A new Abel inversion by means of the integrals of an input function with noise
NASA Astrophysics Data System (ADS)
Li, Xian-Fang; Huang, Li; Huang, Yong
2007-01-01
Abel's integral equations arise in many areas of natural science and engineering, particularly in plasma diagnostics. This paper proposes a new and effective approximation of the inversion of Abel transform. This algorithm can be simply implemented by symbolic computation, and moreover an nth-order approximation reduces to the exact solution when it is a polynomial in r2 of degree less than or equal to n. Approximate Abel inversion is expressed in terms of integrals of input measurement data; so the suggested approach is stable for experimental data with random noise. An error analysis of the approximation of Abel inversion is given. Finally, several test examples used frequently in plasma diagnostics are given to illustrate the effectiveness and stability of this method.
The Noble-Abel Stiffened-Gas equation of state
NASA Astrophysics Data System (ADS)
Le Métayer, Olivier; Saurel, Richard
2016-04-01
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.
U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations
Zheltukhin, A. A.; Trzetrzelewski, M.
2010-06-15
The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.
An Approximation to the Periodic Solution of a Differential Equation of Abel
NASA Astrophysics Data System (ADS)
Mickens, Ronald E.
2011-10-01
The Abel equation, in canonical form, is y^' = sint- y^3 (*) and corresponds to the singular (ɛ --> 0) limit of the nonlinear, forced oscillator ɛy^'' + y^' + y^3 = sint, ɛ-> 0. (**) Equation (*) has the property that it has a unique periodic solution defined on (-∞,∞). Further, as t increases, all solutions are attracted into the strip |y| < 1 and any two different solutions y1(t) and y2(t) satisfy the condition Lim [y1(t) - y2(t)] = 0, (***) t --> ∞ and for t negatively decreasing, each solution, except for the periodic solution, becomes unbounded.ootnotetextU. Elias, American Mathematical Monthly, vol.115, (Feb. 2008), pps. 147-149. Our purpose is to calculate an approximation to the unique periodic solution of Eq. (*) using the method of harmonic balance. We also determine an estimation for the blow-up time of the non-periodic solutions.
Fast algorithm for computing the Abel inversion integral in broadband reflectometry
Nunes, F.D.
1995-10-01
The application of the Hansen--Jablokow recursive technique is proposed for the numerical computation of the Abel inversion integral which is used in ({ital O}-mode) frequency-modulated broadband reflectometry to evaluate plasma density profiles. Compared to the usual numerical methods the recursive algorithm allows substantial time savings that can be important when processing massive amounts of data aiming to control the plasma in real time. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
NASA Astrophysics Data System (ADS)
Katgert, P.; Murdin, P.
2000-11-01
Abell clusters are the most conspicuous groupings of galaxies identified by George Abell on the plates of the first photographic survey made with the SCHMIDT TELESCOPE at Mount Palomar in the 1950s. Sometimes, the term Abell clusters is used as a synonym of nearby, optically selected galaxy clusters....
The Filtered Abel Transform and Its Application in Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang
2003-01-01
Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal
NASA Astrophysics Data System (ADS)
Karman, W.; Caputi, K. I.; Grillo, C.; Balestra, I.; Rosati, P.; Vanzella, E.; Coe, D.; Christensen, L.; Koekemoer, A. M.; Krühler, T.; Lombardi, M.; Mercurio, A.; Nonino, M.; van der Wel, A.
2015-02-01
We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the science verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-α emitters at z> 3, and five multiply-lensed galaxies. We report the detection of a new z = 4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C iii], C iv, and He ii emission in a multiply lensed galaxy at z = 3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.
Abel's Theorem Simplifies Reduction of Order
ERIC Educational Resources Information Center
Green, William R.
2011-01-01
We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.
Integration of quantum hydrodynamical equation
NASA Astrophysics Data System (ADS)
Ulyanova, Vera G.; Sanin, Andrey L.
2007-04-01
Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.
Integral equations for resonance and virtual states
Orlov, Y.V.; Turovtsev, V.V.
1984-05-01
Integral equations are derived for the resonance and virtual (antibound) states consisting of two or three bodies. The derivation is based on the analytic continuation of the integral equations of scattering theory to nonphysical energy sheets. The resulting equations can be used to exhibit the analytic properties of amplitudes that are necessary for practical calculations using the equations for the quasistationary levels and Gamov wave functions derived in this paper. The Fourier transformation and the normalization rule for the wave function are generalized to the case of nonstationary states. The energy of the antibound state of the tritium nucleus is calculated for a ''realistic'' local potential.
Explicit integration of Friedmann's equation with nonlinear equations of state
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong
2015-05-01
In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.
Linear integral transformations and hierarchies of integrable nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Nijhoff, Frank W.
1988-07-01
Integrable hierarchies of nonlinear evolution equations are investigated on the basis of linear integral equations. These are (Riemann-Hilbert type of) integral transformations which leave invariant an infinite sequence of ordinary differential matrix equations of increasing order in an (indefinite) parameter k. The potential matrices in these equations obey a set of nonlinear recursion relations, leading to a heirarchy of nonlinear partial differential equations. In decreasing order the same equations give rise to a “reciprocal” hierarchy, associated with Heisenberg ferromagnet type of equations. Central in the treatment is an embedding of the hierarchy into an infinite-matrix structure, which is constructed on the basis of the integral equations. In terms of this infinite-matrix structure the equations governing the hierarchies become quite simple. Furthermore, it leads in a straightforward way to various generalizations, such as to other types of linear spectral problems, multicomponent system and lattice equations. Generalizations to equations associated with noncommuting flows follow as a direct consequence of the treatment. Finally, some results on conserved densities and the Hamiltonian structure are briefly discussed.
Integral equations for flows in wind tunnels
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
This paper surveys recent work on the use of integral equations for the calculation of wind tunnel interference. Due to the large number of possible physical situations, the discussion is limited to two-dimensional subsonic and transonic flows. In the subsonic case, the governing boundary value problems are shown to reduce to a class of Cauchy singular equations generalizing the classical airfoil equation. The theory and numerical solution are developed in some detail. For transonic flows nonlinear singular equations result, and a brief discussion of the work of Kraft and Kraft and Lo on their numerical solution is given. Some typical numerical results are presented and directions for future research are indicated.
Picard-Fuchs Equations for Feynman Integrals
NASA Astrophysics Data System (ADS)
Müller-Stach, Stefan; Weinzierl, Stefan; Zayadeh, Raphael
2014-02-01
We present a systematic method to derive an ordinary differential equation for any Feynman integral, where the differentiation is with respect to an external variable. The resulting differential equation is of Fuchsian type. The method can be used within fixed integer space-time dimensions as well as within dimensional regularisation. We show that finding the differential equation is equivalent to solving a linear system of equations. We observe interesting factorisation properties of the D-dimensional Picard-Fuchs operator when D is specialised to integer dimensions.
Integrability of Lie Systems Through Riccati Equations
NASA Astrophysics Data System (ADS)
Cariñena, José F.; de Lucas, Javier
Integrability conditions for Lie systems are related to reduction or transformation processes. We here analyse a geometric method to construct integrability conditions for Riccati equations following these approaches. This approach provides us with a unified geometrical viewpoint that allows us to analyse some previous works on the topic and explain new properties. Moreover, this new approach can be straightforwardly generalised to describe integrability conditions for any Lie system. Finally, we show the usefulness of our treatment in order to study the problem of the linearisability of Riccati equations.
Variational integrators for nonvariational partial differential equations
NASA Astrophysics Data System (ADS)
Kraus, Michael; Maj, Omar
2015-08-01
Variational integrators for Lagrangian dynamical systems provide a systematic way to derive geometric numerical methods. These methods preserve a discrete multisymplectic form as well as momenta associated to symmetries of the Lagrangian via Noether's theorem. An inevitable prerequisite for the derivation of variational integrators is the existence of a variational formulation for the considered problem. Even though for a large class of systems this requirement is fulfilled, there are many interesting examples which do not belong to this class, e.g., equations of advection-diffusion type frequently encountered in fluid dynamics or plasma physics. On the other hand, it is always possible to embed an arbitrary dynamical system into a larger Lagrangian system using the method of formal (or adjoint) Lagrangians. We investigate the application of the variational integrator method to formal Lagrangians, and thereby extend the application domain of variational integrators to include potentially all dynamical systems. The theory is supported by physically relevant examples, such as the advection equation and the vorticity equation, and numerically verified. Remarkably, the integrator for the vorticity equation combines Arakawa's discretisation of the Poisson brackets with a symplectic time stepping scheme in a fully covariant way such that the discrete energy is exactly preserved. In the presentation of the results, we try to make the geometric framework of variational integrators accessible to non specialists.
Classification of integrable B-equations
NASA Astrophysics Data System (ADS)
van der Kamp, Peter H.
We classify integrable equations which have the form u t=a 1u n+K(v 0,v 1,…), v t=a 2v n, where a 1,a 2∈ C, n∈ N and K a quadratic polynomial in derivatives of v. This is done using the symbolic calculus, biunit coordinates and the Lech-Mahler theorem. Furthermore we present a method, based on resultants, to determine whether an equation is in a hierarchy of lower order.
New integral equation for simple fluids
NASA Astrophysics Data System (ADS)
Kang, Hong Seok; Ree, Francis H.
1995-09-01
We present a new integral equation for the radial distribution function of classical fluids. It employs the bridge function for a short-range repulsive reference system which was used earlier in our dense fluid perturbation theory. The bridge function is evaluated using Ballone et al.'s closure relation. Applications of the integral equation to the Lennard-Jones and inverse nth-power (n=12, 9, 6, and 4) repulsive systems show that it can predict thermodynamic and structural properties in close agreement with results from computer simulations and the reference-hypernetted-chain equation. We also discuss thermodynamic consistency tests on the new equation and comparisons with the integral equations of Rogers and Young and of Zerah and Hansen. The present equation has no parameter to adjust. This unique feature offers a significant advantage as it eliminates a time-consuming search to optimize such parameters appearing in other theories. It permits practical applications needing complex intermolecular potentials and for multicomponent systems.
Integrability of BKP and Odderon equations
NASA Astrophysics Data System (ADS)
Lipatov, L. N.
2013-04-01
In QCD the gluon is reggeized. The Pomeron is a composite state of two reggeized gluons. Its wave function satisfies the BFKL equation. The BFKL Hamiltonian in LLA is invariant under the Möbius transformations. The wave function of the Odderon and other multi-gluon composite states satisfies the BKP equation. The corresponding Hamiltonian in the multi-color limit has the properties of the Möbius invariance, holomorphic separability, duality and integrability. We discuss various approaches applied to the solution of the BKP equation for the singlet and adjoint representations of the gauge group.
Algorithms For Integrating Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Integral equation study of liquid hydrogen fluoride
NASA Astrophysics Data System (ADS)
Martín, C.; Lombardero, M.; Anta, J. A.; Lomba, E.
