Science.gov

Sample records for abductive constraint logic

  1. Using Abductive Research Logic: "The Logic of Discovery", to Construct a Rigorous Explanation of Amorphous Evaluation Findings

    ERIC Educational Resources Information Center

    Levin-Rozalis, Miri

    2010-01-01

    Background: Two kinds of research logic prevail in scientific research: deductive research logic and inductive research logic. However, both fail in the field of evaluation, especially evaluation conducted in unfamiliar environments. Purpose: In this article I wish to suggest the application of a research logic--"abduction"--"the logic of…

  2. The Influence of Task Constraints on the Glenohumeral Horizontal Abduction Angle of the Overarm Throw of Novice Throwers

    ERIC Educational Resources Information Center

    Breslin, Casey M.; Garner, John C.; Rudisill, Mary E.; Parish, Loraine E.; St. Onge, Paul M.; Campbell, Brian J.; Weimar, Wendi H.

    2009-01-01

    This study determines the effects of three baseballs and softballs of different masses (0.113 kg, 0.198 kg, 0.340 kg) and regulation diameters (22.86 and 30.48 cm, respectively) on the glenohumeral horizontal abduction angle of an overarm throw performed by young children who were novice throwers. Glenohumeral horizontal abduction angle was…

  3. Alien Abductions

    NASA Astrophysics Data System (ADS)

    Nickell, Joe

    2000-03-01

    Since the beginning of the modern UFO craze in 1947, an elaborate mythology has developed concerning alleged extraterrestrial visitations. ``Flying saucer" sightings (typically involving misperceptions of such mundane phenomena as meteors and research balloons) began to be accompanied in the 1950s by reports from ``contactees," persons who claimed to have had close encounters with, even to have been transported to distant planets by, UFO occupants. By the 1960s came reports of sporadic ``abductions" which have proliferated in correlation with media interest. (Indeed, by interaction between claimants and media the portrayal of aliens has evolved from a multiplicity of types into the rather standardized big-eyed humanoid model.) While evidence of alien contact has often been faked--as by spurious photos, ``crop circles," and the notorious ``Alien Autopsy" film--few alien abduction reports appear to be hoaxes. Most seem instead to come from sincere, sane individuals. Nevertheless, not one has been authenticated, and serious investigation shows that such claims can be explained as sleep-related phenomena (notably ``waking dreams"), hypnotic confabulation, and other psychological factors. As is typical of other mythologies, the alien myth involves supernormal beings that may interact with humans, and it purports to explain the workings of the universe and humanity's place within it.

  4. Probabilistic Constraint Logic Programming. Formal Foundations of Quantitative and Statistical Inference in Constraint-Based Natural Language Processing

    NASA Astrophysics Data System (ADS)

    Riezler, Stefan

    2000-08-01

    In this thesis, we present two approaches to a rigorous mathematical and algorithmic foundation of quantitative and statistical inference in constraint-based natural language processing. The first approach, called quantitative constraint logic programming, is conceptualized in a clear logical framework, and presents a sound and complete system of quantitative inference for definite clauses annotated with subjective weights. This approach combines a rigorous formal semantics for quantitative inference based on subjective weights with efficient weight-based pruning for constraint-based systems. The second approach, called probabilistic constraint logic programming, introduces a log-linear probability distribution on the proof trees of a constraint logic program and an algorithm for statistical inference of the parameters and properties of such probability models from incomplete, i.e., unparsed data. The possibility of defining arbitrary properties of proof trees as properties of the log-linear probability model and efficiently estimating appropriate parameter values for them permits the probabilistic modeling of arbitrary context-dependencies in constraint logic programs. The usefulness of these ideas is evaluated empirically in a small-scale experiment on finding the correct parses of a constraint-based grammar. In addition, we address the problem of computational intractability of the calculation of expectations in the inference task and present various techniques to approximately solve this task. Moreover, we present an approximate heuristic technique for searching for the most probable analysis in probabilistic constraint logic programs.

  5. Completing fault models for abductive diagnosis

    SciTech Connect

    Knill, E.; Cox, P.T.; Pietrzykowski, T.

    1992-11-05

    In logic-based diagnosis, the consistency-based method is used to determine the possible sets of faulty devices. If the fault models of the devices are incomplete or nondeterministic, then this method does not necessarily yield abductive explanations of system behavior. Such explanations give additional information about faulty behavior and can be used for prediction. Unfortunately, system descriptions for the consistency-based method are often not suitable for abductive diagnosis. Methods for completing the fault models for abductive diagnosis have been suggested informally by Poole and by Cox et al. Here we formalize these methods by introducing a standard form for system descriptions. The properties of these methods are determined in relation to consistency-based diagnosis and compared to other ideas for integrating consistency-based and abductive diagnosis.

  6. Implication of Abduction: Complexity without Organized Interaction

    NASA Astrophysics Data System (ADS)

    Kamiura, Moto

    2010-11-01

    Abduction, which is articulated by C.S. Peirce, is one of the forms of inference. Abduction has been researched not only in philosophy but also in artificial intelligence and information science. Finlay and Dix's representation of abduction (1996) has almost the same meaning which is given by Peirce. On the other hand, Sawa and Gunji (2010) express three types of inference as operations of arrows on a simple triangular diagram. In the present paper, we show that Sawa-Gunji's representation of abduction is consistent with Finlay-Dix's one, and synthesize the two representations. Both parameter estimation and abduction occupy a similar position on the synthesized representation, but they are not completely corresponding. We present "incomplete" parameter estimation as a sort of "simulated abduction", since abduction has an intrinsic incompleteness, which means that abduction is formally equivalent to "the logical fallacy affirming the consequent". In other words, a numerical aspect of abduction (i.e. the simulated abduction) is formalized as incomplete parameter estimation. The concept of simulated abduction is applied to parameter estimation of auto-regressive models, and the effects of it is investigated. As a result of the numerical analyses, the distribution of the incompletely estimated parameter shows a power law of the slop -2 in the tail, although conventionally estimated parameter is normally distributed. The power law of the incompletely estimated parameter is based on the structure of ratio distribution. In other words, this result shows that the power law can arise when system observers premise a linearity of input and output data which are too small to estimate the system structure. We call the premise of the system observers "linearity bias". As an example of the cause of power law distributions, self-organized criticality (SOC) has been known. These distributions are based on the mechanisms of the systems themselves, which have some organized

  7. Constructing a distributed object-oriented system with logical constraints for fluorescence-activated cell sorting.

    PubMed

    Matsushima, T

    1993-01-01

    This paper describes a fully distributed biological-object system that supports FACS (Fluorescence Activated Cell Sorter) instrumentation. The architecture of the system can be applied to any laboratory automation system that involves distributed instrument control and data management. All component processes of FACS (such as instrument control, protocol design, data analysis, and data visualization), which may run on different machines, are modeled as cooperatively-working "agents." Communication among agents is performed through shared-objects by triggered methods. This shared-object metaphor encapsulates the details of network programming. The system facilitates the annotation of classes with first-order formulae that express logical constraints on objects; these constraints are automatically maintained upon updates. Also, the shared-object communication and polymorphic triggered methods are exploited to produce a homogeneous interface for instrument control. PMID:7584345

  8. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    NASA Technical Reports Server (NTRS)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  9. Reconciling pairs of concurrently used clinical practice guidelines using Constraint Logic Programming.

    PubMed

    Wilk, Szymon; Michalowski, Martin; Michalowski, Wojtek; Hing, Marisela Mainegra; Farion, Ken

    2011-01-01

    This paper describes a new methodological approach to reconciling adverse and contradictory activities (called points of contention) occurring when a patient is managed according to two or more concurrently used clinical practice guidelines (CPGs). The need to address these inconsistencies occurs when a patient with more than one disease, each of which is a comorbid condition, has to be managed according to different treatment regimens. We propose an automatic procedure that constructs a mathematical guideline model using the Constraint Logic Programming (CLP) methodology, uses this model to identify and mitigate encountered points of contention, and revises the considered CPGs accordingly. The proposed procedure is used as an alerting mechanism and coupled with a guideline execution engine warns the physician about potential problems with the concurrent application of two or more guidelines. We illustrate the operation of our procedure in a clinical scenario describing simultaneous use of CPGs for duodenal ulcer and transient ischemic attack. PMID:22195153

  10. Valgus osteotomy for hinge abduction.

    PubMed

    de Gheldere, Antoine; Eastwood, Deborah M

    2011-07-01

    Failure of the enlarged and deformed anterolateral portion of the femoral head to roll into the acetabulum during abduction alters hip joint mechanics. The resultant hinge abduction is associated with pain, and the patient often has restricted movement. A valgus osteotomy removes the deformed portion of the femoral head away from the weight-bearing area and ensures there is pain-free congruent range of movement around the weight-bearing position. The concomitant improvement in lever arm function and leg length results in a better gait pattern. In immature patients, abolition of hinge abduction allows the lateral acetabular ossification center to grow more normally. PMID:21742146

  11. An approach to evaluating heuristics in abduction: a case study using RedSoar--an abductive system for red blood cell antibody identification.

    PubMed

    Amra, N K; Smith, J W; Johnson, K A; Johnson, T R

    1992-01-01

    Abduction, or inference to a best explanation, is a ubiquitous type of inference that is frequently used by humans in a wide range of tasks. However, many realistic domains have properties that make abduction computationally intractable (i.e., where the time to reach a solution increases exponentially with the number of possible explanations). We present a domain task analysis and performance evaluation of RedSoar, a plausible cognitive computational model of abduction, that accomplishes the antibody identification task in immunohematology. The task analysis reveals how a computationally intractable abductive problem, where one is seeking optimal solutions, can be reformulated to be a computationally tractable abductive problem, by seeking satisfactory rather then optimal solutions. From the satisfactory perspective, our evaluation framework of RedSoar's performance explores the computational benefits and costs of having directly available abstract hypothesis formation knowledge, and how a strong causal constraint between hypotheses and data reduces the combinatorial explosion of constructing a best explanation. PMID:1482960

  12. False allegation of child abduction.

    PubMed

    Canning, Kathleen E; Hilts, Mark A; Muirhead, Yvonne E

    2011-05-01

    Cases in which a child has been falsely reported as missing or abducted can be extremely challenging to the law enforcement agencies responsible for their investigation. In the absence of a witnessed abduction or an obvious crime scene, it is difficult to determine whether a child has actually been abducted or has become a victim of a homicide and a false allegation. The purpose of this study was to examine falsely alleged kidnapping cases and identify successful investigative strategies. Sixty-one adjudicated false allegation cases involving 66 victims were analyzed. The mean age of the victim was 5 years. Victims came from generally unstable, high-risk family situations and were killed primarily by biological parents. Victims were killed because they were unwanted or viewed as an obstacle to a desired goal, or they were victims of abuse or maltreatment that ended in fatality. PMID:21361941

  13. The Role of Abduction in Proving Processes

    ERIC Educational Resources Information Center

    Pedemonte, Bettina; Reid, David

    2011-01-01

    This paper offers a typology of forms and uses of abduction that can be exploited to better analyze abduction in proving processes. Based on the work of Peirce and Eco, we describe different kinds of abductions that occur in students' mathematical activity and extend Toulmin's model of an argument as a methodological tool to describe students'…

  14. Schools' Logics of Action as Mediation and Compromise between Internal Dynamics and External Constraints and Pressures

    ERIC Educational Resources Information Center

    Ball, Stephen J.; Maroy, Christian

    2009-01-01

    This paper, based on 14 case studies of schools situated in six local urban spaces (within the urban agglomerations of Budapest, Charleroi, Lille, Lisbon, London and the Creteil/Paris region), will analyse the internal logics of action of these schools and show that they are conditioned by the interaction between internal (school narrative…

  15. Abductive networks applied to electronic combat

    NASA Astrophysics Data System (ADS)

    Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.

    1990-08-01

    A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since

  16. Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

    NASA Astrophysics Data System (ADS)

    Banda, Gourinath; Gallagher, John P.

    interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.

  17. General-purpose abductive algorithm for interpretation

    NASA Astrophysics Data System (ADS)

    Fox, Richard K.; Hartigan, Julie

    1996-11-01

    Abduction, inference to the best explanation, is an information-processing task that is useful for solving interpretation problems such as diagnosis, medical test analysis, legal reasoning, theory evaluation, and perception. The task is a generative one in which an explanation comprising of domain hypotheses is assembled and used to account for given findings. The explanation is taken to be an interpretation as to why the findings have arisen within the given situation. Research in abduction has led to the development of a general-purpose computational strategy which has been demonstrated on all of the above types of problems. This abduction strategy can be performed in layers so that different types of knowledge can come together in deriving an explanation at different levels of description. Further, the abduction strategy is tractable and offers a very useful tradeoff between confidence in the explanation and completeness of the explanation. This paper will describe this computational strategy for abduction and demonstrate its usefulness towards perceptual problems by examining problem-solving systems in speech recognition and natural language understanding.

  18. Teeth clenching reduces arm abduction force.

    PubMed

    Sato, Hajime; Kawano, Tsutomu; Saito, Mitsuru; Toyoda, Hiroki; Maeda, Yoshinobu; Türker, Kemal Sitki; Kang, Youngnam

    2014-07-01

    It has been reported that the 90° arm abduction force counteracting external adduction loads appeared to be smaller under teeth clenching condition than under non-clenching condition. To elucidate the physiological mechanism underlying the possible inhibitory effect of teeth clenching on the arm abduction, we have attempted to quantify the difference in the force induced against the fast and slow ramp load between the arm abductions under teeth non-clenching and clenching conditions. When the load of adduction moment was linearly increased, the abductor force increased to a maximal isometric contraction force (MICF) and further increased to a maximal eccentric contraction force (MECF) with forced adduction. The MICF measured under teeth clenching was significantly lower than that under non-clenching, despite no significant difference in the MECF between the two conditions. The reduction in MICF caused by teeth clenching was enhanced by increasing the velocity of the load. These results suggest that clenching inhibits abduction force only during isometric contraction phase. The invariability of MECF would indicate the lack of involvement of fatigue in such inhibitory effects of clenching. To discover the source of the inhibition, we have examined the effects of teeth clenching on the stretch reflex in the deltoid muscle. The stretch reflex of deltoid muscles was inhibited during clenching, contrary to what was expected from the Jendrassik maneuver. Taken together, our results suggest that the teeth clenching reduced the MICF by depressing the recruitment of deltoid motoneurones presumably via the presynaptic inhibition of spindle afferent inputs onto those motoneurones. PMID:24687460

  19. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  20. Agape: Peirce's Abduction Concerning the Growth of Intelligibility

    NASA Astrophysics Data System (ADS)

    Staab, Janice Marie

    Is the metaphysical articulation of the unity between science and sentiment either possible or desirable? Assuming an affirmative answer to both of these questions, this dissertation contends that the notion of agape may provide such a unity. Though agape has historical roots in the Christian notion of divine love, Charles S. Peirce considered this "law of Love" to be the fundamental principle giving coherence to the otherwise random, spontaneous evolution of the physical and psychical universe. The ability of agape to accomplish this unification is based upon the connection which Peirce drew between it and the logic of abduction, or hypothesis formation. By explicating the way in which agape acts as Peirce's primary evolutionary hypothesis, agape will be shown to act as a bridge between continuous evolutionary processes and discrete evolutionary events. As a similar debate is currently being explored regarding the evolution of quantum mechanical systems, this dissertation has the corollary purpose of indicating precisely how Peirce's notion of agape speaks to questions posed by contemporary quantum theorists.

  1. Flight and abduction in witchcraft and UFO lore.

    PubMed

    Musgrave, J B; Houran, J

    2000-04-01

    The lore surrounding the mythical Witches' Sabbat and contemporary reports of UFO abductions share three main characteristics: the use of masks, the appearance of "Men in Black," and references to flight and abduction. We review these three commonalities with particular focus on the aspect of flight and abduction. We argue that narratives of the Witches' Sabbat and UFO abductions share the same basic structure, common symbolism, and serve the same psychological needs of providing a coherent explanation for anomalous (ambiguous) experiences while simultaneously giving the experient a sense of freedom, release, and escape from the self. This pattern of similarities suggests the possibility that UFO abductions are a modern version of tales of flight to the Sabbat. PMID:10840926

  2. Relationship of turnout to hip abduction in professional ballet dancers.

    PubMed

    Kushner, S; Saboe, L; Reid, D; Penrose, T; Grace, M

    1990-01-01

    The ability to externally rotate or turn out the hip is fundamental to ballet. Every classical dancer aims to achieve perfect turnout. The purpose of this study was to determine how much turnout is necessary for maximal abduction. It was hypothesized that moderate turnout is sufficient for this purpose. Twenty-two professional dancers from the Alberta Ballet Company were studied. Measurements of passive hip abduction were taken at 0 degree, 45 degrees, 60 degrees, 70 degrees, 80 degrees, 90 degrees and maximum hip lateral rotation using a goniometer and Leighton flexometer. Statistical analysis was done using Pearson correlation coefficients. A significant positive correlation was found between abduction and lateral rotation (P less than 0.05). The greater the position of external rotation, the more abduction achieved. In conclusion, the traditional emphasis on good turnout has some scientific merit and functional implications. PMID:2372080

  3. Kinematic mental simulations in abduction and deduction.

    PubMed

    Khemlani, Sangeet Suresh; Mackiewicz, Robert; Bucciarelli, Monica; Johnson-Laird, Philip N

    2013-10-15

    We present a theory, and its computer implementation, of how mental simulations underlie the abductions of informal algorithms and deductions from these algorithms. Three experiments tested the theory's predictions, using an environment of a single railway track and a siding. This environment is akin to a universal Turing machine, but it is simple enough for nonprogrammers to use. Participants solved problems that required use of the siding to rearrange the order of cars in a train (experiment 1). Participants abduced and described in their own words algorithms that solved such problems for trains of any length, and, as the use of simulation predicts, they favored "while-loops" over "for-loops" in their descriptions (experiment 2). Given descriptions of loops of procedures, participants deduced the consequences for given trains of six cars, doing so without access to the railway environment (experiment 3). As the theory predicts, difficulty in rearranging trains depends on the numbers of moves and cars to be moved, whereas in formulating an algorithm and deducing its consequences, it depends on the Kolmogorov complexity of the algorithm. Overall, the results corroborated the use of a kinematic mental model in creating and testing informal algorithms and showed that individuals differ reliably in the ability to carry out these tasks. PMID:24082090

  4. Kinematic mental simulations in abduction and deduction

    PubMed Central

    Khemlani, Sangeet Suresh; Mackiewicz, Robert; Bucciarelli, Monica; Johnson-Laird, Philip N.

    2013-01-01

    We present a theory, and its computer implementation, of how mental simulations underlie the abductions of informal algorithms and deductions from these algorithms. Three experiments tested the theory’s predictions, using an environment of a single railway track and a siding. This environment is akin to a universal Turing machine, but it is simple enough for nonprogrammers to use. Participants solved problems that required use of the siding to rearrange the order of cars in a train (experiment 1). Participants abduced and described in their own words algorithms that solved such problems for trains of any length, and, as the use of simulation predicts, they favored “while-loops” over “for-loops” in their descriptions (experiment 2). Given descriptions of loops of procedures, participants deduced the consequences for given trains of six cars, doing so without access to the railway environment (experiment 3). As the theory predicts, difficulty in rearranging trains depends on the numbers of moves and cars to be moved, whereas in formulating an algorithm and deducing its consequences, it depends on the Kolmogorov complexity of the algorithm. Overall, the results corroborated the use of a kinematic mental model in creating and testing informal algorithms and showed that individuals differ reliably in the ability to carry out these tasks. PMID:24082090

  5. Intercultural caring-an abductive model.

    PubMed

    Wikberg, Anita; Eriksson, Katie

    2008-09-01

    The aim of this study was to increase the understanding of caring from a transcultural perspective and to develop the first outline of a theory. The theoretical perspective includes Eriksson's theory of caritative caring. Texts on caring by the transcultural theorists, including Campinha-Bacote, Kim-Godwin, Leininger and Ray, are analysed using content analysis. The overall theme that resulted from this analysis was that caring is a complex whole. Three main categories of caring emerged: inner caring, outer caring and the goal of caring. Inner caring consists of caring is a relationship, and caring and culture are seen in different dimensions. Outer caring refers to caring affected by educational, administrative and social and other structures. The goal of caring consists of caring leading to change towards health and well-being. The main categories include categories and subcategories that are compared with Eriksson's theory of caritative caring. A model for intercultural caring is generated abductively. Caring and culture appear in three dimensions: caring as ontology independent of context; caring as a phenomenon emphasised differently in different cultures; caring as nursing care activities is unique. Caring alleviates suffering and leads to health and well-being. This model describes caring from an intercultural perspective as a mutual but asymmetric relationship between the nurse and the patient, including the patient's family and community. The patient's cultural background and acculturation influence caring. The cultural background, cultural competence and organisation of the nurse also influence caring. Caring is seen as a complex whole. This study integrates Campinha-Bacote's, Kim-Godwin's, Leininger's and Ray's views of caring with Eriksson's caritative caring and presents caring from a transcultural perspective in a new way as a model for intercultural caring, which can benefit nursing care, education, research and administration. PMID:18840233

  6. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices §...

  7. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices §...

  8. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices §...

  9. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices §...

  10. Perception as Abduction: Turning Sensor Data into Meaningful Representation

    ERIC Educational Resources Information Center

    Shanahan, Murray

    2005-01-01

    This article presents a formal theory of robot perception as a form of abduction. The theory pins down the process whereby low-level sensor data is transformed into a symbolic representation of the external world, drawing together aspects such as incompleteness, top-down information flow, active perception, attention, and sensor fusion in a…

  11. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices §...

  12. TEACHING ABDUCTION-PREVENTION SKILLS TO CHILDREN WITH AUTISM

    PubMed Central

    Gunby, Kristin V; Carr, James E; LeBlanc, Linda A

    2010-01-01

    Three children with autism were taught abduction-prevention skills using behavioral skills training with in situ feedback. All children acquired the skills, which were maintained at a 1-month follow-up assessment. In addition, 1 of the children demonstrated the skills during a stimulus generalization probe in a community setting. PMID:20808500

  13. Abductive Science Inquiry Using Mobile Devices in the Classroom

    ERIC Educational Resources Information Center

    Ahmed, Sohaib; Parsons, David

    2013-01-01

    Recent advancements in digital technology have attracted the interest of educators and researchers to develop technology-assisted inquiry-based learning environments in the domain of school science education. Traditionally, school science education has followed deductive and inductive forms of inquiry investigation, while the abductive form of…

  14. Theorising and Practitioners in HRD: The Role of Abductive Reasoning

    ERIC Educational Resources Information Center

    Gold, Jeff; Walton, John; Cureton, Peter; Anderson, Lisa

    2011-01-01

    Purpose: The purpose of this paper is to argue that abductive reasoning is a typical but usually unrecognised process used by HRD scholars and practitioners alike. Design/methodology/approach: This is a conceptual paper that explores recent criticism of traditional views of theory-building, based on the privileging of scientific theorising, which…

  15. 22 CFR 40.103 - International child abduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false International child abduction. 40.103 Section... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Miscellaneous § 40.103 International child... under such paragraph if the U.S. citizen child in question is physically located in a foreign...

  16. 22 CFR 40.103 - International child abduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false International child abduction. 40.103 Section... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Miscellaneous § 40.103 International child... under such paragraph if the U.S. citizen child in question is physically located in a foreign...

  17. 22 CFR 40.103 - International child abduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false International child abduction. 40.103 Section... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Miscellaneous § 40.103 International child... under such paragraph if the U.S. citizen child in question is physically located in a foreign...

  18. 22 CFR 40.103 - International child abduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false International child abduction. 40.103 Section... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Miscellaneous § 40.103 International child... under such paragraph if the U.S. citizen child in question is physically located in a foreign...

  19. 22 CFR 40.103 - International child abduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false International child abduction. 40.103 Section... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Miscellaneous § 40.103 International child... under such paragraph if the U.S. citizen child in question is physically located in a foreign...

  20. Evaluation of Peer Training for Teaching Abduction Prevention Skills

    ERIC Educational Resources Information Center

    Tarasenko, Melissa A.; Miltenberger, Raymond G.; Brower-Breitwieser, Carrie; Bosch, Amanda

    2010-01-01

    Child abduction is a serious problem, with approximately 100 children killed each year by nonfamily abductors. Training programs to teach children the correct skills to use if they ever come into contact with a stranger can be effective when they incorporate behavioral skills training (BST) and in-situ training (IST) into their protocol. However,…

  1. 22 CFR 94.7 - Procedures for children abducted from the United States.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Procedures for children abducted from the United States. 94.7 Section 94.7 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES INTERNATIONAL CHILD ABDUCTION § 94.7 Procedures for children abducted from the United States. Upon receipt of...

  2. Parental Abduction from the Perspective of the Victims: Implications for Counselors

    ERIC Educational Resources Information Center

    Gibbs, Mary Jo L.

    2009-01-01

    This is a descriptive study that examined parental abductions from the perspective of the abductee. The results will help counseling professionals better to understand the psychological consequences of parental abduction, coping mechanisms that were used by the abducted children and counseling techniques and strategies that helped the children…

  3. The Abduction of Children by Strangers and Nonfamily Members: Estimating the Incidence Using Multiple Methods.

    ERIC Educational Resources Information Center

    Finkelhor, David; And Others

    1992-01-01

    Used a national survey of households with children, a national survey of police records, and an analysis of FBI homicide data to estimate the incidence of nonfamily abductions of children. Offers a definition of abduction, analyzes problems in compiling abduction statistics, and discusses public policy on prevention and response. (RJM)

  4. Three Abductive Solutions to the Meno Paradox--with Instinct, Inference, and Distributed Cognition

    ERIC Educational Resources Information Center

    Paavola, Sami; Hakkarainen, Kai

    2005-01-01

    This article analyzes three approaches to resolving the classical Meno paradox, or its variant, the learning paradox, emphasizing Charles S. Peirce's notion of abduction. Abduction provides a way of dissecting those processes where something new, or conceptually more complex than before, is discovered or learned. In its basic form, abduction is a…

  5. 22 CFR 94.7 - Procedures for children abducted from the United States.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Procedures for children abducted from the United States. 94.7 Section 94.7 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES INTERNATIONAL CHILD ABDUCTION § 94.7 Procedures for children abducted from the United States. Upon receipt of...

  6. Abductive Equivalential Translation and its application to Natural Language Database Interfacing

    NASA Astrophysics Data System (ADS)

    Rayner, Manny

    1994-05-01

    The thesis describes a logical formalization of natural-language database interfacing. We assume the existence of a ``natural language engine'' capable of mediating between surface linguistic string and their representations as ``literal'' logical forms: the focus of interest will be the question of relating ``literal'' logical forms to representations in terms of primitives meaningful to the underlying database engine. We begin by describing the nature of the problem, and show how a variety of interface functionalities can be considered as instances of a type of formal inference task which we call ``Abductive Equivalential Translation'' (AET); functionalities which can be reduced to this form include answering questions, responding to commands, reasoning about the completeness of answers, answering meta-questions of type ``Do you know...'', and generating assertions and questions. In each case, a ``linguistic domain theory'' (LDT) Γ and an input formula F are given, and the goal is to construct a formula with certain properties which is equivalent to F, given Γ and a set of permitted assumptions. If the LDT is of a certain specified type, whose formulas are either conditional equivalences or Horn-clauses, we show that the AET problem can be reduced to a goal-directed inference method. We present an abstract description of this method, and sketch its realization in Prolog. The relationship between AET and several problems previously discussed in the literature is discussed. In particular, we show how AET can provide a simple and elegant solution to the so-called ``Doctor on Board'' problem, and in effect allows a ``relativization'' of the Closed World Assumption. The ideas in the thesis have all been implemented concretely within the SRI CLARE project, using a real projects and payments database. The LDT for the example database is described in detail, and examples of the types of functionality that can be achieved within the example domain are presented.

  7. Introducing Exclusion Logic as a Deontic Logic

    NASA Astrophysics Data System (ADS)

    Evans, Richard

    This paper introduces Exclusion Logic - a simple modal logic without negation or disjunction. We show that this logic has an efficient decision procedure. We describe how Exclusion Logic can be used as a deontic logic. We compare this deontic logic with Standard Deontic Logic and with more syntactically restricted logics.

  8. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  9. Dispositional logic

    SciTech Connect

    Zadeh, L.A.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived. 7 references.

  10. Dispositional logic

    NASA Technical Reports Server (NTRS)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  11. Context as Relevance-Driven Abduction and Charitable Satisficing

    PubMed Central

    Attardo, Salvatore

    2016-01-01

    It has been widely assumed that the full meaning of a linguistic expression can be grasped only within a situation, the context of the utterance. There is even agreement that certain factors within the situation are particularly significant, including gestures and facial expressions of the participants, their social roles, the setting of the exchange, the objects surrounding the participants, the linguistic, cultural and educational backgrounds of the participants, their beliefs, including those concerning the situation, the social procedures and conventions that regulate the situation. Finally, there is some agreement that context is dynamic, reflexive (the speakers are mutually aware of their beliefs), not limited to linguistics actions, and last but not least, a psychological construct. This definition of context is not (very) controversial, but it leaves out two major problems, which will be addressed in this paper: how is context arrived at? And, since a perfectly natural interpretation of the above definition could be that the context of each utterance is the entire universe, how is the relevant context delimited? Four related concepts will provide the answer to both questions: abductive reasoning, driven by relevance and cooperation, and bounded rationality and the principle of charity. Simply put, context is derived abductively by the speakers assuming that for the speakers to behave the way they behave and do so rationally, a given context must be available to them. The context is bounded by the simple requirement that speakers not try to optimize their interpretation/calculation, but rather satisfice, i.e., find the first acceptable solution and by the need to follow the principle of charity, which forces intersubjective agreement. Thus, abductive reasoning and bounded rationality will be shown to be sufficient to calculate the relevant context of utterances (or other rationality-driven interactions) and to effectively delimit the potentially infinite

  12. Teaching Logic.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    To make introducing logic to college students in speech and expository writing classes more interesting, letters to the editor can be used to teach logical fallacies. Letters to the editor are particularly useful because they give students a sense of the community they live in (issues, concerns, and the spectrum of opinion), they are easily…

  13. A constraint-logic based implementation of the coarse-grained approach to data acquisition scheduling of the International Ultraviolet Explorer orbiting observatory

    NASA Technical Reports Server (NTRS)

    Mccollum, Bruce; Graves, Mark

    1994-01-01

    The International Ultraviolet Explorer (IUE) satellite observatory has been in operation continuously since 1978. It typically carries out several thousand observations per year for over a hundred different science projects. These observations, which can occur in one of four different data-taking modes, fall under several satellite-related constraints and many other constraints which derive from the science goals of the projects being undertaken. One strategy which has made the scheduling problem tractable has been that of 'coarse-graining' the time into discrete blocks of equal size (8 hours), each of which is devoted to a single science program, and each of which is sufficiently long for several observations to be carried out. We call it 'coarse-graining' because the schedule is done at a 'coarse' level which ignores fine structure; i.e., no attempt is made to plan the sequence of observations occurring within each time block. We have incorporated the IUE's coarse-grained approach in new software which examines the science needs of the observations and produces a limited set of alternative schedules which meet all of the instrument and science-related constraints. With this algorithm, the IUE can still be scheduled by a single person using a standard workstation, as it has been. We believe that this software could could be adapted to a more complex mission while retaining the IUE's high flexibility and efficiency and scientific return of future satellite missions.

  14. Hip Abduction Can Prevent Posterior Edge Loading of Hip Replacements

    PubMed Central

    van Arkel, Richard J; Modenese, Luca; Phillips, Andrew TM; Jeffers, Jonathan RT

    2013-01-01

    Edge loading causes clinical problems for hard-on-hard hip replacements, and edge loading wear scars are present on the majority of retrieved components. We asked the question: are the lines of action of hip joint muscles such that edge loading can occur in a well-designed, well-positioned acetabular cup? A musculoskeletal model, based on cadaveric lower limb geometry, was used to calculate for each muscle, in every position within the complete range of motion, whether its contraction would safely pull the femoral head into the cup or contribute to edge loading. The results show that all the muscles that insert into the distal femur, patella, or tibia could cause edge loading of a well-positioned cup when the hip is in deep flexion. Patients frequently use distally inserting muscles for movements requiring deep hip flexion, such as sit-to-stand. Importantly, the results, which are supported by in vivo data and clinical findings, also show that risk of edge loading is dramatically reduced by combining deep hip flexion with hip abduction. Patients, including those with sub-optimally positioned cups, may be able to reduce the prevalence of edge loading by rising from chairs or stooping with the hip abducted. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1172–1179, 2013. PMID:23575923

  15. Developing a Validity Argument through Abductive Reasoning with an Empirical Demonstration of the Latent Class Analysis

    ERIC Educational Resources Information Center

    Wu, Amery D.; Stone, Jake E.; Liu, Yan

    2016-01-01

    This article proposes and demonstrates a methodology for test score validation through abductive reasoning. It describes how abductive reasoning can be utilized in support of the claims made about test score validity. This methodology is demonstrated with a real data example of the Canadian English Language Proficiency Index Program…

  16. 22 CFR 94.6 - Procedures for children abducted to the United States.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Procedures for children abducted to the United States. 94.6 Section 94.6 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES INTERNATIONAL... Aspects of International Child Abduction....

  17. 22 CFR 94.6 - Procedures for children abducted to the United States.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Procedures for children abducted to the United States. 94.6 Section 94.6 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES INTERNATIONAL... Aspects of International Child Abduction....

