Science.gov

Sample records for abe fermentation process

  1. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production.

  2. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    PubMed

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.

  3. Impact of sweet sorghum cuticular waxes (SSCW) on acetone-butanol-ethanol fermentation using Clostridium acetobutylicum ABE1201.

    PubMed

    Cai, Di; Chang, Zhen; Wang, Chengyu; Ren, Wenqiang; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2013-12-01

    The effect of cuticular waxes of sweet sorghum stem on acetone-butanol-ethanol (ABE) fermentation process was investigated. About 22.9% of butanol and 25.4% of ABE were decreased with fermentation period extended when SSCW was added. The inhibition of SSCW militate against both acidogenesis and solventogenesis phase, which were inconsistent with the inhibition of lignocellulose hydrolysate. Further studies on the composition of SSCW were performed. Regulations of inhibition with different carbon chain length of main compositions of SSCW on ABE fermentation were also investigated.

  4. Study of in situ 1-butanol pervaporation from A-B-E fermentation using a PDMS composite membrane: validity of solution-diffusion model for pervaporative A-B-E fermentation.

    PubMed

    Li, Si-Yu; Srivastava, Ranjan; Parnas, Richard S

    2011-01-01

    In this study, the application of a new polydimethylsiloxane (PDMS)/dual support composite membrane was investigated by incorporating the pervaporation process into the A-B-E (acetone-butanol-ethanol) fermentation. The performance of the A-B-E fermentation using the integrated pervaporation/fermentation process showed higher biomass concentrations and higher glucose consumption rates than those of the A-B-E fermentation without pervaporation. The performance of the membrane separation was studied during the separation of 1-butanol from three different 1-butanol solutions: binary, model, and fermentation culture solutions. The solution-diffusion model, specifically the mass transfer equation based on Fick's First Law, was shown to be applicable to the undefined A-B-E fermentation culture solutions. A quantitative comparison of 1-butanol separation from the three different solutions was made by calculating overall mass transfer coefficients of 1-butanol. It was found that the overall mass transfer coefficients during the separation of binary, model, and fermentation culture solutions were 1.50, 1.26, and 1.08 mm/h, respectively.

  5. Application of continuous substrate feeding to the ABE fermentation: Relief of product inhibition using extraction, perstraction, stripping, and pervaporation

    SciTech Connect

    Qureshi, N.; Maddox, I.S.; Friedl, A.

    1992-09-01

    The technique of continuous substrate feeding has been applied to the batch fermentation process using freely suspended cells, for ABE (acetone-butanol-ethanol) production. To avoid the product inhibition which normally restricts ABE production to less than 20 g/L and sugar utilization to 60 g/L, a product removal technique has been integrated into the fermentation process. The techniques investigated were liquid-liquid extraction, perstraction, gas-stripping, and pervaporation. By using a substrate of whey permeate, the reactor productivity has been improved over that observed in a traditional batch fermentation, while equivalent lactose utilization and ABE production values of 180 g and 69 g, respectively, have been achieved in a 1-L culture volume. 17 refs., 14 figs., 5 tabs.

  6. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    SciTech Connect

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponent system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.

  7. Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation.

    PubMed

    Sklavounos, Evangelos; Iakovlev, Mikhail; Survase, Shrikant; Granström, Tom; van Heiningen, Adriaan

    2013-11-01

    A process has been developed for conversion of spent liquor produced by SO2-ethanol-water (SEW) fractionation of oil palm empty fruit bunch (OPEFB) fibers to biofuels by ABE fermentation. The fermentation process utilizes Clostridia bacteria that produce butanol, ethanol and acetone solvents at a total yield of 0.26 g/g sugars. A conditioning scheme is developed, which demonstrates that it is possible to utilize the hemicellulose sugars from this agricultural waste stream by traditional ABE fermentation. Fractionation as well as sugar hydrolysis in the spent liquor is hindered by the high cation content of OPEFB, which can be partly removed by acidic leaching suggesting that a better deashing method is necessary. Furthermore, it is inferred that better and more selective lignin removal is needed during conditioning to improve liquor fermentability.

  8. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  9. Fermentation process

    SciTech Connect

    Lutzen, N.W.

    1982-02-23

    Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

  10. Continuous acetone-butanol-ethanol (ABE) fermentation and gas production under slight pressure in a membrane bioreactor.

    PubMed

    Chen, Chunyan; Wang, Linyuan; Xiao, Guoqing; Liu, Yucheng; Xiao, Zeyi; Deng, Qing; Yao, Peina

    2014-07-01

    Two rounds of acetone-butanol-ethanol (ABE) fermentation under slight pressure were carried out in the continuous and closed-circulating fermentation (CCCF) system. Spores of the clostridium were observed and counted, with the maximum number of 2.1 × 10(8) and 2.3 × 10(8)ml(-1) separately. The fermentation profiles were comparable with that at atmospheric pressure, showing an average butanol productivity of 0.14 and 0.13 g L(-1)h(-1). Moreover, the average gas productivities of 0.28 and 0.27 L L(-1)h(-1) were obtained in two rounds of CCCF, and the cumulative gas production of 52.64 and 25.92 L L(-1) were achieved, with the hydrogen volume fraction of 41.43% and 38.08% respectively. The results suggested that slight pressures have no obvious effect on fermentation performance, and also indicated the significance and feasibility of gas recovery in the continuous ABE fermentation process.

  11. Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation.

    PubMed

    Lépiz-Aguilar, Leonardo; Rodríguez-Rodríguez, Carlos E; Arias, María Laura; Lutz, Giselle

    2013-08-01

    Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, 40℃, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

  12. Acetone-Butanol-Ethanol (ABE) Fermentation Wastewater Treatment by Oleaginous Yeast Trichosporon cutaneum.

    PubMed

    Xiong, Lian; Huang, Chao; Li, Xiao-Mei; Chen, Xue-Fang; Wang, Bo; Wang, Can; Zeng, Xin-An; Chen, Xin-De

    2015-05-01

    In the present study, acetone-butanol-ethanol (ABE) fermentation wastewater with high chemical oxygen demand (COD) value (about 18,000 mg/L) was biologically treated by oleaginous yeast Trichosporon cutaneum without any pretreatment. During fermentation, most COD degradation was finished within 48 h and finally, a maximum COD degradation of 68% was obtained. The highest biomass and lipid content was 4.9 g/L and 14.7%, respectively. Various materials including sugars (glucose and xylose), organic acids (acetic acid and butyric acid), and alcohol compounds (ethanol and butanol) could be utilized as carbon sources by T. cutaneum simultaneously; thus, it has a broad carbon source spectrum and is a potential microorganism for biological treatment for various wastewaters. Overall, the lipid composition of microbial oils produced by this bioconversion is similar to that of vegetable oils, and thus, it could be used for biodiesel production.

  13. Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Wang, Yin-Rong; Chiang, Yu-Sheng; Chuang, Po-Jen; Chao, Yun-Peng; Li, Si-Yu

    2016-09-01

    In this study, the integrated in situ extraction-gas stripping process was coupled with continuous ABE fermentation using immobilized Clostridium acetobutylicum. At the same time, oleyl alcohol was cocurrently flowed into the packed bed reactor with the fresh medium and then recycled back to the packed bed reactor after removing butanol in the stripper. A high glucose consumption of 52 g/L and a high butanol productivity of 11 g/L/h were achieved, resulting in a high butanol yield of 0.21 g-butanol/g-glucose. This can be attributed to both the high bacterial activity for solvent production as well as a threefold increase in the bacterial density inside the packed bed reactor. Also reported is that 64 % of the butanol produced can be recovered by the integrated in situ extraction-gas stripping process. A high butanol productivity and a high glucose consumption were simultaneously achieved.

  14. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  15. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  16. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process.

    PubMed

    Cai, Di; Wang, Yong; Chen, Changjing; Qin, Peiyong; Miao, Qi; Zhang, Changwei; Li, Ping; Tan, Tianwei

    2016-07-01

    In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping.

  17. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    PubMed

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  18. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kanda, Kohzo; Kobayashi, Genta

    2010-05-01

    In this work, acetone-butanol-ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.

  19. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    PubMed

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  20. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  1. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation

    PubMed Central

    2012-01-01

    Background Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of thl promoter. Results The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach switched the traditional ABE (acetone-butanol-ethanol) fermentation to IBE (isopropanol-butanol-ethanol) fermentation. The total alcohol titer reached 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. Conclusions The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 can thus be considered as a good host for further engineering of solvent/alcohol production. PMID:22742819

  2. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production.

    PubMed

    Gu, Chunkai; Wang, Genyu; Mai, Shuai; Wu, Pengfei; Wu, Jianrong; Wang, Gehua; Liu, Hongjuan; Zhang, Jianan

    2017-03-01

    Butanol is an ideal renewable biofuel which possesses superior fuel properties. Previously, butanol-producing symbiotic system TSH06 was isolated in our lab, with microoxygen tolerance ability. To boost butanol yield for large-scale industrial production, TSH06 was used as parental strain and subjected to atmospheric and room temperature plasma (ARTP) and four rounds of genome shuffling (GS). ARTP mutant and GS strain were co-cultured with facultative anaerobic Bacillus cereus TSH2 to form a symbiotic system with microoxygen tolerance, which was then subjected to fermentation. Relative messenger RNA (mRNA) level of key enzyme gene was measured by real-time PCR. The highest butanol titer of TS4-30 reached 15.63 g/L, which was 34% higher than TSH06 (12.19 g/L). Compared with parental strain, mRNA of acid-forming gene in TS4-30 decreased in acidogenesis phase, while solvent-forming gene increased in solventogenesis phase. This gene expression pattern was consistent with high butanol yield and low acid level in TS4-30. In summary, symbiotic system TS4-30 was obtained with butanol titer improvement and microoxygen tolerance.

  3. The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone-butanol-ethanol).

    PubMed

    Yen, Hong-Wei; Wang, Yi-Cheng

    2013-10-01

    High butanol accumulation is due to feedback inhibition which leads to the low butanol productivity observed in acetone-butanol-ethanol (ABE) fermentation. The aim of this study is to use biodiesel as an extractant for the in situ removal of butanol from the broth. The results indicate that adding biodiesel as an extractant at the beginning of fermentation significantly enhances butanol production. No significant toxicity of biodiesel on the growth of Clostridium acetobutylicum is observed. In the fed-batch operation with glucose feeding, the maximum total butanol obtained is 31.44 g/L, as compared to the control batch (without the addition of biodiesel) at 9.85 g/L. Moreover, the productivity obtained is 0.295 g/L h in the fed-batch, which is higher than that of 0.185 g/L h for the control batch. The in situ butanol removal by the addition of biodiesel has great potential for commercial ABE production.

  4. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans

    PubMed Central

    2014-01-01

    Background Butanol is an industrial commodity and also considered to be a more promising gasoline substitute compared to ethanol. Renewed attention has been paid to solvents (acetone, butanol and ethanol) production from the renewable and inexpensive substrates, for example, lignocellulose, on account of the depletion of oil resources, increasing gasoline prices and deteriorating environment. Limited to current tools for genetic manipulation, it is difficult to develop a genetically engineered microorganism with combined ability of lignocellulose utilization and solvents production. Mixed culture of cellulolytic microorganisms and solventogenic bacteria provides a more convenient and feasible approach for ABE fermentation due to the potential for synergistic utilization of the metabolic pathways of two organisms. But few bacteria pairs succeeded in producing biobutanol of high titer or high productivity without adding butyrate. The aim of this work was to use Clostridium cellulovorans 743B to saccharify lignocellulose and produce butyric acid, instead of adding cellulase and butyric acid to the medium, so that the soluble sugars and butyric acid generated can be subsequently utilized by Clostridium beijerinckii NCIMB 8052 to produce butanol in one pot reaction. Results A stable artificial symbiotic system was constructed by co-culturing a celluloytic, anaerobic, butyrate-producing mesophile (C. cellulovorans 743B) and a non-celluloytic, solventogenic bacterium (C. beijerinckii NCIMB 8052) to produce solvents by consolidated bioprocessing (CBP) with alkali extracted deshelled corn cobs (AECC), a low-cost renewable feedstock, as the sole carbon source. Under optimized conditions, the co-culture degraded 68.6 g/L AECC and produced 11.8 g/L solvents (2.64 g/L acetone, 8.30 g/L butanol and 0.87 g/L ethanol) in less than 80 h. Besides, a real-time PCR assay based on the 16S rRNA gene sequence was performed to study the dynamics of the abundance of each strain

  5. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for production of acetone butanol ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 gL^-1^ corn stover, over 97% of the sugars were r...

  6. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  7. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China.

    PubMed

    Ni, Ye; Sun, Zhihao

    2009-06-01

    China is one of the few countries, which maintained the fermentative acetone-butanol-ethanol (ABE) production for several decades. Until the end of the last century, the ABE fermentation from grain was operated in a few industrial scale plants. Due to the strong competition from the petrochemical industries, the fermentative ABE production lost its position in the 1990s, when all the solvent fermentation plants in China were closed. Under the current circumstances of concern about energy limitations and environmental pollution, new opportunities have emerged for the traditional ABE fermentation industry since it could again be potentially competitive with chemical synthesis. From 2006, several ABE fermentation plants in China have resumed production. The total solvent (acetone, butanol, and ethanol) production capacity from ten plants reached 210,000 tons, and the total solvent production is expected to be extended to 1,000,000 tons (based on the available data as of Sept. 2008). This article reviews current work in strain development, the continuous fermentation process, solvent recovery, and economic evaluation of ABE process in China. Challenges for an economically competitive ABE process in the future are also discussed.

  8. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    PubMed

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system.

  9. Solar fermentation and distillation process

    SciTech Connect

    Schwartz, D.M.

    1984-06-19

    A solar fermentation process and distillation system for the manufacture of ethanol product suitable for blending with motor gasoline or as a substitute fuel for gasoline. Fermentation of starches or sugars is carried out in situ in solar collector tubes. The raw beer product emanating from the solar tubes is purified into a high quality ethanol fuel product by passing the beer product through a series of distillation columns whose internal reboil vapor is generated in whole or in substantial part through direct application of solar heat energy. The use of solar energy as heating source in the fermentation and distillation steps markedly reduces the need for external utilities such as steam and fuel to run the plant thereby greatly reducing the operating costs of the plant.

  10. Butanol production by fermentation: efficient bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...

  11. Novel developments in butanol fermentation: Microbial genetics to agricultural substrates, process technology, and downstream processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol is the major product of acetone-butanol-ethanol (ABE; ratio 3:6:1) fermentation. It can be produced from various carbohydrates such as glucose, corn, molasses, and whey permeate (a by-product of the dairy industry) using microbial strains such as Clostridium beijerinckii and/or C. acetobuty...

  12. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption.

  13. Process for the fermentative production of acetone, butanol and ethanol

    DOEpatents

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  14. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    PubMed Central

    2011-01-01

    Background Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report. PMID:22008648

  15. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

  16. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260.

    PubMed

    Qureshi, N; Singh, V; Liu, S; Ezeji, T C; Saha, B C; Cotta, M A

    2014-02-01

    A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for the production of acetone-butanol-ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 g L(-1) corn stover provided, over 97% of the sugars were released during hydrolysis and these were fermented completely with an ABE productivity of 0.34 g L(-1)h(-1) and yield of 0.39. This productivity is higher than 0.31 g L(-1)h(-1) when using glucose as a substrate demonstrating that AB could be produced efficiently from lignocellulosic biomass. Acetic acid that was released from the biomass during pretreatment and hydrolysis was also used by the culture to produce AB. An average rate of generation of sugars during corn stover hydrolysis was 0.98 g L(-1)h(-1). In this system AB was recovered using vacuum, and as a result of this (simultaneous product recovery), 100% sugars were used by the culture.

  17. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process.

  18. Integration of chemical catalysis with extractive fermentation to produce fuels.

    PubMed

    Anbarasan, Pazhamalai; Baer, Zachary C; Sreekumar, Sanil; Gross, Elad; Binder, Joseph B; Blanch, Harvey W; Clark, Douglas S; Toste, F Dean

    2012-11-08

    Nearly one hundred years ago, the fermentative production of acetone by Clostridium acetobutylicum provided a crucial alternative source of this solvent for manufacture of the explosive cordite. Today there is a resurgence of interest in solventogenic Clostridium species to produce n-butanol and ethanol for use as renewable alternative transportation fuels. Acetone, a product of acetone-n-butanol-ethanol (ABE) fermentation, harbours a nucleophilic α-carbon, which is amenable to C-C bond formation with the electrophilic alcohols produced in ABE fermentation. This functionality can be used to form higher-molecular-mass hydrocarbons similar to those found in current jet and diesel fuels. Here we describe the integration of biological and chemocatalytic routes to convert ABE fermentation products efficiently into ketones by a palladium-catalysed alkylation. Tuning of the reaction conditions permits the production of either petrol or jet and diesel precursors. Glyceryl tributyrate was used for the in situ selective extraction of both acetone and alcohols to enable the simple integration of ABE fermentation and chemical catalysis, while reducing the energy demand of the overall process. This process provides a means to selectively produce petrol, jet and diesel blend stocks from lignocellulosic and cane sugars at yields near their theoretical maxima.

  19. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process

    SciTech Connect

    Lu, CC; Dong, J; Yang, ST

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. (C) 2013 Elsevier Ltd. All rights reserved.

  20. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  1. Generalised additive modelling approach to the fermentation process of glutamate.

    PubMed

    Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping

    2011-03-01

    In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu.

  2. Microbial diversity and their roles in the vinegar fermentation process.

    PubMed

    Li, Sha; Li, Pan; Feng, Feng; Luo, Li-Xin

    2015-06-01

    Vinegar is one of the oldest acetic acid-diluted solution products in the world. It is produced from any fermentable sugary substrate by various fermentation methods. The final vinegar products possess unique functions, which are endowed with many kinds of compounds formed in the fermentation process. The quality of vinegar is determined by many factors, especially by the raw materials and microbial diversity involved in vinegar fermentation. Given that metabolic products from the fermenting strains are directly related to the quality of the final products of vinegar, the microbial diversity and features of the dominant strains involved in different fermentation stages should be analyzed to improve the strains and stabilize fermentation. Moreover, although numerous microbiological studies have been conducted to examine the process of vinegar fermentation, knowledge about microbial diversity and their roles involved in fermentation is still fragmentary and not systematic enough. Therefore, in this review, the dominant microorganism species involved in the stages of alcoholic fermentation and acetic acid fermentation of dissimilar vinegars were summarized. We also summarized various physicochemical properties and crucial compounds in disparate types of vinegar. Furthermore, the merits and drawbacks of vital fermentation methods were generalized. Finally, we described in detail the relationships among microbial diversity, raw materials, fermentation methods, physicochemical properties, compounds, functionality, and final quality of vinegar. The integration of this information can provide us a detailed map about the microbial diversity and function involved in vinegar fermentation.

  3. Cellulosic butanol biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol; ABE) fermentation. A pretreatment temperature of 200 deg C resulted in the...

  4. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    SciTech Connect

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.; Duffield, B. )

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  5. Ultrasound-enhanced recovery of butanol/ABE by pervaporation.

    PubMed

    Menchavez, Russel Navarro; Ha, Sung Ho

    2013-11-01

    The search for renewable sources of energy has led to renewed interests on the biochemical route for the production of butanol. Butanol production suffers from several drawbacks, mainly caused by butanol inhibition to the butanol-producing microorganism which makes it economically uncompetitive against the chemical process. One possible solution proposed is the in situ recovery of acetone-butanol-ethanol (ABE). Among the in situ recovery options, membrane processes like pervaporation have a great potential. Thus, the effects of temperature, feed concentration, and ultrasound irradiation on permeate concentration and permeation flux for the recovery of butanol/ABE by pervaporation from aqueous solutions were investigated in this study. In the butanol-water system, permeate butanol concentration as well as flux increased with an increase in temperature and butanol feed concentration. When pervaporation studies with ABE-water mixture were carried out at 60 °C for 2, 4, 8, 16, and 24 h, pervaporation profile revealed an optimal permeate concentration as well as permeation flux. Applications of ultrasound irradiation on pervaporation improved permeate concentration by about 23 g/L for both butanol and ABE. Ultrasound irradiation also improved butanol and ABE mass permeation flux by about 13 and 11 %, respectively.

  6. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE).

    PubMed

    Gao, Xiaofeng; Zhao, Hai; Zhang, Guohua; He, Kaize; Jin, Yanling

    2012-08-01

    Genome shuffling was applied to increase ABE production of the strict anaerobe C. acetobutylicum CICC 8012. By using physical and chemical mutagenesis, strains with superior streptomycin sulfate, 2-deoxy-D-glucose and butanol tolerance levels were isolated. These strains were used for genome shuffling. The best performing strain F2-GA was screened after two rounds of genome shuffling. With 55 g glucose/l as carbon source, F2-GA produced 22.21 g ABE/l in 72 h and ABE yield reached 0.42 g/g which was about 34.53 % improvement compared to the wild type. Fermentation parameters and gene expression of several key enzymes in ABE metabolic pathways were varied significantly between F2-GA and the wild type. These results demonstrated the potential use of genome shuffling to microbial breeding which were difficult to deal with traditional methods.

  7. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  8. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery

    SciTech Connect

    Xue, C; Zhao, JB; Liu, FF; Lu, CC; Yang, ST; Bai, FW

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L.h vs. 0.30 g/L-h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3 g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. (C) 2012 Elsevier Ltd. All rights reserved.

  9. AstroBiology Explorer Mission Concepts (ABE/ASPIRE)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Ennico, Kimberly A.

    2006-01-01

    The AstroBiology Explorer (ABE) and the Astrobiology Space InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) Where do we come from? and (2) Are we alone? as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission s observational program is focused on six tasks to: (1) Investigate the evolution of ice and organics in dense clouds and star formation regions, and the young stellar/planetary systems that form in them; (2) Measure the evolution of complex organic molecules in stellar outflows; (3) Study the organic composition of a wide variety of solar system objects including asteroids, comets, and the planets and their satellites; (4) Identify organic compounds in the diffuse interstellar medium and determine their distribution , abundance, and change with environment; (5) Detect and identify organic compounds in other galaxies and determine their dependence on galactic type; and (6) Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes. The ASPIRE mission s observational program expands upon ABE's core mission and adds tasks that (7) Address the role of silicates in interstellar organic chemistry; and (8) Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20(40) micron spectral region at moderate spectral resolution (R>2000). ASPIRE's spectrometer complement also includes a high-resolution (R>25,000) module over the 4-8 micron spectral region. Both missions target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in

  10. National Issues Forums in an ABE Setting. Final Report.

    ERIC Educational Resources Information Center

    Molek, Carol

    National Issues Forums (NIFs) were conducted for adult basic education (ABE) students in a Pennsylvania adult education and job training center. The forums provide a process of sharing thoughts and opinions about areas of pressing national concerns in an open exchange of everyone's opinion. After instructors participated in NIFs, they developed a…

  11. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2014-11-01

    Biobutanol is a promising biofuel due to the close resemblance of its fuel properties to gasoline, and it is produced via acetone-butanol-ethanol (ABE) fermentation using Clostridium species. However, lignin in the crystalline structure of the lignin-cellulose-hemicellulose biomass complex is not readily consumed by the Clostridium; thus, pretreatment is required to degrade this complex. During pretreatment, some fractions of cellulose and hemicellulose are converted into fermentable sugars, which are further converted to ABE. However, a major setback resulting from common pretreatment processes is the formation of sugar and lignin degradation compounds, including weak acids, furan derivatives, and phenolic compounds, which have inhibitory effects on the Clostridium. In addition, butanol concentration above 13 g/L in the fermentation broth is itself toxic to most Clostridium strain(s). This review summarizes the current state-of-the-art knowledge on the formation of microbial inhibitors during the most common lignocellulosic biomass pretreatment processes. Metabolic effects of inhibitors and their impacts on ABE production, as well as potential solutions for reducing inhibitor formation, such as optimizing pretreatment process parameters, using inhibitor tolerant strain(s) with high butanol yield ability, continuously recovering butanol during ABE fermentation, and adopting consolidated bioprocessing, are also discussed.

  12. Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction.

    PubMed

    Gao, Kai; Orr, Valerie; Rehmann, Lars

    2016-04-01

    Lipid extracted algae (LEA) is an attractive feedstock for alcohol fuel production as it is a non-food crop which is largely composed of readily fermented carbohydrates like starch rather than the more recalcitrant lignocellulosic materials currently under intense development. This study compares the suitability of ionic liquid extracted algae (ILEA) and hexane extracted algae (HEA) for acetone, butanol, and ethanol (ABE) fermentation. The highest butanol titers (8.05 g L(-1)) were achieved with the fermentation of the acid hydrolysates of HEA, however, they required detoxification to support product formation after acid hydrolysis while ILEA did not. Direct ABE fermentation of ILEA and HEA (without detoxification) starches resulted in a butanol titer of 4.99 and 6.63 g L(-1), respectively, which significantly simplified the LEA to butanol process. The study demonstrated the compatibility of producing biodiesel and butanol from a single feedstock which may help reduce the feedstock costs of each individual process.

  13. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  14. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.

    PubMed

    Li, Jingwen; Wang, Lan; Chen, Hongzhang

    2016-11-01

    The acetone-butanol-ethanol (ABE) fermentation of lignocellulose at high solids content has recently attracted extensive attention. However, the productivity of high solids ABE fermentation of lignocellulose is typically low in traditional processes due to the lack of efficient intensifying methods. In the present study, periodic peristalsis, a novel intensifying method, was applied to improve ABE production by the simultaneous saccharification and fermentation (SSF) of steam-exploded corn straw using Clostridium acetobutylicum ATCC824. The ABE concentration and the ABE productivity of SSF at a solids content of 17.5% (w/w) with periodic peristalsis were 17.1 g/L and 0.20 g/(L h), respectively, which were higher than those obtained under static conditions (15.2 g/L and 0.14 g/(L h)). The initial sugar conversion rate over the first 12 h with periodic peristalsis was 4.67 g/(L h) at 10 FPU/g cellulase dosage and 15% (w/w) solids content, an increase of 49.7% compared with the static conditions. With periodic peristalsis, the period of batch fermentation was shortened from 108 h to 84 h. The optimal operating regime was a low frequency (6 h(-1)) of periodic peristalsis in the acid-production phase (0-48 h) of SSF. Therefore, periodic peristalsis should be an effective intensifying method to increase the productivity of ABE fermentation at high solids content.

  15. Co-generation of microbial lipid and bio-butanol from corn cob bagasse in an environmentally friendly biorefinery process.

    PubMed

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-09-01

    Biorefinery process of corn cob bagasse was investigated by integrating microbial lipid and ABE fermentation. The effects of NaOH concentration on the fermentations performance were evaluated. The black liquor after pretreatment was used as substrate for microbial lipid fermentation, while the enzymatic hydrolysates of the bagasse were used for ABE fermentation. The results demonstrated that under the optimized condition, the cellulose and hemicellulose in raw material could be effectively utilized. Approximate 87.7% of the polysaccharides were converted into valuable biobased products (∼175.7g/kg of ABE along with ∼36.6g/kg of lipid). At the same time, almost half of the initial COD (∼48.9%) in the black liquor could be degraded. The environmentally friendly biorefinery process showed promising in maximizing the utilization of biomass for future biofuels production.

  16. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics.

    PubMed

    Altay, Filiz; Karbancıoglu-Güler, Funda; Daskaya-Dikmen, Ceren; Heperkan, Dilek

    2013-10-01

    Shalgam juice, hardaliye, boza, ayran (yoghurt drink) and kefir are the most known traditional Turkish fermented non-alcoholic beverages. The first three are obtained from vegetables, fruits and cereals, and the last two ones are made of milk. Shalgam juice, hardaliye and ayran are produced by lactic acid fermentation. Their microbiota is mainly composed of lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus paracasei subsp. paracasei in shalgam fermentation and L. paracasei subsp. paracasei and Lactobacillus casei subsp. pseudoplantarum in hardaliye fermentation are predominant. Ayran is traditionally prepared by mixing yoghurt with water and salt. Yoghurt starter cultures are used in industrial ayran production. On the other hand, both alcohol and lactic acid fermentation occur in boza and kefir. Boza is prepared by using a mixture of maize, wheat and rice or their flours and water. Generally previously produced boza or sourdough/yoghurt are used as starter culture which is rich in Lactobacillus spp. and yeasts. Kefir is prepared by inoculation of raw milk with kefir grains which consists of different species of yeasts, LAB, acetic acid bacteria in a protein and polysaccharide matrix. The microbiota of boza and kefir is affected from raw materials, the origin and the production methods. In this review, physicochemical properties, manufacturing technologies, microbiota and shelf life and spoilage of traditional fermented beverages were summarized along with how fermentation conditions could affect rheological properties of end product which are important during processing and storage.

  17. Methane fermentation process for utilization of organic waste

    NASA Astrophysics Data System (ADS)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  18. Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates.

    PubMed

    Bellido, Carolina; Loureiro Pinto, Marina; Coca, Mónica; González-Benito, Gerardo; García-Cubero, María Teresa

    2014-09-01

    ABE fermentation by Clostridium beijerinckii of steam-exploded and ozonated wheat straw hydrolysates was investigated. In steam-exploded hydrolysates, highest yields of 0.40 g/g ABE yield and 127.71 g ABE/kg wheat straw were achieved when the whole slurry from the pretreatment was used. In ozonated hydrolysates, 0.32 g/g ABE yield and 79.65 g ABE/kg wheat straw were obtained from washed ozonated wheat straw. Diverse effects were observed in steam explosion and ozonolysis of wheat straw which resulted in hemicellulose removal and acid insoluble lignin solubilization, respectively. SEM analysis showed structural differences in untreated and pretreated biomass. Depending on the operational strategy, after pretreatment and enzymatic hydrolysis, the glucose recovery ranged between 65.73-66.49% and 63.22-65.23% and the xylose recovery ranged between 45.19-61.00% and 34.54-40.91% in steam-exploded and ozonated hydrolysates, respectively. The effect of the main inhibitory compounds found in hydrolysates (oxalic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was studied through ABE fermentation in model media.

  19. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production.

  20. The Influence of Various Factors on the Methane Fermentation Process

    NASA Astrophysics Data System (ADS)

    Kurbanova, M. G.; Egushova, E. A.; Pozdnjakova, OG

    2015-09-01

    The article describes the stages of the methane fermentation process. The phases of methane formation are characterized. The results of the experimental data based on the study of various factors influencing the rate of biogas production and its yield are presented. Such factors as the size of the substrate particles and temperature conditions in the reactor are considered. It is revealed on the basis of experimental data which of the farm animals and poultry excrements are exposed to the most complete fermentation without special preparation. The relationship between fermentation regime, particle size of the feedstock and biogas yield is graphically presented.

  1. [Application of process engineering to remove lignocellulose fermentation inhibitors].

    PubMed

    Wang, Lan; Xia, Menglei; Chen, Hongzhang

    2014-05-01

    Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.

  2. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  3. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system.

    PubMed

    Cai, Di; Li, Ping; Chen, Changjing; Wang, Yong; Hu, Song; Cui, Caixia; Qin, Peiyong; Tan, Tianwei

    2016-11-01

    In this study, different pretreatment methods were evaluated for modified the corn stalk bagasse and further used the pretreated bagasse as immobilized carrier in acetone-butanol-ethanol fermentation process. Structural changes of the bagasses pretreated by different methods were analyzed by Fourier transform infrared, crystallinity index and scanning pictures by electron microscope. And the performances of batch fermentation using the corn stalk based carriers were evaluated. Results indicated that the highest ABE concentration of 23.86g/L was achieved using NaOH pretreated carrier in batch fermentation. Immobilized fermentation-pervaporation integration process was further carried out. The integration process showed long-term stability with 225-394g/L of ABE solvents on the permeate side of pervaporation membrane. This novel integration process was found to be an efficient method for biobutanol production.

  4. Protein enrichment of potato processing waste through yeast fermentation.

    PubMed

    Gélinas, P; Barrette, J

    2007-03-01

    Potato starch obtained from waste waters of chips manufacturing was used as a fermentation substrate for yeast protein enrichment. Among 18 yeast strains, 6 strains were screened according to their biomass yield and protein content after fermentation for 16 h at 30 degrees C in an aerated glucose-based liquid media (4.5 Ls). Using concentrated media (25% solids) made from potato starch pre-hydrolyzed with malt flour and batch-fermented for 20 h at 26 degrees C under aerobic conditions, Candida utilis ATCC 9256 was the most efficient protein-forming strain. Scaled-up at the 100 Ls level, the aerobic batch process was improved under fed-batch conditions with molasses supplementation. After drying, fermented starch contained 11-12% protein, including 7-8% yeast protein.

  5. Water reuse in the l-lysine fermentation process

    SciTech Connect

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.

  6. Ready Ready Exercises. "Ready-Set-ABE" To Ease Students' Transition into ABE Level Studies.

    ERIC Educational Resources Information Center

    Molek, Carol

    This booklet is intended to assist tutors in helping transitional and low-level adult basic education (ABE) students acquire the reading skills required to make a successful adjustment to regular ABE classes. The exercises provided are intended primarily for use in student-tutor learning teams, with students gradually completing greater portions…

  7. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii.

    PubMed

    Mu, Xindong; Sun, Wei; Liu, Chao; Wang, Haisong

    2011-08-01

    Water extract of steam-exploded corn stalk (SECS) was detoxified and used as feed for acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii. Utilization of water extract improved the total ABE yield (g ABE/g dry SECS). Separated fermentation showed higher fermentability (0.078 g ABE/g dry SECS) over typical fermentation (0.058 g ABE/g dry SECS). Furthermore, the final ABE yields (g ABE/g utilized sugar) from water extract neutralized by Ca(OH)(2), NaOH, and Na(2)SO(3) were 0.16, 0.1 and 0.07, respectively, suggesting that Ca(OH)(2) had the best detoxification effect.

  8. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.

    PubMed

    Qureshi, N; Hughes, S; Maddox, I S; Cotta, M A

    2005-07-01

    This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790-810 g L(-1)) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption-desorption processes has been calculated to be 1,948 kcal kg(-1) butanol as compared to 5,789 kcal kg(-1) butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg(-1) butanol, respectively.

  9. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  10. Functional Characterization of AbeD, an RND-Type Membrane Transporter in Antimicrobial Resistance in Acinetobacter baumannii

    PubMed Central

    Srinivasan, Vijaya Bharathi; Venkataramaiah, Manjunath; Mondal, Amitabha; Rajamohan, Govindan

    2015-01-01

    Background Acinetobacter baumannii is becoming an increasing menace in health care settings especially in the intensive care units due to its ability to withstand adverse environmental conditions and exhibit innate resistance to different classes of antibiotics. Here we describe the biological contributions of abeD, a novel membrane transporter in bacterial stress response and antimicrobial resistance in A. baumannii. Results The abeD mutant displayed ~ 3.37 fold decreased survival and >5-fold reduced growth in hostile osmotic (0.25 M; NaCl) and oxidative (2.631 μM–6.574 μM; H2O2) stress conditions respectively. The abeD inactivated cells displayed increased susceptibility to ceftriaxone, gentamicin, rifampicin and tobramycin (~ 4.0 fold). The mutant displayed increased sensitivity to the hospital-based disinfectant benzalkonium chloride (~3.18-fold). In Caenorhabditis elegans model, the abeD mutant exhibited (P<0.01) lower virulence capability. Binding of SoxR on the regulatory fragments of abeD provide strong evidence for the involvement of SoxR system in regulating the expression of abeD in A. baumannii. Conclusion This study demonstrates the contributions of membrane transporter AbeD in bacterial physiology, stress response and antimicrobial resistance in A. baumannii for the first time. PMID:26496475

  11. Fermentation kinetics and continuous process of L-asparaginase production.

    PubMed

    Liu, F S; Zajic, J E

    1973-01-01

    For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr(-1). The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield.

  12. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation.

    PubMed

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei

    2017-03-01

    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH4(+)-N in the better case were 100% and 98.3%, respectively.

  13. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Bai, Feng-Wu

    2013-05-10

    In this article, effect of zinc supplementation on acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum was studied. It was found that when 0.001 g/L ZnSO4·7H2O was supplemented into the medium, solventogenesis was initiated earlier, with 21.0 g/L ABE (12.6 g/L butanol, 6.7 g/L acetone and 1.7 g/L ethanol) produced with a fermentation time of 40 h, compared to 19.4 g/L ABE (11.7 g/L butanol, 6.4 g/L acetone and 1.3g/L ethanol) produced with a fermentation time of 64 h in the control without zinc supplementation, and correspondingly ABE and butanol productivities were increased to 0.53 and 0.32 g/L/h from 0.30 and 0.18 g/L/h, increases of 76.7% and 77.8%, respectively, but their yields were not compromised. The reason for this phenomenon was attributed to rapid acids re-assimilation for more efficient ABE production, which was in accordance with relatively high pH and ORP levels maintained during the fermentation process. The maximum cell density increased by 23.8%, indicating that zinc supplementation stimulated cell growth, and consequently facilitated glucose utilization. However, more zinc supplementation exhibited an inhibitory effect, indicating that zinc supplementation at very low levels such as 0.001 g/L ZnSO4·7H2O will be an economically competitive strategy for improving butanol production.