2001-01-01
Liquid hydrogen fluoride is a well-known hydrogen bonded substance, in many aspects related to liquid water, and for which a wide variety of interaction models have recently been proposed. We have studied two of these models by means of a reference hypernetted chain equation in order to assess the ability of this latter approach to describe the properties of this highly associative system. Our calculations, when compared with molecular dynamic results, show that the integral equation reproduces quantitatively both the structure and the thermodynamics of liquid hydrogen fluoride over a wide range of thermodynamic states. However, the integral equation approach is apparently unable to produce estimates for the phase diagram since the low-density (gas phase) side of the binodal curve lies inside the nonsolution region of the equation. This failure can be understood as the result of the inability of standard integral equation theories to account for the behavior of low density strongly associative systems like highly charged electrolytes or, in this case, the gaseous phase of hydrogen fluoride.
PREFACE: Symmetries and Integrability of Difference Equations
NASA Astrophysics Data System (ADS)
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of
The study of dual integral equations with generalized Legendre functions
NASA Astrophysics Data System (ADS)
Singh, B. M.; Rokne, J.; Dhaliwal, R. S.
2005-04-01
Closed form solutions for dual integral equations involving generalized Legendre functions as kernels are obtained. Connected to these dual integral equations an exact solution for dual integral equations involving sine functions as kernels is also obtained. Properties of generalized Legendre functions and the inversion theorem for the generalized Mehler-Fock transforms are used to obtain the solution of dual integral equations
Lectures on differential equations for Feynman integrals
NASA Astrophysics Data System (ADS)
Henn, Johannes M.
2015-04-01
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE.
Kinugawa, Tohru
2014-02-15
This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing
Spatial Interpolation Methods for Integrating Newton's Equation
NASA Astrophysics Data System (ADS)
Gueron, Shay; Shalloway, David
1996-11-01
Numerical integration of Newton's equation in multiple dimensions plays an important role in many fields such as biochemistry and astrophysics. Currently, some of the most important practical questions in these areas cannot be addressed because the large dimensionality of the variable space and complexity of the required force evaluations precludes integration over sufficiently large time intervals. Improving the efficiency of algorithms for this purpose is therefore of great importance. Standard numerical integration schemes (e.g., leap-frog and Runge-Kutta) ignore the special structure of Newton's equation that, for conservative systems, constrains the force to be the gradient of a scalar potential. We propose a new class of "spatial interpolation" (SI) integrators that exploit this property by interpolating the force in space rather than (as with standard methods) in time. Since the force is usually a smoother function of space than of time, this can improve algorithmic efficiency and accuracy. In particular, an SI integrator solves the one- and two-dimensional harmonic oscillators exactly with one force evaluation per step. A simple type of time-reversible SI algorithm is described and tested. Significantly improved performance is achieved on one- and multi-dimensional benchmark problems.
Integrability of vortex equations on Riemann surfaces
NASA Astrophysics Data System (ADS)
Popov, Alexander D.
2009-11-01
The Abelian Higgs model on a compact Riemann surface Σ of genus g is considered. We show that for g>1 the Bogomolny equations for multi-vortices at critical coupling can be obtained as compatibility conditions of two linear equations (Lax pair) which are written down explicitly. These vortices correspond precisely to SO(3)-symmetric Yang-Mills instantons on the (conformal) gravitational instanton Σ×S with a scalar-flat Kähler metric. Thus, the standard methods of constructing solutions and studying their properties by using Lax pairs (twistor approach, dressing method, etc.) can be applied to the vortex equations on Σ. In the twistor description, solutions of the integrable vortex equations correspond to rank-2 holomorphic vector bundles over the complex 3-dimensional twistor space of Σ×S. We show that in the general (nonintegrable) case there is a bijection between the moduli spaces of solutions to vortex equations on Σ and of pseudo-holomorphic bundles over the almost complex twistor space.
Integrals and integral equations in linearized wing theory
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B
1951-01-01
The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.
Alternative field representations and integral equations for modeling inhomogeneous dielectrics
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
New volume and volume-surface integral equations are presented for modeling inhomogeneous dielectric regions. The presented integral equations result in more efficient numerical implementations and should, therefore, be useful in a variety of electromagnetic applications.
Numerical solution of integral-algebraic equations for multistep methods
NASA Astrophysics Data System (ADS)
Budnikova, O. S.; Bulatov, M. V.
2012-05-01
Systems of Volterra linear integral equations with identically singular matrices in the principal part (called integral-algebraic equations) are examined. Multistep methods for the numerical solution of a selected class of such systems are proposed and justified.
NASA Astrophysics Data System (ADS)
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-11-01
The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first
NASA Astrophysics Data System (ADS)
Gladwin Pradeep, R.; Chandrasekar, V. K.; Mohanasubha, R.; Senthilvelan, M.; Lakshmanan, M.
2016-07-01
We identify contact transformations which linearize the given equations in the Riccati and Abel chains of nonlinear scalar and coupled ordinary differential equations to the same order. The identified contact transformations are not of Cole-Hopf type and are new to the literature. The linearization of Abel chain of equations is also demonstrated explicitly for the first time. The contact transformations can be utilized to derive dynamical symmetries of the associated nonlinear ODEs. The wider applicability of identifying this type of contact transformations and the method of deriving dynamical symmetries by using them is illustrated through two dimensional generalizations of the Riccati and Abel chains as well.
NASA Astrophysics Data System (ADS)
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-11-01
The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first
Integral Equation Technique for the Simulation of Signal Integrity and Power Integrity
NASA Astrophysics Data System (ADS)
Wei, Xing-Chang; Yang, De-Cao; Li, Er-Ping
2011-09-01
Signal integrity and power integrity are the critical issues for high-speed digital circuits. This paper reviews the state-of-the-arts of the integral equation technique used for the simulation of signal integrity and power integrity including the power and ground planes. According to the different circuit boundary conditions, the applied integral equation methods can be classified into mode method/segment method, image method, and equivalent electromagnetic currents method. The mode/segment and image method is used for power and ground planes with rectangular shapes, while the equivalent electromagnetic currents method is efficient for power and ground planes with arbitrary shapes. The most important part of these integral equations is the integral kernels (Green's functions). The integral kernels are derived for different circuit boundaries. Both the theoretical formula and simulation results are present, which are then verified with other available simulation methods and measurement results.
Lie symmetry and integrability of ordinary differential equations
NASA Astrophysics Data System (ADS)
Zhdanov, R. Z.
1998-12-01
Combining a Lie algebraic approach that is due to Wei and Norman [J. Math. Phys. 4, 475 (1963)] and the ideas suggested by Drach [Compt. Rend. 168, 337 (1919)], we have constructed several classes of systems of linear ordinary differential equations that are integrable by quadratures. Their integrability is ensured by integrability of the corresponding stationary cubic Schrödinger, KdV, and Harry-Dym equations. Next, we obtain a hierarchy of integrable reductions of the Dirac equation of an electron moving in the external field. Their integrability is shown to be in correspondence with integrability of the stationary mKdV hierarchy.
Calculation of transonic flows using an extended integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1976-01-01
An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.
NASA Astrophysics Data System (ADS)
Chen, Jinbing
2010-08-01
Each soliton equation in the Korteweg-de Vries (KdV) hierarchy, the 2+1 dimensional breaking soliton equation, and the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation are reduced to two or three Neumann systems on the tangent bundle TSN -1 of the unit sphere SN -1. The Lax-Moser matrix for the Neumann systems of degree N -1 is deduced in view of the Mckean-Trubowitz identity and a bilinear generating function, whose favorite characteristic accounts for the problem of the genus of Riemann surface matching to the number of elliptic variables. From the Lax-Moser matrix, the constrained Hamiltonians in the sense of Dirac-Poisson bracket for all the Neumann systems are written down in a uniform recursively determined by integrals of motion. The involution of integrals of motion and constrained Hamiltonians is completed on TSN -1 by using a Lax equation and their functional independence is displayed over a dense open subset of TSN -1 by a direct calculation, which contribute to the Liouville integrability of a family of Neumann systems in a new systematical way. We also construct the hyperelliptic curve of Riemann surface and the Abel map straightening out the restricted Neumann flows that naturally leads to the Jacobi inversion problem on the Jacobian with the aid of the holomorphic differentials, from which some finite-gap solutions expressed by Riemann theta functions for the 2+1 dimensional breaking soliton equation, the 2+1 dimensional CDGKS equation, the KdV, and the fifth-order KdV equations are presented by means of the Riemann theorem.
Applying Quadrature Rules with Multiple Nodes to Solving Integral Equations
Hashemiparast, S. M.; Avazpour, L.
2008-09-01
There are many procedures for the numerical solution of Fredholm integral equations. The main idea in these procedures is accuracy of the solution. In this paper, we use Gaussian quadrature with multiple nodes to improve the solution of these integral equations. The application of this method is illustrated via some examples, the related tables are given at the end.
Calculation of unsteady transonic flows using the integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The basic integral equations for a harmonically oscillating airfoil in a transonic flow with shock waves are derived; the reduced frequency is assumed to be small. The problems associated with shock wave motion are treated using a strained coordinate system. The integral equation is linear and consists of both line integrals and surface integrals over the flow field which are evaluated by quadrature. This leads to a set of linear algebraic equations that can be solved directly. The shock motion is obtained explicitly by enforcing the condition that the flow is continuous except at a shock wave. Results obtained for both lifting and nonlifting oscillatory flows agree satisfactorily with other accurate results.
Chenoweth, D R
1983-06-01
An ideal-gas, quasi-steady, duct-flow model previously formulated for small scale gas-transfer problems is extended to real gases via the van der Waals equation of state as well as general virial expansions. The model is applicable for an arbitrary series of ducting components where each is described empirically by total pressure and total temperature change correlations. The adequacy of the van der Waals model for gas-transfer calculations is verified by comparisons with: (1) real gas PVT data; (2) the magnitudes of the controlling effects; and (3) approximate limiting case solutions with numerical results using more accurate real-gas modeling. 25 figures.
Numerical integration of asymptotic solutions of ordinary differential equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Integrable hierarchies of Heisenberg ferromagnet equation
NASA Astrophysics Data System (ADS)
Nugmanova, G.; Azimkhanova, A.
2016-08-01
In this paper we consider the coupled Kadomtsev-Petviashvili system. From compatibility conditions we obtain the form of matrix operators. After using a gauge transformation, obtained a new type of Lax representation for the hierarchy of Heisenberg ferromagnet equation, which is equivalent to the gauge coupled Kadomtsev-Petviashvili system.
Exponential Methods for the Time Integration of Schroedinger Equation
Cano, B.; Gonzalez-Pachon, A.
2010-09-30
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
Kernel approximation for solving few-body integral equations
NASA Astrophysics Data System (ADS)
Christie, I.; Eyre, D.
1986-06-01
This paper investigates an approximate method for solving integral equations that arise in few-body problems. The method is to replace the kernel by a degenerate kernel defined on a finite dimensional subspace of piecewise Lagrange polynomials. Numerical accuracy of the method is tested by solving the two-body Lippmann-Schwinger equation with non-separable potentials, and the three-body Amado-Lovelace equation with separable two-body potentials.
Exact Solutions and Conservation Laws for a New Integrable Equation
Gandarias, M. L.; Bruzon, M. S.
2010-09-30
In this work we study a generalization of an integrable equation proposed by Qiao and Liu from the point of view of the theory of symmetry reductions in partial differential equations. Among the solutions we obtain a travelling wave with decaying velocity and a smooth soliton solution. We determine the subclass of these equations which are quasi-self-adjoint and we get a nontrivial conservation law.