  18. Abductive inferences to psychological variables: Steiger's question and best explanations of psychopathy.

    PubMed

    Markus, Keith A; Hawes, Samuel W; Thasites, Rula J

    2008-09-01

    Abductive inference often involves inference to the best explanation. A focus on the bestness of explanations facilitates a comparative analysis of how abductive inference would differ if approached with four contrasting sets of assumptions about how scientific inference works: positivism, realism, and two kinds of pragmatism. As a thought experiment, one can imagine a situation in which competing models of psychopathy differ in parsimony and fit to the data, but produce a tie when considering both virtues in combination. The thought experiment demonstrates that Steiger's (1990) question about how best to combine competing virtues in scientific inference applies to abductive inference and that the answers depend upon other assumptions about how science works. The comparative analysis helps focus some of the issues that require clarification before abductive inference can enter the Pantheon of standard research methods in psychology. More constructively, the analysis also demonstrates that one need not accept scientific realism to accept and use abductive inference. PMID:18618735

  19. Description Logics

    NASA Astrophysics Data System (ADS)

    Baader, Franz

    Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

  20. A Preliminary Evaluation of Two Behavioral Skills Training Procedures for Teaching Abduction-Prevention Skills to Schoolchildren

    ERIC Educational Resources Information Center

    Johnson, Brigitte M.; Miltenberger, Raymond G.; Knudson, Peter; Egemo-Helm, Kristin; Kelso, Pamela; Jostad, Candice; Langley, Linda

    2006-01-01

    Although child abduction is a low-rate event, it presents a serious threat to the safety of children. The victims of child abduction face the threat of physical and emotional injury, sexual abuse, and death. Previous research has shown that behavioral skills training (BST) is effective in teaching children abduction-prevention skills, although not…

  1. Abductive learning of quantized stochastic processes with probabilistic finite automata.

    PubMed

    Chattopadhyay, Ishanu; Lipson, Hod

    2013-02-13

    We present an unsupervised learning algorithm (GenESeSS) to infer the causal structure of quantized stochastic processes, defined as stochastic dynamical systems evolving over discrete time, and producing quantized observations. Assuming ergodicity and stationarity, GenESeSS infers probabilistic finite state automata models from a sufficiently long observed trace. Our approach is abductive; attempting to infer a simple hypothesis, consistent with observations and modelling framework that essentially fixes the hypothesis class. The probabilistic automata we infer have no initial and terminal states, have no structural restrictions and are shown to be probably approximately correct-learnable. Additionally, we establish rigorous performance guarantees and data requirements, and show that GenESeSS correctly infers long-range dependencies. Modelling and prediction examples on simulated and real data establish relevance to automated inference of causal stochastic structures underlying complex physical phenomena. PMID:23277601

  2. Plastazote abduction orthosis in the management of neonatal hip instability.

    PubMed

    Eberle, Charles F

    2003-01-01

    Since 1987, 113 consecutive newborns with either Ortolani-positive or provocative-positive hip examinations in the newborn nursery have been treated with a Plastazote hip abduction orthosis when diagnosed and followed to determine if the method was safe, effective, and easy to use. Ortolani-positive hips often had bilateral abnormalities in the hip examination, were frequently associated with breech position, and were anatomically more dysplastic than those hips that were unstable by provocative testing. No patient developed ischemic necrosis during follow-up. Only two had additional treatment of their unstable hips. The rest had excellent results. Parents and caregivers found the device easy to use. The orthosis is recommended as the primary method for managing newborns with clinical instability to either the provocative or Ortolani test as being safe, effective, and easy to use across all skill levels. PMID:12960623

  3. Data-Driven Abductive Discovery in the Earth Sciences (Invited)

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.

    2013-12-01

    Traditional pathways to discovery in the Earth sciences rely on inductive and deductive approaches, by which patterns and phenomena in nature are discovered first, and observations and modeling to test causal hypotheses follow. These powerful methods have proven successful in documenting and comprehending many aspects of the natural world, but they are inherently less efficient at discovering new complex patterns that require synthesis of diverse types of data. Consequently, such gradual global processes as plate tectonics and climate change required decades of integrated data synthesis preceding discovery of critical Earth phenomena. Vast but largely untapped Earth science data resources offer a potentially revolutionary alternative 'abductive' approach to investigate Earth's co-evolving geo- and biospheres--a systematic data-driven search for accelerated discovery of hidden patterns in the data resources of a dozen different disciplines. Today's Earth science enterprises generate terabytes per day of new data, yet these vast resources are woefully underutilized because they are not linked into a single platform. We advocate the implementation of data infrastructure and interrogation strategies that link existing and new data resources and methods in mineralogy, paleontology, proteomics, irreversible thermodynamics, geodynamics, and geochronology, coupled with newly adapted statistical analysis and visualization capabilities--a new kind of open-access 'scientific instrument' that could transform the Earth sciences. Recent 'brute force' studies of variations in minerals of beryllium, cobalt, mercury, and molybdenum through deep time demonstrate the potential of this concept as a means to search for critical resources; generate insights regarding the co-evolution of ocean chemistry and microbial metabolism; uncover evidence for the timing and rates of near-surface oxygenation; and document subtle ongoing feedbacks between terrestrial life, weathering, soils, and

  4. [Experimental vocal cord abduction impairment with an artificial vocal cord].

    PubMed

    Isozaki, Eiji; Tobisawa, Shinsuke; Nishizawa, Misato; Nakayama, Hideto; Fukui, Kotaro; Takanishi, Asuo

    2009-07-01

    Non-invasive positive pressure ventilation (NPPV) has recently been applied to the patients with multiple system atrophy (MSA) with various respiratory complications including vocal cord abduction impairment and respiratory disturbance by the central origin. Any consensus guidelines on setting up the inspiratory positive airway pressure (IPAP) and expiratory one (EPAP), however, have not been raised yet. To investigate this problem, we made the upper airway tract model with moderately and severely narrow glottis using a training/test lung and the artificial vocal cord which was developed for a humanoid talking robot in Waseda University. The artificial vocal cord was molded out of a high performance thermoplastic rubber in imitation of the human larynx. Previous studies using with a high-speed camera and a sound analyzer showed that the artificial vocal cord resembled human larynx closely both morphologically and functionally. The opening and closing movements of the artificial vocal cord were observed fiberscopically under various conditions of IPAP (4-20 cmH2O) and EPAP (4-10 cmH2O). The maximal glottic width during inspiration and expiration were measured by a pair of calipers on the video-monitored display. Both of the moderately and the severely narrow artificial vocal cords without non-paralytic factors showed typical paradoxical movement showing adduction in inspiration and abduction in expiration, which is characteristic to vocal cord abductor impairment seen in MSA. In the model with moderately severe narrow glottis, this paradoxical movement was released under any positive pressures of continuous (CPAP) and bilevel (Bilevel PAP) modes. In the model with severely narrow glottis, however, there existed a threshold in setting up the optimal EPAP to release the paradoxical movement. In conclusion, EPAP-leading procedure seems to be preferable to IPAP-leading procedure to dilate the narrow glottis as a pneumatic splint in the managements of the patients with

  5. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  6. Effect of tight clothes on cervical and thoracic spine muscles during shoulder abduction

    PubMed Central

    Kim, Min-hee; Yoo, Won-gyu

    2016-01-01

    [Purpose] The purpose of this study was investigated the effect of tight clothes on cervical and thoracic spine muscles activities during shoulder abduction. [Subjects and Methods] The subjects of this study were 10 healthy males. The subjects performed two shoulder abduction trials for each of two jacket-wearing conditions. The right upper, middle, and lower trapezius and serratus anterior muscles activities were measured using a surface electromyography system during right shoulder abduction. [Results] The upper and middle trapezius muscle activities during shoulder abduction were significantly increased under the tight-jacket conditions compared with the general-jacket conditions. The lower trapezius and serratus anterior muscle activities were significantly decreased under the tight-jacket conditions compared with the general-jacket conditions. [Conclusion] The results of this study suggest that normal scapular movements did not occur sufficiently when wearing a tight jacket. PMID:27313348

  7. Sleep paralysis, sexual abuse, and space alien abduction.

    PubMed

    McNally, Richard J; Clancy, Susan A

    2005-03-01

    Sleep paralysis accompanied by hypnopompic ('upon awakening') hallucinations is an often-frightening manifestation of discordance between the cognitive/perceptual and motor aspects of rapid eye movement (REM) sleep. Awakening sleepers become aware of an inability to move, and sometimes experience intrusion of dream mentation into waking consciousness (e.g. seeing intruders in the bedroom). In this article, we summarize two studies. In the first study, we assessed 10 individuals who reported abduction by space aliens and whose claims were linked to apparent episodes of sleep paralysis during which hypnopompic hallucinations were interpreted as alien beings. In the second study, adults reporting repressed, recovered, or continuous memories of childhood sexual abuse more often reported sleep paralysis than did a control group. Among the 31 reporting sleep paralysis, only one person linked it to abuse memories. This person was among the six recovered memory participants who reported sleep paralysis (i.e. 17% rate of interpreting it as abuse-related). People rely on personally plausible cultural narratives to interpret these otherwise baffling sleep paralysis episodes. PMID:15881271

  8. Behavioral Skills Training to Improve the Abduction-Prevention Skills of Children with Autism.

    PubMed

    Ledbetter-Cho, Katherine; Lang, Russell; Davenport, Katy; Moore, Melissa; Lee, Allyson; O'Reilly, Mark; Watkins, Laci; Falcomata, Terry

    2016-09-01

    A concurrent multiple baseline across participants design evaluated the effects of behavioral skills training (BST) on abduction-prevention skills of four children with autism. Across phases, confederates presented four types of abduction lures: (a) simple requests, (b) appeals to authority, (c) assistance requests, and (d) incentives. During baseline, lures resulted in children leaving with confederate strangers. During intervention, BST targeted a three-step response (i.e., refuse, move away, and report) and the abduction-prevention skills of all participants improved. Improvements generalized to novel settings and confederates and were maintained at 4 weeks. There is currently limited research on abduction-prevention pertaining to individuals with ASD. BST can be used to teach abduction-prevention skills to individuals with ASD. BST can be effective at teaching appropriate responses to multiple types of abduction lures. The effects of BST on multiple responses to multiple types of lures can generalize across settings and people and maintain over time. PMID:27622133

  9. A case study of the abductive reasoning processes of pre-service elementary education students in a role playing setting concerning a mock senate hearing on global climate change

    NASA Astrophysics Data System (ADS)

    Petty, Michael Eugene

    Science education has a rich history of studies into the impact of analogical reasoning upon researcher and student alike. These have focused on how induction and deduction are utilized in determining the appropriateness of the analogy being scrutinized. Research in artificial intelligence has demonstrated that human cognition cannot be modeled with only inductive and deductive forms of logic. Charles S. Peirce proposed abduction as a form of logic central to the process of inquiry and discovery. This involves reasoning from observation to best explanation or hypothesis. Peirce's Theory of Signs provided the theoretical foundation and a model of abduction developed by Shank and Cunningham from Peirce's theory offered the conceptual basis for the study. This study uses discourse analysis to attempt to understand the abductive reasoning processes of two groups of students as they interpret new information concerning the political and scientific perspective of the Greening Earth Society and the Center for Disease Control in an authentic, undergraduate-level classroom setting. The five students were members of a capstone course in science education for pre-service elementary education majors who had an interest in science education. The entire class was comprised of fourteen students partitioned into five groups for the culminating exercise for the course. Analysis was carried out using journal entries, audiotapes of planning sessions, a brief summary of their understanding, and videotapes of the mock Senate hearings. The results demonstrated that different members of the group arrived at their understanding using different pathways suggested by the model. While some proceeded linearly, others skipped some stages and later came back to find supportive evidence to strengthen their beliefs. The model is useful in understanding their abductive processes and may provide insight into how we might consider the process in the design of future curriculum for elementary science

  10. Helical logic

    NASA Astrophysics Data System (ADS)

    Merkle, Ralph C.; Drexler, K. Eric

    1996-12-01

    Helical logic is a theoretical proposal for a future computing technology using the presence or absence of individual electrons (or holes) to encode 1s and 0s. The electrons are constrained to move along helical paths, driven by a rotating electric field in which the entire circuit is immersed. The electric field remains roughly orthogonal to the major axis of the helix and confines each charge carrier to a fraction of a turn of a single helical loop, moving it like water in an Archimedean screw. Each loop could in principle hold an independent carrier, permitting high information density. One computationally universal logic operation involves two helices, one of which splits into two `descendant' helices. At the point of divergence, differences in the electrostatic potential resulting from the presence or absence of a carrier in the adjacent helix controls the direction taken by a carrier in the splitting helix. The reverse of this sequence can be used to merge two initially distinct helical paths into a single outgoing helical path without forcing a dissipative transition. Because these operations are both logically and thermodynamically reversible, energy dissipation can be reduced to extremely low levels. This is the first proposal known to the authors that combines thermodynamic reversibility with the use of single charge carriers. It is important to note that this proposal permits a single electron to switch another single electron, and does not require that many electrons be used to switch one electron. The energy dissipated per logic operation can very likely be reduced to less than 0957-4484/7/4/004/img5 at a temperature of 1 K and a speed of 10 GHz, though further analysis is required to confirm this. Irreversible operations, when required, can be easily implemented and should have a dissipation approaching the fundamental limit of 0957-4484/7/4/004/img6.

  11. Fuzzy Versions of Epistemic and Deontic Logic

    NASA Technical Reports Server (NTRS)

    Gounder, Ramasamy S.; Esterline, Albert C.

    1998-01-01

    Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.

  12. Longitudinal Sex Differences during Landing in Knee Abduction in Young Athletes

    PubMed Central

    Ford, Kevin R.; Shapiro, Robert; Myer, Gregory D.; Bogert, Antonie J. van den; Hewett, Timothy E.

    2010-01-01

    Purpose The objective of this study was to determine if biomechanical and neuromuscular risk factors related to abnormal movement patterns increased in females, but not males, during the adolescent growth spurt. Methods 315 subjects participated in two testing sessions approximately one year apart. Male and female subjects were classified based on their maturation status as pubertal or post-pubertal. Three trials of a drop vertical jump (DVJ) were collected. Maximum knee abduction angle and external moments were calculated during the DVJ deceleration phase using a 3D motion analysis system. Changes in knee abduction from the first to second year were compared among four subject groups (female pubertal, female post-pubertal, male pubertal and male post-pubertal). Results There were no sex differences in peak knee abduction angle or moment during DVJ between pubertal males and females (p>0.05). However, pubertal females increased peak abduction angle from the first to second year (p<0.001), while males demonstrated no similar change (p=0.90) in the matched developmental stages. Following puberty, the peak abduction angle and moment were greater in females relative to males (angle: female -9.3±5.7°, male -3.6±4.6°, p<0.001; moment: female:-21.9±13.5 Nm, male:-13.0±12.0 Nm, p=0.017). Conclusion This study identified, through longitudinal analyses, that knee abduction angle was significantly increased in pubertal females during rapid adolescent growth, while males showed no similar change. In addition, knee abduction motion and moments were significantly greater for subsequent year in young female athletes, following rapid adolescent growth, compared to males. The combination of longitudinal, sex and maturational group differences indicate that early puberty appears to be a critical phase related to the divergence of increased ACL injury risk factors. PMID:20305577

  13. Specifying real-time systems with interval logic

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1988-01-01

    Pure temporal logic makes no reference to time. An interval temporal logic and an extension to that logic which includes real time constraints are described. The application of this logic by giving a specification for the well-known lift (elevator) example is demonstrated. It is shown how interval logic can be extended to include a notion of process. How the specification language and verification environment of EHDM could be enhanced to support this logic is described. A specification of the alternating bit protocol in this extended version of the specification language of EHDM is given.

  14. A layered abduction model of perception: Integrating bottom-up and top-down processing in a multi-sense agent

    NASA Technical Reports Server (NTRS)

    Josephson, John R.

    1989-01-01

    A layered-abduction model of perception is presented which unifies bottom-up and top-down processing in a single logical and information-processing framework. The process of interpreting the input from each sense is broken down into discrete layers of interpretation, where at each layer a best explanation hypothesis is formed of the data presented by the layer or layers below, with the help of information available laterally and from above. The formation of this hypothesis is treated as a problem of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-based problem-solving approach to the analysis of perception, treating perception as a kind of compiled cognition. The bottom-up passing of information from layer to layer defines channels of information flow, which separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs where channels converge from more than one sense. This model has not yet been implemented, though it is based on systems which have been successful in medical and mechanical diagnosis and medical test interpretation.

  15. Higher-level fusion for military operations based on abductive inference: proof of principle

    NASA Astrophysics Data System (ADS)

    Pantaleev, Aleksandar V.; Josephson, John

    2006-04-01

    The ability of contemporary military commanders to estimate and understand complicated situations already suffers from information overload, and the situation can only grow worse. We describe a prototype application that uses abductive inferencing to fuse information from multiple sensors to evaluate the evidence for higher-level hypotheses that are close to the levels of abstraction needed for decision making (approximately JDL levels 2 and 3). Abductive inference (abduction, inference to the best explanation) is a pattern of reasoning that occurs naturally in diverse settings such as medical diagnosis, criminal investigations, scientific theory formation, and military intelligence analysis. Because abduction is part of common-sense reasoning, implementations of it can produce reasoning traces that are very human understandable. Automated abductive inferencing can be deployed to augment human reasoning, taking advantage of computation to process large amounts of information, and to bypass limits to human attention and short-term memory. We illustrate the workings of the prototype system by describing an example of its use for small-unit military operations in an urban setting. Knowledge was encoded as it might be captured prior to engagement from a standard military decision making process (MDMP) and analysis of commander's priority intelligence requirements (PIR). The system is able to reasonably estimate the evidence for higher-level hypotheses based on information from multiple sensors. Its inference processes can be examined closely to verify correctness. Decision makers can override conclusions at any level and changes will propagate appropriately.

  16. A three-dimensional model of vocal fold abductionÕadduction

    PubMed Central

    Hunter, Eric J.; Titze, Ingo R.; Alipour, Fariborz

    2006-01-01

    A three-dimensional biomechanical model of tissue deformation was developed to simulate dynamic vocal fold abduction and adduction. The model was made of 1721 nearly incompressible finite elements. The cricoarytenoid joint was modeled as a rocking–sliding motion, similar to two concentric cylinders. The vocal ligament and the thyroarytenoid muscle’s fiber characteristics were implemented as a fiber–gel composite made of an isotropic ground substance imbedded with fibers. These fibers had contractile and/or passive nonlinear stress–strain characteristics. The verification of the model was made by comparing the range and speed of motion to published vocal fold kinematic data. The model simulated abduction to a maximum glottal angle of about 31°. Using the posterior-cricoarytenoid muscle, the model produced an angular abduction speed of 405° per second. The system mechanics seemed to favor abduction over adduction in both peak speed and response time, even when all intrinsic muscle properties were kept identical. The model also verified the notion that the vocalis and muscularis portions of the thyroarytenoid muscle play significantly different roles in posturing, with the muscularis portion having the larger effect on arytenoid movement. Other insights into the mechanisms of abduction/adduction were given. PMID:15101653

  17. Not without a fair fight: failed abductions of females in wild hamadryas baboons.

    PubMed

    Pines, Mathew; Swedell, Larissa

    2011-07-01

    In contrast to other papionin monkeys, hamadryas baboons are characterized by female-biased dispersal. Given that hamadryas females do not disperse voluntarily, one mechanism for female transfer between bands is thought to be abductions during aggressive intergroup conflict. To date, however, no successful abductions have been witnessed. We describe three abduction events at the Filoha field site in Ethiopia, two interband and one intraband, in which the abductors successfully separated a female from her leader male for several minutes or hours. In each case, the original leader male located the abductor and retrieved the female, even if it involved entering the social sphere of another band. These observations suggest that a hamadryas leader male will risk injury and loss of additional females in his attempt to retrieve a female from an abductor unless the abductor has openly challenged the leader for possession of his female and physically defeated him. PMID:21359653

  18. A Logical Framework to Deal with Variability

    NASA Astrophysics Data System (ADS)

    Asirelli, Patrizia; Ter Beek, Maurice H.; Fantechi, Alessandro; Gnesi, Stefania

    We present a logical framework that is able to deal with variability in product family descriptions. The temporal logic MHML is based on the classical Hennessy-Milner logic with Until and we interpret it over Modal Transition Systems (MTSs). MTSs extend the classical notion of Labelled Transition Systems by distinguishing possible (may) and required (must) transitions: these two types of transitions are useful to describe variability in behavioural descriptions of product families. This leads to a novel deontic interpretation of the classical modal and temporal operators, which allows the expression of both constraints over the products of a family and constraints over their behaviour in a single logical framework. Finally, we sketch model-checking algorithms to verify MHML formulae as well as a way to derive correct products from a product family description.

  19. [An abduction applicance for congenital dislocation of the hip (author's transl)].

    PubMed

    Lang, G; Kehr, P; Paternotte, H; Aebi, J; Pintu, J

    1980-06-21

    The appliance described consists of a shoulder belt from which an abduction bar is hanging. Two adjustable rings enclosing the thigh and the leg of the child are attached to the shoulder-belt and to the bar. The lower limb is not immobilized but kept flexes and abducted. The appliance is primarliy used for those children with minor dysplasis of the hip who do not require complete immobilization but cannot be left without any treatment. It is also useful after prolonged orthopaedic or surgical immobilization. PMID:7402893

  20. Missing, Abducted, Runaway, and Thrownaway Children in America. First Report: Numbers and Characteristics, National Incidence Studies. Executive Summary.

    ERIC Educational Resources Information Center

    Finkelhor, David; And Others

    What has in the past been called the missing children problem is in reality a set of at least five distinct problems, each of which needs to be researched, analyzed, and treated separately. The problems are family abductions, nonfamily abductions, runaways, thrownaways, and lost, injured, or otherwise missing children. Many of the children in at…

  1. Greater Step Widths Reduce Internal Knee Abduction Moments in Medial Compartment Knee Osteoarthritis Patients During Stair Ascent.

    PubMed

    Paquette, Max R; Klipple, Gary; Zhang, Songning

    2015-08-01

    Increased step widths have been shown to reduce peak internal knee abduction moments in healthy individuals but not in knee osteoarthritis patients during stair descent. This study aimed to assess effects of increased step widths on peak knee abduction moments and associated variables in adults with medial knee osteoarthritis and healthy older adults during stair ascent. Thirteen healthy older adults and 13 medial knee osteoarthritis patients performed stair ascent using preferred, wide, and wider step widths. Three-dimensional kinematics and ground reaction forces (GRFs) using an instrumented staircase were collected. Increased step width reduced first and second peak knee abduction moments, and knee abduction moment impulse. In addition, frontal plane GRF at time of first and second peak knee abduction moment and lateral trunk lean at time of first peak knee abduction moment were reduced with increased step width during stair ascent in both groups. Knee abduction moment variables were not different between knee osteoarthritis patients and healthy controls. Our findings suggest that increasing step width may be an effective simple gait alteration to reduce knee abduction moment variables in both knee osteoarthritis and healthy adults during stair ascent. However, long term effects of increasing step width during stair ascent in knee osteoarthritis and healthy adults remain unknown. PMID:25781222

  2. International Child Abduction Act 1989 (No. 22 of 1989), 22 August 1989.

    PubMed

    1989-01-01

    This Belize Act gives effect to the Hague Convention on the Civil Aspects of International Child Abduction of 1980. Among other things, it provides that the Family Court is authorized to give interim directions for the purpose of securing the welfare of a child or preventing changes in the circumstances relevant to the determination of an application. PMID:12344035

  3. Efficacy of the Stranger Safety Abduction-Prevention Program and Parent-Conducted in Situ Training

    ERIC Educational Resources Information Center

    Miltenberger, Raymond G.; Fogel, Victoria A.; Beck, Kimberly V.; Koehler, Shannon; Shayne, Rachel; Noah, Jennifer; McFee, Krystal; Perdomo, Andrea; Chan, Paula; Simmons, Danica; Godish, Danielle

    2013-01-01

    Using a control group design, we evaluated the effectiveness of the "Stranger Safety" DVD (The Safe Side, 2004) and parent training of abduction-prevention skills with 6- to 8-year-old children. Children in the training or control group who did not demonstrate the safety skills received in situ training from their parents. There was no…

  4. Evaluation of movements of lower limbs in non-professional ballet dancers: hip abduction and flexion

    PubMed Central

    2011-01-01

    Background The literature indicated that the majority of professional ballet dancers present static and active dynamic range of motion difference between left and right lower limbs, however, no previous study focused this difference in non-professional ballet dancers. In this study we aimed to evaluate active movements of the hip in non-professional classical dancers. Methods We evaluated 10 non professional ballet dancers (16-23 years old). We measured the active range of motion and flexibility through Well Banks. We compared active range of motion between left and right sides (hip flexion and abduction) and performed correlation between active movements and flexibility. Results There was a small difference between the right and left sides of the hip in relation to the movements of flexion and abduction, which suggest the dominant side of the subjects, however, there was no statistical significance. Bank of Wells test revealed statistical difference only between the 1st and the 3rd measurement. There was no correlation between the movements of the hip (abduction and flexion, right and left sides) with the three test measurements of the bank of Wells. Conclusion There is no imbalance between the sides of the hip with respect to active abduction and flexion movements in non-professional ballet dancers. PMID:21819566

  5. Roles of Abductive Reasoning and Prior Belief in Children's Generation of Hypotheses about Pendulum Motion

    ERIC Educational Resources Information Center

    Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok

    2006-01-01

    The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…

  6. Examining the Effectiveness and Efficiency of Two Delivery Models to Teach Children Abduction Prevention Skills

    ERIC Educational Resources Information Center

    Seckinger-Bancroft, Kimberly E.

    2010-01-01

    Nearly all children receive abduction prevention training. Most traditional education programs increase the learner's knowledge, but often fail to produce concomitant behavior change. Behavioral Skills Training (BST) is a multi-component, behavior-based training strategy with empirical support demonstrating its effectiveness in teaching children…

  7. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    ERIC Educational Resources Information Center

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  8. Genetic map construction with constraints

    SciTech Connect

    Clark, D.A.; Rawlings, C.J.; Soursenot, S.

    1994-12-31

    A pilot program, CME, is described for generating a physical genetic map from hybridization fingerprinting data. CME is implemented in the parallel constraint logic programming language ElipSys. The features of constraint logic programming are used to enable the integration of preexisting mapping information (partial probe orders from cytogenetic maps and local physical maps) into the global map generation process, while parallelism enables the search space to be traversed more efficiently. CME was tested using data from chromosome 2 of Schizosaccharomyces pombe and was found able to generate maps as well as (and sometimes better than) a more traditional method. This paper illustrates the practical benefits of using a symbolic logic programming language and shows that the features of constraint handling and parallel execution bring the development of practical systems based on Al programming technologies nearer to being a reality.

  9. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    NASA Technical Reports Server (NTRS)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  10. Abductive machine learning for modeling and predicting the educational score in school health surveys.

    PubMed

    Abdel-Aal, R E; Mangoud, A M

    1996-09-01

    The use of modern abductive machine learning techniques is described for modeling and predicting outcome parameters in terms of input parameters in medical survey data. The AIM (Abductory Induction Mechanism) abductive network machine-learning tool is used to model the educational score in a health survey of 2,720 Albanian primary school children. Data included the child's age, gender, vision, nourishment, parasite infection, family size, parents' education, and educational score. Models synthesized by training on just 100 cases predict the educational score output for the remaining 2,620 cases with 100% accuracy. Simple models represented as analytical functions highlight global relationships and trends in the survey population. Models generated are quite robust, with no change in the basic model structure for a 10-fold increase in the size of the training set. Compared to other statistical and neural network approaches, AIM provides faster and highly automated model synthesis, requiring little or no user intervention. PMID:8952313

  11. Uninformed sacrifice: Evidence against long-range alarm transmission in foraging ants exposed to localized abduction

    NASA Astrophysics Data System (ADS)

    Tejera, F.; Reyes, A.; Altshuler, E.

    2016-07-01

    It is well established that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we abduct leaf cutting ants of the species Atta insularis while they forage in their natural environment at a certain point of the foraging line, so ants make a "U" turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit "danger information" to other nestmates marching towards the abduction area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.

  12. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  13. The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach.

    PubMed

    Lin, Yi-Tsung; Wu, James Shih-Shyn; Chen, Jian-Horng

    2016-07-01

    An acetabular cup with larger abduction angles is able to affect the normal function of the cup seriously that may cause early failure of the total hip replacement (THR). Complexity of the finite element (FE) simulation in the wear analysis of the THR is usually concerned with the contact status, the computational effort, and the possible divergence of results, which become more difficult on THRs with larger cup abduction angles. In the study, we propose a FE approach with contact transformation that offers less computational effort. Related procedures, such as Lagrangian Multiplier, partitioned matrix inversion, detection of contact forces, continuity of contact surface, nodal area estimation, etc. are explained in this report. Through the transformed methodology, the computer round-off error is tremendously reduced and the embedded repetitive procedure can be processed precisely and quickly. Here, wear behaviors of THR with various abduction angles are investigated. The most commonly used combination, i.e., metal-on-polyethylene, is adopted in the current study where a cobalt-chromium femoral head is paired with an Ultra High Molecular Weight Polyethylene (UHMWPE) cup. In all illustrations, wear coefficients are estimated by self-averaging strategy with available experimental datum reported elsewhere. The results reveal that the THR with larger abduction angles may produce deeper depth of wear but the volume of wear presents an opposite tendency; these results are comparable with clinical and experimental reports. The current approach can be widely applied easily to fields such as the study of the wear behaviors on ante-version, impingement, and time-dependent behaviors of prostheses etc. PMID:27265055

  14. Constraints imposed by the lower extremity extensor synergy in chronic hemiparetic stroke: Preliminary findings.

    PubMed

    Sanchez, Natalia; Dewald, Julius P A

    2014-01-01

    In the present manuscript we implemented the MultiLEIT, a lower extremity isometric torque measurement device to quantify spontaneous joint torque coupling during maximal torque generation in the paretic leg of in chronic hemiparetic stroke. We quantified extension/adduction coupling (coincident with the clinical extension synergy) during the generation of hip extension and ankle plantarflexion maximum voluntary torques. Subjects were then instructed to generate torques outside the synergy by combining hip extension+ hip abduction or ankle plantarflexion + hip abduction. During the hip dual task, the paretic hip torques were significantly different from those measured in the non-paretic and control leg (F = 22.9719, p = 0) and resulted in the inability to generate torques outside the extensor synergy patters. During the dual ankle/ hip task, the paretic extremity generated significantly smaller hip abduction torques compared to controls and to the non-paretic extremity (F = 15.861, p = 0). During this task the paretic extremity was capable of neutralizing the spontaneous adduction torque and generate a net albeit small abduction torque. Results may indicate an increased descending drive from brain stem pathways, particularly during hip extension, responsible for constraints in generating hip abduction torques after stroke. PMID:25571315

  15. Effect of acetabular cup abduction angle on wear of ultrahigh-molecular-weight polyethylene in hip simulator testing.

    PubMed

    Korduba, Laryssa A; Essner, Aaron; Pivec, Robert; Lancin, Perry; Mont, Michael A; Wang, Aiguo; Delanois, Ronald E

    2014-10-01

    The effect of acetabular component positioning on the wear rates of metal-on-polyethylene articulations has not been extensively studied. Placement of acetabular cups at abduction angles of more than 40° has been noted as a possible reason for early failure caused by increased wear. We conducted a study to evaluate the effects of different acetabular cup abduction angles on polyethylene wear rate, wear area, contact pressure, and contact area. Our in vitro study used a hip joint simulator and finite element analysis to assess the effects of cup orientation at 4 angles (0°, 40°, 50°, 70°) on wear and contact properties. Polyethylene bearings with 28-mm cobalt-chrome femoral heads were cycled in an environment mimicking in vivo joint fluid to determine the volumetric wear rate after 10 million cycles. Contact pressure and contact area for each cup abduction angle were assessed using finite element analysis. Results were correlated with cup abduction angles to determine if there were any differences among the 4 groups. The inverse relationship between volumetric wear rate and acetabular cup inclination angle demonstrated less wear with steeper cup angles. The largest abduction angle (70°) had the lowest contact area, largest contact pressure, and smallest head coverage. Conversely, the smallest abduction angle (0°) had the most wear and most head coverage. Polyethylene wear after total hip arthroplasty is a major cause of osteolysis and aseptic loosening, which may lead to premature implant failure. Several studies have found that high wear rates for cups oriented at steep angles contributed to their failure. Our data demonstrated that larger cup abduction angles were associated with lower, not higher, wear. However, this potentially "protective" effect is likely counteracted by other complications of steep cup angles, including impingement, instability, and edge loading. These factors may be more relevant in explaining why implants fail at a higher rate if

  16. Paraconsistent quantum logics

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto

    1989-07-01

    Paraconsistent quantum logics are weak forms of quantum logic, where the noncontradiction and the excluded-middle laws are violated. These logics find interesting applications in the operational approach to quantum mechanics. In this paper, we present an axiomatization, a Kripke-style, and an algebraic semantical characterization for two forms of paraconsistent quantum logic. Further developments are contained in Giuntini and Greuling's paper in this issue.

  17. Behavioural processes in social context: female abductions, male herding and female grooming in hamadryas baboons.

    PubMed

    Polo, Pablo; Colmenares, Fernando

    2012-06-01

    The formation of bonds between strangers is an event that occurs routinely in many social animals, including humans, and, as social bonds in general, they affect the individuals' welfare and biological fitness. The present study was motivated by an interest in the behavioural processes that drive bond formation in a social context of hostility, in which the incumbent partners vary greatly in physical power and reproductive interests, a situation in which individuals of many group-living species find themselves often throughout their lives. We focused on the quantitative analysis of female abductions via male aggressive herding in a nonhuman primate, the hamadryas baboon, in which intersexual bonds are known to be strong. We tested three hypotheses informed by sexual conflict/sexual coercion theory (male herding-as-conditioning and female grooming-as-appeasement) and by socioecological theory (unit size and female competition). The results supported the predictions: males resorted to coercive tactics (aggressive herding) with abducted females, and abducted females elevated the amount of grooming directed at their new unit males; in fact, they escaped from the otherwise negative effect of unit size on female-to-male grooming. These findings reveal that conflicts of interest are natural ingredients underpinning social bonds and that resorting to coercive aggression may be an option especially when partners differ greatly in their physical power. PMID:22391051

  18. Psychophysiological responding during script-driven imagery in people reporting abduction by space aliens.

    PubMed

    McNally, Richard J; Lasko, Natasha B; Clancy, Susan A; Macklin, Michael L; Pitman, Roger K; Orr, Scott P

    2004-07-01

    Is recollection of highly improbable traumatic experiences accompanied by psychophysiological responses indicative of intense emotion? To investigate this issue, we measured heart rate, skin conductance, and left lateral frontalis electromyographic responses in individuals who reported having been abducted by space aliens. Recordings of these participants were made during script-driven imagery of their reported alien encounters and of other stressful, positive, and neutral experiences they reported. We also measured the psychophysiological responses of control participants while they heard the scripts of the abductees. We predicted that if "memories" of alien abduction function like highly stressful memories, then psychophysiological reactivity to the abduction and stressful scripts would be greater than reactivity to the positive and neutral scripts, and this effect would be more pronounced among abductees than among control participants. Contrast analyses confirmed this prediction for all three physiological measures (ps < .05). Therefore, belief that one has been traumatized may generate emotional responses similar to those provoked by recollection of trauma (e.g., combat). PMID:15200635

  19. OncoLogicTM

    EPA Science Inventory

    OncoLogicTM - A Computer System to Evaluate the Carcinogenic Potential of Chemicals
    OncoLogicTM is a software program that evaluates the likelihood that a chemical may cause cancer. OncoLogicTM has been peer reviewed and is being rele...

  20. Topological Properties of Combinational Logic Functions for Very Large Scale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Hiteshue, Elizabeth; Irvin, Kelsey; Lanzerotti, Mary; Vernizzi, Graziano; Kujawski, Joseph; Weatherwax, Allan

    2014-03-01

    This talk presents topological properties of combinational logic functions implemented with basic logic gates. Combinational logic can be implemented in very large scale integrated circuits, including high-performance microprocessors. Prior work has produced an historically-equivalent (HE) interpretation of Mr. E. F. Rent's 1960 memos for today's complex circuitry, an application to modern microprocessors, and topological constraints for electronic circuits. This talk will examine combinational logic blocks which may exhibit different connectivity and will evaluate their topological properties.

