trafficking to lysosome for degradation and effectively reduce the half-life of ABCG2. Hence, targeting ABCG2 stability could be a new venue for therapeutic discovery to sensitize drug resistant human cancers. In this report, we review recent progress on understanding the structure, function, biogenesis, as well as physiological and pathophysiological functions of ABCG2. PMID:22509477

  18. Multidrug-Resistant Salmonella Heidelberg Associated with Mechanically Separated Chicken at a Correctional Facility.

    PubMed

    Taylor, Amanda L; Murphree, Rendi; Ingram, L Amanda; Garman, Katie; Solomon, Deborah; Coffey, Eric; Walker, Deborah; Rogers, Marsha; Marder, Ellyn; Bottomley, Marie; Woron, Amy; Thomas, Linda; Roberts, Sheri; Hardin, Henrietta; Arjmandi, Parvin; Green, Alice; Simmons, Latoya; Cornell, Allyson; Dunn, John

    2015-12-01

    We describe multidrug-resistant (MDR) Salmonella Heidelberg infections associated with mechanically separated chicken (MSC) served at a county correctional facility. Twenty-three inmates met the case definition. All reported diarrhea, 19 (83%) reported fever, 16 (70%) reported vomiting, 4 (17%) had fever ≥103°F, and 3 (13%) were hospitalized. A case-control study found no single food item significantly associated with illness. Salmonella Heidelberg with an indistinguishable pulsed-field gel electrophoresis pattern was isolated from nine stool specimens; two isolates displayed resistance to a total of five drug classes, including the third-generation cephalosporin, ceftriaxone. MDR Salmonella Heidelberg might have contributed to the severity of illness. Salmonella Heidelberg indistinguishable from the outbreak subtype was isolated from unopened MSC. The environmental health assessment identified cross-contamination through poor food-handling practices as a possible contributing factor. Proper hand-washing techniques and safe food-handling practices were reviewed with the kitchen supervisor.

  19. Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii▿ †

    PubMed Central

    Adams, Mark D.; Goglin, Karrie; Molyneaux, Neil; Hujer, Kristine M.; Lavender, Heather; Jamison, Jennifer J.; MacDonald, Ian J.; Martin, Kristienna M.; Russo, Thomas; Campagnari, Anthony A.; Hujer, Andrea M.; Bonomo, Robert A.; Gill, Steven R.

    2008-01-01

    The recent emergence of multidrug resistance (MDR) in Acinetobacter baumannii has raised concern in health care settings worldwide. In order to understand the repertoire of resistance determinants and their organization and origins, we compared the genome sequences of three MDR and three drug-susceptible A. baumannii isolates. The entire MDR phenotype can be explained by the acquisition of discrete resistance determinants distributed throughout the genome. A comparison of closely related MDR and drug-susceptible isolates suggests that drug efflux may be a less significant contributor to resistance to certain classes of antibiotics than inactivation enzymes are. A resistance island with a variable composition of resistance determinants interspersed with transposons, integrons, and other mobile genetic elements is a significant but not universal contributor to the MDR phenotype. Four hundred seventy-five genes are shared among all six clinical isolates but absent from the related environmental species Acinetobacter baylyi ADP1. These genes are enriched for transcription factors and transporters and suggest physiological features of A. baumannii that are related to adaptation for growth in association with humans. PMID:18931120

  20. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1

    PubMed Central

    Patel, Saumya K.; Prasanth Kumar, Sivakumar; Highland, Hyacinth N.; Jasrai, Yogesh T.; Pandya, Himanshu A.; Desai, Ketaki R.

    2013-01-01

    The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. PMID:25937947

  1. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials.

    PubMed

    Hernando-Amado, Sara; Blanco, Paula; Alcalde-Rico, Manuel; Corona, Fernando; Reales-Calderón, Jose A; Sánchez, María B; Martínez, José L

    2016-09-01

    Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported. PMID:27620952

  2. Integron-mediated Multidrug Resistance in a Global Collection of Nontyphoidal Salmonella enterica Isolates

    PubMed Central

    Krauland, Mary G.; Marsh, Jane W.; Paterson, David L.

    2009-01-01

    Salmonella enterica bacteria have become increasingly resistant to antimicrobial agents, partly as a result of genes carried on integrons. Clonal expansion and horizontal gene transfer may contribute to the spread of antimicrobial drug–resistance integrons in these organisms. We investigated this resistance and integron carriage among 90 isolates with the ACSSuT phenotype (resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline) in a global collection of S. enterica isolates. Four integrons, dfrA12/orfF/aadA2, dfrA1/aadA1, dfrA7, and arr2/blaOXA30/cmlA5/aadA2, were found in genetically unrelated isolates from 8 countries on 4 continents, which supports a role for horizontal gene transfer in the global dissemination of S. enterica multidrug resistance. Serovar Typhimurium isolates containing identical integrons with the gene cassettes blaPSE1 and aadA2 were found in 4 countries on 3 continents, which supports the role of clonal expansion. This study demonstrates that clonal expansion and horizontal gene transfer contribute to the global dissemination of antimicrobial drug resistance in S. enterica. PMID:19239750

  3. Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition

    PubMed Central

    He, Susu; Hickman, Alison Burgess; Varani, Alessandro M.; Siguier, Patricia; Chandler, Michael; Dekker, John P.

    2015-01-01

    ABSTRACT Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve. PMID:26060276

  4. Antimicrobial activity of propolis special extract GH 2002 against multidrug-resistant clinical isolates.

    PubMed

    Astani, A; Zimmermann, S; Hassan, E; Reichling, J; Sensch, K H; Schnitzler, P

    2013-08-01

    The need to discover and develop alternative therapies to treat multidrug-resistant bacterial infections is timely. The aim of this study was to examine the antimicrobial potential of propolis, as a purified and concentrated special extract GH 2002, against clinical isolates of Streptococcus pyogenes, methicillin-resistent Stapylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE) and Candida. Minimal inhibitory concentrations (MICs) and minimal microbicidial concentrations (MMCs) of propolis against microbial pathogens were evaluated using the broth microdilution method. Propolis extract GH 2002 revealed low MICs in the range of 0.03 to 2 mg/ml against S. pyogenes, S. aureus, E. faecium and Candida. A high bactericidal activity of propolis extract in the range of 0.06 to 1.0 mg/ml was determined for S. pyogenes and S. aureus, however propolis was not bactericidal against E. faecium. Propolis concentrations between 0.6 and 2.4 mg/ml displayed fungicidal activity against different Candida species. Whereas all tested MRSA strains were highly susceptible against propolis, only minor activity was found against VRE strains. Time-kill curves demonstrated a high antimicrobial activity at low MICs already after few hours of incubation against reference strains, clinical antibiotic-susceptible strains, clinical antifungal susceptible strains as well as all tested clinical MRSA strains, but not against VRE strains. In conclusion, clinical drug-sensitive as well as some clinical multidrug-resistant microbial isolates, i.e. MRSA, were susceptible to propolis with different degrees of susceptibility. These results suggest that the special propolis extract GH2002 might be used in the development of alternative products for therapy of microbial infections.