Numerical integration of ordinary differential equations of various orders
NASA Technical Reports Server (NTRS)
Gear, C. W.
1969-01-01
Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.
Solution of a system of dual integral equations.
NASA Technical Reports Server (NTRS)
Buell, J.; Kagiwada, H.; Kalaba, R.; Ruspini, E.; Zagustin, E.
1972-01-01
The solution of a presented system of differential equations with initial values is shown to satisfy a system of dual integral equations of a type appearing in the study of axisymmetric problems of potential theory. Of practical interest are possible applications in biomechanics, particularly, for the case of trauma due to impact.
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1987-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
Finite Element Analysis for Pseudo Hyperbolic Integral-Differential Equations
NASA Astrophysics Data System (ADS)
Cui, Xia
The finite element method and its analysis for pseudo-hyperbolic integral-differential equations with nonlinear boundary conditions is considered. A new projection is introduced to obtain optimal L2 convergence estimates. The present techniques can be applied to treat elastic wave problems with absorbing boundary conditions in porous media. Keywords: pseudo-hyperbolic integral-differential equation, finite element, Sobolev-Volterra projection, convergence analysis
NASA Astrophysics Data System (ADS)
Ansari, R.; Campagne, J. E.; Colom, P.; Ferrari, C.; Magneville, Ch.; Martin, J. M.; Moniez, M.; Torrentó, A. S.
2016-02-01
We have observed regions of three galaxy clusters at z˜[0.06÷0.09] (Abell85, Abell1205, Abell2440) with the Nançay radiotelescope (NRT) to search for 21 cm emission and to fully characterize the FPGA based BAORadio digital backend. We have tested the new BAORadio data acquisition system by observing sources in parallel with the NRT standard correlator (ACRT) back-end over several months. BAORadio enables wide band instantaneous observation of the [1250,1500] MHz frequency range, as well as the use of powerful RFI mitigation methods thanks to its fine time sampling. A number of questions related to instrument stability, data processing and calibration are discussed. We have obtained the radiometer curves over the integration time range [0.01,10 000] seconds and we show that sensitivities of few mJy over most of the wide frequency band can be reached with the NRT. It is clearly shown that in blind line search, which is the context of H I intensity mapping for Baryon Acoustic Oscillations, the new acquisition system and processing pipeline outperforms the standard one. We report a positive detection of 21 cm emission at 3 σ-level from galaxies in the outer region of Abell85 at ≃1352 MHz (14400 km/s) corresponding to a line strength of ≃0.8 Jy km/s. We also observe an excess power around ≃1318 MHz (21600 km/s), although at lower statistical significance, compatible with emission from Abell1205 galaxies. Detected radio line emissions have been cross matched with optical catalogs and we have derived hydrogen mass estimates.
NASA Astrophysics Data System (ADS)
Choudhury, A. Ghose; Guha, Partha; Khanra, Barun
2009-10-01
The Darboux integrability method is particularly useful to determine first integrals of nonplanar autonomous systems of ordinary differential equations, whose associated vector fields are polynomials. In particular, we obtain first integrals for a variant of the generalized Raychaudhuri equation, which has appeared in string inspired modern cosmology.
An integrable shallow water equation with linear and nonlinear dispersion.
Dullin, H R; Gottwald, G A; Holm, D D
2001-11-01
We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414
Integral equations for the electromagnetic field in dielectrics
NASA Astrophysics Data System (ADS)
Mostowski, Jan; Załuska-Kotur, Magdalena A.
2016-09-01
We study static the electric field and electromagnetic waves in dielectric media. In contrast to the standard approach, we use, formulate and solve integral equations for the field. We discuss the case of an electrostatic field of a point charge placed inside a dielectric; the integral equation approach allows us to find and interpret the dielectric constant in terms of molecular polarizability. Next we discuss propagation of electromagnetic waves using the same integral equation approach. We derive the dispersion relation and find the reflection and transmission coefficients at the boundary between the vacuum and the dielectric. The present approach supplements the standard approach based on macroscopic Maxwell equations and contributes to better a understanding of some electromagnetic effects.
Nonzero solutions of nonlinear integral equations modeling infectious disease
Williams, L.R.; Leggett, R.W.
1982-01-01
Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.
Master integrals for splitting functions from differential equations in QCD
NASA Astrophysics Data System (ADS)
Gituliar, Oleksandr
2016-02-01
A method for calculating phase-space master integrals for the decay process 1 → n masslesspartonsinQCDusingintegration-by-partsanddifferentialequationstechniques is discussed. The method is based on the appropriate choice of the basis for master integrals which leads to significant simplification of differential equations. We describe an algorithm how to construct the desirable basis, so that the resulting system of differential equations can be recursively solved in terms of (G) HPLs as a series in the dimensional regulator ɛ to any order. We demonstrate its power by calculating master integrals for the NLO time-like splitting functions and discuss future applications of the proposed method at the NNLO precision.
Nonlocal symmetries of Riccati and Abel chains and their similarity reductions
NASA Astrophysics Data System (ADS)
Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M.
2012-02-01
We study nonlocal symmetries and their similarity reductions of Riccati and Abel chains. Our results show that all the equations in Riccati chain share the same form of nonlocal symmetry. The similarity reduced Nth order ordinary differential equation (ODE), N = 2, 3, 4, …, in this chain yields (N - 1)th order ODE in the same chain. All the equations in the Abel chain also share the same form of nonlocal symmetry (which is different from the one that exist in Riccati chain) but the similarity reduced Nth order ODE, N = 2, 3, 4, …, in the Abel chain always ends at the (N - 1)th order ODE in the Riccati chain. We describe the method of finding general solution of all the equations that appear in these chains from the nonlocal symmetry.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, J.; Mathematics and Computer Science; Rush Univ.
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Distribution theory for Schrödinger's integral equation
NASA Astrophysics Data System (ADS)
Lange, Rutger-Jan
2015-12-01
Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger's equation. This paper, in contrast, investigates the integral form of Schrödinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schrödinger's integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schrödinger's differential equation. This hints at a possible deeper connection between both forms of the equation. We also sketch a generalisation of Kurasov's [J. Math. Anal. Appl. 201(1), 297-323 (1996)] result to hypersurfaces. Second, we derive a new closed-form solution to Schrödinger's integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schrödinger's differential equation. Third, we derive boundary conditions for "super-singular" potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schrödinger's integral equation is a viable tool for studying singular interactions in quantum mechanics.
Distribution theory for Schrödinger’s integral equation
Lange, Rutger-Jan
2015-12-15
Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger’s equation. This paper, in contrast, investigates the integral form of Schrödinger’s equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schrödinger’s integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schrödinger’s differential equation. This hints at a possible deeper connection between both forms of the equation. We also sketch a generalisation of Kurasov’s [J. Math. Anal. Appl. 201(1), 297–323 (1996)] result to hypersurfaces. Second, we derive a new closed-form solution to Schrödinger’s integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schrödinger’s differential equation. Third, we derive boundary conditions for “super-singular” potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schrödinger’s integral equation is a viable tool for studying singular interactions in quantum mechanics.
High order integral equation method for diffraction gratings.
Lu, Wangtao; Lu, Ya Yan
2012-05-01
Conventional integral equation methods for diffraction gratings require lattice sum techniques to evaluate quasi-periodic Green's functions. The boundary integral equation Neumann-to-Dirichlet map (BIE-NtD) method in Wu and Lu [J. Opt. Soc. Am. A 26, 2444 (2009)], [J. Opt. Soc. Am. A 28, 1191 (2011)] is a recently developed integral equation method that avoids the quasi-periodic Green's functions and is relatively easy to implement. In this paper, we present a number of improvements for this method, including a revised formulation that is more stable numerically, and more accurate methods for computing tangential derivatives along material interfaces and for matching boundary conditions with the homogeneous top and bottom regions. Numerical examples indicate that the improved BIE-NtD map method achieves a high order of accuracy for in-plane and conical diffractions of dielectric gratings.
An integral equation solution for multistage turbomachinery design calculations
NASA Technical Reports Server (NTRS)
Mcfarland, Eric R.
1993-01-01
A method was developed to calculate flows in multistage turbomachinery. The method is an extension of quasi-three-dimensional blade-to-blade solution methods. Governing equations for steady compressible inviscid flow are linearized by introducing approximations. The linearized flow equations are solved using integral equation techniques. The flows through both stationary and rotating blade rows are determined in a single calculation. Multiple bodies can be modelled for each blade row, so that arbitrary blade counts can be analyzed. The method's benefits are its speed and versatility.
On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.
Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O
2013-03-01
There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.
A spectral boundary integral equation method for the 2-D Helmholtz equation
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.
Local Integral Estimates for Quasilinear Equations with Measure Data.
Tian, Qiaoyu; Zhang, Shengzhi; Xu, Yonglin; Mu, Jia
2016-01-01
Local integral estimates as well as local nonexistence results for a class of quasilinear equations -Δ p u = σP(u) + ω for p > 1 and Hessian equations F k [-u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ expαu (β) with α > 0 and β ≥ 1 or P(u) = u (p-1). PMID:27294190
Local Integral Estimates for Quasilinear Equations with Measure Data
Tian, Qiaoyu; Zhang, Shengzhi; Xu, Yonglin; Mu, Jia
2016-01-01
Local integral estimates as well as local nonexistence results for a class of quasilinear equations −Δpu = σP(u) + ω for p > 1 and Hessian equations Fk[−u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ expαuβ with α > 0 and β ≥ 1 or P(u) = up−1. PMID:27294190
Numerical integration of systems of delay differential-algebraic equations
NASA Astrophysics Data System (ADS)
Kuznetsov, E. B.; Mikryukov, V. N.
2007-01-01
The numerical solution of the initial value problem for a system of delay differential-algebraic equations is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are obtained for transforming this problem to the best argument, which ensures the best condition for the corresponding system of continuation equations. The best argument is the arc length along the integral curve of the problem. Algorithms and programs based on the continuous and discrete continuation methods are developed for the numerical integration of this problem. The efficiency of the suggested transformation is demonstrated using test examples.
The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation
NASA Astrophysics Data System (ADS)
Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen
2016-07-01
A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.
NASA Astrophysics Data System (ADS)
Khalilov, E. H.
2016-07-01
The surface integral equation for a spatial mixed boundary value problem for the Helmholtz equation is considered. At a set of chosen points, the equation is replaced with a system of algebraic equations, and the existence and uniqueness of the solution of this system is established. The convergence of the solutions of this system to the exact solution of the integral equation is proven, and the convergence rate of the method is determined.
NASA Astrophysics Data System (ADS)
Yersultanova, Z. S.; Zhassybayeva, M.; Yesmakhanova, K.; Nugmanova, G.; Myrzakulov, R.
2016-10-01
Integrable Heisenberg ferromagnetic equations are an important subclass of integrable systems. The M-XCIX equation is one of a generalizations of the Heisenberg ferromagnetic equation and are integrable. In this paper, the Darboux transformation of the M-XCIX equation is constructed. Using the DT, a 1-soliton solution of the M-XCIX equation is presented.
On the Implementation of 3D Galerkin Boundary Integral Equations
Nintcheu Fata, Sylvain; Gray, Leonard J
2010-01-01
In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.
An integrable semi-discretization of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Zhang, Yingnan; Tian, Lixin
2016-10-01
In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the 'time' variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of 'good' Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.