  1. Selecting clinical diagnoses: logical strategies informed by experience.

    PubMed

    Stanley, Donald Edward; Campos, Daniel G

    2016-08-01

    This article describes reasoning strategies used by clinicians in different diagnostic circumstances and how these modes of inquiry may allow further insight into the evaluation and treatment of patients. Specifically, it aims to make explicit the implicit logical considerations that guide a variety of strategies in the diagnostic process, as exemplified in specific clinical cases. It focuses, in particular, in strategies that clinicians use to move from a large set of possible diagnoses initially suggested by abductive inferences - the process of hypothesis generation that creates a diagnostic space - to a narrower set or even to a single 'best' diagnosis, where the criteria to determine what is 'best' may differ according to different strategies. Experienced clinicians should have a diversified kit of strategies - for example, Bayesian probability or inference to a lovely explanation - to select from among previously generated hypotheses, rather than rely on any one approach every time. PMID:26201314

  2. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  3. Foundations of logic programming

    SciTech Connect

    Lloyd, J.W.

    1987-01-01

    This is the second edition of the first book to give an account of the mathematical foundations of Logic Programming. Its purpose is to collect the basic theoretical results of Logic Programming, which have previously only been available in widely scattered research papers. In addition to presenting the technical results, the book also contains many illustrative examples. Many of the examples and problems are part of the folklore of Logic Programming and are not easily obtainable elsewhere.

  4. Digital Microfluidic Logic Gates

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Tao; Chakrabarty, Krishnendu

    Microfluidic computing is an emerging application for microfluidics technology. We propose microfluidic logic gates based on digital microfluidics. Using the principle of electrowetting-on-dielectric, AND, OR, NOT and XOR gates are implemented through basic droplet-handling operations such as transporting, merging and splitting. The same input-output interpretation enables the cascading of gates to create nontrivial computing systems. We present a potential application for microfluidic logic gates by implementing microfluidic logic operations for on-chip HIV test.

  5. Electrically reconfigurable logic array

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1982-01-01

    To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.

  6. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  7. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  8. Past-life identities, UFO abductions, and satanic ritual abuse: the social construction of memories.

    PubMed

    Spanos, N P; Burgess, C A; Burgess, M F

    1994-10-01

    People sometimes fantasize entire complex scenarios and later define these experiences as memories of actual events rather than as imaginings. This article examines research associated with three such phenomena: past-life experiences, UFO alien contact and abduction, and memory reports of childhood ritual satanic abuse. In each case, elicitation of the fantasy events is frequently associated with hypnotic procedures and structured interviews which provide strong and repeated demands for the requisite experiences, and which then legitimate the experiences as "real memories." Research associated with these phenomena supports the hypothesis that recall is reconstructive and organized in terms of current expectations and beliefs. PMID:7960296

  9. Efficacy of the stranger safety abduction-prevention program and parent-conducted in situ training.

    PubMed

    Miltenberger, Raymond G; Fogel, Victoria A; Beck, Kimberly V; Koehler, Shannon; Shayne, Rachel; Noah, Jennifer; McFee, Krystal; Perdomo, Andrea; Chan, Paula; Simmons, Danica; Godish, Danielle

    2013-12-01

    Using a control group design, we evaluated the effectiveness of the Stranger Safety DVD (The Safe Side, 2004) and parent training of abduction-prevention skills with 6- to 8-year-old children. Children in the training or control group who did not demonstrate the safety skills received in situ training from their parents. There was no significant difference in safety skills between the training and control groups after the training group viewed the DVD. Children in both groups scored significantly better after receiving in situ training, with no significant difference in performance between groups. PMID:24114614

  10. Trajectory constraints in qualitative simulation

    SciTech Connect

    Brajnik, G.; Clancy, D.J.

    1996-12-31

    We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.

  11. Foundations of support constraint machines.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-02-01

    The mathematical foundations of a new theory for the design of intelligent agents are presented. The proposed learning paradigm is centered around the concept of constraint, representing the interactions with the environment, and the parsimony principle. The classical regularization framework of kernel machines is naturally extended to the case in which the agents interact with a richer environment, where abstract granules of knowledge, compactly described by different linguistic formalisms, can be translated into the unified notion of constraint for defining the hypothesis set. Constrained variational calculus is exploited to derive general representation theorems that provide a description of the optimal body of the agent (i.e., the functional structure of the optimal solution to the learning problem), which is the basis for devising new learning algorithms. We show that regardless of the kind of constraints, the optimal body of the agent is a support constraint machine (SCM) based on representer theorems that extend classical results for kernel machines and provide new representations. In a sense, the expressiveness of constraints yields a semantic-based regularization theory, which strongly restricts the hypothesis set of classical regularization. Some guidelines to unify continuous and discrete computational mechanisms are given so as to accommodate in the same framework various kinds of stimuli, for example, supervised examples and logic predicates. The proposed view of learning from constraints incorporates classical learning from examples and extends naturally to the case in which the examples are subsets of the input space, which is related to learning propositional logic clauses. PMID:25380338

  12. Programmable Logic Controllers.

    ERIC Educational Resources Information Center

    Insolia, Gerard; Anderson, Kathleen

    This document contains a 40-hour course in programmable logic controllers (PLC), developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The 10 units of the course cover the following: (1) introduction to programmable logic controllers; (2) DOS primer; (3) prerequisite…

  13. AROUSAL AND LOGICAL INFERENCE.

    ERIC Educational Resources Information Center

    KOEN, FRANK

    THE PURPOSE OF THE EXPERIMENT WAS TO DETERMINE THE DEGREE TO WHICH PHYSIOLOGICAL AROUSAL, AS INDEXED BY THE GRASON STADLER TYPE OPERANT CONDITIONING APPARATUS (GSR), IS RELATED TO THE ACCURACY OF LOGICAL REASONING. THE STIMULI WERE 12 SYLLOGISMS, THREE OF EACH OF FOUR DIFFERENT LOGICAL FORMS. THE 14 SUBJECTS (SS) INDICATED THEIR AGREEMENT OR…

  14. Fundamentals of Digital Logic.

    ERIC Educational Resources Information Center

    Noell, Monica L.

    This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…

  15. Identifying Logical Necessity

    ERIC Educational Resources Information Center

    Yopp, David

    2010-01-01

    Understanding logical necessity is an important component of proof and reasoning for teachers of grades K-8. The ability to determine exactly where young students' arguments are faulty offers teachers the chance to give youngsters feedback as they progress toward writing mathematically valid deductive proofs. As defined, logical necessity is the…

  16. Logic via Computer Programming.

    ERIC Educational Resources Information Center

    Wieschenberg, Agnes A.

    This paper proposed the question "How do we teach logical thinking and sophisticated mathematics to unsophisticated college students?" One answer among many is through the writing of computer programs. The writing of computer algorithms is mathematical problem solving and logic in disguise and it may attract students who would otherwise stop…

  17. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor.

    PubMed

    Picerno, Pietro; Viero, Valerio; Donati, Marco; Triossi, Tamara; Tancredi, Virginia; Melchiorri, Giovanni

    2015-01-01

    The aim of the present article was to assess the reliability of strength curves as determined from tridimensional linear accelerations and angular velocities measured by a single inertial measurement unit (IMU) fixed on the upper arm during a shoulder abduction movement performed holding a 1 kg dumbbell in the hand. Within-subject repeatability of the task was assessed on 45 subjects performing four trials consisting of one maximal shoulder abduction-adduction movement. Intraclass correlation coefficient (ICC) was computed on the average movement angular velocity (VEL) and range of movement (ROM) across the four trials. Within-subject repeatability of torque curves was assessed in terms of waveform similarities by computing the coefficient of multiple determination (CMD). Accuracy of the estimated ROM was assessed using an isokinetic dynamometer. High ICC values of ROM (0.955) and VEL (0.970) indicated a high within-subject repeatability of the task. A high waveform similarity of torque curves was also found between trials (CMD = 0.867). Accuracy with respect to isokinetic dynamometer in estimating ROM was always <1 degree (p = 0.37). This study showed the effectiveness of using a single wearable IMU for the assessment of strength curve during isoinertial movements in a way that complies with the needs of clinicians in an ambulatory setting. PMID:26230401

  18. Fuzziness in abacus logic

    NASA Astrophysics Data System (ADS)

    Malhas, Othman Qasim

    1993-10-01

    The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.

  19. Microelectromechanical reprogrammable logic device

    PubMed Central

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  20. Microelectromechanical reprogrammable logic device.

    PubMed

    Hafiz, M A A; Kosuru, L; Younis, M I

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  1. Microelectromechanical reprogrammable logic device

    NASA Astrophysics Data System (ADS)

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-03-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  2. Regulatory Conformance Checking: Logic and Logical Form

    ERIC Educational Resources Information Center

    Dinesh, Nikhil

    2010-01-01

    We consider the problem of checking whether an organization conforms to a body of regulation. Conformance is studied in a runtime verification setting. The regulation is translated to a logic, from which we synthesize monitors. The monitors are evaluated as the state of an organization evolves over time, raising an alarm if a violation is…

  3. Geometric pattern of the hominoid hallucal tarsometatarsal complex. Quantifying the degree of hallux abduction in early hominids

    NASA Astrophysics Data System (ADS)

    Berillon, Gilles

    1999-05-01

    The degree of hallux abduction in extant and fossil hominoids is analysed in terms of geometric relationships between the first metatarsal and the medial cuneiform and quantified by angular data, in relation to grasping ability and locomotor pattern. The 'australopithecine' pattern corresponds to an abducted first podal ray with some grasping abilities and seems to be derived from a ' Proconsul-like' pattern rather than a 'living African great ape-like' pattern. The Olduvai Hominid 8 condition closely resembles that of the modern human which corresponds to a full bipedalism.

  4. Logic of Sherlock Holmes in Technology Enhanced Learning

    ERIC Educational Resources Information Center

    Patokorpi, Erkki

    2007-01-01

    Abduction is a method of reasoning that people use under uncertainty in a context in order to come up with new ideas. The use of abduction in this exploratory study is twofold: (i) abduction is a cross-disciplinary analytic tool that can be used to explain certain key aspects of human-computer interaction in advanced Information Society Technology…

  5. Anion Sensors as Logic Gates: A Close Encounter?

    PubMed

    Madhuprasad; Bhat, Mahesh P; Jung, Ho-Young; Losic, Dusan; Kurkuri, Mahaveer D

    2016-04-25

    Computers have become smarter, smaller, and more efficient due to the downscaling of silicon-based components. Top-down miniaturisation of silicon-based computer components is fast reaching its limitations because of physical constraints and economical non-feasibility. Therefore, the possibility of a bottom-up approach that uses molecules to build nano-sized devices has been initiated. As a result, molecular logic gates based on chemical inputs and measurable optical outputs have captured significant attention very recently. In addition, it would be interesting if such molecular logic gates could be developed by making use of ion sensors, which can give significantly sensitive output information. This review provides a brief introduction to anion receptors, molecular logic gates, a comprehensive review on describing recent advances and progress on development of ion receptors for molecular logic gates, and a brief idea about the application of molecular logic gates. PMID:26890404

  6. Applications of fuzzy logic

    SciTech Connect

    Zargham, M.R.

    1995-06-01

    Recently, fuzzy logic has been applied to many areas, such as process control, image understanding, robots, expert systems, and decision support systems. This paper will explain the basic concepts of fuzzy logic and its application in different fields. The steps to design a control system will be explained in detail. Fuzzy control is the first successful industrial application of fuzzy logic. A fuzzy controller is able to control systems which previously could only be controlled by skilled operators. In recent years Japan has achieved significant progress in this area and has applied it to variety of products such as cruise control for cars, video cameras, rice cookers, washing machines, etc.

  7. Optical logic array processor

    SciTech Connect

    Tanida, J.; Ichioka, Y.

    1983-01-01

    A simple method for optically implementing digital logic gates in parallel has been developed. Parallel logic gates can be achieved by using a lensless shadow-casting system with a light emitting diode array as an incoherent light source. All the sixteen logic functions for two binary variables, which are the fundamental computations of Boolean algebra, can be simply realised in parallel with these gates by changing the switching modes of a led array. Parallel computation structures of the developed optical digital array processor are demonstrated by implementing pattern logics for two binary images with high space-bandwidth product. Applications of the proposed method to parallel shift operation of the image, differentiation, and processing of gray-level image are shown. 9 references.

  8. The Use of Behavioral Skills Training and in situ Feedback to Protect Children with Autism from Abduction Lures

    ERIC Educational Resources Information Center

    Gunby, Kristin V.; Rapp, John T.

    2014-01-01

    We examined the effects of behavioral skills training with in situ feedback on safe responding by children with autism to abduction lures that were presented after a high-probability (high-p) request sequence. This sequence was intended to simulate a grooming or recruitment process. Results show that all 3 participants ultimately acquired the…

  9. How Can Teachers Help Students Formulate Scientific Hypotheses? Some Strategies Found in Abductive Inquiry Activities of Earth Science

    ERIC Educational Resources Information Center

    Oh, Phil Seok

    2010-01-01

    The purpose of this study was to find how the teacher could help students formulate scientific hypotheses. Data came from two microteaching episodes in which two groups of pre-service secondary science teachers taught high school students as they were engaged in abductive inquiry activities of earth science. Multiple data sources including video…

  10. The effects of core muscle activation on dynamic trunk position and knee abduction moments: implications for ACL injury.

    PubMed

    Jamison, Steve T; McNally, Michael P; Schmitt, Laura C; Chaudhari, Ajit M W

    2013-09-01

    Anterior cruciate ligament (ACL) injury is one of the most common serious lower-extremity injuries experienced by athletes participating in field and court sports and often occurs during a sudden change in direction or pivot. Both lateral trunk positioning during cutting and peak external knee abduction moments have been associated with ACL injury risk, though it is not known how core muscle activation influences these variables. In this study, the association between core muscle pre-activation and trunk position as well as the association between core muscle pre-activation and peak knee abduction moment during an unanticipated run-to-cut maneuver were investigated in 46 uninjured individuals. Average co-contraction indices and percent differences between muscle pairs were calculated prior to initial contact for internal obliques, external obliques, and L5 extensors using surface electromyography. Outside tilt of the trunk was defined as positive when the trunk was angled away from the cutting direction. No significant associations were found between pre-activations of core muscles and outside tilt of the trunk. Greater average co-contraction index of the L5 extensors was associated with greater peak knee abduction moment (p=0.0107). Increased co-contraction of the L5 extensors before foot contact could influence peak knee abduction moment by stiffening the spine, limiting sagittal plane trunk flexion (a motion pattern previously linked to ACL injury risk) and upper body kinetic energy absorption by the core during weight acceptance. PMID:23891313

  11. Abduction, Deduction and Induction: Can These Concepts Be Used for an Understanding of Methodological Processes in Interpretative Case Studies?

    ERIC Educational Resources Information Center

    Åsvoll, Håvard

    2014-01-01

    Within the area of interpretative case studies, there appears to be a vast amount of literature about theoretical interpretations as the main analytical strategy. In light of this theoretically based strategy in case studies, this article presents an extended perspective based on Charles Sanders Peirce's concepts of abduction, deduction and…

  12. Muscular Activation During Plyometric Exercises in 90° of Glenohumeral Joint Abduction

    PubMed Central

    Ellenbecker, Todd S.; Sueyoshi, Tetsuro; Bailie, David S.

    2015-01-01

    Background: Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Hypothesis: Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Study Design: Descriptive laboratory study. Methods: Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Results: Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Conclusion: Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°. PMID:25553216

  13. From War to Classroom: PTSD and Depression in Formerly Abducted Youth in Uganda

    PubMed Central

    Winkler, Nina; Ruf-Leuschner, Martina; Ertl, Verena; Pfeiffer, Anett; Schalinski, Inga; Ovuga, Emilio; Neuner, Frank; Elbert, Thomas

    2015-01-01

    Background: Trained local screeners assessed the mental-health status of male and female students in Northern Ugandan schools. The study aimed to disclose potential differences in mental health-related impairment in two groups, former child soldiers (n = 354) and other war-affected youth (n = 489), as well as to separate factors predicting mental suffering in learners. Methods: Participants were randomly selected. We used the Post-Traumatic Diagnostic Scale to assess symptoms of post-traumatic stress disorder (PTSD) and for potential depression the respective section of the Hopkins Symptom Checklist with a locally validated cut-off. Results: Almost all respondents had been displaced at least once in their life. 30% of girls and 50% of the boys in the study reported past abduction history. Trauma exposure was notably higher in the group of abductees. In former child soldiers, a PTSD rate of 32% was remarkably higher than that for non-abductees (12%). Especially in girls rates of potential depression were double those in the group of former abductees (17%) than in the group of non-abductees (8%). In all groups, trauma exposure increased the risk of developing PTSD. A path-analytic model for developing PTSD and potential depression revealed both previous trauma exposure as well as duration of abduction to have significant influences on trauma-related mental suffering. Findings also suggest that in Northern Ugandan schools trauma spectrum disorders are common among war-affected learners. Conclusions: Therefore, it is suggested the school context should be used to provide mental-health support structures within the education system for war-affected youth at likely risk of developing war-related mental distress. PMID:25788887

  14. Decision of the National People's Congress (NPC) Standing Committee on Strict Punishment for Criminals Who Abduct, Sell, and Kidnap Women and Children [4 September 1991].

    PubMed

    1991-09-01

    This document contains the text of a 1991 Chinese amended law which seeks to punish criminals who abduct and sell women and children. The law assigns a prison sentence of 3-10 years and a fine for the abduction and sale of women and children. When circumstances are deemed especially serious, the penalty is increased to death and confiscation of property. Such circumstances include being the ringleader of a group which abducts and sells women and children, abducting and selling three or more women or children, raping abducted women, inducing or forcing women to prostitution, causing serious injury or death to abducted women and children or their relatives, and selling women and children outside of the territory. A 10-year sentence is to be imposed for the use of force, threats, or narcotics to kidnap women and children to sell them. Those who buy abducted women or children are also to be punished unless they fail to obstruct the women from returning to their home, fail to abuse the children, or fail to obstruct the children from saving themselves. PMID:12292476

  15. A Qualitative Comparison of Different Logical Topologies for Wireless Sensor Networks

    PubMed Central

    Mamun, Quazi

    2012-01-01

    Wireless Sensor Networks (WSNs) are formed by a large collection of power-conscious wireless-capable sensors without the support of pre-existing infrastructure, possibly by unplanned deployment. With a sheer number of sensor nodes, their unattended deployment and hostile environment very often preclude reliance on physical configuration or physical topology. It is, therefore, often necessary to depend on the logical topology. Logical topologies govern how a sensor node communicates with other nodes in the network. In this way, logical topologies play a vital role for resource-constraint sensor networks. It is thus more intuitive to approach the constraint minimizing problems from (logical) topological point of view. Hence, this paper aims to study the logical topologies of WSNs. In doing so, a set of performance metrics is identified first. We identify various logical topologies from different application protocols of WSNs, and then compare the topologies using the set of performance metrics. PMID:23202192

  16. Mechanical passive logic module

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Caulfield, H. John

    2015-02-01

    Nothing from nothing gives simple simile, but something from nothing is an interesting and challenging task. Adolf Lohmann once proposed 'do nothing machine' in optics, which only copies input to output. Passive logic module (PALM) is a special type of 'do nothing machine' which can converts inputs into one of 16 possible binary outputs. This logic module is not like the conventional irreversible one. It is a simple type of reversible Turing machine. In this manuscript we discussed and demonstrated PALM using mechanical movement of plane mirrors. Also we discussed the theoretical model of micro electro mechanical system (MEMS) based PALM in this manuscript. It may have several valuable properties such as passive operation (no need for nonlinear elements as other logic device require) and modular logic (one device implementing any Boolean logic function with simple internal changes). The result is obtained from the demonstration by only looking up the output. No calculation is required to get the result. Not only that, PALM is a simple type of the famous 'billiard ball machine', which also discussed in this manuscript.

  17. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  18. After abduction: exploring access to reintegration programs and mental health status among young female abductees in Northern Uganda

    PubMed Central

    2014-01-01

    Background Reintegration programs are commonly offered to former combatants and abductees to acquire civilian status and support services to reintegrate into post-conflict society. Among a group of young female abductees in northern Uganda, this study examined access to post-abduction reintegration programming and tested for between group differences in mental health status among young women who had accessed reintegration programming compared to those who self-reintegrated. Methods This cross-sectional study analysed interviews from 129 young women who had previously been abducted by the Lords Resistance Army (LRA). Data was collected between June 2011-January 2012. Interviews collected information on abduction-related experiences including age and year of abduction, manner of departure, and reintegration status. Participants were coded as ‘reintegrated’ if they reported ≥1 of the following reintegration programs: traditional cleansing ceremony, received an amnesty certificate, reinsertion package, or had gone to a reception centre. A t-test was used to measure mean differences in depression and anxiety measured by the Acholi Psychosocial Assessment Instrument (APAI) to determine if abductees who participated in a reintegration program had different mental status from those who self-reintegrated. Results From 129 young abductees, 56 (43.4%) had participated in a reintegration program. Participants had been abducted between 1988–2010 for an average length of one year, the median age of abduction was 13 years (IQR:11–14) with escaping (76.6%), being released (15.6%), and rescued (7.0%) being the most common manner of departure from the LRA. Traditional cleansing ceremonies (67.8%) were the most commonly accessed support followed by receiving amnesty (37.5%), going to a reception centre (28.6%) or receiving a reinsertion package (12.5%). Between group comparisons indicated that the mental health status of abductees who accessed ≥1 reintegration program

  19. Benchmarking emerging logic devices

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri

    2014-03-01

    As complementary metal-oxide-semiconductor field-effect transistors (CMOS FET) are being scaled to ever smaller sizes by the semiconductor industry, the demand is growing for emerging logic devices to supplement CMOS in various special functions. Research directions and concepts of such devices are overviewed. They include tunneling, graphene based, spintronic devices etc. The methodology to estimate future performance of emerging (beyond CMOS) devices and simple logic circuits based on them is explained. Results of benchmarking are used to identify more promising concepts and to map pathways for improvement of beyond CMOS computing.

  20. Logic Simulator Program

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1983-01-01

    The source code for the SPICE 2 program was deblocked in order to isolate and compile the subroutine in an effort to provide a software simulation of discrete and combinatorial electronic components. Incompatibilities between the UNIVAC 1180 FORTRAN and the Sigma V CP-V FORTRAN 4 were resolved. The SPICE 2 model is to be used to determine gate and fan-out delays, logic state conditions, and signal race conditions for transistor array elements and circuit logic to be patterned in the (SPI) 7101 CMOS silicon gate semicustom array. The simulator is to be operable from the CP-V time sharing terminals.

  1. Visuomotor Correction is a Robust Contributor to Force Variability During Index Finger Abduction by Older Adults

    PubMed Central

    Tracy, Brian L.; Hitchcock, Leah N.; Welsh, Seth J.; Paxton, Roger J.; Feldman-Kothe, Caitlin E.

    2015-01-01

    We examined aging-related differences in the contribution of visuomotor correction to force fluctuations during index finger abduction via the analysis of two datasets from similar subjects. Study (1) Young (N = 27, 23 ± 8 years) and older adults (N = 14, 72 ± 9 years) underwent assessment of maximum voluntary contraction force (MVC) and force steadiness during constant-force (CF) index finger abduction (2.5, 30, 65% MVC). For each trial, visual feedback of the force (VIS) was provided for 8–10 s and removed for 8–10 s (NOVIS). Visual gain of the force feedback at 2.5% MVC was high; 12- and 26-fold greater than the 30 and 65% MVC targets. Mean force, standard deviation (SD) of force, and coefficient of variation (CV) of force was calculated for detrended (<0.5 Hz drift removed) VIS and NOVIS data segments. Study (2) A similar group of 14 older adults performed discrete, randomly-ordered VIS or NOVIS trials at low target forces (1–3% MVC) and high visual gain. Study (1) For young adults the CV of force was similar between VIS and NOVIS for the 2.5% (4.8 vs. 4.3%), 30% (3.2 vs. 3.2%) and 65% (3.5 vs. 4.2%) target forces. In contrast, for older adults the CV of force was greater for VIS than NOVIS for 2.5% MVC (6.6 vs. 4.2%, p < 0.001), but not for the 30% (2.4 vs. 2.4%) and 65% (3.1 vs. 3.3%) target forces. At 2.5% MVC, the increase in CV of force for VIS compared with NOVIS was significantly greater (age × visual condition p = 0.008) for older than young adults. Study (2) Similarly, for older adults performing discrete, randomly ordered trials the CV of force was greater for VIS than NOVIS (6.04 vs. 3.81%, p = 0.01). When visual force feedback was a dominant source of information at low forces, normalized force variability was ~58% greater for older adults, but only 11% greater for young adults. The significant effect of visual feedback for older adults was not dependent on the order of presentation of visual conditions. The results indicate that impaired

  2. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  3. Temporal logics meet telerobotics

    NASA Technical Reports Server (NTRS)

    Rutten, Eric; Marce, Lionel

    1989-01-01

    The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.

  4. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  5. Logic and Simulation.

    ERIC Educational Resources Information Center

    Straumanis, Joan

    A major problem in teaching symbolic logic is that of providing individualized and early feedback to students who are learning to do proofs. To overcome this difficulty, a computer program was developed which functions as a line-by-line proof checker in Sentential Calculus. The program, DEMON, first evaluates any statement supplied by the student…

  6. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    2000-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will start a series of notes concentrating on analysis techniques with this issues section discussing worst-case analysis requirements.

  7. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Day, John H. (Technical Monitor)

    2001-01-01

    This report will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing the use of Root-Sum-Square calculations for digital delays.

  8. The effects of shoulder joint abduction angles on the muscle activity of the serratus anterior muscle and the upper trapezius muscle while vibrations are applied

    PubMed Central

    Jung, Da-eun; Moon, Dong-chul

    2015-01-01

    [Purpose] The purpose of this study was to examine the ratio between the upper trapezius and the serratus anterior muscles during diverse shoulder abduction exercises applied with vibrations in order to determine the appropriate exercise methods for recovery of scapular muscle balance. [Subjects and Methods] Twenty-four subjects voluntarily participated in this study. The subjects performed shoulder abduction at various shoulder joint abduction angles (90°, 120°, 150°, 180°) with oscillation movements. [Results] At 120°, all the subjects showed significant increases in the muscle activity of the serratus anterior muscle in comparison with the upper trapezius muscle. However, no significant difference was found at angles other than 120°. [Conclusion] To selectively strengthen the serratus anterior, applying vibration stimuli at the 120° shoulder abduction position is considered to be appropriate. PMID:25642052

  9. Sandia ATM SONET Interface Logic

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  10. Promoting convergence: The Phi spiral in abduction of mouse corneal behaviors

    PubMed Central

    Rhee, Jerry; Nejad, Talisa Mohammad; Comets, Olivier; Flannery, Sean; Gulsoy, Eine Begum; Iannaccone, Philip; Foster, Craig

    2015-01-01

    Why do mouse corneal epithelial cells display spiraling patterns? We want to provide an explanation for this curious phenomenon by applying an idealized problem solving process. Specifically, we applied complementary line-fitting methods to measure transgenic epithelial reporter expression arrangements displayed on three mature, live enucleated globes to clarify the problem. Two prominent logarithmic curves were discovered, one of which displayed the ϕ ratio, an indicator of an optimal configuration in phyllotactic systems. We then utilized two different computational approaches to expose our current understanding of the behavior. In one procedure, which involved an isotropic mechanics-based finite element method, we successfully produced logarithmic spiral curves of maximum shear strain based pathlines but computed dimensions displayed pitch angles of 35° (ϕ spiral is ∼17°), which was altered when we fitted the model with published measurements of coarse collagen orientations. We then used model-based reasoning in context of Peircean abduction to select a working hypothesis. Our work serves as a concise example of applying a scientific habit of mind and illustrates nuances of executing a common method to doing integrative science. © 2014 Wiley Periodicals, Inc. Complexity 20: 22–38, 2015 PMID:25755620

  11. Comparison of Isokinetic Hip Abduction and Adduction Peak Torques and Ratio Between Sexes

    PubMed Central

    Sugimoto, Dai; Mattacola, Carl G.; Mullineaux, David R.; Palmer, Thomas G.; Hewett, Timothy E.

    2014-01-01

    Objective To evaluate hip abductor and adductor peak torque outputs and compare their ratios between sexes. Design A cross-sectional laboratory-controlled study. Setting Participants visited a laboratory and performed an isokinetic hip abductor and adductor test. All participants performed 2 sets of 5 repetitions of concentric hip abduction and adduction in a standing position at 60 degrees per second. Gravity was determined as a function of joint angle relative to the horizontal plane and was corrected by normalizing the weight of the limb on an individual basis. Participants A total of 36 collegiate athletes. Independent Variable Sex (20 females and 16 males). Main Outcome Measures Bilateral peak hip abductor and adductor torques were measured. The 3 highest peak torque values were averaged for each subject. Results Independent t tests were used to compare sex differences in hip abductor and adductor peak torques and the abductor:adductor peak torque ratios. Males demonstrated significantly greater hip abductor peak torque compared with females (males 1.29 ± 0.24 Nm/kg, females 1.13 ± 0.20 Nm/kg; P = 0.03). Neither hip adductor peak torque nor their ratios differed between sexes. Conclusions Sex differences in hip abductor strength were observed. The role of weaker hip abductors in females deserves further attention and may be a factor for higher risk of knee pathologies. PMID:24905541

  12. Closed terminologies in description logics

    SciTech Connect

    Weida, R.A. |

    1996-12-31

    We introduce a predictive concept recognition methodology for description logics based on a new closed terminology assumption. During knowledge engineering, our system adopts the standard open terminology assumption as it automatically classifies concept descriptions into a taxonomy via subsumption inferences. However, for applications like configuration, the terminology becomes fixed during problem solving. Then, closed terminology reasoning is more appropriate. In our interactive configuration application, a user incrementally specifies an individual computer system in collaboration with a configuration engine. Choices can be made in any order and at any level of abstraction. We distinguish between abstract and concrete concepts to formally define when an individual`s description may be considered finished. We also take advantage of the closed terminology assumption, together with the terminology`s subsumption-based organization, to efficiently track the types of systems and components consistent with current choices, infer additional constraints on current choices, and appropriately guide future choices. Thus, we can help focus the efforts of both user and configuration engine.

  13. Conditional Logic and Primary Children.

    ERIC Educational Resources Information Center

    Ennis, Robert H.

    Conditional logic, as interpreted in this paper, means deductive logic characterized by "if-then" statements. This study sought to investigate the knowledge of conditional logic possessed by primary children and to test their readiness to learn such concepts. Ninety students were designated the experimental group and participated in a 15-week…

  14. Inference-based constraint satisfaction supports explanation

    SciTech Connect

    Sqalli, M.H.; Freuder, E.C.

    1996-12-31

    Constraint satisfaction problems are typically solved using search, augmented by general purpose consistency inference methods. This paper proposes a paradigm shift in which inference is used as the primary problem solving method, and attention is focused on special purpose, domain specific inference methods. While we expect this approach to have computational advantages, we emphasize here the advantages of a solution method that is more congenial to human thought processes. Specifically we use inference-based constraint satisfaction to support explanations of the problem solving behavior that are considerably more meaningful than a trace of a search process would be. Logic puzzles are used as a case study. Inference-based constraint satisfaction proves surprisingly powerful and easily extensible in this domain. Problems drawn from commercial logic puzzle booklets are used for evaluation. Explanations are produced that compare well with the explanations provided by these booklets.

  15. Comparison of HIV-related vulnerabilities between former child soldiers and children never abducted by the LRA in northern Uganda

    PubMed Central

    2013-01-01

    Background Thousands of former child soldiers who were abducted during the prolonged conflict in northern Uganda have returned to their home communities. Programmes that facilitate their successful reintegration continue to face a number of challenges. Although there is increasing knowledge of the dynamics of HIV infection during conflict, far less is known about its prevalence and implications for population health in the post-conflict period. This study investigated the effects of abduction on the prevalence of HIV and HIV-risk behaviours among young people in Gulu District, northern Uganda. An understanding of abduction experiences and HIV-risk behaviours is vital to both the development of effective reintegration programming for former child soldiers and the design of appropriate HIV prevention interventions for all young people. Methods In 2010, we conducted a cross-sectional study of 2 sub-counties in Gulu District. A demographic and behavioural survey was interview-administered to a purposively selected sample of 384 transit camp residents aged 15–29. Biological specimens were collected for HIV rapid testing in the field and confirmatory laboratory testing. Descriptive statistics were used to describe characteristics of abduction. Additionally, a gender-stratified bivariate analysis compared abductees’ and non-abductees’ HIV risk profiles. Results Of the 384 participants, 107 (28%) were former child soldiers (61% were young men and 39% were young women). The median age of participants was 20 and median age at abduction was 13. HIV prevalence was similar among former abductees and non-abductees (12% vs. 13%; p = 0.824), with no differences observed by gender. With respect to differences in HIV vulnerability, our bivariate analysis identified greater risky sexual behaviours in the past year for former abductees than non-abductees, but there were no differences between the two groups’ survival/livelihood activities and food insufficiency experiences

  16. The Logic of Life

    NASA Astrophysics Data System (ADS)

    Pascal, Robert; Pross, Addy

    2016-04-01

    In this paper we propose a logical connection between the physical and biological worlds, one resting on a broader understanding of the stability concept. We propose that stability manifests two facets - time and energy, and that stability's time facet, expressed as persistence, is more general than its energy facet. That insight leads to the logical formulation of the Persistence Principle, which describes the general direction of material change in the universe, and which can be stated most simply as: nature seeks persistent forms. Significantly, the principle is found to express itself in two mathematically distinct ways: in the replicative world through Malthusian exponential growth, and in the `regular' physical/chemical world through Boltzmann's probabilistic considerations. By encompassing both `regular' and replicative worlds, the principle appears to be able to help reconcile two of the major scientific theories of the 19th century - the Second Law of Thermodynamics and Darwin's theory of evolution - within a single conceptual framework.

  17. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, heavy ion test results, and some total dose results.

  18. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, and some total dose results.

  19. Infinitesimals without logic

    NASA Astrophysics Data System (ADS)

    Giordano, P.

    2010-06-01

    We introduce a ring of the so-called Fermat reals, which is an extension of the real field containing nilpotent infinitesimals. The construction is inspired by Smooth Infinitesimal Analysis (SIA) and provides a powerful theory of actual infinitesimals without any background in mathematical logic. In particular, in contrast to SIA, which admits models in intuitionistic logic only, the theory of Fermat reals is consistent with the classical logic. We face the problem of deciding whether or not a product of powers of nilpotent infinitesimals vanishes, study the identity principle for polynomials, and discuss the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order-preserving geometrical representation. Using nilpotent infinitesimals, every smooth function becomes a polynomial because the remainder in Taylor’s formulas is now zero. Finally, we present several applications to informal classical calculations used in physics, and all these calculations now become rigorous, and at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, which clarifies how to formalize the approximations tied with Hooke’s law using the language of nilpotent infinitesimals.

  20. A molecular logic gate

    PubMed Central

    Kompa, K. L.; Levine, R. D.