  5. Edible ice in Jakarta, Indonesia, is contaminated with multidrug-resistant Vibrio cholerae with virulence potential.

    PubMed

    Waturangi, Diana E; Wennars, Melissa; Suhartono, Magda X; Wijaya, Yenata F

    2013-03-01

    Consumption of street food is considered a major health risk in the absence of public-health inspection programmes in Indonesia. It is hypothesized that ice used in street food could be one of the major sources of Vibrio cholerae contamination. This study documented V. cholerae contamination in edible ice from different areas of Jakarta, the capital city of Indonesia, and attempted to characterize the virulence potential of the strains. A selective medium was used to isolate 98 V. cholerae strains and their identity was confirmed using biochemical assays. Serological tests classified the majority (78%) in the non-O1 serogroup. Multiplex PCR was used to detect the presence of V. cholerae virulence genes, namely ctxA, ompU, tcpA, ace, zot and toxR. The toxR, ctxA, ompU and zot genes were detected in 75, 26, 15 and 1% of isolates, respectively. The ace and tcpA genes were not detected in any of the isolates. The ctxA gene encoding the cholera toxin subunit A, which has been associated only with clinical strains of O1, here was present in both serogroups. The antibiotic-resistance profile showed that 65, 60, 52, 39, 37, 19 and 3% of the isolates were resistant to ampicillin, streptomycin, kanamycin, sulfamethoxazole-trimethoprim, erythromycin, tetracycline and ciprofloxacin, respectively. A large proportion of V. cholerae isolates came from west and south Jakarta, and these strains exhibited multidrug resistance to ampicillin, streptomycin, tetracycline, erythromycin, kanamycin and sulfamethoxazole-trimethoprim. Many of these isolates from west and south Jakarta also harboured toxR, encoding a regulator, and ctxA. The presence of multidrug-resistant V. cholerae with virulence genes in edible ice, which could cause a severe outbreak, reflects the poor water quality in Jakarta, and indicates an urgent need for better surveillance and management.

  6. Multiple clones within multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104. The Greek Nontyphoidal Salmonella Study Group.

    PubMed

    Markogiannakis, A; Tassios, P T; Lambiri, M; Ward, L R; Kourea-Kremastinou, J; Legakis, N J; Vatopoulos, A C

    2000-03-01

    Six distinct clones were present among Greek multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104, since isolates belonging to resistance phenotypes including the ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline) core could be distinguished with respect to their pulsed-field gel electrophoresis patterns, int1 integron structures, and presence or absence of antibiotic resistance genes ant(3'')-Ia, pse-1, and tem-1.

  7. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection

    SciTech Connect

    Guild, B.C.; Mulligan, R.C.; Gros, P.; Housman, D.E.

    1988-03-01

    The authors have constructed a retrovirus expression vector that carries the murine mdr cDNA transcribed under the control of the human H4 histone promoter to examine the feasibility of efficiently transferring a multidrug resistance phenotype to cells without requiring drug selection. This approach will facilitate the transfer of mdr cDNA to hematopoietic progenitor cells for the study of multidrug resistance in vivo. The retrovirus vector pHmdr has been used for transmission and expression of the mdr cDNA in initially drug-sensitive NIH 3T3 fibroblasts. Selection of pHmdr infectants in the cytotoxic agents colchicine or doxorubicin gave rise to highly multidrug-resistant colonies containing a single gene copy of the vector. Moreover, in the analysis of 12 cloned unselected NIH 3T3 cell infectants, a multidrug resistance phenotype was conferred by as few as two copies of the pHmdr vector. Overexpression of the mdr cDNA in drug-selected and unselected pHmdr infectants was directly related to cell survival in three cytotoxic agents tested. These results hold significant implications for the study of multidrug resistance in vivo.

  8. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    PubMed Central

    Szmolka, Ama; Nagy, Béla

    2013-01-01

    After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development, and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms, and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of further concern. Co-existence and co-transfer of these “bad genes” in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  9. Isolation and characterization of multidrug-resistant Klebsiella spp. isolated from shrimp imported from Thailand.

    PubMed

    Nawaz, Mohamed; Khan, S A; Tran, Q; Sung, K; Khan, A A; Adamu, I; Steele, R S

    2012-04-16

    A study was undertaken to isolate and characterize tetracycline and nalidixic acid-resistant Klebsiella spp. in farm-raised, imported shrimp sold in the United States. Sixty-seven multiple antibiotic-resistant Klebsiella spp. strains were isolated from imported shrimp samples. Using morphological and biochemical methods, fifty-three strains were tentatively identified as Klebsiella pneumoniae and fourteen as K. oxytoca. Although all isolates were resistant to tetracycline, only 8 were resistant to nalidixic acid. These 8 isolates were further screened by PCR for quinolone resistance genes (qnrA, B, S, gyrA, B and parC). PCR protocols failed to amplify any qnr genes. The purified PCR amplicons of gyrA, gyrB and parC were sequenced and analyzed for point mutations that confer resistance to fluoroquinolone antibiotics. Analysis of the sequences of the gyrA amplicons from nalidixic acid-resistant Klebsiella spp. indicated two point mutations in gyrA at positions 83 (Ser→Phe) and 87 (Asp→Ala). Sequence analysis of the parC amplicons indicated an amino acid change at position 80 (Ser→Ile). No mutations were detected in gyrB. Template DNA from all isolates was screened for tetracycline resistance genes (tetA-E). Oligonucleotide primers specifically targeting a 305-bp region of tetB and a 477-bp region of tetD successfully amplified sequences from 91.0 and 44.0% of the isolates, respectively. None of the isolates contained tetA, tetC or tetE genes. Plasmids (2.0-16.0kb) were found in 23 of the 67 isolates. XbaI-PFGE identified 32 distinct macro restriction patterns (mrps) among the 61 multiple drug-resistant Klebsiella spp. that were typable. Our results indicate that imported shrimp is a reservoir for multidrug resistant Klebsiella spp. and potential health risks posed by such strains should not be underestimated.

  10. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan.

    PubMed

    Nakayama, Shu-Ichi; Shimuta, Ken; Furubayashi, Kei-Ichi; Kawahata, Takuya; Unemo, Magnus; Ohnishi, Makoto

    2016-07-01

    We have characterized in detail a new ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain (FC428) isolated in Japan in 2015. FC428 differed from previous ceftriaxone-resistant strains and contained a novel mosaic penA allele encoding a new mosaic penicillin-binding protein 2 (PBP 2). However, the resistance-determining 3'-terminal region of penA was almost identical to the regions of two previously reported ceftriaxone-resistant strains from Australia and Japan, indicating that both ceftriaxone-resistant strains and conserved ceftriaxone resistance-determining PBP 2 regions might spread.

  11. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan.

    PubMed

    Nakayama, Shu-Ichi; Shimuta, Ken; Furubayashi, Kei-Ichi; Kawahata, Takuya; Unemo, Magnus; Ohnishi, Makoto

    2016-07-01

    We have characterized in detail a new ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain (FC428) isolated in Japan in 2015. FC428 differed from previous ceftriaxone-resistant strains and contained a novel mosaic penA allele encoding a new mosaic penicillin-binding protein 2 (PBP 2). However, the resistance-determining 3'-terminal region of penA was almost identical to the regions of two previously reported ceftriaxone-resistant strains from Australia and Japan, indicating that both ceftriaxone-resistant strains and conserved ceftriaxone resistance-determining PBP 2 regions might spread. PMID:27067334

  12. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter.