  14. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  15. Stereoselective degradation of Diclofop-methyl during alcohol fermentation process.

    PubMed

    Lu, Yuele; Diao, Jinling; Gu, Xu; Zhang, Yanfeng; Xu, Peng; Wang, Peng; Zhou, Zhiqiang

    2011-05-01

    Stereoselective degradation of Diclofop-methyl (DM) has been found in alcohol fermentation of grape must and sucrose solution with dry yeast. A method was developed for separation and determination the two enantiomers of DM during the fermentation process by high-performance liquid chromatography based on cellulose tri-(3,5-dimethylphenyl-carbamate) chiral stationary phase. The results showed that the enantiomers of DM degraded following the first-order kinetics in the sucrose solution and the degradation of DM enantiomers in grape must were biphasic (slow-fast-slow process). In the sucrose solution, half lives of (+)-(R)-DM and (-)-(S)-DM were calculated to be 8.5 h and 3.1 h, respectively. In the grape must, half life of (+)-(R)-DM was calculated to be 41.7 h while (-)-(S)-DM was 16.0 h. The result was that (-)-(S)-enantiomer degraded faster than the (+)-(R)-enantiomer in both alcohol fermentation. The results also showed that the differences of the enantioselective degradation of DM depended on the fermentation matrix. DM was configurationally stable in fermentation, showing no interconversion of (-)-(S)- to (+)-(R)- enantiomer, and vice-versa.

  16. Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101.

    PubMed

    Ezeji, T C; Qureshi, N; Blaschek, H P

    2005-01-26

    Use of starch solution as feed for butanol bioconversion processes employing Clostridium beijerinckii BA101 may have added economic advantage over the use of glucose. Acetone butanol ethanol (ABE) was produced from 30 gL(-1) starch solution using a continuous process. The bioreactor was fed at a dilution rate of 0.02 h(-1) and starch solution/feed volume (3 L) was replaced every 72 h. The continuous reactor fed with cornstarch solution (feed temperature 19 degrees C) produced approximately 6.0 gL(-1) total ABE. Increasing the feed storage temperature to 37 degrees C improved ABE production to 7.2 gL(-1) suggesting that retrogradation was occurring more rapidly at 19 degrees C. In both these cases the fermentation drifted toward acid production after approximately 260 h, consistent with the retrogradation of starch overtime. The use of soluble starch, which is less prone to retrogradation, resulted in the production of 9.9 gL(-1) ABE at 37 degrees C feed storage temperature, as compared to 7.2 gL(-1) ABE when cornstarch was used. It should be noted that gelatinized starch retrogradation takes place after sterilization and prior to use of the feed medium, and does not occur during long-term storage of the raw corn material in the months leading up to processing. The degree of hydrolysis of gelatinized starch decreased from 68.8 to 56.2% in 3 days when stored at 37 degrees C. Soluble starch which does not retrograde demonstrated no change in the degree of hydrolysis.

  17. Use of Proteomic Analysis To Elucidate the Role of Calcium in Acetone-Butanol-Ethanol Fermentation by Clostridium beijerinckii NCIMB 8052

    PubMed Central

    Han, Bei; Ujor, Victor; Lai, Lien B.; Gopalan, Venkat

    2013-01-01

    Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO3. We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO3 enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO3-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca2+. Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO3. PMID:23104411

  18. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented.

  19. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  20. Development of a high temperature microbial fermentation process for butanol

    SciTech Connect

    Jeor, Jeffery D. St.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  1. Effective multiple stages continuous acetone-butanol-ethanol fermentation by immobilized bioreactors: Making full use of fresh corn stalk.

    PubMed

    Chang, Zhen; Cai, Di; Wang, Yong; Chen, Changjing; Fu, Chaohui; Wang, Guoqing; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-04-01

    In order to make full use of the fresh corn stalk, the sugar containing juice was used as the sole substrate for acetone-butanol-ethanol production without any nutrients supplement, and the bagasse after squeezing the juice was used as the immobilized carrier. A total 21.34g/L of ABE was produced in batch cells immobilization system with ABE yield of 0.35g/g. A continuous fermentation containing three stages with immobilized cells was conducted and the effect of dilution rate on fermentation was investigated. As a result, the productivity and ABE solvents concentration reached 0.80g/Lh and 19.93g/L, respectively, when the dilution rate in each stage was 0.12/h (corresponding to a dilution rate of 0.04/h in the whole system). And the long-term operation indicated the continuous multiple stages ABE fermentation process had good stability and showed the great potential in future industrial applications.

  2. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    PubMed

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation.

  3. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  4. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek; Pim , Aristidou; Aristos , Rush; Brian

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  5. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  6. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  7. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  8. Regional, Rural Home ABE Program Spells Impact.

    ERIC Educational Resources Information Center

    Vachon, Claude

    Maine's State Division of Adult Education began setting up a regionalized Adult Basic Education (ABE) program in rural Franklin county in 1974 to serve the area's functional illiterates. Located in the building housing the Franklin County Community Action Program (CAP), linkages were developed with a large number of agencies; initially the 10 CAP…

  9. Innovative Materials for High Risk ABE Students.

    ERIC Educational Resources Information Center

    Connett, Dian; Rathburn, Rene

    This resource book contains innovative group activities, units of instruction, writing packets, and math activities that were developed to serve high-risk adult basic education (ABE) students. Included in the first section are units of study dealing with the following topics: Oregon history, personal health issues, controversial issues in science,…

  10. Effective ABE Programming: Nine Case Studies.

    ERIC Educational Resources Information Center

    Sjogren, Douglas; Jacobson, Larry

    The document presents an indepth study of nine selected exemplary adult basic education (ABE) programs in Region 8: Volunteers Clearing House, Fort Collins, Colorado; Utah Navajo Development Council, Blanding, Utah; Adult Education Tutorial Program, Denver, Colorado; Project SAVE, Lemmon, South Dakota; Gates Rubber Company, Denver, Colorado;…

  11. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  12. Enabling technologies: fermentation and downstream processing.

    PubMed

    Weuster-Botz, Dirk; Hekmat, Dariusch; Puskeiler, Robert; Franco-Lara, Ezequiel

    2007-01-01

    Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

  13. Expanding Learning and Teaching Processes in an ESL/Civics ABE Classroom Using an Interactive Video Lesson Plan in the U.S. Southwest: An Action Research Study

    ERIC Educational Resources Information Center

    Cajar-Bravo, Aristides

    2010-01-01

    This study is an action research project that analyzed the ways in which ESL students improve their language learning processes by using as a teaching tool a media literacy video and Civics Education for social skills; it was presented to two groups of 12 students who were attending an ESL/Civics Education Intermediate-Advanced class in an ABE…

  14. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

    PubMed

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel

    2013-08-01

    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  15. Process for the continuous production of fermentation alcohol

    SciTech Connect

    Bu'lock, J.D.

    1982-11-02

    A process is disclosed for the continuous production of fermentation alcohol, by effecting fermentation of a continuous or substantially continuous supply of the liquid substrate by a dense suspension of a suitable micro-organism in a reaction column wherein the suspension is maintained in a well mixed state. The mixture passes from the upper region of the reaction column into a degassing zone where less turbulent conditions readily permit degassing of the mixture, causing part of the degassed mixture to flow into a settling zone wherein quiescent conditions permit the biomass to settle out. The settled biomass is returned to the bottom of the reaction column to assist in the continuation of the fermentation process. Gases evolving from the top of the reaction column and from the tops of the degassing and settling zones are removed. At least a portion of the evolved gases are reintroduced into the bottom of the reaction column to maintain the well mixed state therein, and clarified liquor containing alcohol is removed from the top of the settling zone.

  16. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  17. Proteomic insight into the primycin fermentation process of Saccharomonospora azurea.

    PubMed

    Valasek, Andrea; Kiss, Írisz Éva; Fodor, István; Kovács, Márk; Urbán, Péter; Jámbor, Éva; Fekete, Csaba; Kerepesi, Ildikó

    2016-12-01

    Saccharomonospora azurea SZMC 14600 is a member of the family Pseudonocardiaceae exclusively used for industrial scale production of primycin a large 36-membered non-polyene macrolide lactone antibiotic belonging to the polyketide class of natural products. Even though maximum antibiotic yield has been achieved by empirically optimized two-step fermentation process, little is known about the molecular components and mechanisms underlying the efficient antibiotic production. In order to identify differentially expressed proteins (DEPs) between the pre- and main-fermentation stages of primycin, comparative 2D-PAGE experiments were performed. In total, 98 DEP spots were reproducibly detected, out of which four spots were excised from gels, and identified through MALDI-TOF/TOF mass spectrometry. Peptide mass fingerprint analysis revealed peptide matches to HicB antitoxin for the HicAB toxin-antitoxin system (EHK86651), to a nucleoside diphosphate kinase regulator ((Ndk; EHK81899) and two other proteins with unknown function (EHK88946 and EHK86777).

  18. Temperature compensation of ultrasonic velocity during the malolactic fermentation process

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Novoa-Díaz, D.; Chávez, J. A.; Turó, A.; García-Hernández, M. J.; Salazar, J.

    2015-12-01

    Ultrasonic properties of materials present a strong dependence on temperature and in turn the ultrasonic velocity of propagation in the material under test. It is precisely for this reason that most ultrasonic measurements are often carried out with thermostated samples by using either water tanks or climate chambers. This approach is viable in a laboratory and when the measured or characterized samples are relatively small. However, this procedure is highly improbable to be applied when in situ measurements in industrial environments must be performed. This goes for the case of, for example, ultrasonic velocity measurements in wine while it is performing malolactic fermentation inside a tank of hundreds of thousands of litres. In this paper two different practical approaches to temperature compensation are studied. Then, the two temperature compensation methods are applied to the measured ultrasonic velocity values along a whole malolactic fermentation process. The results of each method are discussed.

  19. The AstroBiology Explorer (ABE) Mission

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2003-01-01

    Introduction: Infrared spectroscopy in the 2.5- 16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Furthermore, the presence of D-enriched organics in meteorites suggests that a portion of these materials survives incorporation into protosolar nebulae. Unfortunately, neither the distribution of these materials in space nor their genetic and evolutionary relationships with each other or their environments are currently well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to use infrared spectroscopy to address outstanding problems in Astrochemistry which are particularly relevant to Astrobiology and are amenable to astronomical observation. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation and the Jet Propulsion Laboratory. ABE was selected for Phase A study during the last MIDEX AO round, but has yet to be selected for flight.

  20. [Effect of microparticle on fermentation process of filamentous microorganisms--a review].

    PubMed

    Niu, Kun; Mao, Jian; Zheng, Yuguo

    2015-03-04

    Filamentous microorganisms are important biocatalysts for the fermentation industry. They usually present three types of mycelial morphology in submerged cultivation: dispersed mycelium, clumps and pellet, which have an important relationship with the product quality and yield. This paper summarizes the effect of mycelial morphology on the fermentation results as well as the effect of adding microparticles on mycelial morphology, mycelial structure and fermentation yield during the fermentation process of filamentous microorganisms.

  1. Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Vepsäläinen, Jouko; Keinänen, Markku; Pappinen, Ari

    2015-03-01

    This study aims to efficiently use hemicellulose-based biomass for ABE (acetone-butanol-ethanol) production by co-fermentation with starch-based biomass. Two processes were investigated: (I) co-fermentation of sugars derived from hemicellulose and starch in a mixture of barley straw and grain that was pretreated with dilute acid; (II) co-fermentation of straw hemicellulosic hydrolysate and gelatinized grain slurry in which the straw was pretreated with dilute acid. The two processes produced 11.3 and 13.5 g/L ABE that contains 7.4 and 7.8 g/L butanol, respectively. In process I, pretreatment with 1.0% H2SO4 resulted in better ABE fermentability than with 1.5% H2SO4, but only 19% of pentoses were consumed. In process II, 95% of pentoses were utilized even in the hemicellulosic hydrolysate pretreated with more severe condition (1.5% H2SO4). The results suggest that process II is more favorable for hemicellulosic biomass utilization, and it is also attractive for sustainable biofuel production due to great biomass availability.

  2. D-depleted organic matter and graphite in the Abee enstatite chondrite

    NASA Astrophysics Data System (ADS)

    Remusat, L.; Rouzaud, J.-N.; Charon, E.; Le Guillou, C.; Guan, Y.; Eiler, J. M.

    2012-11-01

    through exchange and reaction with gaseous molecular hydrogen during their synthesis. In contrast, Abee organic matter was likely synthesized in a neutral (i.e., not ionized) environment where thermodynamic processes at equilibrium most likely controlled its isotopic composition. This organic matter could have been accreted in a minor component of Abee like the dark inclusions without (or prior to) exposure to the radiation responsible for D enrichments in other meteoritic organics. During the last brecciation events that have affected the Abee parent body, these inclusions could have been mixed with other Abee components. The properties of this organic matter can be interpreted as an indication that thermodynamic processes acted in the synthesis of organic matter in the protosolar disk, in addition to ion/molecule and gas/grains reaction witnessed by the D-rich insoluble organic matter contained in carbonaceous chondrites.

  3. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    PubMed

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar

    2016-10-01

    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary.

  4. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  5. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  6. Bacillus thuringiensis: fermentation process and risk assessment. A short review.

    PubMed

    Capalbo, D M

    1995-01-01

    Several factors make the local production of Bacillus thuringiensis (Bt) highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid) were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.

  7. Colorado Certificate of Accomplishment. Level 1 ABE Resource Guide.

    ERIC Educational Resources Information Center

    Williams, Kenya

    This resource guide contains learning activities designed to complement existing ABE curricula or become the cornerstone of an ABE curriculum integrating reading, writing, and math skills with practical life knowledge. The guide begins with an introduction, acknowledgments, and an overview of Colorado's Certificate of Accomplishment program, which…

  8. On mobile element transport in heated Abee. [chondrite thermal metamorphism

    NASA Technical Reports Server (NTRS)

    Ikramuddin, M.; Lipschutz, M. E.; Gibson, E. K., Jr.

    1979-01-01

    Abee chondrite samples were heated at 700 C for one week at 0.00001 to 0.001 atm Ne or at 0.00001 atm H2. Samples heated in Ne showed greater loss of Bi and Se and greater retention of Zn than those heated in H2. An inverse relationship between Zn retention and ambient Ne pressure was found. Seven trace elements (Ag, Co, Cs, Ga, In, Te, and Tl) were retained or lost to the same extent regardless of the heating conditions. Variations in the apparent activation energy for C above and below 700 C suggest that diffusive loss from different hosts and/or different mobile transport processes over the temperature range may have been in effect.

  9. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    SciTech Connect

    1984-08-01

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

  10. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

  11. Process for the continuous fermentation of aqueous slurries for the production of alcohol and yeast biomass

    SciTech Connect

    Dorsemagen, B.; Faust, U.; Hofer, N.; Prave, P.

    1982-08-24

    A continuous process is disclosed for the production of alcohol and yeast biomass by reaction in a uniform fermenting mixture of a sugarbearing, aqueous slurry, starter yeast, yeast nutrients and an oxygen-bearing gas. The yeast is a flocculating, bottom yeast, the portion of the wort which remains after separation of the alcohol-bearing medium therefrom, is recycled to the fermenting mixture, the oxygen-bearing gas is dispersed homogeneously throughout the fermenting mixture, and is introduced to maintain a mean-free oxygen concentration not greater than 1 ppm in the aqueous phase, and the process is controlled to maintain the measurable free sugar concentration in the fermenting mixture at a level which does not exceed 0.1 percent by weight, and to maintain the active yeast concentration in the fermenting mixture between 100 and 110 percent of the specific degree of fermentation.

  12. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  13. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.

    PubMed

    Dipasquale, L; Adessi, A; d'Ippolito, G; Rossi, F; Fontana, A; De Philippis, R

    2015-01-01

    Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.

  14. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil.

  15. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis.

    PubMed

    Cheng, Xi-Yu; Liu, Chun-Zhao

    2012-01-01

    A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%.

  16. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water.

  17. Reaching the Least Educated. 130 Local ABE Directors Tell How. Pennsylvania's Handbook on Recruitment.

    ERIC Educational Resources Information Center

    Madeira, Eugene L.

    Based on the experience of 130 local adult basic education (ABE) directors in Pennsylvania, this guide presents suggestions for recruiting the least educated adults into ABE programs. Following an introduction that defines ABE and examines whose responsibility ABE is, the guide is divided into 12 chapters. Each of the chapters develops one…

  18. Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g-COD fed were achieved at food-to-microorganism (F/M) ratios of ...

  19. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry.

    PubMed

    Hornedo-Ortega, Ruth; Álvarez-Fernández, M Antonia; Cerezo, Ana B; Garcia-Garcia, Isidoro; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2017-02-01

    Anthocyanins are the major polyphenolic compounds in strawberry fruit responsible for its color. Due to their sensitivity, they are affected by food processing techniques such as fermentation that alters both their chemical composition and organoleptic properties. This work aims to evaluate the impact of different fermentation processes on individual anthocyanins compounds in strawberry wine and vinegar by UHPLC-MS/MS Q Exactive analysis. Nineteen, 18, and 14 anthocyanin compounds were identified in the strawberry initial substrate, strawberry wine, and strawberry vinegar, respectively. Four and 8 anthocyanin compounds were tentatively identified with high accuracy for the 1st time to be present in the beverages obtained by alcoholic fermentation and acetic fermentation of strawberry, respectively. Both, the total and the individual anthocyanin concentrations were decreased by both fermentation processes, affecting the alcoholic fermentation to a lesser extent (19%) than the acetic fermentation (91%). Indeed, several changes in color parameters have been assessed. The color of the wine and the vinegar made from strawberry changed during the fermentation process, varying from red to orange color, this fact is directly correlated with the decrease of anthocyanins compounds.

  20. Readability as Applied to an ABE Assessment Instrument.

    ERIC Educational Resources Information Center

    Taylor, M. C.; Wahlstrom, M. W.

    1986-01-01

    Examines the procedure for applying the Fog, Flesch, and Fry readability formulas to the Internal, Powerful Others, and Chance Scales and for modifying the instrument for use with adult basic education (ABE) students. (Author/CH)

  1. Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argentinean bread processing technology.

    PubMed

    Samar, M M; Neira, M S; Resnik, S L; Pacin, A

    2001-11-01

    The stability of naturally occurring DON was evaluated during the fermentation stage of the bread-making process on a pilot scale. Two different products, French bread and Vienna bread, were prepared with naturally contaminated wheat flour (150 mg kg(-1)) under controlled experimental conditions. Dough was fermented at 30, 40 and 50 degrees C according to standard procedures employed in Argentinean low-technology bakeries. When the dough was fermented at 50 degrees C, the maximum reduction was 56% for the Vienna bread, with French bread being reduced by 41%. DON reduction during bread-making occurs not only in the baker due to thermal decomposition, but also during the fermentation step. The Argentinean traditional bread-making process might reduce DON levels during the fermentation stages if the dough is leavened at temperatures > 30 degrees C.

  2. The production of chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect

    Dale, M.C.; Havlik, S.; Lee, W.C.; Lineback, D.S.; Park, C.H.; Okos, M.R.

    1990-01-01

    A range of chemicals can be made from fermentation processes, and most fermentations are characterized by product inhibition. As product concentration increases, inhibitory products can substantially limit the rate of fermentation processes. Product recovery costs are a strong function of concentration. It is expensive to recover low levels of product from a fermentation broth. Thus, fermentation costs (which increase with higher product concentration) traditionally must be balanced against product recovery costs (which decrease with product concentration). A novel reactor-separator process has been developed at Purdue University to minimize product inhibition of fermentation rates. This reactor has been shown to exhibit very high productivities --- simultaneously producing and removing a inhibitory product while maintaining a high viable cell concentration in the reactor. The basic objective of this study is to develop an energy efficient and economical process to convert food wastes to usable fuels and chemicals. The work is divided into two major efforts: an applied phase which involves design and building of a whey to ethanol process as well as process design and optimization; and a basic phase which involves investigating alternative fermentation systems and fundamental research on immobilized cell reactor systems. This document discusses the study and its results.

  3. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    SciTech Connect

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  4. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  5. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions.

    PubMed

    Albergaria, Helena; Arneborg, Nils

    2016-03-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.

  6. The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum.

    PubMed

    Johnson, Erin E; Rehmann, Lars

    2016-06-01

    Waste crude glycerol from biodiesel production can be used to produce biobutanol using Clostridium pasteurianum with the main products being n-butanol, 1,3-propanediol (PDO) and ethanol. There has been much discrepancy and mystery around the cause and effect of process parameters on the product distribution, thus a better understanding of the pathway regulation is required. This study shows that as process pH decreased, the rate of cell growth and CO2 production also decreased, resulting in slower fermentations, increased duration of butanol production and higher butanol concentrations and yields. The production rate of PDO was multi-modal and the role of PDO appears to function in redox homeostasis. The results also showed that C. pasteurianum displayed little biphasic behavior when compared to Clostridia spp. typically used in ABE fermentation due to the alternative glycolysis-independent reductive pathway of PDO production, rendering it suitable for a continuous fermentation process.

  7. Changes in the ginsenoside content during the fermentation process using microbial strains

    PubMed Central

    Lee, So Jin; Kim, Yunjeong; Kim, Min-Gul

    2015-01-01

    Background Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process. PMID:26869833

  8. Use of Flow Cytometry To Follow the Physiological States of Microorganisms in Cider Fermentation Processes

    PubMed Central

    Herrero, Mónica; Quirós, Covadonga; García, Luis A.; Díaz, Mario

    2006-01-01

    The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes. PMID:17021224

  9. Complex permittivity measurement at millimetre-wave frequencies during the fermentation process of Japanese sake

    NASA Astrophysics Data System (ADS)

    Kouzai, Masaki; Nishikata, Atsuhiro; Fukunaga, Kaori; Miyaoka, Shunsuke

    2007-01-01

    Various chemical reactions occur simultaneously in barrels during the fermentation processes of alcoholic beverages. Chemical analyses are employed to monitor the change in chemical components, such as glucose and ethyl alcohol. The tests are carried out with extracted specimens, are costly and require time. We have developed a permittivity measurement system for liquid specimens in the frequency range from 2.6 to 50 GHz, and applied the system to fermentation monitoring. Experimental results proved that the observed change in complex permittivity suggests a decrease in the amount of glucose and an increase in alcohol content, which are the key chemical components during the fermentation process.

  10. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Tang, I-Ching; Zhao, Jingbo; Bai, Fengwu; Yang, Shang-Tian

    2016-11-01

    Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production.

  11. New process for production of fermented black table olives using selected autochthonous microbial resources

    PubMed Central

    Tufariello, Maria; Durante, Miriana; Ramires, Francesca A.; Grieco, Francesco; Tommasi, Luca; Perbellini, Ezio; Falco, Vittorio; Tasioula-Margari, Maria; Logrieco, Antonio F.; Mita, Giovanni; Bleve, Gianluca

    2015-01-01

    Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino) and two Greek (Kalamàta and Conservolea) cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days) mainly characterized by aldehydes; a second period (60 days) mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8 to 12 months to a maximum of 3 months) and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations. PMID:26441932

  12. Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts.

    PubMed

    Ballesteros, I; Oliva, J M; Ballesteros, M; Carrasco, J

    1993-01-01

    Different treatments to improve the thermotolerance of fermenting yeasts for simultaneous ethanol saccharification and fermentation process of cellulosic materials have been examined. Yeasts of the genera Saccharomyces and Kluyveromyces were tested for growth and fermentation at progressively higher temperatures in the range of 42-47 degrees C. The best results were obtained with K. marxianus LG, which was then submitted to different treatments in order to achieve thermotolerant clones. A total of 35 new clones were obtained that dramatically improved the SSF of 10% Solka-floc substrate at 45 degrees C when compared to the original strain, some with ethanol concentrations as high as 33 g/L.

  13. Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process.

    PubMed

    Setlhaku, Mpho; Heitmann, Sebastian; Górak, Andrzej; Wichmann, Rolf

    2013-05-01

    Gas stripping and pervaporation are investigated for butanol recovery in a two-stage acetone-butanol-ethanol (ABE) fermentation process. The first stage is operated in a continuous mode and the second stage as a fed-batch. Gas stripping coupled to the second stage and operated intermittently enabled additional glucose feeding in the second stage and up to 59 g/L butanol and 73 g/L total ABE solvents in the condensate. Concentration of 167 g/L butanol and 269 g/L ABE in the permeate was measured in ex situ pervaporation experiments using a PDMS membrane at temperature of 37 °C and pressure of 10mbars. The "operating window" tool is introduced to evaluate the feasibility of the existing ABE fermentations operated as continuous with cell recycle, as two-stages, with biomass immobilization or with integrated product removal. This tool enables the identification of the most favorable process configuration, which is the combination of cell immobilization and integrated product removal.

  14. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.

    PubMed

    Ezeji, T C; Qureshi, N; Blaschek, H P

    2004-02-01

    Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H(2) and CO(2) as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l(-1) and 60 g l(-1), respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l(-1) and produced 17.6 g total solvents l(-1) (yield 0.39 g g(-1), productivity 0.29 g l(-1) h(-1)). Using the integrated fermentation-gas stripping product-recovery system with CO(2) and H(2) as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l(-1)) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g(-1) and 1.16 g l(-1) h(-1), respectively.

  15. [Effect of temperature on the no cook, very high gravity ethanol fermentation process].

    PubMed

    Xu, Hongxian; Duan, Gang

    2010-03-01

    The effect of temperature on a very high gravity ethanol fermentation using no cook process was investigated. We found that a gradient temperature control strategy could improve the fermentation efficiency significantly, With the assistance of a new raw starch hydrolyzing enzyme and a gradient temperature control strategy, the ethanol concentration could reach up to 20% (V/V) within 90 h using commercially available dry yeast, when sorghum was used as the raw material and the dry substrate concentration was controlled at 35%.

  16. Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso.

    PubMed

    Tou, E H; Guyot, J P; Mouquet-Rivier, C; Rochette, I; Counil, E; Traoré, A S; Trèche, S

    2006-01-15

    Traditional cereal-based fermented foods are frequently used as complementary foods for infants and young children in Africa. This is the case for ben-saalga, a popular fermented gruel produced from pearl millet (Pennisetum glaucum) in Burkina Faso. Detailed knowledge of traditional processing is a prerequisite for investigating ways to improve both the nutritional and sanitary qualities of the corresponding foodstuff. In this work, the traditional processing of pearl millet into ben-saalga was investigated in 24 production units, and fermentation kinetics were studied in pilot scale experiments. Processing steps include: washing (optional), soaking of the grains (first fermentation step), grinding and sieving of the wet flour, settling (second fermentation step), and cooking. The soaking step was mainly characterized by alcoholic fermentation whereas lactic acid fermentation occurred during the settling step. Fermentation kinetics during settling indicates a temporal variation of metabolic activity. Initially, both homofermentative and heterofermentative pathways were simultaneously active, and later only a homofermentative pathway was active. The paste produced at the end of settling had a low pH (4.0+/-0.4) and its microflora was dominated by lactic acid bacteria (LAB) with an amylolytic LAB/LAB ratio of 12%. Sucrose disappeared in the grains during soaking but was not detected in the soaking water, whereas glucose, fructose and maltose appeared transiently. Glucose and fructose were the main substrates observed for lactic acid fermentation during the settling step; however unbalanced fermentation led to the hypothesis that starch hydrolysis products may also serve as substrates for lactic acid formation. At the end of the processing, a 75% and 83% decrease was observed in phytate (IP6) and raffinose, respectively. The sour gruel ben-saalga resulting from cooking the sour paste had inadequate nutritional characteristics with respect to infants' and young

  17. Monitoring and evaluation of alcoholic fermentation processes using a chemocapacitor sensor array.

    PubMed

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-09-02

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument.

  18. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    PubMed Central

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  19. [Analysis of changes in minerals contents during cider fermentation process by inductively coupled plasma mass spectrometry].

    PubMed

    Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang

    2015-01-01

    The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.

  20. Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths

    DTIC Science & Technology

    2006-04-01

    key species found in the fermentation broth: ethanol, butanol, acetic acid, oxalic acid, lactic acid, and butyric acid. Correlations of the rejection...into the feed tank of the RO system prior to the RO experiment. Ethanol, butanol, acetic acid, lactic acid, oxalic acid and butyric acid were used as...into a plastic syringe and filtered through a cartridge filter (Lida Manufacturing Corp. 0.45 lm hydrophilic cellulose acetate membrane) into a TOC

  1. Using banana to generate lactic acid through batch process fermentation.

    PubMed

    Chan-Blanco, Y; Bonilla-Leiva, A R; Velázquez, A C

    2003-12-01

    We evaluated the usefulness of waste banana for generating lactic acid through batch fermentation, using Lactobacillus casei under three treatments. Two treatments consisted of substrates of diluted banana purée, one of which was enriched with salts and amino acids. The control treatment comprised a substrate suitable for L. casei growth. When fermentation was evaluated over time, significant differences (P<0.05) were found in the three treatments for each of five variables analyzed (generation and productivity of lactic acid, and consumption of glucose, fructose, and sucrose). Maximum productivity was (in g l(-1) h(-1)) 0.13 for the regular banana treatment, 1.49 for the enriched banana, and 1.48 for the control, with no significant differences found between the latter two treatments. Glucose consumption curves showed that L. casei made greater use of the substrate in the enriched banana and control treatments than in the regular banana treatment. For fructose intake, the enriched banana treatment showed significantly better (P<0.05) results than the regular one. Sucrose consumption was insignificant (P<0.05), probably because fermentation time was too short. Even when enriched, diluted banana purée is an ineffective substrate for L. casei, probably because it lacks nutrients.

  2. Development of Bacillus thuringiensis fermentation and process control from a practical perspective.

    PubMed

    Yang, X M; Wang, S S

    1998-10-01

    Bacillus thuringiensis (Bt) is the most widely used biopesticide producer in the biological control market. It is very critical for the Bt pesticide industry to be able to achieve a high yield in the Bt fermentation process in order to reduce its cost and compete with chemical pesticides in the market. We review the overall development of Bt fermentation process research and provide our point of view for the future research opportunities and potential improvements. This minireview covers the areas of fermentation physiology, growth dynamics and high-yield process control. It is pointed out that many studies aimed to improve spore count and process research focusing on toxin protein yield is lacking. In addition, significant development opportunities reside in the process development for the genetically engineered Bt strains expressing multiple toxin proteins.

  3. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris.

    PubMed

    Melicherová, Kristína; Krahulec, Ján; Šafránek, Martin; Lišková, Veronika; Hopková, Diana; Széliová, Diana; Turňa, Ján

    2017-03-01

    Enterokinase is one of the most frequently used enzymes for the removal of affinity tags from target recombinant proteins. In this study, several fermentation strategies were assayed for the production of human enterokinase in Pichia pastoris under constitutive GAP promoter. Two of them with controlled specific growth rate during whole cultivation showed a very low enterokinase activity, under 1 U/ml, of the fermentation medium. On the contrary, the combined fermentation with a maximum specific growth rate at the initial phase of the fermentation and stationary-like phase during the rest of the fermentation showed a significant accumulation of the enterokinase in the medium, which counted up to 1400 U/ml. Lower cultivation temperature had a negative impact on the enzyme accumulation during this fermentation strategy. Downstream processes were focused on buffer environment optimization directly after cultivation, as at this time, the most amount of the activity is eliminated by endogenous proteases. Slightly positive effect on enzyme activity in the medium had an addition of liquid storage solution of EDTA and KOH to adjust pH to 8 and molarity of the EDTA to 50 mM. During the purification process, a significant amount of the enzyme was detected to be lost, which counted up to 90%. The purified enzyme, enterokinase, kept quality standard of the published enzymes.

  4. Integrated process for ammonia inactivation of aflatoxin-contaminated corn and ethanol fermentation

    SciTech Connect

    Bothast, R.J.; Nofsinger, G.W.; Lagoda, A.A.; Black, L.T.

    1982-04-01

    A process is described for converting aflatoxin-contaminated corn to ethanol via combining ammonia inactivation with the liquefaction step of the ethanol fermentation process. Better ethanol yields were obtained when ammonia was added during liquefaction than when no ammonia was added. Aflatoxin B/sub 1/ levels were reduced 80 to 85% by the process.

  5. DGGE and multivariate analysis of a yeast community in spontaneous cocoa fermentation process.

    PubMed

    Ferreira, A C R; Marques, E L S; Dias, J C T; Rezende, R P

    2015-12-28

    Cocoa bean is the main raw material used in the production of chocolate. In southern Bahia, Brazil, cocoa farming and processing is an important economic activity. The fermentation of cocoa is the processing stage that yields important chocolate flavor precursors and complex microbial involvement is essential for this process. In this study, PCR-denaturing gradient gel electrophoreses (DGGE) was used to investigate the diversity of yeasts present during the spontaneous fermentation of cocoa in southern Bahia. The DGGE analysis revealed a richness of 8 to 13 distinct bands of varied intensities among the samples; and samples taken at 24, 36, and 48 h into the fermentation process were found to group with 70% similarity and showed the greatest diversity of bands. Hierarchical clustering showed that all samples had common operational taxonomic units (OTUs) and the highest number of OTUs was found in the 48 h sample. Variations in pH and temperature observed within the fermenting mass over time possibly had direct effects on the composition of the existing microbial community. The findings reported here indicate that a heterogeneous yeast community is involved in the complex cocoa fermentation process, which is known to involve a succession of specialized microorganisms.

  6. Image analysis and mathematical modelling for the supervision of the dough fermentation process

    NASA Astrophysics Data System (ADS)

    Zettel, Viktoria; Paquet-Durand, Olivier; Hecker, Florian; Hitzmann, Bernd

    2016-10-01

    The fermentation (proof) process of dough is one of the quality-determining steps in the production of baking goods. Beside the fluffiness, whose fundaments are built during fermentation, the flavour of the final product is influenced very much during this production stage. However, until now no on-line measurement system is available, which can supervise this important process step. In this investigation the potential of an image analysis system is evaluated, that enables the determination of the volume of fermented dough pieces. The camera is moving around the fermenting pieces and collects images from the objects by means of different angles (360° range). Using image analysis algorithms the volume increase of individual dough pieces is determined. Based on a detailed mathematical description of the volume increase, which based on the Bernoulli equation, carbon dioxide production rate of yeast cells and the diffusion processes of carbon dioxide, the fermentation process is supervised. Important process parameters, like the carbon dioxide production rate of the yeast cells and the dough viscosity can be estimated just after 300 s of proofing. The mean percentage error for forecasting the further evolution of the relative volume of the dough pieces is just 2.3 %. Therefore, a forecast of the further evolution can be performed and used for fault detection.

  7. A Study to Determine Competencies Needed by ABE/APL Teachers.

    ERIC Educational Resources Information Center

    Mocker, Donald W.; Spear, George E.

    The research was conducted to identify competencies appropriate for adult basic education (ABE) teachers who use the adult performance level (APL) approach, and to determine which are critical for ABE/APL teachers. A jury of APL authorities was impaneled to: (1) validate that all ABE competencies established by Mocker in 1974 were appropriate for…

  8. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  9. Stochastic growth logistic model with aftereffect for batch fermentation process

    SciTech Connect

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  10. Kidney Dialysis Patients Discover New Hope through ABE Program.

    ERIC Educational Resources Information Center

    Amonette, Linda; And Others

    A program was developed to provide adult basic education (ABE) to kidney patients while they are receiving dialysis treatment. The program, which relies on an individualized learning approach, involved the coordinated efforts of the following parties: West Virginia Dialysis Facilities, Inc.; the Charleston Renal Group; and the Kanawha County Adult…

  11. Training Manual for Experienced ABE/GED Instructors.

    ERIC Educational Resources Information Center

    Muir, Harry P.; Wischropp, Theodore W.

    Intended for adult basic education (ABE) and general educational development (GED) instructors with at least one year of experience, this staff development training manual is designed for use in structured inservice training or as a guide or reference. Its eight chapters, written by practitioners throughout Kansas, cover some of the most important…

  12. The BEST Blueprint. Quality ABE in the Workplace.

    ERIC Educational Resources Information Center

    Westberry, Susan

    The Basic Educational Skills Training (BEST) workplace literacy demonstration model was designed to provide adult basic education (ABE) services simultaneously for multiple employers in Maury County, Tennessee. The BEST model focused on job-related instruction. The goal of the program was to achieve increased safety, productivity, and employee…

  13. The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis; Gautier, Nick; Greene, Thomas; McCreight, Craig; Mills, Gary; Purcell, William; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R = 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x 1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approximately 8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approximate 1-2 year mission lifetime.