    2001-01-01

    We propose a scheme for molecule-based information processing by combining well-studied spectroscopic techniques and recent results from chemical dynamics. Specifically it is discussed how optical transitions in single molecules can be used to rapidly perform classical (Boolean) logical operations. In the proposed way, a restricted number of states in a single molecule can act as a logical gate equivalent to at least two switches. It is argued that the four-level scheme can also be used to produce gain, because it allows an inversion, and not only a switching ability. The proposed scheme is quantum mechanical in that it takes advantage of the discrete nature of the energy levels but, we here discuss the temporal evolution, with the use of the populations only. On a longer time range we suggest that the same scheme could be extended to perform quantum logic, and a tentative suggestion, based on an available experiment, is discussed. We believe that the pumping can provide a partial proof of principle, although this and similar experiments were not interpreted thus far in our terms. PMID:11209046

  1. Neural networks and logical reasoning systems: a translation table.

    PubMed

    Martins, J; Mendes, R V

    2001-04-01

    A correspondence is established between the basic elements of logic reasoning systems (knowledge bases, rules, inference and queries) and the structure and dynamical evolution laws of neural networks. The correspondence is pictured as a translation dictionary which might allow to go back and forth between symbolic and network formulations, a desirable step in learning-oriented systems and multicomputer networks. In the framework of Horn clause logics, it is found that atomic propositions with n arguments correspond to nodes with nth order synapses, rules to synaptic intensity constraints, forward chaining to synaptic dynamics and queries either to simple node activation or to a query tensor dynamics. PMID:14632170

  2. Photonic encryption using all optical logic.

    SciTech Connect

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an

  3. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  4. Flexible programmable logic module

    SciTech Connect

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  5. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1999-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter the focus is on some experimental data on low voltage drop out regulators to support mixed 5 and 3.3 volt systems. A discussion of the Small Explorer WIRE spacecraft will also be given. Lastly, we show take a first look at robust state machines in Hardware Description Languages (VHDL) and their use in critical systems. If you have information that you would like to submit or an area you would like discussed or researched, please give me a call or e-mail.

  6. Adaptive parallel logic networks

    SciTech Connect

    Martinez, T.R.; Vidal, J.J.

    1988-02-01

    This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.

  7. An SEU immune logic family

    NASA Technical Reports Server (NTRS)

    Canaris, J.

    1991-01-01

    A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.

  8. Barriers in Concurrent Separation Logic

    NASA Astrophysics Data System (ADS)

    Hobor, Aquinas; Gherghina, Cristian

    We develop and prove sound a concurrent separation logic for Pthreads-style barriers. Although Pthreads barriers are widely used in systems, and separation logic is widely used for verification, there has not been any effort to combine the two. Unlike locks and critical sections, Pthreads barriers enable simultaneous resource redistribution between multiple threads and are inherently stateful, leading to significant complications in the design of the logic and its soundness proof. We show how our logic can be applied to a specific example program in a modular way. Our proofs are machine-checked in Coq.

  9. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt

    PubMed Central

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-01-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects’ right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson’s product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt. PMID:27512280

  10. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    PubMed

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt. PMID:27512280

  11. Fuzzy logic and coarse coding using programmable logic devices

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Naturally-occurring sensory signal processing algorithms, such as those that inspired fuzzy-logic control, can be integrated into non-naturally-occurring high-performance technology, such as programmable logic devices, to realize novel bio-inspired designs. Research is underway concerning an investigation into using field programmable logic devices (FPLD's) to implement fuzzy logic sensory processing. A discussion is provided concerning the commonality between bio-inspired fuzzy logic algorithms and coarse coding that is prevalent in naturally-occurring sensory systems. Undergraduate design projects using fuzzy logic for an obstacle-avoidance robot has been accomplished at our institution and other places; numerous other successful fuzzy logic applications can be found as well. The long-term goal is to leverage such biomimetic algorithms for future applications. This paper outlines a design approach for implementing fuzzy-logic algorithms into reconfigurable computing devices. This paper is presented in an effort to connect with others who may be interested in collaboration as well as to establish a starting point for future research.

  12. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  13. Reversible logic gates on Physarum Polycephalum

    SciTech Connect

    Schumann, Andrew

    2015-03-10

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum.

  14. A Logical Process Calculus

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.

  15. The logic of deterrence

    SciTech Connect

    Kenny, A.

    1985-01-01

    In The Logic of Deterrence, Kenny presents a guide to the theory and ethics of the complicated subject of deterrence. Kenny begins by examining the necessary conditions for any war to be just and then applies these principles to the cases of limited and total nuclear war. He then critiques current deterrence policies of both East and West, concluding that they are based on a willingness to kill millions of innocent people and are morally wrong. In the final section of the book, Kenny offers proposals for nuclear disarmament. Charting a course ''between the illusory hopes of the multilateralists who seek disarmament by negotiating and the impractical idealism of those who call for immediate and total unilateral disarmament by the West,'' Kenny proposes a series of phased and partial unilateral steps by the West, coupled with pressure on the East to reciprocate.

  16. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  17. Partial quantum logics revisited

    NASA Astrophysics Data System (ADS)

    Vetterlein, Thomas

    2011-01-01

    Partial Boolean algebras (PBAs) were introduced by Kochen and Specker as an algebraic model reflecting the mutual relationships among quantum-physical yes-no tests. The fact that not all pairs of tests are compatible was taken into special account. In this paper, we review PBAs from two sides. First, we generalise the concept, taking into account also those yes-no tests which are based on unsharp measurements. Namely, we introduce partial MV-algebras, and we define a corresponding logic. Second, we turn to the representation theory of PBAs. In analogy to the case of orthomodular lattices, we give conditions for a PBA to be isomorphic to the PBA of closed subspaces of a complex Hilbert space. Hereby, we do not restrict ourselves to purely algebraic statements; we rather give preference to conditions involving automorphisms of a PBA. We conclude by outlining a critical view on the logico-algebraic approach to the foundational problem of quantum physics.

  18. Quantificational logic of context

    SciTech Connect

    Buvac, Sasa

    1996-12-31

    In this paper we extend the Propositional Logic of Context, to the quantificational (predicate calculus) case. This extension is important in the declarative representation of knowledge for two reasons. Firstly, since contexts are objects in the semantics which can be denoted by terms in the language and which can be quantified over, the extension enables us to express arbitrary first-order properties of contexts. Secondly, since the extended language is no longer only propositional, we can express that an arbitrary predicate calculus formula is true in a context. The paper describes the syntax and the semantics of a quantificational language of context, gives a Hilbert style formal system, and outlines a proof of the system`s completeness.

  19. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  20. The Logical Extension

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The same software controlling autonomous and crew-assisted operations for the International Space Station (ISS) is enabling commercial enterprises to integrate and automate manual operations, also known as decision logic, in real time across complex and disparate networked applications, databases, servers, and other devices, all with quantifiable business benefits. Auspice Corporation, of Framingham, Massachusetts, developed the Auspice TLX (The Logical Extension) software platform to effectively mimic the human decision-making process. Auspice TLX automates operations across extended enterprise systems, where any given infrastructure can include thousands of computers, servers, switches, and modems that are connected, and therefore, dependent upon each other. The concept behind the Auspice software spawned from a computer program originally developed in 1981 by Cambridge, Massachusetts-based Draper Laboratory for simulating tasks performed by astronauts aboard the Space Shuttle. At the time, the Space Shuttle Program was dependent upon paper-based procedures for its manned space missions, which typically averaged 2 weeks in duration. As the Shuttle Program progressed, NASA began increasing the length of manned missions in preparation for a more permanent space habitat. Acknowledging the need to relinquish paper-based procedures in favor of an electronic processing format to properly monitor and manage the complexities of these longer missions, NASA realized that Draper's task simulation software could be applied to its vision of year-round space occupancy. In 1992, Draper was awarded a NASA contract to build User Interface Language software to enable autonomous operations of a multitude of functions on Space Station Freedom (the station was redesigned in 1993 and converted into the international venture known today as the ISS)

  1. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction.

    PubMed

    Denion, Eric; Hitier, Martin; Levieil, Eric; Mouriaux, Frédéric

    2015-01-01

    While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made "non-human ape-like". In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°). PMID:26190625

  2. Treatment of the Developmental Dysplasia of the Hip with an Abduction Brace in Children up to 6 Months Old

    PubMed Central

    Wahlen, Raphaël; Zambelli, Pierre-Yves

    2015-01-01

    Introduction. Use of Pavlik harness for the treatment of DDH can be complicated for parents. Any misuse or failure in the adjustments may lead to significant complications. An abduction brace was introduced in our institution, as it was thought to be easier to use. Aim. We assess the results for the treatment of DDH using our abduction brace in children of 0–6 months old and compare these results with data on treatments using the Pavlik harness. Method. Retrospective analysis of patients with DDH from 0 to 6 months old at diagnosis, performed from 2004 to 2009. Outcomes were rates of reduction of the hip and avascular necrosis of the femoral head (AVN). Follow-up was at one year and up to 4 years old. Results. Hip reduction was successful in 28 of 33 patients (85%), with no AVN. Conclusion. Our results in terms of hip reduction rate and AVN rate are similar to those found in literature assessing Pavlik harness use, with a simpler and comfortable treatment procedure. PMID:25815214

  3. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction

    PubMed Central

    Denion, Eric; Hitier, Martin; Levieil, Eric; Mouriaux, Frédéric

    2015-01-01

    While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made “non-human ape-like”. In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°). PMID:26190625

  4. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  5. Japanese Logic Puzzles and Proof

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2009-01-01

    An understanding of proof does not start in a high school geometry course. Rather, attention to logical reasoning throughout a student's school experience can help the development of proof readiness. In the spirit of problem solving, the author has begun to use some Japanese logic puzzles other than sudoku to help students develop additional…

  6. Programmable Logic Controllers. Teacher Edition.

    ERIC Educational Resources Information Center

    Rauh, Bob; Kaltwasser, Stan

    These materials were developed for a seven-unit secondary or postsecondary education course on programmable logic controllers (PLCs) that treats most of the skills needed to work effectively with PLCs as programming skills. The seven units of the course cover the following topics: fundamentals of programmable logic controllers; contracts, timers,…

  7. Power optimization in logic isomers

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.

  8. Fine-Grained Power Gating Based on the Controlling Value of Logic Elements

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Horiyama, Takashi; Nakamura, Yuichi; Kimura, Shinji

    Leakage power consumption of logic elements has become a serious problem, especially in the sub-100-nanometer process. In this paper, a novel power gating approach by using the controlling value of logic elements is proposed. In the proposed method, sleep signals of the power-gated blocks are extracted completely from the original circuits without any extra logic element. A basic algorithm and a probability-based heuristic algorithm have been developed to implement the basic idea. The steady maximum delay constraint has also been introduced to handle the delay issues. Experiments on the ISCAS'85 benchmarks show that averagely 15-36% of logic elements could be power gated at a time for random input patterns, and 3-31% of elements could be stopped under the steady maximum delay constraints. We also show a power optimization method for AND/OR tree circuits, in which more than 80% of gates can be power-gated.

  9. A Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we introduce Constraint-based Attribute and Interval Planning (CAIP), a new paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm using a mapping to first order logic. We also show that CAIP plans are naturally expressed by networks of constraints, and that planning maps directly to dynamic constraint reasoning. In addition, we show how constraint templates are used to provide a compact mechanism for describing planning domains.

  10. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Gussow, S.; Oglesby, R.

    1974-01-01

    Procedure performs all work required for logic design of digital counters or sequential circuits and simplification of Boolean expressions. Program provides simple, accurate, and comprehensive logic design capability to users both experienced and totally inexperienced in logic design

  11. MLS, a magnetic logic simulator for magnetic bubble logic design

    NASA Astrophysics Data System (ADS)

    Kinsman, Thomas B.; Cendes, Zoltan J.

    1987-04-01

    A computer program that simulates the logic functions of magnetic bubble devices has been developed. The program uses a color graphics screen to display the locations of bubbles on a chip during operation. It complements the simulator previously developed for modeling bubble devices on the gate level [Smith et al., IEEE Trans. Magn. MAG-19, 1835 (1983); Smith and Kryder, ibid. MAG-21, 1779 (1985)]. This new tool simplifies the design and testing of bubble logic devices, and facilitates the development of complicated LSI bubble circuits. The program operation is demonstrated with the design of an in-stream faulty loop compensator using bubble logic.

  12. Contradicting logics in everyday practice.

    PubMed

    Kristiansen, Margrethe; Obstfelder, Aud; Lotherington, Ann Therese

    2016-03-21

    Purpose - Performance management is criticised as a direct challenge to the dominant logic of professionalism in health care organisations. The purpose of this paper is to report an ethnographic study that investigates how performance management and professionalism as contradicting logics are interpreted and implemented by managers and nurses in everyday practice within Norwegian nursing homes. Design/methodology/approach - The paper presents an analysis of 18 semistructured interviews and 100 hours of observation of managers and nurses from three nursing homes. The study draws on the institutional logic perspective as a theoretical framework. In the analysis, the authors searched for patterns of activities and interactions that reflected managers and nurses' coping strategies for handling contradicting logics. Qualitative content analysis was used to systematically code the data, supported by NVIVO software. Findings - The authors identified three forms of coping strategies: the adjustment of professionalism to standards, the reinforcement of professional flexibility and problem solving, and the strategic adoption of documentation. These patterns of activities and interactions reflect new organisational structures that allowed contradicting logics to co-exist. The study demonstrates that a new complex dimension of governing processes within nursing homes is the way in which managers and nurses handle the tension between contradicting logics in their daily work and clinicians' everyday practice. Originality/value - The study provides new insight into how managers and nurses reshape internal organisational structures to cope with contradicting logics in nursing homes. PMID:26964849

  13. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  14. Suicide as social logic.

    PubMed

    Kral, M J

    1994-01-01

    Although suicide is not viewed as a mental disorder per se, it is viewed by many if not most clinicians, researchers, and lay people as a real or natural symptom of depression. It is at least most typically seen as the unfortunate, severe, yet logical end result of a chain of negative self-appraisals, negative events, and hopelessness. Extending an approach articulated by the early French sociologist Gabriel Tarde, in this paper I argue that suicide is merely an idea, albeit a very bad one, having more in common with societal beliefs and norms regarding such things as divorce, abortion, sex, politics, consumer behavior, and fashion. I make a sharp contrast between perturbation and lethality, concepts central to Edwin S. Shneidman's theory of suicide. Evidence supportive of suicide as an idea is discussed based on what we are learning from the study of history and culture, and about contagion/cluster phenomena, media/communication, and choice of method. It is suggested that certain individuals are more vulnerable to incorporate the idea and act of suicide into their concepts of self, based on the same principles by which ideas are spread throughout society. Just as suicide impacts on society, so does society impact on suicide. PMID:7825197

  15. The Logic of Reachability

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Jonsson, Ari K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In recent years, Graphplan style reachability analysis and mutual exclusion reasoning have been used in many high performance planning systems. While numerous refinements and extensions have been developed, the basic plan graph structure and reasoning mechanisms used in these systems are tied to the very simple STRIPS model of action. In 1999, Smith and Weld generalized the Graphplan methods for reachability and mutex reasoning to allow actions to have differing durations. However, the representation of actions still has some severe limitations that prevent the use of these techniques for many real-world planning systems. In this paper, we 1) separate the logic of reachability from the particular representation and inference methods used in Graphplan, and 2) extend the notions of reachability and mutual exclusion to more general notions of time and action. As it turns out, the general rules for mutual exclusion reasoning take on a remarkably clean and simple form. However, practical instantiations of them turn out to be messy, and require that we make representation and reasoning choices.

  16. Logic synthesis of cascade circuits

    NASA Astrophysics Data System (ADS)

    Zakrevskii, A. D.

    The work reviews aspects of the logic design of cascade circuits, particularly programmable logic matrices. Effective methods for solving various problems of the analysis and synthesis of these devices are examined; these methods are based on a matrix representation of the structure of these devices, and a vector-matrix interpretation of certain aspects of Boolean algebra. Particular consideration is given to the theory of elementary matrix circuits, methods for the minimization of Boolean functions, the synthesis of programmable logic matrices, multilevel combinational networks, and the development of automata with memory.

  17. Arguing at Play in the Fields of the Lord; or, Abducting Charles Peirce's Rhetorical Theory in "A Neglected Argument for the Reality of God"

    ERIC Educational Resources Information Center

    Newcomb, Matthew J.

    2009-01-01

    This article argues that the ideas of "play" and "abduction" in Charles Peirce's work represent an inventive theory of argument that opens up the kinds of activities that can be called "arguments" and avoids some of the struggles over imposed beliefs with which recent argument theory has grappled. (Contains 12 notes.)

  18. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  19. Abduction of children of political dissidents in Argentina and the role of human genetics in their restitution.

    PubMed

    Penchaszadeh, V B

    1992-01-01

    Between 1976 and 1983 a brutal military dictatorship governed Argentina. The most basic human rights were severely violated and the method of forced disappearances of approximately 30,000 political dissidents was instituted. In this process, about 300 babies and children of the disappeared victims were also abducted by the military and given to childless families linked to the security forces. Women whose children and grandchildren had disappeared organized themselves as Grandmothers of Plaza de Mayo to search for their missing loved ones. This search was aided by human geneticists from different parts of the world who provided the scientific basis to establish the genetic identification through "grandpaternity testing," and by mental health professionals who provided the psychological theory supporting restitution of appropriated children to their legitimate families. Thus far, close to 50 children have been located, identified and restituted. PMID:1401048

  20. Fuzzy logic and neural networks

    SciTech Connect

    Loos, J.R.

    1994-11-01

    Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.

  1. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  2. Optically controllable molecular logic circuits

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  3. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  4. Neural logic molecular, counter-intuitive.

    PubMed

    Egorov, Igor K

    2007-09-01

    A hypothesis is proposed that multiple "LOGIC" genes control Boolean logic in a neuron. Each hypothetical LOGIC gene encodes a transcription factor that regulates another LOGIC gene(s). Through transcription regulation, LOGIC genes connect into a complex circuit, such as a XOR logic gate or a two-input flip-flop logic circuit capable of retaining information. LOGIC gene duplication, mutation and recombination may result in the diversification of Boolean logic gates. Creative thinking may sometimes require counter-intuitive reasoning, rather than common sense. Such reasoning is likely to engage novel logic circuits produced by LOGIC somatic mutations. An individual's logic maturates by a mechanism of somatic hypermutation, gene conversion and recombination of LOGIC genes in precursor cells followed by selection of neurons in the brain for functional competence. In this model, a single neuron among billions in the brain may contain a unique logic circuit being the key to a hard intellectual problem. The output of a logic neuron is likely to be a neurotransmitter. This neuron is connected to other neurons in the spiking neural network. The LOGIC gene hypothesis is testable by molecular techniques. Understanding mechanisms of authentic human ingenuity may help to invent digital systems capable of creative thinking. PMID:17509937

  5. Application of linear logic to simulation

    NASA Astrophysics Data System (ADS)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  6. Pass transistor implementations of multivalued logic

    NASA Technical Reports Server (NTRS)

    Maki, G.; Whitaker, S.

    1990-01-01

    A simple straight-forward Karnaugh map logic design procedure for realization of multiple-valued logic circuits is presented in this paper. Pass transistor logic gates are used to realize multiple-valued networks. This work is an extension of pass transistor implementations for binary-valued logic.

  7. Fuzzy logic of Aristotelian forms

    SciTech Connect

    Perlovsky, L.I.

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  8. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  9. Intersecting Adjectives in Syllogistic Logic

    NASA Astrophysics Data System (ADS)

    Moss, Lawrence S.

    The goal of natural logic is to present and study logical systems for reasoning with sentences of (or which are reasonably close to) ordinary language. This paper explores simple systems of natural logic which make use of intersecting adjectives; these are adjectives whose interpretation does not vary with the noun they modify. Our project in this paper is to take one of the simplest syllogistic fragments, that of all and some, and to add intersecting adjectives. There are two ways to do this, depending on whether one allows iteration or prefers a "flat" structure of at most one adjective. We present rules of inference for both types of syntax, and these differ. The main results are four completeness theorems: for each of the two types of syntax we have completeness for the all fragment and for the full language of this paper.

  10. Reversible logic gate using adiabatic superconducting devices

    PubMed Central

    Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.

    2014-01-01

    Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698

  11. High-speed, cascaded optical logic operations using programmable optical logic gate arrays

    SciTech Connect

    Lu, B.; Lu, Y.C.; Cheng, J.; Hafich, M.J.; Klem, J.; Zolper, J.C.

    1996-01-01

    Programmable optical logic operations are demonstrated using arrays of nonlatching binary optical switches consisting of vertical-cavity surface-emitting lasers, p-i-n photodetectors and heterojunction bipolar transistors. Individual arrays can perform Boolean optical logic functions at 100 Mb/s using both optical and electrical logic inputs, while the routing and fan-out of the optical logic outputs can be controlled at the gate level. Cascaded optical logic operation is demonstrated using two programmable logic gate arrays.

  12. The semantics of fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1991-01-01

    Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.

  13. A Logical Approach to Entanglement

    NASA Astrophysics Data System (ADS)

    Das, Abhishek

    2016-05-01

    In this paper we innovate a logical approach to develop an intuition regarding the phenomenon of quantum entanglement. In the vein of the logic introduced we substantiate that particles that were entangled in the past will be entangled in perpetuity and thereby abide a rule that restricts them to act otherwise. We also introduce a game and by virtue of the concept of Nash equilibrium we have been able to show that entangled particles will mutually correspond to an experiment that is performed on any one of the particle.

  14. Logic programming and metadata specifications

    NASA Technical Reports Server (NTRS)

    Lopez, Antonio M., Jr.; Saacks, Marguerite E.

    1992-01-01

    Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.

  15. Quantum Decoherence: A Logical Perspective

    NASA Astrophysics Data System (ADS)

    Fortin, Sebastian; Vanni, Leonardo

    2014-12-01

    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the logical structure of quantum properties corresponding to relevant observables acquires Boolean characteristics.

  16. Preventive Maintenance Prioritization by Fuzzy Logic for Seamless Hydro Power Generation

    NASA Astrophysics Data System (ADS)

    Roy, P. K.; Adhikary, P.; Mazumdar, A.

    2014-06-01

    Preventive maintenance prioritization is one of the most important criteria for the electricity generation planners to minimize the down time and production costs. Break down of equipments increases costs and plant down time results in loss of business. This work focuses on prioritizing the preventive maintenance for seamless hydro power generation considering (24 × 7) client's power demand using fuzzy logic. The main task involves prioritizing the maintenance work considering constraints of varied power demand and hydro turbine plant breakdown. Fuzzy logic is used to optimize the preventive maintenance prioritization under the main constraints. Manual fuzzy arithmetic is used to develop the model and MATLAB Fuzzy Inference System editor used to validate the same. This novel fuzzy logic approach of preventive maintenance prioritizing for hydro power generation is absent in renewable power generation and industrial engineering literatures due to its assessment complexity.

  17. Verification and Planning Based on Coinductive Logic Programming

    NASA Technical Reports Server (NTRS)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution

  18. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  19. Miniaturization of magnetic logic circuitry

    NASA Technical Reports Server (NTRS)

    Baba, P. D.

    1969-01-01

    Magnetic logic circuit design features two ferrite materials, with different formulation and magnetic characteristics, which are bonded into a continuous structure by preparing the materials as a slurry and using the doctor blade method to form flexible ferrite sheets. After firing, the sintering process was continuous across the bond.

  20. Current Mode Logic Fan Out

    2011-05-07

    Current mode logic is used in high speed timing systems for particle accelerators due to the fast rise time of the electrical signal. This software provides the necessary documentation to produce multiple copies of a single input for distribution to multiple devices. This software supports the DOE mission by providing a method for producing high speed signals in accelerator timing systems.

  1. Logical Empiricism, Politics, and Professionalism

    ERIC Educational Resources Information Center

    Edgar, Scott

    2009-01-01

    This paper considers George A. Reisch's account of the role of Cold War political forces in shaping the apolitical stance that came to dominate philosophy of science in the late 1940s and 1950s. It argues that at least as early as the 1930s, Logical Empiricists such as Rudolf Carnap already held that philosophy of science could not properly have…

  2. Boggle Logic Puzzles: Minimal Solutions

    ERIC Educational Resources Information Center

    Needleman, Jonathan

    2013-01-01

    Boggle logic puzzles are based on the popular word game Boggle played backwards. Given a list of words, the problem is to recreate the board. We explore these puzzles on a 3 x 3 board and find the minimum number of three-letter words needed to create a puzzle with a unique solution. We conclude with a series of open questions.

  3. Program Theory Evaluation: Logic Analysis

    ERIC Educational Resources Information Center

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  4. Gateways to Writing Logical Arguments

    ERIC Educational Resources Information Center

    McCann, Thomas M.

    2010-01-01

    Middle school and high school students have a conception of what the basic demands of logic are, and they draw on this understanding in anticipating certain demands of parents and teachers when the adolescents have to defend positions. At the same time, many adolescents struggle to "write" highly elaborated arguments. Teaching students lessons in…

  5. The Temporal Logic Model Concept.

    ERIC Educational Resources Information Center

    den Heyer, Molly

    2002-01-01

    Proposes an alternative program logic model based on the concepts of learning organizations and systems theory. By redefining time as an evolutionary process, the model provides a space for stakeholders to record changes in program context, interim assessments, and program modifications. (SLD)

  6. Generic physical protection logic trees

    SciTech Connect

    Paulus, W.K.

    1981-10-01

    Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.

  7. Mathematical Induction: Deductive Logic Perspective

    ERIC Educational Resources Information Center

    Dogan, Hamide

    2016-01-01

    Many studies mentioned the deductive nature of Mathematical Induction (MI) proofs but almost all fell short in explaining its potential role in the formation of the misconceptions reported in the literature. This paper is the first of its kind looking at the misconceptions from the perspective of the abstract of the deductive logic from one's…

  8. Implementing Exclusive-OR Logic

    NASA Technical Reports Server (NTRS)

    Hough, M. E.

    1983-01-01

    Two integrated circuits, BCD-to-decimal decoder and four-input NAND gate, form basic four, input XOR circuit. Multiple-input exclusive-OR logic is implemented by combining several basic elements. 16-input XOR gate is assembled from five NAND gates and five decoders. Same principle extended to handle more inputs.

  9. Coreflections in Algebraic Quantum Logic

    NASA Astrophysics Data System (ADS)

    Jacobs, Bart; Mandemaker, Jorik

    2012-07-01

    Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.

  10. The Logic of Research Evaluation

    ERIC Educational Resources Information Center

    Scriven, Michael; Coryn, Chris L. S.

    2008-01-01

    The authors offer suggestions about logical distinctions often overlooked in the evaluation of research, beginning with a strong plea not to treat technology as applied science, and especially not to treat research in technology as important only if it makes a contribution to scientific knowledge. They argue that the frameworks illustrated in this…

  11. Soft computing and fuzzy logic

    SciTech Connect

    Zadeh, L.A.

    1994-12-31

    Soft computing is a collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its principal constituents are fuzzy logic, neuro-computing, and probabilistic reasoning. Soft computing is likely to play an increasingly important role in many application areas, including software engineering. The role model for soft computing is the human mind.

  12. A Transformational Approach for Proving Properties of the CHR Constraint Store

    NASA Astrophysics Data System (ADS)

    Pilozzi, Paolo; Schrijvers, Tom; Bruynooghe, Maurice

    Proving termination of, or generating efficient control for Constraint Handling Rules (CHR) programs requires information about the kinds of constraints that can show up in the CHR constraint store. In contrast to Logic Programming (LP), there are not many tools available for deriving such information for CHR. Hence, instead of building analyses for CHR from scratch, we define a transformation from CHR to Prolog and reuse existing analysis tools for Prolog.

  13. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  14. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  15. Role of the trochlear nerve in eye abduction and frontal vision of the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Dearworth, J R; Ashworth, A L; Kaye, J M; Bednarz, D T; Blaum, J F; Vacca, J M; McNeish, J E; Higgins, K A; Michael, C L; Skrobola, M G; Jones, M S; Ariel, M

    2013-10-15

    Horizontal head rotation evokes significant responses from trochlear motoneurons of turtle that suggests they have a functional role in abduction of the eyes like that in frontal-eyed mammals. The finding is unexpected given that the turtle is generally considered lateral-eyed and assumed to have eye movements instead like that of lateral-eyed mammals, in which innervation of the superior oblique muscle by the trochlear nerve (nIV) produces intorsion, elevation, and adduction (not abduction). Using an isolated turtle head preparation with the brain removed, glass suction electrodes were used to stimulate nIV with trains of current pulses. Eyes were monitored via an infrared camera with the head placed in a gimble to quantify eye rotations and their directions. Stimulations of nIV evoked intorsion, elevation, and abduction. Dissection of the superior oblique muscle identified lines of action and a location of insertion on the eye, which supported kinematics evoked by nIV stimulation. Eye positions in alert behaving turtles with their head extended were compared with that when their heads were retracted in the carapace. When the head was retracted, there was a reduction in interpupillary distance and an increase in binocular overlap. Occlusion of peripheral fields by the carapace forces the turtle to a more frontal-eyed state, perhaps the reason for the action of abduction by the superior oblique muscle. These findings support why trochlear motoneurons in turtle respond in the same way as abducens motoneurons to horizontal rotations, an unusual characteristic of vestibulo-ocular physiology in comparison with other mammalian lateral-eyed species. PMID:23681972

  16. Special report. Update on EAS (electronic article surveillance) systems: protecting against patient wandering, infant abduction, property theft.

    PubMed

    1993-10-01

    Concern about wandering patients and infant abduction on the part of hospitals has sparked renewed interest in Electronic Article Surveillance (EAS) systems. Such systems had their origins in department stores and libraries where they are almost universally used. They also have applications in hospitals for preventing the theft of supplies and equipment. A number of companies provide EAS products for the health care field. How do you select the system that is best for your needs? "Talk to users. Pick out a number of profit and non-profit hospitals to get their views," advises Ted Algaier, vice president, marketing and sales, Innovative Control Systems, Inc., Waukesha, WI. "Examine the history of the company or vendor to determine if it understands the health care market and find out if the product really works." In this report, we'll review a number of EAS systems currently on the market, and present information on how they work, how effective they are, and costs involved. Also included are comments from users who have installed such systems. PMID:10129699

  17. Hair and fiber transfer in an abduction case--evidence from different levels of trace evidence transfer.

    PubMed

    Taupin, J M

    1996-07-01

    Levels of trace evidence transfer were examined in a casework context. A girl was allegedly abducted in a car and rape attempted by the accused, who denied any contact with the victim. Clothing worn by the victim and the accused, and the covers from the front seats of the car, were analyzed for trace evidence. Three types of corresponding fibers and four possible pathways of transfer were identified. Synthetic fibers similar to those composing the car seat covers were located on the victim's clothing, consistent with direct transfer. Secondary transfer was indicated by dyed brown human head-type hairs (possibly originating from the accused's wife) located on the seat covers and on the victim's clothing. Secondary and possibly tertiary transfer was indicated by pink synthetic material and associated fibers (possibly originating from the victim's mother) located on the victim's clothing, a car seat cover and the accused's clothing. Light microscopy, comparison microscopy, and cross-sectioning techniques were used. The multiple fiber matches and the differing pathways and levels of transfer increased the strength of the association between the accused and the victim. After the fiber evidence was led at the trial, the accused pleaded guilty, thereby affirming the value of secondary transfer evidence. PMID:8754584

  18. Diplopia, Convergent Strabismus, and Eye Abduction Palsy in a 12-Year-Old Boy with Autoimmune Thyroiditis.

    PubMed

    Marques, Pedro; Jacinto, Sandra; Pinto, Maria do Carmo; Limbert, Catarina; Lopes, Lurdes

    2016-01-01

    Pseudotumor cerebri (PTC) is defined by clinical criteria of increased intracranial pressure, elevated intracranial pressure with normal cerebrospinal fluid (CSF) composition, and exclusion of other causes such tumors, vascular abnormalities, or infections. The association of PTC with levothyroxine (LT4) has been reported. A 12-year-old boy has been followed up for autoimmune thyroiditis under LT4. Family history was irrelevant for endocrine or autoimmune diseases. A TSH level of 4.43 μUI/mL (0.39-3.10) motivated a LT4 adjustment from 75 to 88 μg/day. Five weeks later, he developed horizontal diplopia, convergent strabismus with left eye abduction palsy, and papilledema. Laboratorial evaluation revealed elevated free thyroxine level (1.05 ng/dL [0.65-1.01]) and low TSH, without other alterations. Lumbar puncture was performed and CSF opening pressure was 24 cm H2O with normal composition. Blood and CSF cultures were sterile. Brain MRI was normal. LT4 was temporarily discontinued and progressive improvement was observed, with a normal fundoscopy at day 10 and reversion of diplopia one month later. LT4 was restarted at lower dose and gradually titrated. The boy is currently asymptomatic. This case discloses the potential role of LT4 in inducing PTC. Despite its rarity and unclear association, PTC must be seen as a potential complication of LT4, after excluding all other intracranial hypertension causes. PMID:27379191

  19. Diplopia, Convergent Strabismus, and Eye Abduction Palsy in a 12-Year-Old Boy with Autoimmune Thyroiditis

    PubMed Central

    Pinto, Maria do Carmo; Limbert, Catarina; Lopes, Lurdes

    2016-01-01

    Pseudotumor cerebri (PTC) is defined by clinical criteria of increased intracranial pressure, elevated intracranial pressure with normal cerebrospinal fluid (CSF) composition, and exclusion of other causes such tumors, vascular abnormalities, or infections. The association of PTC with levothyroxine (LT4) has been reported. A 12-year-old boy has been followed up for autoimmune thyroiditis under LT4. Family history was irrelevant for endocrine or autoimmune diseases. A TSH level of 4.43 μUI/mL (0.39–3.10) motivated a LT4 adjustment from 75 to 88 μg/day. Five weeks later, he developed horizontal diplopia, convergent strabismus with left eye abduction palsy, and papilledema. Laboratorial evaluation revealed elevated free thyroxine level (1.05 ng/dL [0.65–1.01]) and low TSH, without other alterations. Lumbar puncture was performed and CSF opening pressure was 24 cm H2O with normal composition. Blood and CSF cultures were sterile. Brain MRI was normal. LT4 was temporarily discontinued and progressive improvement was observed, with a normal fundoscopy at day 10 and reversion of diplopia one month later. LT4 was restarted at lower dose and gradually titrated. The boy is currently asymptomatic. This case discloses the potential role of LT4 in inducing PTC. Despite its rarity and unclear association, PTC must be seen as a potential complication of LT4, after excluding all other intracranial hypertension causes. PMID:27379191

  20. SASIL. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, J.P.

    1994-07-01

    SASIL is used to program the EPLD`s (Erasable Programmable Logic Devices) and PAL`s (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  1. Quantum Logics of Idempotents of Unital Rings

    NASA Astrophysics Data System (ADS)

    Bikchentaev, Airat; Navara, Mirko; Yakushev, Rinat

    2015-06-01

    We introduce some new examples of quantum logics of idempotents in a ring. We continue the study of symmetric logics, i.e., collections of subsets generalizing Boolean algebras and closed under the symmetric difference.

