Science.gov

Sample records for abdominal ct scans

  1. Abdominal CT scan

    MedlinePlus

    ... results may also be due to: Abdominal aortic aneurysm Abscesses Appendicitis Bowel wall thickening Retroperitoneal fibrosis Renal ... Livingstone; 2014:chap 4. Read More Abdominal aortic aneurysm Abdominal aortic aneurysm repair - open Abscess Acute cholecystitis ...

  2. Abdominal CT scan

    MedlinePlus

    ... tumors, including cancer Infections or injury Kidney stones Appendicitis ... also be due to: Abdominal aortic aneurysm Abscesses Appendicitis Bowel wall thickening Retroperitoneal fibrosis Renal artery stenosis ...

  3. Radiation dose reduction in pediatric abdominal CT scanning

    SciTech Connect

    Kamel, I.R.

    1993-01-01

    A clinical trial was designed to test whether a significantly lower radiation dose technique could be used for pediatric abdominal CT scanning without loss of diagnostic image quality. The study included pediatric patients referred to radiology from the Children's Hospital and clinics at The University of Michigan. Seventy-eight cases were included in the study, 36 cases in the experimental group and 42 in the control group. Patient characteristics in both groups were comparable in every respect except for the technical factors used to expose the pelvis. Patients in the experimental group were scanned with a technique using 80 mAs while those in the control group were scanned with the conventional technique of 240 mAs. Therefore, the radiation dose to the pelvis was three times higher in the control group than in the experimental group. Scans were evaluated by two experienced pediatric radiologists who assessed anatomical details, image resolution and the degree of confidence in reaching a diagnosis. The low-mAs technique did not result in reduction of diagnostic image quality or the confidence in reaching a diagnosis. In conclusion, the radiation dose resulting from pediatric CT of the pelvis may be reduced by a factor of three with equivalent medical benefit.

  4. CT Hounsfield Numbers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners

    PubMed Central

    Lamba, Ramit; McGahan, John P.; Corwin, Michael T.; Li, Chin-Shang; Tran, Tien; Seibert, J. Anthony; Boone, John M.

    2016-01-01

    OBJECTIVE The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers’ MDCT scanners. MATERIALS AND METHODS A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. RESULTS In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). CONCLUSION Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers. PMID:25341139

  5. Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans

    NASA Astrophysics Data System (ADS)

    Mensink, Sanne D.; Spliethoff, Jarich W.; Belder, Ruben; Klaase, Joost M.; Bezooijen, Roland; Slump, Cornelis H.

    2011-03-01

    This contribution describes a novel algorithm for the automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans of patients referred for colorectal resection. Visceral and subcutaneous adipose tissue volumes can accurately be measured with errors of 1.2 and 0.5%, respectively. Also the reproducibility of CT measurements is good; a disadvantage is the amount of radiation. In this study the diagnostic CT scans in the work - up of (colorectal) cancer were used. This implied no extra radiation. For the purpose of segmentation alone, a low dose protocol can be applied. Obesity is a well known risk factor for complications in and after surgery. Body Mass Index (BMI) is a widely accepted indicator of obesity, but it is not specific for risk assessment of colorectal surgery. We report on an automated method to quantify visceral and subcutaneous adipose tissue volumes as a basic step in a clinical research project concerning preoperative risk assessment. The outcomes are to be correlated with the surgery results. The hypothesis is that the balance between visceral and subcutaneous adipose tissue together with the presence of calcifications in the major bloodvessels, is a predictive indicator for post - operatieve complications such as anastomotic leak. We start with four different computer simulated humanoid abdominal volumes with tissue values in the appropriate Hounsfield range at different dose levels. With satisfactory numerical results for this test, we have applied the algorithm on over a 100 patient scans and have compared results with manual segmentations by an expert for a smaller pilot group. The results are within a 5% difference. Compared to other studies reported in the literature, reliable values are obtained for visceral and subcutaneous adipose tissue areas.

  6. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  7. Comparative analysis of the radiation shield effect in an abdominal CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Chil; Kim, Young-Jae; Lee, Joon-Seok; Dong, Kyung-Rae; Chung, Woon-Kwan; Lim, Chang-Seon

    2014-03-01

    This study measured and compared the dose on the eyeballs and the thyroid with and without the use of a shield by applying the abdominal examination protocol used in an actual examination to a 64-channel computed tomography (CT) scan. A dummy phantom manufactured from acryl was used to measure the dose to the eyeballs and the thyroid of a patient during a thoraco-abdominal CT scan. The dose was measured using three dosimeters (optically-stimulated luminescence dosimeter (OSLD), thermoluminescence dosimeter (TLD) and photoluminescence dosimeter (PLD)) attached to the surfaces of three parts (left and right eyeballs and thyroid) in a phantom with and without the use of a shield for the eyeballs and the thyroid. Two types of shields (1-mm barium shielding sheet and 1-mm tungsten shielding sheet) were used for the measurements. The goggles and the lead shield, which are normally used in clinical practice, were used to compare the shield ratios of the shields. According to the results of the measurements made by using the OSLD, the shield ratios of the barium and the tungsten sheets were in the range of 34-36%. The measurements made by using the TLD showed that the shield ratio of the barium sheet was 6.25% higher than that of the tungsten sheet. When the PLD was used for the measurement, the shield ratio of the barium sheet was 33.34%, which was equivalent to that of the tungsten sheet. These results confirmed that the cheap barium sheet had a better shielding effect than the expensive tungsten sheet.

  8. A reappraisal of adult thoracic and abdominal surface anatomy via CT scan in Chinese population.

    PubMed

    Shen, Xin-Hua; Su, Bai-Yan; Liu, Jing-Juan; Zhang, Gu-Muyang; Xue, Hua-Dan; Jin, Zheng-Yu; Mirjalili, S Ali; Ma, Chao

    2016-03-01

    Accurate surface anatomy is essential for safe clinical practice. There are numerous inconsistencies in clinically important surface markings among and within contemporary anatomical reference texts. The aim of this study was to investigate key thoracic and abdominal surface anatomy landmarks in living Chinese adults using computed tomography (CT). A total of 100 thoracic and 100 abdominal CT scans were examined. Our results indicated that the following key surface landmarks differed from current commonly-accepted descriptions: the positions of the tracheal bifurcation, azygos vein termination, and pulmonary trunk bifurcation (all below the plane of the sternal angle at vertebral level T5-T6 in most individuals); the superior vena cava formation and junction with the right atrium (most often behind the 1st and 4th intercostal spaces, respectively); and the level at which the inferior vena cava and esophagus traverse the diaphragm (T10 and T11, respectively). The renal arteries were most commonly at L1; the midpoint of the renal hila was most frequently at L2; the 11th rib was posterior to the left kidney in only 29% of scans; and the spleen was most frequently located between the 10th and 12th ribs. A number of significant sex- and age-related differences were noted. The Chinese population was also compared with western populations on the basis of published reports. Reappraisal of surface anatomy using modern imaging tools in vivo will provide both quantitative and qualitative evidence to facilitate the clinical application of these key surface landmarks. Clin. Anat. 29:165-174, 2016. © 2015 Wiley Periodicals, Inc. PMID:26032163

  9. A 54-Year-Old Man Presenting With an Abnormal Abdominal CT Scan 8 Months After Double Lung Transplant.

    PubMed

    Mistrot, Daniel P; Gemma, Vincent A; Gagliano, Ronald A; Omar, Ashraf; Panchabhai, Tanmay S

    2016-05-01

    A 54-year-old man who had undergone bilateral sequential lung transplant for idiopathic pulmonary fibrosis was admitted to the hospital for further evaluation of an abnormal abdominal CT scan. Three months previously a gastrojejunostomy tube had been placed after he was found to have evidence of silent aspiration with oral intake. At a recent clinic visit, he denied abdominal pain or problems with the feeding tube. He described frequent diarrhea since placement of the feeding tube. PMID:27157231

  10. The Use of CT Scan in Hemodynamically Stable Children with Blunt Abdominal Trauma: Look before You Leap.

    PubMed

    Nellensteijn, David R; Greuter, Marcel J; El Moumni, Moustafa; Hulscher, Jan B

    2016-08-01

    We set out to determine the diagnostic value of computed tomographic (CT) scans in relation to the radiation dose, tumor incidence, and tumor mortality by radiation for hemodynamically stable pediatric patients with blunt abdominal injury. We focused on the changes in management because of new information obtained by CT. CT scans for suspected pediatric abdominal injury performed in our accident and emergency department were retrieved from the radiology registry and analyzed for: injury and hemodynamic parameters, changes in therapy, and radiological interventions. The dose length product (DLP) was used to calculate the effective dose (ED) and with the BEIR VII report we calculated the estimated induced lifetime tumor and mortality risk. Seventy-two patients underwent abdominal CT scanning for suspicion of abdominal injury and eight patients were excluded for hemodynamic instability, leaving 64 hemodynamically stable patients. Four patients died (6%). On the remaining 60 patients, only one laparotomy was performed for suspicion of duodenal perforation. Only in three out of the 64 hemodynamically stable cases (5%), a CT scan brought forward an indication for intervention or change in management. One patient was suspected of a duodenal perforation and underwent a laparotomy. A grade II hepatic laceration, but no duodenal, injury was found. Two patients underwent embolization of the splenic artery. One for an arterial blush caused by splenic laceration as was observed on the contrast enhanced-CT. Patient remained stable and during the angiogram the blush had disappeared. The second patient underwent (prophylactic) selective arterial embolization for having sustained a grade V splenic injury. The median radiation dosage was 11.43 mSv (range 1.19-23.76 mSv) in our patients. The use of the BEIR VII methodology results in an estimated increase in the lifetime tumor incidence of 0.17% (range, 0.05-0.67%) and an estimated increase in lifetime tumor incidence of 0.08% (0

  11. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer.

    PubMed

    Liu, Guo-Chen; Zhang, Xu; Xie, E; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-11-01

    Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy.Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed.Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively.The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative. PMID:26632714

  12. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial ... or other growth (mass) Cerebral atrophy (loss of brain tissue) ... with the hearing nerve Stroke or transient ischemic attack (TIA)

  13. Segmenting the thoracic, abdominal and pelvic musculature on CT scans combining atlas-based model and active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2013-03-01

    Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.

  14. Value of a probabilistic atlas in medical image segmentation regarding non-rigid registration of abdominal CT scans

    NASA Astrophysics Data System (ADS)

    Park, Hyunjin; Meyer, Charles R.

    2012-10-01

    A probabilistic atlas provides important information to help segmentation and registration applications in medical image analysis. We construct a probabilistic atlas by picking a target geometry and mapping other training scans onto that target and then summing the results into one probabilistic atlas. By choosing an atlas space close to the desired target, we construct an atlas that represents the population well. Image registration used to map one image geometry onto another is a primary task in atlas building. One of the main parameters of registration is the choice of degrees of freedom (DOFs) of the geometric transform. Herein, we measure the effect of the registration's DOFs on the segmentation performance of the resulting probabilistic atlas. Twenty-three normal abdominal CT scans were used, and four organs (liver, spinal cord, left and right kidneys) were segmented for each scan. A well-known manifold learning method, ISOMAP, was used to find the best target space to build an atlas. In summary, segmentation performance was high for high DOF registrations regardless of the chosen target space, while segmentation performance was lowered for low DOF registrations if a target space was far from the best target space. At the 0.05 level of statistical significance, there were no significant differences at high DOF registrations while there were significant differences at low DOF registrations when choosing different targets.

  15. CT scan

    MedlinePlus

    CAT scan; Computed axial tomography scan; Computed tomography scan ... Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, et al. eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ...

  16. CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. Modern spiral scanners can perform the exam without stopping. A computer ...

  17. Heart CT scan

    MedlinePlus

    CAT scan - heart; Computed axial tomography scan - heart; Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agaston score; Coronary calcium scan

  18. Detection of abdominal aortic graft infection: comparison of CT and In-labeled white blood cell scans

    SciTech Connect

    Mark, A.S.; McCarthy, S.M.; Moss, A.A.; Price, D.

    1985-02-01

    Aortic graft infections are a rare but potentially lethal complication of aortic graft surgery. The diagnosis and assessment of the extent of a graft infection is difficult on clinical grounds. A prospective study compared CT and indium-labeled white blood cell (In-WBC) scans in the diagnosis of aortic graft infection. Five patients with aortic graft infection and three patients without aortic graft infection were studied by both methods. CT correctly detected the retroperitoneal extension of the infection in three patients with groin infection; In-WBC scans diagnosed the extension only in one patient. Both CT and In-WBC were positive in two patients with aortic graft infection but no groin infection. Both studies were negative in the three patients without evidence of aortic graft infection. The study suggests that CT is more sensitive than In-WBC in evaluating the extent of aortic graft infection and should be the imaging method of choice.

  19. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Mosby; 2013:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  20. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... 2014:chap 67. Shaw AS, Dixon AK. Multidetector computed tomography. In: Adam A, Dixon AK, eds. Grainger & Allison's ...

  1. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... Saunders; 2012:chap 11. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  2. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... gov/pubmed/18381118 . Shaw AS, Dixon AK. Multidetector computed tomography. In: Grainger RC, Allison D, Adam, Dixon AK, ...

  3. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Mosby; 2012:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  4. Orbit CT scan

    MedlinePlus

    ... results may mean: Bleeding Broken eye socket bone Graves disease Infection Tumor Risks CT scans and other x- ... Livingstone; 2014:chap 66. Read More CT scan Graves disease Tumor Update Date 1/18/2015 Updated by: ...

  5. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  6. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  7. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  8. Chest CT Scan

    MedlinePlus

    ... pictures to create a very detailed, three-dimensional (3D) model of organs. Sometimes, a substance called contrast dye is injected into a vein in your arm for the CT scan. This substance highlights areas in your chest, which ...

  9. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  10. Multidetector CT of blunt abdominal trauma.

    PubMed

    Soto, Jorge A; Anderson, Stephan W

    2012-12-01

    The morbidity, mortality, and economic costs resulting from trauma in general, and blunt abdominal trauma in particular, are substantial. The "panscan" (computed tomographic [CT] examination of the head, neck, chest, abdomen, and pelvis) has become an essential element in the early evaluation and decision-making algorithm for hemodynamically stable patients who sustained abdominal trauma. CT has virtually replaced diagnostic peritoneal lavage for the detection of important injuries. Over the past decade, substantial hardware and software developments in CT technology, especially the introduction and refinement of multidetector scanners, have expanded the versatility of CT for examination of the polytrauma patient in multiple facets: higher spatial resolution, faster image acquisition and reconstruction, and improved patient safety (optimization of radiation delivery methods). In this article, the authors review the elements of multidetector CT technique that are currently relevant for evaluating blunt abdominal trauma and describe the most important CT signs of trauma in the various organs. Because conservative nonsurgical therapy is preferred for all but the most severe injuries affecting the solid viscera, the authors emphasize the CT findings that are indications for direct therapeutic intervention. PMID:23175542

  11. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  12. Studies on the application of a low-voltage peak to the postsurgical follow-up CT scan in abdominal cancer patients in order to reduce the exposure of patients to radiation

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Lee, H. K.; Kim, H. J.; Dong, K. R.; Chung, W. K.

    2012-10-01

    This study examined the radiation dose, computed tomography (CT) number, contrast and image quality of patients requiring periodic follow-up abdominal CT examinations at various tube voltages. The subjects were divided into two groups. One group consisted of patients who underwent a clinical analysis and the other group was a phantom one. Somatom Sensation 16 (Siemens, Erlangen, Germany) was used. Twenty patients who underwent a periodic follow-up examination by CT were selected randomly. The tube current was fixed to 150 mA, and the tube voltage was adjusted according to the appropriate value of each examination. The computed tomography dose index (CTDI) values were measured. The CT number of each organ was measured by setting up a 1 cm diameter return on investment (ROI) in the abdominal organs at the same height of the first lumbar vertebra using images of the arterial phase. Two radiologists in consensus graded the quality of the abdominal images into three groups. An abdomen-shaped acrylic phantom was used in the phantom study. An ion chamber was inserted into the holes located at the center and periphery of the phantom, where the radiation dose was automatically displayed on the reader. Tube voltages of 80, 100, 120 and 140 kVp were applied to the phantom (diluted contrast medium with water at 1:10 ratio) and the phantom was scanned. The CT number was measured from a 1 cm diameter ROI at the center of the image. The CTDI value decreased by 36% at 100 kVp (7.50 mGy) compared with that at 120 kVp (11.70 mGy). According to the radiologists' evaluation, there were 17 equivalent, 3 acceptable and 0 unacceptable levels in the group of 20 subjects. The radiation dose in the phantom study decreased with increasing tube voltages from 80 to 140 kVp. The peripheral and central doses decreased by 38% and 41%, respectively. The CT numbers at 80, 100, 120 and 140 kVp were 1365.9±4.4, 1046.1±3.7, 862.8±3.2 and 737.5±3.0 HU, respectively. In conclusion, in a follow

  13. Abdominal organ motion measured using 4D CT

    SciTech Connect

    Brandner, Edward D.; Wu, Andrew . E-mail: andrew.wu@jefferson.edu; Chen, Hungcheng; Heron, Dwight; Kalnicki, Shalom; Komanduri, Krishna; Gerszten, Kristina; Burton, Steve; Ahmed, Irfan; Shou, Zhenyu

    2006-06-01

    Purpose: To measure respiration-induced abdominal organ motion using four-dimensional computed tomography (4D CT) scanning and to examine the organ paths. Methods and Materials: During 4D CT scanning, consecutive CT images are acquired of the patient at each couch position. Simultaneously, the patient's respiratory pattern is recorded using an external marker block taped to the patient's abdomen. This pattern is used to retrospectively organize the CT images into multiple three-dimensional images, each representing one breathing phase. These images are analyzed to measure organ motion between each phase. The displacement from end expiration is compared to a displacement limit that represents acceptable dosimetric results (5 mm). Results: The organs measured in 13 patients were the liver, spleen, and left and right kidneys. Their average superior to inferior absolute displacements were 1.3 cm for the liver, 1.3 cm for the spleen, 1.1 cm for the left kidney, and 1.3 cm for the right kidney. Although the organ paths varied among patients, 5 mm of superior to inferior displacement from end expiration resulted in less than 5 mm of displacement in the other directions for 41 of 43 organs measured. Conclusions: Four-dimensional CT scanning can accurately measure abdominal organ motion throughout respiration. This information may result in greater organ sparing and planning target volume coverage.

  14. Knee CT scan

    MedlinePlus

    CAT scan - knee; Computed axial tomography scan - knee; Computed tomography scan - knee ... Saunders; 2015:chap 93. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  15. Thoracic spine CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. (Modern "spiral" scanners can perform the exam without stopping.) A computer ...

  16. Head CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. While inside the scanner, the machine's x-ray beam rotates around you. ... breathing during the test, you should notify the scanner operator immediately. Scanners come with an intercom and ...

  17. CT of acute abdominal aortic disorders.

    PubMed

    Bhalla, Sanjeev; Menias, Christine O; Heiken, Jay P

    2003-11-01

    Aortic aneurysm rupture, aortic dissection, PAU, acute aortic occlusion, traumatic aortic injury, and aortic fistula represent acute abdominal aortic conditions. Because of its speed and proximity to the emergency department, helical CT is the imaging test of choice for these conditions. MR imaging also plays an important role in the imaging of aortic dissection and PAU, particularly when the patient is unable to receive intravenous contrast material. In this era of MDCT, conventional angiography is used as a secondary diagnostic tool to clarify equivocal findings on cross-sectional imaging. Ultrasound is helpful when CT is not readily available and the patient is unable or too unstable to undergo MR imaging. PMID:14661663

  18. Pelvic CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. ... weight limit. Too much weight can damage the scanner's working parts. You will be asked to remove ...

  19. Nano-CT Scanning

    NASA Astrophysics Data System (ADS)

    Masschaele, B.

    Tomography is a non-destructive research technique which allows investigating the internal structure of objects in 3D . The "centre for X-ray tomography (UGCT)" of the Ghent University has developed a modular X-ray micro/nanoCT scanner which is used for multi-disciplinary research. In this paper we give an overview of the different components of the UGCT scanner with special attention to the X-ray imaging detectors. Also the software tools for data reconstruction and analysis and some obtained results are discussed.

  20. Children, CT Scan and Radiation

    PubMed Central

    Bajoghli, Morteza; Bajoghli, Farshad; Tayari, Nazila; Rouzbahani, Reza

    2010-01-01

    Children are more sensitive to radiation than adults. Computerized tomography (CT) consists of 25 % of all medical imaging. It was estimated that more than 2% of all carcinomas in the USA are due to CT scans. There is an ongoing focus on the reduction of CT scan radiation dose. Awareness about risk-benefits of CT has increased. Reduction of radiological exam is an important issue because the accumulation effects of radiation can be hazardous. In addition, proper protocol should be followed for diagnostic procedures of ionization radiation and computerized tomography. Effective radiation dose should range from 0.8 to 10.5 millisievert. The same protocol should be followed in different hospitals as well. Basic principles of radiation protection should be monitored. As much as possible, both technician and radiologist must be present during computerized tomography for children, and MRI and ultrasound should be replaced if possible. PMID:21566776

  1. Abdominal computed tomographic scan-merits and demerits over ultrasonography: evaluation of 70 cases.

    PubMed

    Obajimi, M O; Ogunseyinde, A O; Agunloye, A M

    2002-06-01

    Computed tomography (CT) and Ultrasonography (USS) are commonly used to ascertain the cause of abdominal symptoms. In a retrospective study of 70 Nigerian patients who had abdominal ultrasonography prior to abdominal CT scans, the most frequent clinical feature was abdominal pain, which was reported in 20.8% of the patients. The prevalent ultrasonographic finding was hepatomegaly (12.2%) while bowel displacement was the most frequently reported CT finding (18.3%). There was no correlation between USS and CT findings in 11 patients (15.7%). There was some agreement in the findings of both tests in 75.7% of cases. Additional findings were noted in 38 (54.3%) of the latter group of patients on CT scans. Hundred percent agreement was reported in both imaging techniques in 5 radiological findings namely: dilated gall bladder, renal cysts, ascites, adrenal mass and utero-cervical mass. These findings suggest a high yield of diagnostic accuracy from abdominal sonography and increased diagnostic details provided by CT imaging. Our overall impression is that the diagnostic information provided by the two techniques are complimentary. PMID:12518911

  2. Computer-aided kidney segmentation on abdominal CT images.

    PubMed

    Lin, Daw-Tung; Lei, Chung-Chih; Hung, Siu-Wan

    2006-01-01

    In this paper, an effective model-based approach for computer-aided kidney segmentation of abdominal CT images with anatomic structure consideration is presented. This automatic segmentation system is expected to assist physicians in both clinical diagnosis and educational training. The proposed method is a coarse to fine segmentation approach divided into two stages. First, the candidate kidney region is extracted according to the statistical geometric location of kidney within the abdomen. This approach is applicable to images of different sizes by using the relative distance of the kidney region to the spine. The second stage identifies the kidney by a series of image processing operations. The main elements of the proposed system are: 1) the location of the spine is used as the landmark for coordinate references; 2) elliptic candidate kidney region extraction with progressive positioning on the consecutive CT images; 3) novel directional model for a more reliable kidney region seed point identification; and 4) adaptive region growing controlled by the properties of image homogeneity. In addition, in order to provide different views for the physicians, we have implemented a visualization tool that will automatically show the renal contour through the method of second-order neighborhood edge detection. We considered segmentation of kidney regions from CT scans that contain pathologies in clinical practice. The results of a series of tests on 358 images from 30 patients indicate an average correlation coefficient of up to 88% between automatic and manual segmentation. PMID:16445250

  3. Intra-abdominal desmoplastic small round cell tumors: CT and FDG-PET/CT findings with histopathological association

    PubMed Central

    CHEN, JINGJING; WU, ZENGJIE; SUN, BINBIN; LI, DACHENG; WANG, ZHENGUANG; LIU, FANGJUN; HUA, HUI

    2016-01-01

    Desmoplastic small round cell tumors (DSRCTs) are rare and aggressive malignant tumors. The aim of the present study was to analyze computed tomography (CT) and fluorodeoxyglucose positron emission tomography (FDG-PET)/CT imaging features of intra-abdominal desmoplastic DSRCT, and investigate the association of these features with histopathological results. The present study was a retrospective investigation of 4 patients with DSRCT. All patients underwent CT and dynamic CT, and 1 additionally underwent FDG-PET/CT scanning. Following a tumor resection, routine hematoxylin and eosin staining, and immunostaining, were performed and evaluated. Multiple large abdominopelvic masses were identified in all 4 patients; however, no indications of their site of origin were demonstrated. CT revealed soft-tissue masses with patchy foci of hypodense lesions. Contrast-enhanced CT revealed slightly or moderately heterogeneous enhancement of the lesions. Other observations from these patients included calcification (n=2), peritoneal seeding (n=3), hepatic metastasis (n=3), retroperitoneal lymphadenopathy (n=3) and ascites (n=2). FDG-PET/CT revealed multiple nodular increased FDG uptake in the abdominopelvic masses, and in the liver and peritoneum in 1 case. Intra-abdominal DSRCT demonstrated significant diagnostic characteristics on plain and contrast-enhanced CT. Multiple, bulky soft-tissue masses inside the peritoneal cavity, particularly in male adolescents and young adults, should be considered as potential cases of DSRCT. FDG-PET/CT techniques may be utilized to aid the staging of tumors. PMID:27123106

  4. Effects of Dual-Energy CT with Non-Linear Blending on Abdominal CT Angiography

    PubMed Central

    Wang, Chaoqin; Jiang, Xiaochen; Xu, Ge

    2014-01-01

    Objective To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. Materials and Methods This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Results Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Conclusion Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning. PMID:25053901

  5. Immersive virtual reality for visualization of abdominal CT

    NASA Astrophysics Data System (ADS)

    Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.

    2013-03-01

    Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.

  6. Optical-CT scanning of polymer gels

    PubMed Central

    Oldham, M

    2006-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data. PMID:17082823

  7. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect

    Nattenmüller, Johanna Filsinger, Matthias Bryant, Mark Stiller, Wolfram Radeleff, Boris Grenacher, Lars Kauczor, Hans-Ullrich Hosch, Waldemar

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  8. Can lab data be used to reduce abdominal computed tomography (CT) usage in young adults presenting to the emergency department with nontraumatic abdominal pain?

    PubMed

    Scheinfeld, Meir H; Mahadevia, Soham; Stein, Evan G; Freeman, Katherine; Rozenblit, Alla M

    2010-09-01

    We sought to determine whether laboratory parameters could be found, predictive of a negative abdominal CT scan in young adults with nontraumatic abdominal pain. Following institutional review board approval, we evaluated CT reports of 522 patients, aged 21-35 years old, who presented to the Emergency Department with nontraumatic abdominal pain. Bivariate analyses relating ten laboratory parameters to whether the CT detected a cause for abdominal pain were conducted. A multivariate logistic regression model was then derived, with all variables in the final model significant at p < 0.05. Variables were dichotomized to yield odds ratios and 95% confidence intervals. Of the 522 patients meeting inclusion criteria, 45% had a cause for pain demonstrated by CT. Predictors of a negative CT in men were normal hematocrit and negative urine blood (p = 0.045, p = 0.016, respectively), and in women normal hematocrit, granulocyte percent, and alkaline phosphatase (p = 0.023, p = 0.039, p < 0.0001, respectively). When standard normal values were used to calculate descriptive statistics, only granulocyte percent in women had a significant confidence interval (odds ratio 2.5, confidence interval 1.6-4.0). Among the 208 women with normal granulocyte percent, the final clinical diagnosis was appendicitis, cholecystitis, and diverticulitis, in three, three, and two cases, respectively (4% combined). In summary, no laboratory test was sufficient to offer reassurance that a CT is not necessary in a young adult patient with nontraumatic abdominal pain. Alternative strategies should be considered to decrease the use of CT, and its associated radiation exposure, in young adults with nontraumatic abdominal pain. PMID:20306104

  9. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... 繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (af Soomaali) Spanish (español) ... スキャン - 日本語 (Japanese) Bilingual PDF Health Information Translations Korean (한국어) CT (Computerized Tomography) Scan CT 스캔 (전산화 ...

  10. Evaluation of five image registration tools for abdominal CT: pitfalls and opportunities with soft anatomy

    NASA Astrophysics Data System (ADS)

    Lee, Christopher P.; Xu, Zhoubing; Burke, Ryan P.; Baucom, Rebeccah; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Image registration has become an essential image processing technique to compare data across time and individuals. With the successes in volumetric brain registration, general-purpose software tools are beginning to be applied to abdominal computed tomography (CT) scans. Herein, we evaluate five current tools for registering clinically acquired abdominal CT scans. Twelve abdominal organs were labeled on a set of 20 atlases to enable assessment of correspondence. The 20 atlases were pairwise registered based on only intensity information with five registration tools (affine IRTK, FNIRT, Non-Rigid IRTK, NiftyReg, and ANTs). Following the brain literature, the Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. However, interpretation was confounded due to a significant proportion of outliers. Examining the retrospectively selected top 1 and 5 atlases for each target revealed that there was a substantive performance difference between methods. To further our understanding, we constructed majority vote segmentation with the top 5 DSC values for each organ and target. The results illustrated a median improvement of 85% in DSC between the raw results and majority vote. These experiments show that some images may be well registered to some targets using the available software tools, but there is significant room for improvement and reveals the need for innovation and research in the field of registration in abdominal CTs. If image registration is to be used for local interpretation of abdominal CT, great care must be taken to account for outliers (e.g., atlas selection in statistical fusion).

  11. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... List of All Topics All CT Scans - Multiple Languages To use the sharing features on this page, please enable JavaScript. Arabic (العربية) Chinese - Simplified (简体中文) Chinese - Traditional (繁體中文) French ( ...

  12. Doctors Should Bone Up on CT Scan Cancer Risks

    MedlinePlus

    ... fullstory_159909.html Doctors Should Bone Up on CT Scan Cancer Risks Many not aware of exact radiation ... July 15, 2016 (HealthDay News) -- Doctors routinely order CT scans as diagnostic tools. But many are ill-informed ...

  13. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  14. Spleen volume on CT and the effect of abdominal trauma.

    PubMed

    Cruz-Romero, Cinthia; Agarwal, Sheela; Abujudeh, Hani H; Thrall, James; Hahn, Peter F

    2016-08-01

    The aim of this study is to determine the magnitude of change in spleen volume on CT in subjects sustaining blunt abdominal trauma without hemorrhage relative to patients without disease and how the spleen volumes are distributed. Sixty-seven subjects with blunt abdominal trauma and 101 control subjects were included in this retrospective single-center, IRB-approved, and HIPAA-compliant study. Patients with an injured spleen were excluded. Using a semiautomatic segmentation program, two readers computed spleen volumes from CT. Spleen volume distribution in male and female trauma and control cohorts were compared nonparametrically. Spleen volume plotted against height, weight, and age were analyzed by linear regression. The number of females and males are, respectively, 35 and 32 in trauma subjects and 69 and 32 among controls. Female trauma patients (49.6 years) were older than males (39.8 years) (p = 0.02). Distributions of spleen volume were not normal, skewed above their means, requiring a nonparametric comparison. Spleen volumes in trauma patients were smaller than those in controls with medians of 230 vs 294 mL in males(p < 0.006) and 163 vs 191 mL in females(p < 0.04). Spleen volume correlated positively with weight in females and with height in male controls, and negatively with age in male controls (p < 0.01). Variation in reproducibility and repeatability was acceptable at 1.5 and 4.9 %, respectively. Reader variation was 1.7 and 4.6 % for readers 1 and 2, respectively. The mean spleen volume in controls was 245 mL, the largest ever reported. Spleen volume decreases in response to blunt abdominal trauma. Spleen volumes are not normally distributed. Our population has the largest spleen volume reported in the literature, perhaps a consequence of the obesity epidemic. PMID:27166964

  15. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  16. Tomosynthesis using high speed CT scanning system

    SciTech Connect

    Boyd, D.P.; Rutt, B.K.

    1988-04-05

    In a high-speed CT scanning system in which fan beams of radiation are generated by sweeping an electron beam along a target and collimated X-rays emitted by the target are received by an array of detectors after passing through a patient area between the target and the array of detectors, a method of obtaining a tomograph of a patient is described comprising the steps of sweeping the electron beam along the target, measuring radiation received at detector positions as the electron beam is swept along the target; moving the patient past the collimated X-rays, and combining measurements at the detector positions as correlated in time to positions of the patient and tomosynthesizing the tomograph from data for lines in the desired plane for the positions of the patient.

  17. Multiple 18F-Fluorodeoxyglucose Positron Emission Tomography Scans Showing Progression of Abdominal Aortic Aneurysm: A Case Report.

    PubMed

    Tsuruda, Toshihiro; Nagamachi, Shigeki; Nishimura, Masanori; Nakamura, Kunihide; Kitamura, Kazuo

    2016-05-01

    Although the precise mechanisms underlying the pathogenesis of abdominal aortic aneurysm (AAA) remain unclear, aortic wall inflammation has been implicated in AAA development. Several studies have reported the use of fluoro-deoxyglucose (F-FDG)/positron emission tomography (PET) to assess the nature of AAA.We present a case of 77-year-old Japanese male with juxta-anastomotic AAA who was followed up with multiple F-FDG-PET/CT scans over 7 years. The scans revealed chronological changes in aortic wall inflammation leading to progress and eventual rupture.This case supports a notion that aortic wall inflammation plays a role in AAA progression and rupture. PMID:27175690

  18. Three-Dimensional Ultrasound-Based Navigation Combined with Preoperative CT During Abdominal Interventions: A Feasibility Study

    SciTech Connect

    Kaspersen, J.H. Sjolie, E.; Wesche, J.; Asland, J.; Lundbom, J.; Odegard, A.; Lindseth, F.; Nagelhus Hernes, T.A.

    2003-08-15

    Purpose: Three-dimensional (3D)intraoperative ultrasound may be easier to interpret when used in combination with less noisy preoperative image data such as CT. The purpose of this study was to evaluate the use of preoperative image data in a 3D ultrasound-based navigation system specially designed for minimally invasive abdominal surgery. A prototype system has been tested in patients with aortic aneurysms undergoing clinical assessment before and after abdominal aortic stent-graft implantation. Methods: All patients were first imaged by spiral CT followed by 3D ultrasound scanning. The CT volume was registered to the patient using fiducial markers. This enabled us to compare corresponding slices from 3D ultrasound and CT volumes. The accuracy of the patient registration was evaluated both using the external fiducial markers (artificial landmarks glued on the patient's skin) and using intraoperative 3D ultrasound as a measure of the true positioning of anatomic landmarks inside the body. Results: The mean registration accuracy on the surface was found to be 7.1 mm, but increased to 13.0 mm for specific landmarks inside the body. CT and ultrasound gave supplementary information of surrounding structures and position of the patient's anatomy. Fine-tuning the initial patient registration of the CT data with a multimodal CT to intraoperative 3D ultrasound registration (e.g., mutual information), as well as ensuring no movements between this registration and image guidance, may improve the registration accuracy. Conclusion: Preoperative CT in combination with 3D ultrasound might be helpful for guiding minimal invasive abdominal interventions.

  19. Clinical evaluation of semi-automatic landmark-based lesion tracking software for CT-scans

    PubMed Central

    2014-01-01

    Background To evaluate a semi-automatic landmark-based lesion tracking software enabling navigation between RECIST lesions in baseline and follow-up CT-scans. Methods The software automatically detects 44 stable anatomical landmarks in each thoraco/abdominal/pelvic CT-scan, sets up a patient specific coordinate-system and cross-links the coordinate-systems of consecutive CT-scans. Accuracy of the software was evaluated on 96 RECIST lesions (target- and non-target lesions) in baseline and follow-up CT-scans of 32 oncologic patients (64 CT-scans). Patients had to present at least one thoracic, one abdominal and one pelvic RECIST lesion. Three radiologists determined the deviation between lesions’ centre and the software’s navigation result in consensus. Results The initial mean runtime of the system to synchronize baseline and follow-up examinations was 19.4 ± 1.2 seconds, with subsequent navigation to corresponding RECIST lesions facilitating in real-time. Mean vector length of the deviations between lesions’ centre and the semi-automatic navigation result was 10.2 ± 5.1 mm without a substantial systematic error in any direction. Mean deviation in the cranio-caudal dimension was 5.4 ± 4.0 mm, in the lateral dimension 5.2 ± 3.9 mm and in the ventro-dorsal dimension 5.3 ± 4.0 mm. Conclusion The investigated software accurately and reliably navigates between lesions in consecutive CT-scans in real-time, potentially accelerating and facilitating cancer staging. PMID:25609496

  20. Potential for Adult-Based Epidemiological Studies to Characterize Overall Cancer Risks Associated with a Lifetime of CT Scans

    PubMed Central

    Shuryak, Igor; Lubin, Jay H.; Brenner, David J.

    2014-01-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25–65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans. PMID:24828111

  1. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    SciTech Connect

    Yin, Zhye De Man, Bruno; Yao, Yangyang; Wu, Mingye; Montillo, Albert; Edic, Peter M.; Kalra, Mannudeep

    2015-05-15

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  2. Measuring abdominal circumference and skeletal muscle from a single cross-sectional CT image: a step-by-step guide for clinicians using National Institutes of Health ImageJ

    PubMed Central

    Gomez-Perez, Sandra L.; Haus, Jacob M; Sheean, Patricia; Patel, Bimal; Mar, Winnie; Chaudhry, Vivek; McKeever, Liam; Braunschweig, Carol

    2015-01-01

    Diagnostic computed tomography (CT) scans provide numerous opportunities for body composition analysis including quantification of abdominal circumference, abdominal adipose tissues (subcutaneous, visceral and intermuscular) and skeletal muscle (SM). CT scans are commonly performed for diagnostic purposes in clinical settings and methods for estimating abdominal circumference and whole-body SM mass from them have been reported. A supine abdominal circumference is a valid measure of waist circumference (WC). The valid correlation between a single cross sectional CT image (slice) at third lumbar (L3) for abdominal SM and whole body SM is also well established. Sarcopenia refers to the age-associated decreased in muscle mass and function. A single dimensional definition of sarcopenia using CT images that includes only assessment of low whole body SM has been validated in clinical populations and significantly associated with negative outcomes. However, despite the availability and precision of SM data from CT scans and the relationship between these measurements and clinical outcomes, they have not become a routine component of clinical nutrition assessment. Lack of time, training, and expense are potential barriers that prevent clinicians from fully embracing this technique. This tutorial presents a systematic, step-by-step guide to quickly quantify abdominal circumference as a proxy for WC and SM using a cross-sectional CT image from a regional diagnostic CT scan for clinical identification of sarcopenia. Multiple software options are available, however this tutorial utilizes ImageJ, a free public domain software developed by the National Institutes of Health (NIH). PMID:26392166

  3. Incidentalomas associated with abdominal and pelvic CT angiograms for abdominal-based breast free flap reconstruction.

    PubMed

    Ho, Olivia A; Bagher, Shaghayegh; Jaskolka, Jeff; Tan, Marcus; Butler, Kate; O'Neill, Anne C; Zhong, Toni; Hofer, Stefan O

    2016-05-01

    Computed tomography angiography (CTA) is routinely performed prior to breast reconstruction using deep inferior epigastric perforator (DIEP) flaps to provide better surgical planning and improve preoperative decision making. These investigations occasionally result in unexpected findings in otherwise asymptomatic women. Unexpected findings on imaging in a population of women with previous breast cancer or strong breast cancer risk factors can lead to undue stress and anxiety. The aim of this study is to determine the incidence of unexpected findings in preoperative CT angiograms and to correlate these with patient and breast cancer characteristics. A retrospective chart review from May 2008 to December 2012 was performed reviewing all patients who underwent DIEP flap breast reconstruction. Radiology reports of their preoperative CT angiograms, details of unexpected findings, patients' past medical and cancer history, additional radiological investigations, outcomes, and interventions were reviewed. In total, 360 patients met the inclusion criteria for the study. Sixty-four percent of the patients who underwent CTA imaging had incidental findings. Further imaging was suggested in 48% of this group. The most common incidentalomas were hepatic (47%), bone (24%), and renal (20%). "Incidentalomas" were associated with patients' underlying comorbidities (p = 0.001) and age (p = 0.01). "Radiographically suspicious incidentalomas" were associated with the underlying comorbidities (p = 0.001). The radiologists most commonly suggested investigation methods such as ultrasound (41%), another CT (28%), bone scan (21%), and magnetic resonance imaging (MRI; 14%). No incidentalomas were found to be malignant on further recommended investigation in this study and no breast cancer reconstruction was delayed as a result of the discovery of incidentalomas or their subsequent investigations. It is important to counsel patients of the possibility of incidental findings and the

  4. Interaction of expanding abdominal aortic aneurysm with surrounding tissue: Retrospective CT image studies

    PubMed Central

    Kwon, Sebastian T.; Burek, William; Dupay, Alexander C.; Farsad, Mehdi; Baek, Seungik; Park, Eun-Ah; Lee, Whal

    2015-01-01

    Objectives Abdominal aortic aneurysms (AAA) that rupture have a high mortality rate. Rupture occurs when local mechanical stress exceeds the local mechanical strength of an AAA, so stress profiles such as those from finite element analysis (FEA) are useful. The role and effect of surrounding tissues, like the vertebral column, which have not been extensively studied, are examined in this paper. Methods Longitudinal CT scans from ten patients with AAAs were studied to see the effect of surrounding tissues on AAAs. Segmentation was performed to distinguish the AAA from other tissues and we studied how these surrounding tissues affected the shape and curvature of the AAA. Previously established methods by Veldenz et al. were used to split the AAA into 8 sections and examine the specific effects of surrounding tissues on these sections [1]. Three-dimensional models were created to better examine these effects over time. Registration was done in order to compare AAAs longitudinally. Results The vertebral column and osteophytes were observed to have been affecting the shape and the curvature of the AAA. Interaction with the spine caused focal flattening in certain areas of the AAA. In 16 of the 41 CT scans, the right posterior dorsal section (section 5), had the highest radius of curvature, which was by far the section that had the maximum radius for a specified CT scan. Evolution of the growing AAA showed increased flattening in this section when comparing the last CT scan to the first scan. Conclusion Surrounding tissues have a clear influence on the geometry of an AAA, which may in turn affect the stress profile of AAA. Incorporating these structures in FEA and G&R models will provide a better estimate of stress. Clinical Relevance Currently, size is the only variable considered when deciding whether to undergo elective surgery to repair AAA since it is an easy enough measure for clinicians to utilize. However, this may not be the best indicator of rupture risk

  5. CT-SPECT fusion to correlate radiolabeled monoclonal antibody uptake with abdominal CT findings

    SciTech Connect

    Kramer, E.L.; Noz, M.E.; Sanger, J.J.; Megibow, A.J.; Maguire, G.Q. )

    1989-09-01

    To enhance the information provided by computed tomography (CT) and single photon emission computed tomography (SPECT) performed with radiolabeled, anti-carcinoembryonic antigen monoclonal antibody (MoAb), the authors performed fusion of these types of images from eight subjects with suspected colorectal adenocarcinoma. Section thickness and pixel size of the two studies were matched, coordinates of corresponding points from each study were identified, and CT sections were translated, rotated, and reprojected to match the corresponding SPECT scans. The CT-SPECT fusion enabled identification of anatomic sites of tumor-specific MoAb accumulation in four cases, showed non-specific MoAb accumulation in two, and helped confirm information only suggested by the two studies separately in one.

  6. Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience.

    PubMed

    Pourmorteza, Amir; Symons, Rolf; Sandfort, Veit; Mallek, Marissa; Fuld, Matthew K; Henderson, Gregory; Jones, Elizabeth C; Malayeri, Ashkan A; Folio, Les R; Bluemke, David A

    2016-04-01

    Purpose To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID). Materials and Methods The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven men; mean age, 58.2 years ± 9.8 [standard deviation]) were prospectively enrolled between September 2 and November 13, 2015. Radiation dose-matched delayed contrast agent-enhanced spiral and axial abdominal EID and PCD scans were acquired. Spiral images were scored for image quality (Wilcoxon signed-rank test) in five regions of interest by three radiologists blinded to the detector system, and the axial scans were used to assess Hounsfield unit accuracy in seven regions of interest (paired t test). Intraclass correlation coefficient (ICC) was used to assess reproducibility. PCD images were also used to calculate iodine concentration maps. Spatial resolution, noise-power spectrum, and Hounsfield unit accuracy of the systems were estimated by using a CT phantom. Results In both systems, scores were similar for image quality (median score, 4; P = .19), noise (median score, 3; P = .30), and artifact (median score, 1; P = .17), with good interrater agreement (image quality, noise, and artifact ICC: 0.84, 0.88, and 0.74, respectively). Hounsfield unit values, spatial resolution, and noise-power spectrum were also similar with the exception of mean Hounsfield unit value in the spinal canal, which was lower in the PCD than the EID images because of beam hardening (20 HU vs 36.5 HU; P < .001). Contrast-to-noise ratio of enhanced kidney tissue was improved with PCD iodine mapping compared with EID (5.2 ± 1.3 vs 4.0 ± 1.3; P < .001). Conclusion The performance of PCD showed no statistically significant difference compared with EID when the abdomen was evaluated in a conventional scan mode. PCD provides

  7. Computed tomography (CT) of bowel and mesenteric injury in blunt abdominal trauma: a pictorial essay.

    PubMed

    Hassan, Radhiana; Abd Aziz, Azian; Mohamed, Siti Kamariah Che

    2012-08-01

    Computed tomography (CT) is currently the diagnostic modality of choice in the evaluation of clinically stable patients with blunt abdominal trauma, including the assessment of blunt bowel and mesenteric injuries. CT signs of bowel and/or mesenteric injuries are bowel wall defect, free air, oral contrast material extravasation, extravasation of contrast material from mesenteric vessels, mesenteric vascular beading, abrupt termination of mesenteric vessels, focal bowel wall thickening, mesenteric fat stranding, mesenteric haematoma and intraperitoneal or retroperitoneal fluid. This pictorial essay illustrates CT features of bowel and/or mesenteric injuries in patients with blunt abdominal trauma. Pitfalls in interpretation of images are emphasized in proven cases. PMID:23082464

  8. Percutaneous Transhepatic Drainage of Inaccessible Abdominal Abscesses Following Abdominal Surgery Under Real-Time CT-Fluoroscopic Guidance

    SciTech Connect

    Yamakado, Koichiro Takaki, Haruyuki; Nakatsuka, Atsuhiro; Kashima, Masataka; Uraki, Junji; Yamanaka, Takashi; Takeda, Kan

    2010-02-15

    This study evaluated the safety, feasibility, and clinical utility of transhepatic drainage of inaccessible abdominal abscesses retrospectively under real-time computed tomographic (CT) guidance. For abdominal abscesses, 12 consecutive patients received percutaneous transhepatic drainage. Abscesses were considered inaccessible using the usual access route because they were surrounded by the liver and other organs. The maximum diameters of abscesses were 4.6-9.5 cm (mean, 6.7 {+-} 1.4 cm). An 8-Fr catheter was advanced into the abscess cavity through the liver parenchyma using real-time CT fluoroscopic guidance. Safety, feasibility, procedure time, and clinical utility were evaluated. Drainage catheters were placed with no complications in abscess cavities through the liver parenchyma in all patients. The mean procedure time was 18.8 {+-} 9.2 min (range, 12-41 min). All abscesses were drained. They shrank immediately after catheter placement. In conclusions, this transhepatic approach under real-time CT fluoroscopic guidance is a safe, feasible, and useful technique for use of drainage of inaccessible abdominal abscesses.