    PubMed

    Chen, Jun-Jiang; Sun, Yue-Li; Tiwari, Amit K; Xiao, Zhi-Jie; Sodani, Kamlesh; Yang, Dong-Hua; Vispute, Saraubh G; Jiang, Wen-Qi; Chen, Si-Dong; Chen, Zhe-Sheng

    2012-08-01

    Phosphodiesterase type 5 (PDE5) inhibitors are widely used in the treatment of male erectile dysfunction and pulmonary hypertension. Recently, several groups have evaluated the ability of PDE5 inhibitors for their anticancer activities. Previously, we had shown that sildenafil, vardenafil and tadalafil could reverse P-glycoprotein (ATP-binding cassette B1)-mediated MDR. In the present study, we determined whether these PDE5 inhibitors have the potential to reverse multidrug resistance protein 7 (MRP7; ATP-binding cassette C10)-mediated MDR. We found that sildenafil and vardenafil dose-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine, while tadalafil had only a minimal effect. Accumulation and efflux experiments demonstrated that sildenafil and vardenafil increased the intracellular accumulation of [(3)H]-paclitaxel by inhibiting the efflux of [(3 H]-paclitaxel in HEK/MRP7 cells. In addition, immunoblot and immunofluorescence analyses indicated that no significant alterations of MRP7 protein expression and localization in plasma membranes were found after treatment with sildenafil, vardenafil or tadalafil. These results demonstrate that sildenafil and vardenafil reverse MRP7-mediated a MDR through inhibition of the drug efflux function of MRP7. Our findings indicate a potentially novel use of PDE5 inhibitors as an adjuvant chemotherapeutic agent in clinical practice. PMID:22578167

  13. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination

    PubMed Central

    Morgan, Daniel J.; Rogawski, Elizabeth; Thom, Kerri A.; Johnson, J. Kristie; Perencevich, Eli N.; Shardell, Michelle; Leekha, Surbhi; Harris, Anthony D.

    2012-01-01

    Objective To assess the role of environmental contamination in the transmission of multidrug-resistant bacteria to healthcare workers’ clothing. Design Prospective cohort. Setting Six intensive care units at a tertiary care hospital. Subjects Healthcare workers including registered nurses, patient care technicians, respiratory therapists, occupational/physical therapists, and physicians. Interventions None. Measurements and Main Results One hundred twenty of 585 (20.5%) healthcare worker/patient interactions resulted in contamination of healthcare workers’ gloves or gowns. Multidrug-resistant Acinetobacter baumannii contamination occurred most frequently, 55 of 167 observations (32.9%; 95% confidence interval [CI] 25.8% to 40.0%), followed by multidrug-resistant Pseudomonas aeruginosa, 15 of 86 (17.4%; 95% CI 9.4% to 25.4%), vancomycin-resistant Enterococcus, 25 of 180 (13.9%, 95% CI 8.9, 18.9%) and methicillin-resistant Staphylococcus aureus, 21 of 152 (13.8%; 95% CI 8.3% to 19.2%). Independent risk factors associated with healthcare worker contamination with multidrug-resistant bacteria were positive environmental cultures (odds ratio [OR] 4.2; 95% CI 2.7–6.5), duration in room for >5 mins (OR 2.0; 95% CI 1.2–3.4), performing physical examinations (OR 1.7; 95% CI 1.1–2.8), and contact with the ventilator (OR 1.8; 95% CI, 1.1–2.8). Pulsed field gel electrophoresis determined that 91% of healthcare worker isolates were related to an environmental or patient isolate. Conclusions The contamination of healthcare workers’ protective clothing during routine care of patients with multidrug- resistant organisms is most frequent with A. baumannii. Environmental contamination was the major determinant of transmission to healthcare workers’ gloves or gowns. Compliance with contact precautions and more aggressive environmental cleaning may decrease transmission. PMID:22202707

  14. Multidrug-resistant nontyphoidal Salmonella in New York state's foodborne diseases active surveillance network counties.

    PubMed

    Solghan, Suzanne M; Dumas, Nellie B; Root, Timothy P; Quinlan, Tammy M; Armstrong, Leeanna R; Spina, Nancy L; Zansky, Shelley M

    2010-02-01

    With the emergence of multidrug-resistant nontyphoidal (NT) Salmonella, knowledge of resistance patterns is critical for appropriate presumptive treatment. This report describes the prevalence and trends of NT Salmonella antimicrobial susceptibility within the New York State (NYS) Foodborne Diseases Active Surveillance Network (FoodNet). The NYS Department of Health, Wadsworth Center Public Health Laboratory tested all Salmonella isolates from the NYS FoodNet catchment area between May 2003 and December 2007 for antimicrobial susceptibility to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline, nalidixic acid, and ciprofloxacin. Isolate susceptibility results were linked to their corresponding demographic and clinical data and analyzed. Multidrug-resistant isolates were defined as resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline (R-type ACSSuT). Antimicrobial susceptibility for 2189 FoodNet cases (98.5% of total cases) showed 79.6% pansusceptible, 6.9% R-type ACSSuT, and 13.5% resistant to at least one antimicrobial agent but not R-type ACSSuT. Four (0.2%) isolates were resistant to ciprofloxacin. From 2004 to 2007, cases with R-type ACSSuT significantly decreased from 8.7% (37/424) to 4.8% (24/499) (p < 0.01). Serotypes with the highest proportion of R-type ACSSuT included Salmonella Typhimurium 17.9% (79/444), and Salmonella Newport 29.1% (51/175). Among Salmonella Typhimurium isolates, over 40% of the African-American cases (19/46) had R-type ACSSuT isolates, compared with 15.7% of the Caucasian cases (58/369) (p < 0.01). R-type ACSSuT Salmonella Typhimurium cases were hospitalized (41.8%) more frequently than pansusceptible Salmonella Typhimurium cases (24.9%), after controlling for age (p < 0.05). Length of hospitalization was not significantly different. Although R-type ACSSuT NT Salmonella has decreased since 2003 within the NYS FoodNet catchment area, monitoring resistance patterns remains important

  15. Crowdsourced Data Indicate Widespread Multidrug Resistance in Skin Flora of Healthy Young Adults.

    PubMed

    Freeman, Scott; Okoroafor, Nnadozie O; Gast, Christopher M; Koval, Mikhail; Nowowiejski, David; O'Connor, Eileen; Harrington, Robert D; Parks, John W; Fang, Ferric C

    2016-03-01

    In a laboratory exercise for undergraduate biology majors, students plated bacteria from swabs of their facial skin under conditions that selected for coagulase-negative Staphylococcus; added disks containing the antibiotics penicillin, oxacillin, tetracycline, and erythromycin; and measured zones of inhibition. Students also recorded demographic and lifestyle variables and merged this information with similar data collected from 9,000 other students who had contributed to the database from 2003 to 2011. Minimum inhibitory concentration (MIC) testing performed at the Harborview Medical Center Microbiology Laboratory (Seattle, WA) indicated a high degree of accuracy for student-generated data; species identification with a matrix-assisted laser desorption ionization (MALDI) Biotyper revealed that over 88% of the cells analyzed by students were S. epidermidis or S. capitus. The overall frequency of resistant cells was high, ranging from 13.2% of sampled bacteria resistant to oxacillin to 61.7% resistant to penicillin. Stepwise logistic regressions suggested that recent antibiotic use was strongly associated with resistance to three of the four antibiotics tested (p = 0.0003 for penicillin, p < 0.0001 for erythromycin and tetracycline), and that age, gender, use of acne medication, use of antibacterial soaps, or makeup use were associated with resistance to at least one of the four antibiotics. Furthermore, drug resistance to one antibiotic was closely linked to resistance to the other three antibiotics in every case (all p values < 0.0001), suggesting the involvement of multidrug-resistant strains. The data reported here suggest that citizen science could not only provide an important educational experience for undergraduates, but potentially play a role in efforts to expand antibiotic resistance (ABR) surveillance. PMID:27047615

  16. Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals.