  14. [Drug development from natural fermentation products: establishing a manufacturing process which maximizes the potential of microorganisms].

    PubMed

    Nagao, Koji; Ueda, Satoshi; Kanda, Munekazu; Oohata, Nobutaka; Yamashita, Michio; Hino, Motohiro

    2010-11-01

    Natural fermentation products have long been studied as attractive targets for drug discovery due to their amazing diverse, complex chemical structures and biological activities. As such, a number of revolutionary drugs developed from natural fermentation products have contributed to global human health. To commercialize a drug derived from natural fermentation products, an effective chemical entity must be identified and thoroughly researched, and an effective manufacturing process to prepare a commercial supply must be developed. To construct such a manufacturing process for tacrolimus and micafungin, the following studies were conducted: first, we focused on controlling the production of the tacrolimus-related compound FR900525, a fermentation by-product of tacrolimus which was critical for quality assurance of the drug substance. FR900525 production was reduced by using a mutant strain which produced more pipecolic acid, the biosynthesis material of tacrolimus, than the original strain. Then, to optimize the fermentation process of FR901379, an intermediate of micafungin, a fed-batch culture was adopted to increase FR901379 productivity. Additionally, FULLZONE(TM) impeller was installed into the scaled-up fermenter, reducing the agitation-induced damage to the mycelium. As a result, the mycelial form changed from filamentous to pellet-shaped, and the air uptake rate during fermentation was drastically improved. Finally, we conducted screening for FR901379 acylase-producing microorganisms, as FR901379 acylase is necessary to manufacture micafungin. We were able to easily discover FR901379 acylase-producing microorganisms in soil samples using our novel, convenient screening method, which involves comparing the difference in antibiotic activity between FR901379 and its deacylated product.

  15. Improved efficiency of butanol production by absorbed lignocellulose fermentation.

    PubMed

    He, Qin; Chen, Hongzhang

    2013-03-01

    Alkali-treated steam-exploded corn stover (SECSAT) was used as solid substrate for acetone-butanol-ethanol (ABE) production by absorbed lignocellulose fermentation (ALF) using Clostridium acetobutylicum ATCC 824. The ABE concentration in ALF culture had increased by 47% compared with that in submerged culture. More surprisingly, the acetone production was promoted and ethanol production was lower in the presence of SECSAT than that in its absence. ALF was also successfully in cofermentation of glucose and xylose, although decreased fermentability with an increase in the proportion of xylose. An invariable chemical composition and dry weight of SECSAT was found in ALF. Partial simultaneous saccharification and fermentation of SECSAT using a certain amount of cellulase could not only enhance the ABE concentration by 71%, but also significantly increase the area proportion of fiber cells in SECSAT from 53% to 90%, which would be an excellent paper making material.

  16. Developments in the fermentation process and quality improvement strategies for mead production.

    PubMed

    Iglesias, Antonio; Pascoal, Ananias; Choupina, Altino Branco; Carvalho, Carlos Alfredo; Feás, Xesús; Estevinho, Leticia M

    2014-08-19

    Mead is a traditional alcoholic drink derived from the fermentation of diluted honey in the presence of appropriate yeast. Its modern production, in general terms, involves the addition of nutrients to initial diluted honey, pasteurization, yeast inoculation, fermentation and removal of impurities. Undesirable events along the process have been reported; among them, we highlight: delayed or arrested fermentations, modified and unpleasant sensory and quality parameters of the final product. These problems have been linked to the inability of yeasts to accomplish their role in extreme growth conditions. Emphasis has also been placed on the long fermentation times required, ranging from weeks to months, particularly when traditional procedures are applied and when the honey concentration is low. A series of alterations to the must and technological changes have been proposed in order to optimize the mead production process. In this context, this review examines the evidence that aims to improve meads' quality and make the production process easier and more efficient, by clarifying the source of unexpected events, describing the implementation of different fermentative microorganisms and using new methodologies.

  17. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    PubMed

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  18. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  19. Effect of soy skim from soybean aqueous processing on the performance of corn ethanol fermentation.

    PubMed

    Yao, Linxing; Wang, Tong; Wang, Hui

    2011-10-01

    The feasibility of using soy skim, a co-product of the aqueous processing of soybeans, in ethanol production from corn was evaluated. Specific growth rates were compared when Saccharomyces cerevisiae was grown in soy skim and peptone-yeast extract media supplemented with glucose. Such soy skim was proved to be a good nitrogen source for yeast growth. Next, fermentation of dry-ground corn to ethanol using soy skim as the media was simulated on 1.5-L scale. Replacing water with soy skim increased the initial ethanol production rates by 4-32% while final ethanol yield was about 39 g/100 g dry corn, similar to the result when water was used. Solid and protein contents in the finished beer increased with the addition of soy skim. Thus, replacing water in corn-ethanol fermentation with soy skim is feasible, and may improve the economics of both aqueous soybean processing and corn ethanol fermentation.

  20. Design of a lamella settler for biomass recycling in continuous ethanol fermentation process.

    PubMed

    Tabera, J; Iznaola, M A

    1989-04-20

    The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.

  1. Monitoring of recombinant protein production using bioluminescence in a semiautomated fermentation process.

    PubMed

    Trezzani, I; Nadri, M; Dorel, C; Lejeune, P; Bellalou, J; Lieto, J; Hammouri, H; Longin, R; Dhurjati, P

    2003-01-01

    On-line optimization of fermentation processes can be greatly aided by the availability of information on the physiological state of the cell. The goal of our "BioLux" research project was to design a recombinant cell capable of intracellular monitoring of product synthesis and to use it as part of an automated fermentation system. A recombinant plasmid was constructed containing an inducible promoter that controls the gene coding for a model protein and the genes necessary for bioluminescence. The cells were cultured in microfermenters equipped with an on-line turbidity sensor and a specially designed on-line light sensor capable of continuous measurement of bioluminescence. Initial studies were done under simple culture conditions, and a linear correlation between luminescence and protein production was obtained. Such specially designed recombinant bioluminescent cells can potentially be applied for model-based inference of intracellular product formation, as well as for optimization and control of recombinant fermentation processes.

  2. Two-stage fermentation process for enhanced mannitol production using Candida magnoliae mutant R9.

    PubMed

    Savergave, Laxman S; Gadre, Ramchandra V; Vaidya, Bhalchandra K; Jogdand, Vitthal V

    2013-02-01

    Mutants of Candida magnoliae NCIM 3470 were generated by treatment of ultra-violet radiations, ethyl methyl sulphonate and N-methyl-N'-nitro-N-nitrosoguanidine. Mutants with higher reductase activity were screened by means of 2,3,5-triphenyl tetrazolium chloride agar plate assay. Among the screened mutants, the mutant R9 produced maximum mannitol (i.e. 46 g l(-1)) in liquid fermentation medium containing 250 g l(-1) glucose and hence was selected for further experiments. Preliminary optimization studies were carried out on shake-flask level which increased the mannitol production to 60 g l(-1) in liquid fermentation medium containing 300 g l(-1) glucose. A two-stage fermentation process comprising of growth phase and production phase was employed. During the growth phase, glucose was supplemented and aerobic conditions were maintained. Thereafter, the production phase was initiated by supplementing fructose and switching to anaerobic conditions by discontinuing aeration and decreasing the speed of agitation. The strategy of two-stage fermentation significantly enhanced the production of mannitol up to 240 g l(-1), which is the highest among all fermentative production processes and corresponds to 81 % yield and 4 g l(-1 )h(-1) productivity without formation of any by-product.

  3. Flavor impacts of glycerol in the processing of yeast fermented beverages: a review.

    PubMed

    Zhao, Xiangdong; Procopio, Susanne; Becker, Thomas

    2015-12-01

    Glycerol contributes to the beverage body and fullness. Moreover, it also influences the flavor intensity. As a major byproduct, glycerol not only serves critical roles in yeast osmoregulation and redox balancing, but also acts as the carbon competitor against ethanol in alcoholic fermentation. Therefore, increasing glycerol yield benefits both the flavor and ethanol reduction for the fermented beverages. Glycerol yield has been elevated either by fermentation optimization or by yeast genetic modification. The fermentation optimizations reached maximum 14 g/L glycerol through screening yeast strains and optimizing fermentation parameters. Meanwhile the yeast overexpressing GPD1 (encoding glycerol-3-phosphate dehydrogenase) produced up to 6 folds more glycerol for beer and wine. Except for glycerol improvement, the genetically modified yeasts accumulated dramatically undesirable compounds such as acetaldehyde, acetate and acetoin which are detrimental for beverage flavor. In comparison, the natural high glycerol producers showed strain-specific manner on the yeast-derived aroma compounds like volatile acids, fusel alcohols, esters, and aldehydes. Temperature, sugar concentration, nitrogen composition, oxygen and pH-value, which influence glycerol biosynthesis, also obtained various effects on the production of aromatic compounds. In the current review, we firstly deliberate the organoleptic contributions of glycerol for fermented beverages. Furthermore, glycerol optimization strategies are discussed regarding to the yield improvement, the genes expressions, the overall flavor impacts and the feasibilities in beverage applications. Lastly, for improving beverage flavor by glycerol optimization, a high-throughput platform is proposed to increase the screening capacity of yeast strains and parameters in the processing of fermented beverages.

  4. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  5. Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation.

    PubMed

    Sharma, A; Kapoor, A C

    1996-04-01

    Pearl millet (Pennisetum typhoideum) was fermented with Lactobacilli or yeasts alone and in combination, and with natural microflora after various processing treatments, as grinding, soaking, debranning, dry heat treatment, autoclaving and germination. Fermentation was carried out at 30 degrees C for 48 hours with Lactobacillus plantarum (LP) and Rhodotorula (R) isolated from naturally fermented pearl millet and Lactobacillus acidophilus (LA), Candida utilis (CU) and natural microflora (NF). Germination and autoclaving, and debranning and autoclaving were the most effective processing treatments to reduce the phytic acid, amylase inhibitors and polyphenols. There was a further reduction in these antinutrients due to fermentation. Phytic acid and amylase inhibitors were completely eliminated after fermentation in some of the samples especially in soaked, debranned and germinated ones. Polyphenols were altered non-significantly in general but fermentation with Lp + R and NF caused a significant increase in polyphenols.

  6. A strategy to design efficient fermentation processes for traditional beverages production: prickly pear wine.

    PubMed

    Navarrete-Bolaños, J L; Fato-Aldeco, E; Gutiérrez-Moreno, K; Botello-Álvarez, J E; Jiménez-Islas, H; Rico-Martínez, R

    2013-10-01

    This paper describes a methodology to establish an optimal process design for prickly pear wine production that preserves the peculiar and unique traits of traditional products, generating at the same time, technical information for appropriate design of both bioreactor and overall process. The strategy includes alcoholic fermentation optimization by the mixed native culture composed by Pichia fermentans and Saccharomyces cerevisiae, followed by malolactic fermentation optimization by Oenococcus oeni. The optimization criteria were based on multiple output functions: alcohol content, volatile compounds profile, organic acids profile, and compound contents related to color, which were analyzed by spectroscopy-chromatography methods and sensory analysis. The results showed that the mixed culture inoculated into a bioreactor containing prickly pear juice with 20 °Bx of fermentable sugars concentration, processed at a constant temperature of 20 °C for 240 h, leads to a fermented product with 9.93% (v/v) total alcohol content, and significant abundance of volatile compounds, which provide fruity and ethereal aromatic notes, complemented by a lively but not unpleasant acidity. This young wine was further subjected to malolactic fermentation at constant temperature (16 °C) for 192 h, decreasing malic acid, and balancing volatile compounds contents, thus resulting in a product with better aroma and flavor perception, and a velvety feeling of long aftertaste. Repeated assays showed that the process is stable, predictable, controllable, and reproducible. These results were used for process design and spreadsheet construction in order to simulate the process, and properly select and size the equipment required for such process.

  7. Optimization and validation of a GC-FID method for the determination of acetone-butanol-ethanol fermentation products.

    PubMed

    Lin, Xiaoqing; Fan, Jiansheng; Wen, Qingshi; Li, Renjie; Jin, Xiaohong; Wu, Jinglan; Qian, Wenbin; Liu, Dong; Xie, Jingjing; Bai, Jianxin; Ying, Hanjie

    2014-03-01

    An improved, simple gas chromatography-flame ionization detection (GC-FID) method was developed for measuring the products of acetone-butanol-ethanol (ABE) fermentation and the combined fermentation/separation processes. The analysis time per sample was reduced to less than 10 min compared to those of a conventional GC-FID (more than 20 min). The behavior of the compounds in temperature-programmed gas chromatographic runs was predicted using thermodynamic parameters derived from isothermal runs. The optimum temperature programming condition was achieved when the resolution for each peak met the analytical requirement and the analysis time was shortest. With the exception of acetic acid, the detection limits of the presented method for various products were below 10 mg/L. The repeatability and intermediate precision of the method were less than 10% (relative standard deviation). Validation and quantification results demonstrated that this method is a sensitive, reliable and fast alternative for conventional investigation of the adsorption-coupled ABE fermentation process.

  8. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    PubMed

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  9. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process.

    PubMed

    dos Santos, Danielle da Silveira; Camelo, Anna Carolina; Rodrigues, Kelly Cristina Pedro; Carlos, Luís Cláudio; Pereira, Nei

    2010-05-01

    Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L(-1) h(-1).

  10. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    PubMed

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  11. Improving Butanol Fermentation To Enter the Advanced Biofuel Market

    PubMed Central

    Tracy, Bryan P.

    2012-01-01

    ABSTRACT 1-Butanol is a large-volume, intermediate chemical with favorable physical and chemical properties for blending with or directly substituting for gasoline. The per-volume value of butanol, as a chemical, is sufficient for investing into the recommercialization of the classical acetone-butanol-ethanol (ABE) (E. M. Green, Curr. Opin. Biotechnol. 22:337–343, 2011) fermentation process. Furthermore, with modest improvements in three areas of the ABE process, operating costs can be sufficiently decreased to make butanol an economically viable advanced biofuel. The three areas of greatest interest are (i) maximizing yields of butanol on any particular substrate, (ii) expanding substrate utilization capabilities of the host microorganism, and (iii) reducing the energy consumption of the overall production process, in particular the separation and purification operations. In their study in the September/October 2012 issue of mBio, Jang et al. [mBio 3(5):e00314-12, 2012] describe a comprehensive study on driving glucose metabolism in Clostridium acetobutylicum to the production of butanol. Moreover, they execute a metabolic engineering strategy to achieve the highest yet reported yields of butanol on glucose. PMID:23232720

  12. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  13. Improved release and metabolism of flavonoids by steered fermentation processes: a review.

    PubMed

    Huynh, Nguyen Thai; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-10-24

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices.

  14. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  15. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment of orange processing waste (CPW) by steam explosion under various conditions (pretreatment time, pH and temperatures) was investigated. Pretreatments longer than 4 min with steam purging resulted in CPW containing less than 0.1% limonene, an inhibitor for fermentation. Steam pretreatmen...

  16. [Evaluation of the cellulase cost during the cassava cellulose ethanol fermentation process].

    PubMed

    Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Zhang, Jian; Bao, Jie

    2013-03-01

    Cellulose takes nearly 10% (W/W) dry weight of cassava tubers. In this study, the cellulase cost of different ethanol fermentation from cassava cellulose was evaluated. The processes include the direct saccharification and fermentation of original cassava cellulose residues, the direct saccharification and fermentation of pretreated cassava cellulose residues, and the simultaneous co-saccharification and fermentation of cassava starch and cassava cellulose. The results show that the cassava cellulose utilization in the first two processes were low with the enzyme cost of 13 602 and 11 659 RMB Yuan per tone of ethanol, respectively. In the third process, the final ethanol concentration increased from 101.5 g/L to 107.0 g/L when cassava cellulose and cassava starch were saccharified simultaneously. Comparing to the first two processes, the third one demonstrated the lowest enzyme cost at 3 589 RMB Yuan per ton of ethanol, which was less than the ethanol price and no additional equipment and operation cost input were added. The conclusion provided a practical way of cassava cellulose utilization in cassava ethanol industry.

  17. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.

    PubMed

    Lawford, Hugh G; Rousseau, Joyce D

    2003-01-01

    Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The "Iogen Process" for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity

  18. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    PubMed

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  19. Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.

    PubMed

    Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui

    2014-01-01

    A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.

  20. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer.

  1. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation.

  2. Study on the in-situ coupling process of fermentation, extraction and distillation for biobutanol production: process analysis

    NASA Astrophysics Data System (ADS)

    Jin, Fuqiang; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Li, Yan; Mu, Hui

    2017-01-01

    The transfer process of the in-situ coupling process of fermentation, extraction and distillation for biobutanol production was discussed from a theoretical point of view. The existence of temperature gradient in the extraction section was proved. The force of solute in the extracted liquid was discussed. And the mass transfer mechanism and impetus of the FEDIC process was analyzed. The theoretical analysis could provide a foundation for the following research.

  3. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives.

    PubMed

    John, Rojan P; Nampoothiri, K Madhavan; Pandey, Ashok

    2007-03-01

    The concept of utilizing excess biomass or wastes from agricultural and agro-industrial residues to produce energy, feeds or foods, and other useful products is not necessarily new. Recently, fermentation of biomass has gained considerable attention due to the forthcoming scarcity of fossil fuels and also due to the necessity of increasing world food and feed supplies. A cost-effective viable process for lactic acid production has to be developed for which several attempts have been initiated. Fermentation techniques result in the production of either D: (-) or L: (+) lactic acid, or a racemic mixture of both, depending on the type of organism used. The interest in the fermentative production of lactic acid has increased due to the prospects of environmental friendliness and of using renewable resources instead of petrochemicals. Amylolytic bacteria Lactobacillus amylovorus ATCC 33622 is reported to have the efficiency of full conversion of liquefied cornstarch to lactic acid with a productivity of 20 g l(-1) h(-1). A maximum of 35 g l(-1) h(-1) was reported using a high cell density of L. helveticus (27 g l(-1)) with a complete conversion of 55- to 60-g l(-1) lactose present in whey. Simultaneous saccharification and fermentation is proved to be best in the sense of high substrate concentration in lower reactor volume and low fermentation cost. In this review, a survey has been made to see how effectively the fermentation technology explored and exploited the cheaply available source materials for value addition with special emphasis on lactic acid production.

  4. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations.

    PubMed

    Zhang, Cheng Ming; Mao, Zhong Gui; Wang, Xin; Zhang, Jian Hua; Sun, Fu Bao; Tang, Lei; Zhang, Hong Jian

    2010-11-01

    An integrated ethanol-methane fermentation coupled system characterized with full wastewater reutilization was proposed. The waste distillage originated from ethanol distillation was treated with anaerobic digestion and then recycled for medium preparation in the next ethanol fermentation run. This process could enhance wastewater reutilization, save fresh water and reduce energy consumption in the cassava-based ethanol production. The results indicated that, when using anaerobic effluents from the digestion process with only one tank, an ethanol concentration of 10.5% (v/v) compatible with that of conventional one could be achieved, but ethanol fermentation was partially inhibited and operation time gradually prolonged from 48 to 105 h. Using anaerobic effluents from the digestion process with two subsequently connected tanks, ethanol fermentation performance could be largely improved, and the fermentation lag could be completely eliminated. The performance enhancement was due to the concentrations reduction in organic acids, such as acetic and propionic acids in the digestion effluents using two digestion tanks in-series.

  5. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.

    PubMed

    Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie

    2016-12-01

    Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

  6. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis.

    PubMed

    Viana, Roberta Oliveira; Magalhães-Guedes, Karina Teixeira; Braga, Roberto Alves; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    2017-03-07

    The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41gL(-1), reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid). Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains) providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains.

  7. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    PubMed

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  8. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste.

    PubMed

    Ueno, Yoshiyuki; Fukui, Hisatomo; Goto, Masafumi

    2007-02-15

    A pilot-scale experimental plant for the production of hydrogen and methane by a two-stage fermentation process was constructed and operated using a mixture of pulverized garbage and shredded paper wastes. Thermophilic hydrogen fermentation was established at 60 degrees C in the first bioreactor by inoculating with seed microflora. Following the hydrogenogenic process, methanogenesis in the second bioreactor was conducted at 55 degrees C using an internal recirculation packed-bed reactor (IRPR). After conducting steady-state operations under a few selected conditions, the overall hydraulic retention time was optimized at 8 d (hydrogenogenesis, 1.2 d; methanogenesis, 6.8 d), producing 5.4 m3/m3/d of hydrogen and 6.1 m3/m3/d of methane with chemical oxygen demand and volatile suspended solid removal efficiencies of 79.3% and 87.8%, respectively. Maximum hydrogen production yield was calculated to be 2.4 mol/mol hexose and 56 L/kg COD loaded. The methanogenic performance of the IRPR was stable, although the organic loading rate and the composition of the effluent from the hydrogenogenic process fluctuated substantially. A clone library analysis of the microflora in the hydrogenogenic reactor indicated that hydrogen-producing Thermoanaerobacterium-related organisms in the inoculum were active in the hydrogen fermentation of garbage and paper wastes, although no aseptic operations were applied. We speculate that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments. This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level.

  9. Cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  10. Microbiological and biochemical survey on the transition of fermentative processes in Fukuyama pot vinegar brewing.

    PubMed

    Okazaki, Sachiko; Furukawa, Soichi; Ogihara, Hirokazu; Kawarai, Taketo; Kitada, Chika; Komenou, Akiko; Yamasaki, Makari

    2010-06-01

    Traditional brewing of Fukuyama pot vinegar is a process that has been continued in Fukuyama, Kagoshima, Japan, for almost 200 years. The entire process proceeds from raw materials, including steamed rice, rice koji (steamed rice grown with a fungus, Aspergillus oryzae) and water, to produce vinegar in roughly capped large pots laid in the open air. No special fermentative manipulation is required, except for scattering dried rice koji (called furi-koji) on the surface of the mash to form a cap-like mat on the surface at the start of brewing. As the biochemical mechanism of the natural transition of the fermentative processes during brewing has not been fully explained, we conducted a microbiological and biochemical study on the transition. First, a distinct biochemical change was observed in the brewing of spring preparation; that is, a sharp decline in pH from 6.5 to 3.5 within the first 5 days of brewing was observed due to lactic acid fermentation. Alcoholic fermentation also proceeded with a sharp increase to 4.5% ethanol within the first 5 days under the acidic conditions, suggesting that saccharification and both fermentations proceed in parallel. Acidic conditions and ethanol accumulation restricted the growth of most microorganisms in the mash, and in turn provided a favorable growth condition for acetic acid bacteria which are acid resistant and "ethanol-philic." Acetic acid was detected from day 16 and gradually increased in concentration, reaching a maximum of 7% at day 70 that was maintained thereafter. Empirically furi-koji naturally sinks into the mash after around day 40 by an unknown mechanism, allowing acetic acid bacteria to easily form pellicles on the mash surface and promoting efficient acetic acid fermentation. Dominant microbial species involved in the three fermentations were identified by denaturing gradient gel electrophoresis analysis using PCR-amplified defined-regions of small rDNA from microorganisms in the brewing mash or colony

  11. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively.

  12. Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process.

    PubMed

    Lee, M J; Song, J H; Hwang, S J

    2009-01-01

    A two-stage hydrogen/methane fermentation process has emerged as a feasible engineering system to recover bio-energy from wastewater. Hydrogen-producing bacteria (HPB) generate hydrogen from readily available carbohydrates, and organic acids produced during the hydrogen fermentation step can be degraded to generate methane in the following step. Three strong acids, HCl, H(2)SO(4), and HNO(3), were tested to determine the appropriate pre-treatment method for enhanced hydrogen production. The hydrogen production rates of 230, 290, and 20 L/kg(-glucose)/day was observed for the sludge treated with HCl, H(2)SO(4), and HNO(3), respectively, indicating that the acid pre-treatment using either HCl or H(2)SO(4) resulted in a significant increase in hydrogen production. The fluorescent in situ hybridization method indicated that the acid pre-treatment selectively enriched HPB including Clostridium sp. of cluster I from inoculum sludge. After hydrogen fermentation was terminated, the sludge was introduced to a methane fermentation reactor. This experiment showed methane production rates of 100, 30, and 13 L/kg(-glucose)/day for the sludge pre-treated with HCl, H(2)SO(4), and HNO(3), respectively, implying that both sulfate and nitrate inhibited the activity of methane-producing bacteria. Consequently, the acid pre-treatment might be a feasible option to enhance biogas recovery in the two-stage fermentation process, and HCl was selected as the optimal strong acid for the enrichment of HPB and the continuous production of methane.

  13. Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters.

    PubMed

    Munk, Bernhard; Lebuhn, Michael

    2014-10-01

    A mesophilic maize-fed pilot-scale fermenter was severely acidified due to trace element (TE) deficiency. Mainly cobalt (0.07 mg * kg(-1) fresh mass (FM)), selenium (0.007 mg * kg(-1) FM) and sodium (13 mg * kg(-1) FM) were depleted. From this inoculum, three lab-scale flow-through fermenters were operated to analyse micronutrient deficiencies and population dynamics in more detail. One fermenter was supplemented with selenium, one with cobalt, and one served as control. After starvation and recovery of the fermenters, the organic loading rate (OLR) was increased. In parallel, the concentration (Real-Time PCR) of methanogens and their population composition (amplicon sequencing) was determined at the DNA and mRNA level. The parameters Metabolic Quotient (MQ) and cDNA/DNA were calculated to assess the activity of the methanogens. The control without TE supplementation acidified first at an OLR of 4.0 kg volatile solids (VS) * m(-3) * d(-1) while the singular addition of selenium and of cobalt positively influenced the fermenter stability up to an OLR of 4.5 or 5.0 kg VS * m(-3) * d(-1), respectively. In the stable process, the methanogenic populations were dominated by probably residual hydrogenotrophic Methanoculleus sp. (DNA-level), but representatives of versatile Methanosarcina sp. were most active (cDNA-level). When the TE supplemented fermenters began to acidify, Methanosarcina spp. were dominant in the whole (DNA-level) and the active (cDNA-level) community. The acidified control fermenter was dominated by Methanobacteriaceae genus IV. Until acidification, the concentration of methanogens increased with higher OLRs. The MQ indicated stress metabolism approximately one month before the TVA/TIC ratio reached a critical level of 0.7, demonstrating its suitability as early warning parameter of process acidification. The development of the cDNA/DNA ratio also reflected the increasing methanogenic activity with higher OLRs. Highest cDNA/DNA values (ca. 2) were

  14. The microbial fermentation characteristics depend on both carbohydrate source and heat processing: a model experiment with ileo-cannulated pigs.

    PubMed

    Nielsen, Tina Skau; Jørgensen, Henry; Knudsen, Knud Erik Bach; Lærke, Helle Nygaard

    2017-04-02

    The effects of carbohydrate (CHO) source and processing (extrusion cooking) on large intestinal fermentation products were studied in ileo-cannulated pigs as a model for humans. Pigs were fed diets containing barley, pea or a mixture of potato starch:wheat bran (PSWB) either raw or extrusion cooked. Extrusion cooking reduced the amount of starch fermented in the large intestine by 52-96% depending on the CHO source and the total pool of butyrate in the distal small intestine + large intestine by on average 60% across diets. Overall, extrusion cooking caused a shift in the composition of short-chain fatty acids (SCFA) produced towards more acetate and less propionate and butyrate. The CHO source and processing highly affected the fermentation characteristics and extrusion cooking generally reduced large intestinal fermentation and resulted in a less desirable composition of the fermentation products. The latter outcome is non-conducive to a healthy large intestinal environment and its resulting metabolic health.

  15. Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production.

    PubMed

    Mussatto, Solange I; Aguiar, Luís M; Marinha, Mariana I; Jorge, Rita C; Ferreira, Eugénio C

    2015-12-01

    Three different fermentation processes for the production of fructooligosaccharides (FOS) were evaluated and compared in terms of economic aspects and environmental impact. The processes included: submerged fermentation of sucrose solution by Aspergillus japonicus using free cells or using the cells immobilized in corn cobs, and solid-state fermentation (SSF) using coffee silverskin as support material and nutrient source. The scale-up was designed using data obtained at laboratory scale and considering an annual productivity goal of 200 t. SSF was the most attractive process in both economic and environmental aspects since it is able to generate FOS with higher annual productivity (232.6 t) and purity (98.6%) than the other processes; reaches the highest annual profit (6.55 M€); presents the lowest payback time (2.27 years); and is more favourable environmentally causing a lower carbon footprint (0.728 kg/kg, expressed in mass of CO2 equivalent per mass of FOS) and the lowest wastewater generation.

  16. [Performance optimization of property-improved biodiesel manufacturing process coupled with butanol extractive fermentation].

    PubMed

    Zhang, Longyun; Yang, Ying; Shi, Zhongping

    2008-11-01

    The products concentrations in traditional acetone-butanol (AB) fermentation are too low that large amount of energy has to be consumed in the distillation and product recovery process. Aiming at direct utilization of the fermentation products, in this study, optimization of property-improved biodiesel manufacturing process coupled with AB extractive fermentation was conducted, under the condition of using the biodiesel originated from waste cooking oil as the extractant and high concentrated corn flour medium. The effect of biodiesel/broth volume ratio, waste supernatant recycle ratio, and electronic carrier addition on the major process performance index was carefully investigated. Under the optimized condition, the biodiesel quality was improved with the cetane value increased from 51.4 to 54.4; "actual butanol yield" reached to a level of 18%, and waste supernatant recycle ratio exceeded 50%. In this way, elimination of energy-consuming product recovery process and realization of "energy-saving & waste minimization" industrial production target advocated by the state government, could be potentially expected.

  17. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    PubMed

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  18. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation

    PubMed Central

    Lanza, Barbara

    2013-01-01

    The process of transformation of table olives from tree to table is the result of complex biochemical reactions that are determined by the interactions between the indigenous microflora of the olives, together with a variety of contaminating microrganisms from different sources [fiber-glass fermenters, polyvinyl chloride (PVC) tanks, pipelines, pumps, and water], with the compositional characteristics of the fruit. One of the most important aspects of improving the quality of table olives is the use of selected microorganisms to drive the fermentation. These can supplant the indigenous microflora and, in particular, the complementary microflora that are responsible for spoilage of canned olives. In this context, from a technological point of view, a well-characterized collection of microrganisms (lactic acid bacteria, yeast) that can be isolated from the matrix to be processed (the olive fruit) will provide the basis for the development of starter culture systems. These cultures can be fully compatible with the typical products and will guarantee high quality standards. Inoculation of the brine with such selected starter cultures will reduce the probability of spoilage, and help to achieve an improved and more predictable fermentation process. Control of the fermentation processes can thus occur through chemical, chemico-physical and microbiological approaches, and since 2008, also through organoleptic evaluation (COI/OT/MO/Doc. No 1. Method for the sensory analysis of table olives). This last has established the necessary criteria and procedures for sensory analysis of the negative, gustatory and kinaesthetic sensations of table olives, which can also be attributed to abnormal proliferation of microrganisms. It also sets out the system for commercial classification, through assessment of the median of the defect predominantly perceived. PMID:23675370

  19. Evaluation of phytic acid utilization by S. cerevisiae strains used in fermentation processes and biomass production.

    PubMed

    Mikulski, Dawid; Kłosowski, Grzegorz

    2017-01-01

    Saccharomyces cerevisiae is a well-studied yeast species used mainly in fermentation processes, bakery, and for SCP (Single Cell Protein) acquisition. The aim of the study was to analyze the possibility of phytic acid utilization as one of the hydrolysis processes carried out by yeast. The analysis of 30 yeast strains used in fermentation and for biomass production, that were grown in media containing phytic acid, revealed a high variability in the biomass production rate and the capability to hydrolyze phytates. No correlation between a high biomass concentration and a high level of phytate hydrolysis was found. Only four analyzed strains (Bayanus IOC Efficience, Sano, PINK EXCEL, FINAROME) were able to reduce the phytic acid concentration by more than 33.5%, from the initial concentration 103.0 ± 2.1 μg/ml to the level below 70 μg/ml. The presented results suggest that the selected wine and fodder yeast can be used as in situ source of phosphohydrolases in fermentation processes, and especially in the production of fodder proteins. However, further studies aimed at the optimization of growing parameters, such as the maximization of phytase secretion, and a comprehensive analysis of the catalytic activity of the isolated phosphohydrolases, are necessary.

  20. An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis.

    PubMed

    Sue, Tiffany; Obolonkin, Victor; Griffiths, Hywel; Villas-Bôas, Silas Granato

    2011-11-01

    The early detection of microbial contamination is crucial to avoid process failure and costly delays in fermentation industries. However, traditional detection methods such as plate counting and microscopy are labor-intensive, insensitive, and time-consuming. Modern techniques that can detect microbial contamination rapidly and cost-effectively are therefore sought. In the present study, we propose gas chromatography-mass spectrometry (GC-MS)-based metabolic footprint analysis as a rapid and reliable method for the detection of microbial contamination in fermentation processes. Our metabolic footprint analysis detected statistically significant differences in metabolite profiles of axenic and contaminated batch cultures of microalgae as early as 3 h after contamination was introduced, while classical detection methods could detect contamination only after 24 h. The data were analyzed by discriminant function analysis and were validated by leave-one-out cross-validation. We obtained a 97% success rate in correctly classifying samples coming from contaminated or axenic cultures. Therefore, metabolic footprint analysis combined with discriminant function analysis presents a rapid and cost-effective approach to monitor microbial contamination in industrial fermentation processes.

  1. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  2. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice.

    PubMed

    Cerrillo, I; Fernández-Pachón, M S; Collado-González, J; Escudero-López, B; Berná, G; Herrero-Martín, G; Martín, F; Ferreres, F; Gil-Izquierdo, A

    2015-06-01

    The fermentation of fruit produces significant changes in their nutritional composition. An orange beverage has been obtained from the controlled alcoholic fermentation and thermal pasteurization of orange juice. A study was performed to determine the influence of both processes on its amino acid profile. UHPLC-QqQ-MS/MS was used for the first time for analysis of orange juice samples. Out of 29 amino acids and derivatives identified, eight (ethanolamine, ornithine, phosphoethanolamine, α-amino-n-butyric acid, hydroxyproline, methylhistidine, citrulline, and cystathionine) have not previously been detected in orange juice. The amino acid profile of the orange juice was not modified by its processing, but total amino acid content of the juice (8194 mg/L) was significantly increased at 9 days of fermentation (13,324 mg/L). Although the pasteurization process produced partial amino acid degradation, the total amino acid content was higher in the final product (9265 mg/L) than in the original juice, enhancing its nutritional value.

  3. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    PubMed

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  4. Process for efficient fermentation and distillation for alcohol. Final report, 12 August 1981-15 June 1982

    SciTech Connect

    DeLair, C.M.

    1981-06-01

    The feasibility of a vapor-compression distillation column in conjunction with continuous fermentation is studied. The distillation process was studied and a small scale distillation model was constructed and tested. (MHR)

  5. Sabah snake grass extract pre-processing: Preliminary studies in drying and fermentation

    NASA Astrophysics Data System (ADS)

    Solibun, A.; Sivakumar, K.

    2016-06-01

    Clinacanthus nutans (Burm. F.) Lindau which also known as ‘Sabah Snake Grass’ among Malaysians have been studied in terms of its medicinal and chemical properties in Asian countries which is used to treat various diseases from cancer to viral-related diseases such as varicella-zoster virus lesions. Traditionally, this plant has been used by the locals to treat insect and snake bites, skin rashes, diabetes and dysentery. In Malaysia, the fresh leaves of this plant are usually boiled with water and consumed as herbal tea. The objectives of this study are to determine the key process parameters for Sabah Snake Grass fermentation which affect the chemical and biological constituent concentrations within the tea, extraction kinetics of fermented and unfermented tea and the optimal process parameters for the fermentation of this tea. Experimental methods such as drying, fermenting and extraction of C.nutans leaves were conducted before subjecting them to analysis of antioxidant capacity. Conventional oven- dried (40, 45 and 50°C) and fermented (6, 12 and 18 hours) whole C.nutans leaves were subjected to tea infusion extraction (water temperature was 80°C, duration was 90 minutes) and the sample liquid was extracted for every 5th, 10th, 15th, 25th, 40th, 60th and 90th minute. Analysis for antioxidant capacity and total phenolic content (TPC) were conducted by using 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) and Folin-Ciocaltheu reagent, respectively. The 40°C dried leaves sample produced the highest phenolic content at 0.1344 absorbance value in 15 minutes of extraction while 50°C dried leaves sample produced 0.1298 absorbance value in 10 minutes of extraction. The highest antioxidant content was produced by 50°C dried leaves sample with absorbance value of 1.6299 in 5 minutes of extraction. For 40°C dried leaves sample, the highest antioxidant content could be observed in 25 minutes of extraction with the absorbance value of 1.1456. The largest diameter of disc

  6. A novel downstream process for 1,3-propanediol from glycerol-based fermentation.

    PubMed

    Anand, Pinki; Saxena, Rajendra Kumar; Marwah, Ruchi G

    2011-05-01

    In this paper, a downstream process for purification of 1,3-propanediol from glycerol-based fermentation broth was investigated. The purification of 1,3-propanediol from fermentation broth was achieved by a process combining microfiltration, charcoal treatment, vacuum distillation, and silica gel chromatography. The broth was first filtered through hollow fiber cartridge, wherein 98.7% of biomass was removed. Soluble proteins and other color impurities in the broth were removed by the use of activated charcoal at optimal concentration of 30 g l(-1) where the soluble proteins in the broth decreased to 0.1 g l(-1) (96.0% protein loss). The obtained broth when concentrated by vacuum distillation resulted in the crystallization of inorganic salts. Subsequently, 1,3-propanediol was purified by gradient chromatography using silica gel as a stationary phase and mixture of chloroform and methanol as a mobile phase. Finally, with the optimal flow rate of 10 ml min(-1) and loading amount of 80 ml, the yield of 1,3-propanediol achieved was 89%. The overall yield of 1,3-propanediol using the proposed procedure was 75.47%. The developed method was found to be a simple, rapid, and efficient procedure for the purification of 1,3-propanediol from fermentation broth.