  9. Multidetector CT in emergency radiology: acute and generalized non-traumatic abdominal pain.

    PubMed

    Paolantonio, Pasquale; Rengo, Marco; Ferrari, Riccardo; Laghi, Andrea

    2016-05-01

    Multidetector CT (MDCT) is an imaging technique that provides otherwise unobtainable information in the diagnostic work-up of patients presenting with acute abdominal pain. A correct working diagnosis depends essentially on understanding the individual patient's clinical data and laboratory findings. In haemodynamically stable patients with acute severe and generalized abdominal pain, MDCT is now the preferred imaging test and gives invaluable diagnostic information, also in unstable patients after stabilization. In this descriptive review, we focus our attention on acute, severe and generalized or undifferentiated non-traumatic abdominal pain. The main differential diagnoses are acute pancreatitis, gastrointestinal perforation, ruptured abdominal aneurysm and acute mesenteric ischaemia. We will provide radiologist readers with a technical guide to optimize MDCT imaging protocols and list the major CT signs essential to reach a correct diagnosis and guide the best treatment. PMID:26689097

  10. New technique for treating abdominal surgical site infection using CT woundgraphy and NPWT: A case report

    PubMed Central

    Ito, Eisaku; Yoshida, Masashi; Nakashima, Keigo; Suzuki, Norihiko; Imakita, Tomonori; Tsutsui, Nobuhiro; Ohdaira, Hironori; Kitajima, Masaki; Suzuki, Yutaka

    2016-01-01

    Introduction Negative pressure wound therapy (NPWT) for abdominal surgical site infection (SSI) is becoming increasingly common, although enterocutaneous fistula (ECF) has been reported as a complication. To avoid ECF, we used computed tomography (CT) woundgraphy to evaluate the relationship between the wound and the intestine, and then safely treated the abdominal SSI with NPWT. Case presentation Following a laparoscopic intersphincteric resection for low rectal neuroendocrine tumor and covering ileostomy, a 59-year-old woman underwent stoma closure. Six days after surgery, we diagnosed SSI. We suspected ECF, because the wound was deep and the pus resembled enteric fluid. However, CT woundgraphy showed that the wound was separated from the abdominal cavity and the intestine by the abdominal rectus muscle. Accordingly, we performed NPWT. SSI was cured and the wound was well granulated. Twenty-three days after surgery, the patient was discharged. Eventually, the wound was completely epithelialized. Discussion Although successful NPWT has been reported for open abdominal wounds, ECF is a common complication. ECF can be prevented by separating the wound from the intestine by the omentum or muscle fascia, protecting the intestinal serosa during surgery, and applying low vacuum pressure. The relationships among the wound, the fascia, and the intestine must be evaluated before abdominal SSI treatment. One good method is CT woundgraphy, which evaluates wound extent and depth, closure of muscle fascia, and the relationship between the wound and the intestine. Conclusion We report a case of CT woundgraphy before NPWT for abdominal SSI. CT woundgraphy is a good candidate for evaluating wound condition. PMID:27002290

  11. Overbeaming and overlapping of volume-scan CT with tube current modulation in a 320-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Lan; Chen, Yan-Shi; Lai, Nan-Ku; Chuang, Keh-Shih; Tsai, Hui-Yu

    2014-11-01

    The purpose of this study was to evaluate the performance of volume scan tube current modulation (VS-ATCM) with adaptive iterative dose reduction 3D (AIDR3D) technique in abdomen CT examinations. We scanned an elliptical cone-shaped phantom utilizing AIDR3D technique combined with VS-ATCM mode in a 320-detector row CT scanner. The image noise distributions with conventional filtered back-projction (FBP) technique and those with AIDR3D technique were compared. The radiation dose profile and tube current time product (mAs) in three noise levels of VS-ATCM modes were compared. The radiation beam profiles of five preset scan lengths were measured using Gafchromic film strips to assess the effects of overbeaming and everlapping. The results indicated that the image noises with AIDR3D technique was 13-74% lower than those in FBP technique. The mAs distributions can be a prediction for various abdominal sizes when undergoing a VS-ATCM mode scan. Patients can receive the radiation dose of overbeaming and overlapping during the VS-ATCM mode scans.

  12. Pregnant female anthropometry from ct scans for finite element model development.

    PubMed

    Loftis, Kathryn; Halsey, Michael; Anthony, Evelyn; Duma, Stefan M; Stitzel, Joel

    2008-01-01

    In this study, anthropometry data is collected from a CT scan of a pregnant abdomen at 32 weeks gestation. Over 1500 fetal losses occur each year in the United States due to motor vehicles crashes. Pregnant occupants involved in motor vehicle crashes are at risk for pregnancy-specific injuries. Masks of the fetus, uterus, placenta, and each of the abdominal organs are created by segmentation of the CT slices and three-dimensional volume renderings are formed. The volume and Hounsfield unit ranges for the masks of each abdominal organ are calculated. The total volume of the uterus in the 3rd trimester is measured as 3378 cm3. By measuring the length of bones on the fetal skeleton from CT slices and the 3D rendering, the gestational age of the fetus is estimated to be 32 weeks by comparison with literature values. Measurements of each of the abdominal organs are also obtained from the 3D rendering to create a blueprint of the pregnant anatomy. The masks developed and the anthropometric measurements taken will be used to develop a more accurate FE model of the pregnant female for use in the research and development in academia, industry, and government. PMID:19141941

  13. Computerized organ localization in abdominal CT volume with context-driven generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Li, Qiang

    2014-03-01

    Fast localization of organs is a key step in computer-aided detection of lesions and in image guided radiation therapy. We developed a context-driven Generalized Hough Transform (GHT) for robust localization of organ-of-interests (OOIs) in a CT volume. Conventional GHT locates the center of an organ by looking-up center locations of pre-learned organs with "matching" edges. It often suffers from mislocalization because "similar" edges in vicinity may attract the prelearned organs towards wrong places. The proposed method not only uses information from organ's own shape but also takes advantage of nearby "similar" edge structures. First, multiple GHT co-existing look-up tables (cLUT) were constructed from a set of training shapes of different organs. Each cLUT represented the spatial relationship between the center of the OOI and the shape of a co-existing organ. Second, the OOI center in a test image was determined using GHT with each cLUT separately. Third, the final localization of OOI was based on weighted combination of the centers obtained in the second stage. The training set consisted of 10 CT volumes with manually segmented OOIs including liver, spleen and kidneys. The method was tested on a set of 25 abdominal CT scans. Context-driven GHT correctly located all OOIs in the test image and gave localization errors of 19.5±9.0, 12.8±7.3, 9.4±4.6 and 8.6±4.1 mm for liver, spleen, left and right kidney respectively. Conventional GHT mis-located 8 out of 100 organs and its localization errors were 26.0±32.6, 14.1±10.6, 30.1±42.6 and 23.6±39.7mm for liver, spleen, left and right kidney respectively.

  14. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approach that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan

  15. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  16. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  17. CT Scanning Imaging Method Based on a Spherical Trajectory

    PubMed Central

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object’s complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning. PMID:26934744

  18. [Usefulness of CT scan in the diagnosis of pulmonary aspergilloma].

    PubMed

    Gea, J; Arán, X; Sauleda, J; Broquetas, J M; Alegret, X; Bartrina, J

    1991-05-01

    Early diagnosis and precise anatomical localization of aspergillomas are essential for an effective treatment of their complications. We have evaluated the usefulness of thorax CT scan in the fulfillment of these objectives. Nine consecutive patients were studied with a presumable diagnosis of pulmonary aspergilloma. A thorax CT scan was performed in all patients (sections every 5 to 10 mm) in lying position and with lateral mobilizations. This technique allowed to rule out as fibrotic lesions some of the images previously attributed to mycetomas by conventional X-ray. On the other hand it helped to identify small size aspergillomas, to precise their localization and to demonstrate the possible communication between the main cavity and bronchial tree. In three patients who died in the period immediately following the study an excellent correlation between CT scan and underlying pathological lesions was observed. PMID:1891635

  19. CT Scanning Imaging Method Based on a Spherical Trajectory.

    PubMed

    Chen, Ping; Han, Yan; Gui, Zhiguo

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning. PMID:26934744

  20. FDG PET/CT Findings in Abdominal Fat Necrosis After Treatment for Lymphoma.

    PubMed

    Dubreuil, Julien; Moreau, Aurélie; Sarkozy, Clémentine; Traverse-Glehen, Alexandra; Skanjeti, Andrea; Salles, Gilles; Giammarile, Francesco

    2016-05-01

    FDG PET/CT is now validated in non-Hodgkin lymphoma for response assessment in interim and posttreatment lymphoma. We report the case of a 62-year-old man followed by FDG PET/CT for a diffuse large B-cell lymphoma, with initial stage III. The interim FDG PET/CT examination concluded in complete metabolic and morphological response of subdiaphragmatic lymphadenopathy but a persistent abnormal subdiaphragmatic uptake (SUVmax at 9 and Deauville 5-point scale at 5). Therefore, an abdominal biopsy of the corresponding nodules was conducted with a final diagnosis of diffuse fat necrosis. PMID:26825213

  1. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  2. Assessing the prevalence and clinical relevance of positive abdominal and pelvic CT findings in senior patients presenting to the emergency department.

    PubMed

    Alabousi, Abdullah; Patlas, Michael N; Meshki, Malek; Monteiro, Sandra; Katz, Douglas S

    2016-04-01

    The purpose of our study was to retrospectively evaluate the prevalence and clinical relevance of positive abdominal and pelvic CT findings for patients 65 years of age and older, when compared with all other scanned adult Emergency Department (ED) patients, at a single tertiary care hospital. Our hypothesis was that there is an increased prevalence and clinical relevance of positive abdominal/pelvic CT findings in senior patients. A research ethics board-approved retrospective review of all adult patients who underwent an emergency CT of the abdomen and pelvis for acute nontraumatic abdominal and/or pelvic signs and symptoms was performed. Two thousand one hundred two patients between October 1, 2011, and September 30, 2013, were reviewed. Six hundred thirty-one patients were included in the <65 group (298 men and 333 women; mean age 46, age range 18-64), and 462 were included in the >65 group (209 men and 253 women; mean age 77.6, age range 65-99). Overall, there were more positive CT findings for patients <65 (389 positive cases, 61.6 %) compared with the >65 group (257 positive cases, 55.6 %), which was a statistically significant difference (p < 0.03). Moreover, with the exception of complicated appendicitis cases, which were more common in the >65 group, there were no statistically significant differences in the clinical/surgical relevance of the positive CT findings between the two groups. The findings of our retrospective study therefore refute our hypothesis that there is an increased prevalence of positive abdominal CT findings in patients >65. This may be related to ED physicians at our institution being more hesitant to order CT examinations for the younger population, presumably due to radiation concerns. However, older patients in our series were more likely to present with complicated appendicitis, and a lower threshold for ordering CT examinations of the abdomen and pelvis in this patient population should therefore be considered. PMID

  3. On the relationship of minimum detectable contrast to dose and lesion size in abdominal CT.

    PubMed

    Zhou, Yifang; Scott, Alexander; Allahverdian, Janet; Lee, Christina; Kightlinger, Blake; Azizyan, Avetis; Miller, Joseph

    2015-10-01

    CT dose optimization is typically guided by pixel noise or contrast-to-noise ratio that does not delineate low contrast details adequately. We utilized the statistically defined low contrast detectability to study its relationship to dose and lesion size in abdominal CT. A realistically shaped medium sized abdomen phantom was customized to contain a cylindrical void of 4 cm diameter. The void was filled with a low contrast (1% and 2%) insert containing six groups of cylindrical targets ranging from 1.2 mm to 7 mm in size. Helical CT scans were performed using a Siemens 64-slice mCT and a GE Discovery 750 HD at various doses. After the subtractions between adjacent slices, the uniform sections of the filtered backprojection reconstructed images were partitioned to matrices of square elements matching the sizes of the targets. It was verified that the mean values from all the elements in each matrix follow a Gaussian distribution. The minimum detectable contrast (MDC), quantified by the mean signal to background difference equal to the distribution's standard deviation multiplied by 3.29, corresponding to 95% confidence level, was found to be related to the phantom specific dose and the element size by a power law (R^2  >  0.990). Independent readings on the 5 mm and 7 mm targets were compared to the measured contrast to the MDC ratios. The results showed that 93% of the cases were detectable when the measured contrast exceeds the MDC. The correlation of the MDC to the pixel noise and target size was also identified and the relationship was found to be the same for the scanners in the study. To quantify the impact of iterative reconstructions to the low contrast detectability, the noise structure was studied in a similar manner at different doses and with different ASIR blending fractions. The relationship of the dose to the blending fraction and low contrast detectability is presented. PMID:26389637

  4. On the relationship of minimum detectable contrast to dose and lesion size in abdominal CT

    NASA Astrophysics Data System (ADS)

    Zhou, Yifang; Scott, Alexander, II; Allahverdian, Janet; Lee, Christina; Kightlinger, Blake; Azizyan, Avetis; Miller, Joseph

    2015-10-01

    CT dose optimization is typically guided by pixel noise or contrast-to-noise ratio that does not delineate low contrast details adequately. We utilized the statistically defined low contrast detectability to study its relationship to dose and lesion size in abdominal CT. A realistically shaped medium sized abdomen phantom was customized to contain a cylindrical void of 4 cm diameter. The void was filled with a low contrast (1% and 2%) insert containing six groups of cylindrical targets ranging from 1.2 mm to 7 mm in size. Helical CT scans were performed using a Siemens 64-slice mCT and a GE Discovery 750 HD at various doses. After the subtractions between adjacent slices, the uniform sections of the filtered backprojection reconstructed images were partitioned to matrices of square elements matching the sizes of the targets. It was verified that the mean values from all the elements in each matrix follow a Gaussian distribution. The minimum detectable contrast (MDC), quantified by the mean signal to background difference equal to the distribution’s standard deviation multiplied by 3.29, corresponding to 95% confidence level, was found to be related to the phantom specific dose and the element size by a power law (R^2  >  0.990). Independent readings on the 5 mm and 7 mm targets were compared to the measured contrast to the MDC ratios. The results showed that 93% of the cases were detectable when the measured contrast exceeds the MDC. The correlation of the MDC to the pixel noise and target size was also identified and the relationship was found to be the same for the scanners in the study. To quantify the impact of iterative reconstructions to the low contrast detectability, the noise structure was studied in a similar manner at different doses and with different ASIR blending fractions. The relationship of the dose to the blending fraction and low contrast detectability is presented.

  5. Digital radiographic localization for CT scanning of the larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.; Rauch, R.F.

    1983-12-01

    Computed tomography (CT) of the larynx is the preferred method for staging laryngeal carcinoma and assessing the extent of injury from trauma. The standard method of examination consists of 5 mm contiguous scans throughout the larynx in quiet respiration. Scans are performed with the patient supine with the neck slightly extended allowing the long axis of the larynx to be perpendicular to the scanning plane. A complete examination requires scanning from the supraglottic region (level of hyoid bone) to the subglottic region (level of cricoid cartlage). In the authors' experience when this method is used, multiple scans are performed cephalad to the level of interest because no upper limit of the examination is established before transaxial scans are done. We have used the lateral digital radiograph of the neck to identify specific landmarks so that the upper and lower limets of the examination can be established before scanning.

  6. Treatment of Alzheimer Disease With CT Scans

    PubMed Central

    Moore, Eugene R.; Hosfeld, Victor D.; Nadolski, David L.

    2016-01-01

    Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient’s adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite. PMID:27103883

  7. Splenic trauma during abdominal wall liposuction: a case report

    PubMed Central

    Harnett, Paul; Koak, Yashwant; Baker, Daryl

    2008-01-01

    Summary A 35-year-old woman collapsed 18 hours after undergoing abdominal wall liposuction. Abdominal CT scan revealed a punctured spleen. She underwent an emergency splenectomy and made an uneventful recovery. PMID:18387911

  8. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  9. Effect of Reducing Abdominal Compression during Prone CT Colonography on Ascending Colonic Rotation during Supine-to-Prone Positional Change

    PubMed Central

    Jang, Jong Keon; Lee, Jong Seok; Kim, Hyun Jin; Kim, Ah Young; Ha, Hyun Kwon

    2016-01-01

    Objective To determine the effect of reduced abdominal compression in prone position on ascending colonic movement during supine-to-prone positional change during CT colonography (CTC). Materials and Methods Eighteen consecutive patients who had undergone prone CTC scanning with cushion blocks placed under the chest and hip/thigh to reduce abdominal compression and had confirmed sessile polyps ≥ 6 mm in the well-distended, straight, mid-ascending colon, were included. Radial location along the ascending colonic luminal circumference (°) was measured for 24 polyps and 54 colonic teniae on supine and prone CTC images. The supine-to-prone change ranging between -180° and +180° (- and + for internal and external colonic rotations, respectively), was determined. In addition, possible causes of any ascending colonic rotations were explored. Results Abdominal compression during prone CTC scanning completely disappeared with the use of cushion blocks in 17 of 18 patients. However, some degrees of ascending colonic rotation were still observed, with the radial location changes of -22° to 61° (median, 13.9°) for the polyps and similar degrees for teniae. Fifty-four percent and 56% of polyps and teniae, respectively, showed changes > 10°. The radial location change of the polyps was significantly associated with the degree of anterior shift of the small bowel and mesentery (r = 0.722, p < 0.001) and the degree of posterior displacement of the ascending colon (r = 0.566, p = 0.004) during supine-to-prone positional change. Conclusion Ascending colonic rotation upon supine-to-prone positional change during CTC, mostly in the form of external rotation, is not eliminated by removing abdominal compression in prone position. PMID:26798215

  10. Harms of CT scanning prior to surgery for suspected appendicitis.

    PubMed

    Rogers, William; Hoffman, Jerome; Noori, Naudereh

    2015-02-01

    In this brief analysis we compare the risks and benefits of performing a CT scan to confirm appendicitis prior to surgery instead of operating based on the surgeon's clinical diagnosis. We conclude that the benefit of universal imaging is to avoid 12 unnecessary appendectomies but the cost of those 12 avoided surgeries is one cancer death due to the imaging. PMID:25429870

  11. Justification of CT scans using referral guidelines for imaging.

    PubMed

    Stanescu, G; Rosca-Fartat, G; Stanescu, D

    2015-07-01

    This study analyses the efficiency of the justification of individual computed tomography (CT) procedures using the good practice guide. The conformity of the CT scans with guide's recommendations was retrospectively analysed in a paediatric emergency hospital in Romania. The involved patient doses were estimated. The results show that around one-third of the examinations were not prescribed in conformity with the guide's recommendations, but these results are affected by unclear guide provisions, discussed here. The implications of the provisions of the revised International Atomic Energy Agency's Basic Safety Standards and of the Council Directive 2013/59/EURATOM were analysed. The education and training courses for medical doctors disseminating the provisions of the good practice guide should be considered as the main support for the justification of the CT scans at the individual level. PMID:25805882

  12. Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT.

    PubMed

    Blake, Michael A; Singh, Ajay; Setty, Bindu N; Slattery, James; Kalra, Mannudeep; Maher, Michael M; Sahani, Dushyant V; Fischman, Alan J; Mueller, Peter R

    2006-01-01

    The interpretation of images obtained in the abdomen and pelvis can be challenging, and the coregistration of positron emission tomographic (PET) and computed tomographic (CT) scans may be especially valuable in the evaluation of these anatomic areas. PET-CT represents a major technologic advance, consisting of generally complementary modalities whose combined strength tends to overcome their respective weaknesses. However, this combined functional-structural imaging approach raises a number of controversial questions and presents some unique interpretative challenges. Accurate PET-CT scan interpretation requires awareness of the various pitfalls associated with the imaging components, both individually and in combination. The results of recent PET-CT studies have been very encouraging, but larger prospective studies will be needed to establish optimal hybrid scanning protocols. Applying sound imaging principles, paying attention to detail, and staying abreast of advances in this exciting new modality are necessary for harnessing the full diagnostic power of abdominopelvic PET-CT. PMID:16973768

  13. An automatic approach for 3D registration of CT scans

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas

    2012-03-01

    CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.

  14. Kaposi sarcoma and lymphadenopathy syndrome: limitations of abdominal CT in acquired immunodeficiency syndrome

    SciTech Connect

    Moon, K.L. Jr.; Federle, M.P.; Abrams, D.I.; Volberding, P.; Lewis, B.J.

    1984-02-01

    Abdominal computed tomography (CT) was performed in 31 patients with Kaposi sarcoma (KS) related to acquired immunodeficiency syndrome (AIDS), three patients with classic KS, and 12 patients with the newly described lymphadenopathy syndrome (LNS). The frequency, distribution, and appearance of lymphadenopathy and splenomegaly were similar in the AIDS-related KS and LNS groups. Rectal and perirectal disease was identified in 86% of homosexual men studied; rectal KS could not be distinguished from proctitis on CT criteria alone. No CT abnormalities were seen in patients with classic KS. The CT demonstration of retroperitoneal, mesenteric, or pelvic adenopathy or of rectal or perirectal disease in patients with AIDS-related KS is not necessarily indicative of widespread involvement with the disease.

  15. CT in ovarian cancer staging: how to review and report with emphasis on abdominal and pelvic disease for surgical planning.

    PubMed

    Sahdev, Anju

    2016-01-01

    CT of the abdomen and pelvis is the first line imaging modality for staging, selecting treatment options and assessing disease response in ovarian cancer. The staging CT provides disease distribution, disease burden and is the imaging surrogate for surgico-pathological FIGO staging. Optimal cyto-reductive surgery offers patients' the best chance for disease control or cure, but sub-optimal resection confers no advantage over chemotherapy and adversely increases the risk of post surgical complications. Although there is extensive literature comparing performance of CT against laparoscopy and surgery, for the staging abdominal and pelvic CT, there are currently no accepted guidelines for interpretation or routinely used minimum data set templates for reporting these complex CT scans often with extensive radiological findings. This review provides a systematic approach for identifying the important radiological findings and highlighting important sites of disease within the abdomen and pelvis, which may alter or preclude surgery at presentation or after adjuvant chemotherapy. The distribution of sites and volume of disease can be used to categorize patients as suitable, probably suitable or not suitable for optimal cyto-reductive surgery. This categorization can potentially assist oncological surgeons and oncologists as a semi objective assessment tool useful for selecting patient treatment, streamlining multi disciplinary discussion and improving the reproducibility and correlation of CT with surgical findings. The review also highlights sites of disease and complications of ovarian cancer which should be included as part of the radiological report as these may require additional surgical input from non gynaecological surgeons or influence treatment selection. PMID:27484100

  16. Interactive annotation of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Gietema, Hester A.; Grutters, Jan C.; Prokop, Mathias; van Ginneken, Bram

    2010-03-01

    This study describes a system for interactive annotation of thoracic CT scans. Lung volumes in these scans are segmented and subdivided into roughly spherical volumes of interest (VOIs) with homogeneous texture using a clustering procedure. For each 3D VOI, 72 features are calculated. The observer inspects the scan to determine which textures are present and annotates, with mouse clicks, several VOIs of each texture. Based on these annotations, a k-nearest-neighbor classifier is trained, which classifies all remaining VOIs in the scan. The algorithm then presents a slice with suggested annotations to the user, in which the user can correct mistakes. The classifier is retrained, taking into account these new annotations, and the user is presented another slice for correction. This process continues until at least 50% of all lung voxels in the scan have been classified. The remaining VOIs are classified automatically. In this way, the entire lung volume is annotated. The system has been applied to scans of patients with usual and non-specific interstitial pneumonia. The results of interactive annotation are compared to a setup in which the user annotates all predefined VOIs manually. The interactive system is 3.7 times as fast as complete manual annotation of VOIs and differences between the methods are similar to interobserver variability. This is a first step towards precise volumetric quantitation of texture patterns in thoracic CT in clinical research and in clinical practice.

  17. Computer-aided diagnosis of splenic enlargement using wave pattern of spleen in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong Won

    2006-03-01

    It is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We have examined a wave pattern at the left boundary of spleen on the abdominal CT images having liver cirrhosis, and found that they are different from those on the images having a normal liver. It is noticed that the abdominal CT images of patient with liver cirrhosis shows strong bending in the wave pattern. In the case of normal liver, the images may also have a wave pattern, but its bends are not strong. Therefore, the total waving area of the spleen with liver cirrhosis is found to be greater than that of the spleen with a normal liver. Moreover, we found that the waves of the spleen from the image with liver cirrhosis have the higher degree of circularity compared to the normal liver case. Based on the two observations above, we propose an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images. The proposed automatic method improves the diagnostic performance compared with the conventional process based on the size of spleen.

  18. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    SciTech Connect

    Zhou, Y; Scott, A; Allahverdian, J

    2014-06-15

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80, 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT.

  19. Semi-automatic classification of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Schaefer-Prokop, Cornelia M.; Wittenberg, Rianne; Tiehuis, Audrey M.; Gietema, Hester A.; Grutters, Jan C.; Viergever, Max A.; van Ginneken, Bram

    2016-08-01

    The textural patterns in the lung parenchyma, as visible on computed tomography (CT) scans, are essential to make a correct diagnosis in interstitial lung disease. We developed one automatic and two interactive protocols for classification of normal and seven types of abnormal lung textures. Lungs were segmented and subdivided into volumes of interest (VOIs) with homogeneous texture using a clustering approach. In the automatic protocol, VOIs were classified automatically by an extra-trees classifier that was trained using annotations of VOIs from other CT scans. In the interactive protocols, an observer iteratively trained an extra-trees classifier to distinguish the different textures, by correcting mistakes the classifier makes in a slice-by-slice manner. The difference between the two interactive methods was whether or not training data from previously annotated scans was used in classification of the first slice. The protocols were compared in terms of the percentages of VOIs that observers needed to relabel. Validation experiments were carried out using software that simulated observer behavior. In the automatic classification protocol, observers needed to relabel on average 58% of the VOIs. During interactive annotation without the use of previous training data, the average percentage of relabeled VOIs decreased from 64% for the first slice to 13% for the second half of the scan. Overall, 21% of the VOIs were relabeled. When previous training data was available, the average overall percentage of VOIs requiring relabeling was 20%, decreasing from 56% in the first slice to 13% in the second half of the scan.

  20. Can Surgeons Assess CT Suitability for Endovascular Repair (EVAR) in Ruptured Abdominal Aortic Aneurysm? Implications for a Ruptured EVAR Trial

    SciTech Connect

    Rayt, Harjeet Lambert, Kelly; Bown, Matthew; Fishwick, Guy; Morgan, Robert; McCarthy, Mark; London, Nick; Sayers, Robert

    2008-09-15

    The purpose of this study was to determine whether surgeons without formal radiological training are able to assess suitability of patients with ruptured abdominal aortic aneurysms (AAA) for EVAR. The CT scans of 20 patients with AAA were reviewed under timed conditions by six vascular surgeons. Twenty minutes was allocated per scan. They were asked to determine if each aneurysm would be treatable by EVAR in the emergency setting and, if so, to measure for device selection. The results were then compared with those of a vascular radiologist. Six surgeons agreed on the suitability of endovascular repair in 45% of cases (95% CI, 23.1-68.5%; 9/20 scans; {kappa} = 0.41 [p = 0.01]) and concurred with the radiologist in eight of these. Individually, agreement ranged from 13 to 16 of the 20 scans, 65-80% between surgeons. The kappa value for agreement between all the surgeons and the radiologist was 0.47 (p = 0.01, moderate agreement). For the individual surgeons, this ranged from 0.3 to 0.6 (p = 0.01). In conclusion, while overall agreement was moderate between the surgeons and the radiologist, it is clear that if surgeons are to assess patients for ruptured EVAR in the future, focused training of surgical trainees is required.

  1. Double-low protocol for hepatic dynamic CT scan

    PubMed Central

    Zhang, Xiuli; Li, Shaodong; Liu, Wenlou; Huang, Ning; Li, Jingjing; Cheng, Li; Xu, Kai

    2016-01-01

    Abstract The radiation-induced carcinogenesis from computed tomography (CT) and iodine contrast agent induced nephropathy has attracted international attention. The reduction of the radiation dose and iodine intake in CT scan is always a direction for researchers to strive. The purpose of this study was to evaluate the feasibility of a “double-low” (i.e., low tube voltage and low-dose iodine contrast agent) scanning protocol for dynamic hepatic CT with the adaptive statistical iterative reconstruction (ASIR) in patients with a body mass index (BMI) of 18.5 to 27.9 kg/m2. A total of 128 consecutive patients with a BMI between 18.5 and 27.9 kg/m2 were randomly assigned into 3 groups according to tube voltage, iodine contrast agent, and reconstruction algorithms. Group A (the “double-low” protocol): 100 kVp tube voltage with 40% ASIR, iodixanol at 270 mg I/mL, group B: 120 kVp tube voltage with filtered back projection (FBP), iodixanol at 270 mg I/ mL, and group C: 120 kVp tube voltage with FBP, ioversol at 350 mg I/ mL. The volume CT dose index (CTDIvol) and effective dose (ED) in group A were lower than those in group B and C (all P < 0.01). The iodine intake in group A was decreased by approximately 26.5% than group C, whereas no statistical difference was observed between group A and B (P > 0.05). There was no significant difference of the CT values between group A and C (P > 0.05), which both showed higher CT values than that in group B (P < 0.001). However, no statistic difference was observed in the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and image-quality scores among the 3 groups (all P > 0.05). Near-perfect consistency of the evaluation for group A, B, and C (Kenall's W = 0.921, 0.874, and 0.949, respectively) was obtained by the 4 readers with respect to the overall image quality. These results suggested that the “double-low” protocol with ASIR algorithm for multi-phase hepatic CT scan

  2. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  3. Radiation dose reduction with application of non-linear adaptive filters for abdominal CT

    PubMed Central

    Singh, Sarabjeet; Kalra, Mannudeep K; Sung, Mi Kim; Back, Anni; Blake, Michael A

    2012-01-01

    AIM: To evaluate the effect of non-linear adaptive filters (NLAF) on abdominal computed tomography (CT) images acquired at different radiation dose levels. METHODS: Nineteen patients (mean age 61.6 ± 7.9 years, M:F = 8:11) gave informed consent for an Institutional Review Board approved prospective study involving acquisition of 4 additional image series (200, 150, 100, 50 mAs and 120 kVp) on a 64 slice multidetector row CT scanner over an identical 10 cm length in the abdomen. The CT images acquired at 150, 100 and 50 mAs were processed with the NLAF. Two radiologists reviewed unprocessed and processed images for image quality in a blinded randomized manner. CT dose index volume, dose length product, patient weight, transverse diameters, objective noise and CT numbers were recorded. Data were analyzed using Analysis of Variance and Wilcoxon signed rank test. RESULTS: Of the 31 lesions detected in abdominal CT images, 28 lesions were less than 1 cm in size. Subjective image noise was graded as unacceptable in unprocessed images at 50 and 100 mAs, and in NLAF processed images at 50 mAs only. In NLAF processed images, objective image noise was decreased by 21% (14.4 ± 4/18.2 ± 4.9) at 150 mAs, 28.3% (15.7 ± 5.6/21.9 ± 4) at 100 mAs and by 39.4% (18.8 ± 9/30.4 ± 9.2) at 50 mAs compared to unprocessed images acquired at respective radiation dose levels. At 100 mAs the visibility of smaller structures improved from suboptimal in unprocessed images to excellent in NLAF processed images, whereas diagnostic confidence was respectively improved from probably confident to fully confident. CONCLUSION: NLAF lowers image noise, improves the visibility of small structures and maintains lesion conspicuity at down to 100 mAs for abdominal CT. PMID:22328968

  4. Abdominal CT Does Not Improve Outcome for Children with Suspected Acute Appendicitis

    PubMed Central

    Miano, Danielle I.; Silvis, Renee M.; Popp, Jill M.; Culbertson, Marvin C.; Campbell, Brendan; Smith, Sharon R.

    2015-01-01

    Introduction Acute appendicitis in children is a clinical diagnosis, which often requires preoperative confirmation with either ultrasound (US) or computed tomography (CT) studies. CTs expose children to radiation, which may increase the lifetime risk of developing malignancy. US in the pediatric population with appropriate clinical follow up and serial exam may be an effective diagnostic modality for many children without incurring the risk of radiation. The objective of the study was to compare the rate of appendiceal rupture and negative appendectomies between children with and without abdominal CTs; and to evaluate the same outcomes for children with and without USs to determine if there were any associations between imaging modalities and outcomes. Methods We conducted a retrospective chart review including emergency department (ED) and inpatient records from 1/1/2009–2/31/2010 and included patients with suspected acute appendicitis. Results 1,493 children, aged less than one year to 20 years, were identified in the ED with suspected appendicitis. These patients presented with abdominal pain who had either a surgical consult or an abdominal imaging study to evaluate for appendicitis, or were transferred from an outside hospital or primary care physician office with the stated suspicion of acute appendicitis. Of these patients, 739 were sent home following evaluation in the ED and did not return within the subsequent two weeks and were therefore presumed not to have appendicitis. A total of 754 were admitted and form the study population, of which 20% received a CT, 53% US, and 8% received both. Of these 57%, 95% CI [53.5,60.5] had pathology-proven appendicitis. Appendicitis rates were similar for children with a CT (57%, 95% CI [49.6,64.4]) compared to those without (57%, 95% CI [52.9,61.0]). Children with perforation were similar between those with a CT (18%, 95% CI [12.3,23.7]) and those without (13%, 95% CI [10.3,15.7]). The proportion of children with a

  5. Quantitative analysis of CT scans of ceramic candle filters

    SciTech Connect

    Ferer, M.V.; Smith, D.H.

    1996-12-31

    Candle filters are being developed to remove coal ash and other fine particles (<15{mu}m) from hot (ca. 1000 K) gas streams. In the present work, a color scanner was used to digitize hard-copy CT X-ray images of cylindrical SiC filters, and linear regressions converted the scanned (color) data to a filter density for each pixel. These data, with the aid of the density of SiC, gave a filter porosity for each pixel. Radial averages, density-density correlation functions, and other statistical analyses were performed on the density data. The CT images also detected the presence and depth of cracks that developed during usage of the filters. The quantitative data promise to be a very useful addition to the color images.

  6. How to Avoid Nontherapeutic Laparotomy in Patients With Multiple Organ Failure of Unknown Origin. The Role of CT Scan Revisited

    PubMed Central

    Fui, Stephanie Li Sun; Lupinacci, Renato Micelli; Trésallet, Christophe; Faron, Matthieu; Godiris-Petit, Gaelle; Salepcioglu, Harika; Noullet, Severine; Menegaux, Fabrice

    2015-01-01

    Diagnosis of intra-abdominal diseases in critically ill patients remains a clinical challenge. Physical examination is unreliable whereas exploratory laparotomy may aggravate patient's condition and delay further evaluation. Only a few studies have investigated the place of computed tomography (CT) on this hazardous situation. We aimed to evaluate the ability of CT to prevent unnecessary laparotomy during the management of critically ill patients. Charts of all consecutive patients who had undergone an emergency nontherapeutic laparotomy from 1996 to 2013 were retrospectively studied and patient's demographic, clinical characteristics, and surgical findings were collected. During this period 59 patients had an unnecessary laparotomy. Fifty-one patients had at least one preoperative imaging and 36 had a CT scan. CT scans were interpreted to be normal (n = 12), with minor anomalies (n = 10), or major anomalies (pneumoperitoneum, portal venous gas/pneumatosis intestinalis, thickened gallbladder wall, and small bowel obstruction signs). Surgical exploration was performed through laparotomy (n = 55) or laparoscopy. Overall mortality was 37% with a median survival after surgery of 7 days. In univariate analysis, hospitalization in ICU before surgical exploration was the only factor related to death. In our series CT scans, objectively interpreted, helped avoid unnecessary surgical exploration in 61% of our patients. PMID:25785329

  7. How to Avoid Nontherapeutic Laparotomy in Patients With Multiple Organ Failure of Unknown Origin. The Role of CT Scan Revisited.

    PubMed

    Fui, Stephanie Li Sun; Lupinacci, Renato Micelli; Trésallet, Christophe; Faron, Matthieu; Godiris-Petit, Gaelle; Salepcioglu, Harika; Noullet, Severine; Menegaux, Fabrice

    2015-03-01

    Diagnosis of intra-abdominal diseases in critically ill patients remains a clinical challenge. Physical examination is unreliable whereas exploratory laparotomy may aggravate patient's condition and delay further evaluation. Only a few studies have investigated the place of computed tomography (CT) on this hazardous situation. We aimed to evaluate the ability of CT to prevent unnecessary laparotomy during the management of critically ill patients. Charts of all consecutive patients who had undergone an emergency nontherapeutic laparotomy from 1996 to 2013 were retrospectively studied and patient's demographic, clinical characteristics, and surgical findings were collected. During this period 59 patients had an unnecessary laparotomy. Fifty-one patients had at least one preoperative imaging and 36 had a CT scan. CT scans were interpreted to be normal (n = 12), with minor anomalies (n = 10), or major anomalies (pneumoperitoneum, portal venous gas/pneumatosis intestinalis, thickened gallbladder wall, and small bowel obstruction signs). Surgical exploration was performed through laparotomy (n = 55) or laparoscopy. Overall mortality was 37% with a median survival after surgery of 7 days. In univariate analysis, hospitalization in ICU before surgical exploration was the only factor related to death. In our series CT scans, objectively interpreted, helped avoid unnecessary surgical exploration in 61% of our patients. PMID:25785329

  8. Semi-automatic classification of textures in thoracic CT scans.

    PubMed

    Kockelkorn, Thessa T J P; de Jong, Pim A; Schaefer-Prokop, Cornelia M; Wittenberg, Rianne; Tiehuis, Audrey M; Gietema, Hester A; Grutters, Jan C; Viergever, Max A; van Ginneken, Bram

    2016-08-21

    The textural patterns in the lung parenchyma, as visible on computed tomography (CT) scans, are essential to make a correct diagnosis in interstitial lung disease. We developed one automatic and two interactive protocols for classification of normal and seven types of abnormal lung textures. Lungs were segmented and subdivided into volumes of interest (VOIs) with homogeneous texture using a clustering approach. In the automatic protocol, VOIs were classified automatically by an extra-trees classifier that was trained using annotations of VOIs from other CT scans. In the interactive protocols, an observer iteratively trained an extra-trees classifier to distinguish the different textures, by correcting mistakes the classifier makes in a slice-by-slice manner. The difference between the two interactive methods was whether or not training data from previously annotated scans was used in classification of the first slice. The protocols were compared in terms of the percentages of VOIs that observers needed to relabel. Validation experiments were carried out using software that simulated observer behavior. In the automatic classification protocol, observers needed to relabel on average 58% of the VOIs. During interactive annotation without the use of previous training data, the average percentage of relabeled VOIs decreased from 64% for the first slice to 13% for the second half of the scan. Overall, 21% of the VOIs were relabeled. When previous training data was available, the average overall percentage of VOIs requiring relabeling was 20%, decreasing from 56% in the first slice to 13% in the second half of the scan. PMID:27436568

  9. Whole-body CT in polytrauma patients: The effect of arm position on abdominal image quality when using a human phantom

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su

    2012-06-01

    For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.

  10. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry. PMID:19889800

  11. What is the preferred strength setting of the sinogram-affirmed iterative reconstruction algorithm in abdominal CT imaging?

    PubMed

    Hardie, Andrew D; Nelson, Rachel M; Egbert, Robert; Rieter, William J; Tipnis, Sameer V

    2015-01-01

    Our primary objective in this study was to determine the preferred strength setting for the sinogram-affirmed iterative reconstruction algorithm (SAFIRE) in abdominal computed tomography (CT) imaging. Sixteen consecutive clinical CT scans of the abdomen were reconstructed by use of traditional filtered back projection (FBP) and 5 SAFIRE strengths: S1-S5. Six readers of differing experience were asked to rank the images on preference for overall diagnostic quality. The contrast-to-noise ratio was not significantly different between SAFIRE S1 and FBP, but increased with increasing SAFIRE strength. For pooled data, S2 and S3 were preferred equally but both were preferred over all other reconstructions. S5 was the least preferred, with FBP the next least preferred. This represents a marked disparity between the image quality based on quantitative parameters and qualitative preference. Care should be taken to factor in qualitative in addition to quantitative aspects of image quality when one is optimizing iterative reconstruction images. PMID:25164978

  12. Pineal gland calcification, lumbar intervertebral disc degeneration and abdominal aorta calcifying atherosclerosis correlate in low back pain subjects: A cross-sectional observational CT study.

    PubMed

    Turgut, Ahmet Tuncay; Sönmez, Iclal; Cakıt, Burcu Duyur; Koşar, Pınar; Koşar, Uğur

    2008-06-01

    The goal of this cross-sectional observational study was to assess the possible impact of pineal gland calcification upon the intervertebral disc degeneration and abdominal aorta atherosclerosis in subjects with low back pain, and to investigate the course of these processes with aging. The study was carried out on 81 (66 women and 15 men) subjects: younger than 45 years (group X, n=22), 45-65 years of age (group Y, n=45), and older than 65 years (group Z, n=14). In addition to clinical data, computed tomography (CT) scan of the brain as well as X-ray and CT examination of the lumbar spine were recorded in this study. The degree of disc degeneration and calcification rates of aortic wall and pineal gland were independently determined by two radiologists. Both ratio of calcified pineal gland and density of pineal calcification increased progressively with aging. Also, both the degree of aortic wall calcification and disc degeneration score increased with advancing age. On CT scan, a positive correlation between degree of aortic wall calcification and disc degeneration score was found (r=0.306, p<0.01). Importantly, there was a positive association between calcification of the pineal gland and degenerative disc disease in X-ray or CT study (r=0.378 and r=0.295, p<0.005 and p<0.01, respectively), as well as between abdominal aorta atherosclerosis and pineal calcification (r=0.634, p<0.001). Our findings suggest that there is a significant interaction between pineal gland calcification and lumbar intervertebral disc degeneration and also abdominal aorta atherosclerosis. However, further studies with a larger subject cohorts are needed. PMID:18215511

  13. Maximizing Iodine Contrast-to-Noise Ratios in Abdominal CT Imaging through Use of Energy Domain Noise Reduction and Virtual Monoenergetic Dual-Energy CT1

    PubMed Central

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2015-01-01

    Purpose To determine the iodine contrast-to-noise ratio (CNR) for abdominal computed tomography (CT) when using energy domain noise reduction and virtual monoenergetic dual-energy (DE) CT images and to compare the CNR to that attained with single-energy CT at 80, 100, 120, and 140 kV. Materials and Methods This HIPAA-compliant study was approved by the institutional review board with waiver of informed consent. A syringe filled with diluted iodine contrast material was placed into 30-, 35-, and 45-cm-wide water phantoms and scanned with a dual-source CT scanner in both DE and single-energy modes with matched scanner output. Virtual monoenergetic images were generated, with energies ranging from 40 to 110 keV in 10-keV steps. A previously developed energy domain noise reduction algorithm was applied to reduce image noise by exploiting information redundancies in the energy domain. Image noise and iodine CNR were calculated. To show the potential clinical benefit of this technique, it was retrospectively applied to a clinical DE CT study of the liver in a 59-year-old male patient by using conventional and iterative reconstruction techniques. Image noise and CNR were compared for virtual monoenergetic images with and without energy domain noise reduction at each virtual monoenergetic energy (in kiloelectron volts) and phantom size by using a paired t test. CNR of virtual monoenergetic images was also compared with that of single-energy images acquired with 80, 100, 120, and 140 kV. Results Noise reduction of up to 59% (28.7/65.7) was achieved for DE virtual monoenergetic images by using an energy domain noise reduction technique. For the commercial virtual monoenergetic images, the maximum iodine CNR was achieved at 70 keV and was 18.6, 16.6, and 10.8 for the 30-, 35-, and 45-cm phantoms. After energy domain noise reduction, maximum iodine CNR was achieved at 40 keV and increased to 30.6, 25.4, and 16.5. These CNRs represented improvement of up to 64% (12.0/18.6) with

  14. Automated segmentation of mesothelioma volume on CT scan

    NASA Astrophysics Data System (ADS)

    Zhao, Binsheng; Schwartz, Lawrence; Flores, Raja; Liu, Fan; Kijewski, Peter; Krug, Lee; Rusch, Valerie

    2005-04-01

    In mesothelioma, response is usually assessed by computed tomography (CT). In current clinical practice the Response Evaluation Criteria in Solid Tumors (RECIST) or WHO, i.e., the uni-dimensional or the bi-dimensional measurements, is applied to the assessment of therapy response. However, the shape of the mesothelioma volume is very irregular and its longest dimension is almost never in the axial plane. Furthermore, the sections and the sites where radiologists measure the tumor are rather subjective, resulting in poor reproducibility of tumor size measurements. We are developing an objective three-dimensional (3D) computer algorithm to automatically identify and quantify tumor volumes that are associated with malignant pleural mesothelioma to assess therapy response. The algorithm first extracts the lung pleural surface from the volumetric CT images by interpolating the chest ribs over a number of adjacent slices and then forming a volume that includes the thorax. This volume allows a separation of mesothelioma from the chest wall. Subsequently, the structures inside the extracted pleural lung surface, including the mediastinal area, lung parenchyma, and pleural mesothelioma, can be identified using a multiple thresholding technique and morphological operations. Preliminary results have shown the potential of utilizing this algorithm to automatically detect and quantify tumor volumes on CT scans and thus to assess therapy response for malignant pleural mesothelioma.