    PubMed

    Khan, Muhammad; Maryam, Amara; Mehmood, Tahir; Zhang, Yaofang; Ma, Tonghui

    2015-01-01

    Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs. PMID:26514453

  17. Incidence and diversity of antimicrobial multidrug resistance profiles of uropathogenic bacteria.

    PubMed

    Linhares, Inês; Raposo, Teresa; Rodrigues, António; Almeida, Adelaide

    2015-01-01

    The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District.

  18. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

  19. Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Tran, Thien B.; Cheah, Soon-Ee; Yu, Heidi H.; Bergen, Phillip J.; Nation, Roger L.; Creek, Darren J.; Purcell, Anthony; Forrest, Alan; Doi, Yohei; Song, Jiangning; Velkov, Tony; Li, Jian

    2015-01-01

    Polymyxins, an old class of antibiotics, are currently used as the last resort for the treatment of multidrug-resistant (MDR) Acinetobacter baumannii. However, recent pharmacokinetic and pharmacodynamic data indicate that monotherapy can lead to the development of resistance. Novel approaches are urgently needed to preserve and improve the efficacy of this last-line class of antibiotics. This study examined the antimicrobial activity of novel combination of polymyxin B with anthelmintic closantel against A. baumannii. Closantel monotherapy (16 mg/L) was ineffective against most tested A. baumannii isolates. However, closantel at 4–16 mg/L with a clinically achievable concentration of polymyxin B (2 mg/L) successfully inhibited the development of polymyxin resistance in polymyxin-susceptible isolates, and provided synergistic killing against polymyxin-resistant isolates (MIC ≥4 mg/L). Our findings suggest that the combination of polymyxin B with closantel could be potentially useful for the treatment of MDR, including polymyxin-resistant, A. baumannii infections. The re-positioning of non-antibiotic drugs to treat bacterial infections may significantly expedite discovery of new treatment options for bacterial ‘superbugs’. PMID:26669752

  20. Incidence and Diversity of Antimicrobial Multidrug Resistance Profiles of Uropathogenic Bacteria

    PubMed Central

    Linhares, Inês; Raposo, Teresa; Rodrigues, António

    2015-01-01

    The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District. PMID:25834814

  1. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.

    PubMed

    Nakornchai, Sunan; Konthiang, Phattanapong

    2006-09-01

    Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.

  2. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    PubMed

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

  3. Extremely high prevalence of multidrug resistant tuberculosis in Murmansk, Russia: a population-based study.

    PubMed

    Mäkinen, J; Marjamäki, M; Haanperä-Heikkinen, M; Marttila, H; Endourova, L B; Presnova, S E; Mathys, V; Bifani, P; Ruohonen, R; Viljanen, M K; Soini, H

    2011-09-01

    Drug resistance and molecular epidemiology of tuberculosis (TB) in the Murmansk region was investigated in a 2-year, population-based surveillance of the civilian population. During 2003 and 2004, isolates from all culture-positive cases were collected (n = 1,226). Prevalence of multi-drug resistance (MDR) was extremely high, as 114 out of 439 new cases (26.0%), and 574 out of 787 previously treated cases (72.9%) were resistant to at least isoniazid (INH) and rifampin (RIF). Spoligotyping of the primary MDR-TB isolates revealed that most isolates grouped to the Beijing SIT1 genotype (n = 91, 79.8%). Isolates of this genotype were further analyzed by IS6110 RFLP. Sequencing of gene targets associated with INH and RIF resistance further showed that the MDR-TB strains are highly homogeneous as 78% of the MDR, SIT1 strains had the same resistance-conferring mutations. The genetic homogeneity of the MDR-TB strains indicates that they are actively transmitted in Murmansk. PMID:21394425

  4. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis

    PubMed Central

    Eldholm, Vegard; Rieux, Adrien; Monteserin, Johana; Lopez, Julia Montana; Palmero, Domingo; Lopez, Beatriz; Ritacco, Viviana; Didelot, Xavier; Balloux, Francois

    2016-01-01

    The tuberculosis (TB) epidemic is fueled by a parallel Human Immunodeficiency Virus (HIV) epidemic, but it remains unclear to what extent the HIV epidemic has been a driver for drug resistance in Mycobacterium tuberculosis (Mtb). Here we assess the impact of HIV co-infection on the emergence of resistance and transmission of Mtb in the largest outbreak of multidrug-resistant TB in South America to date. By combining Bayesian evolutionary analyses and the reconstruction of transmission networks utilizing a new model optimized for TB, we find that HIV co-infection does not significantly affect the transmissibility or the mutation rate of Mtb within patients and was not associated with increased emergence of resistance within patients. Our results indicate that the HIV epidemic serves as an amplifier of TB outbreaks by providing a reservoir of susceptible hosts, but that HIV co-infection is not a direct driver for the emergence and transmission of resistant strains. DOI: http://dx.doi.org/10.7554/eLife.16644.001 PMID:27502557

  5. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  6. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  7. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

    PubMed Central

    Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve

    2014-01-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472

  8. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  9. Multicenter Evaluation of Genechip for Detection of Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Pang, Yu; Xia, Hui; Zhang, Zhiying; Li, Junchen; Dong, Yi; Li, Qiang; Ou, Xichao; Song, Yuanyuan; Wang, Yufeng; O'Brien, Richard; Kam, Kai Man; Chi, Junying; Huan, Shitong; Chin, Daniel P.

    2013-01-01

    Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China. PMID:23515537

  10. Antivascular therapy for multidrug-resistant ovarian tumors by macitentan, a dual endothelin receptor antagonist.

    PubMed

    Kim, Sun-Jin; Kim, Jang Seong; Kim, Seung Wook; Yun, Seok Joong; He, Junqin; Brantley, Emily; Fan, Dominic; Strickner, Panja; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2012-02-01

    Endothelin receptors (ETRs) are often overexpressed in ovarian tumors, which can be resistant to conventional therapies. Thus, we investigated whether blockage of the ETR pathways using the dual ETR antagonist macitentan combined with taxol or cisplatinum can produce therapy for orthotopically growing multidrug-resistant (MDR) human ovarian carcinoma. In several studies, nude mice were injected in the peritoneal cavity with HeyA8-MDR human ovarian cancer cells. Ten days later, mice were randomized to receive vehicle (saline), macitentan (oral, daily), taxol (intraperitoneal, weekly), cisplatinum (intraperitoneal, weekly), macitentan plus taxol, or macitentan plus cisplatinum. Moribund mice were killed, and tumors were collected, weighed, and prepared for immunohistochemical analysis. The HeyA8-MDR tumors did not respond to taxol, cisplatinum, or macitentan administered as single agents. In contrast, combination therapy with macitentan and taxol or macitentan and cisplatinum significantly decreased the tumor incidence and weight and significantly increased the survival of mice and their general condition. Multiple immunohistochemical analyses revealed that treatment with macitentan and macitentan plus taxol or cisplatinum inhibited the phosphorylation of ETRs, decreased the levels of pVEGFR2, pAkt, and pMAPK in tumor cells after 2 weeks of treatment and induced a first wave of apoptosis in tumor-associated endothelial cells followed by apoptosis in surrounding tumor cells. Our study shows that ovarian cancer cells, which express the endothelin axis and are multidrug resistant, are exquisitely sensitive to treatment with a dual ET antagonist and can be resensitized to both taxol and cisplatinum. This combined therapy led to a significant reduction in tumor weight.

  11. 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells.