  2. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Sussow, S.; Oglesby, R.

    1973-01-01

    This manual presents a computer program that performs all the work required for the logic design of digital counters or sequential circuits and the simplification of Boolean logic expressions. The program provides both the experienced and inexperienced logic designer with a comprehensive logic design capability. The manual contains Boolean simplification and sequential design theory, detailed instructions for use of the program, a large number of illustrative design examples, and complete program documentation.

  3. Multi-Objective Trajectory Optimization by a Hierarchical Gradient Algorithm with Fuzzy Decision Logic

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Nakajima, Nobuyuki

    The rest-to-rest maneuver problem of the flexible space structure is the two point boundary value problem (TPBVP) and is solved by some gradient methods. If TPBVP is strongly restricted by the constraints, TBVP becomes ill-defined problem, and the solution meeting all constraints cannot be obtained. However, reasonable suboptimal solutions are often needed since real plants are necessary to be controlled. In order to obtain such suboptimal solutions, we have developed a modified version of the hierarchy gradient method by installing fuzzy decision logic. Constraints are classified into non-fuzzy constraints and fuzzy constraints according to their priorities. Fuzzy constraints having trade-off relationship with each other are compromised reasonably by fuzzy decision logic. The usefulness of the proposed method is numerically and experimentally demonstrated by applying to the rest-to-rest slew maneuver problem of a flexible space structure, where fuzzy constraints are final time, sensitivity of residual vibration energy with respect to the structure frequency uncertainty, and maximum bending moment at the root of flexible appendage.

  4. Circulating Packet Threshold Logic To Implement Msd Logic Modules

    NASA Astrophysics Data System (ADS)

    Flannery, David L.; Vail, L. Maugh; Gustafson, Steven C.

    1986-03-01

    Threshold logic element designs in circulating packet form are presented for the implementation of addition and subtraction using modified sign digit (MSD) arithmetic. This arithmetic is attractive for digital optical computing due to its inherent parallelism and pipelining characteristics, which capitalize on natural strengths of optics. To illustrate application of these concepts, a design for CORDIC rotation modules to accomplish the complex Givens rotations required for systolic array QU matrix factorization is presented. This design accomplishes QU factorization using only threshold logic elements and bit-shift operations in a systolic configuration. Although implementable in principle by either electronic or optical means, the design is amenable to optical implementation because it involves high levels of parallelism and interconnections.

  5. The ANMLite Language and Logic for Specifying Planning Problems

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Siminiceanu, Radu I.; Munoz, Cesar A.

    2007-01-01

    We present the basic concepts of the ANMLite planning language. We discuss various aspects of specifying a plan in terms of constraints and checking the existence of a solution with the help of a model checker. The constructs of the ANMLite language have been kept as simple as possible in order to reduce complexity and simplify the verification problem. We illustrate the language with a specification of the space shuttle crew activity model that was constructed under the Spacecraft Autonomy for Vehicles and Habitats (SAVH) project. The main purpose of this study was to explore the implications of choosing a robust logic behind the specification of constraints, rather than simply proposing a new planning language.

  6. Piaget's Logic of Meanings: Still Relevant Today

    ERIC Educational Resources Information Center

    Wavering, Michael James

    2011-01-01

    In his last book, "Toward a Logic of Meanings" (Piaget & Garcia, 1991), Jean Piaget describes how thought can be categorized into a form of propositional logic, a logic of meanings. The intent of this article is to offer this analysis by Piaget as a means to understand the language and teaching of science. Using binary propositions, conjunctions,…

  7. Applications of Logic Coverage Criteria and Logic Mutation to Software Testing

    ERIC Educational Resources Information Center

    Kaminski, Garrett K.

    2011-01-01

    Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…

  8. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  9. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly. PMID:27427653

  10. The Logic Behind Feynman's Paths

    NASA Astrophysics Data System (ADS)

    García Álvarez, Edgardo T.

    The classical notions of continuity and mechanical causality are left in order to reformulate the Quantum Theory starting from two principles: (I) the intrinsic randomness of quantum process at microphysical level, (II) the projective representations of symmetries of the system. The second principle determines the geometry and then a new logic for describing the history of events (Feynman's paths) that modifies the rules of classical probabilistic calculus. The notion of classical trajectory is replaced by a history of spontaneous, random and discontinuous events. So the theory is reduced to determining the probability distribution for such histories accordingly with the symmetries of the system. The representation of the logic in terms of amplitudes leads to Feynman rules and, alternatively, its representation in terms of projectors results in the Schwinger trace formula.

  11. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  12. Logic and structured design for computer programmers

    SciTech Connect

    Rood, H.J.

    1985-01-01

    This text provides a language- and system-independent introduction to logical structures, and teaches logic plus the programming and data processing applications in which logic is used. The author has eliminated the need to cover basic program design at the beginning of every language course, and has used logic of sets, Boolean algebra, conditional statements, and truth tables to establish logic of structure flowchart, pseudocode, Warnier/Orr diagrams, and so on. After chapter three, the chapters are independent so that instructors can select the coverage of programming tools and techniques most relevant to their students.

  13. Cosmic logic: a computational model

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  14. Two Influential Primate Classifications Logically Aligned

    PubMed Central

    Franz, Nico M.; Pier, Naomi M.; Reeder, Deeann M.; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2016-01-01

    Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2–317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3–483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across

  15. Two Influential Primate Classifications Logically Aligned.

    PubMed

    Franz, Nico M; Pier, Naomi M; Reeder, Deeann M; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2016-07-01

    Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2-317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3-483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments

  16. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    NASA Astrophysics Data System (ADS)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  17. Highly irregular quantum constraints

    NASA Astrophysics Data System (ADS)

    Klauder, John R.; Little, J. Scott

    2006-05-01

    Motivated by a recent paper of Louko and Molgado, we consider a simple system with a single classical constraint R(q) = 0. If ql denotes a generic solution to R(q) = 0, our examples include cases where R'(ql) ≠ 0 (regular constraint) and R'(ql) = 0 (irregular constraint) of varying order as well as the case where R(q) = 0 for an interval, such as a <= q <= b. Quantization of irregular constraints is normally not considered; however, using the projection operator formalism we provide a satisfactory quantization which reduces to the constrained classical system when planck → 0. It is noteworthy that irregular constraints change the observable aspects of a theory as compared to strictly regular constraints.

  18. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations.

    PubMed

    Pan, Deng; Wei, Hong; Xu, Hongxing

    2013-04-22

    Optical interferometric logic gates in metal slot waveguide network are designed and investigated by electromagnetic simulations. The designed logic gates can realize all fundamental logic operations. A single Y-shaped junction can work as logic gate for four logic functions: AND, NOT, OR and XOR. By cascading two Y-shaped junctions, NAND, NOR and XNOR can be realized. The working principle is analyzed in detail. In the simulations, these gates show large intensity contrast for the Boolean logic states of the output. These results can be useful for future integrated optical computing. PMID:23609666

  19. Logical elements in living cells.

    PubMed

    Kremen, A

    1984-11-01

    Recognition processes with enhanced accuracy (as performed by structures like enzymes or ribosomes) are investigated using elementary ideas of statistical mechanics and related concepts of thermodynamics. The analysis starts from a formal definition of recognition and provides a correspondence with appropriate physical properties of the macromolecular logical elements. Transitions of the recognizing system between different modifications are a necessary feature of a more exacting recognition process. Rearrangement steps provide the process with higher accuracy by performing two physical operations: (1) rearranging the phase space of the system so that the "correct" states be better separated from the "wrong" states and the probability of occupation of the "correct" states be enhanced, (2) directing the process toward the more favourable modifications thus formed. Both operations are related to changes in the physical properties of the recognizing system. These changes can be expressed as differences of macromolecular Gibbs energy levels; if ligand binding or release participate in a step, directivity of the step depends also on the actual chemical potentials of the ligands in solution. The two operations just mentioned resemble two basic operations known to be necessary in electronic digital networks: directivity of control and signal standardization. An analysis of the entire reaction catalysed by a macromolecular logical element takes into account the requirements imposed by the logical functions as well as the need that the chemical potential of the product be not restricted to very low values. To satisfy these conditions, the reaction must be supported by a so-called non-specific reaction, usually implemented by the cleavage reaction of a nucleoside triphosphate. PMID:6513567

  20. A pilot study of a family focused, psychosocial intervention with war-exposed youth at risk of attack and abduction in north-eastern Democratic Republic of Congo.

    PubMed

    O'Callaghan, Paul; Branham, Lindsay; Shannon, Ciarán; Betancourt, Theresa S; Dempster, Martin; McMullen, John

    2014-07-01

    Rural communities in the Haut-Uele Province of northern Democratic Republic of Congo live in constant danger of attack and/or abduction by units of the Lord's Resistance Army operating in the region. This pilot study sought to develop and evaluate a community-participative psychosocial intervention involving life skills and relaxation training and Mobile Cinema screenings with this war-affected population living under current threat. 159 war-affected children and young people (aged 7-18) from the villages of Kiliwa and Li-May in north-eastern DR Congo took part in this study. In total, 22% of participants had been abduction previously while 73% had a family member abducted. Symptoms of post-traumatic stress reactions, internalising problems, conduct problems and pro-social behaviour were assessed by blinded interviewers at pre- and post-intervention and at 3-month follow-up. Participants were randomised (with an accompanying caregiver) to 8 sessions of a group-based, community-participative, psychosocial intervention (n=79) carried out by supervised local, lay facilitators or a wait-list control group (n=80). Average seminar attendance rates were high: 88% for participants and 84% for caregivers. Drop-out was low: 97% of participants were assessed at post-intervention and 88% at 3 month follow-up. At post-test, participants reported significantly fewer symptoms of post-traumatic stress reactions compared to controls (Cohen's d=0.40). At 3 month follow up, large improvements in internalising symptoms and moderate improvements in pro-social scores were reported, with caregivers noting a moderate to large decline in conduct problems among the young people. Trial Registration clinicalTrials.gov, Identifier: NCT01542398. PMID:24636358

  1. Examination of the torque required to passively palmar abduct the thumb CMC joint in a pediatric population with hemiplegia and stroke.

    PubMed

    Stirling, Leia; Ahmad, Mona Qureshi; Kelty-Stephen, Damian; Correia, Annette

    2015-12-16

    Many activities of daily living involve precision grasping and bimanual manipulation, such as putting toothpaste on a toothbrush or feeding oneself. However, children afflicted by stroke, cerebral palsy, or traumatic brain injury may have lost or never had the ability to actively and accurately control the thumb. To translate insights from adult rehabilitation robotics to innovative therapies for hand rehabilitation in pediatric care, specifically for thumb deformities, an understanding of the torque needed to abduct the thumb to assist grasping tasks is required. Participants (n=16, 10 female, 13.2±3.1 years) had an upper extremity evaluation and measures were made of their passive range of motion, anthropometrics, and torques to abduct the thumb for both their affected and non-affected sides. Torque measures were made using a custom wrist orthosis that was adjusted for each participant. The torque to achieve maximum abduction was 1.47±0.61inlb for the non-affected side and 1.51±0.68inlb for the affected side, with a maximum recorded value of 4.87inlb. The overall maximum applied torque was observed during adduction and was 5.10inlb. We saw variation in the applied torque, which could have been due to the applied torques by the Occupational Therapist or the participant actively assisting or resisting the motion rather than remaining passive. We expect similar muscle and participant variation to exist with an assistive device. Thus, the data presented here can be used to inform the specifications for the development of an assistive thumb orthosis for children with "thumb-in-palm" deformity. PMID:26542786

  2. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  3. Electronic logic for enhanced switch reliability

    DOEpatents

    Cooper, J.A.

    1984-01-20

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  4. [Why can it be difficult for clinicians to diagnose acute lyme disease? From physiopathology to diagnosis, via abductive reasoning and Bayes theorem].

    PubMed

    Godefroid, C; Buttafuoco, F; Richard, T; Goubella, A; Vanhaeverbeek, M

    2014-01-01

    The diagnosis of acute neuroborreliosis may be difficult if it's regarded as a "classical" infectious disease. Through a clinical case, we illustrate the difficulties met and we suggest two ways of reflexion to assist in the diagnosis:--firstly, we explain how the comprehension of the behavior of the pathogen agent, which is similar to a parasitic behavior, can help to choose and interpret the results of additional tests;--secondly, we develop practically the clinical form of Bayes's theorem to demonstrate the interest of a rational Bayesian and abductive approach which should be preferred to the classical hypothetical and deductive reasoning. PMID:25672014

  5. Greater Hip Extension but Not Hip Abduction Explosive Strength Is Associated With Lesser Hip Adduction and Knee Valgus Motion During a Single-Leg Jump-Cut

    PubMed Central

    Cronin, Baker; Johnson, Samuel T.; Chang, Eunwook; Pollard, Christine D.; Norcross, Marc F.

    2016-01-01

    Background: The relationships between hip abductor and extensor strength and frontal plane hip and knee motions that are associated with anterior cruciate ligament injury risk are equivocal. However, previous research on these relationships has evaluated relatively low-level movement tasks and peak torque rather than a time-critical strength measure such as the rate of torque development (RTD). Hypothesis: Females with greater hip abduction and extension RTD would exhibit lesser frontal plane hip and knee motion during a single-leg jump-cutting task. Study Design: Descriptive laboratory study. Methods: Forty recreationally active females performed maximal isometric contractions and single-leg jump-cuts. From recorded torque data, hip extension and abduction RTD was calculated from torque onset to 200 ms after onset. Three-dimensional motion analysis was used to quantify frontal plane hip and knee kinematics during the movement task. For each RTD measure, jump-cut biomechanics were compared between participants in the highest (high) and lowest (low) RTD tertiles. Results: No differences in frontal plane hip and knee kinematics were identified between high and low hip abduction RTD groups. However, those in the high hip extension RTD group exhibited lower hip adduction (high, 3.8° ± 3.0°; low, 6.5° ± 3.0°; P = .019) and knee valgus (high, –2.5° ± 2.3°; low, –4.4° ± 3.2°; P = .046) displacements during the jump-cut. Conclusion: In movements such as cutting that are performed with the hip in a relatively abducted and flexed position, the ability of the gluteus medius to control hip adduction may be compromised. However, the gluteus maximus, functioning as a hip abductor, may take on a pivotal role in controlling hip adduction and knee valgus motion during these types of tasks. Clinical Relevance: Training with a specific emphasis on increasing explosive strength of the hip extensors may be a means through which to improve frontal plane hip and knee

  6. Creating Positive Task Constraints

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…

  7. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  8. Credit Constraints in Education

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2012-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…

  9. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  10. HDL to verification logic translator

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Windley, P. J.

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  11. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  12. Posterior Capsular Plication Constrains the Glenohumeral Joint by Drawing the Humeral Head Closer to the Glenoid and Resisting Abduction

    PubMed Central

    DeAngelis, Joseph P.; Hertz, Benjamin; Wexler, Michael T.; Patel, Nehal; Walley, Kempland C.; Harlow, Ethan R.; Manoukian, Ohan S.; Masoudi, Aidin; Vaziri, Ashkan; Ramappa, Arun J.; Nazarian, Ara

    2015-01-01

    Background: Shoulder pain is a common problem, with 30% to 50% of the American population affected annually. While the majority of these shoulder problems improve, there is a high rate of recurrence, as 54% of patients experience persistent symptoms 3 years after onset. Purpose: Posterior shoulder tightness has been shown to alter glenohumeral (GH) kinematics. Clinically, posterior shoulder contractures result in a significant loss of internal rotation and abduction (ABD). In this study, the effect of a posterior capsular contracture on GH kinematics was investigated using an intact cadaveric shoulder without violating the joint capsule or the rotator cuff. Study Design: Controlled laboratory study. Methods: Glenohumeral motion, humeral load, and subacromial contact pressure were measured in 6 fresh-frozen left shoulders during passive ABD from 60° to 100° using an automated robotic upper extremity testing system. Baseline values were compared with the experimental condition in which the full thickness of posterior tissues was plicated without decompressing the joint capsule. Results: Posterior soft tissue plication resulted in increased compression between the humeral head and the glenoid (axial load) at 90° of ABD. Throughout ABD, the posterior contracture increased the anterior and superior moment on the humeral head, but it did not change the GH kinematics in this intact model. As a result, there was no increase in the subacromial contact pressure during ABD with posterior plication. Conclusion: In an intact cadaveric shoulder, posterior contracture does not alter GH motion or subacromial contact pressure during passive ABD. By tightening the soft tissue envelope posteriorly, there is an increase in compressive load on the articular cartilage and anterior/superior force on the humeral head. These findings suggest that subacromial impingement in the setting of a posterior soft tissue contracture may result from alterations in scapulothoracic motion, not

  13. Constraints in Quantum Geometrodynamics

    NASA Astrophysics Data System (ADS)

    Gentle, Adrian P.; George, Nathan D.; Miller, Warner A.; Kheyfets, Arkady

    We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.

  14. Children and young mothers' agency in the context of conflict: a review of the experiences of formerly abducted young people in Northern Uganda.

    PubMed

    Ochen, Eric Awich

    2015-04-01

    This paper critically examines the experiences of formerly abducted young women during their captivity with the Lord Resistance Army rebels and in the resettlement and reintegration period. Special attention is given to their exercise of agency and choices. Using a qualitative design, narrative interviews were conducted with child mothers (N=21), local and civic actors (N=17), and the general community through focus groups (N=10). Data transcripts were analyzed using template analysis methods to derive meanings and increase understanding of the situation. Abducted children faced significant difficulties during their captivity and also during their resettlement and reintegration process, yet they continued to exhibit strong agency to cope with the new realities. Despite these difficulties, opportunities existed which were utilized by the young people, albeit to different degrees depending on each young person's ability and initiative (agency). Situational factors limiting the child mothers' agency were identified as embedded within the latter's environment. This study raises the importance of appreciation of the young women's agency in both the bush-captivity experience and resettlement and reintegration processes within the community, post-conflict. PMID:25641049

  15. Double patterning compliant logic design

    NASA Astrophysics Data System (ADS)

    Ma, Yuangsheng; Sweis, Jason; Bencher, Chris; Deng, Yunfei; Dai, Huixiong; Yoshida, Hidekazu; Gisuthan, Bimal; Kye, Jongwook; Levinson, Harry J.

    2011-04-01

    Double patterning technology (DPT) is the only solution to enable the scaling for advanced technology nodes before EUV or any other advanced patterning techniques become available. In general, there are two major double patterning techniques: one is Litho-Etch-Litho-Etch (LELE), and the other is sidewall spacer technology, a Self-Aligned Double Patterning technique (SADP). While numerous papers have previously demonstrated these techniques on wafer process capabilities and processing costs, more study needs to be done in the context of standard cell design flow to enable their applications in mass production. In this paper, we will present the impact of DPT on logic designs, and give a thorough discussion on how to make DPT-compliant constructs, placement and routing using examples with Cadence's Encounter Digital Implementation System (EDI System).

  16. A Logic for Qualified Syllogisms

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel G.

    In various works, L.A. Zadeh has introduced fuzzy quantifiers, fuzzy usuality modifiers, and fuzzy likelihood modifiers. This paper provides these notions with a unified semantics and uses this to define a formal logic capable of expressing and validating arguments such as 'Most birds can fly; Tweety is a bird; therefore, it is likely that Tweety can fly'. In effect, these are classical Aristotelean syllogisms that have been "qualified" through the use of fuzzy quantifiers. It is briefly outlined how these, together with some likelihood combination rules, can be used to address some well-known problems in the theory of nonmonotonic reasoning. The work is aimed at future applications in expert systems and robotics, including both hardware and software agents.

  17. Quantum logics and chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ivanov, C. I.

    1981-06-01

    A statistical theory of chemical kinetics is presented based on the quantum logical concept of chemical observables. The apparatus of Boolean algebra B is applied for the construction of appropriate composition polynomials referring to any stipulated arrangement of the atomic constituents. A physically motivated probability measure μ( F) is introduced on the field B of chemical observables, which considers the occurrence of the yes response of a given F ɛ B. The equations for the time evolution of the species density operators and the master equations for the corresponding number densities are derived. The general treatment is applied to a superposition of elementary substitution reactions (AB) α + C ⇄ (AC) β + B. The expressions for the reaction rate coefficients are established.

  18. Logical Empiricism, Politics, and Professionalism

    NASA Astrophysics Data System (ADS)

    Edgar, Scott

    2009-02-01

    This paper considers George A. Reisch’s account of the role of Cold War political forces in shaping the apolitical stance that came to dominate philosophy of science in the late 1940s and 1950s. It argues that at least as early as the 1930s, Logical Empiricists such as Rudolf Carnap already held that philosophy of science could not properly have political aims, and further suggests that political forces alone cannot explain this view’s rise to dominance during the Cold War, since political forces cannot explain why a philosophy of science with liberal democratic, anti-communist aims did not flourish. The paper then argues that if professionalization is understood in the right way, it might point toward an explanation of the apolitical stance of Cold War philosophy of science.

  19. Moral Particularism and Deontic Logic

    NASA Astrophysics Data System (ADS)

    Parent, Xavier

    The aim of this paper is to strengthen the point made by Horty about the relationship between reason holism and moral particularism. In the literature prima facie obligations have been considered as the only source of reason holism. I strengthen Horty's point in two ways. First, I show that contrary-to-duties provide another independent support for reason holism. Next I outline a formal theory that is able to capture these two sources of holism. While in simple settings the proposed account coincides with Horty's one, this is not true in more complicated or "realistic" settings in which more than two norms collide. My chosen formalism is so-called input/output logic.

  20. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  1. Rationality and the Logic of Good Reasons.

    ERIC Educational Resources Information Center

    Fisher, Walter R.

    This paper contends that the rationality of the logic of good reasons is constituted in its use. To support this claim, the paper presents an analysis of the relationship between being reasonable and being rational. It then considers how following the logic of good reasons leads to rationality in the behavior of individuals and groups; the latter…

  2. Toward a Logic of Good Reasons.

    ERIC Educational Resources Information Center

    Fisher, Walter R.

    1978-01-01

    Explores the assumptions underlying the role of values in rhetorical interactions, the meaning of "logic" in relation to "good reasons," a reconceptualization of "good reasons," implementation of a "logic of 'good reasons'," and the uses of hierarchies of values in assessing rhetorical reasoning. (JMF)

  3. Fuzzy Logic in Medicine and Bioinformatics

    PubMed Central

    Torres, Angela; Nieto, Juan J.

    2006-01-01

    The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes). PMID:16883057

  4. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Barto, Rod L.; Erickson, Ken

    1999-01-01

    This paper presents a look at logic design from early in the US Space Program and examines faults in recent logic designs. Most examples are based on flight hardware failures and analysis of new tools and techniques. The paper is presented in viewgraph form.

  5. Strategy: The logic of war and peace

    SciTech Connect

    Luttwak, E.N.

    1987-01-01

    This book expounds a new way of thinking about the conduct of war and the diplomacy of peace, a theory Luttwak calls ''paradoxical logic,'' and illustrates, through abundant historical examples, the failure of commonsense logic in matters of military strategy and international politics. Topics considered include nuclear weapons, military strategy, decision making, historical aspects, political aspects, global aspects, and warfare.

  6. Calculator Logic Systems and Mathematical Understandings.

    ERIC Educational Resources Information Center

    Burrows, Enid R.

    This monograph is aimed at helping the reader understand the built-in logic of various calculator operating systems. It is an outgrowth of workshop contacts with in-service and pre-service teachers of mathematics and is in response to their request for a book on the subject of calculator logic systems and calculator algorithms. The mathematical…

  7. Hardware verification at Computational Logic, Inc.

    NASA Technical Reports Server (NTRS)

    Brock, Bishop C.; Hunt, Warren A., Jr.

    1990-01-01

    The following topics are covered in viewgraph form: (1) hardware verification; (2) Boyer-Moore logic; (3) core RISC; (4) the FM8502 fabrication, implementation specification, and pinout; (5) hardware description language; (6) arithmetic logic generator; (7) near term expected results; (8) present trends; (9) future directions; (10) collaborations and technology transfer; and (11) technology enablers.

  8. The Completion of the Emergence of Modern Logic from Boole's The Mathematical Analysis of Logic to Frege's Begriffsschrift

    NASA Astrophysics Data System (ADS)

    Jetli, Priyedarshi

    Modern logic begins with Boole's The Mathematical Analysis of Logic when the algebra of logic was developed so that classical logic syllogisms were proven as algebraic equations and the turn from the logic of classes to propositional logic was suggested. The emergence was incomplete as Boole algebraised classical logic. Frege in Begriffsschrift replaced Aristotelian subject-predicate propositions by function and argument and displaced syllogisms with an axiomatic propositional calculus using conditionals, modus ponens and the law of substitution. Further Frege provided the breakthrough to lay down the groundwork for the development of quantified logic as well as the logic of relations. He achieved all of this through his innovative formal notations which have remained underrated. Frege hence completed the emergence of modern logic. Both Boole and Frege mathematised logic, but Frege's goal was to logicise mathematics. However the emergence of modern logic in Frege should be detached from his logicism.

  9. Reprogrammable Logic Gate and Logic Circuit Based on Multistimuli-Responsive Raspberry-like Micromotors.

    PubMed

    Zhang, Lina; Zhang, Hui; Liu, Mei; Dong, Bin

    2016-06-22

    In this paper, we report a polymer-based raspberry-like micromotor. Interestingly, the resulting micromotor exhibits multistimuli-responsive motion behavior. Its on-off-on motion can be regulated by the application of stimuli such as H2O2, near-infrared light, NH3, or their combinations. Because of the versatility in motion control, the current micromotor has great potential in the application field of logic gate and logic circuit. With use of different stimuli as the inputs and the micromotor motion as the output, reprogrammable OR and INHIBIT logic gates or logic circuit consisting of OR, NOT, and AND logic gates can be achieved. PMID:27237969

  10. Magnetic tunnel junction based spintronic logic devices

    NASA Astrophysics Data System (ADS)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of

  11. Processing device with self-scrubbing logic

    DOEpatents

    Wojahn, Christopher K.

    2016-03-01

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configuration memory in response to a data feed signal outputted by the self-scrubber logic.

  12. A multiple process solution to the logical problem of language acquisition*

    PubMed Central

    MACWHINNEY, BRIAN

    2006-01-01

    Many researchers believe that there is a logical problem at the center of language acquisition theory. According to this analysis, the input to the learner is too inconsistent and incomplete to determine the acquisition of grammar. Moreover, when corrective feedback is provided, children tend to ignore it. As a result, language learning must rely on additional constraints from universal grammar. To solve this logical problem, theorists have proposed a series of constraints and parameterizations on the form of universal grammar. Plausible alternatives to these constraints include: conservatism, item-based learning, indirect negative evidence, competition, cue construction, and monitoring. Careful analysis of child language corpora has cast doubt on claims regarding the absence of positive exemplars. Using demonstrably available positive data, simple learning procedures can be formulated for each of the syntactic structures that have traditionally motivated invocation of the logical problem. Within the perspective of emergentist theory (MacWhinney, 2001), the operation of a set of mutually supportive processes is viewed as providing multiple buffering for developmental outcomes. However, the fact that some syntactic structures are more difficult to learn than others can be used to highlight areas of intense grammatical competition and processing load. PMID:15658750

  13. A Multiple Constraint Queuing Model for Predicting Current and Future Terminal Area Capacities

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.

    2004-01-01

    A new queuing model is being developed to evaluate the capacity benefits of several new concepts for terminal airspace operations. The major innovation is the ability to support a wide variety of multiple constraints for modeling the scheduling logic of several concepts. Among the constraints modeled are in-trail separation, separation between aircraft landing on parallel runways, in-trail separation at terminal area entry points, and permissible terminal area flight times.

  14. Project W-058 monitor and control system logic

    SciTech Connect

    ROBERTS, J.B.

    1999-05-12

    This supporting document contains the printout of the control logic for the Project W-058 Monitor and Control System, as developed by Programmable Control Services, Inc. The logic is arranged in five appendices, one for each programmable logic controller console.

  15. Joint probabilistic-logical refinement of multiple protein feature predictors

    PubMed Central

    2014-01-01

    Background Computational methods for the prediction of protein features from sequence are a long-standing focus of bioinformatics. A key observation is that several protein features are closely inter-related, that is, they are conditioned on each other. Researchers invested a lot of effort into designing predictors that exploit this fact. Most existing methods leverage inter-feature constraints by including known (or predicted) correlated features as inputs to the predictor, thus conditioning the result. Results By including correlated features as inputs, existing methods only rely on one side of the relation: the output feature is conditioned on the known input features. Here we show how to jointly improve the outputs of multiple correlated predictors by means of a probabilistic-logical consistency layer. The logical layer enforces a set of weighted first-order rules encoding biological constraints between the features, and improves the raw predictions so that they least violate the constraints. In particular, we show how to integrate three stand-alone predictors of correlated features: subcellular localization (Loctree [J Mol Biol 348:85–100, 2005]), disulfide bonding state (Disulfind [Nucleic Acids Res 34:W177–W181, 2006]), and metal bonding state (MetalDetector [Bioinformatics 24:2094–2095, 2008]), in a way that takes into account the respective strengths and weaknesses, and does not require any change to the predictors themselves. We also compare our methodology against two alternative refinement pipelines based on state-of-the-art sequential prediction methods. Conclusions The proposed framework is able to improve the performance of the underlying predictors by removing rule violations. We show that different predictors offer complementary advantages, and our method is able to integrate them using non-trivial constraints, generating more consistent predictions. In addition, our framework is fully general, and could in principle be applied to a vast

  16. Automated maneuver planning using a fuzzy logic algorithm

    NASA Technical Reports Server (NTRS)

    Conway, D.; Sperling, R.; Folta, D.; Richon, K.; Defazio, R.

    1994-01-01

    Spacecraft orbital control requires intensive interaction between the analyst and the system used to model the spacecraft trajectory. For orbits with right mission constraints and a large number of maneuvers, this interaction is difficult or expensive to accomplish in a timely manner. Some automation of maneuver planning can reduce these difficulties for maneuver-intensive missions. One approach to this automation is to use fuzzy logic in the control mechanism. Such a prototype system currently under development is discussed. The Tropical Rainfall Measurement Mission (TRMM) is one of several missions that could benefit from automated maneuver planning. TRMM is scheduled for launch in August 1997. The spacecraft is to be maintained in a 350-km circular orbit throughout the 3-year lifetime of the mission, with very small variations in this orbit allowed. Since solar maximum will occur as early as 1999, the solar activity during the TRMM mission will be increasing. The increasing solar activity will result in orbital maneuvers being performed as often as every other day. The results of automated maneuver planning for the TRMM mission will be presented to demonstrate the prototype of the fuzzy logic tool.

  17. Use of LOGIC to support lidar operations

    NASA Astrophysics Data System (ADS)

    Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd

    1999-10-01

    The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.

  18. Logic of infinite quantum systems

    NASA Astrophysics Data System (ADS)

    Mundici, Daniele

    1993-10-01

    Limits of sequences of finite-dimensional (AF) C *-algebras, such as the CAR algebra for the ideal Fermi gas, are a standard mathematical tool to describe quantum statistical systems arising as thermodynamic limits of finite spin systems. Only in the infinite-volume limit one can, for instance, describe phase transitions as singularities in the thermodynamic potentials, and handle the proliferation of physically inequivalent Hilbert space representations of a system with infinitely many degrees of freedom. As is well known, commutative AF C *-algebras correspond to countable Boolean algebras, i.e., algebras of propositions in the classical two-valued calculus. We investigate the noncommutative logic properties of general AF C *-algebras, and their corresponding systems. We stress the interplay between Gödel incompleteness and quotient structures in the light of the “nature does not have ideals” program, stating that there are no quotient structures in physics. We interpret AF C *-algebras as algebras of the infinite-valued calculus of Lukasiewicz, i.e., algebras of propositions in Ulam's “ twenty questions” game with lies.

  19. Earthquake Archaeology: a logical approach?

    NASA Astrophysics Data System (ADS)

    Stewart, I. S.; Buck, V. A.

    2001-12-01

    Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.

  20. Logical composition of Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Balestrino, A.; Caiti, A.; Crisostomi, E.

    2011-03-01

    This article introduces the use of R-functions to compose single Lyapunov functions (LFs) via classic Boolean operators, with the aim to obtain a rich family of non-conventional, generally non-convex functions. The main benefit of the proposed composition is the nice geometric interpretation, since it corresponds to intersection and union operations in the phase space region. The composition of LFs is parameterised through a variable γ and classic compositions of LFs through min and max operations are recovered as a special case for a particular value of γ. The proposed logical composition is applied to region of asymptotic stability (RAS) estimation problems, where the union of several LFs corresponds to the union of the RAS estimates obtained from the separate use of each LF. Likewise, the intersection of several LFs defined on independent subsets of the state space variables provides a single LF for the overall dynamical system. Sufficient conditions for the composition function to be an LF are provided and results are described through several examples of classic nonlinear dynamical systems.

  1. A Very Small Logical Qubit

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven SQUID couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multi-qubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of forty or more compared to the individual qubit T1 and T2 using this technique.

  2. Intelligent medical diagnostics via molecular logic

    PubMed Central

    Konry, Tania; Walt, David R.

    2009-01-01

    In this communication, we describe the integration of microarray sensor technology with logic capability for screening combinations of proteins and DNA in a biological sample. In this system, we have demonstrated the use of a single platform amenable to both protein detection and protein-DNA detection using molecular logic gates. The pattern of protein and DNA inputs results in fluorescence outputs according to a truth table for AND and INHIBIT gates, thereby demonstrating the feasibility of performing medical diagnostics using a logic gate design. One possible application of this technique would be for the direct screening of various medical conditions that are dependent on combinations of diagnostic markers. PMID:19715272

  3. Coordination Logic for Repulsive Resolution Maneuvers

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  4. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  5. Bilayer avalanche spin-diode logic

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Fadel, Eric R.; Wessels, Bruce W.; Querlioz, Damien; Sahakian, Alan V.

    2015-11-01

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  6. Ternary logic and mass quantum numbers

    SciTech Connect

    Sheppeard, M. D.

    2010-06-15

    Koide's prediction of the tau mass may be formulated as a condition on the three eigenvalues of a quantum Fourier series, using simple parameters, and similar triplets have been found for neutrino and hadron masses [2]. Assuming these parameters arise from quantum gravity, one would like to understand them from the more abstract context of category theory. In particular, whereas the logic of lepton spin is a linear analogue of the ordinary Boolean logic of the category of sets, mass triplets suggest an analogous ternary logic, requiring higher dimensional categorical structures.

  7. Inference engine using optical array logic

    NASA Astrophysics Data System (ADS)

    Iwata, Masaya; Tanida, Jun; Ichioka, Yoshiki

    1990-07-01

    An implementation method for an inference engine using optical array logic is presented. Optical array logic is a technique for parallel neighborhood operation using spatial coding and 2-D correlation. For efficient execution of inference in artificial intelligence problems, a large number of data must be searched effectively. To achieve this demand, a template matching technique is applied to the inference operation. By introducing a new function of data conversion, the inference operation can be implemented with optical array logic, which utilizes parallelism in optical techniques.