  7. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.

    PubMed

    Gerritse, G; Hommes, R W; Quax, W J

    1998-07-01

    Pseudomonas alcaligenes M-1 secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P. alcaligenes to grow on glucose, citric acid and soybean oil were applied as substrates in the batch phase and feed phase, respectively. The gene encoding the high-alkaline lipase from P. alcaligenes was isolated and characterized. Amplification of lipase gene copies in P. alcaligenes with the aid of low- and high-copy-number plasmids resulted in an increase of lipase expression that was apparently colinear with the gene copy number. It was found that overexpression of the lipase helper gene, lipB, produced a stimulating effect in strains with high copy numbers (> 20) of the lipase structural gene, lipA. In strains with lipA on a low-copy-number vector, the lipB gene did not show any effect, suggesting that LipB is required in a low ratio to LipA only. During scaling up of the fermentation process to 100 m3, severe losses in lipase productivity were observed. Simulations have identified an increased level of dissolved carbon dioxide as the most probable cause for the scale-up losses. A large-scale fermentation protocol with a reduced dissolved carbon dioxide concentration resulted in a substantial elimination of the scale-up loss.

  8. Process for protein enrichment of cassava by solid substrate fermentation in rural conditions

    SciTech Connect

    Daubresse, P.; Ntibashirwa, S.; Gheysen, A.; Meyer, J.A.

    1987-06-01

    An artisanal static process for protein enrichment of cassava by solid-state fermentation, developed in laboratory and tested on pilot units in Burundi (Central Africa), provides enriched cassava containing 10.7% of dry matter protein versus 1% before fermentation. Cassava chips, processed into granules of 2-4-mm diameter, are moistened (40% water content) and steamed. After cooling to 40 degrees C, cassava is mixed with a nutritive solution containing the inoculum (Rhizopus oryzae, strain MUCL 28627) and providing the following per 100 g dry matter: 3.4 g urea, 1.5 g KH/sub 2/PO/sub 4/, O.8 g MgSO/sub 4/.7H/sub 2/O, and 22.7 g citric acid. For the fermentation, cassava, with circa 60% moisture content, is spread in a thin layer (2-3 cm thick) on perforated trays and slid into an aerated humidified enclosure. The incubation lasts more or less 65 hours. The production of protein enriched cassava is 3.26 kg dry matter/square m tray. The effects of the variation of the nutritive solution composition and the inoculum conservation period on the protein production are equally discussed. (Refs. 37).

  9. Determination of dihydroxyacetone and glycerol in fermentation process by GC after n-methylimidazole catalyzed acetylation.

    PubMed

    Wu, Jian; Li, Ming-Hua; Lin, Jin-Ping; Wei, Dong-Zhi

    2011-05-01

    A gas chromatographic method that accurately measures glycerol and dihydroxyacetone from a fermentation broth is described in this paper. The method incorporates a sample derivatization reaction using n-methylimidazole as catalyst in the presence of acetic anhydride. Resulting derivatives are separated on a DB-5 capillary column and flame ionization detector. Results show that 10 μL n-methylimidazole and 75 μL acetic anhydride are sufficient to complete the acetylation for glycerol and dihydroxyacetone at room temperature for 5 min. The present method exhibits good linearity at a concentration range of 1-100 g/L with excellent regression (R(2) > 0.9997). The limits of detection are 0.025 and 0.013 g/L for dihydroxyacetone and glycerol, respectively. The method has been successfully applied to the monitoring and control of the fermentation process, and recoveries are in the range of 95.5-98.8% with relative standard deviations below 1%.

  10. Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process.

    PubMed

    Chammem, N; Kachouri, M; Mejri, M; Peres, C; Boudabous, A; Hamdi, M

    2005-07-01

    Green olives of the Tunisian variety "Meski" were treated according to a Spanish-style green olive preservation process by using an alkaline treatment (1.5, 2 and 2.5% (w/v) NaOH) to eliminate bitterness, combined with different brine concentrations (6, 9 and 12% (w/v) NaCl). A spontaneous fermentation by the environmental microflora took place. Results showed that 2% NaOH solution and 9% sodium chloride brine was an optimal combination inducing the best growth of Lactobacillus species (10(8) CFU/ml) and acidity of 0.726 g lactic acid/100 ml brine. In all trials and independently of the treatment, Lb. plantarum was the most dominant strain of Lactobacillus. Moreover, pretreatment with lye and lactic fermentation of olives contributed to coliform elimination.

  11. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    PubMed

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability.

  12. Novel fermentation processes for manufacturing plant natural products.

    PubMed

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.

  13. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    PubMed

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  14. Partial replacement of sodium chloride with potassium chloride in dry fermented sausages: Influence on carbohydrate fermentation and the nitrosation process.

    PubMed

    Ibañez, C; Quintanilla, L; Irigoyen, A; Garcia-Jalón, I; Cid, C; Astiasarán, I; Bello, J

    1995-01-01

    Two types of dry fermented sausages were manufactured: type A with traditional formulation and type B with reduced sodium content. pH and a(w) values and the counts of aerobic mesophiles, Enterobacteriaceae and lactobacilli micro-organisms during the ripening of both fermented sausages were similar. Final lactic acid contents were also similar, but carbohydrate content was significantly lower in type B sausage. Content of acetic, propionic and butyric acids were significantly higher in type B, suggesting a higher heterofermentative activity. Also type B sausage showed lower nitrate level and higher chemical conversion percentage, suggesting a higher nitrosation intensity.

  15. The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2004-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study by a team of partners: NASA's Ames Research Center, Ball Aerospace and Technologies Corporation, and the Jet Propulsion Laboratory. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) The evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) The chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) The distribution of organics in the diffuse ISM, (4) The nature of organics in the Solar System (in comets, asteroids, satellites), and (5) The nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  16. In-Service Training Model for TESOL/ABE Teacher-Aides. Vol. 2.

    ERIC Educational Resources Information Center

    Southwestern Cooperative Educational Lab., Albuquerque, NM.

    This document contains discussion of each of the 10 objectives of the inservice program to prepare teachers and aides for the TESOL/ABE (Teaching English as a Second Language/Adult Basic Education) class. The objectives are to instruct participants in 1) the component parts of an ABE/TESOL class; 2) construction and design of visual aides such as…

  17. Adults Who Have a Learning Disability: A Guide for the ABE Instructor.

    ERIC Educational Resources Information Center

    Hutto, Melanie D.

    This monograph is intended to be a guide to the teacher of adult basic education (ABE) whose students include those with learning disabilities. An introductory chapter notes that participants with learning disabilities in ABE programs may or may not have received special educational services depending on whether they attended school before or…

  18. Development of Teaching Aids for ABE/ESL Adult Education Programs. Final Report.

    ERIC Educational Resources Information Center

    Berna, Joan; Alkasab, Helen

    The purpose of Special Project E-109A, Development of Teaching Aids for Adult Basic Education/English (Second Language) (ABE/ESL) Adult Education Programs, was to develop skill packets consisting of visual materials, teacher manuals, and student work sheets for statewide use in ABE/ESL classes in Illinois. The project was conducted cooperatively…

  19. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue.

    PubMed

    He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng

    2016-11-01

    Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h.

  20. Defining process design space for biotech products: case study of Pichia pastoris fermentation.

    PubMed

    Harms, Jean; Wang, Xiangyang; Kim, Tina; Yang, Xiaoming; Rathore, Anurag S

    2008-01-01

    The concept of "design space" has been proposed in the ICH Q8 guideline and is gaining momentum in its application in the biotech industry. It has been defined as "the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality." This paper presents a stepwise approach for defining process design space for a biologic product. A case study, involving P. pastoris fermentation, is presented to facilitate this. First, risk analysis via Failure Modes and Effects Analysis (FMEA) is performed to identify parameters for process characterization. Second, small-scale models are created and qualified prior to their use in these experimental studies. Third, studies are designed using Design of Experiments (DOE) in order for the data to be amenable for use in defining the process design space. Fourth, the studies are executed and the results analyzed for decisions on the criticality of the parameters as well as on establishing process design space. For the application under consideration, it is shown that the fermentation unit operation is very robust with a wide design space and no critical operating parameters. The approach presented here is not specific to the illustrated case study. It can be extended to other biotech unit operations and processes that can be scaled down and characterized at small scale.

  1. Thermal and refining processes, not fermentation, tend to reduce lipotropic capacity of plant-based foods.

    PubMed

    Fardet, Anthony; Martin, Jean-François; Chardigny, Jean-Michel

    2011-08-01

    Plant-based foods (PBF) are relevant and diversified sources of lipotropes, which are compounds preventing excess hepatic fat deposits. In a first study, we defined the lipotropic capacity (LC, %) of raw PBF as the means of 8 lipotrope densities (LD, mg/100 kcal), each expressed relative to that of a reference food ranking the highest considering its mean 8 LD ranks (LC(raw asparagus)=100%) (A. Fardet, J.-F. Martin and J. M. Chardigny, J. Food Comp. Anal., 2011, DOI: 10.1016/j.jfca.2011.1003.1013). We showed that vegetables appeared as the best source of lipotropes on a 100 kcal-basis compared to legumes, cereals, fruits and nuts. The main objective of this second study was to quantify the effect of processing on LD and LC of raw PBF based on lipotrope contents collected in a USDA (United State Department of Agriculture) database and the literature, i.e. betaine, choline, myo-inositol, methionine, magnesium, niacin, pantothenic acid and folate contents. Choline and betaine densities were not significantly affected by processing while methionine and lipotropic micronutrient densities were significantly decreased, especially for magnesium, pantothenate and folates. Myo-inositol density decreases were insignificant due to lower product number resulting from limited literature data. Lipotropic micronutrient densities were more affected by processing than other densities. Fermentations increased betaine (median change of +32%) and choline (+34%) densities. Canning and boiling vegetables increased choline densities (+26%). Globally, processing significantly reduced LC by ∼20%, fermentations being less drastic (median change of -5%) than refining (-33%) and thermal treatments (-16%). More specifically, canning increased LC of beetroot (536 vs 390%) and common bean (40 vs 36%) as fermentation towards LC grape (14 vs 7% for wine). Results were then mainly discussed based on percentages of lipotrope content changes on a dry-weight basis. Results of this study also showed

  2. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  3. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    PubMed

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen.

  4. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

    PubMed

    Abdel-Banat, Babiker M A; Hoshida, Hisashi; Ano, Akihiko; Nonklang, Sanom; Akada, Rinji

    2010-01-01

    The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5 degrees C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.

  5. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes.

    PubMed

    Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter

    2015-02-01

    Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples.

  6. Corn silage management: effects of hybrid, maturity, inoculation, and mechanical processing on fermentation characteristics.

    PubMed

    Johnson, L M; Harrison, J H; Davidson, D; Mahanna, W C; Shinners, K

    2003-01-01

    Two experiments were conducted to evaluate the effects of hybrid, maturity, mechanical processing, and inoculation of corn silage on fermentation characteristics. In experiment 1, Pioneer hybrid 3845 corn silage was harvested at three maturities (hard dough, one-third milkline, two-thirds milkline). In experiment 2, Pioneer hybrids 3845 and Quanta were harvested at three maturities (one-third milkline, two-thirds milkline, and blackline). In both experiments, corn silage was harvested at each maturity with and without mechanical processing and with and without inoculation. In experiments 1 and 2, corn silage was harvested at a theoretical length-of-cut of 6.4 and 12.7 mm, respectively. Maturity at harvest tended to have a greater impact on silage fermentation characteristics of corn silage than mechanical processing and inoculation. In experiments 1 and 2, corn silage harvested at the earliest maturity tended to have decreased dry matter content and increased water-soluble carbohydrate concentrations during the ensiling process than corn silage harvested at advanced maturities. In experiment 2, pH levels were lower for corn silage harvested at the early maturity (one-third milkline) compared with advanced maturities (two-thirds milkline and blackline) by 57 d after ensiling. The difference in pH can be explained by the greater concentration of water-soluble carbohydrates at the early maturity (one-third ML) soon after ensiling (2, 3, 6 and 10 d after ensiling) compared with advanced maturities (two-thirds ML and BL). The increased water-soluble carbohydrate concentrations in the less mature corn silage provided nutrients for bacteria to grow and produce primarily lactic acid (6, 10, and 57 d after ensiling) and some acetic acid (2, 3, 6, and 10 d after ensiling) which reduced the pH of corn silage more than at the advanced maturities. There was a slight change in silage fermentation characteristics when corn silage was inoculated with Pioneer 1132 inoculant in

  7. Monitoring of the cellulosic ethanol fermentation process by near-infrared spectroscopy.

    PubMed

    Pinto, Ariane S S; Pereira, Sandra C; Ribeiro, Marcelo P A; Farinas, Cristiane S

    2016-03-01

    Rapid, efficient, and low-cost technologies for monitoring the fermentation process during second generation (2G) or cellulosic ethanol production are essential for the successful implementation of this process at the commercial scale. Here, the use of near-infrared (NIR) spectroscopy associated with partial least squares (PLS) regression was investigated as a tool for monitoring the production of 2G ethanol from lignocellulosic sugarcane residues including bagasse, straw, and tops. The spectral data was based on a set of 103 alcoholic fermentation samples. Models based on different pre-processing techniques were evaluated. The best root mean square error of prediction (RMSEP) values obtained in the external validation were around 3.02 g/L for ethanol and 6.60 g/L for glucose. The findings showed that the PLS-NIR methodology was efficient in accurately predicting the glucose and ethanol concentrations during the production of 2G ethanol, demonstrating potential for use in monitoring and control of large-scale industrial processes.

  8. On-line monitoring of continuous beer fermentation process using automatic membrane inlet mass spectrometric system.

    PubMed

    Tarkiainen, Virpi; Kotiaho, Tapio; Mattila, Ismo; Virkajärvi, Ilkka; Aristidou, Aristos; Ketola, Raimo A

    2005-03-15

    A fully automatic membrane inlet mass spectrometric (MIMS) on-line instrumentation for the analysis of aroma compounds in continuous beer fermentation processes was constructed and tested. The instrumentation includes automatic filtration of the sample stream, flushing of all tubing between samples and pH control. The calibration standards can be measured periodically. The instrumentation has also an extra sample line that can be used for off-line sample collection or it can be connected to another on-line method. Detection limits for ethanol, acetic acid and eight organic beer aroma compounds were from mugl(-1) to low mgl(-1) levels and the standard deviations were less than 3.4%. The method has a good repeatability and linearity in the measurement range. Response times are shorter than or equal to 3min for all compounds except for ethyl caproate, which has a response time of 8min. In beer aroma compound analysis a good agreement between MIMS and static headspace gas chromatographic (HSGC) measurements was found. The effects of different matrix compounds commonly present in the fermentation media on the MIMS response to acetaldehyde, ethyl acetate and ethanol were studied. Addition of yeast did not have any effect on the MIMS response of ethanol or ethyl acetate. Sugars, glucose and xylose, increased the MIMS response of all studied analytes only slightly, whereas salts, ammonium chloride, ammonium nitrate and sodium chloride, increased the MIMS response of all three studied compounds prominently. The system was used for on-line monitoring of continuous beer fermentation with immobilised yeast. The results show that with MIMS it is possible to monitor the changes in the continuous process as well as delays in the two-phase process.

  9. Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir.

    PubMed

    Alzate, A; Fernández-Fernández, A; Pérez-Conde, M C; Gutiérrez, A M; Cámara, C

    2008-09-24

    The aim of the present study was to characterize, quantify, and compare the different selenium species that are produced when lactic fermentation with two different types of microorganisms, bacteria (Lactobacillus) and yeast (Saccharomyces), take place to produce yogurt and kefir, respectively, and to study the transformation process of these species as a function of time. These two dairy products were chosen for the study because they are highly consumed in different cultures. Moreover, the microorganisms present in the fermentation processes are different. While the bacteria Lactobacillus is the one responsible for yogurt fermentation, a partnership between bacteria and the yeast Saccharomyces causes kefir fermentation. A comparative study has been carried out by fermenting Se(IV) enriched milk in the presence of both types of microorganisms, where the concentration range studied was from 0.5 to 20 microg g (-1). Enzymatic extraction enabled selenium speciation profiles, obtained by anionic exchange and ion-pairing reversed phase high performance liquid chromatography (IP-RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection. Scanning electron microscopy (SEM) applied to the enriched samples showed segregated Se (0), at added concentrations higher than 5 microg g (-1). The main Se species formed depended on the type of microorganism involved in the fermentation process, SeCys 2 and MeSeCys being the main species generated in yogurt and SeMet in kefir. The results obtained are different for both kinds of samples. Lactic fermentation for yogurt produced an increment in selenocystine (SeCys 2) and Se-methylselenocysteine (MeSeCys), while fermentation to produce kefir also incremented the selenomethionine (SeMet) concentration. The Se species are stable for at least 10 and 15 days for kefir and yogurt, respectively. After this period, selenocystine concentration decreased, and the concentration of Se-methylselenocysteine was found to

  10. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  11. Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.

    PubMed

    Millat, Thomas; Winzer, Klaus

    2017-03-01

    Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.

  12. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    NASA Astrophysics Data System (ADS)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  13. Hybrid Neural Network Model of an Industrial Ethanol Fermentation Process Considering the Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Mantovanelli, Ivana C. C.; Rivera, Elmer Ccopa; da Costa, Aline C.; Filho, Rubens Maciel

    In this work a procedure for the development of a robust mathematical model for an industrial alcoholic fermentation process was evaluated. The proposed model is a hybrid neural model, which combines mass and energy balance equations with functional link networks to describe the kinetics. These networks have been shown to have a good nonlinear approximation capability, although the estimation of its weights is linear. The proposed model considers the effect of temperature on the kinetics and has the neural network weights reestimated always so that a change in operational conditions occurs. This allow to follow the system behavior when changes in operating conditions occur.

  14. Hydrogen and methane production from household solid waste in the two-stage fermentation process.

    PubMed

    Liu, Dawei; Liu, Dapeng; Zeng, Raymond J; Angelidaki, Irini

    2006-06-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H(2)/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH(4)/g VS added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. pH was observed as a key factor affecting fermentation pathway in hydrogen production stage. The optimum pH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary. Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase.

  15. The production of chemicals from food processing wastes using a novel fermenter separator: Annual report, October 1986-October 1987

    SciTech Connect

    Not Available

    1988-05-01

    Fermentation costs (which increase with higher product concentration) traditionally must be balanced against product recovery costs (which decrease with product concentration). A novel reactor-separator process has been developed at Purdue University to minimize product inhibition of fermentation rates. This has been shown to exhibit very high productivities - simultaneously producing and removing a inhibitory product while maintaining a high viable cell concentration in the reactor. The objective of this study is to develop an energy efficient and economical process to convert food wastes to usable chemicals. Work is divided into two major efforts (a) an applied phase which involves design and building a whey to ethanol process as well as process design and optimization and (b) a basic phase which involves investigating alternative fermentation systems and fundamental research on immobilized cell reactor systems. Accomplishments are discussed. 116 refs., 80 figs., 22 tabs.

  16. Production of chemicals from food processing wastes using a novel fermenter separator. Technical progress report, September 27-December 31, 1985

    SciTech Connect

    Dale, M.C.; Koo, Y.M.; Park, C.H.; Chen, C.; Lin, J.; Okos, M.R.; Wankat, P.C.

    1985-12-01

    The objective of this project is to perform fundamental, engineering design and operational studies in the area of food processing waste fermentation. Studies addressing the fermentation kinetics and nutritional requirement of immobilized cells and examining different packing materials and energy efficient ethanol separation concentration and recovery methods are underway. These data will be used to develop process design models to aid in designing enery efficient and cost effective processes for conversion of food processing wastes into chemicals. This project focuses on using a novel immobilized cell reactor separator (ICRS) for the production of volatile chemicals from waste food sources such as whey lactose, glucose from waste starch, or any other sort of waste fermentable carbohydrate. 53 refs., 3 figs.

  17. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    NASA Astrophysics Data System (ADS)

    Tobajas, M.; García-Calvo, E.

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of KLa values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine KLa in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining KLa does not interfere with the microorganisms action. A theoretical mass transfer model has been used for KLa estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case.

  18. Discrimination between ethanol inhibition models in a continuous alcoholic fermentation process using flocculating yeast.

    PubMed

    Oliveira, S C; Paiva, T C; Visconti, A E; Giudici, R

    1998-09-01

    Discrimination between different rival models for describing the inhibitory effect of ethanol both on yeast growth and on fermentation was studied for a continuous process of alcoholic fermentation in a tower reactor with recycling of flocculating cells. Models tested include linear, parabolic, hyperbolic, exponential, and generalized nonlinear power-law types. The best expressions were identified under the criteria that all the kinetic parameters should assume acceptable values in a feasible range and should result in the best fit of the experimental data. The kinetic parameters were estimated from steady-state data of several sugar concentrations in feeding stream (S0 = 160, 170, 180, 190, 200 g/L), constant dilution rate (D = 0.2 h-1), recycle ratio (alpha = 13.6), and temperature (T = 30 degrees C). The best model for the yeast growth was of power-law type, whereas for the product formation the best model was of linear type. These models were able to reproduce the trends of the process variables satisfactorily.

  19. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics.

    PubMed

    Villar, Alberto; Vadillo, Julen; Santos, Jose I; Gorritxategi, Eneko; Mabe, Jon; Arnaiz, Aitor; Fernández, Luis A

    2017-04-15

    Optimization of a multivariate calibration process has been undertaken for a Visible-Near Infrared (400-1100nm) sensor system, applied in the monitoring of the fermentation process of the cider produced in the Basque Country (Spain). The main parameters that were monitored included alcoholic proof, l-lactic acid content, glucose+fructose and acetic acid content. The multivariate calibration was carried out using a combination of different variable selection techniques and the most suitable pre-processing strategies were selected based on the spectra characteristics obtained by the sensor system. The variable selection techniques studied in this work include Martens Uncertainty test, interval Partial Least Square Regression (iPLS) and Genetic Algorithm (GA). This procedure arises from the need to improve the calibration models prediction ability for cider monitoring.

  20. Process analysis of macrotetrolide biosynthesis during fermentation by means of direct infusion LC-MS.

    PubMed

    Jani, Peter; Emmert, Joachim; Wohlgemuth, Roland

    2008-02-01

    The optimization of the biosynthetic pathways is highly attractive for the large-scale preparation of macrotetrolides, because overall yields in the chemical synthesis of compounds like nonactin have been very low. A key success factor determining the outcome of such optimizations is the adequate process analysis for the envisioned product. The analytical methods for process control involved in the past spectrophotometric and chromatographic measurements. LC-MS offers a modern approach to obtain more detailed data than the spectrophotometric and chromatographic measurements used in the past. In this work, a fast and versatile analytical LC-MS method has been set up, which has proven of much value for the in-process analysis of macrotetrolides during fermentation and which has allowed rapid large-scale bioprocess development.

  1. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process.

    PubMed

    Zhang, Qiuzhuo; Weng, Chen; Huang, Huiqin; Achal, Varenyam; Wang, Duanchao

    2015-01-01

    Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was fermented at 38.87°C in 81.87 h when inoculated with 6.11 ml yeast, where 1.291 g/L bioethanol was produced. Meanwhile, 1.289 g/L ethanol was produced during experimentation, which showed reliability of presented regression model in this research. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content.

  2. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process

    PubMed Central

    Zhang, Qiuzhuo; Weng, Chen; Huang, Huiqin; Achal, Varenyam; Wang, Duanchao

    2016-01-01

    Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was fermented at 38.87°C in 81.87 h when inoculated with 6.11 ml yeast, where 1.291 g/L bioethanol was produced. Meanwhile, 1.289 g/L ethanol was produced during experimentation, which showed reliability of presented regression model in this research. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content. PMID:26779125

  3. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    PubMed

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  4. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    PubMed

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  5. Pseudohomogeneous kinetic study on a two-liquid-phase fermentation process.

    PubMed

    Li, Y; Cao, Z; Yuan, N

    1994-01-01

    The fermentation process for producing undecane dicarboxylic acid from tridecane, which includes gas-oil-water-cell four phases (two-liquid-phase), was studied. The metabolic characters of the cell growth phase and the production phase of the process were analyzed. It was proposed that cell growth can be identified by the carbon dioxide production rate (CPR) before the production phase. The kinetic models of both the cell growth phase and the production phase were established, respectively. The parameters of the models have been estimated by regression. The calculated curves fit the experimental data very well. The average deviation between those over the cell growth phase and the production phase are 2.4% and 3.6%, respectively.

  6. Conversion of steam-exploded cedar into ethanol using simultaneous saccharification, fermentation and detoxification process.

    PubMed

    Asada, Chikako; Sasaki, Chizuru; Takamatsu, Tomoki; Nakamura, Yoshitoshi

    2015-01-01

    In this study, we investigated the simultaneous saccharification, fermentation and detoxification SSDF process of steam-exploded cedar using a detoxification microorganism, Ureibacillus thermosphaericus A1, to facilitate efficient ethanol production. Steam explosion was applied as a pretreatment before enzymatic saccharification followed by alcohol fermentation. The highest glucose conversion rate was observed in the sample pretreated with a steam pressure of 45atm for 5min. Alcohol production by a heat-tolerant yeast, Saccharomyces cerevisiae BA11, was inhibited strongly by inhibitory materials present in the steam-exploded cedar, such as formic acid, furfural, and 5-hydroxymethylfurfural. The maximum amount of ethanol, i.e., 0.155g ethanol/g dry steam-exploded cedar, which corresponded to 74% of the theoretical ethanol yield, was obtained using the SSDF when U. thermosphaericus A1 degraded the inhibitory materials. A fed batch SSDF culture, in which U. thermosphaericus A1 was used to maintain low concentrations of inhibitory materials, was effective for increasing the ethanol concentration.

  7. Sequential injection kinetic flow assay for monitoring glycerol in a sugar fermentation process by Saccharomyces cerevisiae.

    PubMed

    Domínguez, Karina B Hueso; Tóth, Ildikó V; Souto, M Renata S; Mendes, Filipa; De María, Cándido García; Vasconcelos, Isabel; Rangel, António O S S

    2010-03-01

    A sequential injection system to monitor glycerol in a Saccharomyces cerevisiae fermentation process was developed. The method relies on the rate of formation of nicotinamide adenine dinucleotide in its reduced form (NADH, measured spectrophotometrically at 340 nm) from the reaction of glycerol with NAD(+) cofactor, catalysed by the enzyme glycerol dehydrogenase present in solution. This procedure enables the determination of glycerol between 0.046 and 0.46 g/l, (corresponding to yeast fermentation samples with concentrations up to 50 g/l) with good repeatability (relative standard deviation for n = 10 lower than 2.2% for three different samples) at a sampling frequency of 25/h. The detection and quantification limits using a miniaturised spectrophotometer were 0.13 and 0.44 mM, respectively. Reagent consumption was of 0.45 mumol NAD(+) and 1.8 microg enzyme per assay, and the waste production was 2.8 ml per determination. Results obtained for samples were in agreement with those obtained with a high-performance liquid chromatography method.

  8. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing.

    PubMed

    Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  9. Modelling of an activated primary settling tank including the fermentation process and VFA elutriation.

    PubMed

    Ribes, J; Ferrer, J; Bouzas, A; Seco, A

    2002-10-01

    A complete model of a primary settler including both sedimentation and biological processes is presented. It is a one-dimensional model based on the solids flux concept and the conservation of mass that uses the Takács model for the settling velocity, which is corrected by a compression function in the lower layers. The biological model is based on the ASM2 and enlarged with the fermentation model proposed by this research group. The settler was split in ten layers and the flux terms in the mass balance for each layer is obtained by means of the settling model. A pilot plant has been operated to study the primary sludge fermentation and volatile fatty acids (VFA) elutriation in a primary settler tank. The model has been tested with pilot plant experimental data with very good results. It has been able to simulate the VFA production in the settler and their elutriation with the influent wastewater for all the studied experiments. The developed model is easily applicable to secondary settlers and thickeners, also taking into account biological activity inside them.

  10. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes.

    PubMed

    Parnaudeau, V; Condom, N; Oliver, R; Cazevieille, P; Recous, S

    2008-04-01

    Both dilute and concentrated vinasse can be spread on agricultural fields or used as organic fertilizer. The effects of different characteristics of the original raw material on the biochemical composition of vinasse and their C and N mineralization in soil were investigated. Vinasse samples were obtained from similar industrial fermentation processes based on the growth of microorganisms on molasses from different raw material (sugar beet or sugar cane) and vinasse concentration (dilute or concentrated). The nature of the raw material used for fermentation had the greatest effect on the nature and size of the resistant organic pool. This fraction included aromatic compounds originating from the raw material or from complex molecules and seemed to be quantitatively related to acid-insoluble N. Samples derived from sugar beet were richer in N compounds and induced greater net N mineralization. The effect of evaporation varied with the nature of the raw material. Concentration led to a slight increase in the abundance of phenolic compounds, acid-insoluble fraction, and a slight decrease in the labile fraction of vinasses partly or totally derived from sugar beet. The effect of the dilute vinasse from sugar cane was greater. The concentrated vinasse had a smaller labile fraction, induced N immobilization at the beginning of incubation, and exhibited greater N concentration in the acid-insoluble fraction than the dilute vinasse.

  11. Industrial yogurt manufacture: monitoring of fermentation process and improvement of final product quality.

    PubMed

    Soukoulis, C; Panagiotidis, P; Koureli, R; Tzia, C

    2007-06-01

    Lactic acid fermentation during the production of skim milk and whole fat set-style yogurt was continuously monitored by measuring pH. The modified Gompertz model was successfully applied to describe the pH decline and viscosity development during the fermentation process. The viscosity and incubation time data were also fitted to linear models against ln(pH). The investigation of the yogurt quality improvement practices included 2 different heat treatments (80 degrees C for 30 min and 95 degrees C for 10 min), 3 milk protein fortifying agents (skim milk powder, whey powder, and milk protein concentrate) added at 2.0%, and 4 hydrocolloids (kappa-carrageenan, xanthan, guar gum, and pectin) added at 0.01% to whole fat and skim yogurts. Heat treatment significantly affected viscosity and acetaldehyde development without influencing incubation time and acidity. The addition of whey powder shortened the incubation time but had a detrimental effect on consistency, firmness, and overall acceptance of yogurts. On the other hand, addition of skim milk powder improved the textural quality and decreased the vulnerability of yogurts to syneresis. Anionic stabilizers (kappa-carrageenan and pectin) had a poor effect on the texture and palatability of yogurts. However, neutral gums (xanthan and guar gum) improved texture and prevented the wheying-off defect. Skim milk yogurts exhibited longer incubation times and higher viscosities, whereas they were rated higher during sensory evaluation than whole fat yogurts.

  12. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.

    PubMed

    Cho, Changhee; Choe, Donghui; Jang, Yu-Sin; Kim, Kyung-Jin; Kim, Won Jun; Cho, Byung-Kwan; Papoutsakis, E Terry; Bennett, George N; Seung, Do Young; Lee, Sang Yup

    2017-02-01

    Previously the development of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19 strain capable of producing 30.5% more total solvent by random mutagenesis of its parental strain PJC4BK, which is a buk mutant C. acetobutylicum ATCC 824 strain is reported. Here, BKM19 and PJC4BK strains are re-sequenced by a high-throughput sequencing technique to understand the mutations responsible for enhanced solvent production. In comparison with the C. acetobutylicum PJC4BK, 13 single nucleotide variants (SNVs), one deletion and one back mutation SNV are identified in the C. acetobutylicum BKM19 genome. Except for one SNV found in the megaplasmid, all mutations are found in the chromosome of BKM19. Among them, a mutation in the thlA gene encoding thiolase is further studied with respect to enzyme activity and butanol production. The mutant thiolase (thlA(V5A) ) is showed a 32% higher activity than that of the wild-type thiolase (thlA(WT) ). In batch fermentation, butanol production is increased by 26% and 23% when the thlA(V5A) gene is overexpressed in the wild-type C. acetobutylicum ATCC 824 and in its derivative, the thlA-knockdown TKW-A strain, respectively. Based on structural analysis, the mutation in thiolase does not have a direct effect on the regulatory determinant region (RDR). However, the mutation at the 5(th) residue seems to influence the stability of the RDR, and thus, increases the enzymatic activity and enhances solvent production in the BKM19 strain.

  13. Walk-through survey report: control technology for fermentation processes at Wyeth Laboratories, Inc. , West Chester, Pennsylvania

    SciTech Connect

    Martinez, K.F.

    1985-10-01

    A walk-through survey was conducted at Wyeth Laboratories, Incorporated, West Chester, Pennsylvania in November, 1983. The purpose of the survey was to evaluate the control technology for the fermentation processes. The facility produced penicillin-V and penicillin-G using the microbial strain Penicillium-chrysogenum. Medical examinations were available for fermentation and extraction process workers. Safety shoes and glasses and disposable dust respirators were provided. The author concludes that Wyeth has in operation an apparently effective system of control measures.

  14. Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR

    NASA Astrophysics Data System (ADS)

    Ma, Yongjun

    The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.

  15. VISIT TO DR SHARP - BEN PINKEL - ABE SILVERSTEIN - OSCAR SCHEY - JESSE HALL - JOHN COLLINS BY CONGRE

    NASA Technical Reports Server (NTRS)

    1949-01-01

    VISIT TO DR SHARP - BEN PINKEL - ABE SILVERSTEIN - OSCAR SCHEY - JESSE HALL - JOHN COLLINS BY CONGRESSMAN CARL HENSHAW FROM CALIFORNIA - NORWICK ROSS DEPARTMENT OF COMMERCE - SENOR BUCH DE PERADA REPRESENTATIVE FROM MEXICO -

  16. 77 FR 65936 - ABE Fairmont, LLC-Acquisition and Operation Exemption-BNSF Railway Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... and the north property line of County Road H, at or near Fairmont. See ABE Fairmont, LLC--Acquis. and..., Director, Office of Proceedings. Derrick A. Gardner, Clearance Clerk. BILLING CODE 4915-01-P...

  17. More than a "Basic Skill": Breaking down the Complexities of Summarizing for ABE/ESL Learners

    ERIC Educational Resources Information Center

    Ouellette-Schramm, Jennifer

    2015-01-01

    This article describes the complex cognitive and linguistic challenges of summarizing expository text at vocabulary, syntactic, and rhetorical levels. It then outlines activities to help ABE/ESL learners develop corresponding skills.

  18. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters.

    PubMed

    Bleve, Gianluca; Tufariello, Maria; Durante, Miriana; Grieco, Francesco; Ramires, Francesca Anna; Mita, Giovanni; Tasioula-Margari, Maria; Logrieco, Antonio Francesco

    2015-04-01

    Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. Conservolea and Kalamàta are the most important table olives Greek varieties. In the Greek system, the final product is obtained by spontaneous fermentations, without any chemical debittering treatment. This natural fermentation process is not predictable and strongly influenced by the physical-chemical conditions and by the presence of microorganisms contaminating the olives. Natural fermentations of Conservolea and Kalamàta cultivars black olives were studied in order to determine microbiological, biochemical and chemical evolution during the process. Following the process conditions generally used by producers, in both cultivars, yeasts were detected throughout the fermentation, whereas lactic acid bacteria (LAB) appeared in the last staged of the process. A new optimized specific protocol was developed to select autochthonous yeast and LAB isolates that can be good candidates as starters. These microorganisms were pre-selected for their ability to adapt to model brines, to have beta-glucosidase activity, not to produce biogenic amines. Chemical compounds deriving by microbiological activities and associated to the three different phases (30, 90 and 180 days) of the fermentation process were identified and were proposed as chemical descriptors to follow the fermentation progress.

  19. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics.