  15. Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).

  16. Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode.

    PubMed

    Badawi-Fayad, J; Yazbeck, C; Balzeau, A; Nguyen, T H; Istoc, A; Grimaud-Hervé, D; Cabanis, E- A

    2005-12-01

    The purpose of this study was to determine the optimal tube current setting and scanning mode for hominid fossil skull scanning, using multi-detector row computed tomography (CT). Four fossil skulls (La Ferrassie 1, Abri Pataud 1, CroMagnon 2 and Cro-Magnon 3) were examined by using the CT scanner LightSpeed 16 (General Electric Medical Systems) with varying dose per section (160, 250, and 300 mAs) and scanning mode (helical and conventional). Image quality of two-dimensional (2D) multiplanar reconstructions, three-dimensional (3D) reconstructions and native images was assessed by four reviewers using a four-point grading scale. An ANOVA (analysis of variance) model was used to compare the mean score for each sequence and the overall mean score according to the levels of the scanning parameters. Compared with helical CT (mean score=12.03), the conventional technique showed sustained poor image quality (mean score=4.17). With the helical mode, we observed a better image quality at 300 mAs than at 160 in the 3D sequences (P=0.03). Whereas in native images, a reduction in the effective tube current induced no degradation in image quality (P=0.05). Our study suggests a standardized protocol for fossil scanning with a 16 x 0.625 detector configuration, a 10 mm beam collimation, a 0.562:1 acquisition mode, a 0.625/0.4 mm slice thickness/reconstruction interval, a pitch of 5.62, 120 kV and 300 mAs especially when a 3D study is required. PMID:16211320

  17. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  18. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. These views depict vertical slices from side to middle of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  19. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the specimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from three orthogonal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: Los Alamos National Laboratory and the University of Colorado at Boulder).

  20. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view depict horizontal slices from top to bottom of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  1. Lipiodol enhanced CT scanning of malignant hepatic tumors.

    PubMed

    Eurvilaichit, C

    2000-04-01

    From August 1984 to March 1991, 41 patients with malignant liver tumors, 30 males and 11 females, aged 30-75 years were treated at Ramathibodi Hospital with injection of mitomycin-C lipiodol emulsion into the tumor via the feeding artery followed by embolization of the feeding artery with gelfoam particles. The patients comprised 30 cases of hepatocellular carcinoma, 4 cases of cholangiocarcinoma and 7 cases of metastatic tumors of which one was from CA stomach, three were from CA breast, and three from CA colon. The vascularity of the tumor was assessed in angiogram obtained prior to treatment and retention pattern of lipiodol in the tumor was evaluated in lipiodol-enhanced CT scan images taken 2-4 weeks following therapy. The results showed that lipiodol CT scan images exhibited four patterns of lipiodol retention in the tumor appearing as opacity as follows (1) homogenous (2) heterogeneous (3) ring-like and (4) none. Lipiodol retention pattern appeared to be somewhat related to vascularity of the tumor. Most of the hypervascular tumors such as hepatocellular carcinoma had homogeneous lipiodol accumulation pattern if the tumor size was less than 5 cm. Metastatic tumors and cholangiocarcinoma showed heterogeneous or ring-like pattern of lipiodol accumulation because they were relatively hypovascular. Hypervascular hepatocellular carcinoma may exhibit heterogeneous or ring-like pattern if they are larger than 5 cms, and have multiple feeding arteries, necrosis or AV shunting. Hepatocellular carcinoma with AV shunting may not show any lipiodol accumulation at all. PMID:10808700

  2. Repeatability of Radiotracer Uptake in Normal Abdominal Organs with 111In-Pentetreotide Quantitative SPECT/CT

    PubMed Central

    Rowe, Steven P.; Vicente, Esther; Anizan, Nadège; Wang, Hao; Leal, Jeffrey P.; Lodge, Martin A.; Frey, Eric C.; Wahl, Richard L.

    2015-01-01

    With an increasing emphasis on quantitation of SPECT imaging and its use in dosimetry to guide therapies, it is desirable to understand the repeatability in normal-organ SPECT uptake values (SPECT-UVs). We investigated the variability of normal abdominal organ uptake in repeated 111In-pentetreotide SPECT studies. Methods Nine patients with multiple 111In-pentetreotide SPECT/CT studies for clinical purposes were evaluated. Volumes of interest were drawn for the abdominal organs and applied to SPECT-UVs. The variability of those values was assessed. Results The average SPECT-UV for the liver (1.7 ± 0.6) was much lower than for the kidneys (right, 8.0 ± 2.4; left, 7.5 ± 1.7). Interpatient and intrapatient variability was similar (intraclass correlation coefficients, 0.40–0.59) for all organs. The average coefficients of variation for each organ for each patient were obtained and averaged across all patients (0.26 for liver, 0.22 for right kidney, and 0.20 for left kidney). The coefficients of variation for the organs across all scans were 0.33 (liver), 0.30 (right kidney), and 0.22 (left kidney). Conclusion Variability across all patients and all scans for the liver was higher than reported with 18F-FDG PET, though left kidney variability was similar to PET liver variability and left kidney uptake may be able to serve as an internal metric for determining the quantifiability of an 111In-pentetreotide SPECT study. PMID:25977467

  3. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    NASA Astrophysics Data System (ADS)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  4. A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

    2012-07-01

    This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of

  5. Efficient Abdominal Segmentation on Clinically Acquired CT with SIMPLE Context Learning

    PubMed Central

    Xu, Zhoubing; Burke, Ryan P.; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-01-01

    Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. PMID:25914506

  6. Efficient abdominal segmentation on clinically acquired CT with SIMPLE context learning

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Burke, Ryan P.; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining.

  7. To Scan or not to Scan: Consideration of Medical Benefit in the Justification of CT Scanning.

    PubMed

    McCollough, Cynthia H

    2016-03-01

    While there are ongoing debates with regard to the level of risk, if any, associated with medical imaging, the benefits from medical imaging exams are well documented. This forum article looks at outcome-based medical studies and guidance from expert panels in an effort to bring the benefits of medical imaging, specifically CT imaging, into focus. The position is taken that imaging, medical, and safety communities must not continue to discuss small hypothetical risks from ionizing radiation without emphasizing the large well-documented benefits from medical imaging exams that use ionizing radiation. PMID:26808885

  8. Orthogonal-rotating tetrahedral scanning for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ye, Ivan B.; Wang, Ge

    2012-10-01

    In this article, a cone-beam CT scanning mode is designed assuming four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite to each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. Several scanning schemes are proposed which consist of two rotations about orthogonal axes, such that each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. Similar scanning schemes based on other regular or irregular polyhedra and various rotation speeds are also discussed.

  9. Effect of spineboard and headblocks on the image quality of head CT scans.

    PubMed

    Hemmes, Baukje; Jeukens, Cécile R L P N; Al-Haidari, Aliaa; Hofman, Paul A M; Vd Linden, Ed S; Brink, Peter R G; Poeze, Martijn

    2016-06-01

    Trauma patients at risk for, or suspected of, spinal injury are frequently transported to hospital using full spinal immobilisation. At the emergency department, immobilisation is often maintained until radiological work-up is completed. In this study, we examined how these devices for spinal stabilization influence visual image quality. Image quality was judged for both patient CT scans and phantom CT scans. CT scans of 217 patients were assessed retrospectively by two radiologists for visual scoring of image quality, scoring both quantity and impact of artifacts caused by the immobilization devices. For the phantom CT scans, eight set-ups were made, using a vacuum mattress without headblocks and a rigid and a soft-layered spineboard without headblocks, with standard soft-foam headblocks, or with new design headblocks. Overall, artifacts were found in 67 % of CT scans of patients on immobilization devices, which hampered diagnosis in 10 % of the cases. In the phantom CT scans, artifacts were present in all set-ups with one or more devices present and were seen in 20 % of all scan slices. The presence of headblocks resulted in more artifacts in both the patient CT scans and the phantom CT scans. Considerable effort should therefore be made to adjust the design of the immobilization devices and to remove the headblocks before CT scans are made. PMID:27091739

  10. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  11. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  12. 3D dosimetry by optical-CT scanning

    PubMed Central

    Oldham, Mark

    2007-01-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is – what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times. PMID:17460781

  13. Union of Scaphoid Waist Fractures Assessed by CT Scan

    PubMed Central

    Clementson, Martin; Jørgsholm, Peter; Besjakov, Jack; Björkman, Anders; Thomsen, Niels

    2015-01-01

    Background Union of a scaphoid fracture is difficult to assess on a standard series of radiographs. An unnecessary and prolonged immobilization is inconvenient and may impair functional outcome. Although operative treatment permits early mobilization, its influence on time to union is still uncertain. Purpose To assess union of scaphoid waist fractures based on computed tomography (CT) scan at 6 weeks, and to compare time to union between conservative treatment and arthroscopically assisted screw fixation. Patients and methods CT scan in the longitudinal axis of the scaphoid was used to provide fracture characteristics, and to assess bone union at 6 weeks in 65 consecutive patients with scaphoid waist fractures. In a randomized subgroup from this cohort with nondisplaced fractures, we compared time to union between conservative treatment (n = 23) and arthroscopically assisted screw fixation (n = 15). Results Overall, at 6 weeks we found a 90% union rate for non- or minimally displaced fracture treated conservatively, and 82% for those who underwent surgery. In the randomized subgroup of nondisplaced fractures, no significant difference in time to union was demonstrated between those treated conservatively and those who underwent surgery. The conservatively treated fractures from this subgroup with prolonged time to union (10 to 14 weeks) were comminuted, demonstrating a radial cortical or corticospongious fragment. Conclusion The majority of non- or minimally displaced scaphoid waist fractures are sufficiently treated with 6 weeks in a cast. Screw fixation does not reduce time to fracture union compared with conservative treatment. Level of Evidence level II, Therapeutic study PMID:25709879

  14. Slowing the increase in the population dose resulting from CT scans.

    PubMed

    Brenner, D J

    2010-12-01

    The annual number of CT scans in the U.S. is now over 70 million. The concern is that organ doses from CT are typically far larger than those from conventional X-ray examinations, and there is epidemiological evidence of a small but significant increased cancer risk at typical CT doses. Because CT is a superb diagnostic tool and because individual CT risks are small, when a CT scan is clinically indicated, the CT benefit/risk balance is by far in the patient's favor. Nevertheless, CT should operate under the ALARA (As Low As Reasonably Achievable) principle, and opportunities exist to reduce the significant population dose associated with CT without compromising patient care. The first opportunity is to reduce the dose per scan, and improved technology has much potential here. The second opportunity is selective replacement of CT with other modalities, such as for many head and spinal examinations (with MRI), and for diagnosing appendicitis (selective use of ultrasound + CT). Finally, a fraction of CT scans could be avoided entirely, as indicated by CT decision rules: Clinical decision rules for CT use represent a powerful approach for slowing down the increase in CT use, because they have the potential to overcome some of the major factors that result in some CT scans being undertaken when they are potentially not clinically helpful. In the U.S. and potentially elsewhere, legislative approaches are a possible option, to improve quality control and reduce clinically unneeded CT use, and it is also possible that upcoming changes in heath care economics will tend to slow the increase in such CT use. PMID:20731591

  15. Abdominal Kaposiform Hemangioendothelioma Associated With Lymphangiomatosis Involving Mesentery and Ileum: A Case Report of MRI, CT, and 18F-FDG PET/CT Findings.

    PubMed

    Dong, Aisheng; Zhang, Ling; Wang, Yang; He, Tianlin; Zuo, Changjing

    2016-02-01

    Kaposiform hemangioendothelioma (KH) is a rare vascular tumor of intermediate malignancy that occurs mainly in the childhood. Adult patients with KH are rare. Imaging findings of KH have rarely been reported before. We present magnetic resonance imaging (MRI), computed tomography (CT), and fluorine-18-fluorodeoxyglucose (F-FDG) positron emission tomography (PET)/CT findings in an adult patient with KH associated with lymphangiomatosis involving mesentery and ileum.A 22-year-old female complained of a 9-month history of intermittent melena, weakness, and palpitation. Laboratory tests revealed anemia and hypoproteinemia. Fecal occult blood test was positive. Abdominal enhanced MRI and CT showed a large abdominal mass involving mesentery and ileum. On enhanced MRI, there were many hypervascular nodules in the mass. On FDG PET/CT, the mass and the nodules showed slight FDG uptake. Small bowel capsule endoscopy showed numerous grape-shaped red nodules in the luminal wall of the involved ileum. The patient underwent resection of the abdominal mass and a segment of the ileum invaded by the abdominal mass. KH arising within lymphangiomatosis involving mesentery and ileum was confirmed by pathology. After surgery, the patient's symptoms improved.This is the first case of KH associated with lymphangiomatosis involving mesentery and ileum. In this case, the lymphangiomatosis overshadowed the small tumor nodules resulting in unusual imaging findings. Familiarity with these imaging findings is helpful for diagnosis and differential diagnosis of KH. PMID:26871848

  16. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  17. CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT

    PubMed Central

    Ng, E. Y. K.; Loong, T. H.; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram

    2013-01-01

    The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m3 and a kinematic viscosity of 4 × 10−3 Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index (β), saccular index (γ), deformation diameter ratio (χ), and tortuosity index (ε)) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation. PMID:23864906

  18. A new method for detecting colonic polyps based on local intensity structure analysis from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Nakada, Yuichi; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Takayama, Tetsuji; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Nawano, Shigeru

    2007-03-01

    This paper presents a new method for detecting colonic polyps from abdominal CT images based on Hessian matrix analysis. Recently, virtual colonoscopy (VC) has widely received attention as a new and less-invasive colon diagnostic method. A physician diagnoses the inside of the colon using a virtual colonoscopy system. However, since the colon has many haustra and its shape is long and convoluted, a physician has to change viewpoints and viewing directions of the virtual camera many times while diagnosing. Lesions behind haustra may be overlooked. Thus this paper proposes an automated colonic polyp detection method from 3D abdominal CT images. Colonic polyps are located on the colonic wall, and their CT values are higher than colonic lumen regions. In addition, CT values inside polyps tend to gradually increase from outward to inward (blob-like structure). We employ a blob structure enhancement filter based on the eigenvalues of a Hessian matrix to detect polyps with the above blob-shaped characteristics. For reducing FPs, we eliminate polyp candidate regions in which the maximum output value of the blob structure enhancement filter is smaller than given threshold values. Also small regions are removed from candidates. We applied the proposed method to 23 cases of abdominal CT images. Overall, 74.4% of the polyps were detected with 3.8 FPs per case.

  19. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  20. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  1. Thoracic CT scanning for mediastinal Hodgkin's disease: results and therapeutic implications

    SciTech Connect

    Rostock, R.A.; Siegelman, S.S.; Lenhard, R.E.; Wharam, M.D.; Order, S.E.

    1983-10-01

    Thoracic CT scans were performed on 42 newly diagnosed patients with Hodgkin's disease. Five of 10 patients with negative chest X ray (CXR) had abnormal thoracic CT scans. Among the remaining 32 patients with mediastinal Hodgkin's disease (MHD) on CXR, pericardial (Ep) and chest wall invasion (Ec) were the two most common sites of involvement which were detectable by CT scan alone. Ep and Ec accounted for 16 of 19 of the changes in treatment portal or philosophy based on CT scan findings. Because of the high risk of cardiac or pulmonary radiation toxicity in Ep or Ec, radiation treatment alone may be inadequate. Treatment of mediastinal Hodgkin's disease is reviewed here. The use of CT scans for identification of Ep, Ec, and other abnormalities will allow for more precise treatment, further define the use of conventional radiotherapy, combined modality therapy or whole lung irradiation, and allow more accurate analysis of treatment results.

  2. Knowledge Representation Of CT Scans Of The Head

    NASA Astrophysics Data System (ADS)

    Ackerman, Laurens V.; Burke, M. W.; Rada, Roy

    1984-06-01

    We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.

  3. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  4. Reducing false positives of small bowel segmentation on CT scans by localizing colon regions

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2014-03-01

    Automated small bowel segmentation is essential for computer-aided diagnosis (CAD) of small bowel pathology, such as tumor detection and pre-operative planning. We previously proposed a method to segment the small bowel using the mesenteric vasculature as a roadmap. The method performed well on small bowel segmentation but produced many false positives, most of which were located on the colon. To improve the accuracy of small bowel segmentation, we propose a semi-automated method with minimum interaction to distinguish the colon from the small bowel. The method utilizes anatomic knowledge about the mesenteric vasculature and a statistical method of colon detection. First, anatomic labeling of the mesenteric arteries is used to identify the arteries supplying the colon. Second, a statistical detector is created by combining two colon probability maps. One probability map is of the colon location and is generated from colon centerlines generated from CT colonography (CTC) data. Another probability map is of 3D colon texture using Haralick features and support vector machine (SVM) classifiers. The two probability maps are combined to localize colon regions, i.e., voxels having high probabilities on both maps were labeled as colon. Third, colon regions identified by anatomical labeling and the statistical detector are removed from the original results of small bowel segmentation. The method was evaluated on 11 abdominal CT scans of patients suspected of having carcinoid tumors. The reference standard consisted of manually-labeled small bowel segmentation. The method reduced the voxel-based false positive rate of small bowel segmentation from 19.7%±3.9% to 5.9%±2.3%, with two-tailed P-value < 0.0001.

  5. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  6. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  7. Association of Intraluminal Thrombus, Hemodynamic Forces, and Abdominal Aortic Aneurysm Expansion Using Longitudinal CT Images.

    PubMed

    Zambrano, Byron A; Gharahi, Hamidreza; Lim, ChaeYoung; Jaberi, Farhad A; Choi, Jongeun; Lee, Whal; Baek, Seungik

    2016-05-01

    While hemodynamic forces and intraluminal thrombus (ILT) are believed to play important roles on abdominal aortic aneurysm (AAA), it has been suggested that hemodynamic forces and ILT also interact with each other, making it a complex problem. There is, however, a pressing need to understand relationships among three factors: hemodynamics, ILT accumulation, and AAA expansion for AAA prognosis. Hence this study used longitudinal computer tomography scans from 14 patients and analyzed the relationship between them. Hemodynamic forces, represented by wall shear stress (WSS), were obtained from computational fluid dynamics; ILT accumulation was described by ILT thickness distribution changes between consecutives scans, and ILT accumulation and AAA expansion rates were estimated from changes in ILT and AAA volume. Results showed that, while low WSS was observed at regions where ILT accumulated, the rate at which ILT accumulated occurred at the same rate as the aneurysm expansion. Comparison between AAAs with and without thrombus showed that aneurysm with ILT recorded lower values of WSS and higher values of AAA expansion than those without thrombus. Findings suggest that low WSS may promote ILT accumulation and submit the idea that by increasing WSS levels ILT accumulation may be prevented. PMID:26429788

  8. Physical evaluation of CT scan methods for radiation therapy planning: comparison of fast, slow and gating scan using the 256-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Kanematsu, Nobuyuki; Mizuno, Hideyuki; Sunaoka, Masayoshi; Endo, Masahiro

    2006-02-01

    Although slow-rotation CT scanning (slow-scan CT: SSCT) has been used for radiation therapy planning, based on the rationale that the average duration of the human respiratory cycle is 4 s, a number of physical and quantitative questions require answering before it can be adopted for clinical use. This study was performed to evaluate SSCT physically in comparison with other scan methods, including respiratory-gated CT (RGCT), and to develop procedures to improve treatment accuracy. Evaluation items were geometrical accuracy, volume accuracy, water equivalent length and dose distribution using the 256-detector row CT with three scan methods. Fast-scan CT (FSCT) was defined as obtaining all respiratory phases in cine scan mode at 1.0 s per rotation. FSCT-ave was the averaged FSCT images in all respiratory phases, obtained by reconstructing short time intervals. SSCT has been defined as scanning with slow gantry rotation to capture the whole respiratory cycle in one rotation. RGCT was scanned at the most stable point in the respiratory cycle, which provides the same image as that by FSCT at the most stable point. Results showed that all evaluation items were dependent on motion characteristics. The findings of this study indicate that 3D planning based solely on SSCT under free breathing may result in underdosing of the target volume and increase toxicity to surrounding normal tissues. Of the three methods, RGCT showed the best ability to significantly increase the accuracy of dose distribution, and provided more information to minimize the margins. FSCT-ave is a satisfactory radiotherapy planning alternative if RGCT is not available.

  9. The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: experimental assessment with pediatric phantoms

    NASA Astrophysics Data System (ADS)

    Brisse, H. J.; Brenot, J.; Pierrat, N.; Gaboriaud, G.; Savignoni, A.; DeRycke, Y.; Neuenschwander, S.; Aubert, B.; Rosenwald, J.-C.

    2009-04-01

    This study assessed and compared various image quality indices in order to manage the dose of pediatric abdominal MDCT protocols and to provide guidance on dose reduction. PMMA phantoms representing average body diameters at birth, 1 year, 5 years, 10 years and 15 years of age were scanned in a four-channel MDCT with a standard pediatric abdominal CT protocol. Image noise (SD, standard deviation of CT number), noise derivative (ND, derivative of the function of noise with respect to dose) and contrast-to-noise ratio (CNR) were measured. The 'relative' low-contrast detectability (rLCD) was introduced as a new quantity to adjust LCD to the various phantom diameters on the basis of the LCD1% assessed in a Catphan® phantom and a constant central absorbed dose. The required variations of CTDIvol16 with respect to phantom size were analyzed in order to maintain each image quality index constant. The use of a fixed SD or CNR level leads to major dose ratios between extreme patient sizes (factor 22.7 to 44 for SD, 31.7 to 51.5 for CNR2.8%), whereas fixed ND and rLCD result in acceptable dose ratios ranging between factors of 2.9 and 3.9 between extreme phantom diameters. For a 5-9 mm rLCD1%, adjusted ND values range between -0.84 and -0.11 HU mGy-1. Our data provide guidance on dose reduction on the basis of patient dimensions and the required rLCD (e.g., to get a constant 7 mm rLCD1% for abdominal diameters of 10, 13, 16, 20 and 25 cm, tube current-time product should be adjusted in order to obtain CTDIvol16 values of 6.2, 7.2, 8.8, 11.6 and 17.7 mGy, respectively).

  10. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    SciTech Connect

    Weir, V; Zhang, J

    2015-06-15

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.

  11. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation

    SciTech Connect

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R.; Plishker, William L.; D'Souza, Warren D.

    2007-07-15

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  12. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ... for assuring the safety and effectiveness of such medical devices, and it prohibits manufacturers of CT systems to ...

  13. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary

    PubMed Central

    Lafond, Jonathan A.; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications—here is helpful advice for them; and researchers with greater experience—the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  14. Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.

    ERIC Educational Resources Information Center

    Denckla, Martha Bridge; And Others

    1985-01-01

    Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)

  15. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary.

    PubMed

    Lafond, Jonathan A; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications-here is helpful advice for them; and researchers with greater experience-the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  16. Pictorial essay: CT scan of appendicitis and its mimics causing right lower quadrant pain

    PubMed Central

    Sharma, Monika; Agrawal, Anjali

    2008-01-01

    CT scanning is widely used in the diagnostic workup of right lower quadrant pain. While appendicitis remains the most frequent cause, a majority of patients referred for suspected appendicitis turn out to have alternative diagnoses or a normal CT study. The purpose of our pictorial essay is to present an overview of the CT findings of appendicitis and its common mimics and to highlight the features that provide clues to alternative diagnoses.

  17. Advances in optical CT scanning for gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K.

    2004-01-01

    Optical computed tomography (CT) is physically similar to x-ray CT but is more versatile since many powerful light sources exist and optical elements such as mirrors, lenses, polarizers and efficient detectors are available. There are many potential forms of optical CT. Attenuation, fluorescence or scatter, polarization and refractive index spatial changes are all examples of optical CT. To date, optical CT for gel dosimetry has been limited to attenuation measurements that are the sum of scatter and absorption along defined lines. Polymerization gels turn white with absorbed dose and attenuation is due to scatter. Radiochromic gels also form a dose image due to changes in visible absorption. This short review concentrates on the papers published since the DOSGEL 2001 meeting and highlights experimental results and issues that are important for obtaining good quality input data for reconstruction. The format involves selected highlights from the papers and associated points from our experience with optical CT experimentation. The comments are intended to assist researchers unfamiliar with optical measurements to obtain high quality transmission data, a necessary step in quantitative gel dosimetry.

  18. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  19. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  20. A Novel Multiinstance Learning Approach for Liver Cancer Recognition on Abdominal CT Images Based on CPSO-SVM and IO

    PubMed Central

    Yi, Dehui

    2013-01-01

    A novel multi-instance learning (MIL) method is proposed to recognize liver cancer with abdominal CT images based on instance optimization (IO) and support vector machine with parameters optimized by a combination algorithm of particle swarm optimization and local optimization (CPSO-SVM). Introducing MIL into liver cancer recognition can solve the problem of multiple regions of interest classification. The images we use in the experiments are liver CT images extracted from abdominal CT images. The proposed method consists of two main steps: (1) obtaining the key instances through IO by texture features and a classification threshold in classification of instances with CPSO-SVM and (2) predicting unknown samples with the key instances and the classification threshold. By extracting the instances equally based on the entire image, the proposed method can ignore the procedure of tumor region segmentation and lower the demand of segmentation accuracy of liver region. The normal SVM method and two MIL algorithms, Citation-kNN algorithm and WEMISVM algorithm, have been chosen as comparing algorithms. The experimental results show that the proposed method can effectively recognize liver cancer images from two kinds of cancer CT images and greatly improve the recognition accuracy. PMID:24368931

  1. Increase in dicentric chromosome formation after a single CT scan in adults

    PubMed Central

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A.; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2015-01-01

    Excess risk of leukemia and brain tumors after CT scans in children has been reported. We performed dicentric chromosome assay (DCAs) before and after CT scan to assess effects of low-dose ionizing radiation on chromosomes. Peripheral blood (PB) lymphocytes were collected from 10 patients before and after a CT scan. DCA was performed by analyzing either 1,000 or 2,000 metaphases using both Giemsa staining and centromere-fluorescence in situ hybridization (Centromere-FISH). The increment of DIC formation was compared with effective radiation dose calculated using the computational dosimetry system, WAZA-ARI and dose length product (DLP) in a CT scan. Dicentric chromosome (DIC) formation increased significantly after a single CT scan, and increased DIC formation was found in all patients. A good correlation between the increment of DIC formation determined by analysis of 2,000 metaphases using Giemsa staining and those by 2,000 metaphases using Centromere-FISH was observed. However, no correlation was observed between the increment of DIC formation and the effective radiation dose. Therefore, these results suggest that chromosome cleavage may be induced by one CT scan, and we recommend 2,000 or more metaphases be analyzed in Giemsa staining or Centromere-FISH for DCAs in cases of low-dose radiation exposure. PMID:26349546

  2. Increase in dicentric chromosome formation after a single CT scan in adults.

    PubMed

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2015-01-01

    Excess risk of leukemia and brain tumors after CT scans in children has been reported. We performed dicentric chromosome assay (DCAs) before and after CT scan to assess effects of low-dose ionizing radiation on chromosomes. Peripheral blood (PB) lymphocytes were collected from 10 patients before and after a CT scan. DCA was performed by analyzing either 1,000 or 2,000 metaphases using both Giemsa staining and centromere-fluorescence in situ hybridization (Centromere-FISH). The increment of DIC formation was compared with effective radiation dose calculated using the computational dosimetry system, WAZA-ARI and dose length product (DLP) in a CT scan. Dicentric chromosome (DIC) formation increased significantly after a single CT scan, and increased DIC formation was found in all patients. A good correlation between the increment of DIC formation determined by analysis of 2,000 metaphases using Giemsa staining and those by 2,000 metaphases using Centromere-FISH was observed. However, no correlation was observed between the increment of DIC formation and the effective radiation dose. Therefore, these results suggest that chromosome cleavage may be induced by one CT scan, and we recommend 2,000 or more metaphases be analyzed in Giemsa staining or Centromere-FISH for DCAs in cases of low-dose radiation exposure. PMID:26349546

  3. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  4. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer

    SciTech Connect

    Underberg, Rene; Lagerwaard, Frank J. . E-mail: fj.lagerwaard@vumc.nl; Cuijpers, Johan P.; Slotman, Ben J.; van Soernsen de Koste, John R.; Senan, Suresh

    2004-11-15

    Purpose: Hypofractionated stereotactic radiotherapy (SRT) for Stage I non-small-cell lung cancer requires that meticulous attention be paid toward ensuring optimal target definition. Two computed tomography (CT) scan techniques for defining internal target volumes (ITV) were evaluated. Methods and materials: Ten consecutive patients treated with SRT underwent six 'standard' rapid multislice CT scans to generate an ITV{sub 6CT} and one four-dimensional CT (4DCT) scan that generated volumetric datasets for 10 phases of the respiratory cycle, all of which were used to generate an ITV{sub 4DCT}. Geometric and dosimetric analyses were performed for (1) PTV{sub 4DCT}, derived from the ITV{sub 4DCT} with the addition of a 3-mm margin; (2) PTV{sub 6CT}, derived from the ITV{sub 6CT} with the addition of a 3-mm margin; and (3) 6 PTV{sub 10mm}, derived from each separate GTV{sub 6CT}, to which a three-dimensional margin of 10 mm was added. Results: The ITV{sub 4DCT} was not significantly different from the ITV{sub 6CT} in 8 patients, but was considerably larger in 2 patients whose tumors exhibited the greatest mobility. On average, the ITV{sub 6CT} missed on average 22% of the volume encompassing both ITVs, in contrast to a corresponding mean value of only 8.3% for ITV{sub 4DCT}. Plans based on PTV{sub 4DCT} resulted in coverage of the PTV{sub 6CT} by the 80% isodose in all patients. However, plans based on use of PTV{sub 6CT} led to a mean PTV{sub 4DCT} coverage of only 92.5%, with a minimum of 77.7% and 77.5% for the two most mobile tumors. PTVs derived from a single multislice CT expanded with a margin of 10 mm were on average twice the size of PTVs derived using the other methods, but still led to an underdosing in the two most mobile tumors. Conclusions: Individualized ITVs can improve target definition for SRT of Stage I non-small-cell lung cancer, and use of only a single CT scan with a 10-mm margin is inappropriate. A single 4D scan generates comparable or larger

  5. Co-registration of isotope bone scan with CT scan and MRI in the investigation of spinal pathology.

    PubMed

    Brazenor, Graeme A; Malham, Gregory M; Ballok, Zita E

    2014-09-01

    Image fusion software enables technetium(99m)-methylene diphosphonate (Tc(99m)-MDP) bone scan images to be co-registered with CT scan or MRI, allowing greater anatomical discrimination. We examined the role of bone scan images co-registered with CT scan or MRI in the investigation of patients presenting with axial spinal pain and/or limb pain. One hundred and thirty-nine consecutive patients were examined, and thereafter investigated with CT scan, MRI, and/or dynamic plain films. At this point diagnosis (pathology type and anatomical site) and treatment intention were declared. The co-registered Tc(99m)-MDP bone scan images were then studied, after which diagnosis (pathology type and anatomical site) and treatment intention were re-declared. This data were then analysed to determine whether the addition of co-registered bone scan images resulted in any change in diagnosis or treatment intention. The most significant change in diagnosis was pathology type (10%). Anatomical site changed markedly without overlap of the pre and post-isotope fields in 5%, and with overlap in 10%. Treatment intention had a major change in 3.6% and minor change in 8.6%. In the two groups where there was (i) no obvious pathology after full pre-isotope investigation, or (ii) a spinal fusion under suspicion, addition of the bone scan information led to a major change in the pathology and/or anatomical localisation in 18% and 19%, respectively. The addition of co-registered Tc(99m)-MDP bone scan images offers significant diagnostic assistance, particularly in the difficult diagnostic groups where a failed spinal fusion may be the suspected pain generator, or when no pain generator can otherwise be found. PMID:24798908

  6. Diagnosis of abdominal abscesses in patients with major trauma: the use of computed tomography

    SciTech Connect

    Whitley, N.O.; Shatney, C.H.

    1983-04-01

    The usefulness of computed tomography (CT) in diagnosing abdominal abscesses was evaluated prospectively in 69 septic patients who had suffered massive trauma. For the 82 abdominal CT scans obtained, the accuracy rate was 84%, the sensitivity was 92%, and the specificity was 79%. With the use of abdominal CT, 32 patients were spared a ''blind'' laparotomy in the search for the focus of infection. It is concluded that CT is of significant value in the diagnosis of abdominal abscess in the septic trauma patient.

  7. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  8. Ultrasonography and computed tomography of inflammatory abdominal wall lesions

    SciTech Connect

    Yeh, H.C.; Rabinowitz, J.G.

    1982-09-01

    Twenty-four patients with inflammatory lesions of the abdominal wall were examined by ultrasonography. Nine of these patients underwent computed tomographic (CT) scanning as well. Both ultrasonography and CT clearly delineated the exact location and extent of abdominal wall abscesses. Abscesses were easily differentiated from cellulitis or phlegmon with ultrasound. The peritoneal line was more clearly delineated on ultrasonograms than on CT scans; abscesses were also more distinct on the ultrasonograms because of their low echogenicity compared with the surrounding structures. Gas bubbles, fat density with specific low attenuation values, and underlying inflamed bowel loops in obese patients with Crohn's disease were better delineated by CT.

  9. The role of PET/CT scanning in radiotherapy planning.

    PubMed

    Jarritt, P H; Carson, K J; Hounsell, A R; Visvikis, D

    2006-09-01

    The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using 18F-Fluorodeoxyglucose (18F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. PMID:16980683

  10. Contrast-Enhanced Abdominal Angiographic CT for Intra-abdominal Tumor Embolization: A New Tool for Vessel and Soft Tissue Visualization

    SciTech Connect

    Meyer, Bernhard Christian Frericks, Bernd Benedikt; Albrecht, Thomas; Wolf, Karl-Juergen; Wacker, Frank Klaus

    2007-07-15

    C-Arm cone-beam computed tomography (CACT), is a relatively new technique that uses data acquired with a flat-panel detector C-arm angiography system during an interventional procedure to reconstruct CT-like images. The purpose of this Technical Note is to present the technique, feasibility, and added value of CACT in five patients who underwent abdominal transarterial chemoembolization procedures. Target organs for the chemoembolizations were kidney, liver, and pancreas and a liposarcoma infiltrating the duodenum. The time for patient positioning, C-arm and system preparation, CACT raw data acquisition, and data reconstruction for a single CACT study ranged from 6 to 12 min. The volume data set produced by the workstation was interactively reformatted using maximum intensity projections and multiplanar reconstructions. As part of an angiography system CACT provided essential information on vascular anatomy, therapy endpoints, and immediate follow-up during and immediately after the abdominal interventions without patient transfer. The quality of CACT images was sufficient to influence the course of treatment. This technology has the potential to expedite any interventional procedure that requires three-dimensional information and navigation.

  11. Head CT scan in Iranian minor head injury patients: evaluating current decision rules.

    PubMed

    Sadegh, Robab; Karimialavijeh, Ehsan; Shirani, Farzaneh; Payandemehr, Pooya; Bahramimotlagh, Hooman; Ramezani, Mahtab

    2016-02-01

    The objective of this study is to select one of the seven available clinical decision rules for minor head injury, for managing Iranian patients. This was a prospective cohort study evaluating medium- or high-risk minor head injury patients presenting to the Emergency Department. Patients with minor head trauma who were eligible for brain imaging based on seven available clinical decision rules (National Institute for Health and Clinical Excellence (NICE), National Emergency X-Radiography Utilization Study (NEXUS)-II, Neurotraumatology Committee of the World Federation of Neurosurgical Societies (NCWFNS), New Orleans, American College of Emergency Physicians (ACEP) Guideline, Scandinavian, and Canadian computed tomography (CT) head rule) were selected. Subjects were underwent a non-contrast axial spiral head CT scan. The outcome was defined as abnormal and normal head CT scan. Univariate analysis and stepwise linear regression were applied to show the best combination of risk factors for detecting CT scan abnormalities. Five hundred patients with minor head trauma were underwent brain CT scan. The following criteria were derived by stepwise linear regression: Glasgow Coma Scale (GCS) less than 15, confusion, signs of basal skull fracture, drug history of warfarin, vomiting more than once, loss of consciousness, focal neurologic deficit, and age over 65 years. This model has 86.15 % (75.33-93.45 %) sensitivity and 46.44 % (46.67-51.25 %) specificity in detecting minor head injury patients with CT scan abnormalities (95 % confidence interval). Of seven decision rules, only the Canadian CT Head Rule possesses seven of the eight high-risk factors associated with abnormal head CT results which were identified by this study. This study underlines the Canadian CT Head Rule's utility in Iranian minor head injury patients. Our study encourages researchers to evaluate available guidelines in different communities. PMID:26407978

  12. Diagnostic imaging of intra-abdominal cyst in heifer using the computed tomography

    PubMed Central

    OTOMARU, Konosuke; FUJIKAWA, Takuro; SAITO, Yasuo; ANDO, Takaaki; OBI, Takeshi; MIURA, Naoki; KUBOTA, Chikara

    2015-01-01

    A 10-month-old Japanese black heifer was diagnosed as having an intra-abdominal cyst using computed tomography (CT). Through a posterior ventral midline incision, the cyst was removed, and the heifer completely recovered after the surgery. CT scans enabled detection of the intra-abdominal cyst and measurements of the diameter of the cyst before the surgery. PMID:25924971

  13. Predictors of Positive Head CT Scan and Neurosurgical Procedures After Minor Head Trauma

    PubMed Central

    Kisat, Mehreen; Zafar, Syed Nabeel; Latif, Asad; Villegas, Cassandra V.; Efron, David T.; Stevens, Kent A.; Haut, Elliott R; Schneider, Eric B.; Zafar, Hasnain; Haider, Adil H.

    2012-01-01

    Background There continues to be an ongoing debate regarding the utility of Head CT scans in patients with a normal Glasgow Coma Scale (GCS) after minor head injury. The objective of this study is to determine patient and injury characteristics that predict a positive head CT scan or need for a Neurosurgical Procedure (NSP) among patients with blunt head injury and a normal GCS. Materials and Methods Retrospective analysis of adult patients in the National Trauma Data Bank who presented to the ED with a history of blunt head injury and a normal GCS of 15. The primary outcomes were a positive head CT scan or a NSP. Multivariate logistic regression controlling for patient and injury characteristics was used to determine predictors of each outcome. Results Out of a total of 83,566 patients, 24,414 (29.2%) had a positive head CT scan and 3,476 (4.2%) underwent a NSP. Older patients and patients with a history of fall (as compared to a motor vehicle crash) were more likely to have a positive finding on a head CT scan. Male patients, African-Americans (as compared to Caucasians) and those who presented with a fall were more likely to have a NSP. Conclusions Older age, male gender, ethnicity and mechanism of injury are significant predictors of a positive finding on head CT scans and the need for neurosurgical procedures. This study highlights patient and injury specific characteristics that may help in identifying patients with supposedly minor head injury who will benefit from a head CT scan. PMID:21872271

  14. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2013-01-01

    The paper addresses the automated segmentation of multiple organs in upper abdominal CT data. We propose a framework of multi-organ segmentation which is adaptable to any imaging conditions without using intensity information in manually traced training data. The features of the framework are as follows: (1) the organ correlation graph (OCG) is introduced, which encodes the spatial correlations among organs inherent in human anatomy; (2) the patient-specific organ shape and location priors obtained using OCG enable the estimation of intensity priors from only target data and optionally a number of untraced CT data of the same imaging condition as the target data. The proposed methods were evaluated through segmentation of eight abdominal organs (liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena cava) from 86 CT data obtained by four imaging conditions at two hospitals. The performance was comparable to the state-of-the-art method using intensity priors constructed from manually traced data. PMID:24505771

  15. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    SciTech Connect

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-09-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study.

  16. COMPARISON OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASIR™) AND MODEL-BASED ITERATIVE RECONSTRUCTION (VEO™) FOR PAEDIATRIC ABDOMINAL CT EXAMINATIONS: AN OBSERVER PERFORMANCE STUDY OF DIAGNOSTIC IMAGE QUALITY.

    PubMed

    Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne

    2016-06-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. PMID:26873711

  17. Application of offset-CT scanning to the inspection of high power feeder lines and connections

    NASA Astrophysics Data System (ADS)

    Schneberk, Daniel; Maziuk, Robert; Soyfer, Boris; Shashishekhar, N.; Alreja, Rahul

    2016-02-01

    VJT is developing techniques and scanning methods for the in-situ Radiographic and Computed Tomographic inspection of underground high-power feeder cables. The goals for the inspection are to measure the 3D state of the cables and the cable-connections. Recent in-situ Digital Radiographic inspections performed by VJT have demonstrated the value of NDE inspection information for buried power lines. These NDE data have raised further questions as to the exact state of the cables and connections and pointed to the need for more 3D information of the type provided by volumetric CT scanning. VJT is pursuing a three phased approach to address the many issues involved in this type of inspection: 1) develop a high-power feeder-cable test-bed CT scanner, 2) acquire scans on underground feeder pipes that have been removed from service, and 3) from the work in 1) and 2) develop limited-angle CT scanning methods for extending in-situ Digital Radiography to volumetric CT measurements. To this end, VJT has developed and fielded a high-energy test-bed Gantry-type CT scanner (the source and detector move around the object) with a number of important properties. First, the geometry of the gantry-scans can be configured to match the techniques used in the in-situ radiographic inspection. The same X-ray source is employed as in portable Radiographic inspections, a 7.5 MeV Betatron coupled to a Perkin-Elmer Amorphous Silicon detector. Offset-CT scanning is employed as the high-power feeder line assembly is larger than the detector. A description of this scanner and the scan geometry will be presented showing the connection to in-situ radiography. Results from the CT scans of high-power feeder-cable specimens removed from service will be presented with a focus on the inspection potential of volumetric CT data on these assemblies. An evaluation of the scan performance properties of these data compared to the spectrum of life-cycle inspection issues will be presented. Continuing and

  18. Scan-rescan reproducibility of CT densitometric measures of emphysema

    NASA Astrophysics Data System (ADS)

    Chong, D.; van Rikxoort, E. M.; Kim, H. J.; Goldin, J. G.; Brown, M. S.

    2011-03-01

    This study investigated the reproducibility of HRCT densitometric measures of emphysema in patients scanned twice one week apart. 24 emphysema patients from a multicenter study were scanned at full inspiration (TLC) and expiration (RV), then again a week later for four scans total. Scans for each patient used the same scanner and protocol, except for tube current in three patients. Lung segmentation with gross airway removal was performed on the scans. Volume, weight, mean lung density (MLD), relative area under -950HU (RA-950), and 15th percentile (PD-15) were calculated for TLC, and volume and an airtrapping mask (RA-air) between -950 and -850HU for RV. For each measure, absolute differences were computed for each scan pair, and linear regression was performed against volume difference in a subgroup with volume difference <500mL. Two TLC scan pairs were excluded due to segmentation failure. The mean lung volumes were 5802 +/- 1420mL for TLC, 3878 +/- 1077mL for RV. The mean absolute differences were 169mL for TLC volume, 316mL for RV volume, 14.5g for weight, 5.0HU for MLD, 0.66p.p. for RA-950, 2.4HU for PD-15, and 3.1p.p. for RA-air. The <500mL subgroup had 20 scan pairs for TLC and RV. The R2 values were 0.8 for weight, 0.60 for MLD, 0.29 for RA-950, 0.31 for PD-15, and 0.64 for RA-air. Our results indicate that considerable variability exists in densitometric measures over one week that cannot be attributed to breathhold or physiology. This has implications for clinical trials relying on these measures to assess emphysema treatment efficacy.

  19. Quantification of emphysema severity by histogram analysis of CT scans.

    PubMed

    Mendonça, Paulo R S; Padfield, Dirk R; Ross, James C; Miller, James V; Dutta, Sandeep; Gautham, Sardar Mal

    2005-01-01

    Emphysema is characterized by the destruction and over distension of lung tissue, which manifest on high resolution computer tomography (CT) images as regions of low attenuation. Typically, it is diagnosed by clinical symptoms, physical examination, pulmonary function tests, and X-ray and CT imaging. In this paper we discuss a quantitative imaging approach to analyze emphysema which employs low-level segmentations of CT images that partition the data into perceptually relevant regions. We constructed multi-dimensional histograms of feature values computed over the image segmentation. For each region in the segmentation, we derive a rich set of feature measurements. While we can use any combination of physical and geometric features, we found that limiting the scope to two features - the mean attenuation across a region and the region area - is effective. The subject histogram is compared to a set of canonical histograms representative of various stages of emphysema using the Earth Mover's Distance metric. Disease severity is assigned based on which canonical histogram is most similar to the subject histogram. Experimental results with 81 cases of emphysema at different stages of disease progression show good agreement against the reading of an expert radiologist. PMID:16685912

  20. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  1. Answers to Common Questions About the Use and Safety of CT Scans.

    PubMed

    McCollough, Cynthia H; Bushberg, Jerrold T; Fletcher, Joel G; Eckel, Laurence J

    2015-10-01

    Articles in the scientific literature and lay press over the past several years have implied that computed tomography (CT) may cause cancer and that physicians and patients must exercise caution in its use. Although there is broad agreement on the latter point--unnecessary medical tests of any type should always be avoided--there is considerable controversy surrounding the question of whether, or to what extent, CT scans can lead to future cancers. Although the doses used in CT are higher than those used in conventional radiographic examinations, they are still 10 to 100 times lower than the dose levels that have been reported to increase the risk of cancer. Despite the fact that at the low doses associated with a CT scan the risk either is too low to be convincingly demonstrated or does not exist, the magnitude of the concern among patients and some medical professionals that CT scans increase cancer risk remains unreasonably high. In this article, common questions about CT scanning and radiation are answered to provide physicians with accurate information on which to base their medical decisions and respond to patient questions. PMID:26434964

  2. Motion artifacts in CT scans: a study by computer simulation and mechanical phantom

    NASA Astrophysics Data System (ADS)

    Tien, Der-Chi; Lung, Jen-Kuang; Liao, Chih-Yu; Yong, Tung-Che; Hsu, Chung-Hsien; Liao, Chih-Chiang; Wu, Ren-Hong; Tseng, Kuo-Hsiung; Tsung, Tsing-Tshih

    2008-11-01

    Computed tomography (CT) is one of the most important tools in the diagnosis of thoracic tumors. However, during the scanning process, respiratory motion causes changes in the position and shape of the tumor, creating motion artifacts in the CT scan. This can lead to misdiagnosis of the size and position of the tumor, and can affect the effectiveness of treatment. This study develops a computer model of the movement of the thorax, and simulates the movement of a lung tumor caused by breathing during a CT scan. We show that adjusting the CT slice thickness is sufficient to determine the center of displacement and maximum displacement of a tumor during normal breathing. This model can be applied in the clinical diagnostic use of CT equipment. It will assist in finding the position of lung tumors from motion artifacts in CT scans. The target margin for treatment can thus be defined more accurately, so that appropriate doses of radiation can be applied to the target area, and irradiation of healthy tissue avoided.