  8. Software Safety Assurance of Programmable Logic

    NASA Technical Reports Server (NTRS)

    Berens, Kalynnda

    2002-01-01

    Programmable Logic (PLC, FPGA, ASIC) devices are hybrids - hardware devices that are designed and programmed like software. As such, they fall in an assurance gray area. Programmable Logic is usually tested and verified as hardware, and the software aspects are ignored, potentially leading to safety or mission success concerns. The objective of this proposal is to first determine where and how Programmable Logic (PL) is used within NASA and document the current methods of assurance. Once that is known, raise awareness of the PL software aspects within the NASA engineering community and provide guidance for the use and assurance of PL form a software perspective.

  9. Inference System Integration Via Logic Morphisms

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj S.; Espinosa, David

    2000-01-01

    This is a final report on the accomplishments during the period of the NASA grant. The work on inference servers accomplished the integration of the SLANG logic (Specware's default specification logic) with a number of inference servers in order to make their complementary strengths available. These inverence servers are (1) SNARK. (2) Gandalf, Setheo, and Spass, (3) the Prototype Verification System (PVS) from SRI. (4) HOL98. We designed and implemented MetaSlang, an ML-like language, which we are using to specify and implement all our logic morphisms.

  10. The Logic of Reflection: Samuel Taylor Coleridge's "treatise on Logic"

    NASA Astrophysics Data System (ADS)

    Land, Janet Sanders

    Though others discuss Coleridge's interest in science, light imagery, the phenomenon of reflection, and his references to Newton and Opticks,^1 this is the first study to examine Coleridge's art in terms of optics, its developing theories, and the nature-of-light debate. This study examines Coleridge's early predilection for visions, illusions, and the supernatural and demonstrates that he gradually shifts from the supernatural to the scientific aspects of "visions" and "illusions," concentrating on causes of illusions and the effects of their deceptive qualities rather than their mystical features. By the 1820's, his preoccupation with illusions had become an interest in optics, fueled, no doubt, by the increasing controversy of the nature-of-light debate and the number of advances in optics resulting from the efforts of its opponents to prove their theories. Tracing the development of the debate, its escalation in the early nineteenth century, and the formation of Coleridge's opinion concerning key issues of the debate, I outline the evolution of Coleridge's theory of reflection and examine the exposition of that theory in his treatise, Logic (1981). Finally, I analyze the relationship between the advances in optics and Coleridge's concepts of thought and knowledge and his notion of the mind as an instrument of knowledge. These ideas in turn, altered his opinions concerning the validity of knowledge resulting from philosophic debate, scientific experiment, and poetic exploration. ftn^1John Beer, "Coleridge and Wordsworth on Reflection," The Wordsworth Circle 20 (1989): 20-29; Coleridge the Visionary. London: Chatto and Windus, 1959; and Coleridge's Poetic Intelligence. London: Macmillan, 1977 and M. H. Abrams Natural Supernaturalism: Tradition and Revolution in Romantic Literature. New York: Norton, 1971; and "Coleridge's 'A Light in Sound': Science, Metascience, and Poetic Imagination." The Correspondent Breeze: Essays on English Romanticism. Eds. M. H. Abrams

  11. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  12. Constraints complicate centrifugal compressor depressurization

    SciTech Connect

    Key, B. ); Colbert, F.L. )

    1993-05-10

    Blowdown of a centrifugal compressor is complicated by process constraints that might require slowing the depressurization rate and by mechanical constraints for which a faster rate might be preferred. The paper describes design constraints such as gas leaks; thrust-bearing overload; system constraints; flare extinguishing; heat levels; and pressure drop.

  13. Three-Dimensional Rotations of the Scapula During Arm Abduction: Evaluation of the Acromion Marker Cluster Method in Comparison With a Model-Based Approach Using Biplanar Radiograph Images.

    PubMed

    Duprey, Sonia; Billuart, Fabien; Sah, Sungjin; Ohl, Xavier; Robert, Thomas; Skalli, Wafa; Wang, Xuguang

    2015-10-01

    Noninvasive methods enabling measurement of shoulder bone positions are paramount in clinical and ergonomics applications. In this study, the acromion marker cluster (AMC) method is assessed in comparison with a model-based approach allowing scapula tracking from low-dose biplanar radiograph images. Six healthy male subjects participated in this study. Data acquisition was performed for 6 arm abduction positions (0°, 45°, 90°, 120°, 150°, 180°). Scapula rotations were calculated using the coordinate systems and angle sequence was defined by the ISB. The comparison analysis was based on root mean square error (RMSE) calculation and nonparametric statistical tests. RMSE remained under 8° for 0° to 90° arm abduction and under 13.5° for 0° to 180° abduction; no significant differences were found between the 2 methods. Compared with previous works, an improved accuracy of the AMC approach at high arm abduction positions was obtained. This could be explained by the different sources of data used as the "gold standard." PMID:26099159

  14. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism

    PubMed Central

    Hewett, T E; Torg, J S; Boden, B P

    2014-01-01

    Background The combined positioning of the trunk and knee in the coronal and sagittal planes during non-contact anterior cruciate ligament (ACL) injury has not been previously reported. Hypothesis During ACL injury female athletes demonstrate greater lateral trunk and knee abduction angles than ACL-injured male athletes and uninjured female athletes. Design Cross-section control-cohort design. Methods Analyses of still captures from 23 coronal (10 female and 7 male ACL-injured players and 6 female controls) or 28 sagittal plane videos performing similar landing and cutting tasks. Significance was set at p ≤ 0.05. Results Lateral trunk and knee abduction angles were higher in female compared to male athletes during ACL injury (p ≤ 0.05) and trended toward being greater than female controls (p = 0.16, 0.13, respectively). Female ACL-injured athletes showed less forward trunk lean than female controls (mean (SD) initial contact (IC): 1.6 (9.3)° vs 14.0 (7.3)°, p ≤ 0.01). Conclusion Female athletes landed with greater lateral trunk motion and knee abduction during ACL injury than did male athletes or control females during similar landing and cutting tasks. Clinical relevance Lateral trunk and knee abduction motion are important components of the ACL injury mechanism in female athletes as observed from video evidence of ACL injury. PMID:19372088

  15. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  16. Preface of the "Symposium on Logic Synthesis for Programmable Logic Devices"

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2015-12-01

    Logic synthesis is an indirect link between design description and technology mapping. In the result of synthesis process an implementation in terms of an interconnection of logic gates, flip-flops, LUTs, etc. is generated. Typically, synthesis is performed for an objective function, such as minimizing the number of logic blocks (area), delay of interconnection, minimizing the power consumed, or making the implementation more testable. Logic synthesis is typically separated into two stages: technology-independent optimization, followed by a technology mapping. Technology mapping is the process of expressing a boolean network in terms of elements characteristic for a given technology (or device family). The aim of the symposium is to show all aspects of logic synthesis dedicated for Programmable Logic Devices.

  17. An Argumentation Framework based on Paraconsistent Logic

    NASA Astrophysics Data System (ADS)

    Umeda, Yuichi; Takahashi, Takehisa; Sawamura, Hajime

    Argumentation is the most representative of intelligent activities of humans. Therefore, it is natural to think that it could have many implications for artificial intelligence and computer science as well. Specifically, argumentation may be considered a most primitive capability for interaction among computational agents. In this paper we present an argumentation framework based on the four-valued paraconsistent logic. Tolerance and acceptance of inconsistency that this logic has as its logical feature allow for arguments on inconsistent knowledge bases with which we are often confronted. We introduce various concepts for argumentation, such as arguments, attack relations, argument justification, preferential criteria of arguments based on social norms, and so on, in a way proper to the four-valued paraconsistent logic. Then, we provide the fixpoint semantics and dialectical proof theory for our argumentation framework. We also give the proofs of the soundness and completeness.

  18. Procedural and Logic Programming: A Comparison.

    ERIC Educational Resources Information Center

    Watkins, Will; And Others

    1988-01-01

    Examines the similarities and fundamental differences between procedural programing and logic programing by comparing LogoWriter and PROLOG. Suggests that PROLOG may be a good first programing language for students to learn. (MVL)

  19. Logical operator tradeoff for local quantum codes

    NASA Astrophysics Data System (ADS)

    Haah, Jeongwan; Preskill, John

    2011-03-01

    We study the structure of logical operators in local D -dimensional quantum codes, considering both subsystem codes with geometrically local gauge generators and codes defined by geometrically local commuting projectors. We show that if the code distance is d , then any logical operator can be supported on a set of specified geometry containing d~ qubits, where d~d 1 / (D - 1) = O (n) and n is the code length. Our results place limitations on partially self-correcting quantum memories, in which at least some logical operators are protected by energy barriers that grow with system size. We also show that two-dimensional codes defined by local commuting projectors admit logical ``string'' operators and are not self correcting. NSF PHY-0803371, DOE DE-FG03-92-ER40701, NSA/ARO W911NF-09-1-0442, and KFAS.

  20. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  1. Purification of Logic-Qubit Entanglement

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  2. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  3. Electro-optical graphene plasmonic logic gates.

    PubMed

    Ooi, Kelvin J A; Chu, Hong Son; Bai, Ping; Ang, Lay Kee

    2014-03-15

    The versatile control of graphene's plasmonic modes via an external gate-voltage inspires us to design efficient electro-optical graphene plasmonic logic gates at the midinfrared wavelengths. We show that these devices are superior to the conventional optical logic gates because the former possess cut-off states and interferometric effects. Moreover, the designed six basic logic gates (i.e., NOR/AND, NAND/OR, XNOR/XOR) achieved not only ultracompact size lengths of less than λ/28 with respect to the operating wavelength of 10 μm, but also a minimum extinction ratio as high as 15 dB. These graphene plasmonic logic gates are potential building blocks for future nanoscale midinfrared photonic integrated circuits. PMID:24690855

  4. On Ho's "Modern Logic and Schizophrenic Thinking"

    ERIC Educational Resources Information Center

    Marini, James L.

    1976-01-01

    Points out that conclusions drawn in the title paper about the role of logic in the schizophrenic thought process are not reliable since they are based on patients medicated with antipsychotic drugs. (MS)

  5. Hierarchical structure of the logical Internet graph

    NASA Astrophysics Data System (ADS)

    Ge, Zihui; Figueiredo, Daniel R.; Jaiswal, Sharad; Gao, Lixin

    2001-07-01

    The study of the Internet topology has recently received much attention from the research community. In particular, the observation that the network graph has interesting properties, such as power laws, that might be explored in a myriad of ways. Most of the work in characterizing the Internet graph is based on the physical network graph, i.e., the connectivity graph. In this paper we investigate how logical relationships between nodes of the AS graph can be used to gain insight to its structure. We characterize the logical graph using various metrics and identify the presence of power laws in the number of customers that a provider has. Using these logical relationships we define a structural model of the AS graph. The model highlights the hierarchical nature of logical relationships and the preferential connection to larger providers. We also investigate the consistency of this model over time and observe interesting properties of the hierarchical structure.

  6. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  7. Queuing register uses fluid logic elements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Queuing register /a multistage bit-shifting device/ uses a series of pure fluid elements to perform the required logic operations. The register has several stages of three-state pure fluid elements combined with two-input NOR gates.

  8. Fracture severity of distal radius fractures treated with locking plating correlates with limitations in ulnar abduction and inferior health-related quality of life

    PubMed Central

    Tsitsilonis, Serafim; Machó, David; Manegold, Sebastian; Krapohl, Björn Dirk; Wichlas, Florian

    2016-01-01

    Introduction/background: The operative treatment of distal radius fractures has significantly increased after the introduction of locking plates. The aim of the present study was the evaluation of health-related quality of life, functional and radiological outcome of patients with distal radius fractures treated with the locking compression plate (LCP). Materials and methods: In the present study 128 patients (130 fractures) that were operatively treated with the LCP (2.4 mm/3.5 mm, Synthes®) were retrospectively evaluated. Mean follow-up was 22.7 months (SD 10.6). The fractures were radiographically evaluated (radial inclination, palmar tilt, ulnar variance) pre-, postoperatively and at the last follow-up visit. Range of motion (ROM) was documented. Grip strength was assessed with the use of a JAMAR dynamometer. The score for disabilities of the arm, shoulder and hand (DASH) and the Gartland-Werley score (GWS) were evaluated. Health-associated quality of life was assessed with use of SF-36 Health Survey. Results: Postoperative reduction was excellent; at the last follow-up visit only minimal reduction loss was observed. Except for pronation, a statistically significant decrease of ROM was present; in most cases that was not disturbing for the patients. The injured side achieved 83.9% of grip strength of the intact side. Mean DASH was 18.9 and mean GWS was 3.5. Health-associated quality of life was generally not compromised. However, limitations in ulnar abduction correlated with inferior quality of life. Fracture severity correlated with inferior quality of life, despite the absence of correlation with the functional and radiological outcome. Complication rate was low. Conclusions: Fracture severity seems to affect ulnar abduction and therefore patient quality of life, despite almost anatomical reduction; the objective and subjective scores were in most cases excellent. Modern everyday activities, such as keyboard typing, could be associated with the present

  9. Convection automated logic oven control

    SciTech Connect

    Boyer, M.A.; Eke, K.I.

    1998-03-01

    For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.

  10. Quantum integrals and anhomomorphic logics

    NASA Astrophysics Data System (ADS)

    Gudder, Stan

    2010-11-01

    The basic arena for a probabilistic structure is a set A of events. Corresponding to A is a dual structure A^* of coevents. We call A^* an anhomomorphic logic and the coevents are given by "truth functions" from A to the two-element Boolean algebra {Z}_2=lbrace 0,1rbrace. One of the main goals of a physical theory is to describe physical reality and a coevent φ:ArArr {Z}_2 provides such a description in the sense that an event Ain A "actually occurs" if and only if ϕ(A) = 1. The quantum integral over an event A with respect to a coevent ϕ is defined and its properties are treated. Integrals with respect to various coevents are computed. Quantum systems are frequently described by a quantum measure μ which gives the propensity μ(A) that an event A occurs. For φ in A^*, if ϕ(A) = 0 whenever μ(A) = 0 we say that ϕ is preclusive. Preclusivity is a reality filter because it eliminates coevents that do not describe a possible reality for the system. A quantum measure that can be represented as a quantum integral with respect to a coevent ϕ is said to 1-generate ϕ. This gives a stronger reality filter than preclusivity. What we believe to be a more general filter is defined in terms of a double quantum integral and is called 2-generation. We show that there are quantum measures that 2-generate coevents, but do not 1-generate coevents. Examples also show that there are coevents that are 2-generated but not 1-generated. For simplicity only finite systems are considered.

  11. Application of Fuzzy Logic to Matrix FMECA

    NASA Astrophysics Data System (ADS)

    Shankar, N. Ravi; Prabhu, B. S.

    2001-04-01

    A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.

  12. Pattern recognition using linguistic fuzzy logic predictors

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim

    2016-06-01

    The problem of pattern recognition has been solved with numerous methods in the Artificial Intelligence field. We present an unconventional method based on Lingustic Fuzzy Logic Forecaster which is primarily used for the task of time series analysis and prediction through logical deduction wtih linguistic variables. This method should be used not only to the time series prediction itself, but also for recognition of patterns in a signal with seasonal component.

  13. Synchronous universal droplet logic and control

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Cybulski, James S.; Prakash, Manu

    2015-07-01

    Droplets are versatile digital materials; they can be produced at high throughput, perform chemical reactions as miniature beakers and carry biological entities. Droplets have been manipulated with electric, optical, acoustic and magnetic forces, but all these methods use serial controls to address individual droplets. An alternative is algorithmic manipulation based on logic operations that automatically compute where droplets are stored or directed, thereby enabling parallel control. However, logic previously implemented in low-Reynolds-number droplet hydrodynamics is asynchronous and thus prone to errors that prevent scaling up the complexity of logic operations. Here we present a platform for error-free physical computation via synchronous universal logic. Our platform uses a rotating magnetic field that enables parallel manipulation of arbitrary numbers of ferrofluid droplets on permalloy tracks. Through the coupling of magnetic and hydrodynamic interaction forces between droplets, we developed AND, OR, XOR, NOT and NAND logic gates, fanouts, a full adder, a flip-flop and a finite-state machine. Our platform enables large-scale integration of droplet logic, analogous to the scaling seen in digital electronics, and opens new avenues in mesoscale material processing.

  14. Recognition and processing of logic diagrams

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed M.; Bashandy, Ahmed R.

    1996-03-01

    In this paper we present a vision system that is capable of interpreting schematic logic diagrams, i.e. determine the output as a logic function of the inputs. The system is composed of a number of modules each designed to perform a specific subtask. Each module bears a minor contribution in the form of a new mixture of known algorithms or extensions to handle actual real life image imperfections which researchers tend to ignore when they develop their theoretical foundations. The main contribution, thus, is not in any individual module, it is rather in their integration to achieve the target job. The system is organized more or less in a classical fashion. Aside from the image acquisition and preprocessing modules, interesting modules include: the segmenter, the identifier, the connector and the grapher. A good segmentation output is one reason for the success of the presented system. Several novelties exist in the presented approach. Following segmentation the type of each logic gate is determined and its topological connectivity. The logic diagram is then transformed to a directed acyclic graph in which the final node is the output logic gate. The logic function is then determined by backtracking techniques. The system is not only aimed at recognition applications. In fact its main usage may be to target other processing applications such as storage compression and graphics modification and manipulation of the diagram as is explained.

  15. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  16. Jauch-Piron logics with finiteness conditions

    SciTech Connect

    Rogalewicz, V. )

    1991-04-01

    An event structure (so-called quantum logic) of a quantum mechanical system is commonly assumed to be an orthomodular poset L. A state of such a system is then interpreted as a probability measure on L. It turns out that the orthomodular posets which may potentially serve as logics must have reasonably rich spaces of states. Moreover, the following condition on the state space appears among the axioms of a quantum system: if {Phi} is a state on a logic L, and {Phi}(a) = {Phi}(b) = 1 for some a, b {element of} L, then there is a c {element of} L such that c {le} a, c {le} b, and {Phi}(c) = 1. Such a state is said to be a Jauch-Piron state. If all states on L fulfill this condition, then L is called a Jauch-Piron logic. The condition was originally introduced by Jauch (1968) and Piron (1976). The author investigates unital Jauch-Piron logics with finitely many blocks (maximal Boolean subalgebras). He shows that such a logic is always Boolean, i.e., it represents a purely classical system. In other words, and orthomodular poset must have infinitely many blocks in order to describe a (nonclassical) quantum system.

  17. The Temporal Logic of the Tower Chief System

    NASA Technical Reports Server (NTRS)

    Hazelton, Lyman R., Jr.

    1990-01-01

    The purpose is to describe the logic used in the reasoning scheme employed in the Tower Chief system, a runway configuration management system. First, a review of classical logic is given. Defensible logics, truth maintenance, default logic, temporally dependent propositions, and resource allocation and planning are discussed.

  18. On symbolic models for Single-Conclusion Logic of Proofs

    SciTech Connect

    Krupski, Vladimir N

    2011-05-31

    In this paper we define symbolic models for Single-Conclusion Logics of Proofs. We prove the soundness and completeness of these logics with respect to the corresponding classes of symbolic models. We apply the semantic methods developed in this paper to justify the use of terms of single-conclusion logic of proofs as notation for derivations in this logic. Bibliography: 17 titles.

  19. Nonmonotonic Logic for Use in Information Retrieval: An Exploratory Paper.

    ERIC Educational Resources Information Center

    Hurt, C. D.

    1998-01-01

    Monotonic logic requires reexamination of the entire logic string when there is a contradiction. Nonmonotonic logic allows the user to withdraw conclusions in the face of contradiction without harm to the logic string, which has considerable application to the field of information searching. Artificial intelligence models and neural networks based…

  20. Autonomous Boolean models for logic, timing, and stability in regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua E. S.

    2011-03-01

    The dynamics of gene expression in a cell is controlled by a dizzying array of biochemical processes. Natural selection, however, has created regulatory systems with a level of logical organization that can be modeled without detailed knowledge of the biochemistry. In cases where graded responses are not relevant, autonomous Boolean network (ABN) models can effectively represent the logic of gene regulation. These are models in which Boolean logic governs the output value of each node and the timing of updates is determined according to delay parameters associated with each link. An advantage of ABNs over synchronous or random asynchronous Boolean networks is that noise associated with molecular concentrations or transport times can be represented through fluctuations in the timing of updates. We have used ABN models to investigate the stability of oscillations in a model of transcriptional oscillations in yeast and the parameter constraints in a model of segment polarity maintenance in the fly embryo, and also to characterize chaotic dynamics observed in a free--running digital electronic circuit. The yeast study highlights architectural and dynamical features of oscillators that rely on pulse transmission rather than a frustrated feedback loop; the fly study reveals timing constraints that are hidden in ODE models; and the electronics study shows that Boolean chaos can occur if and only if time delays are history dependent. Joint work with V. Sevim, X. Gong, X. Cheng, M. Sun, D. Gauthier, H. Cavalcante, and R. Zhang. Supported by NSF Grant PHY-0417372 and NIH Grant P50-GM081883.

  1. Does Logic Feel Good? Testing for Intuitive Detection of Logicality in Syllogistic Reasoning

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Singmann, Henrik

    2013-01-01

    Recent research on syllogistic reasoning suggests that the logical status (valid vs. invalid) of even difficult syllogisms can be intuitively detected via small changes in affective state (Morsanyi & Handley, 2012). In a series of 6 experiments, we replicated effects of logical status on liking ratings of difficult syllogisms (although their…

  2. Complementary transistor-transistor logic /CTTL/ - An approach to high-speed micropower logic.

    NASA Technical Reports Server (NTRS)

    Stehlin, R. A.; Niemann, G. W.

    1972-01-01

    Description of a new approach to micropower integrated circuits that is called complementary transistor-transistor logic (CTTL). This logic combines the inherent low standby power of a complementary inverter with the high speed of the TTL-type input. Results of monolithic fabricated circuits are presented. These circuits are shown to be equally adaptable to hybrid and discrete circuitry.

  3. A Framework for Dynamic Constraint Reasoning Using Procedural Constraints

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy D.

    1999-01-01

    Many complex real-world decision and control problems contain an underlying constraint reasoning problem. This is particularly evident in a recently developed approach to planning, where almost all planning decisions are represented by constrained variables. This translates a significant part of the planning problem into a constraint network whose consistency determines the validity of the plan candidate. Since higher-level choices about control actions can add or remove variables and constraints, the underlying constraint network is invariably highly dynamic. Arbitrary domain-dependent constraints may be added to the constraint network and the constraint reasoning mechanism must be able to handle such constraints effectively. Additionally, real problems often require handling constraints over continuous variables. These requirements present a number of significant challenges for a constraint reasoning mechanism. In this paper, we introduce a general framework for handling dynamic constraint networks with real-valued variables, by using procedures to represent and effectively reason about general constraints. The framework is based on a sound theoretical foundation, and can be proven to be sound and complete under well-defined conditions. Furthermore, the framework provides hybrid reasoning capabilities, as alternative solution methods like mathematical programming can be incorporated into the framework, in the form of procedures.

  4. Challenging the dominant logic of Emergency Departments: guidelines from chaos theory.

    PubMed

    Chinnis, A; White, K R

    1999-01-01

    Chaos is order without predictability (1 ). Any unfortunate patient who has recently made a trek to an Emergency Department (ED) or even better, has watched the immensely popular TV show, ER, knows that the visit can be a frustrating and a time consuming experience. The waits are so protracted that one can observe all cycles of birth, death, love, and romance in the waiting room. The process is tedious for the patient who must tell one's tale to a triage nurse, a registration clerk, the primary nurse, the nursing care partner, and finally the emergency physician. Then, the patient must face more delays while being pushed, ineffectively, in a horizontal fashion, through vertical functional silos of care, such as laboratory and radiology. The mind-set or dominant logic of this system of ED patient flow assumes that waits are acceptable and unavoidable, and that the function of the ED is to care for only the truly emergent patient. This dominant logic, coupled with the market constraints of population-based versus case-based payment mechanisms, has led to a declining trend in ED visits for the first time in 20 years (2). In order to improve the quality of ED care as well as to increase acceptability for patient and payer, the dominant logic must be challenged. An understanding of chaos theory and perception of the Emergency Department as a complex adaptive system foster methods for challenging the dominant logic. PMID:10595896

  5. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  6. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  7. Logical reformulation of quantum mechanics. I. Foundations

    SciTech Connect

    Omnes, R.

    1988-11-01

    The basic rules of quantum mechanics are reformulated. They deal primarily with individual systems and do not assume that every ket may represent a physical state. The customary kinematic and dynamic rules then allow to construct consistent Boolean logics describing the history of a system, following essentially Griffiths' proposal. Logical implication is defined within these logics, the multiplicity of which reflects the complementary principle. Only one interpretive rule of quantum mechanics is necessary in such a framework. It states that these logics provide bona fide foundations for the description of a quantum system and for reasoning about it. One attempts to build up classical physics, including classical logic, on these quantum foundations. The resulting theory of measurement needs not to state a priori that the eigenvalues of an observable have to be the results of individual measurements nor to assume wave packet reduction. Both these properties can be obtained as consequences of the basic rules. One also needs not to postulate that every observable is measurable, even in principle. A proposition calculus is obtained, allowing in principle the replacement of the discussion of problems concerned with the practical interpretation of experiments by due calculations.

  8. Uncertainty, energy, and multiple-valued logics

    SciTech Connect

    Hayes, J.P.

    1986-02-01

    The multiple-valued logics obtained by introducing uncertainty and energy considerations into classical switching theory are studied in this paper. First, the nature of uncertain or unknown signals is examined, and two general uncertainty types called U-values and P-values are identified. It is shown that multiple-valued logics composed of U/P-values can be systematically derived from 2-valued Boolean algebra. These are useful for timing and hazard analysis, and provide a rigorous framework for designing gate-level logic simulation programs. Next, signals of the form (..nu..,S) are considered where ..nu.. and S denote logic level and strength, respectively, and the product vs corresponds to energy flow or power. It is shown that these signals from a type of lattice called a Pseudo-Boolean algebra. Such algebras characterize the behavior of digital circuits at a level (the switch level) intermediate between the conventional analog and logical levels. They provide the mathematical basis for an efficient new class of switch-level simulation programs used in MOS VLSI design.

  9. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  10. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  11. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  12. Specifying structural constraints of architectural patterns in the ARCHERY language

    SciTech Connect

    Sanchez, Alejandro; Barbosa, Luis S.; Riesco, Daniel

    2015-03-10

    ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.

  13. Structure Constraints in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Pang, Wan-Lin; Golden, Keith

    2004-01-01

    In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.

  14. Molecular implementation of simple logic programs.

    PubMed

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-10-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation. PMID:19809454

  15. On Logic and Standards for Structuring Documents

    NASA Astrophysics Data System (ADS)

    Eyers, David M.; Jones, Andrew J. I.; Kimbrough, Steven O.

    The advent of XML has been widely seized upon as an opportunity to develop document representation standards that lend themselves to automated processing. This is a welcome development and much good has come of it. That said, present standardization efforts may be criticized on a number of counts. We explore two issues associated with document XML standardization efforts. We label them (i) the dynamic point and (ii) the logical point. Our dynamic point is that in many cases experience has shown that the search for a final, or even reasonably permanent, document representation standard is futile. The case is especially strong for electronic data interchange (EDI). Our logical point is that formalization into symbolic logic is materially helpful for understanding and designing dynamic document standards.

  16. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  17. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  18. Anatomy Ontology Matching Using Markov Logic Networks

    PubMed Central

    Li, Chunhua; Zhao, Pengpeng; Wu, Jian; Cui, Zhiming

    2016-01-01

    The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment. PMID:27382498

  19. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Barto, Rod L.; Erickson, K.

    1997-01-01

    Logic design errors have been observed in space flight missions and the final stages of ground test. The technologies used by designers and their design/analysis methodologies will be analyzed. This will give insight to the root causes of the failures. These technologies include discrete integrated circuit based systems, systems based on field and mask programmable logic, and the use computer aided engineering (CAE) systems. State-of-the-art (SOTA) design tools and methodologies will be analyzed with respect to high-reliability spacecraft design and potential pitfalls are discussed. Case studies of faults from large expensive programs to "smaller, faster, cheaper" missions will be used to explore the fundamental reasons for logic design problems.

  20. Molecular implementation of simple logic programs

    NASA Astrophysics Data System (ADS)

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-11-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  1. Quantum Computational Logics and Possible Applications

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Leporini, Roberto; di Francia, Giuliano Toraldo

    2008-01-01

    In quantum computational logics meanings of formulas are identified with quantum information quantities: systems of qubits or, more generally, mixtures of systems of qubits. We consider two kinds of quantum computational semantics: (1) a compositional semantics, where the meaning of a compound formula is determined by the meanings of its parts; (2) a holistic semantics, which makes essential use of the characteristic “holistic” features of the quantum-theoretic formalism. The compositional and the holistic semantics turn out to characterize the same logic. In this framework, one can introduce the notion of quantum-classical truth table, which corresponds to the most natural way for a quantum computer to calculate classical tautologies. Quantum computational logics can be applied to investigate different kinds of semantic phenomena where holistic, contextual and gestaltic patterns play an essential role (from natural languages to musical compositions).

  2. Spin gated transistors for reprogrammable logic

    NASA Astrophysics Data System (ADS)

    Ciccarelli, Chiara; Gonzalez-Zalba, Fernando; Irvine, Andrew; Campion, Richard; Zarbo, Liviu; Gallagher, Brian; Ferguson, Andrew; Jungwirth, Tomas; Wunderlich, Joerg; Institute of Physics ASCR Collaboration; University of Nottingham Collaboration; Hitachi Cambridge Laboratory Team; Institute of Physics ASCR Collaboration; University of Nottingham Collaboration; University of Cambridge Team

    2014-03-01

    In spin-orbit coupled magnetic materials the chemical potential depends on the orientation of the magnetisation. By making the gate of a field effect transistor magnetic, it is possible to tune the channel conductance not only electrically but also magnetically. We show that these magnetic transistor can be used to realise non-volatile reprogrammable Boolean logic. The non-volatile reconfigurable capability resides in the magnetization-dependent band structure of the magnetic stack. A change in magnetization orientation produces a change in the electrochemical potential, which induces a charge accumulation in the correspondent gate electrode. This is readily sensed by a field-effect device such as standard field-effect transistors or more exotic single-electron transistors. We propose circuits for low power consumption applications that can be magnetically switched between NAND and OR logic functions and between NOR and AND logic functions.

  3. Development of ferrite logic devices for an arithmetic processor

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.

    1972-01-01

    A number of fundamentally ultra-reliable, all-magnetic logic circuits are developed using as a basis a single element ferrite structure wired as a logic delay element. By making minor additions or changes to the basic wiring pattern of the delay element other logic functions such as OR, AND, NEGATION, MAJORITY, EXCLUSIVE-OR, and FAN-OUT are developed. These logic functions are then used in the design of a full-adder, a set/reset flip-flop, and an edge detector. As a demonstration of the utility of all the developed devices, an 8-bit, all-magnetic, logic arithmetic unit capable of controlled addition, subtraction, and multiplication is designed. A new basic ferrite logic element and associated complementary logic scheme with the potential of improved performance is also described. Finally, an improved batch process for fabricating joint-free power drive and logic interconnect conductors for this basic class of all-magnetic logic is presented.

  4. Multiple neural representations of elementary logical connectives.

    PubMed

    Baggio, Giosuè; Cherubini, Paolo; Pischedda, Doris; Blumenthal, Anna; Haynes, John-Dylan; Reverberi, Carlo

    2016-07-15

    A defining trait of human cognition is the capacity to form compounds out of simple thoughts. This ability relies on the logical connectives AND, OR and IF. Simple propositions, e.g., 'There is a fork' and 'There is a knife', can be combined in alternative ways using logical connectives: e.g., 'There is a fork AND there is a knife', 'There is a fork OR there is a knife', 'IF there is a fork, there is a knife'. How does the brain represent compounds based on different logical connectives, and how are compounds evaluated in relation to new facts? In the present study, participants had to maintain and evaluate conjunctive (AND), disjunctive (OR) or conditional (IF) compounds while undergoing functional MRI. Our results suggest that, during maintenance, the left posterior inferior frontal gyrus (pIFG, BA44, or Broca's area) represents the surface form of compounds. During evaluation, the left pIFG switches to processing the full logical meaning of compounds, and two additional areas are recruited: the left anterior inferior frontal gyrus (aIFG, BA47) and the left intraparietal sulcus (IPS, BA40). The aIFG shows a pattern of activation similar to pIFG, and compatible with processing the full logical meaning of compounds, whereas activations in IPS differ with alternative interpretations of conditionals: logical vs conjunctive. These results uncover the functions of a basic cortical network underlying human compositional thought, and provide a shared neural foundation for the cognitive science of language and reasoning. PMID:27138210

  5. Nonlinear interferometry approach to photonic sequential logic

    NASA Astrophysics Data System (ADS)

    Mabuchi, Hideo

    2011-10-01

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  6. Universal programmable logic gate and routing method

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Vatan, Farrokh (Inventor); Akarvardar, Kerem (Inventor); Blalock, Benjamin (Inventor); Chen, Suheng (Inventor); Cristoloveanu, Sorin (Inventor); Kolawa, Elzbieta (Inventor); Mojarradi, Mohammad M. (Inventor); Toomarian, Nikzad (Inventor)

    2009-01-01

    An universal and programmable logic gate based on G.sup.4-FET technology is disclosed, leading to the design of more efficient logic circuits. A new full adder design based on the G.sup.4-FET is also presented. The G.sup.4-FET can also function as a unique router device offering coplanar crossing of signal paths that are isolated and perpendicular to one another. This has the potential of overcoming major limitations in VLSI design where complex interconnection schemes have become increasingly problematic.

  7. Nonlinear dynamics based digital logic and circuits

    PubMed Central

    Kia, Behnam; Lindner, John. F.; Ditto, William L.

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  8. Valve system incorporating single failure protection logic

    DOEpatents

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  9. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  10. Rebuilding mathematics on a quantum logical foundation

    NASA Astrophysics Data System (ADS)

    DeJonghe, Richard J., III

    We construct a rich first-order quantum logic which generalizes the standard classical predicate logic used in the development of virtually all of modern mathematics, and we use this quantum logic to build the foundations of a new quantum mathematics. First, we prove both soundness and completeness for the quantum logic we develop, and also prove a powerful new completeness result which heretofore had been known to hold for classical, but not quantum, first-order logic. We then use our quantum logic to develop multiple areas of mathematics, including abstract algebra, axiomatic set theory, and arithmetic. In some preliminary investigations into quantum mathematics, Dunn found that the Peano axioms for arithmetic yield the same theorems using either classical or quantum logic. We prove a similar result for certain classes of abstract algebras, and then show that Dunn's result is not generic by presenting examples of quantum monoids, groups, lattices, vector spaces, and operator algebras, all which differ from their classical counterparts. Moreover, we find natural classes of quantum lattices, vector spaces, and operator algebras which all have a beautiful inter-relationship, and make some preliminary investigations into using these structures as a basis for a new mathematical formulation of quantum mechanics. We also develop a quantum set theory (equivalent to ZFC under classical logic) which is far more tractable than quantum set theory previously developed. We then use this set theory to construct a quantum version of the natural numbers, and develop an arithmetic of these numbers based upon an alternative to Peano's axioms (which avoids Dunn's theorem). Surprisingly, we find that these "quantum natural numbers" satisfy our arithmetical axioms if and only if the underlying truth values form a modular lattice, giving a new arithmetical characterization of this important lattice-theoretic property. Finally, we show that these numbers have a natural interpretation as

  11. Runtime Analysis of Linear Temporal Logic Specifications

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus

    2001-01-01

    This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  12. Nonlinear dynamics based digital logic and circuits.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  13. A Predictive Model to Estimate Knee-Abduction Moment: Implications for Development of a Clinically Applicable Patellofemoral Pain Screening Tool in Female Athletes

    PubMed Central

    Myer, Gregory D.; Ford, Kevin R.; Foss, Kim D. Barber; Rauh, Mitchell J.; Paterno, Mark V.; Hewett, Timothy E.