    PubMed

    Xu, Jie; Hu, Feng-Lin; Wang, Wei; Wan, Xiao-Chun; Bao, Guan-Hu

    2015-11-01

    Fu brick tea (FBT) is a unique post-fermented tea product which is fermented with fungi during the manufacturing process. In this study, we investigated the biochemical compositional changes occurring during the microbial fermentation process (MFP) of FBT based on non-targeted LC-MS, which was a comprehensive and unbiased methodology. Our data analysis took a two-phase approach: (1) comparison of FBT with other tea products using PCA analysis to exhibit the characteristic effect of MFP on the formation of Fu brick tea and (2) comparison of tea samples throughout the MFP of FBT to elucidate the possible key metabolic pathways produced by the fungi. Non-targeted LC-MS analysis clearly distinguished FBT with other tea samples and highlighted some interesting metabolic pathways during the MFP including B ring fission catechin. Our study demonstrated that those fungi had a significant influence on the biochemical profiles in the FBT and consequently contributed to its unique quality.

  20. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process.

    PubMed

    Koike, Yoji; An, Ming-Zhe; Tang, Yue-Qin; Syo, Tomohiro; Osaka, Noriko; Morimura, Shigeru; Kida, Kenji

    2009-12-01

    A two-stage fermentation process, consisting of a simultaneous saccharification and fermentation (SSF) stage and a dry methane fermentation stage, was developed to utilize garbage for the production of fuel ethanol and methane. Garbage from families, canteens and concessionaires was used for the study. Saccharification method was studied and the results indicated that the liquefaction pretreatment and the combination of cellulase and glucoamylase was effective for polysaccharide hydrolysis of family garbage with a high content of holocellulose and that SSF was suitable for ethanol fermentation of garbage. Ethanol productivity could be markedly increased from 1.7 to 7.0 g/l/h by repeated-batch SSF of family garbage. A high ethanol productivity of 17.7 g/l/h was achieved when canteen garbage was used. The stillage after distillation was treated by dry methane fermentation and the results indicated that the stillage was almost fully digested and that about 850 ml of biogas was recovered from 1 g of volatile total solid (VTS). Approximately 85% of the energy of the garbage was converted to fuels, ethanol and methane by this process.

  1. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    PubMed

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  2. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    SciTech Connect

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  3. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  4. Modeling of an industrial alcohol fermentation and simulation of the plant by a process simulator

    SciTech Connect

    Pascal, F.; Corriou, J.P.; Pons, M.N.; Dagot, C.; Engasser, J.M.; Pingaud, H.

    1995-05-05

    The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production.

  5. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  6. Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator.

    PubMed

    Pascal, F; Dagot, C; Pingaud, H; Corriou, J P; Pons, M N; Engasser, J M

    1995-05-05

    The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production. (c) 1995 John Wiley & Sons, Inc.

  7. Continuous, farm-scale, solid-phase fermentation process for fuel ethanol and protein feed production from fodder beets

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.; Dobbs, T.L.

    1984-01-01

    Fuel ethanol (95%) was produced from fodder beets in two farm-scale processes. In the first process, involving conventional submerged fermentation of the fodder beets in a mash, ethanol and a feed (PF) rich in protein, fat, and fiber were produced. Ethanol yields of 70 L/metric ton (17 gal/ton) were obtained; however, resulting beers had low ethanol concentrations )3-5% (v/v)). The high viscosity of medium and low sugar, beet mashes caused mixing problems which prevented any further increase of beet sugar in the mash. This severely limited the maximum attainable ethanol concentration during fermentation, thereby making the beer costly to distill into fuel ethanol and the process energy inefficient. In order to achieve distillably worthwhile ethanol concentrations of 8-10% (v/v), a solid phase fermentation process (continuous) was developed and tested. In preliminary trials, this system produced fermented pulp with over 8% (v/v) ethanol corresponding to an ethanol yield of 87 L/metric ton (21 gal/ton). Production costs with this novel process are $0.47/L ($1.77/gal) and the energy balance is 2.11. These preliminary cost estimates indicate that fodder beets are potentially competitive with corn as an ethanol feedstock. Additional research, however, is warranted to more precisely refine individual costs, energy balances and the actual value of the PF.

  8. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process

    NASA Astrophysics Data System (ADS)

    Gómez, X.; Morán, A.; Cuetos, M. J.; Sánchez, M. E.

    A two-phase fermentation process for the treatment of waste, intended for the recovery of hydrogen for energy use, was investigated in its initial fermentation phase. Hydrogen production was obtained from a mixed culture based on an active mesophilic inoculum without any selective treatment being applied. The liquid stream generated by the hydrogen fermentation process was stabilized in the following, methanogenic, phase for the recovery of methane and further breaking down of the waste stream. The whole process was carried out at a temperature in the mesophilic range (34 °C). The substrate used was an unsterilized mixture of the organic fraction of municipal solid wastes (OFMSW) and slaughterhouse waste from a poultry-processing plant. The hydrogen-producing phase was capable of stable performance under the hydraulic retention times (HRTs) evaluated (3 and 5 days). No methane was detected in the first phase at any point during the whole period of the experiment and the hydrogen yield showed no symptoms of declining as time elapsed. The amount of hydrogen obtained from the fermentation process was in the range of 52.5-71.3 N L kg -1 VS rem.

  9. A continuous, farm-scale, solid-phase fermentation process for fuel ethanol and protein feed production from fodder beets.

    PubMed

    Gibbons, W R; Westby, C A; Dobbs, T L

    1984-09-01

    Fuel ethanol (95%) was produced from fodder beets in two farm-scale processes. In the first process, involving conventional submerged fermentation of the fodder beets in a mash, ethanol and a feed (PF) rich in protein, fat, and fiber were produced. Ethanol yields of 70 L/metric ton (7 gal/ton) were obtained; however, resulting beers had low ethanol concentrations [3-5% (v/v)]. The high viscosity of medium and low sugar, beet mashes caused mixing problems which prevented any further increase of beet sugar in the mash. The severely limited the maximum attainable ethanol concentration during fermentation, thereby making the beer costly to distill into fuel ethanol and the process energy inefficient. In order to achieve distillably worthwhile ethanol concentrations of 8-10% (v/v), we developed and tested a solid-phase fermentation process (continuous). In preliminary trials, this system produced fermented pulp with over 8% (v/v) ethanol corresponding to an ethanol yield of 87 L/metric ton (21 gal/ton). Production costs with this novel process are $0.47/L ($1.77/gal) and the energy balance is 2.11. These preliminary cost estimates indicate that fodder beets are potentially competitive with corn as an ethanol feedstock. Additional research, however, is warranted to more precisely refine individual costs, energy balances and the actual value of the PF.

  10. Quadrivalvular marantic endocarditis (ME) mimicking acute bacterial endocarditis (ABE).

    PubMed

    Durie, Nicole M; Eisenstein, Lawrence E; Cunha, Burke A; Plummer, Maria Maratta

    2007-01-01

    Marantic endocarditis (ME) is defined by noninfectious valvular vegetations. The most common disorders associated with ME are malignancy with or without hypercoagulable state, intercardiac instrumentation, residual vegetations from previously treated infective endocarditis (IE), renal insufficiency, and burns. Another important cause of ME is systemic lupus erythematosus when accompanied by vegetations, that is, Libman-Sacks endocarditis. ME should be differentiated from IE because they may present with similar clinical features. Both ME and IE may present with fever and a heart murmur with or without embolic phenomenon. Leukocytosis and elevated erythrocyte sedimentation rate suggest the diagnosis of IE. The hallmark of IE is a cardiac vegetation and continuous high-grade bacteremia. After exclusion of the causes of culture negative endocarditis, the absence of bacteremia clearly differentiates ME from IE. We present a case of ME mimicking acute bacterial endocarditis (ABE). The differential diagnostic features of ME versus IE are discussed. To the best of our knowledge, this is the first reported case of quadrivalvular ME with massive vegetations on all cardiac valves, as well as the aorta, atria, and pulmonary artery.

  11. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood.

    PubMed

    Huang, Caoxing; Jeuck, Ben; Du, Jing; Yong, Qiang; Chang, Hou-Min; Jameel, Hasan; Phillips, Richard

    2016-11-01

    Many biorefineries have not been commercialized due to poor economic returns from final products. In this work, a novel process has been developed to coproduce valuable sugars, xylo-oligosaccharides, and lignosulfonates from hardwood. The modified process includes a mild autohydrolysis pretreatment, which enables for the recovery of the xylo-oligosaccharides in auto-hydrolysate. Following enzymatic hydrolysis, the residue is sulfomethylated to produce lignosulfonates. Recycling the sulfomethylation residues increased both the glucan recovery and lignosulfonate production. The glucose recovery was increased from 81.7% to 87.9%. Steady state simulation using 100g of hardwood produced 46.7g sugars, 5.9g xylo-oligosaccharides, and 25.7g lignosulfonates, which were significantly higher than that produced from the no-recycling process with 39.1g sugars, 5.9g xylo-oligosaccharides, and 15.0g lignosulfonates. The results indicate that this novel biorefinery process can improve the production of fermentable sugars and lignosulfonate from hardwood as compared to a conventional biorefinery process.

  12. Development of a process for the production of the anticancer lead compound pleurotin by fermentation of Hohenbuehelia atrocaerulea.

    PubMed

    Shipley, S M; Barr, A L; Graf, S J; Collins, R P; McCloud, T G; Newman, D J

    2006-06-01

    Pleurotin is a naphthoquinone antibiotic originally isolated from Pleurotus griseus. Two pleurotin producing strains of Hohenbuehelia atrocaerulea have been identified, which, on solid substrate fermentation for 2 months yield 1-2 mg/l of the antibiotic. Described here is the lengthy developmental process which resulted in a production protocol being developed which reliably yields pleurotin from liquid fermentation at >300 mg/l. Critical to obtaining this increase in titer was inclusion in the media of an aqueous extract of alder wood.

  13. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  14. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  15. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    PubMed

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p < 0.05) differed in their chemical composition: celery products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p < 0.05) more stable during these processes. At the end of the ripening process the sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages.

  16. Potency of microfiltration membrane process in purifying broccoli (Brassica oleracea L.) fermented by lactic acid bacteria (LAB) as functional food

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.

  17. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis.

  18. Immobilization of Clostridium acetobutylicum onto natural textiles and its fermentation properties.

    PubMed

    Zhuang, Wei; Liu, Xiaojing; Yang, Jing; Wu, Jinglan; Zhou, Jingwei; Chen, Yong; Liu, Dong; Ying, Hanjie

    2017-03-01

    Immobilized fermentation has several advantages over traditional suspended fermentation, including simple and continuous operation, improved fermentation performance and reduced cost. Carrier is the most adjustable element among three elements of immobilized fermentation, including carrier, bacteria and environment. In this study, we characterized carrier roughness and surface properties of four types of natural fibres, including linen, cotton, bamboo fibre and silk, to assess their effects on cell immobilization, fermentation performance and stability. Linen with higher specific surface area and roughness could adsorb more bacteria during immobilized fermentation, thereby improving fermentation performance; thus, linen was selected as a suitable carrier and was applied for acetone-butanol-ethanol (ABE) fermentation. To further improve fermentation performance, we also found that microbes of Clostridium acetobutylicum were negatively charged surfaces during fermentation. Therefore, we then modified linen with polyetherimide (PEI) and steric acid (SA) to increase surface positive charge and improve surface property. During ABE fermentation, the adhesion between modified linen and bacteria was increased, adsorption was increased about twofold compared with that of unmodified linen, and butanol productivity was increased 8.16% and 6.80% with PEI- and SA-modified linen as carriers respectively.

  19. An overview on fermentation, downstream processing and properties of microbial alkaline proteases.

    PubMed

    Gupta, R; Beg, Q K; Khan, S; Chauhan, B

    2002-12-01

    Microbial alkaline proteases dominate the worldwide enzyme market, accounting for a two-thirds share of the detergent industry. Although protease production is an inherent property of all organisms, only those microbes that produce a substantial amount of extracellular protease have been exploited commercially. Of these, strains of Bacillus sp. dominate the industrial sector. To develop an efficient enzyme-based process for the industry, prior knowledge of various fermentation parameters, purification strategies and properties of the biocatalyst is of utmost importance. Besides these, the method of measurement of proteolytic potential, the selection of the substrate and the assay protocol depends upon the ultimate industrial application. A large array of assay protocols are available in the literature; however, with the predominance of molecular approaches for the generation of better biocatalysts, the search for newer substrates and assay protocols that can be conducted at micro/nano-scale are becoming important. Fermentation of proteases is regulated by varying the C/N ratio and can be scaled-up using fed-batch, continuous or chemostat approaches by prolonging the stationary phase of the culture. The conventional purification strategy employed, involving e.g., concentration, chromatographic steps, or aqueous two-phase systems, depends on the properties of the protease in question. Alkaline proteases useful for detergent applications are mostly active in the pH range 8-12 and at temperatures between 50 and 70 degrees C, with a few exceptions of extreme pH optima up to pH 13 and activity at temperatures up to 80-90 degrees C. Alkaline proteases mostly have their isoelectric points near to their pH optimum in the range of 8-11. Several industrially important proteases have been subjected to crystallization to extensively study their molecular homology and three-dimensional structures.

  20. Xanthan gum recovery from fermentation broth using ultrafiltration: Kinetics and process evaluation

    SciTech Connect

    Lo, Y.M.; Yang, S.T.; Min, D.B.

    1995-12-01

    Ultrafiltration of xanthan gum solution as an alternative method to alcohol precipitation for xanthan gum recovery from dilute fermentation broth was studied. A polysulfone membrane (with 500,000 MWCO) hollow fiber (106 mil fiber diameter) tubular cartridge was used to concentrate xanthan broth from less than 3 (w/v) % to {approximately}13.5 (w/v) %, with the xanthan recovery yield of {approximately}95 % or higher. During ultrafiltration, the filtrate flux was one order of magnitude lower for xanthan broth than for water, However, the flux remained almost constant for xanthan concentrations up to {approximately}8%. It was then reduced dramatically as the xanthan concentration increased beyond 8%. The reduced filtrate flux was caused by the reduced pumping (shear) rate and higher viscosities at higher xanthan concentrations. At constant xanthan concentration, the filtrate flux remained almost unchanged for the entire period studied, suggesting that the process is not subject to membrane fouling. In general, the filtrate flux decreased with increasing the xanthan concentration and increased with increasing the pumping (shear) rate and the trans-membrane pressure difference. Changing the solution pH had a slight effect on the viscosity of xanthan solution, but did not affect the filtration performance. Even under high-shear-rate conditions, ultrafiltration did not give any adverse effects on the rheological properties and molecular weight of the xanthan polymer. Thus, ultra filtration can be used to concentrate xanthan broth from fermentation by a factor of four or higher and to reduce the subsequent alcohol recovery costs by at least 75 %.

  1. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  2. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  3. The effect of thermal processing condition on the physicochemical and sensory characteristics of fermented sausages dried by Quick-Dry-Slice process®.

    PubMed

    Ferrini, G; Arnau, J; Guàrdia, M D; Comaposada, J

    2014-02-01

    The effect of different thermal processing conditions just after fermentation on physicochemical parameters and sensory attributes of salami and chorizo slices dried by Quick-Dry-Slice process®, was evaluated. Meat and common additives were mixed, stuffed and fermented. Previous to drying the sausages were subjected to thermal treatment at 53 °C at different exposure times (0, 50, 65, 80, 95 and 110 min). Finally, the sausages were sliced and dried using QDS process®. Color, instrumental texture and sensory analysis were performed. Lightness (L*) after fermentation increased with thermal processing in both products while redness (a*) and yellowness (b*) decreased only in salami. Thermal treatment after fermentation increased the initial force (F0). Cooked appearance, cooked fat odor, cooked flavor and stringiness increased when the thermal processing time was increased. Thermal processing of salami and chorizo at 53 °C for 50 min and drying up to 30% of weight loss resulted in a similar product to that obtained without thermal processing.

  4. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  5. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  6. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    SciTech Connect

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  7. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    SciTech Connect

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  8. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    SciTech Connect

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  9. In situ monitoring of the seed stage of a fermentation process using non-invasive NIR spectrometry.

    PubMed

    Nordon, Alison; Littlejohn, David; Dann, Alison S; Jeffkins, Paul A; Richardson, Mark D; Stimpson, Sarah L

    2008-05-01

    Non-invasive NIR spectrometry has been used to monitor in situ the seed stage of a streptomyces fermentation process. The main spectral change occurred at 7263 cm(-1) in the 1st derivative spectrum, and from comparison with off-line NIR spectra acquired of components present in the fermentation broth, can be attributed to biomass. The biomass signal was constant for the first 20 h of the seed stage, after which it decreased before increasing again. The time at which the minimum occurred in the NIR profile was either the same or slightly earlier than that at which a maximum in the carbon dioxide evolution rate (CER) occurred. The changes observed for the biomass signal in the NIR spectra can be attributed to growth and then fragmentation of mycelia, which indicates a change in metabolic activity. Hence, it may be possible to use NIR spectrometry in situ to determine the optimum transfer time for the seed stage of a fermentation process. Spectra were also acquired of the final stage of the same fermentation process. The variation in the biomass signal in the NIR spectra was more complicated in the final stage owing to changes in stir rate, and biomass concentration and morphology.

  10. Solid-state fermentation: a continuous process for fungal tannase production.

    PubMed

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation.

  11. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Soccol, Vanete Thomaz; Pandey, Ashok; Medeiros, Adriane Bianchi Pedroni; Andrade Lara, João Marcos Rodrigues; Gollo, André Luiz; Soccol, Carlos Ricardo

    2014-10-01

    During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great

  12. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.

    PubMed

    Roy, Poritosh; Dutta, Animesh; Deen, Bill

    2015-09-01

    Life cycle (LC) of ethanol has been evaluated to determine the environmental and economical viability of ethanol that was derived from biosyngas fermentation process (gasification-biosynthesis). Four scenarios [S1: untreated (raw), S2: treated (torrefied); S3: untreated-chemical looping gasification (CLG), S4: treated-CLG] were considered. The simulated biosyngas composition was used in this evaluation process. The GHG emissions and production cost varied from 1.19 to 1.32 kg-CO2 e/L and 0.78 to 0.90$/L, respectively, which were found to be dependent on the scenarios. The environmental and economical viability was found be improved when untreated feedstock was used instead of treated feedstock. Although the GHG emissions slightly reduced in the case of CLG process, production cost was nominally increased because of the cost incurred by the use of CaO. This study revealed that miscanthus is a promising feedstock for the ethanol industry, even if it is grown on marginal land, which can help abate GHG emissions.

  13. Comparison of simultaneous and separate processes: saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass.

    PubMed

    Akao, Satoshi; Maeda, Koutaro; Nakatani, Shingo; Hosoi, Yoshihiko; Nagare, Hideaki; Maeda, Morihiro; Fujiwara, Taku

    2012-01-01

    Catch crop candidates (corn, guinea grass) for recovering nutrients from farm soil and aquatic plants (water caltrop, water hyacinth) were utilized to produce L-lactic acid. The efficiencies ofpre-treatment methods for enzymatic saccharification and L-lactate production of two fermentation processes, thermophilic simultaneous saccharification and fermentation (SSF), as well as separate saccharification and fermentation, were compared. Conditions were set at 55 degrees C and pH 5.5 for non-sterile fermentation. Alkaline/peroxide pre-treatment proved the most effective for saccharification in pre-treated corn, guinea grass, water caltrop and water hyacinth with glucose yields of 0.23, 0.20, 0.11 and 0.14 g/g-dry native biomass (24-hour incubation period), respectively. Examination of the two types of thermophilic L-lactate fermentation employed following alkaline/peroxide pre-treatment and saccharification demonstrated that the L-lactate yield obtained using SSF (0.15 g/g in the case of corn) was lower than that obtained using separate saccharification and fermentation (0.28 g/g in the case of corn). The lower yield obtained from SSF is likely to have resulted from the saccharification conditions used in the present study, as the possibility of cellulase deactivation during SSF by thermophilic L-lactate producing bacteria existed. A cellulase that retains high activity levels under non-sterile conditions and a L-lactate producer without cellulose hydrolysis activity would be required in order for SSF to serve as an effective method of L-lactate production.

  14. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.

  15. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized.

  16. Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish.

    PubMed

    Zeng, Xuefeng; He, Laping; Guo, Xu; Deng, Li; Yang, Wangen; Zhu, Qiujin; Duan, Zhenhua

    2017-02-02

    This study aimed to determine the predominant processing adaptability of 27 selected isolates of Staphylococcus xylosus in 'Suan yu', a traditional Chinese low-salt fermented whole-fish product. The isolates were screened for proteolytic, lipolytic, and enzymatic profiles; amino-acid decarboxylase content; antimicrobial activities; and tolerance to low temperatures, pH5.0, and salt. Two S. xylosus strains grew at 10°C in the presence of 10% NaCl and at pH5.0. Agar-plate assays and sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that 21 and 8 of the strains exhibited appropriate proteolytic activities against myofibrillar and sarcoplasmic proteins, respectively. All S. xylosus strains also displayed different enzymatic profiles, and most strains showed negative decarboxylase activities. The results of this step were used as input data for a Principal Component Analysis; therefore, the most technologically relevant strain 3 and 8 were combined with L. plantarum 120 as MS1 and MS2, respectively, were further selected for the fermented fish surimi, and the fish surimi inoculated with mixed starter cultures (MS1, MS2) scored high for overall acceptability. Free amino acid contents of 1757 and 1765mg/100g sample were found in fish surimi inoculated with MS1 and MS2, respectively, after 72h of fermentation. Therefore, Sx-3 and Sx-8, which presented the best predominant processing adaptability, is an eligible starter culture for fermented fish production.

  17. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales.

  18. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review

    PubMed Central

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-01-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa. PMID:27073601

  19. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    PubMed

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%.

  20. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  1. Nutritional value and influence of the thermal processing on a traditional Portuguese fermented sausage (alheira).

    PubMed

    Campos, Sílvia D; Alves, Rita C; Mendes, Eulália; Costa, Anabela S G; Casal, Susana; Oliveira, Maria Beatriz P P

    2013-04-01

    Alheiras are a traditional, smoked, fermented meat sausage, produced in Portugal, with an undeniable cultural and gastronomic legacy. In this study, we assessed the nutritional value of this product, as well as the influence of different types of thermal processing. Alheiras from Mirandela were submitted to six different procedures: microwave, skillet, oven, charcoal grill, electric fryer and electric grill. Protein, fat, carbohydrate, minerals, NaCl, and cholesterol contents, as well as fatty acid profile were evaluated. The results show that alheiras are not hypercaloric but an unbalanced foodstuff (high levels of proteins and lipids) and the type of processing has a major impact on their nutritional value. Charcoal grill is the healthiest option: less fat (12.5 g/100 g) and cholesterol (29.3 mg/100 g), corresponding to a lower caloric intake (231.8 kcal, less 13% than the raw ones). Inversely, fried alheiras presented the worst nutritional profile, with the highest levels of fat (18.1 g/100 g) and cholesterol (76.0 g/100 g).

  2. Optimization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    PubMed

    Fu, Zhibiao; Leighton, Julie; Cheng, Aili; Appelbaum, Edward; Aon, Juan C

    2012-07-01

    Various approaches have been applied to optimize biological product fermentation processes and define design space. In this article, we present a stepwise approach to optimize a Saccharomyces cerevisiae fermentation process through risk assessment analysis, statistical design of experiments (DoE), and multivariate Bayesian predictive approach. The critical process parameters (CPPs) were first identified through a risk assessment. The response surface for each attribute was modeled using the results from the DoE study with consideration given to interactions between CPPs. A multivariate Bayesian predictive approach was then used to identify the region of process operating conditions where all attributes met their specifications simultaneously. The model prediction was verified by twelve consistency runs where all batches achieved broth titer more than 1.53 g/L of broth and quality attributes within the expected ranges. The calculated probability was used to define the reliable operating region. To our knowledge, this is the first case study to implement the multivariate Bayesian predictive approach to the process optimization for the industrial application and its corresponding verification at two different production scales. This approach can be extended to other fermentation process optimizations and reliable operating region quantitation.

  3. Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum.

    PubMed

    Choi, Sung Jun; Lee, Joungmin; Jang, Yu-Sin; Park, Jin Hwan; Lee, Sang Yup; Kim, In Ho

    2012-12-01

    Clostridium acetobutylicum is an industrially important organism that produces acetone-butanol-ethanol (ABE). The main objective of this study was to characterize the effects of increased cell density on the production of ABE during the phase transition from acidogenesis to solventogenesis in C. acetobutylicum. The increased ABE productivity of C. acetobutylicum was obtained by increasing the cell density using a newly designed medium (designated C. a cetobutylicum medium 1; CAM1). The maximum OD(600) value of C. acetobutylicum ATCC 824 strain obtained with CAM1 was 19.7, which is 1.8 times higher than that obtained with clostridial growth medium (CGM). The overall ABE productivity obtained in the CAM1-fermetation of the ATCC 824 strain was 0.83 g/L/h, which is 1.5 times higher than that (0.55 g/L/h) obtained with CGM. However, the increased productivity obtained with CAM1 did not result in an increase in the final ABE titer, because phase transition occurred at a high titer of acids.

  4. The optimisation of traditional fermentation process of white cabbage (in relation to biogenic amines and polyamines content and microbiological profile).

    PubMed

    Cvetković, Biljana R; Pezo, Lato L; Tasić, Tatjana; Šarić, Ljubiša; Kevrešan, Žarko; Mastilović, Jasna

    2015-02-01

    White cabbage heads cultivar "Futoški" and hybrid "Bravo" were investigated during fermentation process, for 50days, at different temperature regimes (16-18; 18-20; 20-22°C) and salt concentrations 1, 1.5 and 2%. The quantity of biogenic amines (tryptamine, phenylethylamine, putrescine, cadaverine, histamine, serotonine, tyramine, spermidine and spermine), as well as microbiological profile (lactic acid bacteria, total number of microorganisms, yeasts and moulds and Enterobacteriaceae) have been determined during fermentation. The optimum processing conditions were determined by Response Surface Method, coupled with Fuzzy Synthetic Evaluation algorithm. The optimal process parameters, regarding low biogenic amines and polyamines content, for "Futoški" cabbage was: salt concentration of 2%, at 18°C, and for hybrid "Bravo": salt concentration of 1%, at 20°C.

  5. Comparative technoeconomic analysis of a softwood ethanol process featuring posthydrolysis sugars concentration operations and continuous fermentation with cell recycle.

    PubMed

    Schneiderman, Steven J; Gurram, Raghu N; Menkhaus, Todd J; Gilcrease, Patrick C

    2015-01-01

    Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low-solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF-CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local-scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF-CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance.

  6. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    PubMed

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.

  7. Reduction in phytic acid content and enhancement of antioxidant properties of nutricereals by processing for developing a fermented baby food.

    PubMed

    Rasane, Prasad; Jha, Alok; Kumar, Arvind; Sharma, Nitya

    2015-06-01

    Cereal blends containing pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and oat (Avena sativa) in different ratios were processed (roasted and germinated) and also used as unprocessed flours followed by fermentation with Lactobacillus sp. (Lactobacillus casei and Lactobacillus plantarum). They were screened for total phenolic content (TPC), phytic acid content (PAC) and free radical scavenging activity (FRSA). A formulation with the highest TPC, FRSA and the lowest PAC was selected to optimize a nutricereal based fermented baby food containing selected fermented cereal blends (FCB), rice-corn cooked flour (RCF), whole milk powder (WMP), whey protein concentrate (WPC) and sugar. The optimized baby food formulation contained 37.41 g 100 g(-1) FCB, 9.75 g 100 g(-1) RCF, 27.84 g 100 g(-1) WMP, 5 g 100 g(-1) WPC and 20 g 100 g(-1) sugar. It had high protein, vitamin, minerals, as well as good quantity of carbohydrates and fat, to fulfil the nutritional needs of preschool children of age 1-3 years. The nutricereal based fermented baby food showed high water absorption capacity, dispersibility, wettability and flowability indicating good reconstitution properties.

  8. Upstream process optimization of polyhydroxybutyrate (PHB) by Alcaligenes latus using two-stage batch and fed-batch fermentation strategies.

    PubMed

    Wang, Bingqing; Sharma-Shivappa, Ratna R; Olson, Jonathan W; Khan, Saad A

    2012-11-01

    This research focused on optimizing the upstream process time for production of polyhydroxybutyrate (PHB) from sucrose by two-stage batch and fed-batch fermentation with Alcaligenes latus ATCC 29714. The study included selection of strain, two-stage batch fermentations with different time points for switching to nitrogen limited media (14, 16 or 18 h) and fed-batch fermentations with varied time points (similar to two stage) for introducing nitrogen limited media. The optimal strain to produce PHB using sucrose as carbon source was A. latus ATCC 29714 with maximum-specific growth rate of 0.38 ± 0.01 h(-1) and doubling time of 1.80 ± 0.05 h. Inducing nitrogen limitation at 16 h and ending second stage at 26 h gave optimal performance for PHB production, resulting in a PHB content of 46.7 ± 12.2 % (g PHB per g dry cell weight) at the end of fermentation. This was significantly higher (P ≤ 0.05) (approximately 7 %) than the corresponding fed batch run in which nitrogen limitation was initiated at 16 h.

  9. Review of vegetable fermentations with particular emphasis on processing modifications, microbial ecology, and spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of vegetables is widespread in the world and represents a major component of the human diet. Microorganisms (mainly lactic acid bacteria, yeasts, Enterobacteriaceae, Propionibacterium and Clostridium species) play a significant role in vegetable fermentations, affecting the quality a...

  10. A REVIEW OF PERVAPORATION FOR PRODUCT RECOVERY FROM BIOMASS FERMENTATION PROCESSES

    EPA Science Inventory

    Although several separation technologies are technically capable of removing volatile products from fermentation broths, distillation remains the dominant technology. This is especially true for the recovery of biofuels such as ethanol. In this paper, the status of an emerging m...

  11. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation.

    PubMed

    He, Chi-Ruei; Kuo, Yu-Yuan; Li, Si-Yu

    2017-05-01

    Napier grass is a potential feedstock for biofuel production because of its strong adaptability and wide availability. Compositional analysis has been done on Napier grass which was collected from a local area of Taiwan. By comparing acid- and alkali-pretreatment, it was found that the alkali-pretreatment process is favorable for Napier grass. An overall glucose yield of 0.82g/g-glucosetotal can be obtained with the combination of alkali-pretreatment (2.5wt% NaOH, 8wt% sample loading, 121°C, and a reaction time of 40min) and enzymatic hydrolysis (40FPU/g-substrate). Semi-simultaneous saccharification fermentation (sSSF) was carried out, where enzymatic hydrolysis and ABE fermentation were operated in the same batch. It was found that after 24-h hydrolysis, followed by 96-h fermentation, the butanol and acetone concentrations reached 9.45 and 4.85g/L, respectively. The butanol yield reached 0.22g/g-sugarglucose+xylose. Finally, the efficiency of butanol production from Napier grass was calculated at 31%.

  12. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.

    PubMed

    Oh, Sang Eun; Logan, Bruce E

    2005-11-01

    Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735+/-15 and 3250+/-90 mg-COD/L), an equalization tank (Lagoon; 1670+/-50mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920+/-150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64+/-16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21+/-18 mL/L for Effluent 2, and 16+/-2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210+/-56 mL/L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were 0.61-0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52 mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81+/-7 mW/m(2) (normalized to the anode surface area), or 25+/-2 mA per liter of wastewater, and a final COD of <30 mg/L (95% removal). Using a one-chambered MFC and pre-fermented wastewater, the maximum power density was 371+/-10 mW/m(2) (53.5+/-1.4 mA per liter of wastewater). These results suggest that it is feasible to link biological hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production.

  13. Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions

    NASA Astrophysics Data System (ADS)

    Bomberg, Matthew; Sanchez, Daniel L.; Lipman, Timothy E.

    2014-05-01

    Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10-30 MMgal yr-1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr-1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up.

  14. Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients

    PubMed Central

    2011-01-01

    This paper reports a systematic study of the level of flavan-3-ol monomers during typical processing steps as cacao beans are dried, fermented and roasted and the results of Dutch-processing. Methods have been used that resolve the stereoisomers of epicatechin and catechin. In beans harvested from unripe and ripe cacao pods, we find only (-)-epicatechin and (+)-catechin with (-)-epicatechin being by far the predominant isomer. When beans are fermented there is a large loss of both (-)-epicatechin and (+)-catechin, but also the formation of (-)-catechin. We hypothesize that the heat of fermentation may, in part, be responsible for the formation of this enantiomer. When beans are progressively roasted at conditions described as low, medium and high roast conditions, there is a progressive loss of (-)-epicatechin and (+)-catechin and an increase in (-)-catechin with the higher roast levels. When natural and Dutch-processed cacao powders are analyzed, there is progressive loss of both (-)-epicatechin and (+)-catechin with lesser losses of (-)-catechin. We thus observe that in even lightly Dutch-processed powder, the level of (-)-catechin exceeds the level of (-)-epicatechin. The results indicate that much of the increase in the level of (-)-catechin observed during various processing steps may be the result of heat-related epimerization from (-)-epicatechin. These results are discussed with reference to the reported preferred order of absorption of (-)-epicatechin > (+)-catechin > (-)-catechin. These results are also discussed with respect to the balance that must be struck between the beneficial impact of fermentation and roasting on chocolate flavor and the healthful benefits of chocolate and cocoa powder that result in part from the flavan-3-ol monomers. PMID:21917164

  15. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process.

    PubMed

    Mikulski, D; Kłosowski, G; Rolbiecka, A

    2014-10-01

    Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

  16. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients.

    PubMed

    Payne, Mark J; Hurst, W Jeffrey; Miller, Kenneth B; Rank, Craig; Stuart, David A

    2010-10-13

    Low molecular weight flavan-3-ols are thought to be responsible, in part, for the cardiovascular benefits associated with cocoa powder and dark chocolate. The levels of epicatechin and catechin were determined in raw and conventionally fermented cacao beans and during conventional processing, which included drying, roasting, and Dutch (alkali) processing. Unripe cacao beans had 29% higher levels of epicatechin and the same level of catechin compared to fully ripe beans. Drying had minimal effect on the epicatechin and catechin levels. Substantial decreases (>80%) in catechin and epicatechin levels were observed in fermented versus unfermented beans. When both Ivory Coast and Papua New Guinea beans were subjected to roasting under controlled conditions, there was a distinct loss of epicatechin when bean temperatures exceeded 70 °C. When cacao beans were roasted to 120 °C, the catechin level in beans increased by 696% in unfermented beans, by 650% in Ivory Coast beans, and by 640% in Papua New Guinea fermented beans compared to the same unroasted beans. These results suggest that roasting in excess of 70 °C generates significant amounts of (-)-catechin, probably due to epimerization of (-)-epicatechin. Compared to natural cocoa powders, Dutch processing caused a loss in both epicatechin (up to 98%) and catechin (up to 80%). The epicatechin/catechin ratio is proposed as a useful and sensitive indicator for the processing history of cacao beans.

  17. Nitrogen compounds in must and volatile profile of white wine: Influence of clarification process before alcoholic fermentation.

    PubMed

    Burin, Vívian Maria; Caliari, Vinícius; Bordignon-Luiz, Marilde T

    2016-07-01

    The aim of this study was to investigate the effect of adding a fining agent to the must in relation to the fermentation kinetics and the volatile composition of the wine produced. Three fining agents, bentonite, pectinolytic enzyme and silica were applied, separately, to samples of Chardonnay must. It was observed that the addition of a fining agent had a significant influence on the must and wine composition. The must clarified with bentonite showed the lowest nitrogen content and the enzyme addition led to the highest nitrogen content. During the fermentation process, a difference in the consumption rate was observed for each amino acid in relation to the fining agent used in the process. In relation to the volatile composition, the wine produced had different characteristics according to the fining agent added to the must, which was confirmed by separation of the samples using principal component analysis.

  18. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    PubMed

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone.

  19. A thorough study on the use of quantitative 1H NMR in Rioja red wine fermentation processes.

    PubMed

    López-Rituerto, Eva; Cabredo, Susana; López, Martina; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2009-03-25

    In this study, we focused our attention on monitoring the levels of important metabolites of wine during the alcoholic and malolactic fermentation processes by quantitative nuclear magnetic resonance (qNMR). Therefore, using (1)H NMR, the method allows the simultaneous quantification of ethanol, acetic, malic, lactic, and succinic acids, and the amino acids proline and alanine, besides the ratio proline/arginine through fermentation of must of grapes corresponding to the Tempranillo variety. Each (1)H NMR spectrum gives direct and visual information concerning these metabolites, and the effectiveness of each process was assessed and compared by carrying out analyses using infrared spectroscopy to ethanol and acetic acid. The quantitative data were explained with the aid of chemometric algorithms.