  3. Profile of CT scan output dose in axial and helical modes using convolution

    NASA Astrophysics Data System (ADS)

    Anam, C.; Haryanto, F.; Widita, R.; Arif, I.; Dougherty, G.

    2016-03-01

    The profile of the CT scan output dose is crucial for establishing the patient dose profile. The purpose of this study is to investigate the profile of the CT scan output dose in both axial and helical modes using convolution. A single scan output dose profile (SSDP) in the center of a head phantom was measured using a solid-state detector. The multiple scan output dose profile (MSDP) in the axial mode was calculated using convolution between SSDP and delta function, whereas for the helical mode MSDP was calculated using convolution between SSDP and the rectangular function. MSDPs were calculated for a number of scans (5, 10, 15, 20 and 25). The multiple scan average dose (MSAD) for differing numbers of scans was compared to the value of CT dose index (CTDI). Finally, the edge values of MSDP for every scan number were compared to the corresponding MSAD values. MSDPs were successfully generated by using convolution between a SSDP and the appropriate function. We found that CTDI only accurately estimates MSAD when the number of scans was more than 10. We also found that the edge values of the profiles were 42% to 93% lower than that the corresponding MSADs.

  4. Impact of low-dose CT scan in dual timepoint investigations: a phantom study

    NASA Astrophysics Data System (ADS)

    Micheelsen, M. A.; Jensen, M.

    2011-09-01

    Dual timepoint FDG takeup investigations have a potential for separating malignant lymph nodes from non-malignant in certain cases of suspected lung cancer. One hour seems to be the optimal time interval between the two scans (50-120 min). Many of the new PET scanners benefit from image fusion with a CT image and also use the CT for attenuation correction. In any practical hospital setting, 1 hour is too long to occupy the scanner bed and a second CT procedure thus becomes necessary. This study tries to validate to what extent the dose/quality of the second CT scan can be lowered, without compromising attenuation correction, lesion detection and quantification. Using a standard NEMA phantom with the GE Discovery PET/CT scanner, taken in and out between scan sessions, we have tried to find the minimal CT dose necessary for the second scan while still reaching tissue activity quantification within predetermined error limits. For a hot sphere to background activity concentration ratio of 1:5, the average uptake (normalised by the time corrected input activity concentration) in a sphere of 6 cm3 was found to be 0.90 ± 0.08 for the standard scan, yielding a dose of 5.5 mGy, and 0.90 ± 0.14 for a scan with lowest possible mAs product and lowest possible kV, yielding a dose of 0.65 mGy. With an insignificant increase in the uncertainty in the uptake measurement, we can get an order of magnitude reduction for the CT dose.

  5. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  6. Feasibility of iodine contrast enhanced CT-scan during a 18F-fluorodeoxyglucose Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Houzard, C.; Tychyj, C.; Morelec, I.; Ricard, F.; Got, P.; Cotton, F.; Giammarile, F.; Maintas, D.

    2009-06-01

    OBJECTIVE: this prospective study evaluates the feasibility in current clinical practice of contrast enhanced CT-scan for diagnosis purpose, performed during 18FDG PET-CT study with a PET/CT tomography. METHOD: 25 patients underwent FDG imaging for lymphoma staging. The PET scan was done immediately after the usual low dose CT (lCT). A second CT scan was consequently acquired, by using classical diagnosis CT parameters (dCT) and iodinated contrast. For each patient, all CT attenuation correction (CTAC) PET images were visually compared. Density in Hounsfield units (HU) and maximum Standardized Uptake Value (SUVmax) were then measured on different organs and up to 5 specific lymphoma localizations (total of 294 measurements). RESULTS: Visual analysis was similar for the 2 modalities, without discordant interpretation for the pathologic sites. SUVmax means and standard deviation of each organ for lCTAC and dCTAC were comparable. The equation of the fitted multiple linear regression model was: dCT=0.0748191 + 1.17024*lCT (98.71%; p < 0.01). CONCLUSION: These first results allow the use of injected CT scan, before the PET scan acquisition for lymphoma staging with this PET-CT scan, not affected by the height atomic number and elevated density. A great benefit is therefore obtained on diagnostic, logistic and radioprotection purposes.

  7. Estimation of CT-Derived Abdominal Visceral and Subcutaneous Adipose Tissue Depots from Anthropometry in Europeans, South Asians and African Caribbeans

    PubMed Central

    Eastwood, Sophie V.; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F.; Forouhi, Nita; Whincup, Peter; Hughes, Alun D.; Chaturvedi, Nishi

    2013-01-01

    Background South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. Objective We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. Design 669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. Results South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. Conclusion We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available. PMID:24069381

  8. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  9. Pancreas tumor model in rabbit imaged by perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  10. Role of Computed Tomography in Pediatric Abdominal Conditions.

    PubMed

    Eapen, Anu; Gibikote, Sridhar

    2016-07-01

    In the pediatric patient, computed tomography (CT) scan as an imaging modality for evaluation of the abdomen is to be used judiciously. The use of correct scanning protocols, single phase scanning, scanning only when required are key factors to minimize radiation doses to the child, while providing diagnostic quality. CT is the preferred modality in the evaluation of trauma, to assess extent of solid organ or bowel injury. It is also useful in several inflammatory conditions such as inflammatory bowel diseases and acute pancreatitis. CT also has an important role in evaluating intra-abdominal tumors, although magnetic resonance imaging (MRI) can be used as an alternative to CT. PMID:26964550

  11. What to do when a smoker's CT scan is "normal"?: Implications for lung cancer screening.

    PubMed

    Zurawska, Joanna H; Jen, Rachel; Lam, Stephen; Coxson, Harvey O; Leipsic, Jonathon; Sin, Don D

    2012-05-01

    Lung cancer is the leading cause of cancer-related mortality in the United States and around the world. There are > 90 million current and ex-smokers in the United States who are at increased risk of lung cancer. The published data from the National Lung Screening Trial (NLST) suggest that yearly screening with low-dose thoracic CT scan in heavy smokers can reduce lung cancer mortality by 20% and all-cause mortality by 7%. However, to implement this program nationwide using the NLST inclusion and exclusion criteria would be extremely expensive, with CT scan costs alone > $2 billion per annum. In this article, we offer a possible low-cost strategy to risk-stratify smokers on the basis of spirometry measurements and emphysema scoring by radiologists on CT scans. PMID:22553261

  12. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    NASA Astrophysics Data System (ADS)

    Welch, D.; Harken, A. D.; Randers-Pehrson, G.; Brenner, D. J.

    2015-05-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

  13. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    PubMed Central

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-01-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions. PMID:25860401

  14. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully

  15. An old enemy not to be forgotten during PET CT scanning of cancer patients: tuberculosis

    PubMed Central

    Sezer, Ahmet; Abali, Hüseyin; Gültepe, Bilge; Koçer, Emrah; Reyhan, Mehmet; Tonyalı, Önder; Özyilkan, Özgür

    2014-01-01

    Aim of the study Positron emission tomography–computed tomography (PET CT) scan is commonly used in current medical oncology practice as an imaging method. In this study we present data from cancer patients who were followed at our clinic and suspected of having tuberculosis during PET CT scanning. After the biopsy, they were diagnosed with concomitant tuberculosis. Material and methods In this study, 14 patients who applied to our clinic and followed up due to cancer, and had PET CT scanning for the preliminary staging or further evaluation, were included. The patients were diagnosed with metastatic or recurrent disease, and their biopsy results revealed tuberculosis. Results The mean age was 57.8 years with SD (standard deviation) 13.1 years and gender distribution of 78.6% (n = 11) females and 21.4% (n = 3) males. None of the patients had tuberculosis in their personal history (0%). Among the patients, 5 (35.7%) were diagnosed with tuberculosis during the preliminary staging, whereas 9 (64.3%) were diagnosed during the follow-up after the treatment. The median time to tuberculosis diagnosis was 11 months (min–max: 3–24 months) after the treatment. The most commonly involved lymph nodes during PET CT scanning were mediastinal in 8 (64.3%), axillary in 3 (21.4%) and para-aortic in 3 (21.4%) patients. The mean SUVmax (maximum standardised uptake value) of lymph node involved by PET CT scanning was defined as 8.5 (SD 2.6). Conclusions Despite all improvements in modern medicine, tuberculosis is still a serious public health problem. It should always be considered in differential diagnosis while evaluating PET CT scanning results of cancer patients, because it may cause false positive results. PMID:27358601

  16. Lung function in silica-exposed workers. A relationship to disease severity assessed by CT scan.

    PubMed

    Bégin, R; Ostiguy, G; Cantin, A; Bergeron, D

    1988-09-01

    To investigate the relationship of lung function, airflow limitation, and lung injury in silica-exposed workers, we analyzed the clinical, functional, and radiologic data of 94 long-term workers exposed in the granite industry or in foundries. The subjects were divided into four subsets based on chest roentgenogram and CT scan of the thorax: group 1 consisted of 21 subjects with category 0 chest roentgenogram and category 0 CT scan; group 2, 28 subjects with category E 1 on both chest roentgenogram and CT scan; group 3, 18 subjects with category E 1 on chest roentgenogram but with coalescence or conglomeration or both seen only on CT scan; and group 4, 27 subjects with category E 1 and coalescence or conglomeration or both on roentgenogram and CT scan. The groups did not differ in terms of age, height, cigarette smoking, or years of exposure. Lung volumes were significantly reduced only in group 4 (p less than 0.05). Lung compliance, diffusion capacity, and the rest-exercise P(A-a)O2 gradient were reduced in groups 3 and 4 (p less than 0.05). Expiratory flow rates were significantly reduced in groups 2, 3, and 4, with the lowest values in group 4. The expiratory flow rates in group 3 were significantly lower in group 3 than in group 2. These results support the concept that airflow in silica-exposed workers is significantly reduced when the disease is detectable on simple chest roentgenogram; coalescence or conglomeration or both on chest roentgenogram or CT scan is associated with significant loss of lung volumes, gas exchange function, and increased airflow obstruction. PMID:3409733

  17. Patient willingness and barriers to receiving a CT scan for lung cancer screening.

    PubMed

    Delmerico, Jennifer; Hyland, Andrew; Celestino, Paula; Reid, Mary; Cummings, K Michael

    2014-06-01

    CT scans are becoming a more common method for detecting lung cancers at an earlier, potentially more curable, stage of disease. There is currently little data on attitudes and beliefs about screening for lung cancer. This paper presents the results of a 2011 survey of adult current and former smokers that queried about past use of CT scanning and reasons for having or not having the screening done. A random-digit dialed telephone survey was administered to a representative sample of 1290 US adults. Logistic regression analyses were used to examine the correlates of having the test while controlling for the covariates. A total of 13.4% (n = 45) of the sample had ever had a CT scan to detect lung cancer. Of current smokers, 14.6% had received a CT scan, as compared with 12.7% of former smokers. The oldest age group (55+) was significantly more likely to have received a CT scan than the younger age groups. 78.5% of current smokers and 81.4% of former smokers indicated willingness to get the test if advised to do so by their doctor. Among those who said they were not willing to get screened, lack of insurance coverage was cited by 33% of current smokers and 25% of former smokers. Additionally, 33% of current smokers were afraid to find out whether they had cancer. The main barrier to CT scanning for lung cancer is likely to be insurance coverage for the test, which would be a burden for those on limited and fixed incomes. Next steps should include further research into the effect of increased public education about the availability, risks, benefits and barriers to lung cancer screening. PMID:24674155

  18. Glenoid loosening after total shoulder arthroplasty: an in vitro CT-scan study.

    PubMed

    Gregory, Thomas; Hansen, Ulrich; Taillieu, Fabienne; Baring, Toby; Brassart, Nicolas; Mutchler, Céline; Amis, Andrew; Augereau, Bernard; Emery, Roger

    2009-12-01

    Glenoid fixation failure has only been grossly characterized. This lack of information hinders attempts to improve fixation because of a lack of methodologies for detecting and monitoring fixation failure. Our goal was twofold: to collect detailed data of glenoid fixation fracture, and to investigate computed tomography (CT)-scanning as a tool for investigations of fixation failure. Six cadaver scapulas and six bone-substitute specimens were cyclically loaded and CT-scanned at clinical settings after 0, 1,000, 5,000, 10,000, 30,000, 50,000 and 70,000 load cycles. The fixation status was evaluated by inspection of the scans. After 70,000 cycles, the specimens were sectioned, and the fixation inspected by microscopy. The results of the microscopy analysis were compared to the CT-scan analysis. Fracture of the glenoid fixation initiated at the edge of the glenoid rim and propagated towards and around the keel of the implant. The entire process from initiation to complete fracture took place at the polyethylene implant-cement interface, while the cement, the adjacent bone, and the cement-bone interface remained intact. Thus, strengthening the polyethylene-cement interface should improve glenoid fixation. Microscopy results validated the CT methodology, suggesting that the CT technique is reliable. PMID:19472376

  19. High-pitch spiral acquisition: a new scan mode for coronary CT angiography.

    PubMed

    Achenbach, Stephan; Marwan, Mohamed; Schepis, Tiziano; Pflederer, Tobias; Bruder, Herbert; Allmendinger, Thomas; Petersilka, Martin; Anders, Katharina; Lell, Michael; Kuettner, Axel; Ropers, Dieter; Daniel, Werner G; Flohr, Thomas

    2009-01-01

    Coronary CT angiography allows high-quality imaging of the coronary arteries when state-of-the-art CT systems are used. However, radiation exposure has been a concern. We describe a new scan mode that uses a very high-pitch spiral acquisition, "Flash Spiral," which has been developed specifically for low-dose imaging with dual-source CT. The scan mode uses a pitch of 3.2 to acquire a spiral CT data set, while covering the entire volume of the heart in one cardiac cycle. Data acquisition is prospectively triggered by the electrocardiogram and starts in late systole to be completed within one cardiac cycle. Images are reconstructed with a temporal resolution that corresponds to one-quarter of the gantry rotation time. Throughout the data set, subsequent images are reconstructed at later time instants in the cardiac cycle. In a patient with a heart rate of 49 beats/min, the Flash Spiral scan mode was used with a first-generation dual-source CT system and allowed artifact-free visualization of the coronary arteries with a radiation exposure of 1.7 mSv for a 12-cm scan range at 120 kVp tube voltage. PMID:19332343

  20. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    SciTech Connect

    Wang, Adam S.; Pelc, Norbert J.

    2011-10-15

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  1. Automated segmentation of upper digestive tract from abdominal contrast-enhanced CT data using hierarchical statistical modeling of organ interrelations

    NASA Astrophysics Data System (ADS)

    Hirayama, S.; Otake, Y.; Okada, T.; Hori, M.; Tomiyama, N.; Sato, Y.

    2016-03-01

    We have been studying the automatic segmentation of multi-organ region from abdominal CT images. In previous work, we proposed an approach using a hierarchical statistical modeling using a relationship between organs. In this paper, we have proposed automatic segmentation of the upper digestive tract from abdominal contrast-enhanced CT using previously segmented multiple organs. We compared segmentation accuracy of the esophagus, stomach and duodenum between our proposed method using hierarchical statistical modeling and a conventional statistical atlas method. Additionally, preliminary experiment was performed which added the region representing gas to the candidate region at the segmentation step. The segmentation results were evaluated quantitatively by Dice coefficient, Jaccard index and the average symmetric surface distance of the segmented region and correct region data. Percentage of the average of Dice coefficient of esophagus, stomach and duodenum were 58.7, 68.3, and 38.6 with prediction-based method and 23.7, 51.1, and 24.4 with conventional atlas method.

  2. Treatment of Alzheimer Disease With CT Scans: A Case Report.

    PubMed

    Cuttler, Jerry M; Moore, Eugene R; Hosfeld, Victor D; Nadolski, David L

    2016-01-01

    Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient's adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite. PMID:27103883

  3. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  4. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  5. [Fundamental study of helical scanning CT--evaluation of spatial resolution in the longitudinal axis].

    PubMed

    Anno, H; Katada, K; Tsujioka, K; Ida, Y; Ohashi, I; Takeuchi, A; Koga, S

    1992-11-25

    We evaluated spatial resolution in the longitudinal axis with helical scanning CT using a fourth-generation fast CT scanner. We made a phantom by stringing acrylic balls (65 mm phi x 8 and 9 mm phi x 6). The acquired images were processed by MPR and assessed visually to evaluate axis resolution. With the conventional scanning method, the partial volume effect varied with the starting position, but helical scanning was able to reconstruct high-resolution images using continuous raw data. During helical scanning, axis resolution varied depending on the slice width and sliding speed of the couch top. Even if the sliding speed was kept constant at 4 mm/sec, axis resolution was superior with a slice width of 2 mm than with one of 5 mm. PMID:1465334

  6. An Abdominal CT may be Safe in Selected Hypotensive Trauma Patients with Positive FAST Exam

    PubMed Central

    Cook, Mackenzie R.; Holcomb, John B.; Rahbar, Mohammad H.; Alarcon, Louis H.; Bulger, Eileen M.; Brasel, Karen J.; Schreiber, Martin A.

    2016-01-01

    Background Positive Focused Assessment with Sonography in Trauma (FAST) and hypotension often indicates urgent surgery. An abdomen/pelvis CT (apCT) may allow less invasive management but the delay may be associated with adverse outcomes. Methods Patients in the Prospective Observational Multicenter Major Trauma Transfusion study with hypotension and a positive FAST (HF+) who underwent a CT (apCT+) were compared to those who did not. Results Of the 92 HF+ identified, 32(35%) underwent apCT during initial evaluation and apCT was associated with decreased odds of an emergency operation, OR 0.11 95% CI (0.001–0.116) and increased odds of angiographic intervention, OR 14.3 95% CI (1.5–135). There was no significant difference in 30 day mortality or need for dialysis. Conclusion An apCt in HF+ patients is associated with reduced odds of emergency surgery, but not mortality. Select HF+ patients can safely undergo apCT to obtain clinically useful information. PMID:25805456

  7. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans

    PubMed Central

    Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.

    2015-01-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983

  8. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  9. "Bottle Brush Sign"-Spinal Meningeal Disease on 18F-FDG PET-CT Scan.

    PubMed

    Riaz, Saima; Naz, Fozia; Bashir, Humayun; Niazi, Imran Khalid

    2016-09-01

    A 30-year-old man with a history of stage IV AE diffuse large cell lymphoma of left proximal humerus presented with new onset lower limb weakness at completion of chemotherapy. The F-FDG PET-CT scan showed increased intraspinal uptake from T12 to S1 vertebrae with unique "bottle brush" appearance in keeping with spinal meningeal disease. The leptomeningeal disease was further confirmed on correlative MRI scan. PMID:27405033

  10. Automatic coronary calcium scoring in low-dose non-ECG-synchronized thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Isgum, Ivana; Prokop, Mathias; Jacobs, Peter C.; Gondrie, Martijn J.; Mali, Willem P. Th. M.; Viergever, Max A.; van Ginneken, Bram

    2010-03-01

    This work presents a system for automatic coronary calcium scoring and cardiovascular risk stratification in thoracic CT scans. Data was collected from a Dutch-Belgian lung cancer screening trial. In 121 low-dose, non-ECG synchronized, non-contrast enhanced thoracic CT scans an expert scored coronary calcifications manually. A key element of the proposed algorithm is that the approximate position of the coronary arteries was inferred with a probabilistic coronary calcium atlas. This atlas was created with atlas-based segmentation from 51 scans and their manually identified calcifications, and was registered to each unseen test scan. In the test scans all objects with density above 130 HU were considered candidates that could represent coronary calcifications. A statistical pattern recognition system was designed to classify these candidates using features that encode their spatial position relative to the inferred position of the coronaries obtained from the atlas registration. In addition, size and texture features were computed for all candidates. Two consecutive classifiers were used to label each candidate. The system was trained with 35 and tested with another 35 scans. The detected calcifications were quantified and cardiovascular risk was determined for each subject. The system detected 71% of coronary calcifications with an average of 0.9 false positive objects per scan. Cardiovascular risk category was correctly assigned to 29 out of 35 subjects (83%). Five scans (14%) were one category off, and only one scan (3%) was two categories off. We conclude that automatic assessment of the cardiovascular risk from low-dose, non-ECG synchronized thoracic CT scans appears feasible.

  11. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    SciTech Connect

    Shen, Le; Xing, Yuxiang

    2015-01-15

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT can be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed Seg

  12. NOTE: An anatomically shaped lower body model for CT scanning of cadaver femurs

    NASA Astrophysics Data System (ADS)

    Tanck, Esther; Deenen, J. C. W.; Huisman, Henk Jan; Kooloos, Jan G.; Huizenga, Henk; Verdonschot, Nico

    2010-01-01

    Bone specific, CT-based finite element (FE) analyses have great potential to accurately predict the fracture risk of deteriorated bones. However, it has been shown that differences exist between FE-models of femora scanned in a water basin or scanned in situ within the human body, as caused by differences in measured bone mineral densities (BMD). In this study we hypothesized that these differences can be reduced by re-creating the patient CT-conditions by using an anatomically shaped physical model of the lower body. BMD distributions were obtained from four different femora that were scanned under three conditions: (1) in situ within the cadaver body, (2) in a water basin and (3) in the body model. The BMD of the three scanning protocols were compared at two locations: proximally, in the trabecular bone of the femoral head, and in the cortical bone of the femoral shaft. Proximally, no significant differences in BMD were found between the in situ scans and the scans in the body model, whereas the densities from the water basin scans were on average 10.8% lower than in situ. In the femoral shaft the differences between the three scanning protocols were insignificant. In conclusion, the body model better approached the in situ situation than a water basin. Future studies can use this body model to mimic patient situations and to develop protocols to improve the performance of the FE-models in actual patients.

  13. Study Finds Small Increase in Cancer Risk after Childhood CT Scans

    Cancer.gov

    A study published in the June 6, 2012, issue of The Lancet shows that radiation exposure from computed tomography (CT) scans in childhood results in very small but increased risks of leukemia and brain tumors in the first decade after exposure.

  14. Chest CT scanning for clinical suspected thoracic aortic dissection: beware the alternate diagnosis.

    PubMed

    Thoongsuwan, Nisa; Stern, Eric J

    2002-11-01

    The aim of the study was retrospectively to evaluate the spectrum of chest diseases in patients presenting with clinical suspicion of thoracic aortic dissection in the emergency department. We performed a retrospective medical records review of 86 men and 44 women (ages ranging between 23 and 106 years) with clinically suspected aortic dissection, for CT scan findings and final clinical diagnoses dating between January 1996 and September 2001. All images were obtained by using a standard protocol for aortic dissection. We found aortic dissection in 32 patients (24.6%), 22 of which were Stanford classification type A and 10 Stanford type B. In 70 patients (53.9%), chest pain could not be explained by the CT scan findings. However, in 28 patients (21.5%), CT scanning did reveal an alternate diagnosis that, along with the clinical impression, probably explained the patients' presenting symptoms, including: hiatal hernia (7), pneumonia (5), intrathoracic mass (4), pericardial effusion/hemopericardium (3), esophageal mass/rupture (2), aortic aneurysm without dissection (2), pulmonary embolism (2), pleural effusion (1), aortic rupture (1), and pancreatitis (1). In cases where there is clinical suspicion of aortic dissection, CT scan findings of an alternate diagnosis for the presenting symptoms are only slightly less common than the finding of aortic dissection itself. Although the spectrum of findings will vary depending upon your patient population, beware the alternate diagnosis. PMID:15290550

  15. Intraosseous pneumatocysts of the ilium: findings on radiographs and CT scans

    SciTech Connect

    Ramirez, H.; Blatt, E.S.; Cable, H.F.; McComb, B.L.; Zornoza, J.; Hibri, N.S.

    1984-02-01

    CT scans demonstrated a localized collection of gas adjacent to a normal sacroiliac joint in 5 patients. In each case the lesion was sharply demarcated by a thin sclerotic rim. A benign bone cyst was confirmed histologically in 2 cases. The radiologist should be aware of this appearance so as to avoid invasive procedures based on a misdiagnosis of infection or neoplasm.

  16. Kernohan's Notch: A Forgotten Cause of Hemiplegia—CT Scans Are Useful in This Diagnosis

    PubMed Central

    Panikkath, Deepa; Lim, Sian Yik

    2013-01-01

    Hemiparesis ipsilateral to a cerebral lesion can be a false localizing sign. This is due to midline shift of the midbrain resulting in compression of the contralateral pyramidal fibers on the tough dural reflection tentorium cerebelli. This may result in partial or complete damage to these fibers. Since these fibers are destined to cross in the medulla and innervate the opposite side of the body, this causes hemiparesis ipsilateral to the site of cerebral lesion. Computed tomography (CT) scans have not been used to support the diagnosis of this entity until now. We report a 68-year-old woman with a subdural hematoma who developed ipsilateral hemiparesis without any other explanation (Kernohan's notch). The CT of the head showed evidence of compression of the midbrain contralateral to the hematoma and was useful in the diagnosis. The purpose of this report is to increase the awareness of this presentation and to emphasize the utility of CT scans to support the diagnosis. PMID:24348572

  17. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.

    PubMed

    Dai, Yifei; Niebur, Glen L

    2009-10-01

    Generation of finite element (FE) meshes of vertebrae from computed tomography (CT) scans is labour intensive due to their geometric complexity. As such, techniques that simplify creation of meshes of vertebrae are needed to make FE analysis feasible for large studies and clinical applications. Techniques to obtain a geometric representation of bone contours from CT scans of vertebrae and construct a hexahedral mesh from the contours were developed. An automated edge detection technique was developed to identify surface contours of the vertebrae, followed by atlas based B-spline curve fitting to construct curves from the edge points. The method was automatic and robust to missing data, with a controllable degree of smoothing and interpolation. Parametric mapping was then used to generate nodes for each CT slice, which were connected between slices to obtain a hexahedral mesh. This method could be adapted for modelling a variety of orthopaedic structures. PMID:19308870

  18. CT Scan as an Essential Tool in Diagnosis of Non-radiopaque Sialoliths.

    PubMed

    Kalia, Vimal; Kalra, Geeta; Kaur, Supreet; Kapoor, Rajeev

    2015-03-01

    Sialolithiasis is the second most common disease of the salivary glands and the main cause of salivary gland obstruction. Diagnosis of calculi/sialoliths can be made by means of an elaborate history, precise clinical examination and radiographic support. But all sialoliths do not present with predictable signs and symptoms and radiographic appearance. Sialoliths have a variety of manifestations and they may or may not be radiopaque. Non-radiopaque sialoliths are difficult to diagnose radiographically. Although newer techniques like CBCT, CT virtual sialandoscopy and established techniques like sialography, xeroradiography can be useful in selected cases. A regular CT scan is an excellent tool in the diagnosis of a non-radiopaque sialolith and associated salivary gland changes. CT scan should be considered as an important tool of imaging for diagnosis, treatment planning and follow-up of all cases of sialoliths and associated pathologies of the salivary gland. PMID:25838703

  19. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    SciTech Connect

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.; Hong, Theodore S.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Of the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.

  20. Large Abdominal Wall Endometrioma Following Laparoscopic Hysterectomy

    PubMed Central

    Borncamp, Erik; Mehaffey, Philip; Rotman, Carlos

    2011-01-01

    Background: Endometriosis is a common condition in women that affects up to 45% of patients in the reproductive age group by causing pelvic pain. It is characterized by the presence of endometrial tissue outside the uterine cavity and is rarely found subcutaneously or in abdominal incisions, causing it to be overlooked in patients with abdominal pain. Methods: A 45-year-old woman presented with lower abdominal pain 2 years following a laparoscopic supracervical hysterectomy. She was found to have incidental cholelithiasis and a large abdominal mass suggestive of a significant ventral hernia on CT scan. Results: Due to the peculiar presentation, surgical intervention took place that revealed a large 9cm×7.6cm×6.2cm abdominal wall endometrioma. Conclusion: Although extrapelvic endometriosis is rare, it should be entertained in the differential diagnosis for the female patient who presents with an abdominal mass and pain and has a previous surgical history. PMID:21902990

  1. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    PubMed

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374

  2. Analysis of chromosome translocation frequency after a single CT scan in adults.

    PubMed

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Kawamura, Fumihiko; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2016-06-01

    We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78-60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults. PMID:26874116

  3. Analysis of chromosome translocation frequency after a single CT scan in adults

    PubMed Central

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A.; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Kawamura, Fumihiko; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2016-01-01

    We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78–60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults. PMID:26874116

  4. Empyema of the gallbladder detected by gallium scan and abdominal ultrasonography

    SciTech Connect

    Garcia, O.M.; Kovac, A.; Plauche, W.E.

    1981-08-01

    A case history of patient with a abnormal gallium uptake and sonogram in the region of the gallbladder is described. The abnormality was interpreted as empyema of the gallbladder and later proven surgically. A liver-spleen scan was normal except for slight prominence of the hilar structures. Gallium citrate Ga-67 scans done at 24 and 48 hours showed a persistent area of increased tracer localization around the gallbladder with a central clear zone in the latter scan. Ultrasonography revealed poor definition and slight thickening of the gallbladder wall. Because of the lack of specificity of gallium scans, the combination of ultrasonic imaging and gallium uptake scans appears much superior in diagnostic efficiency than either of the two alone. The sequence of performing these two examinations does not seem to be critical though it was prefered that the scintigraphy precede the sonography.

  5. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  6. Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy.

    PubMed

    Selver, M Alper

    2014-03-01

    Precise measurements on abdominal organs are vital prior to the important clinical procedures. Such measurements require accurate segmentation of these organs, which is a very challenging task due to countless anatomical variations and technical difficulties. Although, several features with various classifiers have been designed to overcome these challenges, abdominal organ segmentation via classification is still an emerging field in order to reach desired precision. Recent studies on multiple feature-classifier combinations show that hierarchical systems outperform composite feature-single classifier models. In this study, how hierarchical formations can translate to improved accuracy, when large size feature spaces are involved, is explored for the problem of abdominal organ segmentation. As a result, a semi-automatic, slice-by-slice segmentation method is developed using a novel multi-level and hierarchical neural network (MHNN). MHNN is designed to collect complementary information about organs at each level of the hierarchy via different feature-classifier combinations. Moreover, each level of MHNN receives residual data from the previous level. The residual data is constructed to preserve zero false positive error until the last level of the hierarchy, where only most challenging samples remain. The algorithm mimics analysis behaviour of a radiologist by using the slice-by-slice iteration, which is supported with adjacent slice similarity features. This enables adaptive determination of system parameters and turns into the advantage of online training, which is done in parallel to the segmentation process. Proposed design can perform robust and accurate segmentation of abdominal organs as validated by using diverse data sets with various challenges. PMID:24480371

  7. Stereolithographic vascular replicas from CT scans: choosing treatment strategies, teaching, and research from live patient scan data.

    PubMed

    Knox, Kimberly; Kerber, Charles W; Singel, Soren A; Bailey, Michael J; Imbesi, Steven G

    2005-01-01

    Our goal was to develop a system that would allow us to recreate live patient arterial pathology by using an industrial technique known as stereolithography (or rapid prototyping). In industry, drawings rendered into dicom files can be exported to a computer programmed to drive various industrial tools. Those tools then make a 3D structure shown by the original drawings. We manipulated CT scan dicom files to drive a stereolithography machine and were able to make replicas of the vascular diseases of three patients. PMID:15956511

  8. Treatment planning for resected abdominal tumors: Differences in organ position between diagnostic and radiation-planning computed tomography scans

    SciTech Connect

    Chen, Aileen B.; Mamon, Harvey . E-mail: hmamon@lroc.harvard.edu

    2005-12-01

    Purpose: To evaluate whether organ location, determined from preoperative diagnostic computed tomography scans (CTs), accurately reflects organ location when patients are positioned for radiation therapy. Methods and Materials: We identified patients with upper abdominal malignancies treated with surgery and/or radiation therapy. Comparisons of organ position relative to fixed bony landmarks were made among preoperative diagnostic CTs, postoperative diagnostic CTs, and radiation-planning CTs. We studied 18 patients who had CTs differing only in scanning technique, 11 patients who had CTs differing only in operative state, and 7 patients with CTs differing in both scanning technique and operative state. Results: For patients with diagnostic CTs and radiation-planning CTs that were either both preoperative or both postoperative, mean organ position, measured relative to a fixed bony landmark, ranged from 1.9 to 3.2 cm superior on radiation-planning CTs compared with diagnostic CTs (p < 0.0001). Mean organ position ranged from 0.9 to 1.7 cm posterior on radiation-planning CTs compared with diagnostic CTs (p {<=} 0.008). Shifts in the right-left direction were small and variable. For patients with pre- and postoperative diagnostic CTs, organ shifts were variable and not significant. Organ shifts for patients with preoperative diagnostic CTs and postoperative radiation-planning CTs were similar to shifts observed for the first group. Conclusions: Relative to bony landmarks, there are superior and posterior shifts in organ position for radiation-planning CTs compared with diagnostic CTs. These shifts should be considered during treatment planning for resected abdominal tumors.

  9. Measurement of radiographic magnification in the pelvis using archived CT scans.

    PubMed

    Paul, Laurent; Docquier, Pierre-Louis; Cartiaux, Olivier; Banse, Xavier

    2008-10-01

    Prosthesis or allograft selection usually relies on comparison of templates with radiographs of the patient. Radiographic magnification must be evaluated accurately to select the optimal implant. Radiographic magnification was retrospectively assessed in 40 patients by reference to the pelvic height measured on computed tomography scans. Intra-subject variation of the magnification was calculated in 14 patients for whom two different pelvic radiographs were available. A wide range of magnification was observed (112% to 129%) as well as a substantial intra-subject variation (8%). Paired samples t-test showed a systematic error (p < 0.001) in using 110% and 115% as magnification whereas a similar error was not found when using 120%. Mean value for magnification was 119%. Radiographic magnification measurement can be made using the pelvic height method in patients who have undergone thoraco-abdominal, abdominal or pelvic computed tomography. PMID:19058695

  10. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  11. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  12. Radiologist-initiated double reading of abdominal CT: retrospective analysis of the clinical importance of changes to radiology reports

    PubMed Central

    Andersen, Jack Gunnar; Stokke, Mali Victoria; Tennstrand, Anne Lise; Aamodt, Rolf; Heggelund, Thomas; Dahl, Fredrik A; Sandbæk, Gunnar; Hurlen, Petter

    2016-01-01

    Background Misinterpretation of radiological examinations is an important contributing factor to diagnostic errors. Consultant radiologists in Norwegian hospitals frequently request second reads by colleagues in real time. Our objective was to estimate the frequency of clinically important changes to radiology reports produced by these prospectively obtained double readings. Methods We retrospectively compared the preliminary and final reports from 1071 consecutive double-read abdominal CT examinations of surgical patients at five public hospitals in Norway. Experienced gastrointestinal surgeons rated the clinical importance of changes from the preliminary to final report. The severity of the radiological findings in clinically important changes was classified as increased, unchanged or decreased. Results Changes were classified as clinically important in 146 of 1071 reports (14%). Changes to 3 reports (0.3%) were critical (demanding immediate action), 35 (3%) were major (implying a change in treatment) and 108 (10%) were intermediate (requiring further investigations). The severity of the radiological findings was increased in 118 (81%) of the clinically important changes. Important changes were made less frequently when abdominal radiologists were first readers, more frequently when they were second readers, and more frequently to urgent examinations. Conclusion A 14% rate of clinically important changes made during double reading may justify quality assurance of radiological interpretation. Using expert second readers and a targeted selection of urgent cases and radiologists reading outside their specialty may increase the yield of discrepant cases. PMID:27013638

  13. Consistent Surgeon Evaluations of Three-Dimensional Rendering of PET/CT Scans of the Abdomen of a Patient with a Ductal Pancreatic Mass

    PubMed Central

    Wampole, Matthew E.; Kairys, John C.; Mitchell, Edith P.; Ankeny, Martha L.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Two-dimensional (2D) positron emission tomography (PET) and computed tomography (CT) are used for diagnosis and evaluation of cancer patients, requiring surgeons to look through multiple planar images to comprehend the tumor and surrounding tissues. We hypothesized that experienced surgeons would consistently evaluate three-dimensional (3D) presentation of CT images overlaid with PET images when preparing for a procedure. We recruited six Jefferson surgeons to evaluate the accuracy, usefulness, and applicability of 3D renderings of the organs surrounding a malignant pancreas prior to surgery. PET/CT and contrast-enhanced CT abdominal scans of a patient with a ductal pancreatic mass were segmented into 3D surface renderings, followed by co-registration. Version A used only the PET/CT image, while version B used the contrast-enhanced CT scans co-registered with the PET images. The six surgeons answered 15 questions covering a) the ease of use and accuracy of models, b) how these models, with/without PET, changed their understanding of the tumor, and c) what are the best applications of the 3D visualization, on a scale of 1 to 5. The six evaluations revealed a statistically significant improvement from version A (score 3.6±0.5) to version B (score 4.4±0.4). A paired-samples t-test yielded t(14) = −8.964, p<0.001. Across the surgeon cohort, contrast-enhanced CT fused with PET provided a more lifelike presentation than standard CT, increasing the usefulness of the presentation. The experienced surgeons consistently reported positive reactions to 3D surface renderings of fused PET and contrast-enhanced CT scans of a pancreatic cancer and surrounding organs. Thus, the 3D presentation could be a useful preparative tool for surgeons prior to making the first incision. This result supports proceeding to a larger surgeon cohort, viewing prospective 3D images from multiple types of cancer. PMID:24086475

  14. Consistent surgeon evaluations of three-dimensional rendering of PET/CT scans of the abdomen of a patient with a ductal pancreatic mass.

    PubMed

    Wampole, Matthew E; Kairys, John C; Mitchell, Edith P; Ankeny, Martha L; Thakur, Mathew L; Wickstrom, Eric

    2013-01-01

    Two-dimensional (2D) positron emission tomography (PET) and computed tomography (CT) are used for diagnosis and evaluation of cancer patients, requiring surgeons to look through multiple planar images to comprehend the tumor and surrounding tissues. We hypothesized that experienced surgeons would consistently evaluate three-dimensional (3D) presentation of CT images overlaid with PET images when preparing for a procedure. We recruited six Jefferson surgeons to evaluate the accuracy, usefulness, and applicability of 3D renderings of the organs surrounding a malignant pancreas prior to surgery. PET/CT and contrast-enhanced CT abdominal scans of a patient with a ductal pancreatic mass were segmented into 3D surface renderings, followed by co-registration. Version A used only the PET/CT image, while version B used the contrast-enhanced CT scans co-registered with the PET images. The six surgeons answered 15 questions covering a) the ease of use and accuracy of models, b) how these models, with/without PET, changed their understanding of the tumor, and c) what are the best applications of the 3D visualization, on a scale of 1 to 5. The six evaluations revealed a statistically significant improvement from version A (score 3.6±0.5) to version B (score 4.4±0.4). A paired-samples t-test yielded t(14) = -8.964, p<0.001. Across the surgeon cohort, contrast-enhanced CT fused with PET provided a more lifelike presentation than standard CT, increasing the usefulness of the presentation. The experienced surgeons consistently reported positive reactions to 3D surface renderings of fused PET and contrast-enhanced CT scans of a pancreatic cancer and surrounding organs. Thus, the 3D presentation could be a useful preparative tool for surgeons prior to making the first incision. This result supports proceeding to a larger surgeon cohort, viewing prospective 3D images from multiple types of cancer. PMID:24086475

  15. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  16. Computed Tomography (CT) Scanning Facilitates Early Identification of Neonatal Cystic Fibrosis Piglets

    PubMed Central

    Guillon, Antoine; Chevaleyre, Claire; Barc, Celine; Berri, Mustapha; Adriaensen, Hans; Lecompte, François; Villemagne, Thierry; Pezant, Jérémy; Delaunay, Rémi; Moënne-Loccoz, Joseph; Berthon, Patricia; Bähr, Andrea; Wolf, Eckhard; Klymiuk, Nikolai; Attucci, Sylvie; Ramphal, Reuben; Sarradin, Pierre; Buzoni-Gatel, Dominique; Si-Tahar, Mustapha; Caballero, Ignacio

    2015-01-01

    Background Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR-/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR-/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR-/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction. Methods and Principal Findings Male and female CFTR+/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR-/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR-/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery. Conclusion CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR-/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR-/- piglets and, thus, improve experimental research on CF, still an incurable disease. PMID:26600426

  17. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values

    PubMed Central

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    Purpose To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. Materials and Methods 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. Results As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. Conclusion The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol. PMID:26079259

  18. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  19. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael

    2014-04-01

    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation. PMID:24748424

  20. Ultra-Low Dose Lung CT Perfusion Regularized by a Previous Scan

    PubMed Central

    Yu, Hengyong; Zhao, Shiying; Hoffman, Eric A.; Wang, Ge

    2009-01-01

    Rationale and Objectives Our previous scan regularized reconstruction (PSRR) method is proposed to reduce radiation dose and applied for lung perfusion studies. The normal and ultra-low dose lung CT perfusion studies are compared in terms of estimation accuracy of pulmonary functional parameters. Materials and Methods A sequences of sheep lung scans were performed in three prone, anesthetized sheep at normal and ultra-low doses. A scan protocol was developed for the ultra-low dose studies with ECG gating - time point one for a normal x-ray dose scan (100kV/150mAs) and time points 2–21 for low dose scans (80kV/17mAs). A nonlinear diffusion-based post-filtering (NDPF) method was applied to the difference images between the low-dose images and the high-quality reference image. The final images at 20 time points were generated by fusing the reference image with the filtered difference images. Results The power spectra of perfusion images and coherences with the normal scans show a great improvement in image quality of the ultra-low dose scans with PSRR relative to that without RSRR. The Gamma variate-fitting and the repeatability of the measurements of the mean transit time demonstrate that the key parameters of lung functions can be reliably accessed using PSRR. The variability of the ultra-low dose scan results obtained using PSRR is not substantially different from that between two normal dose scans. Conclusions Our studies have shown that a ~90% reduction in radiation dose is achievable using PSRR without compromising the quantitative CT measurements of regional lung functions. PMID:19201366

  1. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    SciTech Connect

    Wang, T; Zhu, L

    2014-06-15

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction from very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.

  2. Abdominal Aortic Intimal Flap Motion Characterization in Acute Aortic Dissection: Assessed with Retrospective ECG-Gated Thoracoabdominal Aorta Dual-Source CT Angiography

    PubMed Central

    Yang, Shifeng; Li, Xia; Chao, Baoting; Wu, Lebin; Cheng, Zhaoping; Duan, Yanhua; Wu, Dawei; Zhan, Yiqiang; Chen, Jiuhong; Liu, Bo; Ji, Xiaopeng; Nie, Pei; Wang, Ximing

    2014-01-01

    Objectives To evaluate the feasibility of dose-modulated retrospective ECG-gated thoracoabdominal aorta CT angiography (CTA) assessing abdominal aortic intimal flap motion and investigate the motion characteristics of intimal flap in acute aortic dissection (AAD). Materials and Methods 49 patients who had thoracoabdominal aorta retrospective ECG-gated CTA scan were enrolled. 20 datasets were reconstructed in 5% steps between 0 and 95% of the R-R interval in each case. The aortic intimal flap motion was assessed by measuring the short axis diameters of the true lumen and false lumen 2 cm above of celiac trunk ostium in different R-R intervals. Intimal flap motion and configuration was assessed by two independent observers. Results In these 49 patients, 37 had AAD, 7 had intramural hematoma, and 5 had negative result for acute aortic disorder. 620 datasets of 31 patients who showed double lumens in abdominal aorta were enrolled in evaluating intimal flap motion. The maximum and minimum true lumen diameter were 12.2±4.1 mm (range 2.6∼17.4) and 6.7±4.1 mm (range 0∼15.3) respectively. The range of intimal flap motion in all patients was 5.5±2.6 mm (range 1.8∼10.2). The extent of maximum true lumen diameter decreased during a cardiac cycle was 49.5%±23.5% (range 12%∼100%). The maximum motion phase of true lumen diameter was in systolic phase (5%∼40% of R-R interval). Maximum and minimum intimal flap motion was at 15% and 75% of the R-R interval respectively. Intimal flap configuration had correlation with the phase of cardiac cycle. Conclusions Abdominal intimal flap position and configuration varied greatly during a cardiac cycle. Retrospective ECG-gated thoracoabdominal aorta CTA can reflect the actual status of the true lumen and provide more information about true lumen collapse. This information may be helpful to diagnosis and differential diagnosis of dynamic abstraction. PMID:24503676

  3. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    SciTech Connect

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F.

    2008-09-15

    Purpose: lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. Methods and Materials: 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Results: Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods <0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good

  4. Prospective Evaluation of Prior Image Constrained Compressed Sensing (PICCS) Algorithm in Abdominal CT: A comparison of reduced dose with standard dose imaging

    PubMed Central

    Lubner, Meghan G.; Pickhardt, Perry J.; Kim, David H.; Tang, Jie; Munoz del Rio, Alejandro; Chen, Guang-Hong

    2014-01-01

    Purpose To prospectively study CT dose reduction using the “prior image constrained compressed sensing” (PICCS) reconstruction technique. Methods Immediately following routine standard dose (SD) abdominal MDCT, 50 patients (mean age, 57.7 years; mean BMI, 28.8) underwent a second reduced-dose (RD) scan (targeted dose reduction, 70-90%). DLP, CTDIvol and SSDE were compared. Several reconstruction algorithms (FBP, ASIR, and PICCS) were applied to the RD series. SD images with FBP served as reference standard. Two blinded readers evaluated each series for subjective image quality and focal lesion detection. Results Mean DLP, CTDIvol, and SSDE for RD series was 140.3 mGy*cm (median 79.4), 3.7 mGy (median 1.8), and 4.2 mGy (median 2.3) compared with 493.7 mGy*cm (median 345.8), 12.9 mGy (median 7.9 mGy) and 14.6 mGy (median 10.1) for SD series, respectively. Mean effective patient diameter was 30.1 cm (median 30), which translates to a mean SSDE reduction of 72% (p<0.001). RD-PICCS image quality score was 2.8±0.5, improved over the RD-FBP (1.7±0.7) and RD-ASIR(1.9±0.8)(p<0.001), but lower than SD (3.5±0.5)(p<0.001). Readers detected 81% (184/228) of focal lesions on RD-PICCS series, versus 67% (153/228) and 65% (149/228) for RD-FBP and RD-ASIR, respectively. Mean image noise was significantly reduced on RD-PICCS series (13.9 HU) compared with RD-FBP (57.2) and RD-ASIR (44.1) (p<0.001). Conclusion PICCS allows for marked dose reduction at abdominal CT with improved image quality and diagnostic performance over reduced-dose FBP and ASIR. Further study is needed to determine indication-specific dose reduction levels that preserve acceptable diagnostic accuracy relative to higher-dose protocols. PMID:24943136

  5. Evolving Bioprosthetic Tissue Calcification Can Be Quantified Using Serial Multislice CT Scanning

    PubMed Central

    Meuris, B.; De Praetere, H.; Coudyzer, W.; Flameng, W.