    2014-01-01

    Context: Prospective measures of high external knee-abduction moment (KAM) during landing identify female athletes at increased risk of patellofemoral pain (PFP). A clinically applicable screening protocol is needed. Objective: To identify biomechanical laboratory measures that would accurately quantify KAM loads during landing that predict increased risk of PFP in female athletes and clinical correlates to laboratory-based measures of increased KAM status for use in a clinical PFP injury-risk prediction algorithm. We hypothesized that we could identify clinical correlates that combine to accurately determine increased KAM associated with an increased risk of developing PFP. Design: Descriptive laboratory study. Setting: Biomechanical laboratory. Patients or Other Participants: Adolescent female basketball and soccer players (n = 698) from a single-county public school district. Main Outcome Measure(s): We conducted tests of anthropometrics, maturation, laxity, flexibility, strength, and landing biomechanics before each competitive season. Pearson correlation and linear and logistic regression modeling were used to examine high KAM (>15.4 Nm) compared with normal KAM as a surrogate for PFP injury risk. Results: The multivariable logistic regression model that used the variables peak knee-abduction angle, center-of-mass height, and hip rotational moment excursion predicted KAM associated with PFP risk (>15.4 NM of KAM) with 92% sensitivity and 74% specificity and a C statistic of 0.93. The multivariate linear regression model that included the same predictors accounted for 70% of the variance in KAM. We identified clinical correlates to laboratory measures that combined to predict high KAM with 92% sensitivity and 47% specificity. The clinical prediction algorithm, including knee-valgus motion (odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.31, 1.63), center-of-mass height (OR = 1.21, 95% CI = 1.15, 1.26), and hamstrings strength/body fat percentage (OR

  14. Asteroseismic constraints for Gaia

    NASA Astrophysics Data System (ADS)

    Creevey, O. L.; Thévenin, F.

    2012-12-01

    Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteroseismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_Phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation < Δ ν > and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum ν_{max}. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in < Δ ν >, ν_{max}, and atmospheric parameters T_{eff} and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V˜12 stars from Kepler data. We also derive masses and radii which are accurate to within 1σ of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_Phot} through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.

  15. Practical Cleanroom Operations Constraints

    NASA Technical Reports Server (NTRS)

    Hughes, David; Ginyard, Amani

    2007-01-01

    This viewgraph presentation reviews the GSFC Cleanroom Facility i.e., Spacecraft Systems Development and Integration Facility (SSDIF) with particular interest in its use during the development of the Wide Field Camera 3 (WFC3). The SSDIF is described and a diagram of the SSDIF is shown. A Constraint Table was created for consistency within Contamination Control Team. This table is shown. Another table that shows the activities that were allowed during the integration under given WFC3 condition and activity location is presented. Three decision trees are shown for different phases of the work: (1) Hardware Relocation, Hardware Work, and Contamination Control Operations.

  16. Superresolution via sparsity constraints

    NASA Technical Reports Server (NTRS)

    Donoho, David L.

    1992-01-01

    The problem of recovering a measure mu supported on a lattice of span Delta is considered under the condition that measurements are only available concerning the Fourier Transform at frequencies of Omega or less. If Omega is much smaller than the Nyquist frequency pi/Delta and the measurements are noisy, then stable recovery of mu is generally impossible. It is shown here that if, in addition, it is known that mu satisfies certain sparsity constraints, then stable recovery is possible. This finding validates practical efforts in spectroscopy, seismic prospecting, and astronomy to provide superresolution by imposing support limitations in reconstruction.

  17. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  18. Giving Programming Students a Logical Step Up.

    ERIC Educational Resources Information Center

    Brown, David W.

    1990-01-01

    Presents a method to enhance the teaching of computer programing to secondary students that establishes a connection between logic, truth tables, switching circuits, gating symbols, flow charts, and pseudocode. The author asserts that the method prepares students for thinking processes related to programing. (MDH)

  19. Faster Evolution of More Multifunctional Logic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.

  20. FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

    EPA Science Inventory

    The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...

  1. Preservice Elementary Teachers' Understanding of Logical Inference

    ERIC Educational Resources Information Center

    Hauk, Shandy; Judd, April Brown; Tsay, Jenq Jong; Barzilai, Harel; Austin, Homer

    2009-01-01

    This article reports on the logical reasoning efforts of five prospective elementary school teachers as they responded to interview prompts involving nonsense, natural, and mathematical representations of conditional statements. The interview participants evinced various levels of reliance on personal relevance, linguistic contextualization, and…

  2. Multiplexed logic controls solar-heating system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1981-01-01

    Four inexpensive thermocouples monitor temperatures at key points. On command from logic circuitry, dampers open and close to direct airflow, and fan and auxiliary heater shut on or off. Controlling complex arranges heating system in any one of four operating configurations.

  3. Fuzzy logic mode switching in helicopters

    NASA Technical Reports Server (NTRS)

    Sherman, Porter D.; Warburton, Frank W.

    1993-01-01

    The application of fuzzy logic to a wide range of control problems has been gaining momentum internationally, fueled by a concentrated Japanese effort. Advanced Research & Development within the Engineering Department at Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate how effective fuzzy logic control might be in relation to helicopter operations. The mode switching module in the advanced flight control portion of Sikorsky's motion based simulator was identified as a good candidate problem because it was simple to understand and contained imprecise (fuzzy) decision criteria. The purpose of the switching module is to aid a helicopter pilot in entering and leaving coordinated turns while in flight. The criteria that determine the transitions between modes are imprecise and depend on the varied ranges of three flight conditions (i.e., simulated parameters): Commanded Rate, Duration, and Roll Attitude. The parameters were given fuzzy ranges and used as input variables to a fuzzy rulebase containing the knowledge of mode switching. The fuzzy control program was integrated into a real time interactive helicopter simulation tool. Optimization of the heading hold and turn coordination was accomplished by interactive pilot simulation testing of the handling quality performance of the helicopter dynamic model. The fuzzy logic code satisfied all the requirements of this candidate control problem.

  4. Logical Access Control Mechanisms in Computer Systems.

    ERIC Educational Resources Information Center

    Hsiao, David K.

    The subject of access control mechanisms in computer systems is concerned with effective means to protect the anonymity of private information on the one hand, and to regulate the access to shareable information on the other hand. Effective means for access control may be considered on three levels: memory, process and logical. This report is a…

  5. New Logic Circuit with DC Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  6. Quantum logic gates for superconducting resonator qudits

    SciTech Connect

    Strauch, Frederick W.

    2011-11-15

    We study quantum information processing using superpositions of Fock states in superconducting resonators as quantum d-level systems (qudits). A universal set of single and coupled logic gates is theoretically proposed for resonators coupled by superconducting circuits of Josephson junctions. These gates use experimentally demonstrated interactions and provide an attractive route to quantum information processing using harmonic oscillator modes.

  7. Mapping individual logical processes in information searching

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1974-01-01

    An interactive dialog with a computerized information collection was recorded and plotted in the form of a flow chart. The process permits one to identify the logical processes employed in considerable detail and is therefore suggested as a tool for measuring individual thought processes in a variety of situations. A sample of an actual test case is given.

  8. Teleology as Logical Phenomenology: Some Therapeutic Implications.

    ERIC Educational Resources Information Center

    Rychlak, Joseph F.

    Phenomenology is an important force in the development of psychological theory, rather than a variant type of counseling method. A distinction must be drawn between the sensory phenomenology in which gestaltists focus on sensory receptors, and logical pheomenology in which the grounding of belief or self-identity is viewed as a prediction or…

  9. Indeterminacy, linguistic semantics and fuzzy logic

    SciTech Connect

    Novak, V.

    1996-12-31

    In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.

  10. Demonstrating Boolean Logic Using Simple Electrical Circuits

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.

    2004-01-01

    While exploring the subject of geometric proofs, boolean logic operators AND and OR can be used to allow students to visualize their true-or-false patterns. An activity in the form of constructing electrical circuits is illustrated to explain the concept.

  11. Can Mathematics be Justified by Natural Logic?

    NASA Astrophysics Data System (ADS)

    Schreiber, Lothar; Sommer, Hanns

    2010-11-01

    Charles Darwin claimed that the forms and the behaviour of living beings can be explained from their will to survive. But what are the consequences of this idea for humans knowledge, their theories of nature and their mathematics?. We discuss the view that even Plato's objective world of mathematical objects does not exist absolutely, without the intentions of mathematicians. Using Husserl's Phenomenological Method, cognition can be understood as a process by which meaning is deduced from empirical data relative to intentions. Thereby the essential structure of any cognition process can be detected and this structure is mirrored in logic. A natural logic becomes the direct result of cognition. Only in a second step, mathematics is obtained by abstraction from natural logic. In this way mathematics gains a well-defined foundation and is no longer part of a dubious 'a-priori knowledge' (Kant). This access to mathematics offers a new look on many old problems, e.g. the Petersburg problem and the problem 'P = NP?'. We demonstrate that this new justification of mathematics has also important applications in Artificial Intelligence. Our method provides a procedure to construct an adequate logic to solve most efficiently the problems of a given problem class. Thus, heuristics can be tailor-made for the necessities of applications.

  12. Young Children's Comprehension of Logical Connectives.

    ERIC Educational Resources Information Center

    Suppes, Patrick; Feldman, Shirley

    To determine to what extent children of preschool age comprehend the meaning of logical connectives, 64 5- and 6-year-olds were told to hand differently colored and shaped wooden blocks to an experimenter. The commands involved various English idioms used for conjunction (e.g. both black and round), disjunction (either black or round), and…

  13. Interacting institutional logics in general dental practice☆

    PubMed Central

    Harris, Rebecca; Holt, Robin

    2013-01-01

    We investigate the organisational field of general dental practice and how agents change or maintain the institution of values associated with the everyday work of health care provision. Our dataset comprise archival literature and policy documents, interview data from field level actors, as well as service delivery level interview data and secondary data gathered (2011–12) from 16 English dental practices. Our analysis provides a typology of institutional logics (prevailing systems of value) experienced in the field of dental practice. Confirming current literature, we find two logics dominate how care is assessed: business-like health care and medical professionalism. We advance the literature by finding the business-like health care logic further distinguished by values of commercialism on the one hand and those of accountability and procedural diligence on the other. The logic of professionalism we also find is further distinguished into a commitment to clinical expertise and independence in delivering patient care on the one hand, and concerns for the autonomy and sustainability of a business enterprise on the other. PMID:23931946

  14. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  15. Ultrasound-guided gradual reduction using flexion and abduction continuous traction for developmental dysplasia of the hip: a new method of treatment.

    PubMed

    Fukiage, K; Futami, T; Ogi, Y; Harada, Y; Shimozono, F; Kashiwagi, N; Takase, T; Suzuki, S

    2015-03-01

    We describe our experience in the reduction of dislocation of the hip secondary to developmental dysplasia using ultrasound-guided gradual reduction using flexion and abduction continuous traction (FACT-R). During a period of 13 years we treated 208 Suzuki type B or C complete dislocations of the hip in 202 children with a mean age of four months (0 to 11). The mean follow-up was 9.1 years (five to 16). The rate of reduction was 99.0%. There were no recurrent dislocations, and the rate of avascular necrosis of the femoral head was 1.0%. The rate of secondary surgery for residual acetabular dysplasia was 19.2%, and this was significantly higher in those children in whom the initial treatment was delayed or if other previous treatments had failed (p = 0.00045). The duration of FACT-R was significantly longer in severe dislocations (p = 0.001) or if previous treatments had failed (p = 0.018). This new method of treatment is effective and safe in these difficult cases and offers outcomes comparable to or better than those of standard methods. PMID:25737526

  16. The music of morality and logic.

    PubMed

    Mesz, Bruno; Rodriguez Zivic, Pablo H; Cecchi, Guillermo A; Sigman, Mariano; Trevisan, Marcos A

    2015-01-01

    Musical theory has built on the premise that musical structures can refer to something different from themselves (Nattiez and Abbate, 1990). The aim of this work is to statistically corroborate the intuitions of musical thinkers and practitioners starting at least with Plato, that music can express complex human concepts beyond merely "happy" and "sad" (Mattheson and Lenneberg, 1958). To do so, we ask whether musical improvisations can be used to classify the semantic category of the word that triggers them. We investigated two specific domains of semantics: morality and logic. While morality has been historically associated with music, logic concepts, which involve more abstract forms of thought, are more rarely associated with music. We examined musical improvisations inspired by positive and negative morality (e.g., good and evil) and logic concepts (true and false), analyzing the associations between these words and their musical representations in terms of acoustic and perceptual features. We found that music conveys information about valence (good and true vs. evil and false) with remarkable consistency across individuals. This information is carried by several musical dimensions which act in synergy to achieve very high classification accuracy. Positive concepts are represented by music with more ordered pitch structure and lower harmonic and sensorial dissonance than negative concepts. Music also conveys information indicating whether the word which triggered it belongs to the domains of logic or morality (true vs. good), principally through musical articulation. In summary, improvisations consistently map logic and morality information to specific musical dimensions, testifying the capacity of music to accurately convey semantic information in domains related to abstract forms of thought. PMID:26191020

  17. The music of morality and logic

    PubMed Central

    Mesz, Bruno; Rodriguez Zivic, Pablo H.; Cecchi, Guillermo A.; Sigman, Mariano; Trevisan, Marcos A.

    2015-01-01

    Musical theory has built on the premise that musical structures can refer to something different from themselves (Nattiez and Abbate, 1990). The aim of this work is to statistically corroborate the intuitions of musical thinkers and practitioners starting at least with Plato, that music can express complex human concepts beyond merely “happy” and “sad” (Mattheson and Lenneberg, 1958). To do so, we ask whether musical improvisations can be used to classify the semantic category of the word that triggers them. We investigated two specific domains of semantics: morality and logic. While morality has been historically associated with music, logic concepts, which involve more abstract forms of thought, are more rarely associated with music. We examined musical improvisations inspired by positive and negative morality (e.g., good and evil) and logic concepts (true and false), analyzing the associations between these words and their musical representations in terms of acoustic and perceptual features. We found that music conveys information about valence (good and true vs. evil and false) with remarkable consistency across individuals. This information is carried by several musical dimensions which act in synergy to achieve very high classification accuracy. Positive concepts are represented by music with more ordered pitch structure and lower harmonic and sensorial dissonance than negative concepts. Music also conveys information indicating whether the word which triggered it belongs to the domains of logic or morality (true vs. good), principally through musical articulation. In summary, improvisations consistently map logic and morality information to specific musical dimensions, testifying the capacity of music to accurately convey semantic information in domains related to abstract forms of thought. PMID:26191020

  18. Is it Logical to Count on Quantifiers? Dissociable Neural Networks Underlying Numerical and Logical Quantifiers

    PubMed Central

    Troiani, Vanessa; Peelle, Jonathan E.; Clark, Robin; Grossman, Murray

    2009-01-01

    The present study examined the neural substrate of two classes of quantifiers: Numerical quantifiers like “at least three” which require magnitude processing, and logical quantifiers like “some” which can be satisfied using a simple form of perceptual logic. We assessed these distinct classes of quantifiers with converging observations from two sources: functional imaging data from healthy adults, and behavioral and structural data from patients with corticobasal degeneration, who have acalculia. Our findings are consistent with the claim that numerical quantifier comprehension depends on a parietal-dorsolateral prefrontal network, but logical quantifier comprehension depends instead on a rostral medial prefrontal-posterior cingulate network. These observations emphasize the important contribution of abstract number knowledge to the meaning of numerical quantifiers in semantic memory and the potential role of a logic-based evaluation in the service of non-numerical quantifiers. PMID:18789346

  19. The Three Rs of Teaching Logic: Revelation, Relevance, and Reinforcement

    ERIC Educational Resources Information Center

    Covel, Robert C.

    2010-01-01

    Covel offers a primer on logic and describes how students react when they realize what a useful resource it can be in their real lives. His article includes useful definitions of critical concepts and logical fallacies. (Contains 2 figures.)

  20. A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate.

    PubMed

    Sivan, Sarit; Tuchman, Samuel; Lotan, Noah

    2003-06-01

    Enzyme-Based Logic Gates (ENLOGs) are key components in bio-molecular systems for information processing. This report and the previous one in this series address the characterization of two bio-molecular switching elements, namely the alpha-chymotrypsin (alphaCT) derivative p-phenylazobenzoyl-alpha-chymotrypsin (PABalphaCT) and its inhibitor (proflavine), as well as their assembly into a logic gate. The experimental output of the proposed system is expressed in terms of enzymic activity and this was translated into logic output (i.e. "1" or "0") relative to a predetermined threshold value. We have found that an univalent link exists between the dominant isomers of PABalphaCT (cis or trans), the dominant form of either acridine (proflavine) or acridan and the logic output of the system. Thus, of all possible combinations, only the trans-PABalphaCT and the acridan lead to an enzymic activity that can be defined as logic output "1". The system operates under the rules of Boolean algebra and performs as an "AND" logic gate. PMID:12753934

  1. Multi-Objective Trajectory Optimization by a Hierarchical Gradient Algorithm with Fuzzy Decision Logic —Application to Slew Maneuver Problems of a Flexible Space Structure—

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Nakajima, Nobuyuki

    The rest-to-rest maneuver problem of a flexible space structure is a two-point boundary value problem (TPBVP) and is solved by some gradient methods. If TPBVP is strongly restricted by constraints, TBVP becomes an ill-defined problem, and the solution meeting all constraints cannot be obtained. However, reasonable suboptimal solutions are often needed since real plant systems are necessary to be controlled. In order to obtain such suboptimal solutions, we have developed a modified version of the hierarchy gradient method by installing fuzzy decision logic. Constraints are classified into non-fuzzy constraints and fuzzy constraints according to their priorities. Fuzzy constraints having a trade-off relationship with each other are compromised reasonably by fuzzy decision logic. The usefulness of the proposed method is numerically and experimentally verified by applying it to the rest-to-rest slew maneuver problem of a flexible space structure, where fuzzy constraints are final time, sensitivity of residual vibration energy with respect to the structure frequency uncertainty and maximum bending moment at the root of the flexible appendage.

  2. Sets with Cardinality Constraints in Satisfiability Modulo Theories

    NASA Astrophysics Data System (ADS)

    Suter, Philippe; Steiger, Robin; Kuncak, Viktor

    Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that can express constraints on sets of elements and their cardinalities. Problems from verification of complex properties of software often contain fragments that belong to quantifier-free BAPA (QFBAPA). In contrast to many other NP-complete problems (such as quantifier-free first-order logic or linear arithmetic), the applications of QFBAPA to a broader set of problems has so far been hindered by the lack of an efficient implementation that can be used alongside other efficient decision procedures. We overcome these limitations by extending the efficient SMT solver Z3 with the ability to reason about cardinality (QFBAPA) constraints. Our implementation uses the DPLL(T) mechanism of Z3 to reason about the top-level propositional structure of a QFBAPA formula, improving the efficiency compared to previous implementations. Moreover, we present a new algorithm for automatically decomposing QFBAPA formulas. Our algorithm alleviates the exponential explosion of considering all Venn regions, significantly improving the tractability of formulas with many set variables. Because it is implemented as a theory plugin, our implementation enables Z3 to prove formulas that use QFBAPA constructs with constructs from other theories that Z3 supports, as well as with quantifiers. We have applied our implementation to the verification of functional programs; we show it can automatically prove formulas that no automated approach was reported to be able to prove before.

  3. Relative constraints and evolution

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz

    2014-03-01

    Several mathematical models of evolving systems assume that changes in the micro-states are constrained to the search of an optimal value in a local or global objective function. However, the concept of evolution requires a continuous change in the environment and species, making difficult the definition of absolute optimal values in objective functions. In this paper, we define constraints that are not absolute but relative to local micro-states, introducing a rupture in the invariance of the phase space of the system. This conceptual basis is useful to define alternative mathematical models for biological (or in general complex) evolving systems. We illustrate this concept with a modified Ising model, which can be useful to understand and model problems like the somatic evolution of cancer.

  4. Logical Connectives as Catalysts for Interactive L2 Reading.

    ERIC Educational Resources Information Center

    Ozono, Shuichi; Ito, Harumi

    2003-01-01

    Focuses on logical connectives as catalysts for interactive reading. Clarifies how text comprehension can be affected by the types of logical relations and by the levels of proficiency in English as a Second Language, using Japanese university students as the subjects for experimentation and focusing on three logical connectives: "for…

  5. Critical Thinking: Teaching Students To Seek the Logic of Things.

    ERIC Educational Resources Information Center

    Paul, Richard; Elder, Linda

    1999-01-01

    Asserts that becoming adept at understanding the logic of subjects, issues, and questions is a competency that, once learned, becomes a foundation for highly skilled and practical teaching and learning. Promotes the model of teaching students to seek the logic of things through the logic of science. (VWC)

  6. 15 CFR 970.601 - Logical mining unit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Logical mining unit. 970.601 Section... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is...

  7. Electronics. Module 3: Digital Logic Application. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed; Murphy, Mark

    This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…

  8. Teaching to the Test: A Pragmatic Approach to Teaching Logic

    ERIC Educational Resources Information Center

    Vannatta, Seth C.

    2014-01-01

    The proper goal of an introductory logic course, teaching critical thinking, is best achieved by maintaining the principle of continuity between student experiences and the curriculum. To demonstrate this I explain Dewey's naturalistic approach to logic and the process of inquiry, one which presents the elements of traditional logic in the…

  9. George Pierce Baker's "Principles of Argumentation": "Completely Logical"?

    ERIC Educational Resources Information Center

    Bordelon, Suzanne

    2006-01-01

    The article contends that previous scholars have misread George Pierce Baker's efforts by focusing primarily on "The Principles of Argumentation" and the role of logic. Baker's view of logic was more complex than scholars have claimed. He challenged traditional concepts of formal logic, highlighting only those aspects that would help students…

  10. A verification logic representation of indeterministic signal states

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1991-01-01

    The integration of modern CAD tools with formal verification environments require translation from hardware description language to verification logic. A signal representation including both unknown state and a degree of strength indeterminacy is essential for the correct modeling of many VLSI circuit designs. A higher-order logic theory of indeterministic logic signals is presented.

  11. Institutional Logics, Indie Software Developers and Platform Governance

    ERIC Educational Resources Information Center

    Qiu, Yixin

    2013-01-01

    This two-essay dissertation aims to study institutional logics in the context of Apple's independent third-party software developers. In essay 1, I investigate the embedded agency aspect of the institutional logics theory. It builds on the premise that logics constrain preferences, interests and behaviors of individuals and organizations, thereby…

  12. Neural constraints on learning

    PubMed Central

    Sadtler, Patrick T.; Quick, Kristin M.; Golub, Matthew D.; Chase, Steven M.; Ryu, Stephen I.; Tyler-Kabara, Elizabeth C.; Yu, Byron M.; Batista, Aaron P.

    2014-01-01

    Motor, sensory, and cognitive learning require networks of neurons to generate new activity patterns. Because some behaviors are easier to learn than others1,2, we wondered if some neural activity patterns are easier to generate than others. We asked whether the existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define the constraint. We employed a closed-loop intracortical brain-computer interface (BCI) learning paradigm in which Rhesus monkeys controlled a computer cursor by modulating neural activity patterns in primary motor cortex. Using the BCI paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. These patterns comprise a low-dimensional space (termed the intrinsic manifold, or IM) within the high-dimensional neural firing rate space. They presumably reflect constraints imposed by the underlying neural circuitry. We found that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the IM. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the IM. This result suggests that the existing structure of a network can shape learning. On the timescale of hours, it appears to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess3,4. PMID:25164754

  13. Neural constraints on learning.

    PubMed

    Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P

    2014-08-28

    Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already

  14. A Theoretical Foundation of Problem Solving by Equivalent Transformation of Negative Constraints

    NASA Astrophysics Data System (ADS)

    Koike, Hidekatsu; Akama, Kiyoshi; Mabuchi, Hiroshi; Okada, Koichi; Shigeta, Yoshinori

    Representation and computation of negation is very important in problem solving in various application domains. The purpose of this paper is to propose a new approach to negation. While most theories for negation are based on the logic paradigm, this theory is constructed based on the equivalent transformation (ET) computation model, since the ET model provides us with “decomposability of programs,” i.e., a program in the ET model is a set of ET rules and can be synthesized by generating each ET rule independently of other ET rules. To represent negation in the ET model, a constraint is introduced as a pair of an object and a domain. A constraint becomes true when the object is specialized to a ground object within the domain. A negative constraint has a domain that is the complement of the meaning of the corresponding declarative description. Computation of negation in the ET paradigm is realized by equivalent transformation of declarative descriptions including negative constraints. For each negative constraint in a definite clause, a new declarative description is produced and transformed equivalently. When it is transformed to a set of unit clauses, the negative constraint is solved. Each unit clause returns a simple constraint to the “caller” clause. This paper proves two theorems that provide a basis for such equivalent transformation of negative constraints.

  15. DEMONSTRATION BULLETIN: THE ECO LOGIC THERMAL DESORPTION UNIT - MIDDLEGROUND LANDFILL - BAY CITY, MI - ELI ECO LOGIC INTERNATIONAL, INC.

    EPA Science Inventory

    ECO Logic has developed a thermal desorption unit 0"DU) for the treatment of soils contaminated with hazardous organic contaminants. This TDU has been designed to be used in conjunction with Eco Logic's patented gas-phase chemical reduction reactor. The Eco Logic reactor is the s...

  16. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. PMID:24211259

  17. Neurocontrol and fuzzy logic: Connections and designs

    NASA Technical Reports Server (NTRS)

    Werbos, Paul J.

    1991-01-01

    Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.

  18. Fuzzy logic controllers: From development to deployment

    SciTech Connect

    Bonissone, P.P.; Chiang, K.H.

    1994-12-31

    We view fuzzy logic control technology as a high level language in which we can efficiently define and synthesize non-linear controllers for a given process. We contrast fuzzy Proportional Integral (PI) controllers with conventional PI and two dimensional sliding mode controllers. Then we compare the development of Fuzzy Logic Controllers (FLC) with that of Knowledge Based System (KBS) applications. We decompose the comparison into reasoning tasks (representation, inference, and control) and application tasks (acquisition, development, validation, compilation, and deployment). After reviewing the reasoning tasks, we focus on the compilation of fuzzy rule bases into fast access lookup tables. These tables can be used by a simplified run-time engine to determine the TLC`s crisp output for a given input.

  19. Logic-controlled occlusive cuff system

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Hoffler, G. W. (Inventor); Hursta, W. N.

    1981-01-01

    An occlusive cuff system comprises a pressure cuff and a source of regulated compressed gas feeding the cuff through an electrically operated fill valve. An electrically operated vent valve vents the cuff to the ambient pressure. The fill valve is normally closed and the vent valve is normally open. In response to an external start signal, a logic network opens the fill valve and closes the vent valve, thereby starting the pressurization cycle and a timer. A pressure transducer continuously monitors the pressure in the cuff. When the transducer's output equals a selected reference voltage, a comparator causes the logic network to close the fill valve. The timer, after a selected time delay, opens the vent valve to the ambient pressure, thereby ending the pressurization cycle.

  20. Astronomical pipeline processing using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Nemiroff, Robert J. Nemiroff

    2008-01-01

    Fundamental astronomical questions on the composition of the universe, the abundance of Earth-like planets, and the cause of the brightest explosions in the universe are being attacked by robotic telescopes costing billions of dollars and returning vast pipelines of data. The success of these programs depends on the accuracy of automated real time processing of images never seen by a human, and all predicated on fast and accurate automatic identifications of known astronomical objects and new astronomical transients. In this paper the needs of modern astronomical pipelines are discussed in the light of fuzzy-logic based decision-making. Several specific fuzzy-logic algorithms have been develop for the first time for astronomical purposes, and tested with excellent results on a test pipeline of data from the existing Night Sky Live sky survey.

  1. Voltage controlled spintronic devices for logic applications

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A reprogrammable logic gate comprising first and second voltage-controlled rotation transistors. Each transistor comprises three ferromagnetic layers with a spacer and insulating layer between the first and second ferromagnetic layers and an additional insulating layer between the second and third ferromagnetic layers. The third ferromagnetic layer of each transistor is connected to each other, and a constant external voltage source is applied to the second ferromagnetic layer of the first transistor. As input voltages are applied to the first ferromagnetic layer of each transistor, the relative directions of magnetization of the ferromagnetic layers and the magnitude of the external voltage determines the output voltage of the gate. By altering these parameters, the logic gate is capable of behaving as AND, OR, NAND, or NOR gates.

  2. Conceptual and logical level of database modeling

    NASA Astrophysics Data System (ADS)

    Hunka, Frantisek; Matula, Jiri

    2016-06-01

    Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.

  3. Nanoeletromechanical switch and logic circuits formed therefrom

    DOEpatents

    Nordquist, Christopher D.; Czaplewski, David A.

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  4. Bimetal switches in an AND logic gate

    NASA Astrophysics Data System (ADS)

    Lubrica, Joel V.; Lubrica, Quantum Yuri B.

    2016-09-01

    In this frontline, we use bimetal switches to provide inputs in an electrical AND logic gate. These switches can be obtained from the pre-heat starters of fluorescent lamps, by safely removing the glass enclosure. They may be activated by small open flames. This frontline has a historical aspect because fluorescent lamps, together with pre-heat starters, are now being replaced by compact fluorescent, halogen, and LED lamps.

  5. Plastic Logic quits e-reader market

    NASA Astrophysics Data System (ADS)

    Perks, Simon

    2012-07-01

    A UK firm spun out from the University of Cambridge that sought to be a world leader in flexible organic electronic circuits and displays has pulled out of the competitive e-reader market as it struggles to find a commercial outlet for its technology. Plastic Logic announced in May that it is to close its development facility in Mountain View, California, with the loss of around 40 jobs.

  6. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  7. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  8. Logic production systems: Analysis and synthesis

    SciTech Connect

    Donskoi, V.I.

    1995-03-01

    Many applied systems can be described in the following terms: given is a certain number of objects and a set of rules to construct new object from the original objects and from previously constructed objects. Mathematicians call such systems deductive, or calculi. Artificial intelligence scientists subsequently improved and elaborated the notion of production, retaining the Post operator A {yields} B as a basic element or a core. Production models are generally regarded as lacking a rigorous theory and governed by heuristics. Maslov noted: {open_quotes}We may assume that the language of calculi will become in the near future as natural and as widespread in new applications of discrete mathematics as, for instance, the language of graph theory is today.{close_quotes} Studies whose results are surveyed below were triggered by the development of applications of production systems in dual expert systems and focus around the following topics: (1) formalization of logic production systems (Pospelov has noted that results in the theory of production systems can be obtained by restricting the notion of productions and production systems); (2) analysis of completeness of logic production systems as a tool for realization of Boolean functions; (3) construction of a universal algorithmic model based on a logic production system; (4) construction of algorithms that synthesize the domain of deductive derivability of a given goal fact and analysis of algorithmic complexity of the corresponding problem. It is important to note that the results obtained so far relate to a strictly defined subclass - the subclass of logic production systems and machines. They do not pretend to cover the wider domain of applicability of the apparatus of deductive systems. Classical concepts and propositions of discrete mathematics used in this paper without further explanation are defined in existing literature.

  9. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  10. The Propositional Logic Induced by Means of Basic Algebras

    NASA Astrophysics Data System (ADS)

    Chajda, I.

    2015-12-01

    A propositional logic induced by means of commutative basic algebras was already described by M. Botur and R. Halaš. It turns out that this is a kind of non-associative fuzzy logic which can be used e.g. in expert systems. Unfortunately, there are other important classes of basic algebras which are not commutative, e.g. orthomodular lattices which are used as an axiomatization of the logic of quantum mechanics. This motivated us to develop another axioms and derivation rules which form a propositional logic induced by basic algebras in general. We show that this logic is algebraizable in the sense of W. J. Blok and D. Pigozzi.

  11. Logical operations realized on the Ising chain of N qubits

    SciTech Connect

    Asano, Masanari; Tateda, Norihiro; Ishii, Chikara

    2004-08-01

    Multiqubit logical gates are proposed as implementations of logical operations on N qubits realized physically by the local manipulation of qubits before and after the one-time evolution of an Ising chain. This construction avoids complicated tuning of the interactions between qubits. The general rules of the action of multiqubit logical gates are derived by decomposing the process into the product of two-qubit logical operations. The formalism is demonstrated by the construction of a special type of multiqubit logical gate that is simulated by a quantum circuit composed of controlled-NOT gates.

  12. A Runs-and-Systems Semantics for Logics of Announcements

    NASA Astrophysics Data System (ADS)

    Pucella, Riccardo; Sadrzadeh, Mehrnoosh

    Logics of announcements are logics of knowledge to reason about agents that communicate by broadcasting interpreted messages. These logics are typically given a semantics in terms of updatable Kripke structures, which tend to be abstract. We revisit the semantics of logics of announcements and develop a concrete semantics using runs and systems. The advantage is that we can devise models that capture scenarios without having to express properties of those scenarios within the logic itself. In this concrete setting, we study honesty as well as belief in the presence of announcements that are not broadcast to all agents in a system.

  13. An interval logic for higher-level temporal reasoning

    NASA Technical Reports Server (NTRS)

    Schwartz, R. L.; Melliar-Smith, P. M.; Vogt, F. H.; Plaisted, D. A.

    1983-01-01

    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included.

  14. Seismological Constraints on Geodynamics

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.

    2004-12-01

    Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over

  15. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  16. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.

    PubMed

    Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  17. Design of a Ferroelectric Programmable Logic Gate Array

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    2003-01-01

    A programmable logic gate array has been designed utilizing ferroelectric field effect transistors. The design has only a small number of gates, but this could be scaled up to a more useful size. Using FFET's in a logic array gives several advantages. First, it allows real-time programmability to the array to give high speed reconfiguration. It also allows the array to be configured nearly an unlimited number of times, unlike a FLASH FPGA. Finally, the Ferroelectric Programmable Logic Gate Array (FPLGA) can be implemented using a smaller number of transistors because of the inherent logic characteristics of an FFET. The device was only designed and modeled using Spice models of the circuit, including the FFET. The actual device was not produced. The design consists of a small array of NAND and NOR logic gates. Other gates could easily be produced. They are linked by FFET's that control the logic flow. Timing and logic tables have been produced showing the array can produce a variety of logic combinations at a real time usable speed. This device could be a prototype for a device that could be put into imbedded systems that need the high speed of hardware implementation of logic and the complexity to need to change the logic algorithm. Because of the non-volatile nature of the FFET, it would also be useful in situations that needed to program a logic array once and use it repeatedly after the power has been shut off.