  20. Design and Optimization of a Process for Sugarcane Molasses Fermentation by Saccharomyces cerevisiae Using Response Surface Methodology

    PubMed Central

    El-Gendy, Nour Sh.; Madian, Hekmat R.; Amr, Salem S. Abu

    2013-01-01

    A statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolated Saccharomyces cerevisiae Y-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.6, 38°C, molasses concentration 18% wt.%, and 100 rpm. PMID:24222769

  1. History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology.

    PubMed

    Chiao, Jui-shen; Sun, Zhi-hao

    2007-01-01

    The acetone-butanol-ethanol (ABE) fermentation industry in China was started in the early 1950s in Shanghai and expanded rapidly thereafter. At its peak, there were about 30 plants all over the country and the total annual production of solvents reached 170,000 tons. This large enterprise was compelled to complete shutdown at the end of the 20th century due to the rapid increase of petrochemicals. The success of the ABE industry in China had special features like the development of a continuous fermentation technology. Its main strategic considerations were as follows: maintaining maximal growth and acid production phase, adoption of multiple stages in the solvent phase to allow gradual adaptation to increasing solvent, and the incorporation of stillage to offer enough nutrients to delay cell degeneration. Due to the tremendous national demand for solvents, China has begun a new round of ABE fermentation research. It is expected that a new era in the ABE industry is on the horizon.

  2. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation

    PubMed Central

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K.; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic

  3. Utilization of wastewater originated from naturally fermented virgin coconut oil manufacturing process for bioextract production: physico-chemical and microbial evolution.

    PubMed

    Tripetchkul, Sudarut; Kusuwanwichid, Sasithorn; Koonsrisuk, Songpon; Akeprathumchai, Saengchai

    2010-08-01

    Production of virgin coconut oil via natural fermentation has led to large amount of wastes being generated, i.e., coconut pulp and wastewater containing coconut crème. Objective of this study is to gain more insight into the feasibility of utilization of such wastes as raw materials together with several types of wastes such as fish waste and/or pineapple peel for bioextract production. Chemical, physico-chemical and biological changes including phytotoxicity of the fermented mixture were closely monitored. Physical observation suggested that fermentation of bioextract obtained with fish waste appeared to be complete within the first month of fermentation while bioextract obtained using pineapple waste seemed to be complete after 8 months post-fermentation. Fermentation broth is of blackish color with alcoholic as well as acidic odour with no gas bubble and/or yeast film present on top of the surface. During the whole fermentation interval, several attributes of both bioextracts, e.g., pH, chemical oxygen demand (COD) and organic acids, were statistically different. Further, the total bacteria and lactic acid bacteria present in pineapple bioextract were statistically higher than those of the fish bioextract (p<0.01). The highest germination indices of 123 and 106 were obtained at 21 and 14 days post-fermentation for fish and pineapple bioextracts, respectively. In addition, qualities of both bioextracts conformed well with those specified by the Thai standard for liquid biofertilizer after 1 month fermentation. Results further showed that wastewater derived from virgin coconut oil manufacturing process could effectively be employed together with other types of wastes such as fish waste and pineapple peel for bioextract production. However, for the best bioextract quality, fermentation should be carefully planned since over fermentation led to bioextract of low qualities.

  4. Toward a New Pluralism in ABE/ESOL Classrooms: Teaching to Multiple "Cultures Of Mind." Research Monograph. NCSALL Reports #19

    ERIC Educational Resources Information Center

    Kegan, Robert; Broderick, Maria; Drago-Severson, Eleanor; Helsing, Deborah; Popp, Nancy; Portnow, Kathryn

    2001-01-01

    How do ABE/ESOL (Adult Basic Education/English for Speakers of Other Languages) programs shape adult learners, and how do adult learners, in turn, shape their programs? Beyond the acquisition of important skills (such as greater fluency in the English language) what are the bigger internal meanings for adults of participating in ABE/ESOL…

  5. Toward a New Pluralism in ABE/ESOL Classrooms: Teaching to Multiple "Cultures of Mind." Research Monograph. NCSALL Reports.

    ERIC Educational Resources Information Center

    Kegan, Robert; Broderick, Maria; Drago-Severson, Eleanor; Helsing, Deborah; Popp, Nancy; Portnow, Kathryn

    This document contains information about and from a study of the experiences of 41 adults enrolled in adult basic education/English for speakers of other languages (ABE/ESOL) programs that was conducted to determine what their learning meant to them and to identify strategies for developing a new pluralism in ABE/ESOL classrooms and teaching to…

  6. Team Learning. Training Packet for a Three-Session Workshop. Study of ABE/ESL Instructor Training Approaches.

    ERIC Educational Resources Information Center

    Tibbetts, John; And Others

    This training packet on team learning is 1 of 10 developed by the Study of Adult Basic Education (ABE)/English as a Second Language (ESL) Training Approaches Project to assist ABE instructors, both professionals and volunteers. The packet is intended to stand alone and encompasses a three-session workshop series with activities scheduled for…

  7. Experimental optimization of a real time fed-batch fermentation process using Markov decision process.

    PubMed

    Saucedo, V M; Karim, M N

    1997-07-20

    This article describes a methodology that implements a Markov decision process (MDP) optimization technique in a real time fed-batch experiment. Biological systems can be better modeled under the stochastic framework and MDP is shown to be a suitable technique for their optimization. A nonlinear input/output model is used to calculate the probability transitions. All elements of the MDP are identified according to physical parameters. Finally, this study compares the results obtained when optimizing ethanol production using the infinite horizon problem, with total expected discount policy, to previous experimental results aimed at optimizing ethanol production using a recombinant Escherichia coli fed-batch cultivation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 317-327, 1997.

  8. Solvents Production from a Mixture of Glucose and Xylose by Mixed Fermentation of Clostridium acetobutylicum and Saccharomyces cerevisiae.

    PubMed

    Qi, Gao-Xiang; Xiong, Lian; Huang, Chao; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2015-10-01

    To overcome the xylose utilization defect in ethanol fermentation by wide-type Saccharomyces cerevisiae and alleviate the carbon catabolite repression (CCR) in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, a novel mixed fermentation of S. cerevisiae and C. acetobutylicum was developed. When S. cerevisiae was inoculated 24 h earlier than C. acetobutylicum CH02, a higher solvents yield was achieved with 0.41 g/g, compared to 0.38 g/g in ABE fermentation, and when S. cerevisiae and C. acetobutylicum CH02 were inoculated simultaneously, a higher productivity was achieved with 0.32 g/L/h, compared to 0.15 g/L/h in ABE fermentation. The total solvents yield was improved by the high ethanol yield from glucose. The CCR in mixed fermentation was alleviated when glucose was utilized quickly by S. cerevisiae, and therefore, the productivity was improved. This study suggests that mixed fermentation is an effective solvents production method from a mixture of glucose and xylose.

  9. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  10. Monitoring of protein profiles for the optimization of recombinant fermentation processes using public domain databases.

    PubMed

    Dürrschmid, Karin; Marzban, Gorji; Dürrschmid, Eberhard; Striedner, Gerald; Clementschitsch, Franz; Cserjan-Puschmann, Monika; Bayer, Karl

    2003-01-01

    The expression of human superoxide dismutase in fed-batch fermentation of E. coli HMS174(DE3)(pET3ahSOD) was studied as model system. Due to the frequently used strong T7 promoter system a high metabolic load is exerted, which triggers stress response mechanisms and finally leads to the differentiation of the host cell. As a consequence, host cell metabolism is partly shifted from growth to survival accompanied by significant alterations of the protein pattern. In terms of process optimization two-dimensional electrophoresis deserves as a powerful tool to monitor these changes on protein level. For the analysis of samples derived from different states of recombinant protein production wide-range Immobiline Dry Strips pH 3-10 were used. In order to establish an efficient procedure for accelerated process optimization and to avoid costly and time-consuming analysis like mass spectrometry (MS), a database approach for the identification of significant changes of the protein pattern was evaluated. On average, 935 spots per gel were detected, whereby 50 are presumably stress-relevant. Out of these, 24 proteins could be identified by using the SWISS-2DPAGE database (www.expasy.ch/ch2d/). The identified proteins are involved in regulatory networks, energy metabolism, purine and pyrimidine nucleotide synthesis and translation. By this database approach, significant fluctuations of individual proteins in relation to recombinant protein production could be identified. Seven proteins show strong alterations (>100%) directly after induction and can therefore be stated as reliable marker proteins for the assessment of stress response. For distinctive interpretation of this highly specific information, a bioinformatic and statistic tool would be essential in order to perceive the role and contribution of individual proteins in stress response.

  11. Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification

    PubMed Central

    Ebrahiminezhad, Alireza; Varma, Vikas; Yang, Shuyi; Ghasemi, Younes; Berenjian, Aydin

    2015-01-01

    Industrial production of menaquione-7 by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in menaquione-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified menqainone-7 process. This article introduces the new concept of production and application of l-lysine coated iron oxide nanoparticles (l-Lys@IONs) as a novel tool for menaquinone-7 biosynthesis. l-Lys@IONs with the average size of 7 nm were successfully fabricated and were examined in a fermentation process of l-Lys@IONs decorated Bacillus subtilis natto. Based on the results, higher menaquinone-7 specific yield was observed for l-Lys@IONs decorated bacterial cells as compared to untreated bacteria. In addition, more than 92% removal efficacy was achieved by using integrated magnetic separation process. The present study demonstrates that l-Lys@IONs can be successfully applied during a fermentation of menaquinone-7 without any negative consequences on the culture conditions. This study provides a novel biotechnological application for IONs and their future role in bioprocess intensification.

  12. The usefulness of intermediate products of plum processing for alcoholic fermentation and chemical composition of the obtained distillates.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Sapińska, Ewelina; Księżopolska, Mirosława

    2013-05-01

    In this study, an evaluation of intermediate products of plum processing as potential raw materials for distillates production was performed. Effects of composition of mashes on ethanol yield, chemical composition and taste, and flavor of the obtained spirits were determined. The obtained results showed that spontaneous fermentations of the tested products of plum processing with native microflora of raisins resulted in lower ethanol yields, compared to the ones fermented with wine yeast Saccharomyces bayanus. The supplementation of mashes with 120 g/L of sucrose caused an increase in ethanol contents from 6.2 ± 0.2 ÷ 6.5 ± 0.2% v/v in reference mashes (without sucrose addition, fermented with S. bayanus) to ca. 10.3 ± 0.3% v/v, where its highest yields amounted to 94.7 ± 2.9 ÷ 95.6 ± 2.9% of theoretical capacity, without negative changes in raw material originality of distillates. The concentrations of volatile compounds in the obtained distillates exceeding 2000 mg/L alcohol 100% v/v and low content of methanol and hydrocyanic acid, as well as their good taste and aroma make the examined products of plum processing be very attractive raw materials for the plum distillates production.

  13. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.

  14. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    PubMed

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  15. Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure.

    PubMed

    Sonnleitner, Andrea; Peintner, Christian; Wukovits, Walter; Friedl, Anton; Schnitzhofer, Wolfgang

    2012-08-01

    Hydrogen production via thermophilic dark fermentation is considered a sustainable way to produce renewable hydrogen. For industrial scale an optimisation of hydrogen production is of highest importance. The aim of this work was to evaluate induced bubble formation and applying reduced pressure as methods of removing produced hydrogen instead of external gas stripping. Evaluation was carried out in a continuously stirred tank reactor using the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. The addition of a bubble formation inductor was able to maintain the fermentation, but only at low hydrogen production rates and yields. Applying reduced pressure at a level of 305 mbar, nitrogen stripping could be omitted and hydrogen yields of around 72% of the theoretical maximum were achieved. It was proven, that application of reduced pressure is a promising alternative to inert gas stripping to obtain high hydrogen productivities and yields for thermophilic dark fermentations.

  16. Corn silage management III: effects of hybrid, maturity, and processing on nitrogen metabolism and ruminal fermentation.

    PubMed

    Johnson, L M; Harrison, J H; Davidson, D; Swift, M; Mahanna, W C; Shinners, K

    2002-11-01

    Two experiments were conducted to evaluate the effects of maturity and mechanical processing of two hybrids of whole plant corn silage on DM and OM digestibility, nitrogen metabolism, ruminal fermentation, and milk production and composition in lactating Holstein cows. In the first experiment, Pioneer hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. At each stage of maturity, corn was harvested with (1-mm roll clearance) and without (15.9-mm roll clearance) mechanical processing using a John Deere 5830 harvester with an on-board kernel processor. In the second experiment, Pioneer hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with and without mechanical processing. The theoretical length-of-cut was 12.7 mm. Total tract DM and OM digestibilities were lower for cows fed diets containing processed corn silage in experiment 1, and tended to be lower for cows fed diets containing unprocessed corn silage in experiment 2. Ruminal acetate concentrations were greater and ruminal propionate concentrations were lower 2 and 6 h after feeding for cows fed diets containing corn silage harvested at physiological maturity in experiment 2. This was due to decreased digestion of starch at advanced maturities in experiment 2. Ruminal pH tended to decline rapidly after feeding for cows fed hybrid Quanta (2 h) compared to hybrid 3845 (5 h) corn silage based diets. Ruminal acetate concentrations decreased and ruminal propionate concentrations increased 2 and 6 h after feeding for cows fed diets containing hybrid Quanta corn silage compared to hybrid 3845 corn silage. This was related to a greater starch concentration in the corn silage, greater starch intake, and increased rate of starch digestion for cows fed hybrid Quanta corn silage-based diets. Microbial nitrogen flow was lower and feed nitrogen flow was greater for

  17. Fermentation and downstream process for high yield production of Plasmodium falciparum recombinant HRP II protein and its application in diagnosis.

    PubMed

    Singh, Anil K; Athmaram, T N; Shrivastava, Saurabh; Merwyn, S; Agarwal, G S; Gopalan, N

    2013-07-01

    Malaria represents the world's greatest public health problem in terms of number of people affected, levels of morbidity and mortality in tropical and subtropical countries. Malaria parasites are members of the Apicomplexa, family of Plasmodiidae. Histidine-rich protein-II secreted by Plasmodium falciparum is known to be a compelling marker in malaria diagnosis and follow-up. In our present study, we have optimized the batch fermentation and downstream process for large scale production of recombinant P. falciparum HRP-II 62 kDa protein for diagnostic application. The culture broth was effectively induced with IPTG twice at different time intervals to sustain induction for a long period. Batch fermentation resulted in a wet weight of 61.34 g/L and dry cell biomass 12.81 g/L. With the improved downstream process, purified recombinant protein had a yield of 304.60 mg/L. The authenticity of the purified recombinant protein was confirmed via western blotting using indigenously developed HRP-II specific monoclonal antibodies and known positive human clinical sera samples. Further, the reactivity of recombinant HRP-II protein was validated using commercially available immuno chromatographic strips. Indirect ELISA using recombinant purified protein recognized the P. falciparum specific antibodies in suspected human sera samples. Our results clearly suggest that the recombinant HRP-II protein produced via batch fermentation has immense potential for routine diagnostic application.

  18. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  19. Nutrient digestibility and colonic fermentation processes in species of the families Mustelidae and Canidae fed the same diet.

    PubMed

    Gugołek, Andrzej; Juśkiewicz, Jerzy; Strychalski, Janusz; Konstantynowicz, Małgorzata; Zwoliński, Cezary

    2015-11-01

    Nutrient digestibility was compared and the influence of colonic fermentation processes on nutrient digestibility was determined in the American mink (Neovison vison) and the silver fox (Vulpes vulpes). It was hypothesized that gut microbiota exert varied effects on digestion processes in the analyzed species. The experiment was performed in December, on a group of 10 male mink and 10 male foxes. All animals were fed identical diets for fur-bearing carnivores, with the following chemical composition (%): dry matter (DM)-33.12, total protein (TP)-12.01, ether extract (EE)-8.64, crude fiber (CF)-12.01, N-free extracts (N-FE)-9.32, and gross energy (GE)-7.313 MJ/kg(-1) . The coefficients of DM, OM, TP and EE digestibility were significantly higher in foxes than in mink. Mink were characterized by significantly higher utilization of N-FE. In foxes, as compared with mink, fermentation rates were higher in the final section of the gastrointestinal tract, which improved nutrient digestibility. In mink, characterized by lower fermentation rates in the colon, increased enzyme secretion by bacterial cells is one of the physiological mechanisms that enable to optimize nutrient absorption in the large intestine.

  20. Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce.

    PubMed

    Survase, Shrikant A; Sklavounos, Evangelos; Jurgens, German; van Heiningen, Adriaan; Granström, Tom

    2011-12-01

    SO2-ethanol-water (SEW) spent liquor from spruce chips was successfully used for batch and continuous production of acetone, butanol and ethanol (ABE). Initially, batch experiments were performed using spent liquor to check the suitability for production of ABE. Maximum concentration of total ABE was found to be 8.79 g/l using 4-fold diluted SEW liquor supplemented with 35 g/l of glucose. The effect of dilution rate on solvent production, productivity and yield was studied in column reactor consisting of immobilized Clostridium acetobutylicum DSM 792 on wood pulp. Total solvent concentration of 12 g/l was obtained at a dilution rate of 0.21 h(-1). The maximum solvent productivity (4.86 g/l h) with yield of 0.27 g/g was obtained at dilution rate of 0.64 h(-1). Further, to increase the solvent yield, the unutilized sugars were subjected to batch fermentation.

  1. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    PubMed

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production.

  2. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-07

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level.

  3. 77 FR 58624 - ABE Fairmont, LLC-Acquisition and Operation Exemption-Fillmore Western Railway Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... the north property line of County Road H, at or near Fairmont, Fillmore County, Neb.\\1\\ \\1\\ ABE, which... what it has recently learned is an active rail line. The transaction is scheduled to be consummated on... misleading information, the exemption is void ab initio. Petitions to revoke the exemption under 49...

  4. Three Adult Education Projects: Local History Sparks ABE Class; Teleteacher; Project TARA: An Approach to AE.

    ERIC Educational Resources Information Center

    Ringley, Ray; And Others

    1979-01-01

    Describes three instructional approaches in adult basic education: a class in which retired coal miners recorded their experiences in early coal mining camps; a telephone-based instructional system using "Teleteacher" specially designed and built machines; and an approach to ABE in New York emphasizing adult functional literacy, Project…

  5. Themes for Literacy Acquisition: Some Beliefs and Approaches for Teaching GED, ABE, and ESL.

    ERIC Educational Resources Information Center

    Wolfe, Marcie; And Others

    This report presents work done by participating General Educational Development (GED), adult basic education (ABE), and English-as-a-Second-Language (ESL) instructors in collaboration with the Institute for Literacy Studies at Lehman College (City University of New York). The report is in three sections. The first section is a statement, in list…

  6. The Teaching of Reading in ABE [Adult Basic Education]: Survey Report 1973.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Dept. of Adult and Continuing Education.

    The teaching of reading is an important aspect of the total Adult Basic Education (ABE) program. The basic problem was: How is the teaching of reading in Nebraska being carried out? In trying to answer this question the document lays the groundwork by opening with a review of related literature and then discusses in detail the type of data…

  7. Adult Basic Education Curriculum Guide for ABE Programs Serving Psychiatrically Ill Adult Students.

    ERIC Educational Resources Information Center

    Collier, Ezma V.

    This curriculum guide is designed for use in adult basic education (ABE) programs serving psychiatrically ill adult students. Covered in the individual units are the following topics: personal hygiene and grooming, nutrition and health, money and money management, transportation and safety, government and law, values clarification, and…

  8. A Pilot Program to Recruit, Orient, and Use Classroom Volunteers to Assist ABE/ESL Faculty.

    ERIC Educational Resources Information Center

    Simpson, William M.; Koehler, C. Russell

    The pilot project described and evaluated in this report was conducted at Olympic College to test the assignment of volunteer classroom assistants under the supervision of Adult Basic Education (ABE) and English as a Second Language (ESL) instructors to help individualize classroom instruction. Section I introduces the project, the college and its…

  9. ABE/ESL Reading Manual: A Guide for Lincoln County Instructors.

    ERIC Educational Resources Information Center

    Hubbard, Elizabeth; And Others

    Designed as a guide for instructors in Lincoln County, Oregon Adult Basic Education (ABE) and English as a Second Language (ESL) programs, this reading manual attempts to assist in the diagnosis and remediation of student reading problems. Introductory sections provide information on the development and use of the manual, and on the philosophy and…

  10. Where We Live: A Curriculum Guide. ABE Materials that Address Housing Issues.

    ERIC Educational Resources Information Center

    Ellowitch, Azi

    This curriculum was developed to give adult basic education (ABE) teachers starting points for developing their own units around housing-related issues. The texts have been chosen thematically, rather than by skill level. The materials are designed for group work--oral reading and discussion. Readings focus on housing repairs, court procedures,…

  11. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  12. ABE Phase III: Progress and Problems. September 1, 1969-April 1, 1970.

    ERIC Educational Resources Information Center

    Southwestern Cooperative Educational Lab., Albuquerque, NM.

    Interim information concerning the ABE III grants is provided in the three parts of this report. Part 1 (outline) describes the goals and objectives of each component; Part 2 describes accomplishments and problems to date; and Part 3 deals with coordination and supervision activities undertaken by the Lab. The components of the program are: (1)…

  13. Achievement Motivation Training--Effects on ABE/ASE Students' Psychosocial Self-Perceptions.

    ERIC Educational Resources Information Center

    Martin, Larry G.

    A study was conducted to identify psychosocial needs of Adult Basic Education (ABE)/Adult Secondary Education (ASE) students by using the Self-Description Questionnaire (SDQ). A second purpose was to test effectiveness of Achievement Motivation Training (AMT) as a technique to counterbalance the negative impact of these students' former…

  14. Newspaper Delivery of ABE/GED Curriculum Materials. Final Report and Final Product.

    ERIC Educational Resources Information Center

    Lenz, Kitty

    This report describes the delivery of adult basic education/general educational development (ABE/GED) materials throuqh a local newspaper. The materials, 24 English and math lessons developed by the Vineland (New Jersey) Adult Education Center and later distributed by Project Rural in Centre County, Pennsylvania, were published by the "Valley…

  15. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  16. Development of macrolide lactone antibiotic brefeldin A fermentation process with Eupenicillium brefeldianum ZJB082702.

    PubMed

    Wang, Ya-Jun; Xue, Feng; Wu, Ye-Fei; Xue, Ya-Ping; Zheng, Yu-Guo

    2012-09-01

    In this work, a robust brefeldin A-synthesizing fungus, Eupenicillium brefeldianum ZJB082702, was bred from a Murraya paniculata endophytic fungus E. brefeldianum A1163. Using one-factor-at-a-time experimental design, optimization of media composition for E. brefeldianum ZJB082702 fermenting brefeldin A was conducted. Outcomes indicated that mixed carbon source and mixed nitrogen source were of c ritical importance to brefeldin A fermentation. After 6d culture in the optimized fermentation media, composed of (gl(-1)) 13.33 starch, 26.67 glucose, 1.0 yeast extract powder, 1.0 corn steep liquor, 0.5 soybean meal, 0.75 NaNO(3), 2.5 malt extract, 6.0 CaCO(3), 3.0 MgSO(4), 4.0 KH(2)PO(4), 1.0 × 10(-2) CuSO(4), brefeldin A yield peaked at 1304.7 mgl(-1), 648.2 mgl(-1) in 500 ml baffled flask and 15 l stirred fermentor respectively, formed as a growth associated type of secondary metabolite based on fermentation profile analysis.

  17. Determination of wine microbiota using classical method, polymerase chain method and Step One Real-Time PCR during fermentation process.

    PubMed

    Kačániová, Miroslava; Hleba, Lukáš; Pochop, Jaroslav; Kádasi-Horáková, Miriam; Fikselová, Martina; Rovná, Katarína

    2012-01-01

    The aim of our study was the identification of grape, must and wine microbiota during the fermentation process using a classical microbiological method and Real-Time PCR. The changes in different groups of microorganisms were monitored in total counts of bacteria, lactobacilli and yeasts. Microbiological parameters were observed during the current collection and processing of grapes in 2009. Samples were taken during the fermentation process in wine enterprises and a private vineyard. During this period 30 samples of wine among Müller Thurgau, Cabernet Sauvignon, Chardonnay, Tramin and Red Bio-wine were examined. Samples were collected from stages of grape-must unfiltered, grape-must filtered, the beginning of fermentation, fermentation, late fermentation and young wine. The highest total counts of bacteria ranged from 0.00 to 176 ± 15 CFU.mL(-1) in the wine of Müller Thurgau, the highest number of yeast ranged from 0.00 to 150 ± 9 CFU.mL(-1) in the wine of Müller Thurgau and the number of Lactobacillus spp. ranged from 0.00 to 92 ± 5 CFU.mL(-1) in the sample of Cabernet Sauvignon wine. The presence and sensitivity of Gram-positive and Gram-negative bacterial species Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus crispatus and Lactobacillus salivarius were detected using Real-Time PCR (RTQ PCR). Susceptibility of Enterococcus faecium varied in different isolates from 1 to 10(6) CFU.mL(-1), the sensitivity of the species Lactobacillus acidophilus in different isolates of the wine samples ranged from 1 to 10(5) CFU.mL(-1). We also monitored representation of species Lactobacillus crispatus, which were captured by RTQ PCR sensitivity and ranged from 1 to 10(5) CFU.mL(-1). Identification of the species Lactobacillus salivarius in each of isolates by RTQ PCR method showed the presence of these bacteria in the range of 1 to 10(4) CFU.mL(-1).

  18. Role of extracellular protease in nitrogen substrate management during antibiotic fermentation: a process model and experimental validation.

    PubMed

    Bapat, Prashant M; Sinha, Avinash; Wangikar, Pramod P

    2011-08-01

    Kinetics of extracellular protease (ECP) production has typically been studied for processes that involve protease as a product. We argue that ECP is equally important in fermentations where protease is not a product of interest. Industrial fermentations typically use complex nitrogen substrates, which are proteolytically hydrolyzed to amino acids (AA) by ECP before assimilation. However, high AA concentrations may lead to nitrogen catabolite repression (NCR) of the products such as antibiotics. Thus, ECP plays a crucial role in managing the nitrogen substrate supply thereby affecting the antibiotic productivity. Here, we have studied the induction of ECP and its effect on the antibiotic productivity for a rifamycin B overproducer strain Amycolatopsis meditterranei S699. This organism produces ECP at the level of 14 U mL(-1) in complex media, which is sufficient for hydrolysis of proteins in the media but low compared to other ECP overproducers. We find ECP secretion to be repressed by ammonia, AA, and under conditions that support high growth rate. We propose a structured kinetic model which accounts for the kinetics of ECP secretion, amino acid availability, growth, and antibiotic production. In addition to the quantity, the timing of ECP induction was critical in achieving higher rifamycin productivity. We artificially created conditions that led to delayed protease secretion, which in turn led to premature termination of batch and lower productivity. The predictive value of the model can be useful in better management of the available nitrogen supply, minimization of NCR, and in the monitoring of fermentation batches.

  19. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  20. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  1. Dynamics of hydrogen-producing bacteria in a repeated batch fermentation process using lake sediment as inoculum.

    PubMed

    Romano, Stefano; Paganin, Patrizia; Varrone, Cristiano; Tabacchioni, Silvia; Chiarini, Luigi

    2014-02-01

    In this study, we evaluated the effectiveness of lake sediment as inoculum for hydrogen production through dark fermentation in a repeated batch process. In addition, we investigated the effect of heat treatment, applied to enrich hydrogen-producing bacteria, on the bacterial composition and metabolism. Denaturing gradient gel electrophoresis and molecular cloning, both performed using the 16S rDNA gene as target gene, were used to monitor the structure of the bacterial community. Hydrogen production and bacterial metabolism were analysed via gas chromatography and high-performance liquid chromatography. Both treated and non-treated inocula were able to produce high amounts of hydrogen. However, statistical analysis showed a clear difference in their bacterial composition and metabolism. The heat treatment favoured the growth of different Clostridia sp., in particular of Clostridium bifermentans, allowing the production of a constant amount of hydrogen over prolonged time. These cultures showed both butyrate and ethanol fermentation types. Absence of heat treatment allowed species belonging to the genera Bacillus, Sporolactobacillus and Massilia to outgrow Clostridia sp. with a reduction in hydrogen production and a significant metabolic change. Our data indicate that lake sediment harbours bacteria that can efficiently produce hydrogen over prolonged fermentation time. Moreover, we could show that the heat treatment stabilizes the bacterial community composition and the hydrogen production.

  2. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  3. Predicting the Concentration of Verotoxin-Producing Escherichia coli Bacteria during Processing and Storage of Fermented Raw-Meat Sausages

    PubMed Central

    Quinto, E. J.; Arinder, P.; Axelsson, L.; Heir, E.; Holck, A.; Lindqvist, R.; Lindblad, M.; Andreou, P.; Lauzon, H. L.; Marteinsson, V. Þ.

    2014-01-01

    A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions. PMID:24561587

  4. Predicting the concentration of verotoxin-producing Escherichia coli bacteria during processing and storage of fermented raw-meat sausages.

    PubMed

    Quinto, E J; Arinder, P; Axelsson, L; Heir, E; Holck, A; Lindqvist, R; Lindblad, M; Andreou, P; Lauzon, H L; Marteinsson, V Þ; Pin, C

    2014-05-01

    A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.

  5. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum.

    PubMed

    Xue, Chuang; Zhao, Jingbo; Chen, Lijie; Yang, Shang-Tian; Bai, Fengwu

    Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol.

  6. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process.

    PubMed

    Arrizon, Javier; Gschaedler, Anne

    2002-11-01

    In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.

  7. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    PubMed

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  8. Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation.

    PubMed

    Andrade, Rafaela Pereira; Melo, Carolina Naves; Genisheva, Zlatina; Schwan, Rosane Freitas; Duarte, Whasley Ferreira

    2017-01-01

    Canastra cheese is a cheese with geographical indication recognized by the Brazilian National Institute of Industrial Protection under number IG201002. It is produced in seven municipalities in the state of Minas Gerais in a region called Serra da Canastra. In this work, samples of milk, "pingo" (natural starter), whey and Canastra cheese were collected on a farm in Medeiros-MG/Brazil to evaluate the yeast microbiota and select yeasts for whey fermentation to produce ethanol and volatile aromatic compounds of relevance in the production of cheese. Thirty-nine isolates capable of fermenting lactose in a synthetic medium were identified by MALDI-TOF as Kluyveromyces lactis (29), Torulaspora delbrueckii (7) and Candida intermedia (3). Eleven isolates of K. lactis and three of T. delbrueckii efficiently fermented lactose until 4th day, and due to this reason were selected for cheese whey fermentation with Brix 12, 14 and 18. Generally, the isolates T. delbrueckii B14, B35, and B20 and K. lactis B10 were the most effective regardless of the initial Brix value. The identification of these four isolates by MALDI TOF was confirmed by sequencing of the ITS region. In the fermentation of cheese whey 14 Brix, T. delbrueckii B14 and B35, respectively yielded 24.06g/L and 16.45g/L of ethanol, while K. lactis B10 was more efficient in the consumption of lactose. In sequential culture with K. lactis B10 inoculated 48h after T. delbrueckii B14, 97.82% of the total sugars were consumed resulting in the production of 19.81g/L ethanol and 39 aromatic volatile compounds. The most abundant compounds were 3-methyl-1-butanol, octanoic acid and ethyl decanoate, which are reported as important for the aroma and flavor of cheeses. Based in our results, B10 isolate inoculated 48h after B14 isolate is a promising yeast inoculum to be used for fermentation of dairy substrates.

  9. A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kobayashi, Genta

    2014-02-01

    In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.

  10. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    PubMed

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-02-25

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m(2) h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  11. Analysis of fermentation processes using flow microfluorometry: Single-parameter observations of batch bacterial growth.

    PubMed

    Fazel-Madjlessi, Jila; Bailey, J E

    2002-09-05

    The laser flow microfluorometer (FMF) can determine the amounts of certain components in single cells at sample rates of several thousand cells per second. This technique has been employed to characterize Bacillus subtilis populations in batch fermentations with different inocula. Protein and nucleic acid distributions obtained by FMF analyses at different times during the batch have been decomposed using an optimized fit of summed subpopulation distributions. The results of these decomposition calculations, some of which have been approximately confirmed by independent microscopic observations, indicate that the relative numbers of single rods, cell chains, spores, and swollen rounded cells change dramatically during the entire fermentation including the stationary phase. The dynamics of these subpopulations may be related to secondary metabolite production.

  12. Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process

    PubMed Central

    Mahony, Jennifer; Moscarelli, Angelo; Kelleher, Philip; Lugli, Gabriele A.; Ventura, Marco; Settanni, Luca; van Sinderen, Douwe

    2017-01-01

    Dairy fermentations constitute a perfect “breeding ground” for bacteriophages infecting starter cultures, particularly strains of Lactococcus lactis. In modern fermentations, these phages typically belong to one of three groups, i.e., the 936, P335, and c2 phage groups. Traditional production methods present fewer chemical and physical barriers to phage proliferation compared to modern production systems, while the starter cultures used are typically complex, variable, and undefined. In the current study, a variety of cheese whey, animal-derived rennet, and vat swab samples from artisanal cheeses produced in Sicily were analysed for the presence of lactococcal phages to assess phage diversity in such environments. The complete genomes of 18 representative phage isolates were sequenced, allowing the identification of 10 lactococcal 949 group phages, six P087 group phages, and two members of the 936 group phages. The genetic diversity of these isolates was examined using phylogenetic analysis as well as a focused analysis of the receptor binding proteins, which dictate specific interactions with the host-encoded receptor. Thermal treatments at 63 °C and 83 °C indicate that the 949 phages are particularly sensitive to thermal treatments, followed by the P087 and 936 isolates, which were shown to be much less sensitive to such treatments. This difference may explain the relatively low frequency of isolation of the so-called “rare” 949 and P087 group phages in modern fermentations. PMID:28300778

  13. Three-stage fermentation process: cellulose-ethyl alcohol. Final technical report

    SciTech Connect

    Not Available

    1981-10-30

    In summarizing the one year study the following observations were noted: (1) Trichodermal enzymes produced by the methods outlined gave a Filter Paper Activity (FP Activity) of 1.5 to 2.0 FP units per ml; (2) Sclerotium enzyme production was evident, but to date we have not been able to definitely enhance Trichodermal enzyme activity by the addition of the former; (3) Enzymatic hydrolysis of newsprint strips was enhanced by using a chemical pretreatment involving Alkaline bisulfite for 3 days followed by 2% H/sub 2/SO/sub 4/ also for a 3 days period at 25/sup 0/C; (4) Aspergillus niger was grown on 1% Xylan and an enzyme (Xylanase) was active in producing the sugar, Xylose; (5) Treatment of newsprint with both Trichoderma and Aspergillus enzymes yielded at least three sugars - cellobiose, glucose, and xylose; (6) Yeast fermentation of recoverable sugars from newsprint was accomplished, however due to the limited time period no attempt was made to purify the fermentation products. Thus our findings are based primarily on the CO/sub 2/ production during the yeast fermentative period (36 to 48 h). 11 refs.

  14. Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation.

    PubMed

    Ezeji, Thaddeus C; Karcher, Patrick M; Qureshi, Nasib; Blaschek, Hans P

    2005-05-01

    The effect of factors such as gas recycle rate, bubble size, presence of acetone, and ethanol in the solution/broth were investigated in order to remove butanol from model solution or fermentation broth (also called acetone butanol ethanol or ABE or solvents). Butanol (8 g L(-1), model solution, Fig. 2) stripping rate was found to be proportional to the gas recycle rate. In the bubble size range attempted (< 0.5 and 0.5-5.0 mm), the bubble size did not have any effect on butanol removal rate (Fig. 3, model solution). In Clostridium beijerinckii fermentation, ABE productivity was reduced from 0.47 g L(-1) h(-1) to 0.25 g L(-1) h(-1) when smaller (< 0.5 mm) bubble size was used to remove ABE (Fig. 4, results reported as butanol/ABE concentration). The productivity was reduced as a result of addition of an excessive amount of antifoam used to inhibit the production of foam caused by the smaller bubbles. This suggested that the fermentation was negatively affected by antifoam.

  15. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    PubMed

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures.

  16. Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization.

    PubMed

    Gahlawat, Geeta; Srivastava, Ashok K

    2012-11-01

    Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24 g/L, respectively in bioreactor with an overall PHB production rate of 0.75 g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29 g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production.

  17. Integrated study of fermentation and downstream processing in a miniplant significantly improved the microbial 1,3-propanediol production from raw glycerol.