Application of boundary integral equations to elastoplastic problems
NASA Technical Reports Server (NTRS)
Mendelson, A.; Albers, L. U.
1975-01-01
The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.
Classical integrable systems and Knizhnik-Zamolodchikov-Bernard equations
NASA Astrophysics Data System (ADS)
Aminov, G.; Levin, A.; Olshanetsky, M.; Zotov, A.
2015-05-01
The results obtained in the works supported in part by the Russian Foundation for Basic Research (project 12-02-00594) are briefly reviewed. We mainly focus on interrelations between classical integrable systems, Painlevé-Schlesinger equations and related algebraic structures such as classical and quantum R-matrices. The constructions are explained in terms of simplest examples.
Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C
2015-01-01
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.
Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C
2015-01-01
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591
On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation
NASA Astrophysics Data System (ADS)
Cao, Cewen; Wu, Yongtang; Geng, Xianguo
1999-05-01
The 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs. The Abel-Jacobi coordinates are introduced to straighten the flows, from which quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation are obtained in terms of Riemann theta functions.
Rational first integrals of geodesic equations and generalised hidden symmetries
NASA Astrophysics Data System (ADS)
Aoki, Arata; Houri, Tsuyoshi; Tomoda, Kentaro
2016-10-01
We discuss novel generalisations of Killing tensors, which are introduced by considering rational first integrals of geodesic equations. We introduce the notion of inconstructible generalised Killing tensors, which cannot be constructed from ordinary Killing tensors. Moreover, we introduce inconstructible rational first integrals, which are constructed from inconstructible generalised Killing tensors, and provide a method for checking the inconstructibility of a rational first integral. Using the method, we show that the rational first integral of the Collinson-O’Donnell solution is not inconstructible. We also provide several examples of metrics admitting an inconstructible rational first integral in two and four-dimensions, by using the Maciejewski-Przybylska system. Furthermore, we attempt to generalise other hidden symmetries such as Killing-Yano tensors.
Singularity Preserving Numerical Methods for Boundary Integral Equations
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
Numerical analysis of Weyl's method for integrating boundary layer equations
NASA Technical Reports Server (NTRS)
Najfeld, I.
1982-01-01
A fast method for accurate numerical integration of Blasius equation is proposed. It is based on the limit interchange in Weyl's fixed point method formulated as an iterated limit process. Each inner limit represents convergence to a discrete solution. It is shown that the error in a discrete solution admits asymptotic expansion in even powers of step size. An extrapolation process is set up to operate on a sequence of discrete solutions to reach the outer limit. Finally, this method is extended to related boundary layer equations.
Hamiltonian time integrators for Vlasov-Maxwell equations
He, Yang; Xiao, Jianyuan; Zhang, Ruili; Liu, Jian; Qin, Hong; Sun, Yajuan
2015-12-15
Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.
Phase integral theory, coupled wave equations, and mode conversion.
Littlejohn, Robert G.; Flynn, William G.
1992-01-01
Phase integral or WKB theory is applied to multicomponent wave equations, i.e., wave equations in which the wave field is a vector, spinor, or tensor of some kind. Specific examples of physical interest often have special features that simplify their analysis, when compared with the general theory. The case of coupled channel equations in atomic or molecular scattering theory in the Born-Oppenheimer approximation is examined in this context. The problem of mode conversion, also called surface jumping or Landau-Zener-Stuckelberg transitions, is examined in the multidimensional case, and cast into normal form. The group theoretical principles of the normal form transformation are laid out, and shown to involve both the Lorentz group and the symplectic group. PMID:12779962
Multistep and Multistage Boundary Integral Methods for the Wave Equation
NASA Astrophysics Data System (ADS)
Banjai, Lehel
2009-09-01
We describe how time-discretized wave equation in a homogeneous medium can be solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a more general multistep-multistage method. The resulting convolutional system of boundary integral equations falls in the family of convolution quadratures of Ch. Lubich. In this work our aim is to discuss a new technique for efficiently solving the discrete convolutional system and to present large scale 3D numerical experiments with a wide range of time-discretizations that have up to now not appeared in print. One of the conclusions is that Runge-Kutta methods are often the method of choice even at low accuracy; yet, in connection with hyperbolic problems BDF (backward difference formulas) have been predominant in the literature on convolution quadrature.
MASS SUBSTRUCTURE IN ABELL 3128
McCleary, J.; Dell’Antonio, I.; Huwe, P.
2015-05-20
We perform a detailed two-dimensional weak gravitational lensing analysis of the nearby (z = 0.058) galaxy cluster Abell 3128 using deep ugrz imaging from the Dark Energy Camera (DECam). We have designed a pipeline to remove instrumental artifacts from DECam images and stack multiple dithered observations without inducing a spurious ellipticity signal. We develop a new technique to characterize the spatial variation of the point-spread function that enables us to circularize the field to better than 0.5% and thereby extract the intrinsic galaxy ellipticities. By fitting photometric redshifts to sources in the observation, we are able to select a sample of background galaxies for weak-lensing analysis free from low-redshift contaminants. Photometric redshifts are also used to select a high-redshift galaxy subsample with which we successfully isolate the signal from an interloping z = 0.44 cluster. We estimate the total mass of Abell 3128 by fitting the tangential ellipticity of background galaxies with the weak-lensing shear profile of a Navarro–Frenk–White (NFW) halo and also perform NFW fits to substructures detected in the 2D mass maps of the cluster. This study yields one of the highest resolution mass maps of a low-z cluster to date and is the first step in a larger effort to characterize the redshift evolution of mass substructures in clusters.
Mass Substructure in Abell 3128
NASA Astrophysics Data System (ADS)
McCleary, J.; dell'Antonio, I.; Huwe, P.
2015-05-01
We perform a detailed two-dimensional weak gravitational lensing analysis of the nearby (z = 0.058) galaxy cluster Abell 3128 using deep ugrz imaging from the Dark Energy Camera (DECam). We have designed a pipeline to remove instrumental artifacts from DECam images and stack multiple dithered observations without inducing a spurious ellipticity signal. We develop a new technique to characterize the spatial variation of the point-spread function that enables us to circularize the field to better than 0.5% and thereby extract the intrinsic galaxy ellipticities. By fitting photometric redshifts to sources in the observation, we are able to select a sample of background galaxies for weak-lensing analysis free from low-redshift contaminants. Photometric redshifts are also used to select a high-redshift galaxy subsample with which we successfully isolate the signal from an interloping z = 0.44 cluster. We estimate the total mass of Abell 3128 by fitting the tangential ellipticity of background galaxies with the weak-lensing shear profile of a Navarro-Frenk-White (NFW) halo and also perform NFW fits to substructures detected in the 2D mass maps of the cluster. This study yields one of the highest resolution mass maps of a low-z cluster to date and is the first step in a larger effort to characterize the redshift evolution of mass substructures in clusters.
Solving integral equations for binary and ternary systems
NASA Astrophysics Data System (ADS)
Nader Lotfollahi, Mohammad; Modarress, Hamid
2002-02-01
Solving integral equations is an effective approach to obtain the radial distribution function (RDF) of multicomponent mixtures. In this work, by extending Gillan's approach [M. J. Gillan, Mol. Phys. 38(6), 1781 (1979)], the integral equation was solved by numerical method and was applied to both binary and ternary mixtures. The Lennard-Jones (LJ) potential function was used to express the pair molecular interactions in calculating the RDF and chemical potential. This allowed a comparison with available simulation data, on the RDF and the chemical potential, since the simulation data have been reported for the LJ potential function. The RDF and the chemical potential results indicated good agreement with the simulation data. The calculations were extended to the ternary system and the RDFs for carbon dioxide-octane-naphthalene were obtained. The numerical method used in solving integral equation was rapidly convergent and not sensitive to the first estimation. The method proposed in this work can be easily extended to more than the three-component systems.
The GenABEL Project for statistical genomics
Karssen, Lennart C.; van Duijn, Cornelia M.; Aulchenko, Yurii S.
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381
The GenABEL Project for statistical genomics.
Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.
The GenABEL Project for statistical genomics.
Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381
NASA Astrophysics Data System (ADS)
Tsalamengas, John L.
2015-12-01
We present n-point Gauss-Gegenbauer quadrature rules for weakly singular, strongly singular, and hypersingular integrals that arise in integral equation formulations of potential problems in domains with edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities related to the geometrical singularities of the domain. Each rule has two different expressions involving Legendre functions and hypergeometric functions, respectively. Numerical examples amply demonstrate the accuracy and stability of the proposed algorithms. Application to the solution of a singular integral equation is exemplified.
NASA Astrophysics Data System (ADS)
Imai, Kenji
2014-02-01
In this paper, a new n-dimensional homogeneous Lotka-Volterra (HLV) equation, which possesses a Lie symmetry, is derived by the extension from a three-dimensional HLV equation. Its integrability is shown from the viewpoint of Lie symmetries. Furthermore, we derive dynamical systems of higher order, which possess the Lie symmetry, using the algebraic structure of this HLV equation.
ERIC Educational Resources Information Center
Field, J. H.
2011-01-01
It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…
NASA Astrophysics Data System (ADS)
Edwards, L. O. V.; Alpert, H. S.; Trierweiler, I. L.; Abraham, T.; Beizer, V. G.
2016-09-01
We present the first results from an integral field unit (IFU) spectroscopic survey of a ˜75 kpc region around three brightest cluster galaxies (BCGs), combining over 100 IFU fibres to study the intracluster light (ICL). We fit population synthesis models to estimate age and metallicity. For Abell 85 and Abell 2457, the ICL is best-fit with a fraction of old, metal-rich stars like in the BCG, but requires 30-50 per cent young and metal-poor stars, a component not found in the BCGs. This is consistent with the ICL having been formed by a combination of interactions with less massive, younger, more metal-poor cluster members in addition to stars that form the BCG. We find that the three galaxies are in different stages of evolution and may be the result of different formation mechanisms. The BCG in Abell 85 is near a relatively young, metal-poor galaxy, but the dynamical friction time-scale is long and the two are unlikely to be undergoing a merger. The outer regions of Abell 2457 show a higher relative fraction of metal-poor stars, and we find one companion, with a higher fraction of young, metal-poor stars than the BCG, which is likely to merge within a gigayear. Several luminous red galaxies are found at the centre of the cluster IIZw108, with short merger time-scales, suggesting that the system is about to embark on a series of major mergers to build up a dominant BCG. The young, metal-poor component found in the ICL is not found in the merging galaxies.
Darboux Transformation for the Vector Sine-Gordon Equation and Integrable Equations on a Sphere
NASA Astrophysics Data System (ADS)
Mikhailov, Alexander V.; Papamikos, Georgios; Wang, Jing Ping
2016-07-01
We propose a method for construction of Darboux transformations, which is a new development of the dressing method for Lax operators invariant under a reduction group. We apply the method to the vector sine-Gordon equation and derive its Bäcklund transformations. We show that there is a new Lax operator canonically associated with our Darboux transformation resulting an evolutionary differential-difference system on a sphere. The latter is a generalised symmetry for the chain of Bäcklund transformations. Using the re-factorisation approach and the Bianchi permutability of the Darboux transformations, we derive new vector Yang-Baxter map and integrable discrete vector sine-Gordon equation on a sphere.