    PubMed

    Li, W; Zhang, W J; Ohnishi, K; Yamada, I; Ohno, R; Hashimoto, K

    2001-07-01

    To verify if photodynamic therapy (PDT) could overcome multidrug resistance (MDR) when it it applied to eradicate minimal residual disease in patients with leukemia, we investigated the fluorescence kinetics of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) and the effect of subsequent photodynamic therapy on MDR leukemia cells, which express P-glycoprotein (P-gp), as well as on their parent cells. Evaluation of PpIX accumulation by flow cytometry showed that PpIX accumulated at higher levels in mdr-1 gene-transduced MDR cells (NB4/MDR) and at lower levels in doxorubicin-induced MDR cells (NOMO-1/ADR) than in their parent cells. A P-gp inhibitor could not increase PpIX accumulation. Measurement of extracellular PpIX concentration by fluorescence spectrometry showed that P-gp did not mediate the fluorescence kinetics of ALA-induced PpIX production. Assessment of ferrochelatase activity using high-performance liquid chromatography indicated that PpIX accumulation in drug-induced MDR cells was probably regulated by this enzyme. Assessment of phototoxicity of PDT using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that PDT was effective in NB4, NB4/MDR, NOMO-1 and NOMO-1/ADR cells, which accumulated high levels of PpIX, but not effective in K562 and K562/ADR cell lines, which accumulated relatively low levels of PpIX. These findings demonstrate that P-gp does not mediate the ALA-fluorescence kinetics, and multidrug resistant leukemia cells do not have cross-resistance to ALA-PDT. PMID:11470562

  12. Modulation of P-glycoprotein function and multidrug resistance in cancer cells by Thai plant extracts.

    PubMed

    Takano, M; Kakizoe, S; Kawami, M; Nagai, J; Patanasethnont, D; Sripanidkulchai, B; Yumoto, R

    2014-11-01

    The effects of ethanol extracts from Thai plants belonging to the families of Annonaceae, Rutaceae, and Zingiberaceae on P-glycoprotein (P-gp) function and multidrug resistance were examined in paclitaxel-resistant HepG2 (PR-HepG2) cells. All the extracts tested, significantly increased the accumulation of [3H]paclitaxel, a P-gp substrate, in the cells. Among nine extracts, Z01 and Z02, extracts from Curcuma comosa and Kaempferia marginata (Zingiberaceae family), respectively, potently increased the accumulation. In addition, Z01 and Z02 increased the accumulation of other P-gp substrates, rhodamine 123 and doxorubicin, in PR-HepG2 cells in a concentration-dependent manner. Increased accumulation of rhodamine 123 and doxorubicin by Z01 and Z02 was also confirmed by confocal laser scanning microscopy. The effect of Z01 and Z02 pretreatment on the expression of MDR1 mRNA was also examined. The expression of MDR1 mRNA was not affected by the treatment of PR-HepG2 cells with these extracts for 48 hours. Cytotoxicity of paclitaxel was examined by XTT and protein assays in the absence and presence of Z02. Z02 potentiated the cytotoxicity of paclitaxel in PR-HepG2 cells. These results suggest that Curcuma comosa and Kaempferia marginata belonging to Zingiberaceae are useful sources to search for new P-gp modulator(s) that can be used to overcome multidrug resistance of cancer cells.

  13. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Antunes, Luísa C S; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo

    2012-11-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO(3))(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO(3))(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO(3))(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO(3))(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO(3))(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO(3))(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

  14. Three Epidemics of Invasive Multidrug-Resistant Salmonella Bloodstream Infection in Blantyre, Malawi, 1998–2014

    PubMed Central

    Feasey, Nicholas A.; Masesa, Clemens; Jassi, Chikondi; Faragher, E. Brian; Mallewa, Jane; Mallewa, Macpherson; MacLennan, Calman A.; Msefula, Chisomo; Heyderman, Robert S.; Gordon, Melita A.

    2015-01-01

    Background. The Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW) has routinely collected specimens for blood culture from febrile patients, and cerebrospinal fluid from patients with suspected meningitis, presenting to Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, since 1998. Methods. We present bloodstream infection (BSI) and meningitis surveillance data from 1998 to 2014. Automated blood culture, manual speciation, serotyping, and antimicrobial susceptibility testing were performed at MLW. Population data for minimum-incidence estimates in urban Blantyre were drawn from published estimates. Results. Between 1998 and 2014, 167 028 blood cultures were taken from adult and pediatric medical patients presenting to QECH; Salmonella Typhi was isolated on 2054 occasions (1.2%) and nontyphoidal Salmonella (NTS) serovars were isolated 10 139 times (6.1%), of which 8017 (79.1%) were Salmonella Typhimurium and 1608 (15.8%) were Salmonella Enteritidis. There were 392 cases of NTS meningitis and 9 cases of Salmonella Typhi meningitis. There have been 3 epidemics of Salmonella BSI in Blantyre; Salmonella Enteritidis from 1999 to 2002, Salmonella Typhimurium from 2002 to 2008, and Salmonella Typhi, which began in 2011 and was ongoing in 2014. Multidrug resistance has emerged in all 3 serovars and is seen in the overwhelming majority of isolates, while resistance to third-generation cephalosporins and fluoroquinolones is currently uncommon but has been identified. Conclusions. Invasive Salmonella disease in Malawi is dynamic and not clearly attributable to a single risk factor, although all 3 epidemics were associated with multidrug resistance. To inform nonvaccine and vaccine interventions, reservoirs of disease and modes of transmission require further investigation. PMID:26449953

  15. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  16. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health. PMID:25504186

  17. Multidrug-resistant organisms in refugees: prevalences and impact on infection control in hospitals

    PubMed Central

    Heudorf, Ursel; Albert-Braun, Sabine; Hunfeld, Klaus-Peter; Birne, Franz-Ulrich; Schulze, Jörg; Strobel, Klaus; Petscheleit, Knut; Kempf, Volkhard A. J.; Brandt, Christian

    2016-01-01

    Introduction: The refugee crisis is a great challenge to the social and healthcare system in European countries, especially in Germany. An abundance of data has been published on the refugees’ health problems (infections as well as physical diseases and psychiatric problems) and their prevention (i.e., sanitary and vaccination programs). However, data on prevalences of multidrug-resistant organisms (MDRO) in refugees are scarce, although it is known that most refugees are from or travelled through countries with high prevalences of MDRO. This paper presents current data on MDRO colonization of refugees admitted to hospitals, and the impact of screening upon admission and infection control in hospitals is discussed. Methods: Anonymous data obtained by screening upon hospital admission were reported by hospitals in the Rhine-Main region of Germany to the local public health department. Screening and microbiological analyses were performed from December 2015 to March 2016 according to standardized and validated methods. Results: 9.8% of the refugees screened (32/325) exhibited colonization with methicillin-resistant Staphylococcus aureus (MRSA), and 23.3% of the refugees (67/290) were colonized with Gram-negative bacteria with extended spectrum beta-lactamases, and/or enterobacteria with resistance against 3 or 4 groups of antibacterials, so-called 3MRGN (multidrug-resistant Gram-negative bacteria with resistance against penicillins, cephalosporins and quinolones) and 4MRGN (with additional resistance against carbapenems). Carbapenem-resistant Gram-negative bacteria (CRGN) were detected in 2.1% (6/290) of the refugees. Conclusion: The data confirms the studies published between 2014 and 2016, encompassing refugees tested in Germany, the Netherlands and Israel, with prevalences of MRSA and CRGN up to 13.5% and 5.6%. The MDRO prevalences are higher than those of “risk groups” for MRSA, such as hemodialysis patients and patients depending on outpatient home

  18. Complete Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Isolate Obtained from a Mexican Hospital (Sequence Type 422)