    2013-01-01

    Background. We investigated the value of serial multislice CT scanning for in vivo determination of evolving tissue calcification in three separate experimental settings. Materials and Methods. Bioprosthetic valve tissue was implanted in three different conditions: (1) glutaraldehyde-fixed porcine stentless conduits in pulmonary position (n = 6); (2) glutaraldehyde-fixed stented pericardial valves in mitral position (n = 3); and (3) glutaraldehyde-fixed pericardial tissue as patch in the jugular vein and carotid artery (n = 16). Multislice CT scanning was performed at various time intervals. Results. In stentless conduits, the distribution of wall calcification can be reliably quantified with CT. After 20 weeks, the CT-determined mean calcium volume was 1831 ± 581 mm³, with a mean wall calcium content of 89.8 ± 44.4 μg/mg (r2 = 0.68). In stented pericardial valves implanted in mitral position, reliable determination of tissue mineralization is disturbed by scattering caused by the (continuously moving) alloy of the stent material. Pericardial patches in the neck vessels revealed progressive mineralization, with a significant increase in mean HU and calcium volume at 8 weeks after implantation, rising up to a level of 131.1 ± 39.6 mm³ (mean calcium volume score) and a mean calcium content of 19.1 ± 12.3 μg/mg. Conclusion. The process of bioprosthetic tissue mineralization can be visualized and quantified in vivo using multislice CT scanning. This allows determination of the kinetics of tissue mineralization with intermediate in vivo evaluations. PMID:24089616

  6. A computational framework for cancer response assessment based on oncological PET-CT scans.

    PubMed

    Sampedro, Frederic; Escalera, Sergio; Domenech, Anna; Carrio, Ignasi

    2014-12-01

    In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks. PMID:25450224

  7. Intracranial myeloid metaplasia: diagnosis by CT and Fe52 scans and treatment by cranial irradiation

    SciTech Connect

    Cornfield, D.B.; Shipkin, P.; Alavi, A.; Becker, J.; Peyster, R.

    1983-11-01

    A patient with longstanding agnogenic myeloid metaplasia developed a progressive dementia. CT scanning demonstrated multiple intracranial masses, and a Fe/sub 52/ bone marrow scan demonstrated erythroid activity within the masses and confirmed the suspicion of extra-medullary hematopoiesis. A potentially hazardous biopsy was avoided, and a course of cranial irradiation was administered, resulting in regression of the masses and clearing of the patient's dementia. Fe/sub 52/ scintigraphy provides a specific and useful diagnostic approach which may eliminate the need for invasive procedures.

  8. Childhood CT scans and cancer risk: impact of predisposing factors for cancer on the risk estimates.

    PubMed

    Journy, N; Roué, T; Cardis, E; Le Pointe, H Ducou; Brisse, H; Chateil, J-F; Laurier, D; Bernier, M-O

    2016-03-01

    To investigate the role of cancer predisposing factors (PFs) on the associations between paediatric computed tomography (CT) scan exposures and subsequent risk of central nervous system (CNS) tumours and leukaemia. A cohort of children who underwent a CT scan in 2000-2010 in 23 French radiology departments was linked with the national childhood cancers registry and national vital status registry; information on PFs was retrieved through hospital discharge databases. In children without PF, hazard ratios of 1.07 (95% CI 0.99-1.10) for CNS tumours (15 cases) and 1.16 (95% CI 0.77-1.27) for leukaemia (12 cases) were estimated for each 10 mGy increment in CT x-rays organ doses. These estimates were similar to those obtained in the whole cohort. In children with PFs, no positive dose-risk association was observed, possibly related to earlier non-cancer mortality in this group. Our results suggest a modifying effect of PFs on CT-related cancer risks, but need to be confirmed by longer follow-up and other studies. PMID:26878249

  9. Rapid evaluation of acute abdominal pain by hepatobiliary scanning. [/sup 99m/Tc-iprofenin (PIPIDA)

    SciTech Connect

    Freitas, J.E.; Gulati, R.M.

    1980-10-03

    One hundred eighty-six patients with suspected acute cholecystitis (AC) underwent radionuclide hepatobiliary imaging with technetium Tc 99m-iprofenin to assess the ability of this tracer to detect AC. After intravenous injection of 5 to 10 mCi of this agent, 500,000 count anterior images were obtained at ten-minute intervals for 60 minutes. An abnormal hepatobiliary scan (HBS) diagnostic of AC was defined as one in which the common bile duct, but not the gallbladder, visualized within one hour of tracer administration. In this series, the sensitivity and specificity for HBS in the detection of AC were 97 and 87%, respectively. The hepatobiliary scan should be the procedure of choice for the rapid detection of AC. It is simple, rapid, and safe to perform, enabling a diagnosis to be established within one hour.

  10. Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; Goldin, J. G.; Galperin-Aizenberg, M.; Brown, M. S.

    2011-03-01

    To gain insight into the underlying pathways of emphysema and monitor the effect of treatment, methods to quantify and phenotype the different types of emphysema from chest CT scans are of crucial importance. Current standard measures rely on density thresholds for individual voxels, which is influenced by inspiration level and does not take into account the spatial relationship between voxels. Measures based on texture analysis do take the interrelation between voxels into account and therefore might be useful for distinguishing different types of emphysema. In this study, we propose to use Minkowski functionals combined with rotation invariant Gaussian features to distinguish between healthy and emphysematous tissue and classify three different types of emphysema. Minkowski functionals characterize binary images in terms of geometry and topology. In 3D, four Minkowski functionals are defined. By varying the threshold and size of neighborhood around a voxel, a set of Minkowski functionals can be defined for each voxel. Ten chest CT scans with 1810 annotated regions were used to train the method. A set of 108 features was calculated for each training sample from which 10 features were selected to be most informative. A linear discriminant classifier was trained to classify each voxel in the lungs into a subtype of emphysema or normal lung. The method was applied to an independent test set of 30 chest CT scans with varying amounts and types of emphysema with 4347 annotated regions of interest. The method is shown to perform well, with an overall accuracy of 95%.

  11. [A case of bronchiolitis obliterans organizing pneumonia: diagnostic utility of bronchoalveolar lavage and CT scan].

    PubMed

    Hyakudo, T; Yoshii, C; Nikaido, Y; Yokosaki, Y; Nagata, N; Nakata, H; Kido, M

    1994-08-01

    A 54-year-old female was admitted to our hospital because of abnormal shadows on chest X-ray at annual checkup. She complained of dyspnea on exertion. Chest X-ray findings showed an increase in density at the bilateral lower lung fields and unclearness of the silhouette of the heart and the diaphragm. CT scan findings revealed irregular opacities of various density with many small cystic changes and air bronchograms and air bronchiolograms. The pulmonary function test showed restrictive ventilatory disturbance and reduced diffusing capacity. BALF findings revealed an increase in the total cell count, an increase in the percentage of lymphocytes and a decrease in the OKT4+/OKT8+ ratio. TBLB specimen showed infiltration of mononuclear cells in alveolar septa and organizing exudate in alveolar ducts. These findings suggested a diagnosis of BOOP rather than IPF, and an open lung biopsy was performed. Open lung biopsy specimen showed obstructive bronchiolitis with polypoid granulation tissue and thickening of alveolar septa with infiltration of mononuclear cells, and she was diagnosed as having BOOP. She responded well to corticosteroid and is free from any abnormalities on chest X-ray, CT scan and pulmonary function test at present. Analysis of BALF and CT scan findings are useful for the differential diagnosis of BOOP and IPF. PMID:7807756

  12. Dipyridamole thallium scanning in the evaluation of coronary artery disease in elective abdominal aortic surgery

    SciTech Connect

    Strawn, D.J.; Guernsey, J.M. )

    1991-07-01

    Dipyridamole thallium scanning was routinely performed on 68 consecutive patients who presented for elective aortic surgery. All 68 patients were judged by clinical assessment to be at low risk for perioperative cardiac complications. In addition, 42 of 68 patients had a history of myocardial infarction, stable angina, or abnormal echocardiographic findings (group 1). Twenty-six of 68 patients did not have a history of myocardial infarction, angina, or abnormal echocardiographic findings (group 2). In group 1, 34 of 4 patients had positive results on dipyridamole thallium scanning, and 15 of these patients were found to have critical coronary artery disease on subsequent cardiac catheterization; nine underwent immediate coronary artery bypass grafting, and six had their coronary artery disease treated medically and their vascular operations cancelled. The remaining 27 patients in group 1 underwent elective operations, with six (22%) of 27 sustaining postoperative cardiac complications. None of the group 2 patients was found to have critical coronary artery disease. All patients in group 2 underwent aortic operation without cardiac complication. Routine dipyridamole thallium scanning detected a 22% (15 of 68) incidence of critical coronary artery disease overall. There was a 36% (15 of 42) incidence of critical coronary artery disease in group 1 patients vs 0% in group 2 patients (95% confidence interval, 21% to 50%). The authors conclude that the use of dipyridamole thallium scanning in low-risk patients for cardiac screening prior to elective aortic operations is beneficial in selected patients who have a history of myocardial infarction, angina, or abnormal echocardiographic findings, but is not necessary in patients with no history of coronary artery disease.

  13. Detection of necrosis of the gastric fundus after blunt abdominal trauma by PET-CT.

    PubMed

    Hofer, A; Kratochwill, H; Pentsch, A; Gabriel, M

    2015-02-01

    Positron emission tomography with [(18)F]-fluorodeoxyglucose provides functional and anatomic information by visualising the uptake of radiolabelled glucose in tumour and inflammatory cells. We report delayed diagnosis of necrosis of the gastric fundus after blunt abdominal trauma in a 73-year-old man. After a car accident with head-on collision, the patient was stabilised in our emergency room. His femur was treated by internal fixation, his ellbow was stabilised by a fixateur externe. During surgery his status deteriorated. The patient was in need of high dosage of inotrops during the following days. He had a biventricular pacemaker implanted because of ischemic myocardiopathy, and he suffered from renal insufficiency. Over the next days, his haemodynamics improved. A central venous line had to be removed because of ensuing septic fever. The patient complained of upper abdominal pain and nausea. A sonography and computer tomography without contrast medium were performed with negative result. Because of contamination of the central venous line with Staphylococcus epidermidis the pacemaker was evaluated for infection by transoesophageal echocardiography, again without any findings. Because of ongoing fever and positive inflammatory markers a positron emission tomography was indicated, as a contrast examination and a magnetic resonance examination were not feasible because of the renal insufficiency and the pacemaker, respectively. Prophylactic removal of the pacemaker would have been a substantial risk for the patient due to his underlying myocardiopathy. Positron emission tomography showed an increased tracer uptake in the gastric fundus, which turned out to be necrotic by endoscopy. A laparoscopic resection followed, and drainage of an abscess, which had evolved subsequently between stomach and spleen stopped the inflammatory process. This case report demonstrates that positron emission tomography may be an alternative to computer tomography with contrast medium

  14. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  15. ASSESSMENT OF CLINICAL IMAGE QUALITY IN PAEDIATRIC ABDOMINAL CT EXAMINATIONS: DEPENDENCY ON THE LEVEL OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASiR) AND THE TYPE OF CONVOLUTION KERNEL.

    PubMed

    Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Caisander, Håkan; Thilander-Klang, Anne

    2016-06-01

    The purpose of this study was to investigate the effect of different combinations of convolution kernel and the level of Adaptive Statistical iterative Reconstruction (ASiR™) on diagnostic image quality as well as visualisation of anatomical structures in paediatric abdominal computed tomography (CT) examinations. Thirty-five paediatric patients with abdominal pain with non-specified pathology undergoing abdominal CT were included in the study. Transaxial stacks of 5-mm-thick images were retrospectively reconstructed at various ASiR levels, in combination with three convolution kernels. Four paediatric radiologists rated the diagnostic image quality and the delineation of six anatomical structures in a blinded randomised visual grading study. Image quality at a given ASiR level was found to be dependent on the kernel, and a more edge-enhancing kernel benefitted from a higher ASiR level. An ASiR level of 70 % together with the Soft™ or Standard™ kernel was suggested to be the optimal combination for paediatric abdominal CT examinations. PMID:26922785

  16. Refractory Epilepsy-MRI, EEG and CT scan, a Correlative Clinical Study

    PubMed Central

    Nikodijevic, Dijana; Baneva–Dolnenec, Natalija; Petrovska-Cvetkovska, Dragana; Caparoska, Daniela

    2016-01-01

    OBJECTIVES: Refractory epilepsies (RE), as well as, the surgically correctable syndromes, are of great interest, since they affect the very young population of children and adolescents. The early diagnosis and treatment are very important in preventing the psychosocial disability. Therefore MRI and EEG are highly sensitive methods in the diagnosis and localization of epileptogenic focus, but also in pre-surgical evaluation of these patients. The aim of our study is to correlate the imaging findings of EEG, MRI and CT scan in refractory symptomatic epilepsies, and to determine their specificity in detecting the epileptogenic focus. METHODS: The study was prospective with duration of over two years, open-labelled, and involved a group of 37 patients that had been evaluated and diagnosed as refractory epilepsy patients. In the evaluation the type and frequency of seizures were considered, together with the etiologic factors and their association, and finally the risk for developing refractory epilepsy was weighted. EEG and MRI findings and CT scan results were evaluated for their specificity and sensitivity in detecting the epileptogenic focus, and the correlation between them was analyzed. RESULTS: Regarding the type of seizures considered in our study, the patients with PCS (partial complex seizures) dominated, as opposed to those with generalized seizures (GS) (D=1.178, p < 0.05). Positive MRI findings were registered in 28 patients (75.7%). Most of them were patients with hippocampal sclerosis, 12 (42.8%), and also they were found to have the highest risk of developing refractory epilepsy (RE) (Odds ratio = 5.7), and the highest association between the etiologic factor and refractory epilepsy (p < 0.01). In detecting the epileptogenic focus, a significant difference was found (p < 0.01) between MRI and CT scan findings, especially in patients with hippocampal sclerosis and cerebral malformations. There was a strong correlation between the MRI findings and the

  17. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  18. National Survey of Radiation Dose and Image Quality in Adult CT Head Scans in Taiwan

    PubMed Central

    Lin, Chung-Jung; Mok, Greta S. P.; Tsai, Mang-Fen; Tsai, Wei-Ta; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin

    2015-01-01

    Introduction The purpose of the present study was to evaluate the influence of different variables on radiation dose and image quality based on a national database. Materials and Methods Taiwan’s Ministry of Health and Welfare requested all radiology departments to complete a questionnaire for each of their CT scanners. Information gathered included all scanning parameters for CT head scans. For the present analysis, CT machines were divided into three subgroups: single slice CT (Group A); multi-detector CT (MDCT) with 2-64 slices (Group B); and MDCT with more than 64 slices (Group C). Correlations between computed tomography dose index (CTDI) and signal-to-noise ratio (SNR) with cumulated tube rotation number (CTW(n)) and cumulated tube rotation time (CTW(s)), and sub group analyses of CTDI and SNR across the three groups were performed. Results CTDI values demonstrated a weak correlation (r = 0.33) with CTW(n) in Group A. SNR values demonstrated a weak negative correlation (r = -0.46) with CTW(n) in Group C. MDCT with higher slice numbers used more tube potential resulting in higher effective doses. There were both significantly lower CTDI and SNR values in helical mode than in axial mode in Group B, but not Group C. Conclusion CTW(n) and CTW(s) did not influence radiation output. Helical mode is more often used in MDCT and results in both lower CTDI and SNR compared to axial mode in MDCT with less than 64 slices. PMID:26125549

  19. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: A novel approach

    SciTech Connect

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-06-15

    Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed

  20. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  1. Helical CT Angiography of Abdominal Aortic Aneurysms Treated with Suprarenal Stent Grafting: A Pictorial Essay

    SciTech Connect

    Sun Zhonghua

    2003-06-15

    The endovascular repair of abdominal aorticaneurysm (AAA) with stent grafts is rapidly becoming an important alternative to open repair. Suprarenal stent grafting, recently modified from conventional infrarenal stent grafting, is a technique for the purpose of treating patients with inappropriate aneurysm necks.Unlike open repair, the success of endoluminal repair cannot be ascertained by means of direct examination and thus relies on imaging results. The use of conventional angiography for arterial imaging has become less dominant, while helical computed tomography angiography(CTA) has become the imaging modality of choice for both preoperative assessment and postoperative followup after treatment with stent graft implants. There is an increasing likelihood that radiologists will become more and more involved in the procedure of aortic stent grafting and in giving the radiological report on these patients treated with stent grafts. It is necessary for radiologists to be familiar with the imaging findings, including common and uncommon appearances following aortic stent grafting. The purpose of this pictorial essay is to describe and present normal and abnormal imaging appearances following aortic stent grafting based on helical CTA.

  2. The impact of CT scan energy on range calculation in proton therapy planning.

    PubMed

    Grantham, Kevin K; Li, Hua; Zhao, Tianyu; Klein, Eric E

    2015-01-01

    The purpose of this study was to investigate the impact of tube potential (kVp) on the CT number (HU) to proton stopping power ratio (PSPR) conversion. The range and dosimetric change introduced by a mismatch in kVp used for the CT scan and the HU to PSPR table, based on a specific kVp, used to calculate dose are analyzed. Three HU to PSPR curves, corresponding to three kVp settings on the CT scanner, were created. A treatment plan was created for a single beam in a water phantom passing through a wedge-shaped bone heterogeneity. The dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in the position of the distal 90% isodose line was recorded as a function of heterogeneity thickness along the beam path. The dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table was investigated by repeating this procedure for five clinical plans comparing DVH data and dose difference distributions. The HU to PSPR tables diverge for CT numbers greater than 200 HU. In the phantom plan, the divergence of the tables resulted in a difference in range of 1.6 mm per cm of bone in the beam path, for the HU used. For the clinical plans, the dosimetric effect of a kVp mismatch depends on the amount of bone in the beam path and the proximity of OARs to the distal range of the planned beams. A mismatch in kVp between the CT and the HU to PSPR table can introduce inaccuracy in the proton beam range. For dense bone, the measured range difference was approximately 1.6 mm per cm of bone along the beam path. However, the clinical cases analyzed showed a range change of 1 mm or less. Caution is merited when such a mismatch may occur. PMID:26699561

  3. CT Scan Does Not Differentiate Patients with Hepatopulmonary Syndrome from Other Patients with Liver Disease

    PubMed Central

    Prabhudesai, Vikramaditya; Castel, Helene; Gupta, Samir

    2016-01-01

    Background Hepatopulmonary syndrome (HPS) is defined by liver dysfunction, intrapulmonary vascular dilatations, and impaired oxygenation. The gold standard for detection of intrapulmonary vascular dilatations in HPS is contrast echocardiography. However, two small studies have suggested that patients with HPS have larger segmental pulmonary arterial diameters than both normal subjects and normoxemic subjects with cirrhosis, when measured by CT. We sought to compare CT imaging-based pulmonary vasodilatation in patients with HPS, patients with liver dysfunction without HPS, and matching controls on CT imaging. Methods We performed a retrospective cohort study at two quaternary care Canadian HPS centers. We analyzed CT thorax scans in 23 patients with HPS, 29 patients with liver dysfunction without HPS, and 52 gender- and age-matched controls. We measured the artery-bronchus ratios (ABRs) in upper and lower lung zones, calculated the “delta ABR” by subtracting the upper from the lower ABR, compared these measurements between groups, and correlated them with clinically relevant parameters (partial pressure of arterial oxygen, alveolar-arterial oxygen gradient, macroaggregated albumin shunt fraction, and diffusion capacity). We repeated measurements in patients with post-transplant CTs. Results Patients had significantly larger lower zone ABRs and delta ABRs than controls (1.20 +/- 0.19 versus 0.98 +/- 0.10, p<0.01; and 0.12 +/- 0.17 versus -0.06 +/- 0.10, p<0.01, respectively). However, there were no significant differences between liver disease patients with and without HPS, nor any significant correlations between CT measurements and clinically relevant parameters. There were no significant changes in ABRs after liver transplantation (14 patients). Conclusions Basilar segmental artery-bronchus ratios are larger in patients with liver disease than in normal controls, but this vasodilatation is no more severe in patients with HPS. CT does not distinguish patients

  4. Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; de Jong, P. A.; Mets, O. M.; van Ginneken, B.

    2012-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that is characterized by airflow limitation. COPD is clinically diagnosed and monitored using pulmonary function testing (PFT), which measures global inspiration and expiration capabilities of patients and is time-consuming and labor-intensive. It is becoming standard practice to obtain paired inspiration-expiration CT scans of COPD patients. Predicting the PFT results from the CT scans would alleviate the need for PFT testing. It is hypothesized that the change of the trachea during breathing might be an indicator of tracheomalacia in COPD patients and correlate with COPD severity. In this paper, we propose to automatically measure morphological changes in the trachea from paired inspiration and expiration CT scans and investigate the influence on COPD GOLD stage classification. The trachea is automatically segmented and the trachea shape is encoded using the lengths of rays cast from the center of gravity of the trachea. These features are used in a classifier, combined with emphysema scoring, to attempt to classify subjects into their COPD stage. A database of 187 subjects, well distributed over the COPD GOLD stages 0 through 4 was used for this study. The data was randomly divided into training and test set. Using the training scans, a nearest mean classifier was trained to classify the subjects into their correct GOLD stage using either emphysema score, tracheal shape features, or a combination. Combining the proposed trachea shape features with emphysema score, the classification performance into GOLD stages improved with 11% to 51%. In addition, an 80% accuracy was achieved in distinguishing healthy subjects from COPD patients.

  5. Analysis of calibration materials to improve dual-energy CT scanning for petrophysical applications

    SciTech Connect

    Ayyalasomavaiula, K.; McIntyre, D.; Jain, J.; Singh, J.; Yueh, F.

    2011-01-01

    Dual energy CT-scanning is a rapidly emerging imaging technique employed in non-destructive evaluation of various materials. Although CT (Computerized Tomography) has been used for characterizing rocks and visualizing and quantifying multiphase flow through rocks for over 25 years, most of the scanning is done at a voltage setting above 100 kV for taking advantage of the Compton scattering (CS) effect, which responds to density changes. Below 100 kV the photoelectric effect (PE) is dominant which responds to the effective atomic numbers (Zeff), which is directly related to the photo electric factor. Using the combination of the two effects helps in better characterization of reservoir rocks. The most common technique for dual energy CT-scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. This work combines ICP-OES (inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectroscopy) analytical techniques to quantify the type and level of impurities in a set of commercially purchased calibration standards used in dual-energy scanning. The Zeff data on the calibration standards with and without impurity data were calculated using the weighted linear combination of the various elements present and used in calculating Zeff using the dual energy technique. Results show 2 to 5% difference in predicted Zeff values which may affect the corresponding log calibrations. The effect that these techniques have on improving material identification data is discussed and analyzed. The workflow developed in this paper will translate to a more accurate material identification estimates for unknown samples and improve calibration of well logging tools.

  6. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    PubMed Central

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2014-01-01

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  7. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    SciTech Connect

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob; Liu, Tianyu; Xu, X. George

    2014-09-15

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  8. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans.

    PubMed

    Platero, Carlos; Tobar, M Carmen

    2014-01-01

    An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219

  9. A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans

    PubMed Central

    2014-01-01

    An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219

  10. Regarding the Credibility of Data Showing an Alleged Association of Cancer with Radiation from CT Scans.

    PubMed

    Socol, Yehoshua; Welsh, James S

    2016-02-01

    Computed tomography (CT) scans are of high clinical value as a diagnostic technique, and new applications continue to be identified. However, their application is challenged by emerging concerns regarding carcinogenesis from their radiation. Recent articles made a significant contribution to the above-mentioned concerns by reporting evidence for direct association of the radiation from CT scans with cancer. Such interpretation of the data has already been criticized; there is the possibility of reverse causation due to confounding factors. Nevertheless, such work has had a high impact, with one article being cited more than 300 times from the Web of Science Core Collection within 2 years. However, the data points on cancer relative risk versus CT dose in that article fit straight lines corresponding to the linear no-threshold hypothesis suspiciously well. Here, by applying rigorous statistical analysis, it is shown that the probability of the fit truly being that good or better is only 2%. The results of such studies therefore appear "too good to be true" and the credibility of their conclusions must be questioned. PMID:25616624

  11. Cervical CT scan-guided epidural blood patches for spontaneous intracranial hypotension.

    PubMed

    Maingard, Julian; Giles, Lauren; Marriott, Mark; Phal, Pramit M

    2015-12-01

    We describe two patients with spontaneous intracranial hypotension (SIH), presenting with postural headache due to C1-C2 cerebrospinal fluid (CSF) leak. Both patients were refractory to lumbar epidural blood patching (EBP), and subsequently underwent successful CT scan-guided cervical EBP. SIH affects approximately 1 in 50,000 patients, with females more frequently affected. Its associated features are variable, and as such, misdiagnosis is common. Therefore, imaging plays an important role in the diagnostic workup of SIH and can include MRI of the brain and spine, CT myelogram, and radionuclide cisternography. In patients with an established diagnosis and confirmed CSF leak, symptoms will usually resolve with conservative management. However, in a select subgroup of patients, the symptoms are refractory to medical management and require more invasive therapies. In patients with cervical leaks, EBP in the cervical region is an effective management approach, either in close proximity to, or directly targeting a dural defect. CT scan-guided cervical EBP is an effective treatment approach in refractory SIH, and should be considered in those patients who are refractory to conservative management. PMID:26209918

  12. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    SciTech Connect

    Thomas, D; Neylon, J; Dou, T; Jani, S; Lamb, J; Low, D; Tan, J

    2014-06-15

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motion model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed

  13. Classification of visual signs in abdominal CT image figures in biomedical literature

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Antani, Sameer; Long, L. Rodney; Demner-Fushman, Dina; Thoma, George R.

    2014-03-01

    "Imaging signs" are a critical part of radiology's language. They not only are important for conveying diagnosis, but may also aid in indexing radiology literature and retrieving relevant cases and images. Here we report our work towards representing and categorizing imaging signs of abdominal abnormalities in figures in the radiology literature. Given a region-of-interest (ROI) from a figure, our goal was to assign a correct imaging sign label to that ROI from the following seven: accordion, comb, ring, sandwich, small bowel feces, target, or whirl. As training and test data, we created our own "gold standard" dataset of regions containing imaging signs. We computed 2997 feature attributes to represent imaging sign characteristics for each ROI in training and test sets. Following feature selection they were reduced to 70 attributes and were input to a Support Vector Machine classifier. We applied image-enhancement methods to compensate for variable quality of the images in radiology articles. In particular we developed a method for automatic detection and removal of pointers/markers (arrows, arrowheads, and asterisk symbols) on the images. These pointers/markers are valuable for approximately locating ROIs; however, they degrade the classification because they are often (partially) included in the training ROIs. On a test set of 283 ROIs, our method achieved an overall accuracy of 70% in labeling the seven signs, which we believe is a promising result for using imaging signs to search/retrieve radiology literature. This work is also potentially valuable for the creation of a visual ontology of biomedical imaging entities.

  14. Extra-abdominal lumbar abscesses caused by retroperitoneal gastrointestinal perforations through the lumbar triangle of Petit: report of two cases diagnosed by CT.

    PubMed

    Coulier, Bruno; Gogoase, Monica; Ramboux, Adrien; Pierard, Frederic

    2012-12-01

    Extra-abdominal abscesses of gastrointestinal origin developing within the lumbar subcutaneous tissues are extremely rare. We report two cases of retroperitoneal bowel perforation presenting spontaneously at admission with a lumbar abscess trespassing the lumbar triangle of Petit, a classical "locus of minus resistencia" of the posterior abdominal wall. The first case was caused by perforation of a retrocecal appendicitis--being concomitantly responsible of a necrotizing fasciitis of the thigh--and in the second case perforation was caused by left colonic diverticulitis. In both cases, the full diagnosis was made with abdominal CT. The patients were threatened by a two-step surgical approach comprising a direct posterior percutaneous drainage of the abscess followed by classical laparotomy. PMID:22270582

  15. Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study

    PubMed Central

    Talei Franzesi, C; Fior, D; Bonaffini, P A; Minutolo, O; Sironi, S

    2015-01-01

    Objective: To assess the diagnostic quality of low dose (100 kV) CT angiography (CTA), by using ultra-low contrast medium volume (30 ml), for thoracic and abdominal aorta evaluation. Methods: 67 patients with thoracic or abdominal vascular disease underwent multidetector CT study using a 256 slice scanner, with low dose radiation protocol (automated tube current modulation, 100 kV) and low contrast medium volume (30 ml; 4 ml s−1). Density measurements were performed on ascending, arch, descending thoracic aorta, anonymous branch, abdominal aorta, and renal and common iliac arteries. Radiation dose exposure [dose–length product (DLP)] was calculated. A control group of 35 patients with thoracic or abdominal vascular disease were evaluated with standard CTA protocol (automated tube current modulation, 120 kV; contrast medium, 80 ml). Results: In all patients, we correctly visualized and evaluated main branches of the thoracic and abdominal aorta. No difference in density measurements was achieved between low tube voltage protocol (mean attenuation value of thoracic aorta, 304 HU; abdominal, 343 HU; renal arteries, 331 HU) and control group (mean attenuation value of thoracic aorta, 320 HU; abdominal, 339; renal arteries, 303 HU). Radiation dose exposure in low tube voltage protocol was significantly different between thoracic and abdominal low tube voltage studies (490 and 324 DLP, respectively) and the control group (thoracic DLP, 1032; abdomen, DLP 1078). Conclusion: Low-tube-voltage protocol may provide a diagnostic performance comparable with that of the standard protocol, decreasing radiation dose exposure and contrast material volume amount. Advances in knowledge: Low-tube-voltage-setting protocol combined with ultra-low contrast agent volume (30 ml), by using new multidetector-row CT scanners, represents a feasible diagnostic tool to significantly reduce the radiation dose delivered to patients and to preserve renal function

  16. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  17. CT scan diagnosis of hepatic adenoma in a case of von Gierke disease

    PubMed Central

    Daga, Bipin Valchandji; Shah, Vaibhav R; More, Rahul B

    2012-01-01

    Hepatic adenoma is a well-defined, benign, solitary tumor of the liver. In individuals with glycogen storage disease I, adenoma tends to occur at a relatively younger age and can be multiple (adenomatosis). Imaging plays a pivotal role in diagnosing hepatic adenoma and in differentiating adenoma from other focal hepatic lesions. Especially in patients with von Gierke disease, in addition to the associated hepatomegaly caused by steatohepatitis and the diffusely reduced attenuation of the liver parenchyma seen on CT, there may be more than one hepatic adenoma in up to 40% of patients. Malignant degeneration of hepatic adenoma into hepatocellular carcinoma can occur and hence imaging is important for prompt diagnosis of adenoma and its complications. In this case report, we present a case of liver adenoma diagnosed by CT scan in a patient with von Gierke disease. PMID:22623817

  18. Initial experience with optical-CT scanning of RadBall Dosimeters.

    PubMed

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-12-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  19. Initial experience with optical-CT scanning of RadBall Dosimeters

    PubMed Central

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-01-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  20. Initial experience with optical-CT scanning of RadBall Dosimeters

    NASA Astrophysics Data System (ADS)

    Oldham, M.; Clift, C.; Thomas, A.; Farfan, E.; Foley, T.; Jannik, T.; Adamovics J.; Holmes, C.; Stanley, S.

    2010-11-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments.

  1. Construction and analysis of a head CT-scan database for craniofacial reconstruction.

    PubMed

    Tilotta, Françoise; Richard, Frédéric; Glaunès, Joan; Berar, Maxime; Gey, Servane; Verdeille, Stéphane; Rozenholc, Yves; Gaudy, J F

    2009-10-30

    This paper is devoted to the construction of a complete database which is intended to improve the implementation and the evaluation of automated facial reconstruction. This growing database is currently composed of 85 head CT-scans of healthy European subjects aged 20-65 years old. It also includes the triangulated surfaces of the face and the skull of each subject. These surfaces are extracted from CT-scans using an original combination of image-processing techniques which are presented in the paper. Besides, a set of 39 referenced anatomical skull landmarks were located manually on each scan. Using the geometrical information provided by triangulated surfaces, we compute facial soft-tissue depths at each known landmark positions. We report the average thickness values at each landmark and compare our measures to those of the traditional charts of [J. Rhine, C.E. Moore, Facial Tissue Thickness of American Caucasoïds, Maxwell Museum of Anthropology, Albuquerque, New Mexico, 1982] and of several recent in vivo studies [M.H. Manhein, G.A. Listi, R.E. Barsley, et al., In vivo facial tissue depth measurements for children and adults, Journal of Forensic Sciences 45 (1) (2000) 48-60; S. De Greef, P. Claes, D. Vandermeulen, et al., Large-scale in vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction, Forensic Science International 159S (2006) S126-S146; R. Helmer, Schödelidentifizierung durch elektronische bildmischung, Kriminalistik Verlag GmbH, Heidelberg, 1984]. PMID:19665327

  2. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans

    PubMed Central

    Reda, Fitsum A.; Noble, Jack H.; Rivas, Alejandro; McRackan, Theodore R.; Labadie, Robert F.; Dawant, Benoit M.

    2011-01-01

    Purpose: Cochlear implant surgery is used to implant an electrode array in the cochlea to treat hearing loss. The authors recently introduced a minimally invasive image-guided technique termed percutaneous cochlear implantation. This approach achieves access to the cochlea by drilling a single linear channel from the outer skull into the cochlea via the facial recess, a region bounded by the facial nerve and chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The goal of this work is to automatically segment the facial nerve and chorda tympani in pediatric CT scans. Methods: The authors have proposed an automatic technique to achieve the segmentation task in adult patients that relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work, the authors attempted to use the same method to segment the structures in pediatric scans. However, the authors learned that substantial differences exist between the anatomy of children and that of adults, which led to poor segmentation results when an adult model is used to segment a pediatric volume. Therefore, the authors built a new model for pediatric cases and used it to segment pediatric scans. Once this new model was built, the authors employed the same segmentation method used for adults with algorithm parameters that were optimized for pediatric anatomy. Results: A validation experiment was conducted on 10 CT scans in which manually segmented structures were compared to automatically segmented structures. The mean, standard deviation, median, and maximum segmentation errors were 0.23, 0.17, 0.18, and 1.27 mm, respectively. Conclusions: The results indicate that accurate segmentation of the facial nerve and chorda tympani in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed

  3. Optimal scan time for evaluation of parathyroid adenoma with [18F]-fluorocholine PET/CT

    PubMed Central

    Rep, Sebastijan; Lezaic, Luka; Kocjan, Tomaz; Pfeifer, Marija; Sever, Mojca Jensterle; Simoncic, Urban; Tomse, Petra; Hocevar, Marko

    2015-01-01

    Background Parathyroid adenomas, the most common cause of primary hyperparathyroidism, are benign tumours which autonomously produce and secrete parathyroid hormone. [18F]-fluorocholine (FCH), PET marker of cellular proliferation, was recently demonstrated to accumulate in lesions representing enlarged parathyroid tissue; however, the optimal time to perform FCH PET/CT after FCH administration is not known. The aim of this study was to determine the optimal scan time of FCH PET/CT in patients with primary hyperparathyroidism. Patients and methods. 43 patients with primary hyperparathyroidism were enrolled in this study. A triple-phase PET/CT imaging was performed five minutes, one and two hours after the administration of FCH. Regions of interest (ROI) were placed in lesions representing enlarged parathyroid tissue and thyroid tissue. Standardized uptake value (SUVmean), retention index and lesion contrast for parathyroid and thyroid tissue were calculated. Results Accumulation of FCH was higher in lesions representing enlarged parathyroid tissue in comparison to the thyroid tissue with significantly higher SUVmean in the second and in the third phase (p < 0.0001). Average retention index decreased significantly between the first and the second phase and increased significantly between the second and the third phase in lesions representing enlarged parathyroid tissue and decreased significantly over all three phases in thyroid tissue (p< 0.0001). The lesion contrast of lesions representing enlarged parathyroid tissue and thyroid tissue was significantly better in the second and the third phase compared to the first phase (p < 0.05). Conclusions According to the results the optimal scan time of FCH PET/CT for localization of lesions representing enlarged parathyroid tissue is one hour after administration of the FCH. PMID:26834518

  4. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  5. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  6. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    SciTech Connect

    Aristophanous, Michalis; Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B.

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  7. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  8. Influence of scan setting selections on root canal visibility with cone beam CT

    PubMed Central

    Hassan, BA; Payam, J; Juyanda, B; van der Stelt, P; Wesselink, PR

    2012-01-01

    Objectives The aim of this study was to assess the influence of scan setting selection, including field of view (FOV) ranging from small to large, number of projections and scan modes on the visibility of the root canal with cone beam CT (CBCT). Methods One human mandible cadaver was scanned with CBCT (Accuitomo 170; J Morita MPG Corp., Kyoto, Japan) using six different FOVs (4×4 cm, 6×6 cm, 8×8 cm, 10×10 cm, 14×10 cm and 17×12 cm) with either 360 or 180 projections in standard and high resolution. The right canine was selected for evaluation. Ten observers independently assessed the visibility of the canal space and overall image quality on a five-point scale. Results The results indicate that both selections of FOV and number of projections have significant influence on root canal visibility (p = 0.0001), whereas scan mode, whether standard or high resolution, was less relevant (p = 0.34). Conclusions The smallest FOV available should always be used for endodontic applications, and it is not recommended to reduce the number of projections to 180. Using the standard scan mode instead of high resolution does not negatively influence the visibility of the root canal space and is therefore recommended. PMID:23166361

  9. Metastatic Renal Cell Carcinoma in the Thyroid Gland and Pancreas Showing Uptake on 68Ga DOTATATE PET/CT Scan.

    PubMed

    Kanthan, Gowri L; Schembri, Geoffrey Paul; Samra, Jaswinder; Roach, Paul; Hsiao, Edward

    2016-07-01

    Ga DOTATATE PET/CT is an imaging technique used in the diagnosis of neuroendocrine tumors. We report a case of 66-year-old woman with a history of surgically removed renal cell carcinoma who presented for a DOTATATE PET/CT scan to characterize a newly diagnosed pancreatic lesion. DOTATATE-avid lesions were identified in the thyroid gland and pancreas. Subsequent biopsy confirmed the diagnosis of metastatic renal cell carcinoma at both sites. It is important to be aware that tumors other than neuroendocrine tumors may also show uptake on DOTATATE PET/CT scan. A biopsy may be required if lesions are identified at atypical sites. PMID:27055137

  10. Muscle CT scan findings in McLeod syndrome and chorea-acanthocytosis.

    PubMed

    Ishikawa, S; Tachibana, N; Tabata, K I; Fujimori, N; Hayashi, R I; Takahashi, J; Ikeda, S I; Hanyu, N

    2000-07-01

    Computed tomography (CT) scans of lower leg muscles reveal a selective pattern of fat infiltration in the posterior compartment with spared gracilis, semitendinosus, and the lateral head of the gastrocnemius in both McLeod syndrome and chorea-acanthocytosis, which are disorders characterized by the presence of circulating acanthocytes. The selectivity of affected muscles indicates that late onset and slowly progressive muscular atrophy in both diseases could be a consequence of primary myopathy. Asymmetrical muscle involvement may be seen during the process of degeneration only in McLeod syndrome, however, and may be helpful in distinguishing this disease from chorea-acanthocytosis. PMID:10883007

  11. An Adaptive-Tabu GA for Registration of CT and Surface Laser Scan.

    PubMed

    Lee, Jiann-Der; Huang, Jau-Hua; Huang, Chung-Hsien; Liu, Li-Chang

    2005-01-01

    An adaptive-tabu GA (Genetic Algorithm) method is proposed to improve some traditional GA methods in the registration of computer tomography (CT) and surface laser scan. In this method, the adaptive memory structure and search strategy of Tabu Search (TS) with the modified chromosome crossover and adaptive mutation are proposed to increase the convergence speed and accuracy of the fitness function. This registration method can be used on non-fiducial stereo-tactic brain surgeries to assist surgeons to diagnose and treat brain diseases. PMID:17280970

  12. Reproducibilty test of ferrous xylenol orange gel dose response with optical cone beam CT scanning

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Battista, J.

    2004-01-01

    Our previous studies of ferrous xylenol orange gelatin gel have revealed a spatial dependence to the dose response of samples contained in 10 cm diameter cylinders. Dose response is defined as change in optical attenuation coefficient divided by the dose (units cm-1 Gy-1). This set of experiments was conducted to determine the reproducibility of our preparation, irradiation and full 3D optical cone beam CT scanning. The data provided an internal check of a larger storage time-dose response dependence study.

  13. Preliminary evaluation of optical CT scanning versus MRI for nPAG gel dosimetry: The Ghent experience

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; DeDeene, Yves

    2009-05-01

    The aim of this study was to evaluate fast laser-scanning optical CT versus MRI for an nPAG gel dosimeter in terms of accuracy and precision. Three small cylindrical volumetric gel phantoms were fabricated and irradiated with photon beams. The gel dosimeters were scanned with an MR scanner and an in house developed laser scanning optical CT scanner. A comparison between MRI and optical CT scanning was performed based on the reconstructed images. Preliminary results show a fair correspondence in the MRI acquired and optical CT acquired dose maps. Still, ringing artifacts contaminate the reconstructed optical CT images. These may be related to sub-pixel misalignments between the blank projection and the acquired transmission projection of the gel phantom. Another artifact may be caused by refraction near the edges of the field. Further optimisation of our optical CT scanner is required to obtain the same accuracy as with MRI. To make a comparison between the two imaging modalities in terms of precision, the intrinsic dose precision on readout (IPD) was calculated which is independent of spatial resolution and acquisition time. It is shown that optical CT has a better intrinsic dose precision.

  14. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  15. Diagnostic value of CT compared to ultrasound in the evaluation of acute abdominal pain in children younger than 10 years old.

    PubMed

    Simanovsky, Natalia; Dola, Tamar; Hiller, Nurith

    2016-02-01

    To assess the diagnostic value of ultrasound compared to CT in evaluating acute abdominal pain of different causes in children 10 years of age and under, hospital records and imaging files of 4052 patients under age of 10 who had imaging for abdominal pain were reviewed. One-hundred-thirty-two patients (3 %), (74 males/58 females) who underwent ultrasound and CT within 24 h were divided by age: group I, ages 0-48 months (25 patients); group II, 49-84 months (53 patients); and group III, 85-120 months (54 patients). Diagnoses at ultrasound, CT, and discharge were compared. Cases of a change in diagnosis following CT and impact of the changed diagnosis on patient management were assessed. Non-diagnostic ultrasound or a diagnostic conundrum was present in a small percentage (3 %) of our patients. In the group of patients imaged with two modalities, CT changed the diagnosis in 73/132 patients (55.3 %). Patient management changed in 63/132 patients (47.7 %). CT changed the diagnosis in 46/64 patients with surgical conditions (71.8 %, p < 0.001). Among patients with surgical conditions, the difference between ultrasonography (US) and CT diagnoses was significant in groups 2 (p = 0.046) and 3 (p =  .001). The impact of the change in diagnosis in surgical patients imaged with two modalities was significant in the group as a whole and in each age group separately. Non-diagnostic or equivocal US in a small percentage of patients is probably sufficient to justify the additional radiation burden. PMID:26453370

  16. Comparison of diagnostic performance of CT and MRI for abdominal staging of pediatric renal tumors: a report from the Children's Oncology Group

    PubMed Central

    Servaes, Sabah; Naranjo, Arlene; Geller, James I.; Ehrlich, Peter F.; Gow, Kenneth W.; Perlman, Elizabeth J.; Dome, Jeffrey S.; Gratias, Eric; Mullen, Elizabeth A.

    2015-01-01

    Background CT and MRI are both used for abdominal staging of pediatric renal tumors. The diagnostic performance of the two modalities for local and regional staging of renal tumors has not been systematically evaluated. Objective To compare the diagnostic performance of CT and MRI for local staging of pediatric renal tumors. Materials and methods The study population was derived from the AREN03B2 study of the Children's Oncology Group. Baseline abdominal imaging performed with both CT and MRI within 30 days of nephrectomy was available for retrospective review in 82 renal tumor cases. Each case was evaluated for capsular penetration, lymph node metastasis, tumor thrombus, preoperative tumor rupture, and synchronous contralateral lesions. The surgical and pathological findings at central review were the reference standard. Results The sensitivity of CT and MRI for detecting capsular penetration was 68.6% and 62.9%, respectively (P=0.73), while specificity was 86.5% and 83.8% (P=1.0). The sensitivity of CT and MRI for detecting lymph node metastasis was 76.5% and 52.9% (P=0.22), and specificity was 90.4% and 92.3% (P=1.0). Synchronous contralateral lesions were identified by CT in 4/9 cases and by MRI in 7/9 cases. Conclusion CT and MRI have similar diagnostic performance for detection of lymph node metastasis and capsular penetration. MR detected more contralateral synchronous lesions; however these were present in a very small number of cases. Either modality can be used for initial loco–regional staging of pediatric renal tumors. PMID:25135711

  17. Implemented myeloma management with whole-body low-dose CT scan: a real life experience.

    PubMed

    Mangiacavalli, Silvia; Pezzatti, Sara; Rossini, Fausto; Doni, Elisa; Cocito, Federica; Bolis, Silvia; Corso, Alessandro

    2016-07-01

    A total of 318 consecutive myeloma patients underwent whole-body low-dose CT scan (WBLDCT) at baseline and during follow-up as a radiological assessment of lytic lesions in place of skeletal X-ray survey. After WBLDCT baseline assessment, 60% had bone involvement. The presence of lytic lesions represented the only met CRAB (hyperCalcaemia, Renal insufficiency, Anaemia, Bone lesions) criteria in 29% of patients. Patients presenting with extramedullary masses were 10%. Radiological progression was documented in 9% of the population with available follow-up. Additional pathological incidental findings were detected in 28 patients (14.5%), most located in the chest region (68%). In conclusion, our real-life data shows that WBLDCT scan represents a reliable imaging tool for decision-making process for multiple myeloma management in different disease phases, providing significant additional information on the presence of soft tissues plasmacytomas detection as well as the presence of pathological incidental findings. PMID:26788613

  18. Progressive massive fibrosis developing after brief coal dust exposure: evaluation with CT scanning and radionuclide angiocardiography.