NASA Astrophysics Data System (ADS)
Poleshchikov, Sergei M.
2003-04-01
The sets of L-matrices of the second, fourth and eighth orders are constructed axiomatically. The defining relations are taken from the regularization of motion equations for Keplerian problem. In particular, the Levi-Civita matrix and KS-matrix are L-matrices of second and fourth order, respectively. A theorem on the ranks of L-transformations of different orders is proved. The notion of L-similarity transformation is introduced, certain sets of L-matrices are constructed, and their classification is given. An application of fourth order L-matrices for N-body problem regularization is given. A method of correction for regular coordinates in the Runge-Kutta-Fehlberg integration method for regular motion equations of a perturbed two-body problem is suggested. Comparison is given for the results of numerical integration in the problem of defining the orbit of a satellite, with and without the above correction method. The comparison is carried out with respect to the number of calls to the subroutine evaluating the perturbational accelerations vector. The results of integration using the correction turn out to be in a favorable position.
Exponential integrators for the incompressible Navier-Stokes equations.
Newman, Christopher K.
2004-07-01
We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size. Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step. Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L{sup 2} inner product. We examine this L{sup 2} projection and an H{sup 1} projection induced by the H{sup 1} semi-inner product. The H
A convergent data completion algorithm using surface integral equations
NASA Astrophysics Data System (ADS)
Boukari, Yosra; Haddar, Houssem
2015-03-01
We propose and analyze a data completion algorithm based on the representation of the solution in terms of surface integral operators to solve the Cauchy problem for the Helmholtz or the Laplace equations. The proposed method is non-iterative and intrinsically handle the case of noisy and incompatible data. In order to cope with the ill-posedness of the problem, our formulation is compatible with standard regularization methods associated with linear ill posed inverse problems and leads to convergent scheme. We numerically validate our method with different synthetic examples using a Tikhonov regularization.
Phase-integral method for the radial Dirac equation
Linnæus, Staffan
2014-09-15
A phase-integral (WKB) solution of the radial Dirac equation is calculated up to the third order of approximation, retaining perfect symmetry between the two components of the wave function and introducing no singularities except at the zeroth-order transition points. The potential is allowed to be of scalar, vector, or tensor type, or any combination of these. The connection problem is investigated in detail. Explicit formulas are given for single-turning-point phase shifts and single-well energy levels.
Discretization of the Induced-Charge Boundary Integral Equation
Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk
2013-01-01
Boundary-element methods (BEM) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few Angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein/solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch, Wang, and White (IEEE. Trans. Comput.-Aided Des. 20:1398, 2001) to compute the BEM matrix elements is always more accurate than the traditional centroid collocation method. Qualocation is no more expensive to implement than collocation and can save significant computional time by reducing the number of boundary elements needed to discretize the dielectric interfaces. PMID:19658728
Discretization of the induced-charge boundary integral equation.
Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
An efficient and flexible Abel-inversion method for noisy data
NASA Astrophysics Data System (ADS)
Antokhin, Igor I.
2016-08-01
We propose an efficient and flexible method for solving Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization on itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.
Reduced integral order 3D scalar wave integral equation Derivation and BEM approach
NASA Astrophysics Data System (ADS)
Lee, HyunSuk
The Boundary Element Method (BEM) is a numerical method to solve partial differential equations (PDEs), which is derived from the integral equation (IE) that can be developed from certain PDEs. Among IEs, the 3D transient wave integral equation has a very special property which makes it distinguished from other integral equations; Dirac-delta and its derivative delta‧ appear in the fundamental-solution (or kernel-function). These delta and delta‧ generalized functions have continuity C-2 and C-3, respectively, and become a major hurdle for BEM implementation, because many numerical methods including BEM are based on the idea of continuity. More specifically, the integrands (kernel - shape function products) in the 3D transient wave IE become discontinuous (C-2 and C-3) and make numerical integration difficult. There are several existing approaches to overcome the delta difficulty, but none use the character of the Dirac-delta to cancel the integral. In this dissertation, a new method called the "Reduced order wave integral equation (Reduced IE)" is developed to deal with the difficulty in the 3D transient wave problem. In this approach, the sifting properties of delta and delta‧ are used to cancel an integration. As a result, smooth integrands are derived and the integral orders are reduced by one. Smooth integrands result in the more efficient and accurate numerical integration. In addition, there is no more coupling between the space-element size and time-step size. Non-zero initial condition (IC) can be considered also. Furthermore, space integrals need to be performed once, not per time-step. All of this reduces dramatically the computational requirement. As a result, the computation order for both time and space are reduced by 1 and one obtains an O(M N2) method, where M is the number of time steps and N is the number of spatial nodes on the boundary of the problem domain. A numerical approach to deal with the reduced IE is also suggested, and a simple
The reduced basis method for the electric field integral equation
Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.
2011-06-20
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.
Integral equation model for warm and hot dense mixtures.
Starrett, C E; Saumon, D; Daligault, J; Hamel, S
2014-09-01
In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
Time Integration Schemes for the Unsteady Navier-stokes Equations
NASA Technical Reports Server (NTRS)
Bijl, Hester; Carpenter, Mark H.; Vatsa, Veer N.
2001-01-01
The efficiency and accuracy of several time integration schemes are investigated for the unsteady Navier-Stokes equations. This study focuses on the efficiency of higher-order Runge-Kutta schemes in comparison with the popular Backward Differencing Formulations. For this comparison an unsteady two-dimensional laminar flow problem is chosen, i.e., flow around a circular cylinder at Re = 1200. It is concluded that for realistic error tolerances (smaller than 10(exp -1)) fourth-and fifth-order Runge-Kutta schemes are the most efficient. For reasons of robustness and computer storage, the fourth-order Runge-Kutta method is recommended. The efficiency of the fourth-order Runge-Kutta scheme exceeds that of second-order Backward Difference Formula by a factor of 2.5 at engineering error tolerance levels (10(exp -1) to 10(exp -2)). Efficiency gains are more dramatic at smaller tolerances.
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
Modern integral equation techniques for quantum reactive scattering theory
Auerbach, S.M.
1993-11-01
Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H{sub 2} {yields} H{sub 2}/DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H{sub 2} state resolved integral cross sections {sigma}{sub v{prime}j{prime},vj}(E) for the transitions (v = 0,j = 0) to (v{prime} = 1,j{prime} = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence.
Integral equation theory description of phase equilibria in classical fluids
NASA Astrophysics Data System (ADS)
Caccamo, C.
1996-09-01
We review the present status of applications of integral equation theories (IETs) for the radial distribution function g( r), to the determination of phase diagrams and stability conditions of simple and charged classical fluids. After having recalled some basic concepts and definitions in the structural description of fluid systems, a number of IETs are examined by reporting the constituting equations and solution procedures; these last are discussed also in relationship with the actual calculation of coexistence lines and description of the critical behavior of each envisaged theory. In this context, the crucial role played by the fulfilment of thermodynamic consistency in the improvement of the performances of the various approximations, is highlighted. Then, a number of results of phase diagram determinations, phase stability investigations, and estimates of critical exponents, are reported for several neutral and charged model fluids (and their mixtures) such as the hard sphere fluid, the square-well fluid, the hard-core Yukawa fluid, the Lennard-Jones fluid, and charged hard spheres in different regimes of density, sizes and charges. Calculations of the phase diagram of a rigid molecule model of C 60 are also reported. Besides their theoretical interest, these models are investigated by many authors also because they can reasonably mimic real systems like rare gas liquids, electrolyte solutions, molten salts, neutral and charged micellar systems, and colloidal solutions. The related experimental evidence is therefore frequently referred, and comparison with experimental results is also performed in some case. Theoretical results are usually presented in parallel with the available computer simulation data, which are extensively quoted both with the aim of a systematic assessment of the theories, and in order to offer a more complete scenario of phase behavior calculations in classical fluids. Perspectives and advantages of future extensions and applications
Adaptive integral method with fast Gaussian gridding for solving combined field integral equations
NASA Astrophysics Data System (ADS)
Bakır, O.; Baǧ; Cı, H.; Michielssen, E.
Fast Gaussian gridding (FGG), a recently proposed nonuniform fast Fourier transform algorithm, is used to reduce the memory requirements of the adaptive integral method (AIM) for accelerating the method of moments-based solution of combined field integral equations pertinent to the analysis of scattering from three-dimensional perfect electrically conducting surfaces. Numerical results that demonstrate the efficiency and accuracy of the AIM-FGG hybrid in comparison to an AIM-accelerated solver, which uses moment matching to project surface sources onto an auxiliary grid, are presented.
Integral Equation Theory for the Conformation of Polyelectrolytes
NASA Astrophysics Data System (ADS)
Shew, C.-Y.; Yethiraj, A.
1996-03-01
The equilibrium conformation properties of polyelectrolyes are explored using the integral equation theory. The polymer molecules are modeled as freely-jointed beads that interact via a hard sphere plus screened Coulomb potential. To obtain the intramolecuar correlation function ( and hence the chain conformations) the many chain system is replaced by a single chain whose beads interact via the bare interaction plus a solvent-induced potential, which approximately accounts for the presence of the other molecules. Since this solvent induced potential is a functional of the intramolecular correlations it is obtained iteratively in a self-consistent fashion. The intramolecular correlation functions for a given solvation potential are obtained via Monte Carlo simulation of a single chain. A thread model of the polymer molecules is also investigated, in which case the single chain conformations are obtained using a variational method. The predictions of the theory for these two models are similar. For single chains
Integral equations in the study of polar and ionic interaction site fluids
Howard, Jesse J.
2011-01-01
In this review article we consider some of the current integral equation approaches and application to model polar liquid mixtures. We consider the use of multidimensional integral equations and in particular progress on the theory and applications of three dimensional integral equations. The IEs we consider may be derived from equilibrium statistical mechanical expressions incorporating a classical Hamiltonian description of the system. We give example including salt solutions, inhomogeneous solutions and systems including proteins and nucleic acids. PMID:22383857
Hierarchies of nonlinear integrable equations and their symmetries in 2 + 1 dimensions
NASA Astrophysics Data System (ADS)
Cheng, Yi
1990-11-01
For a given nonlinear integrable equation in 2 + 1 dimensions, an approach is described to construct the hierarchies of equations and relevant Lie algebraic properties. The commutability and noncommutability of equations of the flow, their symmetries and mastersymmetries are then derived as direct results of these algebraic properties. The details for the modified Kadomtsev-Petviashvilli equation are shown as an example and the main results for the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Katera-Sawada equation are given.