    PubMed

    Kaeding, Thomas; DaLuz, Julian; Kube, Jürgen; Zeng, An-Ping

    2015-03-01

    In this work, an integrated and optimized production process for 99 % pure 1,3-propanediol (PDO) from raw glycerol is presented. Glycerol fermentation is carried out applying a newly isolated strain Clostridium pasteurianum K1 under non-sterile conditions without any complex ingredients in the fermentation media. In this environment over 55 g/L PDO, yields of 0.52 g/g and space time yields over 2.3 g/(Lh) were achieved in up to 1 m(3) pilot scale. The downstream process for PDO purification consists of an ultrafiltration for biomass and protein separation, an evaporation step for concentration of PDO and a two-step rectification for final purification. For a proof of concept, process optimization and especially investigation of interactions of individual steps, the downstream process was performed in miniplant scale. A minimum salt input into the downstream process was shown to be important to overcome precipitation in evaporation as well as rectification. Thus, raw glycerol is desalinated before fermentation and the fermentation medium was minimized and complex nutrients, such as yeast extract, were avoided totally to prevent furthermore dark color formation. Furthermore, by titration of fermentation with ammonia instead of sodium hydroxide, the later separation of the major by-products, organic acids, in the evaporation step was significantly enhanced.

  18. The production of chemicals from food processing wastes using a novel fermenter separator: Fourth quarterly progress report, June 1--August 31, 1988

    SciTech Connect

    Dale, M.C.; Park, C.H.; Lee, W.; Lin, J.; Havlik, S.; Lineback, D.; Okos, M.R.; Wankat, P.C.

    1988-09-01

    Fermentation costs (which increase with higher product concentration) traditionally must be balanced against product recovery costs (which decrease with product concentration). A novel reactor-separator process has been developed at Purdue University to minimize product inhibition of fermentation rates. This has been shown to exhibit very high productivities---simultaneously producing and removing a inhibitory product while maintaining a high viable cell concentration in the reactor. The objective of this study is to develop an energy efficient and economical process to convert food wastes to usable chemicals. Work is divided into two major effects (1) an applied phase which involves design and building a whey to ethanol process as well as process design and optimization and (2) a basic phase which involves investigating alternative fermentation systems and fundamental research on immobilized cell reactor systems. Accomplishments are discussed. 13 refs., 8 figs., 6 tabs.

  19. The production of chemicals from food processing wastes using a novel fermenter separator: Seventh quarterly report, March 1, 1989--May 31, 1989

    SciTech Connect

    Dale, M.C.; Park, C.H.; Lee, W.; Havlik, S.; Lineback, D.; Okos, M.R.; Wankat, P.C.

    1989-07-01

    Fermentation costs (which increase with higher product concentration) traditionally must be balanced against product recovery costs (which decrease with product concentration). A novel reactor-separator process has been developed at Purdue University to minimize product inhibition of fermentation rates. This has been shown to exhibit very high productivities -- simultaneously producing and removing a inhibitory product while maintaining a high viable cell concentration in the reactor. The objective of this study is to develop an energy efficient and economical process to convert food wastes to usable chemicals. Work is divided into two major effects (1) an applied phase which involves design and building a whey to ethanol process as well as process design and optimization and (2) a basic phase which involves investigating alternative fermentation systems and fundamental research on immobilized cell reactor systems. Accomplishments are discussed.

  20. Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Keil, K.

    1983-01-01

    A model is proposed for the petrogenesis of the Abee E4 enstatite chondrite breccia, which consists of clasts, dark inclusions and matrix, and whose dark inclusions are an unusual kind of enstatite chondritic material. When the maximum metamorphic temperature of the breccia parent material was greater than 840 C, euhedral enstatite crystals in metallic Fe, Ni, and sulfide-rich areas grew into pliable metal and sulfide. Breccia parent material was impact-excavated, admixed with dark inclusions, and rapidly cooled. During this cooling, the clast and matrix material acquired thermal remanent magnetization. A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientation of the clasts to be less random. The Abee breccia was later consolidated by shock or by shallow burial and long period, low temperature metamorphism.

  1. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum.

    PubMed

    Yen, Hong-Wei; Chen, Zhi-Heng; Yang, I-Kuan

    2012-04-01

    Fermentation incorporated with pervaporation was regarded as an efficient way to relieve the feedback inhibition of butanol in acetone-butanol-ethanol (ABE) fermentation. The addition of CNTs (carbon nanotubes) to PEBA (poly(ether-block-amide)) could greatly enhance the removal flux of solvents (acetone, butanol and ethanol) in a model solution test. The butanol removing rate results in a 61% increase in the batch with PEBA+CNTs (5%) membrane compared with that of the batch with PEBA alone. Besides the increase of removal flux, the addition of CNTs enforces the mechanical strength of the pervaporation membrane, which leads to more resistance for a longer operational time. The combination of a 5-L fermenter with the pervaporation membrane of PEBA+CNTs (10%) indicates a 20% increase both in productivity and yield compared to using PEBA. In conclusion, the addition of CNTs to a PEBA pervaporation membrane has great potential when applied in the ABE fermentation industry.

  2. Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process.

    PubMed

    Lu, Yuan; Lai, Qiheng; Zhang, Chong; Zhao, Hongxin; Ma, Kun; Zhao, Xuebing; Chen, Hongzhang; Liu, Dehua; Xing, Xin-Hui

    2009-06-01

    This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 degrees C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery.

  3. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.

    PubMed

    Cheng, Hairong; Lv, Jiyang; Wang, Hengwei; Wang, Ben; Li, Zilong; Deng, Zixin

    2014-04-01

    Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.

  4. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations.

    PubMed

    Li, Zhe; Qu, Hongnan; Li, Chun; Zhou, Xiaohong

    2013-12-01

    In this study, four engineered Saccharomyces cerevisiae carrying xylanase, β-xylosidase and xylose reductase genes by different transcriptional regulations were constructed to directly convert xylan to xylitol. According to the results, the high-copy number plasmid required a rigid selection for promoter characteristics, on the contrast, the selection of promoters could be more flexible for low-copy number plasmid. For cell growth and xylitol production, glucose and galactose were found more efficient than other sugars. The semi-aerobic condition and feeding of co-substrates were taken to improve the yield of xylitol. It was found that the strain containing high-copy number plasmid had the highest xylitol yield, but it was sensitive to the change of fermentation. However, the strain carrying low-copy number plasmid was more adaptable to different processes. By optimization of the transcriptional regulation and fermentation processes, the xylitol concentration could be increased of 1.7 folds and the yield was 0.71 g xylitol/g xylan.

  5. An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation.

    PubMed

    Dishisha, Tarek; Ståhl, Åke; Lundmark, Stefan; Hatti-Kaul, Rajni

    2013-05-01

    An economically sustainable process was developed for propionic acid production by fermentation of glycerol using Propionibacterium acidipropionici and potato juice, a by-product of starch processing, as a nitrogen/vitamin source. The fermentation was done as high-cell-density sequential batches with cell recycle. Propionic acid production and glycerol consumption rates were dependent on initial biomass concentration, and reached a maximum of 1.42 and 2.30 g L(-1) h(-1), respectively, from 50 g L(-1) glycerol at initial cell density of 23.7 gCDW L(-1). Halving the concentration of nitrogen/vitamin source resulted in reduction of acetic and succinic acids yields by ~39% each. At glycerol concentrations of 85 and 120 g L(-1), respectively, 43.8 and 50.8 g L(-1) propionic acid were obtained at a rate of 0.88 and 0.29 g L(-1) h(-1) and yield of 84 and 78 mol%. Succinic acid was 13 g% of propionic acid and could represent a potential co-product covering the cost of nitrogen/vitamin source.

  6. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery.

    PubMed

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Bai, Feng-Wu

    2014-10-20

    The polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) composite membrane was studied for its pervaporation performance to removal of butanol from butanol/ABE solution, fermentation broth as well as incorporated with acetone-butanol-ethanol (ABE) fermentation. The total flux and butanol titer in permeate through the PDMS-PVDF membrane were up to 769.6 g/m(2)h and 323.5 g/L at 80 °C, respectively. The butanol flux and total flux increased with increasing the feed temperature as well as the feed butanol titer. The butanol separation factor and butanol titer in permeate decreased slightly in the presence of acetone and ethanol in the feed due to their preferential dissolution and competitive permeation through the membrane. In fed-batch fermentation incorporated with pervaporation, butanol titer and flux in permeate maintained at a steady level with the range of 139.9-154.0 g/L and 13.3-16.3 g/m(2)h, respectively, which was attributed to the stable butanol titer in fermentation broth as well as the excellent hydrophobic nature of the PDMS-PVDF matrix. Therefore, the PDMS-PVDF composite membrane had a great potential in the in situ product recovery with ABE fermentation, enabling the economic production of biobutanol.

  7. Protein improvement in Gari by the use of pure cultures of microorganisms involved in the natural fermentation process.

    PubMed

    Ahaotu, I; Ogueke, C C; Owuamanam, C I; Ahaotu, N N; Nwosu, J N

    2011-10-15

    The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.

  8. Defending against Key Abuse Attacks in KP-ABE Enabled Broadcast Systems

    NASA Astrophysics Data System (ADS)

    Yu, Shucheng; Ren, Kui; Lou, Wenjing; Li, Jin

    Key-Policy Attribute-Based Encryption (KP-ABE) is a promising cryptographic primitive which enables fine-grained access control over sensitive data. However, key abuse attacks in KP-ABE may impede its wide application especially in copyright-sensitive systems. To defend against this kind of attacks, this paper proposes a novel KP-ABE scheme which is able to disclose any illegal key distributor’s ID when key abuse is detected. In our scheme, each bit of user ID is defined as an attribute and the user secret key is associated with his unique ID. The tracing algorithm fulfills its task by tricking the pirate device into decrypting the ciphertext associated with the corresponding bits of his ID. Our proposed scheme has the salient property of black box tracing, i.e., it traces back to the illegal key distributor’s ID only by observing the pirate device’s outputs on certain inputs. In addition, it does not require the pirate device’s secret keys to be well-formed as compared to some previous work. Our proposed scheme is provably secure under the Decisional Bilinear Diffie-Hellman (DBDH) assumption and the Decisional Linear (DL) assumption.

  9. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.

    PubMed

    McIntosh, S; Vancov, T; Palmer, J; Morris, S

    2014-12-01

    Cotton ginning trash (CGT) collected from Australian cotton gins was evaluated for bioethanol production. CGT composition varied between ginning operations and contained high levels of extractives (26-28%), acid-insoluble material (17-22%) and holocellulose (42-50%). Pretreatment conditions of time (4-20 min), temperature (160-220 °C) and sulfuric acid concentration (0-2%) were optimised using a central composite design. Response surface modelling revealed that CGT fibre pretreated at 180 °C in 0.8% H2SO4 for 12 min was optimal for maximising enzymatic glucose recoveries and achieved yields of 89% theoretical, whilst the total accumulated levels of furans and acetic acid remained relatively low at <1 and 2 g/L respectively. Response surface modelling also estimated maximum xylose recovery in pretreated liquors (87% theoretical) under the set conditions of 150 °C in 1.9% H2SO4 for 23.8 min. Yeast fermentations yielded high ethanol titres of 85%, 88% and 70% theoretical from glucose generated from: (a) enzymatic hydrolysis of washed pretreated fibres, (b) enzymatic hydrolysis of whole pretreated slurries and (c) simultaneous saccharification fermentations, respectively.

  10. Enhancement of Surfactin yield by improving the medium composition and fermentation process.

    PubMed

    Willenbacher, Judit; Yeremchuk, Wladimir; Mohr, Teresa; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Surfactin is one of the most promising biosurfactants due to its extraordinary surface activity. Commonly, the well-established Cooper medium, a glucose-based mineral salt medium, is utilized for the microbial production of Surfactin. The current study investigated the enhancement of Surfactin yields by analyzing the effects of different glucose concentrations, next to the introduction of an alternative chelating agent and nitrogen source. The utilization of 8 g/L glucose, 0.008 mM Na3citrate and 50 mM (NH4)2SO4 increased Surfactin yields from 0.7 to 1.1 g/L during shake flask experiments applying Bacillus subtilis DSM10(T). Consequentially conducted shake flask experiments, employing five other Surfactin producer strains during cultivation in the former and enhanced version of the Cooper medium, suggest a general enhancement of Surfactin yields during application of the enhanced version of the Cooper medium. The enhancement of the medium composition is therefore most likely independent from the employed producer strain. The following utilization of the enhanced medium composition during fed-batch fermentation with integrated foam fractionation yielded 30 % more Surfactin in comparison to batch fermentations with integrated foam fractionation employing the former version of the Cooper medium.

  11. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    PubMed

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct

  12. Wordprocessing and Language Skills. A Practical Handbook for ABE Tutors.

    ERIC Educational Resources Information Center

    Leonard, Janet

    This practical manual is designed for teachers involved in adult basic education (in particular, teachers of bilingual and adult literacy students) who would like to introduce their students to word processing through the language curriculum. A range of activities linking language and word processing skills is suggested. The tasks can be…

  13. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing.

    PubMed

    Fang, Ruo-si; Dong, Ya-chen; Chen, Feng; Chen, Qi-he

    2015-10-01

    Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry.

  14. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation.

    PubMed

    Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica

    2016-01-01

    The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine.

  15. Study of flocculent yeast performance in tower reactors for bioethanol production in a continuous fermentation process with no cell recycling.

    PubMed

    Andrietta, Sílvio Roberto; Steckelberg, Cláudia; Andrietta, Maria da Graça Stupiello

    2008-05-01

    The purpose of this study was to assess the retention ability of 12 different Saccharomyces sp. yeast strains with flocculent characteristics when inoculated in a continuous ethanol fermentation process. The system was comprised of two reactors connected in series with no cell recycling. The feeding substrate used was a synthetic medium containing glucose. The parameters assessed were total reducing sugars of the feeding substrate, total reducing sugars and ethanol at the outlet of the first and second reactors and quantification and classification of yeast population in the two reactors. The system reached yield levels of 83.53% of theoretical yield with a maximum total reducing sugars conversion of 92.68%. The conversion in this system was lower than expected. The dominant yeast in the process in both reactors, contrary to expectation, was the Saccharomyces CP6 strain which was unable to form pellets in spite of its flocculate growth.

  16. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications.

  17. Selection of Lactic Acid Bacteria with Probiotic Potential Isolated from the Fermentation Process of "Cupuaçu" (Theobroma grandiflorum).

    PubMed

    Ornellas, Roberta Maria Santos; Santos, Tiza Teles; Arcucio, Leonardo Borges; Sandes, Sávio Henrique Cicco; Oliveira, Mayara Messias; Dias, Cristiano Villela; de Carvalho Silva, Samuel; Uetanabaro, Ana Paula Trovatti; Vinderola, Gabriel; Nicoli, Jacques Robert

    2017-02-22

    In the present study, nine lactic acid bacteria isolated from the fermentation process of "cupuaçu" (Theobroma grandiflorum) were selected for probiotic use. In vitro (resistance to gastrointestinal environment, in vitro antagonism and co-aggregation with pathogens) and in vivo (intestinal colonization and ex vivo antagonism in germ-free mice, cumulative mortality, translocation to liver and spleen, histopathological examination of liver and ileum and mRNA cytokine gene expression during an experimental infection with S. Typhimurium) assays were used. Among the nine Lactobacillus strains isolated from the "cupuaçu" fermentation, L. plantarum 81 and L. plantarum 90 were selected as potential probiotics based on better results obtained in in vitro evaluations (production of diffusible inhibitory compounds and co-aggregation) as well as in vivo experiments (resistance to gastrointestinal environment, ex vivo antagonism, higher survival after enteropathogen challenge, lower hepatic translocation of enteropathogen, lower histopathological lesions in ileum and liver and anti-inflammatory pattern of immunological response). Concluding, L. plantarum 81 and L. plantarum 90 showed in vitro and in vivo capacities for probiotic use through different mechanisms of protection and its origin would allow an easier adaptation in an alimentary matrix for its administration.

  18. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    PubMed

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

  19. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang

    2011-03-15

    This paper reported an efficient method to significantly reduce nitrous oxide (N(2)O) and nitric oxide (NO) generation in anaerobic-aerobic (low dissolved oxygen) processes. It was found that by the use of waste-activated sludge alkaline fermentation liquid as the synthetic wastewater-carbon source, compared with the commonly used carbon source in the literature (e.g., acetic acid), the generation of N(2)O and NO was reduced by 68.7% and 50.0%, respectively, but the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) were improved. Both N(2)O and NO were produced in the low dissolved oxygen (DO) stage, and the use of sludge fermentation liquid greatly reduced their generation from the denitrification. The presences of Cu(2+) and propionic acid in fermentation liquid were observed to play an important role in the reduction of N(2)O and NO generation. The analysis of the activities of denitrifying enzymes suggested that sludge fermentation liquid caused the significant decrease of both nitrite reductase activity to NO reductase activity ratio and NO reductase activity to N(2)O reductase activity ratio, which resulted in the lower generation of NO and N(2)O. Fluorescence in situ hybridization analysis indicated that the number of glycogen accumulating bacteria, which was reported to be relevant to nitrous oxide generation, in sludge fermentation liquid reactor was much lower than that in acetic acid reactor. The quantitative detection of the nosZ gene, encoding nitrous oxide reductase, showed that the use of fermentation liquid increased the number of bacteria capable of reducing N(2)O to N(2). The feasibility of using sludge fermentation liquid to reduce NO and N(2)O generation in an anaerobic-low DO process was finally confirmed for a municipal wastewater.

  20. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    PubMed

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016.

  1. Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds.

    PubMed

    Maalej, Hana; Boisset, Claire; Hmidet, Noomen; Colin-Morel, Philippe; Buon, Laurine; Nasri, Moncef

    2017-07-15

    Many researchers have focused on high molecular weight (Mw) exopolysaccharides (EPS) as a source of potentially bioactive lower Mw derivatives. Therefore, it is of interest to find means for efficient and safe production of depolymerized-polymer derivatives. Exopolysaccharide-depolymerization products (EDP) varying in molecular weight were recovered from fermentative depolymerization of a native EPS produced by Pseudomonas stutzeri AS22. Following their purification and physicochemical characterization, the antibacterial activity of EDP on food spoilage and food poisoning microorganisms was evaluated through the measurement of the inhibition zone diameter, the half maximal (IC50) and the minimal (MIC) inhibitory concentrations. Our results indicate that the lower the Mw, the higher will be the effectiveness of EDP on reducing Gram-negative bacteria growth and the opposite trend was observed in the case of Gram-positive bacteria. EDP bioactivities may provide novel insights into the potentiality of P. stutzeri EPS and its derivatives to be used as functional-food components.

  2. Characterization of a nutrient feed precipitate from an E. coli fermentation process.

    PubMed

    Speciner, Lauren; Mallon, Erin; Leung, Susan; Laird, Michael W; Esue, Osigwe

    2010-01-01

    Metalloproteins require soluble metal ions such as zinc to properly fold into their native and active state to maintain stability and biological activity. When protein products are produced during microbial fermentations, metals are made available to the metalloproteins via nutrient supplements. During the production at the manufacturing-scale of a recombinant product that required zinc as a cofactor, an insoluble precipitate formed in the preparation tank after steam sterilization of the nutrient feed containing methionine, glycerophosphate, and zinc sulfate (MGZ). The precipitated nutrient feed was believed to be the cause for not enough zinc delivered to the production fermentor, leading to poor product assembly and stabilization. This article explores several analytical techniques such as capillary zone electrophoresis, inductively coupled plasma and phosphate molybdate assays to identify and quantify the composition of the precipitate. Our results show that the glycerophosphate component of the combined MGZ nutrient feed contains inorganic phosphate, which precipitates zinc from the feed media.

  3. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    PubMed

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB.

  4. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry.

  5. Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation.

    PubMed

    Bhanu Prakash, G V S; Padmaja, V; Siva Kiran, R R

    2008-04-01

    Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations. These three factors were found to be important, affecting Metarhizium anisopliae spore production. A 2(3) full factorial central composite design and RSM were applied to determine the optimal concentration of each variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. Moisture content of 75.68% for sorghum, 73.21% for barley and 22.34% for rice produced optimal results. Maximal conidial yield was recorded for rice at a pH of 7.01; at 7.06 for sorghum and at 6.76 for barley.

  6. Gas chromatographic ion trap mass spectrometry determination of zoxamide residues in grape, grape processing, and in the fermentation process.

    PubMed

    Angioni, Alberto; Garau, Anna; Caboni, Pierluigi; Russo, Maria Teresa; Farris, Giovanni Antonio; Zara, Severino; Cabras, Paolo

    2005-12-02

    A gas chromatographic ion-trap mass spectrometry (GC-ITMS) method was developed for the determination of the fungicide zoxamide in grape, must, wine, and spirits. Samples were extracted with hexane and analyzed without any clean up. The gas chromatograph was fitted with a carbofrit inserted into the glass liner to allow large volume injections. Analyses were carried out both in EI and CI mode. Recoveries from fortified samples ranged between 86 and 114% at four different fortification levels (n=6 each), ranging between 0.05 and 2.00 mg/kg. The relative standard deviation was below 19%. Both in EI and CI mode the calculated limit of detection (LOD) and quantification (LOQ) were 0.01 and 0.05 mg/kg (0.08 mg/kg in CI), respectively. Moreover the influence of yeasts and bacteria fermentation was evaluated.

  7. Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Sánchez-Gallardo, C; Pizarro, C

    2008-08-01

    Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting-PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they

  8. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool.

    PubMed

    Bideaux, Carine; Alfenore, Sandrine; Cameleyre, Xavier; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Guillouet, Stéphane E

    2006-03-01

    On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S. cerevisiae cultivation in order to maintain the respiratory quotient (RQ) (defined as the CO2 production to O2 consumption ratio) value between 4 and 5. Compared to previous fermentations without glucose monitoring, the final glycerol concentration was successfully decreased. Although RQ-controlled fermentation led to a lower maximum specific ethanol production rate, it was possible to reach a high level of ethanol production: 85 g.liter-1 with 1.7 g.liter-1 glycerol in 30 h. We showed here that by using a metabolic model as a tool in prediction, it was possible to reduce glycerol production in a very high-performance ethanolic fermentation process.

  9. Walk-through survey report: control technology for fermentation processes at Novo Biochemical Industries, Inc. , Franklinton, North Carolina

    SciTech Connect

    Martinez, K.F.

    1983-09-01

    A walkthrough survey of control technology for fermentation processes at Novo Biochemical Industries, Incorporated (SIC-2869), Franklinton, North Carolina was conducted in June, 1983. The company produced two industrial enzymes, alpha-amylase and amyl glucosidase, from microbial strains of Bacillus and Aspergillus. Engineering controls included enclosure of the production process and local exhaust ventilation of all bag dumping stations. Employee contact with the production process was minimal except for equipment maintenance and manual broth sample extraction. The majority of the large scale processes were computer controlled or monitored. All employees were required to maintain a clean work environment. The company used a computerized preventive-maintenance program. Routine industrial hygiene monitoring for active aerosilized liquid enzymes was conducted. The company had a relatively complete medical and biological monitoring program. Appropriate personal-protective equipment was required in all departments of the facility. The company employed a standardized procedure for entering a deep tank reactor vessel. The author concludes that the company employs state of the art technology and provides a work environment that minimizes potential exposure to microorganisms, process chemical intermediates, and biological products. An indepth survey of the facility is recommended.

  10. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    PubMed

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge.

  11. [Investigation of the process of personal hygiene items biodegradation by cellulose-fermenting microorganisms].

    PubMed

    Il'in, V K; Starkov, L V; Kostrov, S V; Belikodvorskaia, G A; Chuvil'skaia, N A; Mukhamedieva, L N; Mikos, K N

    2004-01-01

    Cellulose-containing wastes are one of the heaviest and biggest ingredients of solid domestic wastes piling up during spaceflight. For the most part these are disposable personal hygiene items used in large quantities in the absence of shower. These wastes contain human body products which are very dangerous from the sanitary-epidemiological standpoint. The purpose was to explore potentiality of microbial biodegradation of cellulose-containing hygiene items anaerobically with dry mass transformation into liquid and biogas. Among specific objectives were test cultivation of active strains of reference cultures of cellulose-fermenting anaerobic thermophilic bacteria on hygiene items as the only source of carbon, evaluation of ways and need of pretreatment of gauze pads to stimulate biodegradation, and chemical analysis of resulting biogas. From the investigation it was concluded that gauze pads are susceptible to biodegradation by anaerobic bacteria producing a low toxicity gas fraction. Therefore, the proposed technology can be considered as a candidate for integration into the spacecrew life support system.

  12. Low-energy process to extract anhydrous ethanol from fermentation beers. Alcohol-Fuels Grant Program

    SciTech Connect

    Nichols, L.D.; Allen, M.B.; Cekala, C.

    1982-11-01

    The feasibility of an energy efficient technique was demonstrated utilizing patented POROPLASTIC ultramicroporous membranes for the separation of ethanol from fermentation beers. Initial research focused on the selection of the best solvent for extracting ethanol from aqueous ethanol feed streams. The most promising solvents were selected on the basis of physical properties, distribution coefficients, water rejection capabilities and cost. Several of the best strip solvents were then employed in actual membrane extractions. A single-membrane extraction module was constructed, in which a strip solvent stream and an aqueous ethanol stream encountered a Poroplastic membrane. The membrane established the interface where ethanol transfer occurred. Membrane extraction systems with good ethanol extraction characteristics were successfully designed. A 33% ethanol solution was reduced to 26% in a long-term extraction experiment with a net transport rate of 476 ..mu..g/cm/sup 2//min. Even though the rates of ethanol recovery appeared very promising the rates of water transfer were also significant. The co-extraction of water and ethanol prevented the production of an anhydrous ethanol product stream.

  13. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  14. [Genetic algorithm for fermentation kinetics of submerged fermentation by Morchella].

    PubMed

    Wang, Ying; Piao, Meizi; Sun, Yonghai

    2008-08-01

    Fermentation kinetics is important for optimizing control and up-scaling fermentation process. We studied submerged fermentation kinetics of Morchella. Applying the genetic Algorithm in the Matlab software platform, we compared suitability of the Monod and Logistic models, both are commonly used in process of fungal growth, to describe Morchella growth kinetics. Meanwhile, we evaluated parameters involved in the models for Morchella growth, EPS production and substrate consumption. The results indicated that Logistic model fit better with the experimental data. The average error of this model was 5.8%. This kinetics model can be useful for optimizing and up-scaling fungal fermentation process.

  15. Effects of fermentation time and low temperature during the production process of Thai pickled fish (pla-som) on the viability and infectivity of Opisthorchis viverrini metacercariae.

    PubMed

    Onsurathum, Sudarat; Pinlaor, Porntip; Haonon, Ornuma; Chaidee, Apisit; Charoensuk, Lakhanawan; Intuyod, Kitti; Boonmars, Thidarut; Laummaunwai, Porntip; Pinlaor, Somchai

    2016-02-02

    Contamination of a popular fermented fish dish, pla-som, by Opisthorchis viverrini metacercariae (OVMC) is a possible cause of carcinogenic liver fluke infection in Thailand. Affected individuals are at risk of bile duct cancer, which is a major health problem for people in the Greater Mekong Subregion. In order to investigate concerns about food safety, we studied the effects of fermentation time and low temperature on the viability and infectivity of OVMC during the pla-som production process. Pla-som was prepared at room temperature for up to 1 week in duplicate experiments using cyprinid freshwater fish obtained from an O. viverrini-endemic area. OVMC were then isolated and identified under a stereomicroscope. Complete and viable OVMC were found on days 1-4 of fermentation, while their morphology was degenerated thereafter. After OVMC were fed to hamsters, the percentage of the worm recovery after 1 to 2 months of infection was 52%, 44.7%, 11.3% and 1% for days 1, 2, 3 and 4, respectively. In order to measure the effect of low temperature on OVMC, fish were kept in a refrigerator (4 °C) for up to five days and then subsequently fermented for three days. In fish stored in a refrigerator for 1 and 2 days, viable OVMC were clearly observed and were able to infect hamsters, a worm-recovery percentage of 3.3% and 12.7%, respectively. By contrast, in pla-som prepared from fish stored for 3 to 5 days, OVMC were degenerated and could not infect the host. In conclusion, pla-som fermentation for more than four days and refrigerating fish for three days before pla-som processing can prevent O. viverrini infection. This study may increase awareness of fermented-fish dish preparation to prevent liver fluke infection.

  16. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  17. Rare earth and other elements in components of the Abee enstatite chondrite

    NASA Technical Reports Server (NTRS)

    Frazier, R. M.; Boynton, W. V.

    1985-01-01

    Radiochemical and instrumental neutron activation analyses of REEs and other elements have been conducted for Abee clast samples, a matrix sample, a dark inclusion, magnetic and nonmagnetic samples, and bulk samples. Correlations of the REEs and oldhamite abundance for both the clasts and dark inclusions indicate that the REEs chiefly occur in oldhamite. The similar REE patterns for clasts and dark inclusions, and the similar mineral composition of oldhamite in clast and dark inclusions, suggest that the oldhamite in both the clasts and dark inclusions is of a common origin.

  18. Identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Meroth, Christiane B.; Hammes, Walter P.; Hertel, Christian

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C. PMID:14660398

  19. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.

    PubMed

    Morsy, Fatthy Mohamed

    2017-04-01

    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH2mole(-1) hexose; (2) Continuous dark-fermentation synergistic H2, acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H2 along with 73.08g ABE (3) Continuous H2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H2 and 2.56mol CH4 mixed with 0.37mol H2·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation.

  20. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  1. Fermentative alcohol production

    SciTech Connect

    Blanch, H.W.; Cysewski, G.R.; Maiorella, B.L.; Wilke, C.R.

    1982-11-16

    An improved fermentation process is disclosed for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases. One is a fermentor proper operated at atmospheric pressure and the other is a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using ''water load balancing'' (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  2. Improved fermentative alcohol production

    SciTech Connect

    Wilke, C.R.; Maiorella, B.L.; Blanch, M.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  3. Comparisons of in vitro fermentation and high moisture forage processing methods for determination of neutral detergent fiber digestibility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro fermentation systems are widely used to measure fiber digestibility of feedstuffs in order to assess feeding values for use in diet formulation and feed valuation. In this study, an in vitro fermentation method with the potential to improve sample throughput and ease of handling was investi...

  4. Municipal waste liquor treatment via bioelectrochemical and fermentation (H2 + CH4) processes: Assessment of various technological sequences.

    PubMed

    Rózsenberszki, Tamás; Koók, László; Bakonyi, Péter; Nemestóthy, Nándor; Logroño, Washington; Pérez, Mario; Urquizo, Gladys; Recalde, Celso; Kurdi, Róbert; Sarkady, Attila

    2017-03-01

    In this paper, the anaerobic treatment of a high organic-strength wastewater-type feedstock, referred as the liquid fraction of pressed municipal solid waste (LPW) was studied for energy recovery and organic matter removal. The processes investigated were (i) dark fermentation to produce biohydrogen, (ii) anaerobic digestion for biogas formation and (iii) microbial fuel cells for electrical energy generation. To find a feasible alternative for LPW treatment (meeting the two-fold aims given above), various one- as well as multi-stage processes were tested. The applications were evaluated based on their (i) COD removal efficiencies and (ii) specific energy gain. As a result, considering the former aspect, the single-stage processes could be ranked as: microbial fuel cell (92.4%)> anaerobic digestion (50.2%)> hydrogen fermentation (8.8%). From the latter standpoint, an order of hydrogen fermentation (2277 J g(-1) CODremoved d(-1))> anaerobic digestion (205 J g(-1) CODremoved d(-1))> microbial fuel cell (0.43 J g(-1) CODremoved d(-1)) was attained. The assessment showed that combined, multi-step treatment was necessary to simultaneously achieve efficient organic matter removal and energy recovery from LPW. Therefore, a three-stage system (hydrogen fermentation-biomethanation-bioelectrochemical cell in sequence) was suggested. The different approaches were characterized via the estimation of COD balance, as well.

  5. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process.

    PubMed

    Porwal, Shalini; Kumar, Tarika; Lal, Sadhana; Rani, Asha; Kumar, Sushil; Cheema, Simrita; Purohit, Hemant J; Sharma, Rakesh; Singh Patel, Sanjay Kumar; Kalia, Vipin Chandra

    2008-09-01

    Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H(2)) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H(2) constituted 63-69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34-38 mm) -Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56-62 mm) -Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) -B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H(2) producing abilities in the range of 0.26-0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) -B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H(2) - 0.63 mol/mol of glucose added and PHB - 420-435 mg/l medium.

  6. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition.

    PubMed

    Luo, Hongzhen; Zeng, Qingwei; Han, Shuo; Wang, Zhaoyu; Dong, Qing; Bi, Yanhong; Zhao, Yuping

    2017-04-01

    Butanol is not only an important chemical intermediate and solvent in pharmaceutical and cosmetics industries, but also considered as an advanced biofuel. Although species of the natural host Clostridium have been engineered, butanol titers in the anaerobe seem to be limited by its intolerance to butanol less than 13 g/L. Here we aimed to develop a technology for enhancing butanol production by a co-culture system with butyrate fermentative supernatant addition. First, when adding 4.0 g/L butyrate into the acetone-butanol-ethanol (ABE) fermentation broth with single-shot at 24 h, the "acid crash" phenomenon occurred and the ABE fermentation performance deteriorated. Subsequently, we found that adding certain amino acids could effectively enhance butyrate re-assimilation, butanol tolerance and titer (from 11.1 to 14.8 g/L). Additionally, in order to decrease the raw material cost, butyrate fermentative supernatant produced by Clostridium tyrobutyricum was applied to butanol production in the Clostridium acetobutylicum/Saccharomyces cerevisiae co-culture system, instead of adding synthetic butyrate. Final butanol and total ABE concentrations reached higher levels of 16.3 and 24.8 g/L with increments of 46.8 and 37.8%, respectively. These results show that the proposed fermentation strategy has great potential for efficiently butanol production with an economic approach.

  7. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    PubMed

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  8. Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    NASA Astrophysics Data System (ADS)

    Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.

  9. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  10. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge.

    PubMed

    Lee, Dong-Yeol; Ebie, Yoshitaka; Xu, Kai-Qin; Li, Yu-You; Inamori, Yuhei

    2010-01-01

    A thermophilic two-stage fermentation process using 10% total solids (TS) food waste was tested at varying organic loading rates (OLRs). The system was configured to produce H(2) and CH(4) in conjugation with the chemical oxygen demand (COD), nitrogen removal, and adjustment of the pH by returning sludge as an alkali buffer from the sludge storage tank for denitrification. The pH in the H(2) fermentation reactor was maintained in the range of 5.4-5.7 using sludge recirculation (Q(r)/Q(i) ratio 1). The average H(2) (11.1l-H(2) l(-1)-fed d(-1)) and CH(4) (47.4l-CH(4) l(-1)-fed d(-1)) production rates were achieved at OLRs of 39 (H(2) fermentation reactor) and 4.16 gCOD l(-1)d(-1) (CH(4) fermentation reactor), respectively. These results suggest that long-term stability of the continuous two-stage process can be successfully achieved by recirculation of high-alkalinity sludge of 6.7-7.5 g l(-1) as CaCO(3), without any added external chemical buffer.

  11. Effective conversion of maize straw wastes into bio-hydrogen by two-stage process integrating H2 fermentation and MECs.

    PubMed

    Li, Yan-Hong; Bai, Yan-Xia; Pan, Chun-Mei; Li, Wei-Wei; Zheng, Hui-Qin; Zhang, Jing-Nan; Fan, Yao-Ting; Hou, Hong-Wei

    2015-12-01

    The enhanced H2 production from maize straw had been achieved through the two-stage process of integrating H2 fermentation and microbial electrolysis cells (MECs) in the present work. Several key parameters affecting hydrolysis of maize straw through subcritical H2O were optimized by orthogonal design for saccharification of maize straw followed by H2 production through H2 fermentation. The maximum reducing sugar (RS) content of maize straw reached 469.7 mg/g-TS under the optimal hydrolysis condition with subcritical H2O combining with dilute HCl of 0.3% at 230 °C. The maximum H2 yield, H2 production rate, and H2 content was 115.1 mL/g-TVS, 2.6 mL/g-TVS/h, and 48.9% by H2 fermentation, respectively. In addition, the effluent from H2 fermentation was used as feedstock of MECs for additional H2 production. The maximum H2 yield of 1060 mL/g-COD appeared at an applied voltage of 0.8 V, and total COD removal reached about 35%. The overall H2 yield from maize straw reached 318.5 mL/g-TVS through two-stage processes. The structural characterization of maize straw was also carefully investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectra.

  12. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  13. Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L. J.; Bregman, J. D.; Cohen, M.; Cruikshank, D. P.; Dumas, C.; Greene, T. P.; Hudgins, D. M.; Kwok, S.; Lord, S. D.; Madden, S. C.; McCreight, C. R.; Roellig, T. L.; Strecker, D. W.; Tielens, A. G.; Werner, M. W.; Wilmoth, K. L.

    2003-12-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with a modest resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such as system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. This mission's observationsal program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extraterrestrial environments: 1 The Outflow of Dying Stars 2 The Diffuse Interstellar Medium 3 Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems 4 Planets, Satellites, and Small Bodies within the Solar System, and 5 Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  14. Identifying organic molecules in space: the AstroBiology Explorer (ABE) mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott A.