    PubMed

    Williams, T J; Raval, B; Ahmad, D

    1980-01-01

    Two patients are described who developed progressive massive fibrosis (PMF) after exposure to coal dust for only four and seven years, respectively, in Belgian coal mines in the post-war period. It seems likely from consideration of epidemiological data that these men were exposed to massive concentrations of coal dust during their time in the mines. In one patient in a computerized tomography scan clearly showed the extent of the PMF and brought out the degree of calcification in the center of the masses. Radionuclide angiocardiographic evaluation showed depressed right ventricular function which is probably a result of pulmonary hypertension, and also showed marked distortion of the pulmonary vascular bed. It is believed that these are the first reported instances of CT scanning and radionuclide angiocardiography in this condition. PMID:7354409

  19. Abdominal trauma. Emphasis on computed tomography.

    PubMed

    Raptopoulos, V

    1994-09-01

    CT scans have been the champion in the diagnosis and management of abdominal injuries, and their use has decreased the number of negative exploratory laparotomies. Traditional areas for the use of CT scans include the assessment of injuries to the spleen and the liver and to signs of organ rupture into the peritoneal cavity. New technologic advances and increased experience have expanded the value of this modality to less than hemodynamically stable patients as well as to less common and more difficult to diagnose injuries of the pancreas, bowel, and the mesentery. PMID:8085007

  20. Abdominal exploration

    MedlinePlus

    ... these are aspirin, ibuprofen (Advil, Motrin), vitamin E, warfarin (Coumadin), clopidogrel (Plavix), or ticlopidine (Ticlid). Ask your ... Biopsy Cancer Chronic pancreatitis CT scan Diverticulitis Ectopic pregnancy Endometriosis Hodgkin lymphoma Pelvic inflammatory disease (PID) Peritonitis - ...

  1. Computerized lung nodule detection on screening CT scans: performance on juxta-pleural and internal nodules

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Zhou, Chuan; Wei, Jun

    2006-03-01

    We are developing a computer-aided detection (CAD) system for lung nodules in thoracic CT volumes. Our CAD system includes an adaptive 3D pre-screening algorithm to segment suspicious objects, and a false-positive (FP) reduction stage to classify the segmented objects as true nodules or normal lung structures. We found that the effectiveness of the FP reduction stage was limited by the different characteristics of the objects in the internal and the juxta-pleural (JP) regions. The purpose of this study was to evaluate object characteristics in the internal and JP regions of a lung CT scan, and to develop different FP reduction classifiers for JP and internal objects. Our FP reduction technique utilized shape, grayscale, and gradient features, as well as the scores of a newly-developed neural network trained on the eigenvalues of the Hessian matrix in a volume of interest containing the suspicious object. We designed an algorithm to automatically label the objects as internal or JP. Based on a training set of 75 CT scans containing internal and JP nodules, two FP classifiers were trained separately for objects in the two types of lung regions. The system performance was evaluated on an independent test set of 27 low dose screening scans. An experienced chest radiologist identified 64 solid nodules (mean diameter: 5.3 mm, range: 3.0-12.9 mm) on the test cases, of which 33 were internal and 31 were JP. Our adaptive 3D prescreening algorithm detected 28 internal and 29 JP nodules. At 80% sensitivity, the average number of FPs was 3.9 and 9.7 in the internal and JP regions per scan, respectively. In comparison, a classifier designed to work on both types of nodules had an average of 29.4 FPs per scan at the same sensitivity. Our results indicate that it is more effective to use two different classifiers for JP and internal nodules because of their different characteristics. FPs in the JP region were more difficult to distinguish from true nodules. Further investigation

  2. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images

    PubMed Central

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2015-01-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF’s neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications. PMID:26561284

  3. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters.

    PubMed

    Xu, Y; Wuu, Cheng-Shie; Maryanski, Marek J

    2010-02-01

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4 x 4 cm2 photon fields or 6 x 6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6 x 6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752 +/- 3%, 0.0756 +/- 3%, 0.0767 +/- 3%, and 0.0759 +/- 3% cm(-1) Gy(-1)) and the PDD matching methods (0.0768 +/- 3% and 0.0761 +/- 3% cm(-1) Gy(-1)) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6 x 6 cm2 electron field. Three-dimensional dose distributions from the gel measurement

  4. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  5. A knowledge-based system paradigm for automatic interpretation of CT scans.

    PubMed

    Natarajan, K; Cawley, M G; Newell, J A

    1991-01-01

    The interpretation of X-ray CT scans is a task which relies on specialized medical expertise, comprising anatomical, modality-dependent, non-visual and radiological knowledge. Most medical imaging techniques generate a single scan or sequence of two-dimensional scans. The radiologist's experience is gained by interpreting two-dimensional scans. The more complex three-dimensional anatomical knowledge becomes significant only when non-standard slice orientations are used. Hence, implicit in the radiologist's knowledge is the appearance of anatomical structures in standard two-dimensional planes, transverse, sagittal and coronal. That is, position with respect to both a coordinate reference system and other structures; intensity ranges for tissue types; contrast between structures; and size within the slices. Further to this, neurological landmarking is used to establish points of reference, i.e. more easily identifiable structures are first found and subsequent hypotheses are formed. With this in mind we have developed a knowledge-based system paradigm that partitions an image by applying the domain-dependent knowledge necessary (1) to set constraints on region-based segmentation and (2) to make explicit the expectation of the appearance of the anatomy under the imaging modality for use in the region grouping phase. This paradigm affords both expectation- and event-driven segmentation by representing grouping knowledge as production rules. PMID:1921561

  6. Risk stratification of non-contrast CT beyond the coronary calcium scan

    PubMed Central

    Madaj, Paul; Budoff, Matthew J.

    2014-01-01

    Coronary artery calcification (CAC) is a well-known marker for coronary artery disease and has important prognostic implications. CAC is able to provide clinicians with a reliable source of information related to cardiovascular atherosclerosis, which carries incremental information beyond Framingham risk. However, non-contrast scans of the heart provide additional information beyond the Agatston score. These studies are also able to measure various sources of fat, including intrathoracic (eg, pericardial or epicardial) and hepatic, both of which are thought to be metabolically active and linked to increased incidence of subclinical atherosclerosis as well as increased prevalence of type 2 diabetes. Testing for CAC is also useful in identifying extracoronary sources of calcification. Specifically, aortic valve calcification, mitral annular calcification, and thoracic aortic calcium (TAC) provide additional risk stratification information for cardiovascular events. Finally, scanning for CAC is able to evaluate myocardial scaring due to myocardial infarcts, which may also add incremental prognostic information. To ensure the benefits outweigh the risks of a scanning for CAC for an appropriately selected asymptomatic patient, the full utility of the scan should be realized. This review describes the current state of the art interpretation of non-contrast cardiac CT, which clinically should go well beyond coronary artery Agatston scoring alone. PMID:22981856

  7. Evaluation of image and dose according to I-dose technique when performing a CT scan

    NASA Astrophysics Data System (ADS)

    Ryu, S. W.; Lee, H. K.; Cho, J. H.

    2015-06-01

    In this study, we applied the iterative reconstruction technique to improve image quality (I-dose) and evaluated its usability by analyzing the quality of the resulting image and evaluating the dose. To perform the scans, we fixed the uniform module (CTP 486's section) 4 on the table of the computed tomography (CT) device with the American association of physicists in medicine (AAPM) phantom and located it in the center where the X-rays could be generated by using a razor beam. Then, we set up the conditions of 120 kilovoltage peak (kVp), 150 milliampere second (mAs), collimation 4 × 0.625 mm, and a standard YA (Y-Sharp) filter. Next, we formed two groups: Group A in which I-dose was not applied and Group B in which I-dose was applied. According to the rod in the middle, after fixing the location of (A) at 12 o'clock, (B) at 3 o'clock, (C) at 6 o'clock, and (D) at 9 o'clock to evaluate the image quality, the CT number was measured and the noise level was analyzed. Using the AAPM phantom with doses of 50, 100, 200, 250, and 300 mAs by 80, 100, and 120 kVp, a dose analysis was performed. After scanning, the CT numbers and noise level were measured 20 times as a function of the I-dose levels (1-7). After applying I-dose at 6, 9, 12, and 3 o'clock, when a higher I-dose was applied, a lower noise level was measured. As a result, it was found that when applying I-dose to the AAPM phantom, the higher the level of I-dose, the lower the level of noise. When applying I-dose, the dose can be reduced by 60%. When I-dose is applied when taking CT scans in a clinical study, it is possible to lower the dose and lower the noise level.

  8. The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis.

    PubMed

    Sandyk, R; Awerbuch, G I

    1994-05-01

    Calcification is a known morphological feature of the pineal gland. The mechanisms underlying the development of pineal calcification (PC) are elusive although there is experimental evidence that calcification may be a marker of the past secretory activity of the gland and/or of degeneration. The increased incidence of PC with aging suggests that it may reflect cerebral degenerative changes as well. In a recent Editorial in this Journal it was proposed that the pineal gland is implicated in the pathogenesis of multiple sclerosis (MS). Cerebral atrophy, which can be demonstrated on CT scan, is a common feature of MS resulting from demyelination and gliosis. If PC is a marker of a cerebral degenerative process, then one would expect a higher incidence of calcification of the gland in patients with cerebral atrophy compared to those without cerebral atrophy. To test this hypothesis, we studied the incidence of PC on CT scan in a cohort of 48 MS patients, 21 of whom had cerebral atrophy. For the purpose of comparison, we also assessed the incidence of choroid plexus calcification (CPC) in relation to cerebral atrophy. PC was found in 42 patients (87.5%) and its incidence in patients with cerebral atrophy was significantly higher compared to the incidence in patients without cerebral atrophy (100% vs. 77.7%; p < .025). In contrast, CPC was unrelated to cerebral atrophy or to PC thus supporting the notion of a specific association between the pineal gland and the pathogenesis of MS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7960471

  9. Auditory profile and high resolution CT scan in autism spectrum disorders children with auditory hypersensitivity.

    PubMed

    Thabet, Elsaeid M; Zaghloul, Hesham S

    2013-08-01

    Autism is the third most common developmental disorder, following mental retardationand cerebral palsy. ASD children have been described more often as beingpreoccupied with or agitated by noise. The aim of this study was to evaluate theprevalence and clinical significance of semicircular canal dehiscence detected on CTimages in ASD children with intolerance to loud sounds in an attempt to find ananatomical correlate with hyperacusis.14 ASD children with auditory hypersensitivity and 15 ASD children without auditoryhypersensitivity as control group age and gender matched were submitted to historytaking, otological examination, tympanometry and acoustic reflex thresholdmeasurement. ABR was done to validate normal peripheral hearing and integrity ofauditory brain stem pathway. High resolution CT scan petrous and temporal boneimaging was performed to all participated children. All participants had normal hearingsensitivity in ABR testing. Absolute ABR peak waves of I and III showed no statisticallysignificant difference between the two groups, while absolute wave V peak andinterpeak latencies I-V and III-V were shorter in duration in study group whencompared to the control group. CT scans revealed SSCD in 4 out of 14 of the studygroup (29%), the dehiscence was bilateral in one patient and unilateral in threepatients. None of control group showed SSCD. In conclusion, we have reportedevidence that apparent hypersensitivity to auditory stimuli (short conduction time in ABR) despite the normal physiological measures in ASD children with auditoryhypersensitivity can provide a clinical clue of a possible SSCD. PMID:23580033

  10. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  11. CT Scan Mapping of Splenic Flexure in Relation to Spleen and its Clinical Implications.

    PubMed

    Saber, Alan A; Dervishaj, Ornela; Aida, Samer S; Christos, Paul J; Dakhel, Mahmoud

    2016-05-01

    Splenic flexure mobilization is a challenging step during left colon resection. The maneuver places the spleen at risk for injury. To minimize this risk, we conducted this study for CT scan mapping of splenic flexure in relation to the spleen. One hundred and sixty CT scans of abdomen were reviewed. The level of the splenic flexure was determined in relation to hilum and lower pole of spleen. These levels were compared with patient demographics. Statistical analysis was performed using Fisher's exact test. The splenic flexure was above the hilum of the spleen in 95 patients (67.86%), at the splenic hilum level in 11 patents (7.88%), between the hilum and lower pole of the spleen in 12 (8.57%), at the lower pole of the spleen in 15 (10.7%) patients and 7 (5%) patients has a splenic flexure that lied below the lower pole of the spleen. Patient demographics showed no statistical significance in regard to splenic flexure location. Splenic flexure lies above the hilum of the spleen in majority of patients. This should be considered as part of operative strategies for left colon resection. PMID:27215722

  12. The use and benefit of stereology in choosing a CT scanning protocol for the lung

    NASA Astrophysics Data System (ADS)

    Markowitz, Zvi; Loew, Murray H.; Reinhardt, Joseph M.

    2005-04-01

    When a patient is examined at different times using different protocols, how can we know whether the observed differences in the area or volume estimate are due to the patient, the protocol, or both? Specifically, we ask what is the smallest difference in lung volume that can be computed reliably when two sets of CT data are acquired by varying the number and thickness of the slices, but while holding constant the in-plane resolution. The accuracy and precision of the total lung volume estimates are calculated based on the principles of stereology using uniform design sampling. Comparisons of the lung volume estimate based on fewer slices using stereological principles are employed. A formal test made of the hypothesis that the use of fewer slices can yield satisfactory precision of the lung estimate. It is known that estimation of lung volume based on CT images is sensitive to the acquisition parameters used during scanning: dose, scan time, number of cross-sectional slices, and slice collimation. Those parameters are very different depending on the lung examination required: routine studies or high-resolution detailed studies. Thus, if different protocols are to be used confidently for volume estimation, it is important to understand the factors that influence volume estimate accuracy and to provide the associated confidence intervals for the measurements.

  13. Imaging of abdominal aortic aneurysms.

    PubMed

    Sparks, Amy R; Johnson, Philip L; Meyer, Mark C

    2002-04-15

    Given the high rate of morbidity and mortality associated with abdominal aortic aneurysms (AAAs), accurate diagnosis and preoperative evaluation are essential for improved patient outcomes. Ultrasonography is the standard method of screening and monitoring AAAs that have not ruptured. In the past, aortography was commonly used for preoperative planning in the repair of AAAs. More recently, computed tomography (CT) has largely replaced older, more invasive methods. Recent advances in CT imaging technology, such as helical CT and CT angiography, offer significant advantages over traditional CT. These methods allow for more rapid scans and can produce three-dimensional images of the AAA and important adjacent vascular structures. Use of endovascular stent grafts has increased recently and is less invasive for the repair of AAAs in selected cases. Aortography and CT angiography can precisely determine the size and surrounding anatomy of the AAA to identify appropriate candidates for the use of endovascular stent grafts. Helical CT and CT angiography represent an exciting future in the preoperative evaluation of AAAs. However, this technology is not the standard of care because of the lack of widespread availability, the cost associated with obtaining new equipment, and the lack of universal protocols necessary for acquisition and reconstruction of these images. PMID:11989632

  14. Automated segmentation and tracking of coronary arteries in ECG-gated cardiac CT scans

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Patel, Smita; Agarwal, Prachi; Hadjiiski, Lubomir M.; Sahiner, Berkman; Wei, Jun; Ge, Jun; Kazerooni, Ella A.

    2008-03-01

    Cardiac CT has been reported to be an effective means for clinical diagnosis of coronary artery plaque disease. We are investigating the feasibility of developing a computer-assisted image analysis (CAA) system to assist radiologist in detection of coronary artery plaque disease in ECG-gated cardiac CT scans. The heart region was first extracted using morphological operations and an adaptive EM thresholding method. Vascular structures in the heart volume were enhanced by 3D multi-scale filtering and analysis of the eigenvalues of Hessian matrices using a vessel enhancement response function specially designed for coronary arteries. The enhanced vascular structures were then segmented by an EM estimation method. Finally, our newly developed 3D rolling balloon vessel tracking method (RBVT) was used to track the segmented coronary arteries. Starting at two manually identified points located at the origins of left and right coronary artery (LCA and RCA), the RBVT method moved a sphere of adaptive diameter along the vessels, tracking the vessels and identifying its branches automatically to generate the left and right coronary arterial trees. Ten cardiac CT scans that contained various degrees of coronary artery diseases were used as test data set for our vessel segmentation and tracking method. Two experienced thoracic radiologists visually examined the computer tracked coronary arteries on a graphical interface to count untracked false-negative (FN) branches (segments). A total of 27 artery segments were identified to be FNs in the 10 cases, ranging from 0 to 6 FN segments in each case. No FN artery segment was found in 2 cases.

  15. Transretroperitoneal CT-guided Embolization of Growing Internal Iliac Artery Aneurysm after Repair of Abdominal Aortic Aneurysm: A Transretroperitoneal Approach with Intramuscular Lidocaine Injection Technique

    SciTech Connect

    Park, Joon Young Kim, Shin Jung Kim, Hyoung Ook; Kim, Yong Tae; Lim, Nam Yeol Kim, Jae Kyu; Chung, Sang Young Choi, Soo Jin Na Lee, Ho Kyun

    2015-02-15

    This study was designed to evaluate the efficacy and safety of CT-guided embolization of internal iliac artery aneurysm (IIAA) after repair of abdominal aortic aneurysm by transretroperitoneal approach using the lidocaine injection technique to iliacus muscle, making window for safe needle path for three patients for whom CT-guided embolization of IIAA was performed by transretroperitoneal approach with intramuscular lidocaine injection technique. Transretroperitoneal access to the IIAA was successful in all three patients. In all three patients, the IIAA was first embolized using microcoils. The aneurysmal sac was then embolized with glue and coils without complication. With a mean follow-up of 7 months, the volume of the IIAAs remained stable without residual endoleaks. Transretroperitoneal CT-guided embolization of IIAA using intramuscular lidocaine injection technique is effective, safe, and results in good outcome.

  16. Imaging Non-Specific Wrist Pain: Interobserver Agreement and Diagnostic Accuracy of SPECT/CT, MRI, CT, Bone Scan and Plain Radiographs

    PubMed Central

    Huellner, Martin W.; Bürkert, Alexander; Strobel, Klaus; Pérez Lago, María del Sol; Werner, Lennart; Hug, Urs; von Wartburg, Urs; Seifert, Burkhardt; Veit-Haibach, Patrick

    2013-01-01

    Purpose Chronic hand and wrist pain is a common clinical issue for orthopaedic surgeons and rheumatologists. The purpose of this study was 1. To analyze the interobserver agreement of SPECT/CT, MRI, CT, bone scan and plain radiographs in patients with non-specific pain of the hand and wrist, and 2. to assess the diagnostic accuracy of these imaging methods in this selected patient population. Materials and Methods Thirty-two consecutive patients with non-specific pain of the hand or wrist were evaluated retrospectively. All patients had been imaged by plain radiographs, planar early-phase imaging (bone scan), late-phase imaging (SPECT/CT including bone scan and CT), and MRI. Two experienced and two inexperienced readers analyzed the images with a standardized read-out protocol. Reading criteria were lesion detection and localisation, type and etiology of the underlying pathology. Diagnostic accuracy and interobserver agreement were determined for all readers and imaging modalities. Results The most accurate modality for experienced readers was SPECT/CT (accuracy 77%), followed by MRI (56%). The best performing, though little accurate modality for inexperienced readers was also SPECT/CT (44%), followed by MRI and bone scan (38% each). The interobserver agreement of experienced readers was generally high in SPECT/CT concerning lesion detection (kappa 0.93, MRI 0.72), localisation (kappa 0.91, MRI 0.75) and etiology (kappa 0.85, MRI 0.74), while MRI yielded better results on typification of lesions (kappa 0.75, SPECT/CT 0.69). There was poor agreement between experienced and inexperienced readers in SPECT/CT and MRI. Conclusions SPECT/CT proved to be the most helpful imaging modality in patients with non-specific wrist pain. The method was found reliable, providing high interobserver agreement, being outperformed by MRI only concerning the typification of lesions. We believe it is beneficial to integrate SPECT/CT into the diagnostic imaging algorithm of chronic wrist

  17. CT scanning carcases has no detrimental effect on the colour stability of M. longissimus dorsi from beef and sheep.

    PubMed

    Jose, C G; Pethick, D W; Jacob, R H; Gardner, G E

    2009-01-01

    This study investigated the effect of computerised tomography imaging (CT scan), for carcase composition determination, on the oxy/metmyoglobin ratio, hue and L(∗), a(∗) and b(∗) scores of M. longissimus dorsi from both beef and lamb. Beef and lamb M. longissimus dorsi were divided into four proportions and randomly allocated to one of the following treatments; CT 30 day aged; CT fresh; control 30 day aged; control fresh. Colour measurements were made over a 96h retail display period. CT scan had little effect on the colour of both lamb and beef across all colour parameters. There was a small negative affect observed in CT aged samples (P<0.05) for ratio, hue, a(∗) and b(∗) values, however these differences were so small that they are unlikely to impact upon the commercial shelf-life of the product. Other factors such as aging, species and vitamin E concentration play a much greater role in colour stability than CT. Aged M. longissimus dorsi clearly had a worse colour stability than the fresh packaged samples, while beef was a lot more colour stable than lamb. It appears that CT scan for the purpose of body composition determination will not have any commercially relevant impact on colour stability of both beef and lamb. PMID:22063980

  18. [Exposure to CT scans in childhood and long-term cancer risk: A review of epidemiological studies].

    PubMed

    Baysson, Hélène; Journy, Neige; Roué, Tristan; Ducou-Lepointe, Hubert; Etard, Cécile; Bernier, Marie-Odile

    2016-02-01

    Amongst medical exams requiring ionizing radiation, computed tomography (CT) scans are used more frequently, including in children. These CT examinations are associated with absorbed doses that are much higher than those associated with conventional radiology. In comparison to adults, children have a greater sensitivity to radiation and a longer life span with more years at cancer risks. Five epidemiological studies on cancer risks after CT scan exposure during childhood were published between 2012 and 2015. The results of these studies are consistent and show an increase of cancer risks in children who have been exposed to several CT scans. However, methodological limits due to indication bias, retrospective assessment of radiation exposure from CT scans and lack of statistical power are to be taken into consideration. International projects such as EPI-CT (Epidemiological study to quantify risks for pediatric computerized tomography and to optimize dose), with a focus on dosimetric reconstruction and minimization of bias will provide more precise results. In the meantime, available results reinforce the necessity of justification and optimization of doses. PMID:26782078

  19. Abdominal MRI scan

    MedlinePlus

    ... an imaging test that uses powerful magnets and radio waves to create pictures of the inside of the ... No side effects from the magnetic fields and radio waves have been reported. The most common type of ...

  20. NOTE: Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake

    2007-08-01

    This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.

  1. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    SciTech Connect

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-06-15

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  2. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  3. Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom

    PubMed Central

    Kim, K. P.; Berrington de González, A.; Pearce, M. S.; Salotti, J. A.; Parker, L.; McHugh, K.; Craft, A. W.; Lee, C.

    2012-01-01

    Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240 000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The

  4. Emphysema in silica- and asbestos-exposed workers seeking compensation. A CT scan study.

    PubMed

    Bégin, R; Filion, R; Ostiguy, G

    1995-09-01

    It has been established that coal pneumoconiosis and confluent silicosis are associated with emphysematous changes in the lungs. In the present study, we addressed the concept of emphysema in simple silicosis and asbestosis and in workers exposed to these minerals without the pneumoconiosis. The study was done on 207 consecutive workers evaluated for possible pneumoconiosis at Québec Workman Compensation Board, who had a radiographic reading of pneumoconiosis in the category 0 or 1 of the ILO scale, and in 5 control subjects. Emphysema was detected, typed, and graded on high-resolution CT scans by three independent experienced readers. Age, work experience and industry, smoking habits, and pulmonary function test results were analyzed for possible associations. The subjects were 59 +/- 1 years of age and had mineral dust exposure averaging 26 +/- 1 years; 31 were lifetime nonsmokers and the others were either ex- or current smokers. Ninety-six workers were from primary and 111 from secondary industries and did not differ in any parameter. The CT scan readings for emphysema yielded a 63% complete agreement. In lifetime non-smokers, emphysema was seen in 1 of 20 subjects without pneumoconiosis but in 8 of 11 patients with pneumoconioses. In smokers without pneumoconioses, emphysema was present in 55% of patients with silica exposure, but 29% of patients with asbestos exposure but comparable smoking (p = 0.04). Emphysema type was equally distributed among the groups except for more paracicatricial type in confluent silicosis. Regression analyses documented that age, smoking, exposure type, and presence of pneumoconiosis were significant contribution factors. In the workers without pneumoconiosis, age, smoking, and exposure type (silica) were significant. Emphysema related best with FEV1/FVC ratio, MMEF, and DCO reductions. The prevalence of abnormality of FEV1/FVC ratio was two to five times normal and that of reduced DCO two times normal. We conclude that, in our

  5. Evaluation of high-pitch flash scan for pulmonary venous CTA on a 128-slice dual source CT: compared with prospective ECG-triggered sequence scan.

    PubMed

    Cao, Li Xiu; Zhang, Huan; Liu, Bo; Yang, Wen Jie; Zhang, Yan Yan; Pan, Zi Lai; Yan, Fu Hua; Chen, Ke Min

    2013-10-01

    To compare the image quality (IQ) and radiation dose of high-pitch scan and prospective ECG-triggered sequence scan on a 128-slice DSCT system for patients with atrial fibrillation (AF). Pulmonary venous (PV) CTA was performed with two protocols, including high-pitch scan and prospective ECG-triggered sequence scan. For each protocol, 20 sex, age and body-mass-index (mean 24.2 kg/m(2)) matched patients were identified. Two experienced radiologists, who were blinded to the scan protocols, independently graded the CT images of the two groups by a 5-point scale for subjective IQ assessment. Measured CT attenuation (Hounsfield units ± standard deviation), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at various anatomic locations were also recorded for objective IQ evaluation. Radiation exposure parameters [dose length product (DLP) and effective radiation dose (ERD)] were compared. Twenty-three patients (57.5 %) showed an ECG pattern of AF in total. Subjective IQ was rated excellent in 100 % for the high-pitch scan group, while minor step artifacts were observed in two patients (10 %) with arrhythmia for the prospective ECG-triggered sequence group. There was no significant difference on IQ, neither by subjective, nor by objective measures (SNR, CNR) between the two groups. The ERD of high-pitch flash scan and prospective ECG-triggered sequence scan were 0.9 (± 0.25) and 2.9 (± 0.69) mSv, respectively. Significantly lower radiation was achieved by using high-pitch flash scan (P < 0.05). High-pitch flash scan can provide similar subjective and objective IQ compared with prospective ECG-triggered sequence scan for PV CTA, while radiation exposure was significantly reduced. PMID:23645131

  6. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  7. Abdominal trauma by ostrich

    PubMed Central

    Usurelu, Sergiu; Bettencourt, Vanessa; Melo, Gina

    2015-01-01

    Introduction Ostriches typically avoid humans in the wild, since they correctly assess humans as potential predators, and, if approached, often run away. However, ostriches may turn aggressive rather than run when threatened, especially when cornered, and may also attack when they feel the need to defend their offspring or territories. Presentation of case A 71-year-old male patient presented with intra abdominal injury sustained from being kicked in the abdominal wall by an ostrich. During laparotomy, were found free peritoneal effusion and perforation of the small intestine. Discussion The clinical history and physical examination are extremely important for diagnostic and therapeutic decision making. CT-scan is the most accurate exam for making diagnosis. Surgery is the treatment of choice, and is always indicated when there is injury to the hollow viscera. In general it is possible to suture the defect. Conclusion In cases of blunt abdominal trauma by animals is necessary to have a low threshold of suspicion for acute abdomen. PMID:25685344

  8. Reducing Radiation Dose in Emergency CT Scans While Maintaining Equal Image Quality: Just a Promise or Reality for Severely Injured Patients?

    PubMed

    Grupp, Ulrich; Schäfer, Max-Ludwig; Meyer, Henning; Lembcke, Alexander; Pöllinger, Alexander; Wieners, Gero; Renz, Diane; Schwabe, Philipp; Streitparth, Florian

    2013-01-01

    Objective. This study aims to assess the impact of adaptive statistical iterative reconstruction (ASIR) on CT imaging quality, diagnostic interpretability, and radiation dose reduction for a proven CT acquisition protocol for total body trauma. Methods. 18 patients with multiple trauma (ISS ≥ 16) were examined either with a routine protocol (n = 6), 30% (n = 6), or 40% (n = 6) of iterative reconstruction (IR) modification in the raw data domain of the routine protocol (140 kV, collimation: 40, noise index: 15). Study groups were matched by scan range and maximal abdominal diameter. Image noise was quantitatively measured. Image contrast, image noise, and overall interpretability were evaluated by two experienced and blinded readers. The amount of radiation dose reductions was evaluated. Results. No statistically significant differences between routine and IR protocols regarding image noise, contrast, and interpretability were present. Mean effective dose for the routine protocol was 25.3 ± 2.9 mSv, 19.7 ± 5.8 mSv for the IR 30, and 17.5 ± 4.2 mSv for the IR 40 protocol, that is, 22.1% effective dose reduction for IR 30 (P = 0.093) and 30.8% effective dose reduction for IR 40 (P = 0.0203). Conclusions. IR does not reduce study interpretability in total body trauma protocols while providing a significant reduction in effective radiation dose. PMID:24381762

  9. Cerebral embolism: local CFBF and edema measured by CT scanning and Xe inhalation. [Baboons

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overlying cortex was relatively spared. Reduced lambda values attributed to edema appeared within 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1 to 1 1/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  10. A TR-induced algorithm for hot spots elimination through CT-scan HIFU simulations

    NASA Astrophysics Data System (ADS)

    Leduc, Nicolas; Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2011-09-01

    Although nowadays widely spread for imaging and treatments uses, HIFU techniques are still limited by the distortion of the wavefront due to refraction and reflection on the inhomogeneous media inside the human body. CT-scan Time Reversal (TR) procedure has risen as a promising candidate for focus control. A finite difference time domain parallelized code is used to provide simulations of TR-enhanced propagation through elements of the human body and implement a simple algorithm to address the issue of grating lobes, i.e secondary peaks of pressure due to natural diffraction by phased arrays and enhanced by medium heterogeneity. Using an iterative, progressive process combining secondary sound sources and independent signal summation, the primary peak is strengthened while secondary peaks are increasingly obliterated. This method supports the feasibility of precise modification and enhancement of the pressure profile in the targeted area through Time Reversal based solutions.

  11. Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.

  12. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol

    NASA Astrophysics Data System (ADS)

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-01

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  13. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  14. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    NASA Astrophysics Data System (ADS)

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2015-03-01

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption.

  15. Combination of detection and estimation tasks using channelized scanning linear observer for CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.

    2015-03-01

    Maintaining or even improving image quality while lowering patient dose is always the desire in clinical CT imaging. Iterative reconstruction (IR) algorithms have been designed to help reduce dose and/or provide better image quality. In this work, the channelized scanning linear observer (CSLO) is applied to study the combination of detection and estimation task performance using CT image data. The purpose of this work is to design a task-­-based approach to quantitatively evaluate image-­-quality for different reconstruction algorithms. Low-­-contrast objects embedded in head-­-size and body-­-size phantoms are imaged multiple times and reconstructed by FBP and an IR algorithm for this study. Independent signal present and absent ROIs cropped from images are channelized by Difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the area under EROC curve (EAUC) are calculated by CSLO as the figure of merit. The One-­- Shot method is used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose approximately 54% to achieve an image quality comparable to conventional FBP reconstruction for the combined detection and estimation tasks.

  16. Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery.

    PubMed

    Burschka, Darius; Li, Ming; Ishii, Masaru; Taylor, Russell H; Hager, Gregory D

    2005-10-01

    In this paper, we present a novel method for intra-operative registration directly from monocular endoscopic images. This technique has the potential to provide a more accurate surface registration at the surgical site than existing methods. It can operate autonomously from as few as two images and can be particularly useful in revision cases where surgical landmarks may be absent. A by-product of video registration is an estimate of the local surface structure of the anatomy, thus providing the opportunity to dynamically update anatomical models as the surgery progresses. Our approach is based on a previously presented method [Burschka, D., Hager, G.D., 2004. V-GPS (SLAM):--Vision-based inertial system for mobile robots. In: Proceedings of ICRA, 409-415] for reconstruction of a scaled 3D model of the environment from unknown camera motion. We use this scaled reconstruction as input to a PCA-based algorithm that registers the reconstructed data to the CT data and recovers the scale and pose parameters of the camera in the coordinate frame of the CT scan. The result is used in an ICP registration step to refine the registration estimates. The details of our approach and the experimental results with a phantom of a human skull and a head of a pig cadaver are presented in this paper. PMID:16009593

  17. The Use Of Computerized Tomographic (CT) Scans For 3-D Display And Prosthesis Construction

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Woodruff, Tracey J.; Beumer, John

    1985-06-01

    The construction of preformed cranial prostheses for large cranial bony defects is both error prone and time consuming. We discuss a method used for the creation of cranial prostheses from automatically extracted bone contours taken from Computerized Tomographic (CT) scans. Previous methods of prosthesis construction have relied on the making of a mold directly from the region of cranial defect. The use of image processing, bone contour extraction, and three-dimensional display allowed us to create a better fitting prosthesis while reducing patient surgery time. This procedure involves direct bone margin extraction from the digital CT images followed by head model construction from serial plots of the bone margin. Three-dimensional data display is used to verify the integrity of the skull data set prior to model construction. Once created, the model is used to fabricate a custom fitting prosthesis which is then surgically implanted. This procedure is being used with patients in the Maxillofacial Prosthetic Clinic at UCLA and this paper details the technique.

  18. Heart region segmentation from low-dose CT scans: an anatomy based approach

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Cham, Matthew D.; Henschke, Claudia I.

    2012-02-01

    Cardiovascular disease is a leading cause of death in developed countries. The concurrent detection of heart diseases during low-dose whole-lung CT scans (LDCT), typically performed as part of a screening protocol, hinges on the accurate quantification of coronary calcification. The creation of fully automated methods is ideal as complete manual evaluation is imprecise, operator dependent, time consuming and thus costly. The technical challenges posed by LDCT scans in this context are mainly twofold. First, there is a high level image noise arising from the low radiation dose technique. Additionally, there is a variable amount of cardiac motion blurring due to the lack of electrocardiographic gating and the fact that heart rates differ between human subjects. As a consequence, the reliable segmentation of the heart, the first stage toward the implementation of morphologic heart abnormality detection, is also quite challenging. An automated computer method based on a sequential labeling of major organs and determination of anatomical landmarks has been evaluated on a public database of LDCT images. The novel algorithm builds from a robust segmentation of the bones and airways and embodies a stepwise refinement starting at the top of the lungs where image noise is at its lowest and where the carina provides a good calibration landmark. The segmentation is completed at the inferior wall of the heart where extensive image noise is accommodated. This method is based on the geometry of human anatomy and does not involve training through manual markings. Using visual inspection by an expert reader as a gold standard, the algorithm achieved successful heart and major vessel segmentation in 42 of 45 low-dose CT images. In the 3 remaining cases, the cardiac base was over segmented due to incorrect hemidiaphragm localization.

  19. Correlation of CT scanning and pathologic features of ophthalmic Graves' disease.

    PubMed

    Trokel, S L; Jakobiec, F A

    1981-06-01

    Correlating the CT scan features of patients with orbital Graves' disease with histopathologic observations allows one to focus more specifically on the distinguishing features of this disease with future research implications. Both CT scanning and pathologic studies have shown clearly that the extraocular muscles are the primary focus of the disease. Swelling of the extraocular muscles generally occurs within their bellys with sparing of the tendons. This contrast with idiopathic inflammation of the muscles or myositis, which tends to involve the tendon as well. All of the associated findings in orbital Graves' disease probably flow from the enlarged volume of the extraocular muscles: proptosis, bowing of the medial lamina papyracea to accommodate the swollen belly of the medial rectus muscle, venous engorgement from stasis induced by direct compression of the orbital venous drainage, conjunctival and lid swelling, and lacrimal gland enlargement. Both radiographic and pathologic changes in the orbital fat are secondary and comparatively insignificant. While there appears to be no selective inflammation of the optic nerve meninges or the perineural connective tissues, enlargement of the extraocular muscle bellys where they converge at the crowded orbital apex brings about compression of the optic nerve, impairs its function, and causes visual decrease. Lymphocytic and plasmacytic infiltration along with edema within the endomysium of the extraocular muscles leads to the activation of fibroblasts with the production of acid mucopolysaccharides and progressive fibrosis. It is not known what attracts the lymphocytes to the extraocular muscles, why certain extraocular muscles are affected preferentially, why the disease may be asymmetrically unilateral, and whether a defect in T cell or B cell functions (or both) is immunologically at fault. PMID:6894976

  20. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  1. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  2. Distant metastases in a young woman with Stewart-Treves syndrome demonstrated by an FDG-PET/CT scan.

    PubMed

    Chen, Yu-Ren; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2014-11-01

    This 17-year-old woman had chronic congenital lymphedema in the left lower extremity since childhood. She underwent surgeries to remove excessive lymphedematous tissues more than 15 times previously. Histopathology of the specimen from the recent surgery revealed angiosarcoma; therefore, FDG-PET/CT scan was arranged to determine the extent of tumor spread, and distant metastases were discovered. Stewart-Treves syndrome is angiosarcomas that arise secondary to chronic lymphedema. Because of the high lethality of this condition, the FDG-PET/CT scan may be a clinically useful imaging modality to detect the possible malignant transformation earlier for patients with chronic lymphedema. PMID:24561687

  3. Jejunal perforation after abdominal liposuction, bilateral breast augmentation and facial fat grafting.

    PubMed

    Coronado-Malagón, Martin; Tauffer-Carrion, Luis Tomas

    2012-01-01

    A 54-year-old woman presented to the emergency department 24 h after undergoing abdominal liposuction, bilateral breast augmentation and facial fat grafting at a private plastic surgery clinic. She presented with the classic evolution of a bowel perforation secondary to abdominal liposuction. A computed tomography (CT) scan found free air in her abdominal cavity. Based on the CT scan and the persistent pain experienced by the patient, an abdominal laparatomy was urgently performed. A jejunum perforation was found and was treated with a resection of the affected segment followed by intestinal anastomosis. The patient had a successful recovery and was discharged seven days later. The present article also reviews the classical presentation of a bowel perforation following abdominal liposuction. PMID:23997589

  4. Jejunal perforation after abdominal liposuction, bilateral breast augmentation and facial fat grafting

    PubMed Central

    Coronado-Malagón, Martin; Tauffer-Carrion, Luis Tomas

    2012-01-01

    A 54-year-old woman presented to the emergency department 24 h after undergoing abdominal liposuction, bilateral breast augmentation and facial fat grafting at a private plastic surgery clinic. She presented with the classic evolution of a bowel perforation secondary to abdominal liposuction. A computed tomography (CT) scan found free air in her abdominal cavity. Based on the CT scan and the persistent pain experienced by the patient, an abdominal laparatomy was urgently performed. A jejunum perforation was found and was treated with a resection of the affected segment followed by intestinal anastomosis. The patient had a successful recovery and was discharged seven days later. The present article also reviews the classical presentation of a bowel perforation following abdominal liposuction. PMID:23997589

  5. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  6. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  7. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a ~9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that

  8. Intraoperative DynaCT Detection and Immediate Correction of a Type 1a Endoleak Following Endovascular Repair of Abdominal Aortic Aneurysm

    SciTech Connect

    Biasi, Lukla; Ali, Tahir; Hinchliffe, Robert; Morgan, Rob; Loftus, Ian; Thompson, Matt

    2009-05-15

    Reintervention following endovascular aneurysm repair (EVAR) is required in up to 10% of patients at 30 days and is associated with a demonstrable risk of increased mortality. Completion angiography cannot detect all graft-related anomalies and computed tomographic angiography is therefore mandatory to ensure clinical success. Intraoperative angiographic computed tomography (DynaCT; Siemens, Germany) utilizes cone beam reconstruction software and flat-panel detectors to generate CT-like images from rotational angiographic acquisitions. We report the intraoperative use of this novel technology in detecting and immediately treating a proximal anterior type Ia endoleak, following an endovascular abdominal aortic repair, which was not seen on completion angiography. Immediate evaluation of cross-sectional imaging following endograft deployment may allow for on-table correction of clinically significant stent-related complications. This should both improve technical success and minimize the need for early secondary intervention following EVAR.

  9. Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhou, Kun; Zhang, Qiushi; Zhang, Jinming; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2015-03-01

    This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350~ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the newly

  10. Are routine preoperative CT scans necessary in adult cochlear implantation? Implications for the allocation of resources in cochlear implant programs.

    PubMed

    Kenway, Bruno; Vlastarakos, Petros V; Kasbekar, Anand V; Axon, Patrick R; Donnelly, Neil

    2016-08-01

    Our aim was to critically assess the influence of preoperative computed tomography (CT) scans on implantation decisions for adult cochlear implant candidates. The working hypothesis was that these routine scans might not provide critical additional information in most adult cochlear implant candidates. The charts of 175 adults with unilateral cochlear implantation were reviewed. Preoperative CT scan reports were audited, and scans with reported pathology were examined by an Otologist/ENT Surgeon. Clinic notes and multidisciplinary team meeting summaries were also analyzed to assess whether the results of the radiology report had influenced the decision to implant or the laterality of implantation. Twenty-five of the 175 scans (14.3%) showed an abnormality. Five of those 25 scans showed evidence of previous surgeries already known to the clinicians. Of the remaining 20 scans, 17 showed abnormalities, including wide vestibular aqueducts, Mondini deformities, and varying degrees of otospongiosis, the identification of which can be considered preoperatively helpful. Of the 175 scans, 3 (1.7%) demonstrated abnormalities that influenced the side of implantation or the decision to implant and, therefore, had an impact on treatment. We conclude that a preoperative CT scan seems to have an impact on treatment in only a small percentage of adult cochlear implantees. Hence, it may only need to be performed in patients with a history or clinical suspicion of meningitis or otosclerosis, if the individual was born deaf or became deaf before the age of 16, or if there are other clinical reasons to scan (e.g., otoscopic appearance). The related resources can be allocated to other facets of cochlear implant programs. PMID:27551842

  11. Importance of CT Scan of Paranasal Sinuses in the Evaluation of the Anatomical Findings in Patients Suffering from Sinonasal Polyposis.

    PubMed

    Varshney, Himanshu; Varshney, Jitendra; Biswas, Subhradev; Ghosh, S K

    2016-06-01

    Sinonasal polyps are benign lesions arising from nose and/or sinuses mucosa. Paranasal sinuses computed tomogram (CT) scan are important for functional endoscopic sinus surgery (FESS) as their information assist the surgeon in pre-operative planning. This study aimed to show importance of CT scan in evaluation of anatomical variations to prove a correlation with disease process and extent of disease in sinonasal polyposis patients. A study was done from Sept, 2010 to Sept, 2011 with 33 patients presenting with nasal polyps. All recruited patients, after thorough history, general examination and thorough ENT examination, were examined by nasal endoscopy and sinus CT scans. All scans were carried out using a 3 mm thickness in axial and coronal planes with sagittal reconstruction. An analysis was then carried out to see anatomical variations and disease extent in CT scans. Maxillary sinus was the most commonly and most severely affected sinus, while the sphenoid sinus was the least involved sinus. Ostiomeatal complex (OMC) was found to be blocked in 84.85 % cases. There were few anatomic variations (57.58 %) found as hypertrophied uncinate process (30.30 %), septal deviation (21.21 %), skull base type-2, Concha bullosa, Haller's cell, Paradoxical middle turbinate, Onodi cell, pneumatized crista galli and dehiscent skull base. Hyperdense and heterogeneous opacification in paranasal sinuses was seen in 12.12 % patients. Importance of CT scans is to know anatomical variations as etiology, fungal etiology, to know extent of polyposis and anatomical variations to prevent complications during FESS and Navigation sinus surgery. PMID:27340631

  12. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    SciTech Connect

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-15

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2{pi} to {pi} plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the {pi} range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2{pi}] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p{sub n}{sup AF} by projectionwise averaging a set of neighboring partial scans p{sub n}{sup P} from the same perfusion examination (typically N{approx_equal}30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p{sub n}{sup V} from the artificial full scan p{sub n}{sup AF}. A standard reconstruction yields the corresponding images f{sub n}{sup P}, f{sub n}{sup AF}, and f{sub n}{sup V}. Subtracting the virtual partial scan image f{sub n}{sup V} from the artificial full scan image f{sub n}{sup AF} yields an artifact image that can be used to correct the original partial scan image: f{sub n}{sup C}=f{sub n}{sup P}-f{sub n}{sup V}+f{sub n}{sup AF}, where f{sub n}{sup C} is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference

  13. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  14. Prevalence and Morphologic Features of Ponticulus Posticus in Koreans: Analysis of 312 Radiographs and 225 Three-dimensional CT Scans

    PubMed Central

    Kim, Kyeong Hwan; Park, Kun Woo; Manh, Tran Hoang; Chang, Bong-Soon; Lee, Choon-Ki

    2007-01-01

    Study Design A retrospective review of three-dimensional CT scan images and radiographs. Purpose To investigate the prevalence and morphologic features of ponticulus posticus in Koreans. Overview of Literature There has been little reported on the prevalence or morphologic characteristics of ponticulus posticus in Asians, predisposing them to vertebral artery injury during screw placement in the lateral mass of the atlas. Methods The presence and types of ponticulus posticus were investigated on 225 consecutive cervical three-dimensional CT scans and 312 consecutive digital lateral cephalometric head radiographs. Results Various spectra of ponticulus posticus were found in 26% of the CT scans and 14% of the radiographs. Conclusions Ponticulus posticus is a relatively common anomaly in Koreans. Therefore, the presence of this anomaly should be carefully examined for on radiographs before lateral mass screw placement. If ponticulus posticus is suspected or confirmed on radiographs, three-dimensional CT scanning should be considered before placement of lateral mass screws into the posterior arch, especially given its wide variation of size and shape. PMID:20411149

  15. Is it possible to limit the use of CT scanning in acute diverticular disease without compromising outcomes? A preliminary experience.