Integral and integrable algorithms for a nonlinear shallow-water wave equation
NASA Astrophysics Data System (ADS)
Camassa, Roberto; Huang, Jingfang; Lee, Long
2006-08-01
An asymptotic higher-order model of wave dynamics in shallow water is examined in a combined analytical and numerical study, with the aim of establishing robust and efficient numerical solution methods. Based on the Hamiltonian structure of the nonlinear equation, an algorithm corresponding to a completely integrable particle lattice is implemented first. Each "particle" in the particle method travels along a characteristic curve. The resulting system of nonlinear ordinary differential equations can have solutions that blow-up in finite time. We isolate the conditions for global existence and prove l1-norm convergence of the method in the limit of zero spatial step size and infinite particles. The numerical results show that this method captures the essence of the solution without using an overly large number of particles. A fast summation algorithm is introduced to evaluate the integrals of the particle method so that the computational cost is reduced from O( N2) to O( N), where N is the number of particles. The method possesses some analogies with point vortex methods for 2D Euler equations. In particular, near singular solutions exist and singularities are prevented from occurring in finite time by mechanisms akin to those in the evolution of vortex patches. The second method is based on integro-differential formulations of the equation. Two different algorithms are proposed, based on different ways of extracting the time derivative of the dependent variable by an appropriately defined inverse operator. The integro-differential formulations reduce the order of spatial derivatives, thereby relaxing the stability constraint and allowing large time steps in an explicit numerical scheme. In addition to the Cauchy problem on the infinite line, we include results on the study of the nonlinear equation posed in the quarter (space-time) plane. We discuss the minimum number of boundary conditions required for solution uniqueness and illustrate this with numerical
A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.
Photometric Observations of the Binary Nuclei of Three Abell Planetary Nebulae
NASA Astrophysics Data System (ADS)
Afşar, M.; Ibanoǧlu, C.
2004-07-01
CCD photometric observations of the three Abell planetary nebulae (Abell 63, Abell 46 and Abell 41) nuclei are presented. These systems are binary systems which allow us to derive model-independent parameters. Also the results of the light curve solution of UU Sge (binary nucleus of Abell 63) are discussed.
Differential Forms Basis Functions for Better Conditioned Integral Equations
Fasenfest, B; White, D; Stowell, M; Rieben, R; Sharpe, R; Madsen, N; Rockway, J D; Champagne, N J; Jandhyala, V; Pingenot, J
2005-01-13
Differential forms offer a convenient way to classify physical quantities and set up computational problems. By observing the dimensionality and type of derivatives (divergence,curl,gradient) applied to a quantity, an appropriate differential form can be chosen for that quantity. To use these differential forms in a simulation, the forms must be discretized using basis functions. The 0-form through 2-form basis functions are formed for surfaces. Twisted 1-form and 2-form bases will be presented in this paper. Twisted 1-form (1-forms) basis functions ({Lambda}) are divergence-conforming edge basis functions with units m{sup -1}. They are appropriate for representing vector quantities with continuous normal components, and they belong to the same function space as the commonly used RWG bases [1]. They are used here to formulate the frequency-domain EFIE with Galerkin testing. The 2-form basis functions (f) are scalar basis functions with units m{sup -2} and with no enforced continuity between elements. At lowest order, the 2-form basis functions are similar to pulse basis functions. They are used here to formulate an electrostatic integral equation. It should be noted that the derivative of an n-form differential form basis function is an (n+1)-form, i.e. the derivative of a 1-form basis function is a 2-form. Because the basis functions are constructed such that they have spatial units, the spatial units are removed from the degrees of freedom, leading to a better-conditioned system matrix. In this conference paper, we look at the performance of these differential forms and bases by examining the conditioning of matrix systems for electrostatics and the EFIE. The meshes used were refined across the object to consider the behavior of these basis transforms for elements of different sizes.
Soliton dynamics to the multi-component complex coupled integrable dispersionless equation
NASA Astrophysics Data System (ADS)
Xu, Zong-Wei; Yu, Guo-Fu; Zhu, Zuo-Nong
2016-11-01
The generalized coupled integrable dispersionless (CID) equation describes the current-fed string in a certain external magnetic field. In this paper, we propose a multi-component complex CID equation. The integrability of the multi-component complex equation is confirmed by constructing Lax pairs. One-soliton and two-soliton solutions are investigated to exhibit rich evolution properties. Especially, similar as the multi-component short pulse equation and the first negative AKNS equation, periodic interaction, parallel solitons, elastic and inelastic interaction, energy re-distribution happen between two solitons. Multi-soliton solutions are given in terms of Pfaffian expression by virtue of Hirota's bilinear method.
An integral equation representation approach for valuing Russian options with a finite time horizon
NASA Astrophysics Data System (ADS)
Jeon, Junkee; Han, Heejae; Kim, Hyeonuk; Kang, Myungjoo
2016-07-01
In this paper, we first describe a general solution for the inhomogeneous Black-Scholes partial differential equation with mixed boundary conditions using Mellin transform techniques. Since Russian options with a finite time horizon are usually formulated into the inhomogeneous free-boundary Black-Scholes partial differential equation with a mixed boundary condition, we apply our method to Russian options and derive an integral equation satisfied by Russian options with a finite time horizon. Furthermore, we present some numerical solutions and plots of the integral equation using recursive integration methods and demonstrate the computational accuracy and efficiency of our method compared to other competing approaches.
Non-integrability of a class of Painlevé IV equations as Hamiltonian systems
NASA Astrophysics Data System (ADS)
Shi, Shaoyun; Li, Wenlei
2013-10-01
In this paper, we will prove the rational non-integrability of a class of Hamiltonian systems associated with Painlevé IV equation by using Morales-Ramis theory and Kovacic's algorithm, which, to some extent, also implies the non-integrability of the fourth Painlevé equation itself.
NASA Astrophysics Data System (ADS)
Wang, Dongling; Xiao, Aiguo
2013-04-01
In this paper, the fractional variational integrators developed by Wang and Xiao (2012) [28] are extended to the fractional Euler-Lagrange (E-L) equations with holonomic constraints. The corresponding fractional discrete E-L equations are derived, and their local convergence is discussed. Some fractional variational integrators are presented. The suggested methods are shown to be efficient by some numerical examples.
A solution of one dimensional Fredholm integral equations of the second kind
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.
1980-01-01
Fredholm integral equations of the second kind of the one dimension are numerically solved. It is proven that the numerical solution converges to the exact solution of the integral equation. This is shown for periodic kernels and then extended to nonperiodic kernels. This development helps delineate a basic theory which has the potential of solving very complex problems.
First integrals for time-dependent higher-order Riccati equations by nonholonomic transformation
NASA Astrophysics Data System (ADS)
Guha, Partha; Ghose Choudhury, A.; Khanra, Barun
2011-08-01
We exploit the notion of nonholonomic transformations to deduce a time-dependent first integral for a (generalized) second-order nonautonomous Riccati differential equation. It is further shown that the method can also be used to compute the first integrals of a particular class of third-order time-dependent ordinary differential equations and is therefore quite robust.
NASA Technical Reports Server (NTRS)
Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.
2000-01-01
We present multi-wavelength observations of the Abell 1995 galaxy cluster. From analysis of x-ray spectroscopy and imaging data we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the SZE toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster.
NASA Astrophysics Data System (ADS)
Hu, Yanxia; Yang, Xiaozhong
2006-08-01
A method for obtaining first integrals and integrating factors of n-th order autonomous systems is proposed. The search for first integrals and integrating factors can be reduced to the search for a class of invariant manifolds of the systems. Finally, the proposed method is applied to Euler-Poisson equations (gyroscope system), and the fourth first integral of the system in general Kovalevskaya case can be obtained.
NASA Astrophysics Data System (ADS)
Liu, Hanze
2016-07-01
In this paper, the combination of generalized symmetry classification and recursion operator method is developed for dealing with nonlinear diffusion equations (NLDEs). Through the combination approach, all of the second and third-order generalized symmetries of the general nonlinear diffusion equation are obtained. As its special case, the recursion operators of the nonlinear heat conduction equation are constructed, and the integrable properties of the nonlinear equations are considered. Furthermore, the exact and explicit solutions generated from the generalized symmetries are investigated.
Integrability of the Kruskal--Zabusky Discrete Equation by Multiscale Expansion
Levi, Decio; Scimiterna, Christian
2010-03-08
In 1965 Kruskal and Zabusky in a very famous article in Physical Review Letters introduced the notion of 'soliton' to describe the interaction of solitary waves solutions of the Korteweg de Vries equation (KdV). To do so they introduced a discrete approximation to the KdV, the Kruskal-Zabusky equation (KZ). Here we analyze the KZ equation using the multiscale expansion and show that the equation is only A{sub 2} integrable.
NASA Astrophysics Data System (ADS)
Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung
2016-09-01
In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.
NASA Technical Reports Server (NTRS)
Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.
1985-01-01
X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.
Galoisian approach to integrability of Schrödinger equation
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; Morales-Ruiz, Juan J.; Weil, Jacques-Arthur
In this paper, we examine the nonrelativistic stationary Schrödinger equation from a differential Galois-theoretic perspective. The main algorithmic tools are pullbacks of second-order ordinary linear differential operators, so as to achieve rational function coefficients ("algebrization"), and Kovacic's algorithm for solving the resulting equations. In particular, we use this Galoisian approach to analyze Darboux transformations, Crum iterations and supersymmetric quantum mechanics. We obtain the ground states, eigenvalues, eigenfunctions, eigenstates and differential Galois groups of a large class of Schrödinger equations, e.g. those with exactly solvable and shape invariant potentials (the terms are defined within). Finally, we introduce a method for determining when exact solvability is possible.
Bifurcations of traveling wave solutions for an integrable equation
Li Jibin; Qiao Zhijun
2010-04-15
This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
NASA Astrophysics Data System (ADS)
Dimitriu, G.; Satco, B.
2016-10-01
Motivated by the fact that bounded variation (often discontinuous) functions frequently appear when studying integral equations that describe physical phenomena, we focus on the existence of bounded variation solutions for Urysohn integral measure driven equations. Due to numerous applications of Urysohn integral equations in various domains, problems of this kind have been extensively studied in literature, under more restrictive assumptions. Our approach concerns the framework of Kurzweil-Stieltjes integration, which allows the occurrence of high oscillatory features on the right hand side of the equation. A discussion about interesting consequences of our main result (given by particular cases of the measure driving the equation) is presented. Finally, we show the generality of our results by investigating two examples of impulsive type problems (from both theoretical and numerical perspective) and giving an application in electronics industry concerning polarization properties of ferroelectric materials.
Coupling finite element and integral equation solutions using decoupled boundary meshes
NASA Technical Reports Server (NTRS)
Cwik, Tom
1992-01-01
A method is outlined for calculating scattered fields from inhomogeneous penetrable objects using a coupled finite element-integral equation solution. The finite element equation can efficiently model fields in penetrable and inhomogeneous regions, while the integral equation exactly models fields on the finite element mesh boundary and in the exterior region. By decoupling the interior finite element and exterior integral equation meshes, considerable flexibility is found in both the number of field expansion points as well as their density. Only the nonmetal portions of the object need be modeled using a finite element expansion; exterior perfect conducting surfaces are modeled using an integral equation with a single unknown field since E(tan) is identically zero on these surfaces. Numerical convergence, accuracy, and stability at interior resonant frequencies are studied in detail.
Inhomogeneous Media 3D EM Modeling with Integral Equation Method
NASA Astrophysics Data System (ADS)
di, Q.; Wang, R.; An, Z.; Fu, C.; Xu, C.