    PubMed Central

    Castro-Jaimes, Semiramis; Salgado-Camargo, Abraham David; Graña-Miraglia, Lucía; Lozano, Luis; Bocanegra-Ibarias, Paola; Volkow-Fernández, Patricia; Silva-Sanchez, Jesus; Castillo-Ramírez, Santiago

    2016-01-01

    Acinetobacter baumannii has emerged as a dangerous nosocomial pathogen, particularly for severely ill patients in intensive care units and patients with hematologic malignancies. Here, we present the complete genome sequence of a multidrug-resistant A. baumannii isolate, recovered from a Mexican hospital and classified as sequence type 422 according to the multilocus sequence typing Pasteur scheme. PMID:27340065

  19. Probing Multidrug-Resistance and Protein-Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Xu, Chun-Xiao; Rao, Kalapala V.; Baldridge, Abigail; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T.; Aoki, Manabu; Miguel, Salcedo Pedro; Amano, Masayuki; Mitsuya, Hiroaki

    2010-10-29

    We report the design, synthesis, biological evaluation, and X-ray crystallographic analysis of a new class of HIV-1 protease inhibitors. Compound 4 proved to be an extremely potent inhibitor toward various multidrug-resistant HIV-1 variants, representing a near 10-fold improvement over darunavir (DRV). Compound 4 also blocked protease dimerization with at least 10-fold greater potency than DRV.

  20. Linezolid in the Starter Combination for Multidrug-Resistant Tuberculosis: Time to Move on to Group Four?

    PubMed Central

    Grard, Soazic; Catho, Gaud; Valour, Florent; Bouaziz, Anissa; Perpoint, Thomas; Braun, Evelyne; Biron, François; Miailhes, Patrick; Ferry, Tristan; Chidiac, Christian; Souquet, Pierre-Jean; Couraud, Sébastien; Lina, Gérard; Goutelle, Sylvain; Veziris, Nicolas; Dumitrescu, Oana; Ader, Florence

    2015-01-01

    Linezolid (LNZ), a group 5 antituberculous drug (unclear efficacy), was used in the starter regimens of 23 adults with multidrug-resistant tuberculosis. The LNZ-containing regimens were effective in achieving culture conversions and relapse-free outcomes. The most frequent LNZ-related side effect was neuropathy. We propose that LNZ should be reclassified among bactericidal second-line drugs. PMID:26719846

  1. Policies for Controlling Multidrug-Resistant Organisms in US Healthcare Facilities Reporting to the National Healthcare Safety Network, 2014.

    PubMed

    Weiner, Lindsey M; Webb, Amy K; Walters, Maroya S; Dudeck, Margaret A; Kallen, Alexander J

    2016-09-01

    We examined reported policies for the control of common multidrug-resistant organisms (MDROs) in US healthcare facilities using data from the National Healthcare Safety Network Annual Facility Survey. Policies for the use of Contact Precautions were commonly reported. Chlorhexidine bathing for preventing MDRO transmission was also common among acute care hospitals. Infect Control Hosp Epidemiol 2016:1-4. PMID:27350394

  2. Prevalence of rectal colonization with multidrug-resistant Enterobacteriaceae among international patients hospitalized at Mayo Clinic, Rochester, Minnesota.

    PubMed

    Vasoo, Shawn; Madigan, Theresa; Cunningham, Scott A; Mandrekar, Jayawant N; Porter, Stephen B; Johnston, Brian; Sampathkumar, Priya; Tosh, Pritish K; Johnson, James R; Patel, Robin; Banerjee, Ritu

    2014-02-01

    Rectal colonization with multidrug-resistant Enterobacteriaceae was found in 23 of 94 consecutively enrolled international patients hospitalized at Mayo Clinic, Rochester, Minnesota. No carbapenemase producers were detected. Twenty-one isolates were extended-spectrum β-lactamase-producing Escherichia coli. Colonization was associated with gastrointestinal disease and central venous catheter placement within the antecedent year. PMID:24442082

  3. Multidrug-Resistant Tuberculosis in Patients for Whom First-Line Treatment Failed, Mongolia, 2010–2011

    PubMed Central

    Korver, Sarah; Batbayar, Ochirbat; Nyamdulam, Batiargal; Oyuntsetseg, Sodnomdarjaa; Tsolmon, Bold; Surmaajav, Bazarragchaa; Bayarjargal, Byambaa; Marais, Ben J.

    2015-01-01

    In Ulaanbaatar, Mongolia, multidrug-resistant tuberculosis (MDR TB) was diagnosed for more than a third of new sputum smear–positive tuberculosis patients for whom treatment had failed. This finding suggests a significant risk for community-acquired MDR TB and a need to make rapid molecular drug susceptibility testing available to more people. PMID:26196504

  4. Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters.

    PubMed

    Quinn, Teresa; O'Mahony, Rebecca; Baird, Alan W; Drudy, Denise; Whyte, Paul; Fanning, Séamus

    2006-07-01

    Bacterial drug resistance represents one of the most crucial problems in present day antibacterial chemotherapy. Of particular concern to public health is the continuing worldwide epidemic spread of Salmonella enterica serovar Typhimurium phage type DT104 harbouring a genomic island called Salmonella genomic island I (SGI-1). This island contains an antibiotic gene cluster conferring resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides and tetracyclines. These resistance genes are assembled in a mosaic pattern, indicative of several independent recombinational events. The mobility of SGI-1 coupled with the ability of various antibiotic resistance genes to be integrated and lost from the chromosomal resistance locus allows for the transfer of stable antibiotic resistance to most of the commonly used antibiotics and adaptation to new antibiotic challenges. This, coupled with the incidence of increasing fluoroquinolone resistance in these strains increases the risk of therapeutic failure in cases of life-threatening salmonellosis. Fluoroquinolone resistance has largely been attributed to mutations occurring in the genes coding for intracellular targets of these drugs. However, efflux by the AcrAB-TolC multi-drug efflux pump has recently been shown to directly contribute to fluoroquinolone resistance. Furthermore, the resistance to chloramphenicol-florfenicol and tetracyclines in DT104 isolates, is due to interaction between specific transporters for these antibiotics encoded by genes mapping to the SGI-1 and the AcrAB-TolC tripartite efflux pump. The potential for the use of efflux pump inhibitors to restore therapeutic efficacy to fluoroquinolones and other antibiotics offers an exciting developmental area for drug discovery. PMID:16842216

  5. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    PubMed

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress. PMID:27310477

  6. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    PubMed

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.

  7. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals

    PubMed Central

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6′)-II-blaOXA-21-cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6′)-II-blaOXA-21-cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including blaCTX-M-3, blaTEM-1, aac(6′)-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  8. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals.

    PubMed

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6')-II-bla OXA-21 -cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6')-II-bla OXA-21 -cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including bla CTX-M-3, bla TEM-1, aac(6')-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  9. The Effects and Mechanisms of Periplaneta americana Extract Reversal of Multi-Drug Resistance in BEL-7402/5-FU Cells.