    PubMed

    Caputo, Pierpaolo; Rovagnati, Marco; Carzaniga, Pier Luigi

    2015-01-01

    The aim of our study was to determine whether the use of CT scanning in the assessment of acute diverticulitis can be reduced without a negative effect on outcome. Our series consisted of 93 out of 100 patients with acute diverticulitis admitted to the Emergency Room of our institution in the period from February 2012 to March 2013.The Hinchey classification system was used to stage disease based on findings on ultrasound (US) examination and/or computed tomography (CT) scanning. We compared the patients' Hinchey stage (HS) on admission and 72 hours later. Types of treatment were defined as emergency or delayed intervention (operative approaches (OA); ultrasound-guided percutaneous drainage (UPD), and surgery. The borderline between conservative and surgical management was identified. In patients with a HS CT scans. The skill of the individual operator in US examination was found to be of key importance. As regards CT scanning, we found, in agreement with the literature, that it has greater specificity and sensitivity than US, and is therefore indicated if the patient's condition has deteriorated. PMID:25816854

  16. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington

    2012-01-01

    Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain

  17. Staging of Primary Abdominal Lymphomas: Comparison of Whole-Body MRI with Diffusion-Weighted Imaging and 18F-FDG-PET/CT

    PubMed Central

    Stecco, Alessandro; Buemi, Francesco; Quagliozzi, Martina; Lombardi, Mariangela; Santagostino, Alberto; Sacchetti, Gian Mauro; Carriero, Alessandro

    2015-01-01

    Background. The purpose of this study was to compare the accuracy of whole-body MRI with diffusion-weighted sequences (WB-DW-MRI) with that of 18F-FDG-PET/CT in the staging of patients with primary gastrointestinal lymphoma. Methods. This retrospective study involved 17 untreated patients with primary abdominal gastrointestinal lymphoma. All patients underwent 18F-FDG-PET/CT and WB-DW-MRI. Histopathology findings or at least 6 months of clinical and radiological follow-up was the gold standard. The Musshoff-modified Ann Arbor system was used for staging, and diagnostic accuracy was evaluated on a per-node basis. Results. WB-DW-MRI exhibited 100% sensitivity, 96.3% specificity, and 96.1% and 100% positive and negative predictive values (PPV and NPV), respectively. The sensitivity, specificity, and PPV and NPV of PET/CT were 95.9%, 100%, and 100% and 96.4%, respectively. There were no statistically significant differences between the two techniques (p = 0.05). The weighted kappa agreement statistics with a 95% confidence interval were 0.97 (0.95–0.99) between the two MRI readers and 0.87 (0.82–0.92) between the two methods. Conclusions. WB-DW-MRI appears to have a comparable diagnostic value to 18F-FDG-PET/CT in staging patients with gastrointestinal lymphoma. PMID:26798331

  18. Added value of lung window in detecting drug mules on non-contrast abdominal computed tomography.

    PubMed

    Bahrami-Motlagh, Hooman; Vakilian, Fatemeh; Hassanian-Moghaddam, Hossein; Pourghorban, Ramin

    2016-06-01

    We evaluated the added value of lung window in non-contrast computed tomography (CT) of suspected body packers or stuffers. Forty suspected drug mules who were referred to our tertiary toxicology center were included. The final diagnosis of drug mule was based on the detection of packs in stool examination or surgery. Non-contrast CT scans were retrospectively interpreted by two blinded radiologists in consensus before and after reviewing the lung window images. The diagnostic performance of abdominal window scans alone and scans in both abdominal and lung windows were subsequently compared. Seven body packers and 21 body stuffers were identified. The sensitivity, negative predictive value (NPV), and diagnostic accuracy of scans in detection of drug mules (either drug packers or stuffers) raised from 60.7, 52.1, and 72.5 to 64.2, 54.5, and 75.0 %, respectively, with a more number of packs being detected (114 vs. 105 packs). In the body packers group, the diagnostic performance of both abdominal windows scans and combined abdominal and lung windows scans were 100 %. In the body stuffers group, the sensitivity, NPV, and diagnostic accuracy of scans increased from 47.6, 52.1, and 55.0 to 52.3, 54.5, and 57.5 %, respectively, after the addition of lung windows. Reviewing the lung window on non-contrast abdominal CT can be helpful in detection of drug mules. PMID:26830789

  19. Optimal cutoff threshold for calcium quantification in isotropic CT calcium scans by validating against registered intravascular ultrasound with radiofrequency backscatter.

    PubMed

    Dhungel, Abinashi; Qian, Zhen; Vazquez, Gustavo; Rinehart, Sarah; Weeks, Michael; Voros, Szilard

    2012-01-01

    3D Computed Tomography (CT) provides noninvasive, low-radiation method of coronary artery calcium (CAC) measurement. Conventional CAC images are acquired on multidetector-row CT scanners without contrast, and reconstructed with 3 mm slice thickness. The calcium volume is quantified by registering voxels with attenuation values greater than or equal to 130 Hounsfield Unit (HU). In isotropic CAC images with 0.5 mm slice thickness obtained from 320-detector row CT, the optimal value of attenuation cutoff threshold is unknown. In this paper we find the optimal cutoff threshold for calcium quantification in isotropic CT calcium scans by validating against registered intravascular ultrasound with radiofrequency backscatter (IVUS/VH). From the statistical analysis of calcium data obtained from the images of 9 patients we found a range of optimal thresholds and the conventional threshold of 130 HU was in the range. Further, the optimal values were different for individual patients. PMID:23367046

  20. Lung texture in serial thoracic CT scans: Correlation with radiologist-defined severity of acute changes following radiation therapya

    PubMed Central

    Cunliffe, Alexandra R.; Armato, Samuel G.; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-01-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (“texture features”). A pre-therapy CT scan and a post-therapy (median: 33 days) CT scan were retrospectively collected under IRB approval for each of 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung

  1. Evaluation of patello-femoral alignment by CT scans: interobserver reliability of several parameters.

    PubMed

    Dei Giudici, Luca; Enea, Davide; Pierdicca, Laura; Cecconi, Stefano; Ulisse, Serena; Arima, Serena; Giovagnoni, Andrea; Gigante, Antonio

    2015-11-01

    Patello-femoral malalignment (PFM) is a common cause of disability often related to patello-femoral syndrome (PFS). Several causes have been taken into account; a proper diagnosis requires instrumental imaging and a methodical evaluation of different parameters. The aim of the present study was to identify the most reliable parameters for measuring patello-femoral and inferior limb alignment by CT. Twenty randomly selected patients suffering from PFS for a total of 40 knees were studied by static CT scans in order to assess patellar tilt, patellar displacement, patellar and trochlear morphology and inferior limb alignment. All known parameters were measured; the variability of the measurements between observers was evaluated by boxplots, Pearson's correlation coefficients, and infraclass correlation coefficient [ICC(2,1)] based on a two-way random effect model. Bland-Altman mean differences and 95 % limits of agreement were computed for each pair of measurements. Patellar tilt parameters appeared equally reliable; patellar displacement is best measured with BoTot that showed an ICC of 0.889; morphology is best measured with WibergTot, with an ICC of 0.862; lastly, for the inferior limb alignment parameters' analysis, FTV outperformed the others in terms of reliability. The present study allowed us to select a limited number of reliable parameters in the evaluation of patello-femoral and inferior limb alignment. The use of these parameters may also result in a more reliable comparison of studies on PFM and in a better evaluation of the treatment outcomes. PMID:25851081

  2. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients a)

    PubMed Central

    Cunliffe, Alexandra R.; Contee, Clay; Armato, Samuel G.; White, Bradley; Justusson, Julia; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-01

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (dE) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of dE, dose (D), dose standard deviation (SDdose) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average dE across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of dE (0.42 Gy/mm), D (0.05 Gy/Gy), SDdose (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation

  3. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  4. Single-scan scatter correction for cone-beam CT using a stationary beam blocker: a preliminary study

    NASA Astrophysics Data System (ADS)

    Niu, Tianye; Zhu, Lei

    2011-03-01

    The performance of cone-beam CT (CBCT) is greatly limited by scatter artifacts. The existing measurement-based methods have promising advantages as a standard scatter correction solution, except that they currently require multiple scans or moving the beam blocker during data acquisition to compensate for the missing primary data. These approaches are therefore unpractical in clinical applications. In this work, we propose a new measurement-based scatter correction method to achieve accurate reconstruction with one single scan and a stationary beam blocker, two seemingly incompatible features which enable simple and effective scatter correction without increase of scan time or patient dose. Based on CT reconstruction theory, we distribute the blocked areas over one projection where primary signals are considered to be redundant in a full scan. The CT image quality is not degraded even with primary loss. Scatter is accurately estimated by interpolation and scatter-corrected CT images are obtained using an FDK-based reconstruction. In a Monte Carlo simulation study, we first optimize the beam blocker geometry using projections on the Shepp-Logan phantom and then carry out a complete simulation of a CBCT scan on a water phantom. With the scatter-to-primary ratio around 1.0, our method reduces the CT number error from 293 to 2.9 Hounsfield unit (HU) around the phantom center. The proposed approach is further evaluated on a CBCT tabletop system. On the Catphan©600 phantom, the reconstruction error is reduced from 202 to 10 HU in the selected region of interest after the proposed correction.

  5. Lung texture in serial thoracic CT scans: Registration-based methods to compare anatomically matched regions1

    PubMed Central

    Cunliffe, Alexandra R.; Armato, Samuel G.; Fei, Xianhan M.; Tuohy, Rachel E.; Al-Hallaq, Hania A.

    2013-01-01

    Purpose: The aim of this study was to compare three demons registration-based methods to identify spatially matched regions in serial computed tomography (CT) scans for use in texture analysis. Methods: Two thoracic CT scans containing no lung abnormalities and acquired during serial examinations separated by at least one week were retrospectively collected from 27 patients. Over 1000 regions of interest (ROIs) were randomly placed in the lungs of each baseline scan. Anatomically matched ROIs in the corresponding follow-up scan were placed by mapping the baseline scan ROI center pixel to (1) the original follow-up scan, (2) the follow-up scan resampled to match the baseline scan voxel size, and (3) the follow-up scan aligned to the baseline scan through affine registration. Mappings used the vector field obtained through demons deformable registration of each follow-up scan variant to the baseline scan. 140 texture features distributed among five feature classes were calculated in all ROIs. Feature value differences between paired ROIs were evaluated using Bland-Altman 95% limits of agreement. For each feature, (1) the mean feature value change and (2) the difference between the upper and lower limits of agreement were normalized to the mean feature value to obtain, respectively, the normalized bias and normalized range of agreement (nRoA). Nonparametric tests were used to evaluate differences in normalized bias and nRoA across the three methods. Results: Because patient CT scans contained no pathology, minimal changes in feature values were expected (i.e., low nRoA and normalized bias). Seventy-five features with very large feature value variability (nRoA ≥ 100%) were excluded from further analysis. Across the remaining 65 features, significant differences in normalized bias were observed among the three methods. The lowest normalized bias (median: 0.06%) was achieved when feature values were calculated on original follow-up scans. The affine registration method

  6. Photodynamic therapy light dose analysis of a patient based upon arterial and venous contrast CT scan information

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Davis, Scott C.; Dehghani, Hamid; Huggett, Matthew; Hasan, Tayyaba; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to determine the light dose required to induce necrosis in verteporfin-based photodynamic therapy, in the VERTPAC-1 trial. Patient CT scans were obtained of the abdomen, including the entire treatment zone of pancreas and surrounding tissues, before and after treatment, as well as fast scans during needle placement. These scans were used to estimate arterial and venous blood content, and provide structural information of the pancreas and nearby blood vessels. Using NIRFAST, a finite-element based package for modeling diffuse near-infrared light transport in tissue, simulations were run to create maps of light fluence within the pancreas. These maps provided visualizations of light dose overlaid on the original CT scans, and were used to estimate light dose at the boundary of the zone of necrosis, as observed in follow up treatment outcome CT scans. The aim of these simulation studies was to assist pre-treatment planning by informing the light treatment parameters. This paper presents a case study of the process used on a single patient.

  7. Response Assessment and Prediction in Esophageal Cancer Patients via F-18 FDG PET/CT Scans

    NASA Astrophysics Data System (ADS)

    Higgins, Kyle J.

    Purpose: The purpose of this study is to utilize F-18 FDG PET/CT scans to determine an indicator for the response of esophageal cancer patients during radiation therapy. There is a need for such an indicator since local failures are quite common in esophageal cancer patients despite modern treatment techniques. If an indicator is found, a patient's treatment strategy may be altered to possibly improve the outcome. This is investigated with various standard uptake volume (SUV) metrics along with image texture features. The metrics and features showing the most promise and indicating response are used in logistic regression analysis to find an equation for the prediction of response. Materials and Methods: 28 patients underwent F-18 FDG PET/CT scans prior to the start of radiation therapy (RT). A second PET/CT scan was administered following the delivery of ~32 Gray (Gy) of dose. A physician contoured gross tumor volume (GTV) was used to delineate a PET based GTV (GTV-pre-PET) based on a threshold of >40% and >20% of the maximum SUV value in the GTV. Deformable registration was used in VelocityAI software to register the pre-treatment and intra-treatment CT scans so that the GTV-pre-PET contours could be transferred from the pre to intra scans (GTV-intra-PET). The fractional decrease in the maximum, mean, volume to the highest intensity 10%-90%, and combination SUV metrics of the significant previous SUV metrics were compared to post-treatment pathologic response for an indication of response. Next for the >40% threshold, texture features based on a neighborhood gray-tone dimension matrix (NGTDM) were analyzed. The fractional decrease in coarseness, contrast, busyness, complexity, and texture strength were compared to the pathologic response of the patients. From these previous two types of analysis, SUV and texture features, the two most significant results were used in logistic regression analysis to find an equation to predict the probability of a non

  8. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  9. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging. PMID:23568089

  10. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  11. Scatter correction method for cone-beam CT based on interlacing-slit scan

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  12. The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy

    PubMed Central

    Coty, David; Aria, Cédric; Garrouste, Romain; Wils, Patricia; Legendre, Frédéric; Nel, André

    2014-01-01

    We describe here a co-occurrence (i.e. a syninclusion) of ants and termites in a piece of Mexican amber (Totolapa deposit, Chiapas), whose importance is two-fold. First, this finding suggests at least a middle Miocene antiquity for the modern, though poorly documented, relationship between Azteca ants and Nasutitermes termites. Second, the presence of a Neivamyrmex army ant documents an in situ raiding behaviour of the same age and within the same community, confirmed by the fact that the army ant is holding one of the termite worker between its mandibles and by the presence of a termite with bitten abdomen. In addition, we present how CT-scan imaging can be an efficient tool to describe the topology of resin flows within amber pieces, and to point out the different states of preservation of the embedded insects. This can help achieving a better understanding of taphonomical processes, and tests ethological and ecological hypotheses in such complex syninclusions. PMID:25140873

  13. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  14. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans.

    PubMed

    Cunliffe, Alexandra R; White, Bradley; Justusson, Julia; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A; Armato, Samuel G

    2015-12-01

    We evaluated the image registration accuracy achieved using two deformable registration algorithms when radiation-induced normal tissue changes were present between serial computed tomography (CT) scans. Two thoracic CT scans were collected for each of 24 patients who underwent radiation therapy (RT) treatment for lung cancer, eight of whom experienced radiologically evident normal tissue damage between pre- and post-RT scan acquisition. For each patient, 100 landmark point pairs were manually placed in anatomically corresponding locations between each pre- and post-RT scan. Each post-RT scan was then registered to the pre-RT scan using (1) the Plastimatch demons algorithm and (2) the Fraunhofer MEVIS algorithm. The registration accuracy for each scan pair was evaluated by comparing the distance between landmark points that were manually placed in the post-RT scans and points that were automatically mapped from pre- to post-RT scans using the displacement vector fields output by the two registration algorithms. For both algorithms, the registration accuracy was significantly decreased when normal tissue damage was present in the post-RT scan. Using the Plastimatch algorithm, registration accuracy was 2.4 mm, on average, in the absence of radiation-induced damage and 4.6 mm, on average, in the presence of damage. When the Fraunhofer MEVIS algorithm was instead used, registration errors decreased to 1.3 mm, on average, in the absence of damage and 2.5 mm, on average, when damage was present. This work demonstrated that the presence of lung tissue changes introduced following RT treatment for lung cancer can significantly decrease the registration accuracy achieved using deformable registration. PMID:25822396

  15. [Myelography, CT scan, electromyography and neurologic examination in the diagnosis of herniated lumbar disk].

    PubMed

    Kristek, B; Dicić, M; Vranković, D; Kurbel, S

    1995-01-01

    The research was carried out at the Clinical Hospital Osijek during a three-year period. Sixty-nine patients (34 men and 35 women) with the diagnosis of lumbar slipped disc who underwent surgery were followed up. The main inclusion criterion was the surgical finding of hernia. The aim of the study was to obtain a clearer insight into the values of the myelography and CT scan by observing a sufficiently large number of patients with surgically verified hernia of lumbar disc. The characteristics of neurological and EMG findings were surveyed, as well. Thirty-one patients were at the age of 40-49 years and 21 were at 30-39 years of age. Only 5 hernias were at the level L3L4, 28 at the level L4L5, and 46 at the level L5S1. Sensitivity, specificity and overall accuracy of the observed parameters were estimated for 41 leftwards and 30 rightwards located hernias. Myelographic finding, regardless of the observed level of slipped disc, showed excellent sensitivity, specificity and accuracy of diagnosis. CT finding was slightly less sensitive at the level L4L5, it was 0.93, and specific at the level L5S1, amounting to 0.90. Its accuracy was not substantially lower than that of myelography. The pathological EMG was 0.88 sensitive, 0.83 specific and 0.84 accurate. The accuracy was excellent at the level L3L4, it was 0.96, but only very good at the level L5S1, amounting to 0.76. A t-test of linked pairs was used to compare surgical reports and diagnostic findings. There was a great similarity between a CT finding and surgical one in all three levels (t-values 1.00, 0.21 and 0.36). Myeolography was more congruent with the surgical finding in the middle level (t-values 1.65, 0.93 and 1.52). An EMG finding was significantly different from that found by surgery (t-values 1.71, 1.76 and 2.71). The existence of Lasègue's sign for the diagnosis of hernia was 0.93 sensitive, 0.07 specific (remarkably low) and 0.36 accurate. It was particularly inaccurate at the level L3L4, moderately

  16. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  17. Conservative management of an abdominal gunshot injury with a peritoneal breach: wisdom or absurdity?

    PubMed Central

    Khan, Salma; Pardhan, Amyn; Bawa, Tufail; Haroon, Naveed

    2013-01-01

    Surgical exploration has been the standard of care for abdominal gunshot injuries. The authors report a case of a 28-year-old man who sustained a transabdominal gunshot injury, which entered the anterior abdominal wall and exited adjacent to the T12 vertebra posteriorly with a tangential trajectory. On presentation, the patient was haemodynamically stable with no peritoneal signs. Based on trajectory of the bullet, intra-abdominal injury was suspected. Therefore a CT scan abdomen with intravenous and rectal contrast was performed. The CT scan revealed no extravasation of the rectal contrast but showed free air specks behind the descending colon. Delayed renal images of the left ureter were also normal. Based on the clinical findings, the patient was managed non-operatively with nothing per oral, intravenous antibiotics and frequent abdominal assessments. He made an uneventful recovery without necessitating laparotomy. PMID:24272989

  18. Study on accuracy and interobserver reliability of the assessment of odontoid fracture union using plain radiographs or CT scans

    PubMed Central

    Kolb, Klaus; Zenner, Juliane; Reynolds, Jeremy; Dvorak, Marcel; Acosta, Frank; Forstner, Rosemarie; Mayer, Michael; Tauber, Mark; Auffarth, Alexander; Kathrein, Anton; Hitzl, Wolfgang

    2009-01-01

    In odontoid fracture research, outcome can be evaluated based on validated questionnaires, based on functional outcome in terms of atlantoaxial and total neck rotation, and based on the treatment-related union rate. Data on clinical and functional outcome are still sparse. In contrast, there is abundant information on union rates, although, frequently the rates differ widely. Odontoid union is the most frequently assessed outcome parameter and therefore it is imperative to investigate the interobserver reliability of fusion assessment using radiographs compared to CT scans. Our objective was to identify the diagnostic accuracy of plain radiographs in detecting union and non-union after odontoid fractures and compare this to CT scans as the standard of reference. Complete sets of biplanar plain radiographs and CT scans of 21 patients treated for odontoid fractures were subjected to interobserver assessment of fusion. Image sets were presented to 18 international observers with a mean experience in fusion assessment of 10.7 years. Patients selected had complete radiographic follow-up at a mean of 63.3 ± 53 months. Mean age of the patients at follow-up was 68.2 years. We calculated interobserver agreement of the diagnostic assessment using radiographs compared to using CT scans, as well as the sensitivity and specificity of the radiographic assessment. Agreement on the fusion status using radiographs compared to CT scans ranged between 62 and 90% depending on the observer. Concerning the assessment of non-union and fusion, the mean specificity was 62% and mean sensitivity was 77%. Statistical analysis revealed an agreement of 80–100% in 48% of cases only, between the biplanar radiographs and the reconstructed CT scans. In 50% of patients assessed there was an agreement of less than 80%. The mean sensitivity and specificity values indicate that radiographs are not a reliable measure to indicate odontoid fracture union or non-union. Regarding experience in years

  19. Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases.

    PubMed

    Kaneko, Tadashi S; Bell, Jason S; Pejcic, Marina R; Tehranzadeh, Jamshid; Keyak, Joyce H

    2004-04-01

    Pathologic fracture of the hip due to metastatic lesions in bone is a serious problem. This study examined the effect of metastatic lesions on the material properties and quantitative computed tomography (QCT) data of trabecular bone. Twelve distal femora were obtained, four with lytic and/or blastic metastatic lesions (group L), four without lesions but from donors who died from breast, prostate, or lung cancer (group NL), and four from donors with no cancer (group NC). Each specimen was CT scanned, and 56, 15x15x15-mm cubes of trabecular bone were cut. QCT density (rho(QCT)), compressive elastic modulus (E), compressive yield and ultimate strengths (S(y) and S(u)), and ash density (rho(ash)) of each cube were determined. Regression analysis was performed between rho(ash) and E, S(y), S(u) and rho(QCT), and analysis of covariance was used to identify differences between groups. Power relationships that did not depend on group (p >/= 0.1) were found between E and rho(ash) (0.74 /= 0.94; p<0.001). rho(ash) was strongly related to rho(QCT) (r >/= 0.99; p<0.001). These results indicate that metastatic disease does not significantly impair the ability of QCT to provide an accurate and precise estimate of rho(ash) that can be used to estimate mechanical properties of trabecular bone with and without metastases. PMID:14996564

  20. Assessment of Corticotomy Facilitated Tooth Movement and Changes in Alveolar Bone Thickness - A CT Scan Study

    PubMed Central

    Bhattacharya, Preeti; Bhattacharya, Hirak; Bhandari, Ravi; Agarwal, D.K.; Gupta, Ankur; Ansar, Juhi

    2014-01-01

    Introduction: Corticotomy is an effective method of accelerating the orthodontic treatment. The aim of this study was to compare the treatment time for the extraction space closure, between corticotomy assisted and conventional orthodontic tooth movement and to check the alveolar bone thickness before and after corticotomy procedure in the corticotomy group. Settings and Design: Cross-sectional clinical study. Materials and Methods: Twenty patients (age>15 y) requiring orthodontic treatment with upper anterior retraction in the extraction space of 1st premolar were selected and were randomised into control and corticotomy group each group consisted of 10 subjects. Pre retraction, corticotomy was performed in the maxillary anterior segment. The pre and post retraction CT scans were recorded and the thickness of the alveolar plates were measured at crestal level (S1), mid root level (S2) and apical level (S3) PreTreatment (T1). The same measurements were repeated after incisor retraction was completed PostTreatment (T2). Statistical Analysis: Student’s t-test, Pearson correlation coefficient. Results: There was a significant difference in retraction time (days) between control and corticotomy groups (p<0.001). Also, there were significant difference in total alveolar bone thickness at the crest region for all the four incisor teeth (p<0.05). A significant difference was observed in total alveolar bone thickness at the S2 and S3 level for 11, 21 and 11, 12 and 22 (p<0.05) respectively. Conclusion: Alveolar corticotomies not only accelerates the orthodontic treatment but, also provides the advantage of increased alveolar width to support the teeth and overlying structures. PMID:25478442

  1. Assessment of the Impact of Zoledronic Acid on Ovariectomized Osteoporosis Model Using Micro-CT Scanning

    PubMed Central

    Shuai, Bo; Shen, Lin; Yang, Yanping; Ma, Chen; Zhu, Rui; Xu, Xiaojuan

    2015-01-01

    Purpose/Objective Prompted by preliminary findings, this study was conducted to investigate the impact of zoledronic acid on the cancellous bone microstructure and its effect on the level of β-catenin in a mouse model of postmenopausal osteoporosis. Methods and Materials 96 8-week-old specific-pathogen-free C57BL/6 mice were randomly divided into 4 groups (24 per group): a sham group, an ovariectomized osteoporosis model group, an estradiol-treated group, and a zoledronic acid-treated group. Five months after surgery, the third lumbar vertebra and left femur of the animals were dissected and scanned using micro-computed tomography (micro-CT) to acquire three-dimensional imagery of their cancellous bone microstructure. The impact of ovariectomy, the effect of estradiol, and the effect of zoledronic acid intervention on cancellous bone microstructure, as well as on the expression of β-catenin, were evaluated. Results The estradiol-treated and the zoledronic acid-treated group exhibited a significant increase in the bone volume fraction, trabecular number, trabecular thickness, bone surface to bone volume ratio (BS/BV), and β-catenin expression, when compared with those of the control group (P <0.01). In contrast, the structure model index, trabecular separation, and BS/BV were significantly lower compared with those of the model group (P <0.01). No differences were observed in the above parameters between animals of the zoledronic acid-treated and the estradiol-treated group. Conclusion These results suggest that increased β-catenin expression may be the mechanism underlying zoledronic acid-related improvement in the cancellous bone microstructure in ovariectomized mice. Our findings provide a scientific rationale for using zoledronic acid as a therapeutic intervention to prevent bone loss in post-menopausal women. PMID:26148020

  2. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  3. Automatic abdominal lymph node detection method based on local intensity structure analysis from 3D x-ray CT images

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku

    2013-03-01

    This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.

  4. Lung Metastasis From Prostate Cancer Revealed by 18F-FDG PET/CT Without Osseous Metastasis on Bone Scan.

    PubMed

    Su, Hung-Yi; Chen, Meng-Lin; Hsieh, Ping-Ju; Hsieh, Teh-Sheng; Chao, Ing-Ming

    2016-05-01

    A 54-year-old man, a case of prostate cancer, underwent radical prostatectomy and hormone therapy. Elevated prostate-specific antigen level developed 7 years later, but pelvic MRI and bone scan revealed negative results. Radiotherapy was performed under the suspicion of local recurrence but in vain. F-FDG PET/CT performed 1 more year later showed 3 FDG-avid lesions in the right lung and mediastinum. Lung and lymph node metastases were proved with video-assisted thoracoscopic surgery. Bone scan remained negative at that time. PMID:26859201

  5. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries.

    PubMed

    Liu, Fenglin; Yu, Hengyong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    The goal is to develop new architectures for computed tomography (CT) which are at an ultra-low-cost for developing countries, especially in rural areas. The proposed general scheme is inspired by the recently developed compressive sensing and interior tomography techniques, where the data acquisition system targets a region of interest (ROI) to acquire limited and truncated data. Similar to linear tomosynthesis, the source and detector are translated in opposite directions but in contrast to conventional tomosynthesis, our proposal is for either ROI reconstruction with one or more localized linear scans or global reconstruction by combining multiple ROI reconstructions. In other words, the popular slip ring is replaced by a translation based setup, and the instrumentation cost is reduced by a relaxation of the imaging speed requirement. The various translational scanning modes are theoretically analyzed, and the scanning parameters are optimized. The numerical simulation results from different numbers of linear scans confirm the feasibility of the proposed scheme, and suggest two preferred low-end systems for horizontal and vertical patient positions respectively. Ultra-low-cost x-ray CT is feasible with our proposed combination of linear scanning, compressive sensing, and interior tomography. The proposed architecture can be tailored into permanent, movable, or reconfigurable systems as desirable. Advanced image registration and spectral imaging features can be included as well. PMID:25265926

  6. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    SciTech Connect

    Liu, H; Liu, T; Xu, X; Wu, J; Zhuo, W

    2015-06-15

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, and the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)

  7. Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2001-06-01

    We developed and tested reconstruction software packages for different algorithms: fan-beam, cone-beam (Feldkamp) and spiral (helical) scans. All algorithms were applied to different simulations as well as to the real datasets from the commercial micro-CT instruments. From the results of testing a number of strong and weak points at different approaches was found. Several examples from the different application areas (bone microstructure, industrial applications) show typical reconstruction artifacts with different algorithms.

  8. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.

    2009-05-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  9. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  10. Multislice CT Angiography of Fenestrated Endovascular Stent Grafting for Treating Abdominal Aortic Aneurysms: a Pictorial Review of the 2D/3D Visualizations

    PubMed Central

    Mwipatayi, Bibombe P; Allen, Yvonne B; Hartley, David E; Lawrence-Brown, Michael M

    2009-01-01

    Fenestrated endovascular repair of an abdominal aortic aneurysm has been developed to treat patients with a short or complicated aneurysm neck. Fenestration involves creating an opening in the graft fabric to accommodate the orifice of the vessel that is targeted for preservation. Fixation of the fenestration to the renal arteries and the other visceral arteries can be done by implanting bare or covered stents across the graft-artery ostia interfaces so that a portion of the stent protrudes into the aortic lumen. Accurate alignment of the targeted vessels in a longitudinal aspect is hard to achieve during stent deployment because rotation of the stent graft may take place during delivery from the sheath. Understanding the 3D relationship of the aortic branches and the fenestrated vessel stents following fenestration will aid endovascular specialists to evaluate how the stent graft is situated within the aorta after placement of fenestrations. The aim of this article is to provide the 2D and 3D imaging appearances of the fenestrated endovascular grafts that were implanted in a group of patients with abdominal aortic aneurysms, based on the multislice CT angiography. The potential applications of each visualization technique were explored and compared with the 2D axial images. PMID:19412517

  11. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  12. A mycotic abdominal aortic aneurysm caused by Listeria monocytogenes in a patient with HIV infection

    PubMed Central

    Gunst, Jesper Damsgaard; Jensen-Fangel, Søren

    2014-01-01

    A 65-year-old man with HIV infection presented with acute severe abdominal pain radiating to the back. A CT scan revealed an infrarenal abdominal aortic aneurysm, and an aortobifemoral bypass was undertaken. Subsequently, tissue specimens from the aortic wall grew Listeria monocytogenes. The patient received 8 weeks of intravenous antibiotic treatment followed by oral sulfotrim as secondary prophylaxis and made an uneventful recovery. PMID:24443338

  13. Simple diagrammatic approach to delineate duodenum on a radiotherapy planning CT scan.

    PubMed

    Kataria, Tejinder; Gupta, Deepak; Basu, Trinanjan; Gupta, Shivani; Goyal, Shikha; Banerjee, Susovan; Abhishek, Ashu; Bisht, Shyam S; Narang, Kushal

    2016-01-01

    In recent years, there has been increasing application of intensity-modulated radiotherapy and stereotactic body radiotherapy for the treatment of abdominal malignancies (stomach, pancreas, liver, spinal metastases). This warrants accurate delineation of organs at risk, especially the duodenum. The tortuous and curvy anatomy of duodenum often indistinguishable from adjoining organs is a practical challenge. Radiation Therapy Oncology Group (RTOG) has already published upper abdominal normal structure contouring guidelines to ease the delineation process. This pictorial essay following the RTOG guideline elaborates the step-by-step identification of the different parts of duodenum in relation to the adjoining important structures. PMID:26647654

  14. Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained During Image-Guided Radiotherapy Using CT-on-Rails for the Treatment of Prostate Cancer

    SciTech Connect

    Wong, James R. Gao Zhanrong; Uematsu, Minoru; Merrick, Scott; Machernis, Nolan P.; Chen, Timothy; Cheng, C.W.

    2008-12-01

    Purpose: To review 1870 CT scans of interfractional prostate shift obtained during image-guided radiotherapy. Methods and Materials: A total of 1870 pretreatment CT scans were acquired with CT-on-rails, and the corresponding shift data for 329 patients with prostate cancer were analyzed. Results: Of the 1870 scans reviewed, 44% required no setup adjustments in the anterior-posterior (AP) direction, 14% had shifts of 3-5 mm, 29% had shifts of 6-10 mm, and 13% had shifts of >10 mm. In the superior-inferior direction, 81% had no adjustments, 2% had shifts of 3-5 mm, 15% had shifts of 6-10 mm, and 2% had shifts of >10 mm. In the left-right direction, 65% had no adjustment, 13% had shifts of 3-5 mm, 17% had shifts of 6-10 mm, and 5% had shifts of >10 mm. Further analysis of the first 66 consecutive patients divided into three groups according to body mass index indicates that the shift in the AP direction for the overweight subgroup was statistically larger than those for the control and obese subgroups (p < 0.05). The interfractional shift in the lateral direction for the obese group (1 SD, 5.5 mm) was significantly larger than those for the overweight and control groups (4.1 and 2.9 mm, respectively) (p < 0.001). Conclusions: These data demonstrate that there is a significantly greater shift in the AP direction than in the lateral and superior-inferior directions for the entire patient group. Overweight and obese patient groups show a significant difference from the control group in terms of prostate shift.

  15. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-09-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage

  16. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  17. IV Leiomyomatosis on FDG PET/CT.

    PubMed

    Jin, Xiaona; Li, Fang; Lu, Zhaohui; Cheng, Wuying

    2016-07-01

    A 48-year-old woman presented with a 2-month history of right lower extremity edema. Clinical examination only showed right lower limb swelling. Routine laboratory examination revealed no abnormal results. Abdominal ultrasonography identified uterine leiomyoma and soft tissue masses. An abdominal CT demonstrated a continuous mass extending from the right internal and external iliac vein into the common iliac vein and inferior vena cava. To distinguish the mass from malignancy, the patient underwent PET/CT scan which showed increased FDG activity in the mass. However, histopathological examination proved the mass to be IV leiomyomatosis. PMID:26914578

  18. CT Scans in Young People in Great Britain: Temporal and Descriptive Patterns, 1993–2002

    PubMed Central

    Pearce, Mark S.; Salotti, Jane A.; Howe, Nicola L.; McHugh, Kieran; Kim, Kwang Pyo; Lee, Choonsik; Craft, Alan W.; Berrington de Gonzaléz, Amy; Parker, Louise

    2012-01-01

    Background. Although using computed tomography (CT) can be greatly beneficial, the associated relatively high radiation doses have led to growing concerns in relation to potential associations with risk of future cancer. Very little has been published regarding the trends of CT use in young people. Therefore, our objective was to assess temporal and other patterns in CT usage among patients aged under 22 years in Great Britain from 1993 to 2002. Methods. Electronic data were obtained from the Radiology Information Systems of 81 hospital trusts within Great Britain. All included patients were aged under 22 years and examined using CT between 1993 and 2002, with accessible radiology records. Results. The number of CT examinations doubled over the study period. While increases in numbers of recorded examinations were seen across all age groups, the greatest increases were in the older patients, most notably those aged 15–19 years of age. Sixty percent of CT examinations were of the head, with the percentages varying with calendar year and patient age. Conclusions. In contrast to previous data from the North of England, the doubling of CT use was not accompanied by an increase in numbers of multiple examinations to the same individual. PMID:22792457

  19. SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning

    SciTech Connect

    Grantham, K; Li, H; Zhao, T; Klein, E

    2014-06-15

    Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). The dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.

  20. Evaluation of Distal Femoral Rotational Alignment with Spiral CT Scan before Total Knee Arthroplasty (A Study in Iranian population)

    PubMed Central

    Jabalameli, Mahmoud; Moradi, Amin; Bagherifard, Abolfazl; Radi, Mehran; Mokhtari, Tahmineh

    2016-01-01

    Background: Evaluating the landmarks for rotation of the distal femur is a challenge for orthopedic surgeons. Although the posterior femoral condyle axis is a good landmark for surgeons, the surgical transepicondylar axis may be a better option with the help of preoperative CT scanning. The purpose of this study was to ascertain relationships among the axes’ guiding distal femur rotational alignment in preoperative CT scans of Iranian patients who were candidates for total knee arthroplasty and the effects of age, gender, and knee alignment on these relationships. Methods: One hundred and eight cases who were admitted to two university hospitals for total knee arthroplasty were included in this study. The rotation of the distal femur was evaluated using single axial CT images through the femoral epicondyle. Four lines were drawn digitally in this view: anatomical and surgical transepicondylar axes, posterior condylar axis and the Whiteside anteroposterior line. The alignment of the extremity was evaluated in the standing alignment view. Then the angles were measured along these lines and their relationship was evaluated. Results: The mean angle between the anatomical transepicondylar axis and posterior condylar axis and between the surgical transepicondylar axis and posterior condylar axis were 5.9 ± 1.6 degrees and 1.6±1.7 degrees respectively. The mean angle between the Whiteside’s anteroposterior line and the line perpendicular to the posterior condylar axis was 3.7±2.1 degrees. Significant differences existed between the two genders in these relationships. No significant correlation between the age of patients and angles of the distal femur was detected. The anatomical surgical transepicondylar axis was in 4.3 degrees external rotation in relation to the surgical transepicondylar axis. Conclusion: Preoperative CT scanning can help accurately determine rotational landmarks of the distal femur. If one of the reference axes cannot be determined, other

  1. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  2. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  3. Automatic segmentation of the liver using multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images

    NASA Astrophysics Data System (ADS)

    Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho

    2012-02-01

    We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.

  4. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Shicheng, Zhang; Tong, Zhou; Xiang, Zhou; Tiankui, Guo

    2016-01-01

    Multistage fracturing of the horizontal well is recognized as the main stimulation technology for shale gas development. The hydraulic fracture geometry and stimulated reservoir volume (SRV) is interpreted by using the microseismic mapping technology. In this paper, we used a computerized tomography (CT) scanning technique to reveal the fracture geometry created in natural bedding-developed shale (cubic block of 30 cm × 30 cm × 30 cm) by laboratory fracturing. Experimental results show that partially opened bedding planes are helpful in increasing fracture complexity in shale. However, they tend to dominate fracture patterns for vertical stress difference Δ σ v ≤ 6 MPa, which decreases the vertical fracture number, resulting in the minimum SRV. A uniformly distributed complex fracture network requires the induced hydraulic fractures that can connect the pre-existing fractures as well as pulverize the continuum rock mass. In typical shale with a narrow (<0.05 mm) and closed natural fracture system, it is likely to create complex fracture for horizontal stress difference Δ σ h ≤ 6 MPa and simple transverse fracture for Δ σ h ≥ 9 MPa. However, high naturally fractured shale with a wide open natural fracture system (>0.1 mm) does not agree with the rule that low Δ σ h is favorable for uniformly creating a complex fracture network in zone. In such case, a moderate Δ σ h from 3 to 6 MPa is favorable for both the growth of new hydraulic fractures and the activation of a natural fracture system. Shale bedding, natural fracture, and geostress are objective formation conditions that we cannot change; we can only maximize the fracture complexity by controlling the engineering design for fluid viscosity, flow rate, and well completion type. Variable flow rate fracturing with low-viscosity slickwater fluid of 2.5 mPa s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with pre-existing fractures. Moreover, the

  5. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  6. Multi-modal CT scanning in the evaluation of cerebrovascular disease patients

    PubMed Central

    Anzidei, Michele; Piga, Mario; Ciolina, Federica; Mannelli, Lorenzo; Catalano, Carlo; Suri, Jasjit S.; Raz, Eytan

    2014-01-01

    Ischemic stroke currently represents one of the leading causes of severe disability and mortality in the Western World. Until now, angiography was the most used imaging technique for the detection of the extra-cranial and intracranial vessel pathology. Currently, however, non-invasive imaging tool like ultrasound (US), magnetic resonance (MR) and computed tomography (CT) have proven capable of offering a detailed analysis of the vascular system. CT in particular represents an advanced system to explore the pathology of carotid arteries and intracranial vessels and also offers tools like CT perfusion (CTP) that provides valuable information of the brain’s vascular physiology by increasing the stroke diagnostic. In this review, our purpose is to discuss stroke risk prediction and detection using CT. PMID:25009794

  7. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  8. Measurement of endotracheal tube secretions volume by micro computed tomography (MicroCT) scan: an experimental and clinical study

    PubMed Central

    2014-01-01

    Background Biofilm accumulates within the endotracheal tube (ETT) early after intubation. Contaminated secretions in the ETT are associated with increased risk for microbial dissemination in the distal airways and increased resistance to airflow. We evaluated the effectiveness of micro computed tomography (MicroCT) for the quantification of ETT inner volume reduction in critically ill patients. Methods We injected a known amount of gel into unused ETT to simulate secretions. We calculated the volume of gel analyzing MicroCT scans for a length of 20 cm. We then collected eleven ETTs after extubation of critically ill patients, recording clinical and demographical data. We assessed the amount of secretions by MicroCT and obtained ETT microbiological cultures. Results Gel volumes assessed by MicroCT strongly correlated with injected gel volumes (p < 0.001, r2 = 0.999). MicroCT revealed the accumulation of secretions on all the ETTs (median 0.154, IQR:0.02-0.837 mL), corresponding to an average cross-sectional area reduction of 1.7%. The amount of secretions inversely correlated with patients’ age (p = 0.011, rho = −0.727) but not with days of intubation, SAPS2, PaO2/FiO2 assessed on admission. Accumulation of secretions was higher in the cuff region (p = 0.003). Microbial growth occurred in cultures from 9/11 ETTs, and did not correlate with secretions amount. In 7/11 cases the same microbes were identified also in tracheal aspirates. Conclusions MicroCT appears as a feasible and precise technique to measure volume of secretions within ETTs after extubation. In patients, secretions tend to accumulate in the cuff region, with high variability among patients. PMID:24678963

  9. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    SciTech Connect

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise and dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.

  10. The role of computed tomography in evaluating body composition and the influence of reduced muscle mass on clinical outcome in abdominal malignancy: a systematic review.

    PubMed

    Gibson, D J; Burden, S T; Strauss, B J; Todd, C; Lal, S

    2015-10-01

    It is estimated that there were 3.45 million new cases and 1.75 million deaths from cancer in Europe in 2012. Colorectal cancer was one of the most common cancers, accounting for 13% of new cases and 12.2% of all deaths. Conditions causing reduced muscle mass, such as sarcopenia, can increase the morbidity and mortality of people with cancer. Computed tomography (CT) scans can provide accurate, high-quality information on body composition, including muscle mass. To date, there has been no systematic review on the role of CT scans in identifying sarcopenia in abdominal cancer. This review aimed to examine the role of CT scans in determining the influence of reduced muscle mass on clinical outcome in abdominal cancer. A systematic review of English-language articles published in 2000 or later was conducted. Articles included cohort, randomised controlled trials and validation studies. Participants were people diagnosed with abdominal cancer who had undergone a CT scan. Data extraction and critical appraisal were undertaken. Ten cohort studies met the inclusion criteria. Seven studies demonstrated that low muscle mass was significantly associated with poor clinical outcome, with six specifically demonstrating reduced survival rates. Eight studies demonstrated that a greater number of patients (27.3-66.7%) were identified as sarcopenic using CT scans compared with numbers identified as malnourished using body mass index. CT scans can identify reduced muscle mass and predict negative cancer outcomes in people with abdominal malignancies, where traditional methods of assessment are less effective. PMID:25782424

  11. Subtle Radiological Features of Splenic Avulsion following Abdominal Trauma

    PubMed Central

    Rehim, S. A.; Dagash, H.; Godbole, P. P.; Raghavan, A.; Murthi, G. V.

    2010-01-01

    Splenic trauma in children following blunt abdominal injury is usually treated by nonoperative management (NOM). Splenectomy following abdominal trauma is rare in children. NOM is successful as in the majority of instances the injury to the spleen is contained within its capsule or a localised haematoma. Rarely, the spleen may suffer from an avulsion injury that causes severe uncontrollable bleeding and necessitates an emergency laparotomy and splenectomy. We report two cases of children requiring splenectomy following severe blunt abdominal injury. In both instances emergency laparotomy was undertaken for uncontrollable bleeding despite resuscitation. The operating team was unaware of the precise source of bleeding preoperatively. Retrospective review of the computed tomography (CT) scans revealed subtle radiological features that indicate splenic avulsion. We wish to highlight these radiological features of splenic avulsion as they can help to focus management decisions regarding the need/timing for a laparotomy following blunt abdominal trauma in children. PMID:21209813

  12. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    PubMed

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  13. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery.