2010-12-01
In general, only the half space of earth is considered in electromagnetic exploration. However, for the long bipole source, because the length is close to the height of ionosphere and also most offsets between source and receivers are equal or larger than the height of ionosphere, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source. At this point the problem becomes one which should contain ionosphere, atmosphere and earth that is “earth-ionosphere” case. There are a few of literatures to report the electromagnetic field results which is including ionosphere, atmosphere and earth media at the same time. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using integral equation (IE) method for a three layers earth-ionosphere model. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale bipole source can be ignorable. The comparison of small scale three layers earth-ionosphere modeling and half space analytical resolution shows that the IE method can be used to modeling the EM fields for long bipole large offset configuration. In order to discuss EM fields’ characteristics for complicate earth-ionosphere media excited by long bipole source in the far-field and wave-guide zones, we first modeled the decay characters of electromagnetic fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields’ decay curves with given frequency show that there should be an extra wave guide zone for long bipole artificial source, and there are many different characters between this extra zone and far field zone. They are: 1) the amplitudes of EM fields decay much slower; 2) the polarization patterns change; 3) the positions better to measure Zxy and
Integration of CAS in the Didactics of Differential Equations.
ERIC Educational Resources Information Center
Balderas Puga, Angel
In this paper are described some features of the intensive use of math software, primarily DERIVE, in the context of modeling in an introductory university course in differential equations. Different aspects are detailed: changes in the curriculum that included not only course contents, but also the sequence of introduction to various topics and…
Exponential Methods for the Time Integration of Schrödinger Equation
NASA Astrophysics Data System (ADS)
Cano, B.; González-Pachón, A.
2010-09-01
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schrödinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
NASA Astrophysics Data System (ADS)
Davey, K.; Darvizeh, R.
2016-03-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
NASA Astrophysics Data System (ADS)
Davey, K.; Darvizeh, R.
2016-09-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
NASA Astrophysics Data System (ADS)
Fokas, A. S.; De Lillo, S.
2014-03-01
So-called inverse scattering provides a powerful method for analyzing the initial value problem for a large class of nonlinear evolution partial differential equations which are called integrable. In the late 1990s, the first author, motivated by inverse scattering, introduced a new method for analyzing boundary value problems. This method provides a unified treatment for linear, linearizable and integrable nonlinear partial differential equations. Here, this method, which is often referred to as the unified transform, is illustrated for the following concrete cases: the heat equation on the half-line; the nonlinear Schrödinger equation on the half-line; Burger's equation on the half-line; and Burger's equation on a moving boundary.
Tauberian theorems for Abel summability of sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Yavuz, Enes; ćoşkun, Hüsamettin
2015-09-01
We give some conditions under which Abel summable sequences of fuzzy numbers are convergent. As corollaries we obtain the results given in [E. Yavuz, Ö. Talo, Abel summability of sequences of fuzzy numbers, Soft computing 2014, doi: 10.1007/s00500-014-1563-7].
Properties of the Lennard-Jones dimeric fluid in two dimensions: An integral equation study
Urbic, Tomaz; Dias, Cristiano L.
2014-01-01
The thermodynamic and structural properties of the planar soft-sites dumbbell fluid are examined by Monte Carlo simulations and integral equation theory. The dimers are built of two Lennard-Jones segments. Site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions for a range of elongations and densities and the results are compared with Monte Carlo simulations. The critical parameters for selected types of dimers were also estimated. We analyze the influence of the bond length on critical point as well as tested correctness of site-site integral equation theory with different closures. The integral equations can be used to predict the phase diagram of dimers whose molecular parameters are known. PMID:24606372
Path Integral Calculation of GREEN’S Function for SCHRÖDINGER Equation in Unitary Gauge
NASA Astrophysics Data System (ADS)
Rozansky, L.
Green’s function of Schrödinger equation is represented as a time-reparametrization invariant path integral. Unitary gauge fixing enables us to get the WKB preexponential factor without calculating determinants of operators containing derivatives.
Properties of the Lennard-Jones dimeric fluid in two dimensions: An integral equation study
Urbic, Tomaz; Dias, Cristiano L.
2014-03-07
The thermodynamic and structural properties of the planar soft-sites dumbbell fluid are examined by Monte Carlo simulations and integral equation theory. The dimers are built of two Lennard-Jones segments. Site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions for a range of elongations and densities and the results are compared with Monte Carlo simulations. The critical parameters for selected types of dimers were also estimated. We analyze the influence of the bond length on critical point as well as tested correctness of site-site integral equation theory with different closures. The integral equations can be used to predict the phase diagram of dimers whose molecular parameters are known.
A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.
On the solution of integral equations with strong ly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1985-01-01
In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
A wide-field spectroscopic survey of Abell 1689 and Abell 1835 with VIMOS
NASA Astrophysics Data System (ADS)
Czoske, Oliver
2004-12-01
Spectroscopic surveys can add a third dimension, velocity, to the galaxy distribution in and PoS(BDMH2004)099 around clusters. The largest wide-field spectroscopic samples at present exist for near-by clusters. Czoske et al. (2001: A&A 372, 391; 2002: A&A 386, 31) present a catalogue of redshifts for 300 cluster members with V < 22 in Cl0024+1654 at z = 0.395, the largest currently available cluster ˜ redshift catalogue at such a high redshift. In that case, it was only the redshift information ex- tending to large cluster-centric distances which revealed the complex structure of what appeared in other observations to be a relaxed rich cluster. The recent advent of high-multiplex spectrographs on 8 10 meter class telescopes has made it possible to obtain large numbers of high-quality spectra of galaxies and around clusters of galaxies in a short amount of time. The data described by Czoske et al. (2001) were obtained over the course of four years. Samples larger by a factor of 2 . . . 3 can now be obtained in ˜ 10 hours of observation time. Here I present the first results from a spectroscopic survey of the two X-ray luminous clusters Abell 1689 (z = 0.185) and Abell 1835 (z = 0.25). We use the VIsible imaging Multi-Object Spectrograph (VIMOS) on VLT UT3/Melipal. The field of view of VIMOS available for spectroscopy consists of four quadrants of ˜ 7 × 7 , the separa- tion between the quadrants is ˜ 2 . Using the LR-Blue grism, one can place ˜ 100 . . . 150 slits per quadrant. The resulting spectra cover the wavelength range 3700 . . . 6700 Å with a resolution R 200. We use as the basis for object selection panoramic multi-colour images obtained with the CFH12k camera on CFHT (Czoske, 2002, PhD thesis), covering 40 × 30 in BRI for A1689 and VRI for A1835. The input catalogue has been cleaned of stars. We attempted to cover the entire CFH12k field of view by using 10 VIMOS pointings for each cluster. Due to technical problems with VIMOS only 8 and 9 masks
The ATOMFT integrator - Using Taylor series to solve ordinary differential equations
NASA Technical Reports Server (NTRS)
Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.
1988-01-01
This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.
The application of the integral equation theory to study the hydrophobic interaction
Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara
2014-01-01
The Wertheim's integral equation theory was tested against newly obtained Monte Carlo computer simulations to describe the potential of mean force between two hydrophobic particles. An excellent agreement was obtained between the theoretical and simulation results. Further, the Wertheim's integral equation theory with polymer Percus-Yevick closure qualitatively correctly (with respect to the experimental data) describes the solvation structure under conditions where the simulation results are difficult to obtain with good enough accuracy. PMID:24437891
NASA Astrophysics Data System (ADS)
Russo, M.; Choudhury, S. R.
2014-03-01
We present a technique based on extended Lax Pairs to derive variable-coefficient generalizations of various Lax-integrable NLPDE hierarchies. As illustrative examples, we consider generalized KdV equations, and three variants of generalized MKdV equations. It is demonstrated that the technique yields Lax- or S-integrable NLPDEs with both time- AND space-dependent coefficients which are thus more general than almost all cases considered earlier via other methods such as the Painlevé Test, Bell Polynomials, and various similarity methods. Some solutions are also presented for the generalized KdV equation derived here by the use of the Painlevé singular manifold method. Current and future work is centered on generalizing other integrable hierarchies of NLPDEs similarly, and deriving various integrability properties such as solutions, Backlund Transformations, and hierarchies of conservation laws for these new integrable systems with variable coefficients.
Meshless local integral equation method for two-dimensional nonlocal elastodynamic problems
NASA Astrophysics Data System (ADS)
Huang, X. J.; Wen, P. H.
2016-08-01
This paper presents the meshless local integral equation method (LIEM) for nonlocal analyses of two-dimensional dynamic problems based on the Eringen’s model. A unit test function is used in the local weak-form of the governing equation and by applying the divergence theorem to the weak-form, local boundary-domain integral equations are derived. Radial Basis Function (RBF) approximations are utilized for implementation of displacements. The Newmark method is employed to carry out the time marching approximation. Two numerical examples are presented to demonstrate the application of time domain technique to deal with nonlocal elastodynamic mechanical problems.
On the classification of scalar evolutionary integrable equations in 2 + 1 dimensions
NASA Astrophysics Data System (ADS)
Novikov, V. S.; Ferapontov, E. V.
2011-02-01
We consider evolutionary equations of the form ut = F(u, w) where w=D_x^{-1}D_yu is the nonlocality, and the right hand side F is polynomial in the derivatives of u and w. The recent paper [Ferapontov, Moro, and NovikovJ. Phys. A: Math. Theor. 52, 18 (2009)] provides a complete list of integrable third order equations of this kind. Here we extend the classification to fifth order equations. Besides the known examples of Kadomtsev-Petviashvili, Veselov-Novikov, and Harry Dym equations, as well as fifth order analogs and modifications thereof, our list contains a number of equations which are apparently new. We conjecture that our examples exhaust the list of scalar polynomial integrable equations with the nonlocality w. The classification procedure consists of two steps. First, we classify quasilinear systems which may (potentially) occur as dispersionless limits of integrable scalar evolutionary equations. After that we reconstruct dispersive terms based on the requirement of the inheritance of hydrodynamic reductions of the dispersionless limit by the full dispersive equation.
Thermodynamics and structure of a two-dimensional electrolyte by integral equation theory
Aupic, Jana; Urbic, Tomaz
2014-05-14
Monte Carlo simulations and integral equation theory were used to predict the thermodynamics and structure of a two-dimensional Coulomb fluid. We checked the possibility that integral equations reproduce Kosterlitz-Thouless and vapor-liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared to Monte Carlo data and the correctness of selected closure relations was assessed. Among selected closures hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz-Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected.
Podesta, John J.
2012-08-15
The electric field generated by a time varying point charge in a three-dimensional, unbounded, spatially homogeneous plasma with a uniform background magnetic field and a uniform (static) flow velocity is studied in the electrostatic approximation which is often valid in the near field. For plasmas characterized by Maxwell distribution functions with isotropic temperatures, the linearized Vlasov-Poisson equations may be formulated in terms of an equivalent integral equation in the time domain. The kernel of the integral equation has a relatively simple mathematical form consisting of elementary functions such as exponential and trigonometric functions (sines and cosines), and contains no infinite sums of Bessel functions. Consequently, the integral equation is amenable to numerical solutions and may be useful for the study of the impulse response of magnetized plasmas and, more generally, the response to arbitrary waveforms.
Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations
NASA Astrophysics Data System (ADS)
Fujita, Hagino; Ishibashi, Kazuhisa
In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.
Integration-free interval doubling for Riccati equation solutions
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1976-01-01
Various algorithms are given for the case of constant coefficients. The algorithms are based on two ideas: first, relate the Re solution with general initial conditions to anchored RE solutions; and second, when the coefficients are constant the anchored solutions have a basic shift-invariance property. These ideas are used to construct an integration free superlinearly convergent iterative solution to the algebraic RE. The algorithm, arranged in square-root form, is thought to be numerically stable and competitive with other methods of solving the algebraic RE.