    PubMed

    Yuan, Falu; Liu, Junyong; Qiao, Tingting; Li, Ting; Shen, Qi; Peng, Fang

    2016-01-01

    The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT) method was applied to determine the multidrug resistance of BEL-7402/5-FU, while an intracellular drug accumulation assay was used to evaluate the effects of a column chromatography extract (PACC) and defatted extract (PADF) from P. americana on reversing multi-drug resistance. BEL-7402/5-FU reflected high resistance to 5-FU; PACC and PADF could promote drug accumulation in BEL-7402/5-FU cells, among which PADF was more effective than PACC. Moreover, results from the immunocytochemical method showed that PACC and PADF could downregulate the expression of drug resistance-associated proteins (P-gp, MRP, LRP); PACC and PADF had no effects on the expression of multidrug resistance-associated enzymes (GST-π), but PACC could increase the expression of multidrug resistance-associated enzymes (PKC). Results of real-time fluorescence quantitative PCR revealed that PACC and PADF were able to markedly inhibit the expression of multidrug resistance-associated genes (MDR1, LRP and MRP1); PACC presented a significant impact on the gene expression of multidrug resistance-associated enzymes, which increased the gene expression of GST-π and PKC. However, PADF had little impact on the expression of multidrug resistance-associated enzymes. These results demonstrated that PACC and PADF extracted from P. americana could effectively reverse MDR in BEL-7402/5-FU cells, whose mechanism was to inhibit the expression of P-gp, MRP, and LRP, and that PADF was more effective in the reversal of MDR than did PACC. In addition, some of extracts from P. americana altered (sometimes increasing) the expression of multidrug resistance-associated enzymes. PMID:27367657

  10. Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis.

    PubMed

    Pedrosa, Pedro; Veigas, Bruno; Machado, Diana; Couto, Isabel; Viveiros, Miguel; Baptista, Pedro V

    2014-05-01

    Tuberculosis, still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health threat especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiotics, is commonly associated with point mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis complex (MTBC). Therefore, the development of cheap, fast and simple molecular methods to assess susceptibility profiles would have a huge impact in the capacity of early diagnosis and treatment of MDRTB. Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for MTBC and single base mutations associated with antibiotic resistance, namely the characterization of the three most relevant codons in rpoB gene associated to rifampicin resistance. Here we extend the Au-nanoprobe approach towards discriminating specific mutations within inhA and rpoB genes in PCR amplified DNA from isolates. Using a multiplex PCR reaction for these two genes, it is possible to assess both loci in parallel, and extend the potential of the Au-nanoprobe method to MDRTB molecular characterization with special application in the most frequent Portuguese genotypes. PMID:24461544

  11. The multidrug resistance-associated protein 1 transports methoxychlor and protects the seminiferous epithelium from injury.

    PubMed

    Tribull, Tiffany E; Bruner, Richard H; Bain, Lisa J

    2003-04-30

    We examined the ability of the multidrug resistance-associated protein 1 (MRP1/ABCC1) to transport pesticides, as this transporter mediates the cellular efflux of a variety of xenobiotics, typically as glucuronide, sulfate, or glutathione conjugates. NIH3T3 cells stably expressing MRP1 were 3.37-fold more resistant to the toxicity of fenitrothion, 3.12-fold more resistant to chlorpropham, and 2.5-fold more resistant to methoxychlor, a pesticide with estrogenic and anti-androgenic metabolites. The cells expressing MRP1 also eliminated methoxychlor two times more rapidly than their mock-transfected counterparts. We then examined whether mrp1 expression could alter the toxicity of methoxychlor in vivo using male FVB/mrp1 knockout mice (FVB/mrp1-/-). Both control and knockout mice were fed 25 mg/kg methoxychlor in honey for 39 days, and its effects on testicular morphology were examined. Methoxychlor treatment did not significantly affect testicular morphology in the FVB mice, but markedly reduced the number of developing spermatocytes in the FVB/mrp1-/- mice. These results suggest that MRPI may play a role in protecting the seminiferous tubules from methoxychlor-induced damage.

  12. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Chung, Joon-Hui; Bhat, Abhayprasad; Kim, Chang-Jin; Yong, Dongeun; Ryu, Choong-Min

    2016-01-01

    Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria. PMID:27306928

  13. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance

    PubMed Central

    Yan, Fengjiao; Sun, Mingna; Du, Lingran; Peng, Wei; Li, Qiuli; Feng, Yinghong; Zhou, Yi

    2015-01-01

    Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/ Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers. PMID:25605018

  14. Multidrug-resistant organisms in liver transplant: Mitigating risk and managing infections.

    PubMed

    Hand, Jonathan; Patel, Gopi

    2016-08-01

    Liver transplant (LT) recipients are vulnerable to infections with multidrug-resistant (MDR) pathogens. Risk factors for colonization and infection with resistant bacteria are ubiquitous and unavoidable in transplantation. During the past decade, progress in transplantation and infection prevention has contributed to the decreased incidence of infections with methicillin-resistant Staphylococcus aureus. However, even in the face of potentially effective antibiotics, vancomycin-resistant enterococci continue to plague LT. Gram-negative bacilli prove to be more problematic and are responsible for high rates of both morbidity and mortality. Despite the licensure of novel antibiotics, there is no universal agent available to safely and effectively treat infections with MDR gram-negative organisms. Currently, efforts dedicated toward prevention and treatment require involvement of multiple disciplines including transplant providers, specialists in infectious diseases and infection prevention, and researchers dedicated to the development of rapid diagnostics and safe and effective antibiotics with novel mechanisms of action. Liver Transplantation 22 1143-1153 2016 AASLD. PMID:27228555

  15. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    PubMed

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections. PMID:27534136

  16. Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water.

    PubMed

    Narciso-da-Rocha, Carlos; Manaia, Célia M

    2016-09-01

    The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.

  17. MULTIDRUG RESISTANCE IN WILD BIRD POPULATIONS: IMPORTANCE OF THE FOOD CHAIN.

    PubMed

    Pinto, Andreia; Simões, Romeo; Oliveira, Manuela; Vaz-Pires, Paulo; Brandão, Ricardo; da Costa, Paulo Martins

    2015-12-01

    The presence of multidrug-resistant (MDR) Escherichia coli has recently been reported in wild birds (gulls and birds of prey) that had no apparent exposure to antimicrobials. Little work has been done to assess the role of the food chain in the emergence and spread of MDR E. coli . In this study, we evaluated the presence of MDR E. coli in 29 fecal samples collected from wild birds living in a rehabilitation center (the center receives injured animals found in their natural habitat) and in eight feed samples. In total, 166 E. coli isolates were obtained: 129 from cloacal swabs and 37 from raw feed samples. The antimicrobial resistance profile of these isolates was determined, and we found that 75 isolates showed resistance to five or more drugs, resulting in a total of 38 different antimicrobial resistance patterns. Subsequently, the molecular characterization of 36 isolates, performed by pulsed-field gel electrophoresis, revealed a great similarity between isolates collected from various species of birds and also between these last ones and the ones found in their feed samples. PMID:26667528

  18. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Chung, Joon-hui; Bhat, Abhayprasad; Kim, Chang-Jin; Yong, Dongeun; Ryu, Choong-Min

    2016-01-01

    Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria. PMID:27306928

  19. Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles.

    PubMed

    Pilapong, Chalermchai; Keereeta, Yanee; Munkhetkorn, Samlee; Thongtem, Somchai; Thongtem, Titipun

    2014-01-01

    Carboxymethyl modified magnetic nanoparticles (CMC-MNPs) have been designed as a vehicle for drug delivery in both drug-sensitive and drug-resistant cancer cells. We have demonstrated that the CMC-MNPs were able to load doxorubicin (DOX) with a high loading efficiency while also maintaining a good colloidal stability in an aqueous solution. According to a drug release study, DOX-loaded CMC-MNPs showed that the pH-dependent drug release property had a much higher release rate in acidic pH. Compared to free DOX, the DOX-loaded CMC-MNPs showed higher DOX accumulation in drug-sensitive cancer cells and much higher accumulation in drug-resistant cancer cells. These results indicate that our nanoplatform is highly efficient as a drug delivery system in both normal cancer cells and MDR cancer cells. In addition, the DOX-loaded CMC-MNPs can also enhance cytotoxicity against drug-resistant cancer cells in comparison to free DOX. The results obtained in this research demonstrate that our nanoplatform may be a promising approach in cancer chemotherapy and for overcoming multidrug-resistant cancer cells.