  18. The effect of transcranial direct current stimulation on the expression of the flexor synergy in the paretic arm in chronic stroke is dependent on shoulder abduction loading.

    PubMed

    Yao, Jun; Drogos, Justin; Veltink, Fleur; Anderson, Caitlyn; Concha Urday Zaa, Janny; Hanson, Laura Imming; Dewald, Julius P A

    2015-01-01

    Reaching ability of the paretic upper extremity in individuals with stroke decreases with increased shoulder abduction (SABD) loads. Transcranial direct current stimulation (tDCS) has been implemented to improve movement ability following stroke. However, results from previous studies vary, perhaps due to the influence of impairment level and the type of motor tasks that were used to study the effects of tDCS. This study specifically examines the impact of SABD loading on the effects of tDCS in 9 individuals with moderate to severe chronic stroke. In 3 different sessions, participants repeated a reaching assessment with various SABD loads (supported on a haptic table, 25%, and 50% of maximum voluntary SABD torque) in random order, pre and post one of the following 15-min tDCS protocols: anodal stimulation of lesioned M1, cathodal stimulation of non-lesioned M1, or anodal stimulation of non-lesioned M1. Sham stimulation was also conducted preceding one of the tDCS sessions. The averaged maximum reaching distance over valid trials was calculated for each condition. We observed significant interactions between SABD load, tDCS protocol and time (i.e., pre or post-tDCS). Post hoc test showed that anodal stimulation of the lesioned M1 caused a clear trend (p = 0.058) of increasing the reaching ability at a medium level of SABD loading (25%), but not for higher loads (50%). This suggests that anodal stimulation increases residual corticospinal tract activity, which successfully increases reaching ability at moderate loads; however, is insufficient to make significant changes at higher SABD loads. We also found that cathodal stimulation of the non-lesioned M1 significantly (p = 0.018) decreased the reaching distance at a high level of SABD loading (50%). This study demonstrated, for the first time, that the effect of tDCS on the reaching ability is dependent on SABD loads in individuals with moderate to severe stroke. PMID:26029081

  19. Constructing a logical, regular axis topology from an irregular topology

    SciTech Connect

    Faraj, Daniel A.

    2014-07-01

    Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.

  20. Constructing a logical, regular axis topology from an irregular topology

    SciTech Connect

    Faraj, Daniel A.

    2014-07-22

    Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.

  1. Sub-kBT micro-electromechanical irreversible logic gate

    NASA Astrophysics Data System (ADS)

    López-Suárez, M.; Neri, I.; Gammaitoni, L.

    2016-06-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  2. Sub-kBT micro-electromechanical irreversible logic gate.

    PubMed

    López-Suárez, M; Neri, I; Gammaitoni, L

    2016-01-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed. PMID:27350333

  3. Sub-kBT micro-electromechanical irreversible logic gate

    PubMed Central

    López-Suárez, M.; Neri, I.

    2016-01-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input–output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed. PMID:27350333

  4. Credit Constraints for Higher Education

    ERIC Educational Resources Information Center

    Solis, Alex

    2012-01-01

    This paper exploits a natural experiment that produces exogenous variation on credit access to determine the effect on college enrollment. The paper assess how important are credit constraints to explain the gap in college enrollment by family income, and what would be the gap if credit constraints are eliminated. Progress in college and dropout…

  5. On Constraints in Assembly Planning

    SciTech Connect

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  6. Fixed Costs and Hours Constraints

    ERIC Educational Resources Information Center

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  7. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    SciTech Connect

    Not Available

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  8. Logic Models for Program Design, Implementation, and Evaluation: Workshop Toolkit. REL 2015-057

    ERIC Educational Resources Information Center

    Shakman, Karen; Rodriguez, Sheila M.

    2015-01-01

    The Logic Model Workshop Toolkit is designed to help practitioners learn the purpose of logic models, the different elements of a logic model, and the appropriate steps for developing and using a logic model for program evaluation. Topics covered in the sessions include an overview of logic models, the elements of a logic model, an introduction to…

  9. Logic brightens my day: Evidence for implicit sensitivity to logical validity.

    PubMed

    Trippas, Dries; Handley, Simon J; Verde, Michael F; Morsanyi, Kinga

    2016-09-01

    A key assumption of dual process theory is that reasoning is an explicit, effortful, deliberative process. The present study offers evidence for an implicit, possibly intuitive component of reasoning. Participants were shown sentences embedded in logically valid or invalid arguments. Participants were not asked to reason but instead rated the sentences for liking (Experiment 1) and physical brightness (Experiments 2-3). Sentences that followed logically from preceding sentences were judged to be more likable and brighter. Two other factors thought to be linked to implicit processing-sentence believability and facial expression-had similar effects on liking and brightness ratings. The authors conclude that sensitivity to logical structure was implicit, occurring potentially automatically and outside of awareness. They discuss the results within a fluency misattribution framework and make reference to the literature on discourse comprehension. (PsycINFO Database Record PMID:26889685

  10. Evolutionary constraints or opportunities?

    PubMed Central

    Sharov, Alexei A.

    2014-01-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155

  11. Infrared Kuiper Belt Constraints

    SciTech Connect

    Teplitz, V.L.; Stern, S.A.; Anderson, J.D.; Rosenbaum, D.; Scalise, R.J.; Wentzler, P.

    1999-05-01

    We compute the temperature and IR signal of particles of radius {ital a} and albedo {alpha} at heliocentric distance {ital R}, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of {ital COBE} DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance {ital R}, particle radius {ital a}, and particle albedo {alpha}. We then apply these results to a recently developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40{lt}R{lt}50{endash}90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the solar system of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally, we compare Kuiper belt IR spectra for various parameter values. Results of this work include: (1) numerical limits on Kuiper belt dust as a function of ({ital R}, {ital a}, {alpha}) on the basis of four alternative sets of constraints, including those following from recent discovery of the cosmic IR background by Hauser et al.; (2) application to the two-sector Kuiper belt model, finding mass limits and spectrum shape for different values of relevant parameters including dependence on time elapsed since last passage through a molecular cloud cleared the outer solar system of dust; and (3) potential use of spectral information to determine time since last passage of the Sun through a giant molecular cloud. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  12. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin

    2003-01-01

    This paper introduces JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint reasoner with a run- time software environment. Attachments in JNET are constraints over arbitrary Java objects, which are defined using Java code, at runtime, with no changes to the JNET source code.

  13. Mathematical Modeling of spatial disease variables by Spatial Fuzzy Logic for Spatial Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.

    2014-11-01

    A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.

  14. Reasoning about Typicality with Low Complexity Description Logics: The Logic {EL}^{+^bot}{T}

    NASA Astrophysics Data System (ADS)

    Giordano, Laura; Gliozzi, Valentina; Olivetti, Nicola; Pozzato, Gian Luca

    We present an extension of the low complexity Description Logic {EL}^{+^bot} for reasoning about prototypical properties and inheritance with exceptions. We add to {EL}^{+^bot} a typicality operator T, which is intended to select the "most normal" instances of a concept. In the resulting logic, called {EL}^{+^bot}{T}, the knowledge base may contain subsumption relations of the form "T(C) is subsumed by P", expressing that typical C-members have the property P. We show that the problem of entailment in {EL}^{+^bot}{T} is in co-NP by proving a small model result.

  15. Superconductive combinational logic circuit using magnetically coupled SQUID array

    NASA Astrophysics Data System (ADS)

    Yamanashi, Y.; Umeda, K.; Sai, K.

    2010-11-01

    In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.

  16. Reliability concerns with logical constants in Xilinx FPGA designs

    SciTech Connect

    Quinn, Heather M; Graham, Paul; Morgan, Keith; Ostler, Patrick; Allen, Greg; Swift, Gary; Tseng, Chen W

    2009-01-01

    In Xilinx Field Programmable Gate Arrays logical constants, which ground unused inputs and provide constants for designs, are implemented in SEU-susceptible logic. In the past, these logical constants have been shown to cause the user circuit to output bad data and were not resetable through off-line rcconfiguration. In the more recent devices, logical constants are less problematic, though mitigation should still be considered for high reliability applications. In conclusion, we have presented a number of reliability concerns with logical constants in the Xilinx Virtex family. There are two main categories of logical constants: implicit and explicit logical constants. In all of the Virtex devices, the implicit logical constants are implemented using half latches, which in the most recent devices are several orders of magnitudes smaller than configuration bit cells. Explicit logical constants are implemented exclusively using constant LUTs in the Virtex-I and Virtex-II, and use a combination of constant LUTs and architectural posts to the ground plane in the Virtex-4. We have also presented mitigation methods and options for these devices. While SEUs in implicit and some types of explicit logical constants can cause data corrupt, the chance of failure from these components is now much smaller than it was in the Virtex-I device. Therefore, for many cases, mitigation might not be necessary, except under extremely high reliability situations.

  17. A tight-binding study of a 1-bit half-adder based on diode logic integrated inside a single molecule

    NASA Astrophysics Data System (ADS)

    Stadler, R.; Ami, S.; Forshaw, M.; Joachim, C.

    2003-07-01

    The design of a 1-bit half-adder diode logic circuit inside a single molecule is investigated, with the chemical groups for diodes and wires bonded together to form the molecular circuit. With a circuit working in the ballistic transport regime, interference effects between the different electron paths in the circuit make the optimization of the circuit's logic function very delicate. In the tunnelling regime, these effects are partly suppressed. But the exponential decay of the current with the wire length imposes additional constraints for circuit design. A programmable gate logic array-like architecture would be expected be more useful for the design of a 1-bit adder in the ballistic regime due to the regularity of the circuit lattice, which might reduce interferences. On the other hand, a dedicated design which minimizes the amount of wiring might be the better choice for the tunnelling regime. However, we find that the logic output of classical diode logic circuits cannot be reproduced in either regime because Kirchhoff-like circuit rules do not apply. Furthermore, the geometry dependence of electron transmission in both regimes would make it impractical to build up logical functions like the SUM of an adder from simple OR- and AND-gates, even if the output pattern of these gates could be perfectly reproduced.

  18. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  19. Maintenance of arytenoid abduction following carbon dioxide laser debridement of the articular cartilage and joint capsule of the cricoarytenoid joint combined with prosthetic laryngoplasty in horses: an in vivo and in vitro study.

    PubMed

    Hawkins, J F; Couetil, L; Miller, M A

    2014-02-01

    The objective was to evaluate CO2 laser debridement of the cricoarytenoid joint (CAJ) combined with prosthetic laryngoplasty to prevent post-operative loss of arytenoid abduction in seven horses. Horses were assigned to either laser debridement of the left CAJ and laryngoplasty (laser treated, n=5) or control laryngoplasty (sham, n=2), and were evaluated with endoscopic examinations and measurement of right to left angle quotients (RLQ) to assess maintenance of arytenoid abduction. The animals were euthanased at intervals after surgery and larynges were harvested for post-mortem testing, including determination of translaryngeal flow, pressure, impedance and RLQ. Measurements were obtained under increasing vacuum-generated negative pressure with laryngoplasty sutures intact and with the knot/crimp of the laryngoplasty sutures removed. Following post-mortem testing the cricoarytenoid joints were examined histologically. Post-operative endoscopic examinations revealed no significant differences between RLQ measurements calculated for day 1 following surgery to the termination date of the study for the seven horses. Post-mortem RLQ at airflows of 10 and 60 L/s was significantly higher in sham than in laser treated horses both before and after knot/crimp removal. Translaryngeal impedance at 10 and 60 L/s was not statistically different between groups. Histopathology revealed necrosis and loss of articular cartilage in the laser treated horses. The lymphoid cell infiltration subsided but joint capsule and periarticular fibrosis increased over the course of the study. Post-operative loss of arytenoid abduction after laryngoplasty can be minimized with CO2 laser debridement of the CAJ joint. PMID:24405681

  20. Efficient dynamic optimization of logic programs

    NASA Technical Reports Server (NTRS)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  1. Improving Cooperative PSO using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Afsahi, Zahra; Meybodi, Mohammadreza

    PSO is a population-based technique for optimization, which simulates the social behaviour of the fish schooling or bird flocking. Two significant weaknesses of this method are: first, falling into local optimum and second, the curse of dimensionality. In this work we present the FCPSO-H to overcome these weaknesses. Our approach was implemented in the cooperative PSO, which employs fuzzy logic to control the acceleration coefficients in velocity equation of each particle. The proposed approach is validated by function optimization problem form the standard literature simulation result indicates that the approach is highly competitive specifically in its better general convergence performance.

  2. Pathway to the Piezoelectronic Transduction Logic Device

    NASA Astrophysics Data System (ADS)

    Solomon, P. M.; Bryce, B. A.; Kuroda, M. A.; Keech, R.; Shetty, S.; Shaw, T. M.; Copel, M.; Hung, L.-W.; Schrott, A. G.; Armstrong, C.; Gordon, M. S.; Reuter, K. B.; Theis, T. N.; Haensch, W.; Rossnagel, S. M.; Miyazoe, H.; Elmegreen, B. G.; Liu, X.-H.; Trolier-McKinstry, S.; Martyna, G. J.; Newns, D. M.

    2015-04-01

    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.

  3. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  4. Fuzzy logic components for iterative deconvolution systems

    NASA Astrophysics Data System (ADS)

    Northan, Brian M.

    2013-02-01

    Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.

  5. Fuzzy logic and guidance algorithm design

    SciTech Connect

    Leng, G.

    1994-12-31

    This paper explores the use of fuzzy logic for the design of a terminal guidance algorithm for an air to surface missile against a stationary target. The design objectives are (1) a smooth transition, at lock-on, (2) large impact angles and (3) self-limiting acceleration commands. The method of reverse kinematics is used in the design of the membership functions and the rule base. Simulation results for a Mach 0.8 missile with a 6g acceleration limit are compared with a traditional proportional navigation scheme.

  6. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury?

    PubMed Central

    Myer, Gregory D; Ford, Kevin R; Di Stasi, Stephanie L; Foss, Kim D Barber; Micheli, Lyle J; Hewett, Timothy E

    2014-01-01

    Background Identifying risk factors for knee pain and anterior cruciate ligament (ACL) injury can be an important step in the injury prevention cycle. Objective We evaluated two unique prospective cohorts with similar populations and methodologies to compare the incidence rates and risk factors associated with patellofemoral pain (PFP) and ACL injury. Methods The ‘PFP cohort’ consisted of 240 middle and high school female athletes. They were evaluated by a physician and underwent anthropometric assessment, strength testing and three-dimensional landing biomechanical analyses prior to their basketball season. 145 of these athletes met inclusion for surveillance of incident (new) PFP by certified athletic trainers during their competitive season. The ‘ACL cohort’ included 205 high school female volleyball, soccer and basketball athletes who underwent the same anthropometric, strength and biomechanical assessment prior to their competitive season and were subsequently followed up for incidence of ACL injury. A one-way analysis of variance was used to evaluate potential group (incident PFP vs ACL injured) differences in anthropometrics, strength and landing biomechanics. Knee abduction moment (KAM) cut-scores that provided the maximal sensitivity and specificity for prediction of PFP or ACL injury risk were also compared between the cohorts. Results KAM during landing above 15.4 Nm was associated with a 6.8% risk to develop PFP compared to a 2.9% risk if below the PFP risk threshold in our sample. Likewise, a KAM above 25.3 Nm was associated with a 6.8% risk for subsequent ACL injury compared to a 0.4% risk if below the established ACL risk threshold. The ACL-injured athletes initiated landing with a greater knee abduction angle and a reduced hamstrings-to-quadriceps strength ratio relative to the incident PFP group. Also, when comparing across cohorts, the athletes who suffered ACL injury also had lower hamstring/quadriceps ratio than the players in the PFP

  7. Integrated Science--Reasons & Constraints.

    ERIC Educational Resources Information Center

    Fox, M.; Oliver, P. M.

    1978-01-01

    Describes the philosophy and development of an integrated science program in a British secondary school. Discusses constraints to the program including laboratory facilities, money, and fewer laboratory technicians. (MA)

  8. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  9. Designing a Software Tool for Fuzzy Logic Programming

    NASA Astrophysics Data System (ADS)

    Abietar, José M.; Morcillo, Pedro J.; Moreno, Ginés

    2007-12-01

    Fuzzy Logic Programming is an interesting and still growing research area that agglutinates the efforts for introducing fuzzy logic into logic programming (LP), in order to incorporate more expressive resources on such languages for dealing with uncertainty and approximated reasoning. The multi-adjoint logic programming approach is a recent and extremely flexible fuzzy logic paradigm for which, unfortunately, we have not found practical tools implemented so far. In this work, we describe a prototype system which is able to directly translate fuzzy logic programs into Prolog code in order to safely execute these residual programs inside any standard Prolog interpreter in a completely transparent way for the final user. We think that the development of such fuzzy languages and programing tools might play an important role in the design of advanced software applications for computational physics, chemistry, mathematics, medicine, industrial control and so on.

  10. Feasible logic Bell-state analysis with linear optics.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. PMID:26877208

  11. Feasible logic Bell-state analysis with linear optics

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2016-02-01

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state.

  12. Toward spin-based Magneto Logic Gate in Graphene

    NASA Astrophysics Data System (ADS)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  13. Feasible logic Bell-state analysis with linear optics

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. PMID:26877208

  14. Fluid convection, constraint and causation

    PubMed Central

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  15. Chaogates: morphing logic gates that exploit dynamical patterns.

    PubMed

    Ditto, William L; Miliotis, A; Murali, K; Sinha, Sudeshna; Spano, Mark L

    2010-09-01

    Chaotic systems can yield a wide variety of patterns. Here we use this feature to generate all possible fundamental logic gate functions. This forms the basis of the design of a dynamical computing device, a chaogate, that can be rapidly morphed to become any desired logic gate. Here we review the basic concepts underlying this and present an extension of the formalism to include asymmetric logic functions. PMID:20887073

  16. Chaogates: Morphing logic gates that exploit dynamical patterns

    NASA Astrophysics Data System (ADS)

    Ditto, William L.; Miliotis, A.; Murali, K.; Sinha, Sudeshna; Spano, Mark L.

    2010-09-01

    Chaotic systems can yield a wide variety of patterns. Here we use this feature to generate all possible fundamental logic gate functions. This forms the basis of the design of a dynamical computing device, a chaogate, that can be rapidly morphed to become any desired logic gate. Here we review the basic concepts underlying this and present an extension of the formalism to include asymmetric logic functions.

  17. Logical obstacles in learning planetary motion

    NASA Astrophysics Data System (ADS)

    Dileep, V.; Sathe, D. V.

    Daniel Schaffer wrote now-a-days scientists and particularly theoretical physicists are not held in unquestioned esteem in his editorial This became the starting point of my presentation which was dedicated to the memory of Abdus Salam 1 Had he survived to witness the IYP he would have become surprised on knowing that Frank Wilczek had maximum trouble in learning classical mechanics 2 These facts require us to restudy learning O level physics from the logical point of view - in order to attract promising young students to take up challenges of physics and astronomy of the 21 st century Newton s laws of motion are known for more than 300 years and so there should not be any problems in learning and teaching these laws now in the 21 st century But findings of educators reported in the last 30 years show that there are some serious and global problems I have shown that there are some logical obstacles which make adverse effect on the comprehension of circular motion and related topics 3 In this presentation relevant aspects are discussed References begin enumerate item D V Sathe August 2001 Chemical Education International http www iupac org publications cei vol2 0201x0026 html item Frank Wilczek October 2004 Physics Today p 11 item D V Sathe December 2001 COSPAR Info Bulletin 152 p 53 end enumerate

  18. Cognitive dynamic logic algorithms for situational awareness

    NASA Astrophysics Data System (ADS)

    Perlovsky, L. I.; Ilin, R.

    2010-04-01

    Autonomous situational awareness (SA) requires an ability to learn situations. It is mathematically difficult because in every situation there are many objects nonessential for this situation. Moreover, most objects around are random, unrelated to understanding contexts and situations. We learn in early childhood to ignore these irrelevant objects effortlessly, usually we do not even notice their existence. Here we consider an agent that can recognize a large number of objects in the world; in each situation it observes many objects, while only few of them are relevant to the situation. Most of situations are collections of random objects containing no relevant objects, only few situations "make sense," they contain few objects, which are always present in these situations. The training data contains sufficient information to identify these situations. However, to discover this information all objects in all situations should be sorted out to find regularities. This "sorting out" is computationally complex; its combinatorial complexity exceeds by far all events in the Universe. The talk relates this combinatorial complexity to Gödelian limitations of logic. We describe dynamic logic (DL) that quickly learns essential regularities-relevant, repeatable objects and situations. DL is related to mechanisms of the brain-mind and we describe brain-imaging experiments that have demonstrated these relations.

  19. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  20. Trimming the UCERF2 hazard logic tree

    USGS Publications Warehouse

    Porter, Keith A.; Field, Edward H.; Milner, Kevin

    2012-01-01

    The Uniform California Earthquake Rupture Forecast 2 (UCERF2) is a fully time‐dependent earthquake rupture forecast developed with sponsorship of the California Earthquake Authority (Working Group on California Earthquake Probabilities [WGCEP], 2007; Field et al., 2009). UCERF2 contains 480 logic‐tree branches reflecting choices among nine modeling uncertainties in the earthquake rate model shown in Figure 1. For seismic hazard analysis, it is also necessary to choose a ground‐motion‐prediction equation (GMPE) and set its parameters. Choosing among four next‐generation attenuation (NGA) relationships results in a total of 1920 hazard calculations per site. The present work is motivated by a desire to reduce the computational effort involved in a hazard analysis without understating uncertainty. We set out to assess which branching points of the UCERF2 logic tree contribute most to overall uncertainty, and which might be safely ignored (set to only one branch) without significantly biasing results or affecting some useful measure of uncertainty. The trimmed logic tree will have all of the original choices from the branching points that contribute significantly to uncertainty, but only one arbitrarily selected choice from the branching points that do not.

  1. Some logical functions of joint control.

    PubMed Central

    Lowenkron, B

    1998-01-01

    Constructing a behavioral account of the language-related performances that characterize responding to logical and symbolic relations between stimuli is commonly viewed as a problem for the area of stimulus control. In response to this problem, the notion of joint control is presented here, and its ability to provide an interpretative account of these kinds of performances is explored. Joint control occurs when the currently rehearsed topography of a verbal operant, as evoked by one stimulus, is simultaneously evoked by another stimulus. This event, the onset of joint stimulus control by two stimuli over a common response topography, then sets the occasion for a response appropriate to this special relation between the stimuli. Although the mechanism described is simple, it seems to have broad explanatory properties. In what follows, these properties are applied to provide a behavioral interpretation of two sorts of fundamental, putatively cognitive, performances: those based on logical relations and those based on semantic relations. The first includes responding to generalized conceptual relations such as identity, order, relative size, distance, and orientation. The second includes responding to relations usually ascribed to word meaning. These include relations between words and objects, the specification of objects by words, name-object bidirectionality, and the recognition of objects from their description. Finally, as a preview of some further possibilities, the role of joint control in goal-oriented behavior is considered briefly. PMID:9599452

  2. Trends in infant abductions (2005).

    PubMed

    Nahirny, Cathy

    2005-01-01

    Infant kidnapping in healthcare facilities has been sharply reduced since the 1990s when educational programs and tagging systems were introduced. However, infant abductors in recent years have changed their methods of operation to meet improved nursery safeguards. In this updated report, the author warns of some new dangers posed by the Internet. PMID:16535955

  3. The influence of logical positivism on nursing practice.

    PubMed

    Whall, A L

    1989-01-01

    While logical positivism has been said to have had major influence on the development of nursing theory, whether this influence pervades other aspects of the discipline has not been discussed. One central aspect of logical positivism, the verificationist perspective, was used to examine texts, curricular guides and standards of practice that guided nursing practice in the decades in which logical positivism had influence on nursing theory construction. This review of the literature does not support the influence of logical positivism, as exemplified by the verificationist perspective, on nursing practice guidelines. PMID:2807333

  4. Using Tableau to Decide Expressive Description Logics with Role Negation

    NASA Astrophysics Data System (ADS)

    Schmidt, Renate A.; Tishkovsky, Dmitry

    This paper presents a tableau approach for deciding description logics outside the scope of OWL DL/1.1 and current state-of-the-art tableau-based description logic systems. In particular, we define a sound and complete tableau calculus for the description logic {ALBO} and show that it provides a basis for decision procedures for this logic and numerous other description logics with full role negation. {ALBO} is the extension of {ALC} with the Boolean role operators, inverse of roles, domain and range restriction operators and it includes full support for nominals (individuals). {ALBO} is a very expressive description logic which subsumes Boolean modal logic and the two-variable fragment of first-order logic and reasoning in it is NExpTime-complete. An important novelty is the use of a generic, unrestricted blocking rule as a replacement for standard loop checking mechanisms implemented in description logic systems. An implementation of our approach exists in the {textsc{MetTeL}} system.

  5. LOGIC ANALYSIS: TESTING PROGRAM THEORY TO BETTER EVALUATE COMPLEX INTERVENTIONS

    PubMed Central

    Rey, Lynda; Brousselle, Astrid; Dedobbeleer, Nicole

    2016-01-01

    Evaluating complex interventions requires an understanding of the program’s logic of action. Logic analysis, a specific type of program theory evaluation based on scientific knowledge, can help identify either the critical conditions for achieving desired outcomes or alternative interventions for that purpose. In this article, we outline the principles of logic analysis and its roots. We then illustrate its use with an actual evaluation case. Finally, we discuss the advantages of conducting logic analysis prior to other types of evaluations. This article will provide evaluators with both theoretical and practical information to help them in conceptualizing their evaluations.

  6. Compact modeling of perpendicular nanomagnetic logic based on threshold gates

    NASA Astrophysics Data System (ADS)

    Breitkreutz, Stephan; Eichwald, Irina; Kiermaier, Josef; Csaba, Gyorgy; Schmitt-Landsiedel, Doris; Becherer, Markus

    2014-05-01

    In this work, we show that physical-based compact modeling of perpendicular Nanomagnetic Logic is crucial for the design and simulation of complex circuitry. A compact model for field-coupled nanomagnets based on an Arrhenius switching model and finite element calculations is introduced. As physical parameters have an enormous influence on the behavior of the circuit, their modeling is of great importance. Exemplarily, a 1-bit full adder based on threshold logic gates is analyzed due to its reliability. The obtained findings are used to design a pure magnetic arithmetic logic unit, which can be used for basic Boolean and logic operations.

  7. Smart molecules at work--mimicking advanced logic operations.

    PubMed

    Andréasson, Joakim; Pischel, Uwe

    2010-01-01

    Molecular logic is an interdisciplinary research field, which has captured worldwide interest. This tutorial review gives a brief introduction into molecular logic and Boolean algebra. This serves as the basis for a discussion of the state-of-the-art and future challenges in the field. Representative examples from the most recent literature including adders/subtractors, multiplexers/demultiplexers, encoders/decoders, and sequential logic devices (keypad locks) are highlighted. Other horizons, such as the utility of molecular logic in bio-related applications, are discussed as well. PMID:20023848

  8. Integrated payload and mission planning, phase 3. Volume 2: Logic/Methodology for preliminary grouping of spacelab and mixed cargo payloads

    NASA Technical Reports Server (NTRS)

    Rodgers, T. E.; Johnson, J. F.

    1977-01-01

    The logic and methodology for a preliminary grouping of Spacelab and mixed-cargo payloads is proposed in a form that can be readily coded into a computer program by NASA. The logic developed for this preliminary cargo grouping analysis is summarized. Principal input data include the NASA Payload Model, payload descriptive data, Orbiter and Spacelab capabilities, and NASA guidelines and constraints. The first step in the process is a launch interval selection in which the time interval for payload grouping is identified. Logic flow steps are then taken to group payloads and define flight configurations based on criteria that includes dedication, volume, area, orbital parameters, pointing, g-level, mass, center of gravity, energy, power, and crew time.

  9. Procedural Code Generation vs Static Expansion in Modelling Languages for Constraint Programming

    NASA Astrophysics Data System (ADS)

    Martin, Julien; Martinez, Thierry; Fages, François

    To make constraint programming easier to use by the non-programmers, a lot of work has been devoted to the design of front-end modelling languages using logical and algebraic notations instead of programming constructs. The transformation to an executable constraint program can be performed by fundamentally two compilation schemas: either by a static expansion of the model in a flat constraint satisfaction problem (e.g. Zinc, Rules2CP, Essence) or by generation of procedural code (e.g. OPL, Comet). In this paper, we compare both compilation schemas. For this, we consider the rule-based modelling language Rules2CP with its static exansion mechanism and describe with a formal system a new compilation schema which proceeds by generation of procedural code. We analyze the complexity of both compilation schemas, and present some performance figures of both the compilation process and the generated code on a benchmark of scheduling and bin packing problems.

  10. Declarative Programming with Temporal Constraints, in the Language CG

    PubMed Central

    2015-01-01

    Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach. PMID:25893212

  11. Declarative Programming with Temporal Constraints, in the Language CG.

    PubMed

    Negreanu, Lorina

    2015-01-01

    Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach. PMID:25893212

  12. Combining local search and backtracking techniques for constraint satisfaction

    SciTech Connect

    Zhang, Jian; Zhang, Hantao

    1996-12-31

    Backtracking techniques are well-known traditional methods for solving many constraint satisfaction problems (CSPs) including the satisfiability (SAT) problem in the propositional logic. In recent years, it has been reported that local search techniques are very effective in solving some large-scale instances of the SAT problem. In this research, we combine the backtracking and local search techniques into a single method for solving SAT and CSPs. When setting a parameter of the method to either of its two extreme values, we obtain the ordinary backtracking procedure or the local search procedure. For some problems, if the parameter takes values in the middle of the two extremes, the new method is much more effective than either backtracking or local search. We tested the method with classical problems like the n-Queens and random SAT instances, as well as some difficult problems from finite mathematics. In particular, using the new method, we solved four open problems in design theory.

  13. Block QCA Fault-Tolerant Logic Gates

    NASA Technical Reports Server (NTRS)

    Firjany, Amir; Toomarian, Nikzad; Modarres, Katayoon

    2003-01-01

    Suitably patterned arrays (blocks) of quantum-dot cellular automata (QCA) have been proposed as fault-tolerant universal logic gates. These block QCA gates could be used to realize the potential of QCA for further miniaturization, reduction of power consumption, increase in switching speed, and increased degree of integration of very-large-scale integrated (VLSI) electronic circuits. The limitations of conventional VLSI circuitry, the basic principle of operation of QCA, and the potential advantages of QCA-based VLSI circuitry were described in several NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35; and Hybrid VLSI/QCA Architecture for Computing FFTs (NPO-20923), which follows this article. To recapitulate the principle of operation (greatly oversimplified because of the limitation on space available for this article): A quantum-dot cellular automata contains four quantum dots positioned at or between the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the quantummechanical sense) between neighboring dots within the cell. The Coulomb repulsion between the two electrons tends to make them occupy antipodal dots in the cell. For an isolated cell, there are two energetically equivalent arrangements (denoted polarization states) of the extra electrons. The cell polarization is used to encode binary information. Because the polarization of a nonisolated cell depends on Coulomb-repulsion interactions with neighboring cells, universal logic gates and binary wires could be constructed, in principle, by arraying QCA of suitable design in suitable patterns. Heretofore, researchers have recognized two major obstacles to realization of QCA

  14. Magnetic tunnel junction based spintronic logic and memory devices

    NASA Astrophysics Data System (ADS)

    Yao, Xiaofeng

    2011-12-01

    The development of semiconductor devices is limited by the high power consumption and further physical dimension reduction. Spintronic devices, especially the magnetic tunnel junction (MTJ) based devices, have advantages of non-volatility, reconfigurable capability, fast-switching speed, small-dimension, and compatibility to semiconductor devices, which is a promising candidate for future logic and memory devices. However, the previously proposed MTJ logic devices have been operated independently and therefore are limited to only basic logic operations. Consequently, the MTJ device has only been used as ancillary device in the circuit, rather than the main computation component. In this thesis, study has been done on both spintronic logic and memory devices. In the first part, systematic study has been performed on MTJ based logic devices in order to expand the functionalities and properties of MTJ devices. Basic logic cell with three-input has been designed and simulated. Nano-magnetic-channel has been proposed, which is the first design to realize the communication between the MTJ logic cells. With basic logic unit as a building block, a spintronic logic circuit has been designed with MTJ as the dominant component. HSPICE simulation has been done for this spintronic logic circuit, which acts as an Arithmetic Logic Unit. In the spintronic memory device part, study has been focused on the fundamental study on the current induced switching in MTJ devices with hybrid free layer. With hybrid free layer, magnetic non-uniformity is introduced along the current direction, which induces extra spin torque component. Unique current-induced switching has been observed and studied in the hybrid free layer MTJ. Adiabatic spin torque, which is introduced by spatial non-uniform magnetization in the hybrid free layer, plays an important role for the unique switching. By tuning the bias field, single-polar current switching was achieved in this hybrid MTJ device, which gives the

  15. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using

  16. Developmental constraints on behavioural flexibility

    PubMed Central

    Holekamp, Kay E.; Swanson, Eli M.; Van Meter, Page E.

    2013-01-01

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298

  17. Data assimilation with inequality constraints

    NASA Astrophysics Data System (ADS)

    Thacker, W. C.

    If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.

  18. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298

  19. Fuzzy Logic: A New Tool for the Analysis and Organization of International Business Communications.

    ERIC Educational Resources Information Center

    Sondak, Norman E.; Sondak, Eileen M.

    Classical western logic, built on a foundation of true/false, yes/no, right/wrong statements, leads to many difficulties and inconsistencies in the logical analysis and organization of international business communications. This paper presents the basic principles of classical logic and of fuzzy logic, a type of logic developed to allow for…

  20. Fruit Sorting Using Fuzzy Logic Techniques

    NASA Astrophysics Data System (ADS)

    Elamvazuthi, Irraivan; Sinnadurai, Rajendran; Aftab Ahmed Khan, Mohamed Khan; Vasant, Pandian

    2009-08-01

    Fruit and vegetables market is getting highly selective, requiring their suppliers to distribute the goods according to very strict standards of quality and presentation. In the last years, a number of fruit sorting and grading systems have appeared to fulfill the needs of the fruit processing industry. However, most of them are overly complex and too costly for the small and medium scale industry (SMIs) in Malaysia. In order to address these shortcomings, a prototype machine was developed by integrating the fruit sorting, labeling and packing processes. To realise the prototype, many design issues were dealt with. Special attention is paid to the electronic weighing sub-system for measuring weight, and the opto-electronic sub-system for determining the height and width of the fruits. Specifically, this paper discusses the application of fuzzy logic techniques in the sorting process.