    PubMed

    Weese, J; Penney, G P; Desmedt, P; Buzug, T M; Hill, D L; Hawkes, D J

    1997-12-01

    Registration of intraoperative fluoroscopy images with preoperative three-dimensional (3-D) CT images can be used for several purposes in image-guided surgery. On the one hand, it can be used to display the position of surgical instruments, which are being tracked by a localizer, in the preoperative CT scan. On the other hand, the registration result can be used to project preoperative planning information or important anatomical structures visible in the CT image onto the fluoroscopy image. For this registration task, a novel voxel-based method in combination with a new similarity measure (pattern intensity) has been developed. The basic concept of the method is explained at the example of two-dimensional (2-D)/3-D registration of a vertebra in an X-ray fluoroscopy image with a 3-D CT image. The registration method is described, and the results for a spine phantom are presented and discussed. Registration has been carried out repeatedly with different starting estimates to study the capture range. Information about registration accuracy has been obtained by comparing the registration results with a highly accurate "ground-truth" registration, which has been derived from fiducial markers attached to the phantom prior to imaging. In addition, registration results for different vertebrae have been compared. The results show that the rotation parameters and the shifts parallel to the projection plane can accurately be determined from a single projection. Because of the projection geometry, the accuracy of the height above the projection plane is significantly lower. PMID:11020832

  14. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  15. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content

    PubMed Central

    2012-01-01

    Background Genomic regions controlling abdominal fatness (AF) were studied in the Northeast Agricultural University broiler line divergently selected for AF. In this study, the chicken 60KSNP chip and extended haplotype homozygosity (EHH) test were used to detect genome-wide signatures of AF. Results A total of 5357 and 5593 core regions were detected in the lean and fat lines, and 51 and 57 reached a significant level (P<0.01), respectively. A number of genes in the significant core regions, including RB1, BBS7, MAOA, MAOB, EHBP1, LRP2BP, LRP1B, MYO7A, MYO9A and PRPSAP1, were detected. These genes may be important for AF deposition in chickens. Conclusions We provide a genome-wide map of selection signatures in the chicken genome, and make a contribution to the better understanding the mechanisms of selection for AF content in chickens. The selection for low AF in commercial breeding using this information will accelerate the breeding progress. PMID:23241142

  16. Treatment options for traumatic pseudoaneurysms of the paravisceral abdominal aorta.

    PubMed

    Tucker, Sonny; Rowe, Vincent L; Rao, Rajeev; Hood, Douglas B; Harrell, Donald; Weaver, Fred A

    2005-09-01

    Penetrating gunshot wounds (GSWs) to the abdominal aorta are frequently lethal. Alternative management options for treatment of traumatic pseudoaneurysms of the abdominal aorta are illustrated by three patient case histories. Patient A sustained two GSWs to the abdomen (midepigastrium, right subcostal region). He was hypotensive in the field. Emergent laparotomy was undertaken with suture ligature of a celiac injury and distal pancreatectomy/splenectomy for a pancreatic injury. Postoperative abdominal CT for an intraabdominal infection with leukocytosis revealed a 4 cm traumatic pseudoaneurysm of the abdominal aorta that extended from the suprarenal aorta to the level of the renal arteries. Six weeks later, he underwent an open repair. Patient B sustained multiple GSWs to his right arm and right upper quadrant. He was hemodynamically stable. He underwent abdominal exploration for a grade 3 liver laceration. Postoperative abdominal CT revealed a supraceliac abdominal aortic pseudoaneurysm. An aortogram demonstrated a 1.5 cm defect in the aortic wall above the celiac trunk communicating with the inferior vena cava (IVC). He underwent endovascular repair with covered aortic stent graft. Patient C sustained multiple thoracoabdominal GSWs. He was hemodynamically stable. Emergent laparotomy revealed multiple left colonic perforations, two duodenal lacerations, and an unsalvageable left kidney laceration. Postoperatively, he developed a duodenal-cutaneous fistula with multiple intraabdominal abscesses. Serial CT scans revealed an enlarging infrarenal aortic pseudoaneurysm. He underwent angiographic coil embolization and intraarterial injection of thrombin into the pseudoaneurysm sac. The average time from injury to surgical treatment was 46 days (range 29-67). Postoperatively, none of the patients developed paraplegia. Advances in endovascular techniques have provided options to deal with traumatic pseudoaneurysms of the abdominal aorta. In a hemodynamically stable

  17. Automated detection of pulmonary nodules from whole lung helical CT scans: performance comparison for isolated and attached nodules

    NASA Astrophysics Data System (ADS)

    Enquobahrie, Andinet A.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.

    2004-05-01

    The objective of this research is to evaluate and compare the performance of our automated detection algorithm on isolated and attached nodules in whole lung CT scans. Isolated nodules are surrounded by the lung parenchyma with no attachment to large solid structures such as the chest wall or mediastinum surface, while attached nodules are adjacent to these structures. The detection algorithm involves three major stages. First, the region of the image space where pulmonary nodules are to be found is identified. This involves segmenting the lung region and generating the pleural surface. In the second stage, which is the hypothesis generation stage, nodule candidate locations are identified and their sizes are estimated. The nodule candidates are successively refined in the third stage a sequence of filters of increasing complexity. The algorithm was tested on a dataset containing 250 low-dose whole lung CT scans with 2.5mm slice thickness. A scan is composed of images covering the whole lung region for a single person. The dataset was partitioned into 200 and 50 scans for training and testing the algorithm. Only solid nodules were considered in this study. Experienced chest radiologists identified a total of 447 solid nodules. 345 and 102 of the nodules were from the training and testing datasets respectively. 126(28.2%) of the nodules in the dataset were attached nodules. The detection performance was then evaluated separately for isolated and attached nodule types considering different size ranges. For nodules 3mm and larger, the algorithm achieved a sensitivity of 97.8% with 2.0 false positives (FPs) per scan and 95.7% with 19.3 FPs per scan for isolated and attached nodules respectively. For nodules 4mm and larger, a sensitivity of 96.6% with 1.5 FP per scan and a 100% sensitivity with 13 FPs per scan were obtained for isolated and attached nodule types respectively. The results show that our algorithm detects isolated and attached nodules with comparable

  18. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; McNelis, Mark; Jones, Trevor; Suarez, Vicente; Akers, James

    2011-01-01

    The semi-empirical force-limited vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA Glenn Research Center (GRC) as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) project utilized force-limited testing and analysis following the semi-empirical approach. This presentation presents the steps in performing a force-limited analysis and then compares the results to test data recovered during the CoNNeCT force-limited random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 - January 7, 2011. A compilation of lessons learned and considerations for future force-limited tests is also included.

  19. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.

    2012-01-01

    The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.

  20. CT and MR colonography: scanning techniques, postprocessing, and emphasis on polyp detection.

    PubMed

    Geenen, Remy W F; Hussain, Shahid M; Cademartiri, Filippo; Poley, Jan-Werner; Siersema, Peter D; Krestin, Gabriel P

    2004-01-01

    In the last decade, computed tomographic (CT) and magnetic resonance (MR) colonography, two new cross-sectional techniques for imaging of the colon, emerged. Both techniques show promising initial results in the detection of polyps equal to or greater than 1 cm in diameter in symptomatic patients. Imaging protocols are still mostly under development and prone to change. Both CT and MR colonography generate a large number of source images, which have to be read carefully for filling defects and, if intravenous contrast material is used, enhancing lesions. An important postprocessing technique is multiplanar reformatting, which allows the viewer to see potential lesions in an orientation other than that of the source images. Virtual endoscopy, a volume rendering technique that generates images from within the colon lumen, is used for problem solving. CT and MR colonography have potential advantages over colonoscopy and double-contrast barium enema examination: multiplanar capabilities, detection of enhancing lesions that make the distinction between fecal residue and true lesion possible, and ante- and retrograde virtual colonoscopy. Currently, a number of studies suggest that patients have a preference for CT colonography over colonoscopy. Patients consider bowel cleansing the most uncomfortable part of any colon examination; hence, from the acceptance point of view, fecal tagging techniques are promising. Before CT and MR colonography can be implemented in daily practice, they must show approximately the same accuracy as colonoscopy for polyp detection in both symptomatic and screening patients. PMID:14527992

  1. Evaluation of exposure dose reduction in multislice CT coronary angiography (MS-CTA) with prospective ECG-gated helical scan

    NASA Astrophysics Data System (ADS)

    Ota, Takamasa; Tsuyuki, Masaharu; Okumura, Miwa; Sano, Tomonari; Kondo, Takeshi; Takase, Shinichi

    2008-03-01

    A novel low-dose ECG-gated helical scan method to investigate coronary artery diseases was developed. This method uses a high pitch for scanning (based on the patient's heart rate) and X-rays are generated only during the optimal cardiac phases. The dose reduction was obtained using a two-level approach: 1) To use a 64-slice CT scanner (Aquilion, Toshiba, Otawara, Tochigi, Japan) with a scan speed of 0.35 s/rot. to helically scan the heart at a high pitch based on the patient's heart rate. By changing the pitch from the conventional 0.175 to 0.271 for a heart rate of 60 bpm, the exposure dose was reduced to 65%. 2) To employ tube current gating that predicts the timing of optimal cardiac phases from the previous cardiac cycle and generates X-rays only during the required cardiac phases. The combination of high speed scanning with a high pitch and appropriate X-ray generation only in the cardiac phases from 60% to 90% allows the exposure dose to be reduced to 5.6 mSv for patients with a heart rate lower than 65 bpm. This is a dose reduction of approximately 70% compared to the conventional scanning method recommended by the manufacturer when segmental reconstruction is considered. This low-dose protocol seamlessly allows for wide scan ranges (e.g., aortic dissection) with the benefits of ECG-gated helical scanning: smooth continuity for longitudinal direction and utilization of data from all cardiac cycles.

  2. Intra-Abdominal Hematoma Following Enoxaparin Injection

    PubMed Central

    Chung, Kin Tong

    2016-01-01

    An elderly patient, who was being treated for therapeutic enoxaparin for a couple of days due to suspected deep vein thrombosis, was admitted to hospital following a collapse and severe abdominal pain. She was in hypovolemic shock and was fluid resuscitated. Ultrasound scan and computed tomography (CT) scan showed a large pelvic hematoma. Radiologists also suspected a possibility of bleeding from inferior epigastric artery following a CT angiogram. The patient was stabilized and transferred to intensive care unit (ICU) for further hemodynamic supports and close monitoring. The patient was then transferred back to the general ward when she was stable. She was managed conservatively as there were no more signs of active bleeding. Unfortunately, she died of recurrent bleeding three days after ICU discharge. PMID:27158226

  3. Intra-Abdominal Hematoma Following Enoxaparin Injection.

    PubMed

    Chung, Kin Tong

    2016-01-01

    An elderly patient, who was being treated for therapeutic enoxaparin for a couple of days due to suspected deep vein thrombosis, was admitted to hospital following a collapse and severe abdominal pain. She was in hypovolemic shock and was fluid resuscitated. Ultrasound scan and computed tomography (CT) scan showed a large pelvic hematoma. Radiologists also suspected a possibility of bleeding from inferior epigastric artery following a CT angiogram. The patient was stabilized and transferred to intensive care unit (ICU) for further hemodynamic supports and close monitoring. The patient was then transferred back to the general ward when she was stable. She was managed conservatively as there were no more signs of active bleeding. Unfortunately, she died of recurrent bleeding three days after ICU discharge. PMID:27158226

  4. The Acute Abdominal Aorta.

    PubMed

    Mellnick, Vincent M; Heiken, Jay P

    2015-11-01

    Acute disorders of the abdominal aorta are potentially lethal conditions that require prompt evaluation and treatment. Computed tomography (CT) is the primary imaging method for evaluating these conditions because of its availability and speed. Volumetric CT acquisition with multiplanar reconstruction and three-dimensional analysis is now the standard technique for evaluating the aorta. MR imaging may be useful for select applications in stable patients in whom rupture has been excluded. Imaging is indispensable for diagnosis and treatment planning, because management has shifted toward endoluminal repair. Acute abdominal aortic conditions most commonly are complications of aneurysms and atherosclerosis. PMID:26526434

  5. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations

    PubMed Central

    Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris

    2015-01-01

    Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID

  6. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations.

    PubMed

    Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris

    2015-01-01

    Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID

  7. Graph-Based Airway Tree Reconstruction from Chest CT Scans: Evaluation of Different Features on Five Cohorts

    PubMed Central

    Bauer, Christian; Eberlein, Michael; Beichel, Reinhard R.

    2014-01-01

    We present a graph-based framework for airway tree reconstruction from CT scans and evaluate the performance of different feature categories and their combinations on five lung cohorts. The approach consists of two main processing steps. First, potential airway branch and connection candidates are identified and represented by a graph structure with weighted nodes and edges, respectively. Second, an optimization algorithm is utilized for generating an airway detection result by selecting a subset of airway branches and connections based on graph weights derived from image features. The performance of the algorithm with different feature categories and their combinations was assessed on a set of 50 lung CT scans from five different cohorts, including normal and diseased lungs. Results show tradeoffs between feature categories/combinations in terms of correctly (true positive) and incorrectly (false positive) identified airways. Also, the performance of features in dependence of lung cohort was analyzed. Across all cohorts, a good trade-off with high true positive rate (TPR) and low false positive rate (FPR) was achieved by a combination of gray-value, local shape, and structural features. This combination enabled extracting 91.80% of reference airways (TPR) in combination with a low FPR of 1.00%. In addition, this variant was evaluated on the public EXACT’09 test set, and a comparison with other airway detection approaches is provided. One of the main advantages of the presented method is that it is robust against local disturbances/artifacts or other ambiguities that are frequently occurring in lung CT scans. PMID:25438305

  8. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. PMID:27320398

  9. Age-related differences in image quality of prospectively ECG-triggered axial and helical scans for coronary CT angiography.

    PubMed

    Takase, Makoto; Fujimoto, Shinichiro; Takamura, Kazuhisa; Yamashita, Haruyo; Uno, Kenji; Aoki, Shigeki

    2016-07-01

    We investigated the underlying reasons for the occurrence of misalignment artifacts in prospectively ECG-triggered axial coronary CT angiography scans. In this study we analyzed 56 consecutive patients scanned in axial mode and 66 consecutive patients scanned in helical mode. Predictors for the occurrence of misalignment artifacts were evaluated by multivariable logistic regression analysis for those patients scanned in the axial mode; advanced age was identified as the sole independent predictor (odds ratio: 1.088; 95 % CI: 1.012-1.170; p = 0.0228). In a comparison with the patients scanned in the helical mode, the image quality score for patients aged 65 years or older was significantly higher in helical mode than in axial mode (2.6 ± 0.5 and 2.4 ± 0.7, respectively; p = 0.0313). Misalignment artifacts in the image are more common in the elderly than in younger. Helical mode should be preferred in this older patient population to allow for good diagnostic image quality. PMID:26984733

  10. Automated detection of nodules attached to the pleural and mediastinal surface in low-dose CT scans

    NASA Astrophysics Data System (ADS)

    van Ginneken, Bram; Tan, Andre; Murphy, Keelin; de Hoop, Bart-Jan; Prokop, Mathias

    2008-03-01

    This paper presents a new computer-aided detection scheme for lung nodules attached to the pleural or mediastinal surface in low dose CT scans. First the lungs are automatically segmented and smoothed. Any connected set of voxels attached to the wall - with each voxel above minus 500 HU and the total object within a specified volume range - was considered a candidate finding. For each candidate, a refined segmentation was computed using morphological operators to remove attached structures. For each candidate, 35 features were defined, based on their position in the lung and relative to other structures, and the shape and density within and around each candidate. In a training procedure an optimal set of 15 features was determined with a k-nearest-neighbor classifier and sequential floating forward feature selection. The algorithm was trained with a data set of 708 scans from a lung cancer screening study containing 224 pleural nodules and tested on an independent test set of 226 scans from the same program with 58 pleural nodules. The algorithm achieved a sensitivity of 52% with an average of 0.76 false positives per scan. At 2.5 false positive marks per scan, the sensitivity increased to 80%.

  11. Dose reduction of cone beam CT scanning for the entire oral and maxillofacial regions with thyroid collars

    PubMed Central

    Qu, XM; Li, G; Sanderink, GCH; Zhang, ZY; Ma, XC

    2012-01-01

    Objective The aim of this study was to evaluate the influence of thyroid collars on radiation dose during cone beam CT (CBCT) scanning. Methods Average tissue-absorbed dose for a NewTom 9000 CBCT scanner (Quantitative Radiology, Verona, Italy) was measured using thermoluminescent dosemeter chips in a phantom. The scans were carried out with and without thyroid collars. Effective organ dose and total effective dose were derived using International Commission on Radiological Protection 2007 recommendations. Results The effective organ doses for the thyroid gland and oesophagus were 31.0 µSv and 2.4 µSv, respectively, during CBCT scanning without a collar around the neck. When the thyroid collars were used loosely around the neck, no effective organ dose reduction was observed. When one thyroid collar was used tightly on the front of the neck, the effective organ dose for the thyroid gland and oesophagus were reduced to 15.9 µSv (48.7% reduction) and 1.4 µSv (41.7% reduction), respectively. Similar organ dose reduction (46.5% and 41.7%) was achieved when CBCT scanning was performed with two collars tightly on the front and back of the neck. However, the differences to the total effective dose were not significant among the scans with and without collars around the neck (p = 0.775). Conclusions Thyroid collars can effectively reduce the radiation dose to the thyroid and oesophagus if used appropriately. PMID:22707330

  12. An Unusual Case of Extraosseous Accumulation of Bone Scan Tracer in a Renal Calculus - Demonstration by SPECT-CT

    PubMed Central

    Joshi, Prathamesh Vijay; Lele, Vikram; Gandhi, Rozil

    2012-01-01

    Extraosseous localization of radioisotope, used in bone scan, in a variety of physiological and pathological conditions is a well-known phenomenon. The causes of extraosseous accumulation of bone-seeking radiotracers should be kept in mind when bone-imaging studies are reviewed to avoid incorrect interpretations. We report an extremely rare occurrence of extraosseous accumulation of bone scintigraphy tracer in a renal calculus, in a patient with adenocarcinoma of prostate, that was demonstrated by Single Photon Emission Computed Tomography and Computed Tomography (SPECT-CT) fusion imaging. PMID:22439128

  13. Endovascular Repair of an Anastomotic Leak Following Open Repair of Abdominal Aortic Aneurysm

    SciTech Connect

    Mofidi, R. Flett, M.; Milne, A.; Chakraverty, S.

    2007-09-15

    This report describes the case of an early postoperative anastomotic leak following elective open repair of an infrarenal abdominal aortic aneurysm which was successfully treated by endovascular stent-grafting. A 71-year-old man underwent open tube graft repair of abdominal aortic aneurysm. Twelve days later he presented with a contained leak from the distal anastomosis, which was confirmed on CT scan. This was successfully treated with a bifurcated aortic stent-graft. This case illustrates the usefulness of the endovascular approach for resolving this rare surgical complication of open repair of abdominal aortic aneurysm and the challenges associated with the deployment of such a device within an aortic tube graft.

  14. Imaging of Chest and Abdominal Trauma in Children.

    PubMed

    Goodwin, Susie J; Flanagan, Sean G; McDonald, Kirsteen

    2015-01-01

    Trauma is the commonest cause of death in children over a year old. The injuries sustained and management of these children differs to adults, due to differences in anatomy and physiology. Careful thought must also be given to exposing children to radiation, and CT scans should be performed only in select patients. This article reviews these important points and explains the imaging findings in chest and abdominal trauma. PMID:26219741

  15. Detection and visualization of endoleaks in CT data for monitoring of thoracic and abdominal aortic aneurysm stents

    NASA Astrophysics Data System (ADS)

    Lu, J.; Egger, J.; Wimmer, A.; Großkopf, S.; Freisleben, B.

    2008-03-01

    In this paper we present an efficient algorithm for the segmentation of the inner and outer boundary of thoratic and abdominal aortic aneurysms (TAA & AAA) in computed tomography angiography (CTA) acquisitions. The aneurysm segmentation includes two steps: first, the inner boundary is segmented based on a grey level model with two thresholds; then, an adapted active contour model approach is applied to the more complicated outer boundary segmentation, with its initialization based on the available inner boundary segmentation. An opacity image, which aims at enhancing important features while reducing spurious structures, is calculated from the CTA images and employed to guide the deformation of the model. In addition, the active contour model is extended by a constraint force that prevents intersections of the inner and outer boundary and keeps the outer boundary at a distance, given by the thrombus thickness, to the inner boundary. Based upon the segmentation results, we can measure the aneurysm size at each centerline point on the centerline orthogonal multiplanar reformatting (MPR) plane. Furthermore, a 3D TAA or AAA model is reconstructed from the set of segmented contours, and the presence of endoleaks is detected and highlighted. The implemented method has been evaluated on nine clinical CTA data sets with variations in anatomy and location of the pathology and has shown promising results.

  16. Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT.

    PubMed

    Price, S W T; Ignatyev, K; Geraki, K; Basham, M; Filik, J; Vo, N T; Witte, P T; Beale, A M; Mosselmans, J F W

    2015-01-01

    The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo-promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle. PMID:25407850

  17. A 42-Year-Old Woman With Abnormal Chest CT Scan and Chylous Ascites.

    PubMed

    Panchabhai, Tanmay S; Bandyopadhyay, Debabrata; Yadav, Ruchi; Arrossi, Andrea V; Mehta, Atul C; Faress, Jihane A

    2016-01-01

    A 42-year-old white woman presented to the pulmonary clinic for evaluation of abnormal chest imaging. Twenty years prior to presentation, she was noted to have an abnormal chest radiograph during a routine preemployment evaluation. A subsequent bronchoscopy was nondiagnostic. She was followed up with annual imaging, which demonstrated little or no progression of her disease. She remained symptom free throughout this period. A year before her visit to the pulmonary clinic, she developed abdominal discomfort and was found to have ascites. Subsequently, she underwent three paracenteses with analysis revealing chylous fluid. She was a nonsmoker without a history of exposures or travel. PMID:26757302

  18. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France

    PubMed Central

    Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O

    2015-01-01

    Background: Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. Methods: The cohort included 67 274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. Results: During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. Conclusions: This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans. PMID:25314057

  19. [Bone scanning with sodium 18F-fluoride PET and PET/CT. German guideline Version 1.0.].

    PubMed

    Hellwig, D; Krause, B-J; Schirrmeister, H; Freesmeyer, M

    2010-01-01

    In nuclear medicine, bone scanning is based on the principle of scintigraphy using bone-seeking radiopharmaceuticals which accumulate in sites of increased bone formation. From a historical point of view, (18)F-fluoride was one of the first osteotropic tracers which was replaced by (99m)Tc-labelled polyphosphonates. With the development of modern PET equipment the superior diagnostic performance of (18)F-fluoride PET for the detection and characterization of osseous lesions was proven in comparison to conventional bone scanning. Recently, its importance as a substitute of conventional skeletal scintigraphy increased in a time with limited availability of (99)Mo/(99m)Tc. To ensure health care during this period, (18)F-fluoride PET currently became part of common outpatient care. This guideline comprehends recommendations on indications, protocols, interpretation and reporting of (18)F-fluoride PET and PET/CT. PMID:20838734

  20. Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique

    SciTech Connect

    Wang Jiahui; Engelmann, Roger; Li Qiang

    2007-12-15

    Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key 'spiral-scanning' technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the 'north pole' to the 'south pole'. The voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the 'optimal' outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two

  1. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    SciTech Connect

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-11-15

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  2. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    SciTech Connect

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  3. Three cases demonstrating the role of gallium scanning in relapsing Hodgkin's disease and non-Hodgkin lymphoma

    SciTech Connect

    Zollars, L.E.; Nagel, J.S.; Tumeh, S.S.

    1987-10-01

    Restaging of Hodgkin's disease and non-Hodgkin lymphoma for chemotherapy traditionally requires chest radiograph and abdominal computerized tomogram (CT) for routine follow-up examination. Although gallium scanning has had a poor record in the past, recent studies suggest that improved techniques have given this method high sensitivity. We present three cases in which gallium correctly staged lymphoma that had been missed or misinterpreted by chest radiographs and abdominal CT. Gallium imaging is useful in follow-up of lymphoma patients especially when the CT scan is difficult to interpret.

  4. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  5. A pulmonary chondromatous hamartoma resembling multiple metastases in the (18)F-FDG PET/CT scan.

    PubMed

    Li, Li; Jiang, Chong; Tian, Rong

    2016-01-01

    Multiple pulmonary hamartomas (PH) occur rarely, are mostly seen in females, and are usually leiomyomatous hamartomas. Here, we report an extremely rare case of a 30 years old male patient diagnosed as multiple pulmonary chondromatous hamartomas. He was admitted on May 2015 to our hospital for a 3 months history of cough. Multiple nodules in the right lung were detected on chest X-rays during a routine checkup 9 months ago and in a subsequent chest computed tomography (CT). However, he abandoned medical follow-up because he was asymptomatic. Nine months later, rare and atypical CT findings with progression were observed during this visit so that pulmonary metastases from an unknown primary tumor was suspected. Positron emission tomography/computed tomography (PET/CT) scan showed mild fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in the lesions and no abnormal foci in any other part of his body. A posterolateral thoracotomy was performed. Pathologic features were consistent with those of pulmonary chondromatous hamartomas. PMID:27331216

  6. Peripheral embolisation after an abdominal massage.

    PubMed

    Tak, Sandeep; Tak, Shubhanjali; Gupta, Alok

    2014-01-01

    A 65-year-old man presented with a history of acute onset pain in toes of the right foot immediately after an abdominal massage by a 'local healer'. General physical examination and systemic examination were normal except for discolouration of the fourth and fifth toes and cold toes. Investigations including complete blood count, erythrocyte sedimentation rate, renal function tests, liver profile, lipid profile, antinuclear antibody, antineutrophil cytoplasmic antibody, ECG, chest X-ray, ultrasound abdomen, cardiac echocardiography, lower limb Doppler and CT scan of the abdomen were normal. The patient was treated with regular heparin infusion, aspirin and tramadol. Recovery was complete in 5 days. PMID:24928926

  7. A novel spherical shell filter for reducing false positives in automatic detection of pulmonary nodules in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    van de Leemput, Sil; Dorssers, Frank; Ehteshami Bejnordi, Babak

    2015-03-01

    Early detection of pulmonary nodules is crucial for improving prognosis of patients with lung cancer. Computer-aided detection of lung nodules in thoracic computed tomography (CT) scans has a great potential to enhance the performance of the radiologist in detecting nodules. In this paper we present a computer-aided lung nodule detection system for computed tomography (CT) scans that works in three steps. The system first segments the lung using thresholding and hole filling. From this segmentation the system extracts candidate nodules using Laplacian of Gaussian. To reject false positives among the detected candidate nodules, multiple established features are calculated. We propose a novel feature based on a spherical shell filter, which is specifically designed to distinguish between vascular structures and nodular structures. The performance of the proposed CAD system was evaluated by partaking in the ANODE09 challenge, which presents a platform for comparing automatic nodule detection programs. The results from the challenge show that our CAD system ranks third among the submitted works, demonstrating the efficacy of our proposed CAD system. The results also show that our proposed spherical shell filter in combination with conventional features can significantly reduce the number of false positives from the detected candidate nodules.

  8. Early Pulmonary Complications following Total Knee Arthroplasty under General Anesthesia: A Prospective Cohort Study Using CT Scan

    PubMed Central

    Song, Kai; Rong, Zhen; Yang, Xianfeng; Yao, Yao; Shen, Yeshuai; Shi, Dongquan; Xu, Zhihong; Chen, Dongyang; Zheng, Minghao; Jiang, Qing

    2016-01-01

    Purpose. Postoperative pulmonary complications (PPCs) are common after major surgeries. However, the number of studies regarding PPCs following total knee arthroplasty (TKA) is limited. The aim of this study was to determine the incidence of early PPCs following TKA by computed tomography (CT) scan and to identify associated risk factors. Methods. Patients, who were diagnosed with osteoarthritis or rheumatoid arthritis and underwent primary TKA at our institution, were included in this prospective cohort study. Patients received a standard procedure of TKA under general anesthesia. Chest CT scan was performed during 5–7 days postoperatively. Univariate analysis and multivariate logistic regression analysis were employed to identify the risk factors. Results. The total incidence of early PPCs following TKA was 45.9%. Rates of pneumonia, pleural effusion, and atelectasis were 14.4%, 38.7%, and 12.6%, respectively. Lower body mass index and perioperative blood transfusion were independent risk factors for PPCs as a whole and associated with atelectasis. Postoperative acute episode of hypoxemia increased the risk of pneumonia. Blood transfusion alone was related to pleural effusion. Conclusions. The incidence of early PPCs following TKA was high. For patients with relevant risk factors, positive measures should be adopted to prevent PPCs. PMID:27069922

  9. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.

    PubMed

    Gilbert, Robert P; Guyenne, Philippe; Li, Jing

    2014-02-01

    In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network. PMID:24480174

  10. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth

    NASA Astrophysics Data System (ADS)

    Iurino, Dawid Adam; Sardella, Raffaele

    2014-12-01

    CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.

  11. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth.

    PubMed

    Iurino, Dawid Adam; Sardella, Raffaele

    2014-12-01

    CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P(2)) and the absence of P3 in the mandible. The occurrence of P(2) can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon. PMID:25324015

  12. Outcome of Blunt Abdominal Traumas with Stable Hemodynamic and Positive FAST Findings

    PubMed Central

    Behboodi, Firooz; Mohtasham-Amiri, Zahra; Masjedi, Navid; Shojaie, Reza; Sadri, Peyman

    2016-01-01

    Introduction: Focused assessment with sonography for trauma (FAST) is a highly effective first screening tool for initial classification of abdominal trauma patients. The present study was designed to evaluate the outcome of patients with blunt abdominal trauma and positive FAST findings. Methods: The present prospective cross-sectional study was done on patients over 7 years old with normal abdominal examination, positive FAST findings, and available abdominopelvic computed tomography (CT) scan findings. The frequency of need for laparotomy as well as its probable risk factors were calculated. Results: 180 patients were enrolled (mean age: 28.0 ± 11.5 years; 76.7% male). FAST findings were confirmed by abdominopelvic CT scan in only 124 (68.9%) cases. Finally, 12 (6.6%) patients needed laparotomy. Mean age of those in need of laparotomy was significantly higher than others (36.75 ± 11.37 versus 27.34 ± 11.37, p = 0.006). Higher grading of spleen (p = 0.001) and hepatic (p = 0.038) ruptures increased the probability of need for laparotomy. Conclusion: 68.9% of the positive FAST findings in patients with blunt abdominal trauma and stable hemodynamics was confirmed by abdominopelvic CT scan and only 6.6% needed laparotomy. Simultaneous presence of free fluid and air in the abdominal area, old age, and higher grading o solid organ injuries were factors that had a significant correlation with need for laparotomy. PMID:27299142

  13. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  14. Anatomical database generation for radiation transport modeling from computed tomography (CT) scan data

    SciTech Connect

    Margle, S.M.; Tinnel, E.P.; Till, L.E.; Eckerman, K.F.; Durfee, R.C.

    1989-01-01

    Geometric models of the anatomy are used routinely in calculations of the radiation dose in organs and tissues of the body. Development of such models has been hampered by lack of detailed anatomical information on children, and models themselves have been limited to quadratic conic sections. This summary reviews the development of an image processing workstation used to extract anatomical information from routine diagnostic CT procedure. A standard IBM PC/AT microcomputer has been augmented with an automatically loading 9-track magnetic tape drive, an 8-bit 1024 {times} 1024 pixel graphics adapter/monitor/film recording package, a mouse/trackball assembly, dual 20 MB removable cartridge media, a 72 MB disk drive, and a printer. Software utilized by the workstation includes a Geographic Information System (modified for manipulation of CT images), CAD software, imaging software, and various modules to ease data transfer among the software packages. 5 refs., 3 figs.

  15. Investigation on Tissue Equivalent Normoxic Polymer Gel Dosimeter using In-house Laser CT scanning system

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, D.; Jebaseelan Samuel, E. James

    2010-11-01

    Optical Computed Tomography has wide applications in the treatment of cancer. In continuation of this, an in-house Laser CT scanner has been built for "3D gel dosimetry". The Laser CT (LCT) scanner plays a major for Gel dosimeter or phantom readout and in clinical radiation therapy as a 3-Dimensional Radiation Dosimetry. A gel dosimeter which absorbs dose in a tissue-equivalent manner and allows the measurement of spatial distribution of the deposited dose is required. The normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When laser passes through this gel phantom, absorption and scattering takes place and combined to attenuation. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by means of a sensor. Reconstruction using Mat Lab algorithm provides 3D dose distribution.

  16. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. PMID:17420106

  17. Panel Reviews Benefits and Harms of CT Scans for Lung Cancer Screening | Division of Cancer Prevention

    Cancer.gov

    A panel of experts has reviewed the evidence regarding the benefits and harms of screening for lung cancer with low-dose computed tomography (CT) and concluded that the technology may benefit some individuals at high risk for lung cancer. But the panel cautioned that many questions remain about the potential harms of screening and how to translate screening into clinical practice. |

  18. Have CT--will travel: to boldly go where no scan has gone before.

    PubMed

    Schwamm, Lee H; Starkman, Sidney

    2013-01-01

    In 1962, a new English rock-and-roll band named The Beatles signed a recording contract with Electric & Music Industries (EMI). The Beatles were so financially successful that EMI was able to fund research and development in other divisions of the company; in particular, the work of an enterprising young engineer named Godfrey Hounsfield. His groundbreaking work in x-ray imaging produced the first commercially available head-only CT scanner, and a Nobel Prize. PMID:23223538

  19. Localization of a Peripheral Residual Cyst: Diagnostic Role of CT Scan

    PubMed Central

    Jamdade, Anshuman; Nair, Gopakumar R.; Kapoor, Madhur; Sharma, Neeta; Kundendu, Arya

    2012-01-01

    The term residual cyst is used most often for retained radicular cyst from teeth that has been removed. Residual cysts are among most common cysts of the jaws. The location of all odontogenic cysts is usually intraosseous. The peripheral (extraosseous) presentations are rare. The peripheral presentation of residual cyst has never been reported in the literature. In this article, the role of CT in diagnosing an unusual peripheral presentation of a residual cyst is discussed. PMID:22567458

  20. A statistical feature selection method for lung cancer classification in CT scans

    NASA Astrophysics Data System (ADS)

    Al-Absi, Hamada R. H.; Samir, Brahim Belhaouari

    2013-10-01

    This paper presents a computer aided diagnosis for lung nodules in CT images. The system consists of feature extraction, feature selection and classification. A two-step feature selection process is introduced to reduce the number of coefficients produced in the feature extraction step. This helps in enhancing the classification performance as it removes unneeded and redundant information. The classification rate of the system reached 98.10 % with minimum false negatives and zero false positives.

  1. MO-C-18C-01: Radiation Risks at Level of Few CT Scans: How Real?- Science to Practice

    SciTech Connect

    Rehani, M; Samei, E; Morgan, W; Goske, M; Shore, R

    2014-06-15

    There are controversies surrounding radiation effects in human population in the range of radiation doses encountered by patients resulting from one to several CT scans. While it is understandable why the effects from low levels of diagnostic radiation are controversial, the situation is complicated by the media which may distort the known facts. There is need to understand the state of science regarding low-level radiation effects and also to understand how to communicate the potential risk with patients, the public and media. This session will seek to come to a consensus in order to speak with one voice to the media and the public. This session will review radiation effects known so far from a variety of exposed groups since the nuclear holocaust, provide clarification where effects are certain and where they are not, at what level extrapolation is the only way and at what level there is weak but agreeable acceptance. We will depict where and why there is agreement among organizations responsible for studying radiation effects, and how to deal with situations where effects are uncertain. Specific focus on radiation effects in children will be provided.Finally, the session will attempt to bridge the communication gap from the science to how to be an effective communicator with patients, parents, and media about ionizing radiation. Learning Objectives: To have a clear understanding about certainties and uncertainties of radiation effects at the level of a few CT scans To understand the results and limitations from 3 major pediatric CT scientific studies on childhood exposures published recently. To understand successful strategies used in risk communication.

  2. Renal Sympathetic Denervation by CT-scan-Guided Periarterial Ethanol Injection in Sheep

    SciTech Connect

    Firouznia, Kavous Hosseininasab, Sayed jaber; Amanpour, Saeid; Haj-Mirzaian, Arya; Miri, Roza; Muhammadnejad, Ahad; Muhammadnejad, Samad; Jalali, Amir H.; Ahmadi, Farrokhlagha; Rokni-Yazdi, Hadi

    2015-08-15

    BackgroundRenal nerves are a recent target in the treatment of hypertension. Renal sympathetic denervation (RSD) is currently performed using catheter-based radiofrequency ablation (RFA) and because this method has limitations, percutaneous magnetic resonance (MR)-guided periarterial ethanol injection is a suggested alternative. However, few studies have been conducted on the effectiveness of percutaneous ethanol injection for RSD.AimTo evaluate the feasibility, efficacy, and complications of computed tomography (CT)-guided periarterial ethanol injection.MethodsEthanol (10 ml, 99.6 %) was injected around the right renal artery in six sheep under CT guidance with the left kidney serving as a control. Before and after the intervention, the sheep underwent MR imaging studies and the serum creatinine level was measured. One month after the intervention, the sheep were euthanized and norepinephrine (NE) concentration in the renal parenchyma was measured to evaluate the efficacy of the procedure. The treated tissues were also examined histopathologically to evaluate vascular, parenchymal, and neural injury.ResultsThe right kidney parenchymal NE concentration decreased significantly compared with the left kidney after intervention (average reduction: 40 %, P = 0.0016). Histologic examination revealed apparent denervation with no other vascular or parenchymal injuries observed in the histological and imaging studies.ConclusionEffective and feasible RSD was achieved using CT-guided periarterial ethanol injection. This technique may be a potential alternative to catheter-based RFA in the treatment of hypertension.

  3. Preoperative imaging of liver metastases. Comparison of angiography, CT scan, and ultrasonography.

    PubMed Central

    Gunvén, P; Makuuchi, M; Takayasu, K; Moriyama, N; Yamasaki, S; Hasegawa, H

    1985-01-01

    Thirty-one patients with mostly colorectal cancer metastases to the liver had preoperative selective/superselective angiograms (24 cases), computed tomography (CT) [26 cases, mostly enhanced by contrast administered by a peripheral vein (9), the common hepatic artery (9), or the portal vein (5)], and ultrasonography (26 cases). Intraoperative ultrasonography and palpation and examination of the resected specimens revealed 113 tumors. CT detected almost half of the masses smaller than 1 cm, and ultrasonography and angiography about one-third of lesions 1-2 cm in size. Ultrasonography was less powerful for examination of the posterior segment of the liver. CT and ultrasonography placed the tumors into subsegments more accurately than did angiography. Almost 40% of the preoperative plans had to be changed: in two-thirds by extended resections and in one-third by a change from curative to palliative intent. Most changes were due to extrahepatic tumor growth, often within areas screened before surgery. The use of all three imaging modalities for liver metastases is recommended for preoperative planning. PMID:3901943

  4. Evaluation of radiation dose reduction during CT scans by using bismuth oxide and nano-barium sulfate shields

    NASA Astrophysics Data System (ADS)

    Seoung, Youl-Hun

    2015-07-01

    The purpose of the present study was to evaluate the radiation dose reduction and the image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS, were composed of nano-barium sulfate (BaSO4) filling the gaps left by the large bismuth oxide (Bi2O3) particles. The radiation dose was measured five times at a direction of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom by using a CT ionization chamber to calculate an average value. The image quality of measured CT transverse images of the PMMA head phantom depended on the X-ray tube voltage and the type of shielding. Two regions of interest in the CT transverse images were chosen, one from the right area and the other from the left area under the surface of the PMMA head phantom and at a distance of ion chamber holes located in a direction of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce the dosages by 15.61%, 23.05%, and 22.71% at 90 kVp, 120 kVp, and 140 kVp, respectively, than with these of a conventional bismuth shield of the same thickness while maintaining image quality. In addition, the DRFSs produced were about 25% thinness than conventional bismuth. We conclude, therefore, that a DRFS can replace conventional bismuth as a new shield.

  5. Value of fourth and subsequent post-therapy follow-up 18F-FDG PET/CT scans in patients with breast cancer

    PubMed Central

    Taghipour, Mehdi; Sheikhbahaei, Sara; Trahan, Tyler J.; Subramaniam, Rathan M.

    2016-01-01

    Objective To evaluate the accuracy and value of the fourth and subsequent post-therapy follow-up fluorine-18 fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) scans in the clinical assessment of breast cancer patients. Materials and methods Ninety-two female patients, with a total of 426 fourth and subsequent follow-up PET/CT scans, were retrospectively included. Patients were followed for a median of 23.7 months (range, 0.7–124.4) from the fourth follow-up PET/CT. The diagnostic accuracy of PET/CT, its impact on clinical assessment, patients’ management, and survival outcome were established. Result Of the 426 follow-up PET/CT scans, 264 (62%) were interpreted as positive and 162 (38%) were interpreted as negative. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the fourth and subsequent follow-up PET/CT scans were 97.7, 98.1, 98.8, 96.3, and 97.9%, respectively. Fourth and subsequent follow-up PET/CT were useful in excluding a tumor in 13.4% (39/292) of patients with a clinical suspicion of recurrence and identifying suspected recurrence in 10.5% (14/134) of patients without previous clinical suspicion. A change in management was noted in 6.7% (9/134) of scan times when the scans were performed without previous clinical suspicion of recurrence or therapy response and was 27.7% (81/292) when the scans were performed with clinical suspicion. Overall survival differed significantly between patients with all negative follow-up scans (n = 23) and those who had at least one positive follow-up scan (n = 69) (hazard ratio of 4.65, P < 0.001). Conclusion The fourth and subsequent PET/CT scans performed after the completion of primary treatment led to a change in management in 27.7% of patients when the scans were performed with clinical suspicion and only in 6.7% of patients when performed without clinical suspicion or context. PMID:27110955

  6. A new iterative method for liver segmentation from perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Draoua, Ahmed; Albouy-Kissi, Adélaïde; Vacavant, Antoine; Sauvage, Vincent

    2014-03-01

    Liver cancer is the third most common cancer in the world, and the majority of patients with liver cancer will die within one year as a result of the cancer. Liver segmentation in the abdominal area is critical for diagnosis of tumor and for surgical procedures. Moreover, it is a challenging task as liver tissue has to be separated from adjacent organs and substantially the heart. In this paper we present a novel liver segmentation iterative method based on Fuzzy C-means (FCM) coupled with a fast marching segmentation and mutual information. A prerequisite for this method is the determination of slice correspondences between ground truth that is, a few images segmented by an expert, and images that contain liver and heart at the same time.

  7. AB021. Validation of real-world, non-research thoracic CT scans for quantitative analysis of COPD

    PubMed Central

    Dandurand, Ronald J.; Dandurand, Myriam; San José Estépar, Raúl; Bourbeau, Jean; Eidelman, David H.

    2016-01-01

    Background Quantitative CT (QCT) imaging plays an important role in phenotyping COPD and uses the voxel density histogram to measure total lung volume (TLV) and emphysema surrogates: low attenuation area (LAA) and lung density (LD). LD is often volume corrected using the predicted total lung capacity (TLC) to compensate for submaximal inspiration prior to image acquisition. QCT is carried out with careful attention to quality control including scanner make/model, calibration frequency, lung volume, acquisition protocol, and the use of contrast, and bears a financial and radiation cost. We wished to determine if: (I) thoracic CT scans acquired for clinical indications on a variety of scanners from different centres with varying calibration frequency, acquisition protocols and only simple breath holding instructions could yield reproducible data; (II) volume correcting LAA and LD using the pulmonary function test (PFT) measured TLC would compensate for submaximal inspiration better than using the predicted TLC; and (III) contrast infusion causes predictable changes in the QCT metrics TLV, LAA and LD. Methods A total of 82 subjects (67 COPD, 15 non-COPD) from a community respirology practice had at least 2 CT scans judged free of significant infiltrates, performed on 10 different models of scanner in 7 different community hospitals or radiology centres for clinical indications within a 13-month period and had pulmonary function tests performed respecting ATS criteria within 14 months of at least 1 CT scan. Images were analysed with Airway Inspector in ITALIC FONT (airwayinspector.acil-bwh.org) for LAA [<-950 Hounsfield Unit (HU)], LD (at 15th percentile + 1,000 HU) and TLV. 46 paired non-contrast scans (NC/NC) and 42 paired contrast/non-contrast scans (C/NC, 23 CT angio with early infusion, 19 routine contrast with late infusion) were used to construct identity plots for TLV, LAA, LD, and LAA and LD corrected for both predicted TLC and PFT measured TLC. LAA was volume

  8. Acute aortic syndrome-pitfalls on gated and non-gated CT scan.

    PubMed

    Husainy, Mohammad Ali; Sayyed, Farhina; Puppala, Sapna

    2016-08-01

    Acute aortic syndrome (AAS) is a life-threatening condition which includes aortic dissection (AD), penetrating aortic ulcer (PAU) and intramural hematoma (IMH). Multi-detector computed tomography (MDCT) plays a crucial role in the diagnosis of this condition and for further clinical follow-up. It is important for radiologists to be aware of common pitfalls in cardiac-gated and non-gated CT in diagnosing AAS. They should also be wary of common mimics of AAS which may make a significant difference towards management of these patients. In this review, we present from our practice some of the common pitfalls and mimics of AAS on MDCT. PMID:27220654

  9. CT -- Body

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special x-ray ... Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT or CAT ...

  10. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy: HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  11. A decision support scheme for vertebral geometry on body CT scans

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Chen, Huayue; Miyamoto, Kei; Zhou, Xiangrong; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2011-03-01

    For gaining a better understanding of bone quality, a great deal of attention has been paid to vertebral geometry in anatomy. The aim of this study was to design a decision support scheme for vertebral geometries. The proposed scheme consists of four parts: (1) automated extraction of bone, (2) generation of median plane image of spine, (3) detection of vertebrae, (4) quantification of vertebral body width, depth, cross-sectional area (CSA), and trabecular bone mineral density (BMD). The proposed scheme was applied to 10 CT cases and compared with manual tracking performed by an anatomy expert. Mean differences in the width, depth, CSA, and trabecular BMD were 3.1 mm, 1.4 mm, 88.7 mm2, and 7.3 mg/cm3, respectively. We found moderate or high correlations in vertebral geometry between our scheme and manual tracking (r > 0.72). In contrast, measurements obtained by using our scheme were slightly smaller than those acquired from manual tracking. However, the outputs of the proposed scheme in most CT cases were regarded to be appropriate on the basis of the subjective assessment of an anatomy expert. Therefore, if the appropriate outputs from the proposed scheme are selected in advance by an anatomy expert, the results can potentially be used for an analysis of vertebral body geometries.

  12. Biomechanical Role of Bone Anisotropy Estimated on Clinical CT Scans by Image Registration.

    PubMed

    Taghizadeh, Elham; Reyes, Mauricio; Zysset, Philippe; Latypova, Adeliya; Terrier, Alexandre; Büchler, Philippe

    2016-08-01

    Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model. PMID:26790866

  13. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  14. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.

    PubMed

    Schwahofer, Andrea; Bär, Esther; Kuchenbecker, Stefan; Grossmann, J Günter; Kachelrieß, Marc; Sterzing, Florian

    2015-12-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ Al=2.7 g/cm(3)), titanium (ρ Ti=4.5 g/cm(3)), steel (ρ steel=7.9 g/cm(3)) and tungsten (ρ W=19.3g/cm(3)) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV(Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ=10 g/cm(3)) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 keV. However, the dose uncertainty remains of the order of 10

  15. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    SciTech Connect

    Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-12-15

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The C