  20. A sociodemographic study of multidrug resistant tuberculosis cases from DOTS clinics of Kolkata.

    PubMed

    Gupta, Siddhartha; Bandyopadhyay, Debasis; Gupta, Soma; Sadhukhan, Sanjoy; Banerjees, Surajita

    2012-10-01

    This cross-sectional, observational study was undertaken to identify rifampicin and INH resistant mycobacteria in the sputum samples of category II treatment failure tuberculosis patients from three 'DOTS' clinics of Kolkata (Ward No 15, 33, 79 of Kolkata Municipal Corporation). Conventional method of culture in solid and liquid media followed by sensitivity testing to rifampicin and INH were done. Age, sex, economic status, nutrition, history of contact, living condition, etc, were taken into consideration. Out of 66 category II treatment failure tuberculosis cases from 3 DOTS clinics, 45 (68.2%) were found to be multidrug resistant (MDR). Among them, 68.9% were male patients and 55.6% were in the economically productive age group. Most of them (73.3%) were malnourished (BMI < 18.5); 62.2% of patients belonged to 'below poverty line' (BPL) category and 82.2% patients lived in overcrowded room. Majority of them (82.3%) either had past history of tuberculosis or history of contact or both.This study also shows that apart from the biological reasons of drug resistance, the sociodemographic and economic factors are no less important for the spread of drug resistant tuberculosis.

  1. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    PubMed

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.

  2. MULTIDRUG RESISTANCE IN WILD BIRD POPULATIONS: IMPORTANCE OF THE FOOD CHAIN.

    PubMed

    Pinto, Andreia; Simões, Romeo; Oliveira, Manuela; Vaz-Pires, Paulo; Brandão, Ricardo; da Costa, Paulo Martins

    2015-12-01

    The presence of multidrug-resistant (MDR) Escherichia coli has recently been reported in wild birds (gulls and birds of prey) that had no apparent exposure to antimicrobials. Little work has been done to assess the role of the food chain in the emergence and spread of MDR E. coli . In this study, we evaluated the presence of MDR E. coli in 29 fecal samples collected from wild birds living in a rehabilitation center (the center receives injured animals found in their natural habitat) and in eight feed samples. In total, 166 E. coli isolates were obtained: 129 from cloacal swabs and 37 from raw feed samples. The antimicrobial resistance profile of these isolates was determined, and we found that 75 isolates showed resistance to five or more drugs, resulting in a total of 38 different antimicrobial resistance patterns. Subsequently, the molecular characterization of 36 isolates, performed by pulsed-field gel electrophoresis, revealed a great similarity between isolates collected from various species of birds and also between these last ones and the ones found in their feed samples.

  3. The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB▿ †

    PubMed Central

    Garvey, Mark I.; Piddock, Laura J. V.

    2008-01-01

    One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer. PMID:18362193

  4. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    PubMed Central

    2010-01-01

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents. PMID:20653978

  5. Persistence of Multi-Drug Resistance Plasmids in Sterile Water under Very Low Concentrations of Tetracycline

    PubMed Central

    Bien, Thi Lan Thanh; Sato-Takabe, Yuki; Ogo, Mitsuko; Usui, Masaru; Suzuki, Satoru

    2015-01-01

    The persistence of the multi-drug resistance plasmids pAQU1 and IncFIB was examined in bacterial populations under very low selective pressure. We herein demonstrated that these plasmids stably remained not only in the original host, but also in a transconjugant, even after being in a non-culturable state. In seawater microcosms containing Photobacterium damselae 04Ya311 possessing pAQU1, no significant loss of pAQU1 was observed during a 30-d starvation period. The copy numbers of pAQU1 and IncFIB in E. coli were constant. The results of the present study suggest that these plasmids have the ability to remain among various bacteria under oligotrophic conditions with low antibiotic selection pressure. PMID:26639579

  6. Analyzing fission yeast multidrug resistance mechanisms to develop a genetically tractable model system for chemical biology.

    PubMed

    Kawashima, Shigehiro A; Takemoto, Ai; Nurse, Paul; Kapoor, Tarun M

    2012-07-27

    Chemical inhibitors can help analyze dynamic cellular processes, particularly when probes are active in genetically tractable model systems. Although fission yeast has served as an important model system, which shares more cellular processes (e.g., RNAi) with humans than budding yeast, its use for chemical biology has been limited by its multidrug resistance (MDR) response. Using genomics and genetics approaches, we identified the key transcription factors and drug-efflux transporters responsible for fission yeast MDR and designed strains sensitive to a wide-range of chemical inhibitors, including commonly used probes. We used this strain, along with acute chemical inhibition and high-resolution imaging, to examine metaphase spindle organization in a "closed" mitosis. Together, our findings suggest that our fission yeast strains will allow the use of several inhibitors as probes, discovery of new inhibitors, and analysis of drug action.

  7. Effects of highly purified anthraquinoid compounds from Aloe vera on sensitive and multidrug resistant leukemia cells.

    PubMed

    Grimaudo, S; Tolomeo, M; Gancitano, R; Dalessandro, N; Aiello, E

    1997-01-01

    Folk medicine has attributed antitumor properties to preparations from Aloe vera. We have studied the effects of five purified compounds from the plant on human K562 leukemia and on its multidrug resistant (MDR) variant, K562/R. The glycosides aloin A and B, aloesin and aloeresin were devoid of antitumor activity up to 200 mu M concentrations. Only the aglycone aloe emodin produced reproducible antitumor effects, which, interestingly, were more pronounced in the MDR, P-glycoprotein overexpressing, cell line. Its IC50 was in fact 29 mu M in K562 and 10.5 mu M in K562/R. Aloe emodine caused mainly cytostasis and accumulation of the cells in the S and G(2)-M phases of the cell cycle during the first 48 h of treatment. Thereafter, massive cell death ensued. Research on the antitumor activity of compounds extracted from Aloe vera probably deserves continuation.

  8. Multidrug-Resistant Tuberculosis during Pregnancy: Two Case Reports and Review of the Literature

    PubMed Central

    Rohilla, Minakshi; Joshi, Bharti; Jain, Vanita; Kalra, Jasvinder; Prasad, G. R. V.

    2016-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is identified from the time of introduction of antituberculosis treatment and is a known worldwide public health crisis affecting women of reproductive age group. Management issues raised by pregnant women with MDR tuberculosis are challenging due to the limited clinical experience available with the use of second line drugs. We hereby report two cases of MDR-TB during pregnancy: one patient was on second line drugs, while another one was evaluated and diagnosed to have MDR-TB in last trimester. At 6 months of follow-up both mothers and babies are doing well. The approach to such cases along with review of the literature is discussed. PMID:27006843

  9. Infected ptosis surgery – a rare complication from a multidrug-resistant organism

    PubMed Central

    Jan-Bond, Chan; Norazah, Abdul-Rahman; Sree-Kumar, Palani; Zunaina, Embong; Fazilawati, Qamarruddin

    2015-01-01

    A 7-year-old boy had a case of congenital ptosis of the right eye and has undergone frontalis sling surgery using Gore-tex material. There was no intraoperative or immediate postoperative complication. However, the patient defaulted his follow-up and presented with right eye presep