    2004-10-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  15. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  16. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis.

    PubMed

    Meroth, Christiane B; Walter, Jens; Hertel, Christian; Brandt, Markus J; Hammes, Walter P

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.

  17. Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Meroth, Christiane B.; Walter, Jens; Hertel, Christian; Brandt, Markus J.; Hammes, Walter P.

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. PMID:12514030

  18. Effects of post-processing treatments on sensory quality and Shiga toxigenic Escherichia coli reductions in dry-fermented sausages.

    PubMed

    Heir, E; Holck, A L; Omer, M K; Alvseike, O; Måge, I; Høy, M; Rode, T M; Sidhu, M S; Axelsson, L

    2013-05-01

    The effects of post-processing treatments on sensory quality and reduction of Shiga toxigenic Escherichia coli (STEC) in three formulations of two types of dry-fermented sausage (DFS; salami and morr) were evaluated. Tested interventions provided only marginal changes in sensory preference and characteristics. Total STEC reductions in heat treated DFS (32°C, 6days or 43°C, 24h) were from 3.5 to >5.5 log from production start. Storing of sausages (20°C, 1month) gave >1 log additional STEC reduction. Freezing and thawing of sausages in combination with storage (4°C, 1month) gave an additional 0.7 to 3.0 log reduction in STEC. Overall >5.5 log STEC reductions were obtained after storage and freezing/thawing of DFS with increased levels of glucose and salt. This study suggests that combined formulation optimisation and post-process strategies should be applicable for implementation in DFS production to obtain DFS with enhanced microbial safety and high sensory acceptance and quality.

  19. Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (-).

    PubMed

    Wang, Jin-Feng; Liu, Xiu-Ji; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2012-05-01

    The mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (-) was systematically optimized in shake flasks. The ratio of the (+) to (-) strains, the lycopene cyclase inhibitors piperidine and creatinine, the trisporic acid structural analog abscisic acid, the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) precursor leucine, and the mevalonate kinase enhancer penicillin were all identified as key factors affecting lycopene biosynthesis. With an optimal ratio of 5:1 for the (+) to (-) strains and the addition of 6 g/L creatinine on day 3, the highest lycopene production was 98.1 ± 15.5 mg/L. Based on the above result, the addition of 0.1 g/L penicillin on day 4, 150 μmol/L abscisic acid on day 3 or 0.5 g/L leucine on day 4 enhanced lycopene production to 119.7 ± 17.2, 120.6 ± 12.3 and 135.2 ± 7.0 mg/L, respectively. Finally, an integrated strategy by combining the above key factors was developed, and the highest lycopene production of 156.2 ± 15.4 mg/L was obtained, which was enhanced by 134.9% comparing with its production of 66.5 ± 3.6 mg/L before the optimization process of this work. The results obtained in this study may be useful for large-scale industrial lycopene production.

  20. Potato powders prepared by successive cooking-process depending on resistant starch content affect the intestinal fermentation in rats.

    PubMed

    Kawakami, Sakura; Han, Kyu-Ho; Araki, Takahiro; Ohba, Kiyoshi; Wakabayashi, Tatsuya; Shimada, Kenichiro; Fukushima, Michihiro

    2017-02-01

    The effects of resistant starch (RS) in dry potato powders prepared by various processes on intestinal fermentation in rats were assessed. Rats were fed raw potato powder (RP), blanched potato powder (BP), steamed potato powder (SP), or drum-dried potato powder (DP) for 4 weeks. The cecal RS content was significantly higher in the RP group than in the control diet (CN) group and other dry potato powder groups. Cecum pH was significantly lower in the RP group compared to the CN group, and was also significantly lower than that in the SP, BP, and DP groups. Lactic acid bacteria levels in the RP group were significantly higher than those in the CN group, and levels in the SP group also increased relative to the control group. Lactobacillus levels in the RP group were higher than in the CN and other dry potato powder groups. Cecal short-chain fatty acid (SCFA) concentrations in the RP group followed by the SP group exhibited significantly higher levels relative to the control levels. Dry potato powders containing RS produced during the cooking process may represent a useful food material that increases intestinal concentrations of SCFA and enhances the growth of certain lactic acid bacteria.

  1. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace.

    PubMed

    Madeira, Jose Valdo; Macedo, Juliana Alves; Macedo, Gabriela Alves

    2012-03-01

    The production of enzymes such as tannases and phytases by solid-state fermentation and their use in animal feed have become a subject of great interest. In the present work, Paecilomyces variotii was used to produce tannase and phytase simultaneously. Solid-state fermentation, a process initially designed for tannase production, was implemented here using orange pomace as substrate. Orange pomace is the waste product of the large orange juice industry in Brazil, and it has also been used as an ingredient in animal feed. In addition to enzymatic production, biotransformation of the phenolic content and antioxidant capacity of the orange pomace were analyzed after fermentation. Fermentation conditions, namely moisture level and tannic acid concentration rate, were studied using CCD methodology. The response surface obtained indicated that the highest tannase activity was 5,000 U/gds after 96 h at 59% (v/w) and 3% (w/w) and that of phytase was 350 U/gds after 72 h at 66% (v/w) and 5.8% (w/w) of moisture level and tannic acid concentration, respectively. The amount of tannase production was similar to the levels achieved in previous studies, but this was accomplished with a 7% (w/w) reduction in the amount of supplemental tannic acid required. These results are the first to show that P. variotii is capable of producing phytase at significant levels. Moreover, the antioxidant capacity of orange pomace when tested against the free radical ABTS was increased by approximately tenfold as a result of the fermentation process.

  2. Characterization and single-stage denitrification anaerobic digestion of spent stream from the hydrolysis-fermentation-combustion process

    NASA Astrophysics Data System (ADS)

    Singh, Ramnik

    The demand for ethanol as an oxygenate and octane booster in automobile fuel is growing. A number of processes are being investigated for conversion of biomass to ethanol. The Hydrolysis-Fermentation-Combustion (HFC) process for fuel ethanol production developed at the University of California Forest Products Laboratory, Richmond, California is at the stage of technology transfer following over two decades of research and development. This study addresses the technology to be used in treatment of spent streams to be discharged from this process. The treatment design combines a single stage denitrification and anaerobic digestion (SSDAD) for the biological treatment of a representative stream from this process. A typical spent stream contained a wide range of soluble organic materials including: unfermented sugars, components of the feedstocks solubilized in the hydrolysis, acid degradation products of carbohydrates, cleavage products of lignin, water-soluble extractives and phenolics, terpenes and other unfermented organic material, and nitrate ion from the nitric acid used as a catalyst in the hydrolysis reaction. Three sets of experiments were conducted in laboratory scale anaerobic digesters. Commonly available anaerobic sludge from local sewage treatment plants was used as a starter seed and was successfully acclimated to the high nitrate substrate leading to enrichment of denitrifiers. Necessary nutrients and trace elements were identified and supplied to satisfy the obligatory requirements of different groups of bacterial groups present. A major finding was the unique role of ammonium hydroxide in controlling pH leading to steady-state operation of the digester. At steady state operation the reduction in COD was 65%, the nitrate reduction was 88% and the nitrite reduction was 100%. Nitrate was reduced to safe nitrogen gas without buildup of any intermediate products. Organic material was converted to useful methane gas and carbon dioxide. The SSDAD system was

  3. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process.

  4. Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris.

    PubMed

    Kim, Sehoon; Warburton, Shannon; Boldogh, Istvan; Svensson, Cecilia; Pon, Liza; d'Anjou, Marc; Stadheim, Terrance A; Choi, Byung-Kwon

    2013-07-20

    Production of recombinant proteins is affected by process conditions, where transcriptional regulation of Pichia pastoris alcohol oxidase 1 (PpAOX1) promoter has been a key factor to influence expression levels of proteins of interest. Here, we demonstrate that the AOX1 promoter and peroxisome biogenesis are regulated based on different process conditions. Two types of GFP-fusion proteins, Ub-R-GFP (short-lived GFP in the cytosol) and GFP-SKL (peroxisomal targeting GFP), were successfully used to characterize the time-course of the AOX1 promoter and peroxisome biogenesis, respectively. The activity of the AOX1 promoter and peroxisome biogenesis was highly subjected to different fermentation process conditions - methanol-limited condition at normoxy (ML), switched feeding of carbon sources (e.g., glucose and methanol) under carbon-limited condition at normoxy (SML), and oxygen-limited (OL) condition. The AOX1 promoter was most active under the ML, but less active under the OL. Peroxisome biogenesis showed a high dependency on methanol consumption. In addition, the proliferation of peroxisomes was inhibited in a medium containing glucose and stimulated in the methanol phase under a carbon-limited fed-batch culture condition. The specific productivity of a monoclonal antibody (qp) under the AOX1 promoter was higher at 86h of induction in the ML than in the OL (0.026 vs 0.020mgg(-1)h(-1)). However, the oxygen-limited condition was a robust process suitable for longer induction (180h) due to high cell fitness. Our study suggests that the maximal production of a recombinant protein is highly dependent on methanol consumption rate that is affected by the availability of methanol and oxygen molecules.

  5. Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO2-AFP strategy.

    PubMed

    Alonso-Moreno, Carlos; García-Yuste, Santiago

    2016-10-15

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO2 emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO2 produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO2 from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na2CO3, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6Mt of Na2CO3 in oversaturated aqueous solution on using ca. 12.7Mt of captured CO2 and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na2CO3 obtained by this strategy could represent ca. 50% of the world Na2CO3 production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO2Chem network, and an estimation of the CO2negative emission achieved suggests a capture of around 280.0Mt of CO2 from now to 2020 or ca. 1.9Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO2 production in a typical winemaking corporation, the CO2 released in the most relevant wine-producing countries, and the use of CO2 from AFP as an alternative for the top Na2CO3-producing countries.

  6. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis.

    PubMed

    Xia, Ao; Cheng, Jun; Ding, Lingkan; Lin, Richen; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2013-10-01

    The effects of pre-treatment methods on saccharification and hydrogen fermentation of Chlorella pyrenoidosa biomass were investigated. When raw biomass and biomass pre-treated by steam heating, by microwave heating, and by ultrasonication were used as feedstock, the hydrogen yields were only 8.8-12.7 ml/g total volatile solids (TVS) during dark fermentation. When biomass was pre-treated by steam heating with diluted acid and by microwave heating with diluted acid, the dark hydrogen yields significantly increased to 75.6 ml/g TVS and 83.3 ml/g TVS, respectively. Steam heating with diluted acid is the preferred pre-treatment method of C. pyrenoidosa biomass to improve hydrogen yield during dark fermentation and photofermentation, which is followed by methanogenesis to increase energy conversion efficiency (ECE). A total hydrogen yield of 198.3 ml/g TVS and a methane yield of 186.2 ml/g TVS corresponding to an overall ECE of 34.0% were obtained through the three-stage process (dark fermentation, photofermentation, and methanogenesis).

  7. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.

    PubMed

    Moftah, Omar Ali Saied; Grbavčić, Sanja; Zuža, Milena; Luković, Nevena; Bezbradica, Dejan; Knežević-Jugović, Zorica

    2012-01-01

    Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level-three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g(-1) and a protease activity value of 110 U g(-1) were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.

  8. 40 CFR 180.522 - Fumigants for processed grains used in production of fermented malt beverage; tolerances for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (2) Methyl bromide is used to fumigate corn grits and cracked rice in the production of fermented... beverage, resulting from the use of corn grits and cracked rice fumigated with the fumigant described...

  9. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.

    PubMed

    Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF.

  10. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%).

  11. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  12. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  13. Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: the need for fermentation and abiotic chemical processes.

    PubMed

    Maurer, Max; Rittmann, Bruce E

    2004-12-01

    The intrinsic bioremediation of BTEX must be documented by the stoichiometric consumption and production of several other compounds, called 'footprints' of the biodegradation reaction. Although footprints of BTEX biodegradation are easy to identify from reaction stoichiometry, they can be confounded by the stepwise nature of the biodegradation reactions and by several abiotic chemical reactions that also produce or consume the footprints. In order to track the footprints for BTEX biodegradation, the following reactions need to be considered explicitly: (1) fermentation and methanogenesis as separate processes, (2) precipitation and dissolution of calcite, (3) precipitation and dissolution of amorphous iron monosulfide (FeS), (4) conversion of FeS into the thermodynamically stable pyrite (FeS2) with loss of sulfide and abiotic formation of H2, and (5) reductive dissolution of solid iron(III) by oxidation of sulfide. We critically review the research that underlies why these mechanisms must be included and how to describe them quantitatively. A companion manuscript develops and applies a mathematical model that includes these reactions.

  14. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol.

    PubMed

    Mirończuk, Aleksandra M; Rakicka, Magdalena; Biegalska, Anna; Rymowicz, Waldemar; Dobrowolski, Adam

    2015-12-01

    In this study, a two-stage fermentation process of erythritol production based on molasses and glycerol was investigated. During the first stage, the biomass of Yarrowia lipolytica was grown on medium containing sucrose as the sole carbon source. In the second stage, production of erythritol was initiated by glycerol addition. To use molasses as a substrate for erythritol synthesis, sucrose utilization was established by expressing the Saccharomyces cerevisiae SUC2 gene. In this study, cultivation of yeast Y. lipolytica could produce 52-114 g/L of erythritol. The productivity was 0.58-1.04 g/L/h, and yield was 0.26-0.57 g/g; the final biomasses yield ranged 17-41 g/L. This is the first report describing erythritol production via industrial raw molasses and glycerol by Y. lipolytica. This work uses genetically modified strains of Y. lipolytica as tool for the direct conversion of affordable raw industrial molasses and glycerol into the value-added erythritol product.

  15. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    PubMed

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment.

  16. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate.

    PubMed

    Chen, Zhiqiang; Wang, Yao; Wen, Qinxue; Zhang, Shihua; Yang, Lian

    2016-09-01

    Composting is a potential alternative for cephalosporin C fermentation dregs (CCFDs) compared with incineration process or landfill because of its advantage of recovering nutrients. In this research, CCFDs and activated sludge (AS) were co-composted to analyze the feasibility of recycling the nutrients in CCFDs. A pilot-scale aerobic composting system with an auto-control system was used in this research, and the maturity and security of the compost product were evaluated. The temperature of the composting mixtures was maintained above 55°C for more than 3 days during the composting, indicating that co-composting of CCFDs and AS could reach the compost maturity standard, and the seeds germination index (GI) increased from 17.61% to 68.93% by the end of the composting process (28 days). However, the degradation rate of cephalosporin C (CPC) was only 6.58% during the composting process. Monitoring the quality of antibiotic resistance genes (ARGs) in the composts showed that the log copy of blaTEM in the composts increased from 2.15 in the initial phase to 6.37 after 28 days. Long-term investigation of CPC degradation and ARGs variation was conducted for the composts; CPC could still be detected after the maturity phases. A removal efficiency of 49.10% could be achieved in 110 days, while the log copy of ARGs increased to 7.93. Although a higher GI value (>80.00%) was observed, the risk of recycling the CCFDs compost product into land is still high.

  17. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  18. First proof of concept of sustainable metabolite production from high solids fermentation of lignocellulosic biomass using a bacterial co-culture and cycling flush system.

    PubMed

    Yao, Wanying; Nokes, Sue E

    2014-12-01

    To improve the lignocellulose conversion for ABE in high solids fermentation, this study explored the feasibility of cycling the process through the cellulolytic or/and solventogenic phases via intermittent flushing of the fermentation media. Five different flushing strategies (varying medium ingredients, inoculum supplement and cycling through phases) were investigated. Flushing regularly throughout the cellulolytic phase is necessary because re-incubation at 65 °C significantly improved glucose availability by at least 6-fold. The solvents accumulation was increased by 4-fold using corn stover (3-fold using miscanthus) over that produced by flushing only through the solventogenic phase. In addition, cycling process was simplified by re-incubating the flushed cellulolytic phase with no re-inoculation because the initial inoculum of Clostridiumthermocellum remained viable throughout sequential co-culture. This study served as the first proof of the cycling flush system applied in co-cultural SSC and the knowledge gained can be used to design a farm-scale flushing system.

  19. Project on Teaching Charts and Graphs to ABE Students. Part I: Teacher's Guide [and] Part II: Transparency Assembly Package.

    ERIC Educational Resources Information Center

    Renton Vocational Inst., WA.

    The teacher's guide and collection of transparency masters are designed for use in teaching adult basic education (ABE) students how to read and interpret graphs and charts. Covered in the individual lessons of the instructional unit are the reading and interpretation of charts as well as picture, line, bar, and circle graphs. Each unit contains a…

  20. Implementing the Massachusetts Adult Basic Education Math Standards: Our Research Stories. The ABE Math Standards Project. Volume 2.

    ERIC Educational Resources Information Center

    Leonelli, Esther, Ed.; And Others

    The product of a project conducted in Massachusetts to apply the National Council of Teachers of Mathematics' (NCTM) "Curriculum and Evaluation Standards for School Mathematics" to adult basic education (ABE) learning environments, this volume is a collection of teacher-researchers' essays on field-based application of the adapted…

  1. Village Literacy Programming in Pakistan: A Comparative ABE Study with Guidelines. Monographs on Comparative and Area Studies in Adult Education.

    ERIC Educational Resources Information Center

    Hesser, Florence E.

    Ten literacy pilot programs developed by the Adult Basic Education Society (ABES) of Pakistan in Gujranwala, Pakistan, between 1963 and 1973 were analyzed and evaluated to evolve a series of adult literacy program development guidelines. The programs were evaluated on the basis of an eleven-category evaluation system developed by Cyril Houle in…

  2. Assessing Inquiry Process Skills in the Lab Using a Fast, Simple, Inexpensive Fermentation Model System

    ERIC Educational Resources Information Center

    Knabb, Maureen T.; Misquith, Geraldine

    2006-01-01

    Incorporating inquiry-based learning in the college-level introductory biology laboratory is challenging because the labs serve the dual purpose of providing a hands-on opportunity to explore content while also emphasizing the development of scientific process skills. Time limitations and variations in student preparedness for college further…

  3. Formation kinetics of potential fermentation inhibitors in a steam explosion process of corn straw.

    PubMed

    Zhang, Yuzhen; Wang, Lan; Chen, Hongzhang

    2013-01-01

    The weak acids, furan derivatives, and phenolic compounds formed during lignocellulose pretreatment are potential inhibitors of subsequent enzymatic and microbial processes. In this work, the effects of the steam explosion process on the formation of weak acids, furan derivatives, and phenolic compounds were explored. The correlations of different steam explosion conditions and formation kinetics of degradation products showed that the formation of weak acids and furan derivatives was in the first-order reactions, which are expressed as [Formula: see text]. The formation of weak acids and furan derivatives increases with pretreatment temperature and time. On the other hand, the formation of phenolic compounds showed typical characteristics of continuous reaction, expressed as [Formula: see text]. The formation was affected by the active energies in two stages, temperature and time, and thus existed at extreme value. This work revealed the formation rules of weak acids, furan derivatives, and phenolic compounds in a steam explosion process and provided theoretical guidelines for improving the process and limiting the production of certain inhibitors.

  4. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  5. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation.

    PubMed

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-02-01

    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.

  6. Pentose fermentation by recombinant Zymomonas

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.; Mohagheghi, A.; Newman, M.M.; McMillan, J.D.

    1998-01-27

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  7. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Min Zhang; Eddy, C.K.; Deanda, K.A.

    1998-03-10

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  8. Pentose fermentation by recombinant zymomonas

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  9. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  10. 1,3-Propanediol production in a two-step process fermentation from renewable feedstock.

    PubMed

    Mendes, Filipa Soares; González-Pajuelo, Maria; Cordier, Hélène; François, Jean M; Vasconcelos, Isabel

    2011-11-01

    In this work, the production of 1,3-propanediol from glucose and molasses was studied in a two-step process using two recombinant microorganisms. The first step of the process is the conversion of glucose or other sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain HC42 adapted to high (>200 g l(-1)) glucose concentrations. The second step, carried out in the same bioreactor, was performed by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) that converts glycerol to 1,3-propanediol. This two-step strategy led to a flexible process, resulting in a 1,3-propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g l(-1) of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations, glycerol initially produced by yeast could not be totally converted into 1,3-propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. In our hand, the best results were obtained with an initial glucose concentration of 103 g l(-1), leading to a final 1,3-propanediol concentration of 25.5 g l(-1), a productivity of 0.16 g l(-1) h(-1) and 1,3-propanediol yields of 0.56 g g(-1) glycerol and 0.24 g g(-1) sugar, which is the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g l(-1), 27.4 g l(-1) of glycerol were produced, leading to 14.6 g l(-1) of 1.3-propanediol and similar values of productivity, 0.15 g l(-1) h(-1), and overall yield, 0.26 g g(-1) sugar.

  11. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously.

  12. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    SciTech Connect

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O'Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  13. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach.

    PubMed

    Illeghems, Koen; Pelicaen, Rudy; De Vuyst, Luc; Weckx, Stefan

    2016-09-01

    Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems.

  14. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  15. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  16. Combination of algae and yeast fermentation for an integrated process to produce single cell oils.

    PubMed

    Dillschneider, R; Schulze, I; Neumann, A; Posten, C; Syldatk, C

    2014-09-01

    Economic and ecological reasons cause the industry to develop new innovative bio-based processes for the production of oil as renewable feedstock. Petroleum resources are expected to be depleted in the near future. Plant oils as sole substituent are highly criticized because of the competitive utilization of the agricultural area for food and energy feedstock production. Microbial lipids of oleaginous microorganisms are therefore a suitable alternative. To decrease production costs of microbial lipids and gain spatial independence from industrial sites of CO2 emission, a combination of heterotrophic and phototrophic cultivation with integrated CO2 recycling was investigated in this study. A feasibility study on a semi-pilot scale was conducted and showed that the cultivation of the oleaginous yeast Cryptococcus curvatus on a 1.2-L scale was sufficient to supply a culture of the oleaginous microalgae Phaeodactylum tricornutum in a 21-L bubble column reactor with CO2 while single cell oils were produced in both processes due to a nutrient limitation.

  17. Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici.

    PubMed

    Liu, Yin; Zhang, Yong-Guang; Zhang, Ru-Bing; Zhang, Fan; Zhu, Jianhang

    2011-01-01

    Cosubstrates fermentation is such an effective strategy for increasing subject metabolic products that it could be available and studied in propionic acid production, using glycerol and glucose as carbon resources. The effects of glycerol, glucose, and their mixtures on the propionic acid production by Propionibacterium acidipropionici CGMCC1.2225 (ATCC4965) were studied, with the aim of improving the efficiency of propionic acid production. The propionic acid yield from substrate was improved from 0.475 and 0.303 g g(-1) with glycerol and glucose alone, respectively, to 0.572 g g(-1) with co-fermentation of a glycerol/glucose mixture of 4/1 (mol/mol). The maximal propionic acid and substrate conversion rate were 21.9 g l(-1) and 57.2% (w/w), respectively, both significantly higher than for a sole carbon source. Under optimized conditions of fed-batch fermentation, the maximal propionic acid yield and substrate conversion efficiency were 29.2 g l(-1) and 54.4% (w/w), respectively. These results showed that glycerol/glucose co-fermentation could serve as an excellent alternative to conventional propionic acid fermentation.

  18. Evaluation of Escherichia coli biotype 1 as a surrogate for Escherichia coli O157:H7 for cooking, fermentation, freezing, and refrigerated storage in meat processes.

    PubMed

    Keeling, Carisa; Niebuhr, Steven E; Acuff, Gary R; Dickson, James S

    2009-04-01

    Five Escherichia coli biotype I isolates were compared with E. coli O157:H7 under four common meat processing conditions. The processes that were evaluated were freezing, refrigerating, fermentation, and thermal inactivation. For each study, at least one surrogate organism was not statistically different when compared with E. coli O157:H7. However, the four studies did not consistently show the same isolate as having this agreement. The three studies that involved temperature as a method of controlling or reducing the E. coli population all had at least one possible surrogate in common. In the fermentation study, only one isolate (BAA-1429) showed no statistical difference when compared with E. coli O157:H7. However, the population reductions that were observed indicated the isolates BAA-1427 and BAA-1431 would overestimate the surviving E. coli O157:H7 population in a fermented summer sausage. When all of the data from all of the surrogates were examined, it was found that isolates BAA-1427, BAA-1429, and BAA-1430 would be good surrogates for all four of the processes that were examined in this study. There was no statistical difference noted between these three isolates and E. coli O157:H7 in the refrigeration study. These isolates resulted in smaller population reductions than did E. coli O157:H7 in the frozen, fermentation, and thermal inactivation studies. This would indicate that these isolates would overpredict the E. coli O157:H7 population in these three instances. This overprediction results in an additional margin of safety when using E. coli biotype 1 as a surrogate.

  19. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  20. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  1. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.

    PubMed

    Moya, Alberto J; Peinado, Silvia; Mateo, Soledad; Fonseca, Bruno G; Sánchez, Sebastián

    2016-11-01

    In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53).

  2. NIR technology for on-line determination of superficial a(w) and moisture content during the drying process of fermented sausages.

    PubMed

    Collell, Carles; Gou, Pere; Arnau, Jacint; Muñoz, Israel; Comaposada, Josep

    2012-12-01

    Three different NIR equipment were evaluated based on their ability to predict superficial water activity (a(w)) and moisture content in two types of fermented sausages (with and without moulds on surface), using partial least squares (PLS) regression models. The instruments differed mainly in wavelength range, resolution and measurement configuration. The most accurate equipment was used in a new experiment to achieve robust models in sausages with different salt contents and submitted to different drying conditions. The models developed showed determination coefficients (R(2)(P)) values of 0.990, 0.910 and 0.984, and RMSEP values of 1.560%, 0.220% and 0.007% for moisture, salt and a(w) respectively. It was demonstrated that NIR spectroscopy could be a suitable non-destructive method for on-line monitoring and control of the drying process in fermented sausages.

  3. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  4. Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation.

    PubMed

    Montag, Dominik; Schink, Bernhard

    2016-01-01

    Pool sizes of short-chain fatty acids (formate, acetate, propionate, and butyrate), hydrogen, and carbon monoxide were assayed in digesting sludge from four different methanogenic reactors degrading either sewage sludge or agricultural products and wastes at pH 8.0 and 40 or 47 °C. Free reaction energies were calculated for the respective degradation reactions involved, indicating that acetate, propionate, and butyrate degradation all supplied sufficient energy (-10 to -30 kJ per mol reaction) to sustain the microbial communities involved in the respective processes. Pools of formate and hydrogen were energetically equivalent as electron carriers. In the sewage sludge reactor, homoacetogenic acetate formation from H2 and CO2 was energetically feasible whereas syntrophic acetate oxidation appeared to be possible in two biogas reactors, one operating at enhanced ammonia content (4.5 g NH4 (+)-N per l) and the other one at enhanced temperature (47 °C). Maximum capacities for production of methanogenic substrates did not exceed the consumption capacities by hydrogenotrophic and aceticlastic methanogens. Nonetheless, the capacity for acetate degradation appeared to be a limiting factor especially in the reactor operating at enhanced ammonia concentration.

  5. [Chemistry of life: ferments and fermentation in 17th-century iatrochemistry].

    PubMed

    Clericuzio, Antonio

    2003-01-01

    The concepts of ferment and fermentation played an important, though heretofore neglected, role in 17th-century physiology. Though these notions can be found in ancient philosophy and medicine, as well as in medieval medicine, they became integral part of the chemical medicine that was advocated by Paracelsus and his school. Paracelsians made fermentation a central concept in their successful effort to give chemical foundation to medicine. Jean Baptiste van Helmont and Sylvius used the concepts of ferment and fermentation to explain a variety of physiological processes in human body. Corpuscular philosophers like Robert Boyle and Thomas Willis reinterpreted these notions in corpuscular terms and separated the concept of ferment from that of fermentation. In the second half of the seventeenth century, physiologist tried to explain fermentation by means of chemical reactions, as for instance acid -alkali, and ruled out the notion of ferment as superfluous to their investigations. At the end of hte seventeenth century fermentation attracted the interest of physicists like Johannes Bernoulli and Isaac Newton, who tried to explain fermentative processes in terms of matter and motion (Bernoulli) and short-range forces (Newton). George Ernst Stahl devoted a work to fermentation: the Zymotechnia. He explained fermentation as the outcome of the reactions of molecules formed of saline, oily and earthy corpuscles with particles of water. He saw fermentation as a mechanical process, i.e. as collision of different kinds of corpuscles.

  6. Partial nitrification treatment for high ammonium wastewater from magnesium ammonium phosphate process of methane fermentation digester liquor.

    PubMed

    Qiao, Sen; Kanda, Ryuichi; Nishiyama, Takashi; Fujii, Takao; Bhatti, Zafar; Furukawa, Kenji

    2010-02-01

    This study investigated partial nitrification treatment of methane fermentation digester liquor effluent from magnesium ammonium phosphate precipitation process in a swim-bed reactor. The reactor was operated at a temperature of 35 degrees C and pH between 7.5 and 7.8. Partial nitrification was achieved at the onset of the experiments even though conventional activated sludge was used as seed sludge. The maximum nitrite production rate was 1.0 kg NO(2)-N/m(3)/d at a nitrogen loading rate of 2.0 kg-N/m(3)/d. The average effluent NO(2)-N/NH(4)-N ratio and the effluent NO(3)-N concentration were 1.04+/-0.34 and 5.7 mg/l, respectively, during the stable experiment periods. After 150 days of operation, the sludge volume index value decreased to 15 ml/g and the mean particle size of suspended sludge increased by approximately 3 times from 80 to 260 mum. Comparison of mineral analysis between the seed sludge and the partial nitrification sludge demonstrated that the mineral content of the latter increased approximately three-fold in comparison to that of the former. High Ca concentration was considered to be closely related to dense floc formation and superior settleability of the sludge. Both DGGE and DNA clone analysis verified that there were significant microbiological differences between the samples taken at different time periods. Nitrosomonas was confirmed to be the predominant species after stable partial nitrification performance was obtained. The overall results of this study validated our previous results that swim-bed reactor technology could be successfully used as a pre-treatment technology for anammox treatment.

  7. Ellagitannins and Flavan-3-ols from Raspberry Pomace Modulate Caecal Fermentation Processes and Plasma Lipid Parameters in Rats.

    PubMed

    Fotschki, Bartosz; Juśkiewicz, Jerzy; Sójka, Michał; Jurgoński, Adam; Zduńczyk, Zenon

    2015-12-21

    Raspberry pomace is a source of polyphenols, which nutritional and health promoting properties are not sufficiently known. The aim of this 8-weeks study was to scrutinize if raspberry extracts (REs) with different ellagitannins to flavan-3-ols ratios might favorably affect the caecal fermentation processes and blood lipid profile in rats. Forty male Wistar rats were fed with a standard diet or its modification with two types of REs (E1 and E2) characterized by different ratios of ellagitannins to flavan-3-ols (7.7 and 3.1 for E1 and E2, respectively) and added to a diet at two dosages of polyphenolic compounds (0.15 and 0.30% of a diet; L and H treatments, respectively). Irrespective of polyphenols dietary level, both REs reduced the activity of bacterial β-glucuronidase, increased production of butyric acid in the caecum and reduced triacylglycerols in blood plasma. The E1 treatment at both dosages caused more effective reduction in the concentration of ammonia and elevated acetate level in the caecal digesta than E2. On the other hand, only the E2 treatment lowered value of the atherogenic index when compared with control group. When comparing dosages of REs, a higher one was more potent to reduce the activity of bacterial β-glucosidase, β-, α-galactosidase and lowered value of the HDL profile in plasma. To conclude, REs may favorably modulate the activity of the caecal microbiota and blood lipid profile in rats; however, the intensity of these effects may be related to the dosages of dietary polyphenols and to their profile, e.g., ellagitannins to flavan-3-ols ratio.

  8. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation

    SciTech Connect

    Qureshi, N.; Blaschek, H.P.

    1999-07-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.

  9. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation.

    PubMed

    Qureshi, N; Blaschek, H P

    1999-01-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.

  10. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    NASA Astrophysics Data System (ADS)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  11. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice.

    PubMed

    Escudero-López, Blanca; Cerrillo, Isabel; Gil-Izquierdo, Ángel; Hornero-Méndez, Dámaso; Herrero-Martín, Griselda; Berná, Genoveva; Medina, Sonia; Ferreres, Federico; Martín, Franz; Fernández-Pachón, María-Soledad

    2016-11-01

    Previously, we reported that alcoholic fermentation enhanced flavanones and carotenoids content of orange juice. The aim of this work was to evaluate the influence of pasteurization on the qualitative and quantitative profile of bioactive compounds and the antioxidant capacity of fermented orange juice. Ascorbic acid (203 mg/L), total flavanones (647 mg/L), total carotenoids (7.07 mg/L) and provitamin A (90.06 RAEs/L) values of pasteurized orange beverage were lower than those of fermented juice. Total phenolic remained unchanged (585 mg/L) and was similar to that of original juice. The flavanones naringenin-7-O-glucoside, naringenin-7-O-rutinoside, hesperetin-7-O-rutinoside, hesperetin-7-O-glucoside and isosakuranetin-7-O-rutinoside, and the carotenoids karpoxanthin and isomer, neochrome, lutein, ζ-carotene, zeaxanthin, mutatoxanthin epimers, β-cryptoxanthin and auroxanthin epimers were the major compounds. Pasteurization produced a decrease in antioxidant capacity of fermented juice. However, TEAC (5.45 mM) and ORAC (6353 μM) values of orange beverage were similar to those of original orange juice. The novel orange beverage could be a valuable source of bioactive compounds with antioxidant capacity and exert potential beneficial effects.

  12. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates

    DOEpatents

    Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan

    2015-05-19

    The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.

  13. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    ERIC Educational Resources Information Center

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  14. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    PubMed

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production.

  15. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  16. Effect of ensiling process of total mixed ration on fermentation profile, nutrient loss and in situ ruminal degradation characteristics of diet.

    PubMed

    Miyaji, Makoto; Matsuyama, Hiroki; Nonaka, Kazuhisa

    2017-01-01

    This experiment aimed to determine the changes in chemical composition, fermentation profile, in situ disappearance characteristics, and nutrient losses of ensiled total mixed ration (TMR) containing steam-flaked corn or brown rice (BR) during storage. TMRs for dairy cows, containing either steam-flaked corn or BR at 31.9% with 15.2% rye silage, 40.5% alfalfa silage, 5.0% beet pulp and 7.0% soybean meal, were prepared (dry matter (DM) basis). Each TMR was placed in a plastic drum silo, stored at 23°C in an air-conditioned room and sampled 0, 7, 14, 30, 90 and 210 days after preparation. In both grain sources, the fermentation products increased, while DM and starch storage losses increased and starch content greatly decreased during storage. The rapidly degradable fraction and effective ruminal degradability of DM, crude protein and starch increased during storage. These changes of dietary characteristics were large during 30 days of storage, but small after 90 days of storage. Replacing corn with BR led to increased fermentation products, starch loss and effective ruminal degradability of the ensiled TMR. These results indicate that the ensiling process of TMR changes the dietary characteristics and replacing corn with BR in TMR had a large impact on these dietary characteristics.

  17. Optimization of process parameters for the production of an OTA-hydrolyzing enzyme from Aspergillus niger under solid-state fermentation.

    PubMed

    Abrunhosa, Luís; Venâncio, Armando; Teixeira, José António

    2011-10-01

    Ochratoxin A (OTA) is a mycotoxin found in several food and feed products. Due to its acute toxicity, innovative biological strategies to degrade OTA have been sought. In previous studies, Aspergillus niger MUM 03.58 was found to produce one promising OTA-hydrolyzing enzyme for food and feed applications. In this paper, we describe the optimization of a solid-state fermentation (SSF) process to produce this enzyme using the one-factor-at-a-time and the Taguchi experimental design approaches. A preliminary evaluation of the fermentation time, substrate moisture content and type of carbon source was done by the one-factor-at-a-time method. A final maximization of the OTA-hydrolyzing enzyme production was done using Taguchi's experimental design. An L9 orthogonal array was used to evaluate the effect of four factors at three levels. The substrate composition, the fermentation time, the operating temperature and the moisture content of the substrate were the factors evaluated. The results were tested by ANOVA and optimum conditions for a verification test were determined by statistical calculations. The optimized conditions were 30 g of wheat bran at 70% moisture incubated for 14 days at 25°C. A final productivity of 154 U/g substrate was achieved, which represents an approximately 3.7-fold increase in enzyme yield when compared with the starting point conditions.

  18. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques.

  19. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor

    PubMed Central

    Kong, Yu; Wu, Qun; Zhang, Yan

    2014-01-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269

  20. In situ analysis of metabolic characteristics reveals the key yeast in the spontaneous and solid-state fermentation process of Chinese light-style liquor.

    PubMed

    Kong, Yu; Wu, Qun; Zhang, Yan; Xu, Yan

    2014-06-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q(2)]>20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community.