NASA Astrophysics Data System (ADS)
Schulze-Halberg, Axel
2016-06-01
We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.
Integrating chemical kinetic rate equations by selective use of stiff and nonstiff methods
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1985-01-01
The effect of switching between nonstiff and stiff methods on the efficiency of algorithms for integrating chemical kinetic rate equations is presented. Different integration methods are tested by application of the packaged code LSODE to four practical combustion kinetics problems. The problems describe adiabatic, homogeneous gas-phase combustion reactions. It is shown that selective use of nonstiff and stiff methods in different regimes of a typical batch combustion problem is faster than the use of either method for the entire problem. The implications of this result to the development of fast integration techniques for combustion kinetic rate equations are discussed.
Integrating chemical kinetic rate equations by selective use of stiff and nonstiff methods
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1985-01-01
The effect of switching between nonstiff and stiff methods on the efficiency of algorithms for integrating chemical kinetic rate equations was examined. Different integration methods were tested by application of the packaged code LSODE to four practical combustion kinetics problems. The problems describe adiabatic, and homogeneous gas phase combustion reactions. It is shown that selective use of nonstiff and stiff methods in different regimes of a typical batch combustion problem is faster than the use of either method for the entire problem. The implications which result in the development of fast integration techniques for combustion kinetic rate equations are discussed.
Review of Integrated Noise Model (INM) Equations and Processes
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P. (Technical Monitor); Forsyth, David W.; Gulding, John; DiPardo, Joseph
2003-01-01
The FAA's Integrated Noise Model (INM) relies on the methods of the SAE AIR-1845 'Procedure for the Calculation of Airplane Noise in the Vicinity of Airports' issued in 1986. Simplifying assumptions for aerodynamics and noise calculation were made in the SAE standard and the INM based on the limited computing power commonly available then. The key objectives of this study are 1) to test some of those assumptions against Boeing source data, and 2) to automate the manufacturer's methods of data development to enable the maintenance of a consistent INM database over time. These new automated tools were used to generate INM database submissions for six airplane types :737-700 (CFM56-7 24K), 767-400ER (CF6-80C2BF), 777-300 (Trent 892), 717-200 (BR7 15), 757-300 (RR535E4B), and the 737-800 (CFM56-7 26K).
NASA Technical Reports Server (NTRS)
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
Solution of the Bartels-Kwiecinski-Praszalowicz equation via Monte Carlo integration
NASA Astrophysics Data System (ADS)
Chachamis, Grigorios; Sabio Vera, Agustín
2016-08-01
We present a method of solution of the Bartels-Kwiecinski-Praszalowicz (BKP) equation based on the numerical integration of iterated integrals in transverse momentum and rapidity space. As an application, our procedure, which makes use of Monte Carlo integration techniques, is applied to obtain the gluon Green function in the Odderon case at leading order. The same approach can be used for more complicated scenarios.
Are Abell Clusters Correlated with Gamma-Ray Bursts?
NASA Technical Reports Server (NTRS)
Hurley, K.; Hartmann, D.; Kouveliotou, C.; Fishman, G.; Laros, J.; Cline, T.; Boer, M.
1997-01-01
A recent study has presented marginal statistical evidence that gamma-ray burst (GRB) sources are correlated with Abell clusters, based on analyses of bursts in the BATSE 3B catalog. Using precise localization information from the Third Interplanetary Network, we have reanalyzed this possible correlation. We find that most of the Abell clusters that are in the relatively large 3B error circles are not in the much smaller IPN/BATSE error regions. We believe that this argues strongly against an Abell cluster-GRB correlation.
ICM: an Integrated Compartment Method for numerically solving partial differential equations
Yeh, G.T.
1981-05-01
An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.
Nuttall's integral equation and Bernshtein's asymptotic formula for a complex weight
NASA Astrophysics Data System (ADS)
Ikonomov, N. R.; Kovacheva, R. K.; Suetin, S. P.
2015-12-01
We obtain Nuttall's integral equation provided that the corresponding complex-valued function σ(x) does not vanish and belongs to the Dini-Lipschitz class. Using this equation, we obtain a complex analogue of Bernshtein's classical asymptotic formulae for polynomials orthogonal on the closed unit interval Δ= \\lbrack -1,1 \\rbrack with respect to a complex-valued weight h(x)=σ(x)/\\sqrt{1-x^2}.
Subprograms for integrating the equations of motion of satellites. FORTRAN 4
NASA Technical Reports Server (NTRS)
Prokhorenko, V. I.
1980-01-01
The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.
Integral equation approach to time-dependent kinematic dynamos in finite domains.
Xu, Mingtian; Stefani, Frank; Gerbeth, Gunter
2004-11-01
The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric alpha2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples--the alpha2 dynamo model with radially varying alpha and the Bullard-Gellman model--illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an alpha2 dynamo in rectangular domains. PMID:15600751
Gazzillo, Domenico; Giacometti, Achille
2011-12-01
Application of integral equation theory to complex fluids is reviewed, with particular emphasis to the effects of polydispersity and anisotropy on their structural and thermodynamic properties. Both analytical and numerical solutions of integral equations are discussed within the context of a set of minimal potential models that have been widely used in the literature. While other popular theoretical tools, such as numerical simulations and density functional theory, are superior for quantitative and accurate predictions, we argue that integral equation theory still provides, as in simple fluids, an invaluable technique that is able to capture the main essential features of a complex system, at a much lower computational cost. In addition, it can provide a detailed description of the angular dependence in arbitrary frame, unlike numerical simulations where this information is frequently hampered by insufficient statistics. Applications to colloidal mixtures, globular proteins and patchy colloids are discussed, within a unified framework.
Numerical solution of a class of integral equations arising in two-dimensional aerodynamics
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M. A.
1978-01-01
We consider the numerical solution of a class of integral equations arising in the determination of the compressible flow about a thin airfoil in a ventilated wind tunnel. The integral equations are of the first kind with kernels having a Cauchy singularity. Using appropriately chosen Hilbert spaces, it is shown that the kernel gives rise to a mapping which is the sum of a unitary operator and a compact operator. This allows the problem to be studied in terms of an equivalent integral equation of the second kind. A convergent numerical algorithm for its solution is derived by using Galerkin's method. It is shown that this algorithm is numerically equivalent to Bland's collocation method, which is then used as the method of computation. Extensive numerical calculations are presented establishing the validity of the theory.
A new aerodynamic integral equation based on an acoustic formula in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.
1984-01-01
An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.
Symmetries, Integrability and Exact Solutions to the (2+1)-Dimensional Benney Types of Equations
NASA Astrophysics Data System (ADS)
Liu, Han-Ze; Xin, Xiang-Peng
2016-08-01
This paper is concerned with the (2+1)-dimensional Benney types of equations. By the complete Lie group classification method, all of the point symmetries of the Benney types of equations are obtained, and the integrable condition of the equation is given. Then, the symmetry reductions and exact solutions to the (2+1)-dimensional nonlinear wave equations are presented. Especially, the shock wave solutions of the Benney equations are investigated by the symmetry reduction and trial function method. Supported by the National Natural Science Foundation of China under Grant Nos. 11171041 and 11505090, Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009, and the doctorial foundation of Liaocheng University under Grant No. 31805
On Lie symmetries, exact solutions and integrability to the KdV-Sawada-Kotera-Ramani equation
NASA Astrophysics Data System (ADS)
Ma, Pan-Li; Tian, Shou-Fu; Zhang, Tian-Tian; Zhang, Xing-Yong
2016-04-01
In this paper, the KdV-Sawada-Kotera-Ramani equation is investigated, which is used to describe the resonances of solitons in one-dimensional space. By using the Lie symmetry analysis method, the vector field and optimal system of the equation are derived, respectively. The optimal system is further used to study the symmetry reductions and exact solutions. Furthermore, the exact analytic solutions of the equation can be obtained by considering the power series theory. Finally, the complete integrability of the equation is systematically presented by using binary Bell's polynomials, which includes the bilinear representation, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. Based on its bilinear representation, the N-soliton solutions of the equation are also constructed with exact analytic expression.
An integrated development of the equations of motion for elastic hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Bilimoria, Karl D.; Schmidt, David K.
1992-01-01
An integrated, consistent analytical framework is developed for modeling the dynamics of elastic hypersonic flight vehicles. A Lagrangian approach is used in order to capture the dynamics of rigid-body motion, elastic deformation, fluid flow, rotating machinery, wind, and a spherical rotating earth model, and to account for their interactions with each other. A vector form of the force, moment and elastic-deformation equations is developed from Lagrange's equation; a useable scalar form of these equations is also presented. The appropriate kinematic equations are developed, and are presented in a useable form. A preliminary study of the significance of selected terms in the equations of motion is conducted. Using generic data for a single-stage-to-orbit vehicle, it was found that the Coriolis force can reach values of up to 6 percent of the vehicle weight, and that the forces and moments attributable to fluid-flow terms can be significant.
Exact solutions for the fractional differential equations by using the first integral method
NASA Astrophysics Data System (ADS)
Aminikhah, Hossein; Sheikhani, A. Refahi; Rezazadeh, Hadi
2015-03-01
In this paper, we apply the first integral method to study the solutions of the nonlinear fractional modified Benjamin-Bona-Mahony equation, the nonlinear fractional modified Zakharov-Kuznetsov equation and the nonlinear fractional Whitham-Broer-Kaup-Like systems. This method is based on the ring theory of commutative algebra. The results obtained by the proposed method show that the approach is effective and general. This approach can also be applied to other nonlinear fractional differential equations, which are arising in the theory of solitons and other areas.
The Abell 85 BCG: A Nucleated, Coreless Galaxy
NASA Astrophysics Data System (ADS)
Madrid, Juan P.; Donzelli, Carlos J.
2016-03-01
New high-resolution r-band imaging of the brightest cluster galaxy (BCG) in Abell 85 (Holm 15A) was obtained using the Gemini Multi Object Spectrograph. These data were taken with the aim of deriving an accurate surface brightness profile of the BCG of Abell 85, in particular, its central region. The new Gemini data show clear evidence of a previously unreported nuclear emission that is evident as a distinct light excess in the central kiloparsec of the surface brightness profile. We find that the light profile is never flat nor does it present a downward trend toward the center of the galaxy. That is, the new Gemini data show a different physical reality from the featureless, “evacuated core” recently claimed for the Abell 85 BCG. After trying different models, we find that the surface brightness profile of the BCG of Abell 85 is best fit by a double Sérsic model.
A wavelet-based computational method for solving stochastic Itô–Volterra integral equations
Mohammadi, Fakhrodin
2015-10-01
This paper presents a computational method based on the Chebyshev wavelets for solving stochastic Itô–Volterra integral equations. First, a stochastic operational matrix for the Chebyshev wavelets is presented and a general procedure for forming this matrix is given. Then, the Chebyshev wavelets basis along with this stochastic operational matrix are applied for solving stochastic Itô–Volterra integral equations. Convergence and error analysis of the Chebyshev wavelets basis are investigated. To reveal the accuracy and efficiency of the proposed method some numerical examples are included.
The statistical theory of the fracture of fragile bodies. Part 2: The integral equation method
NASA Technical Reports Server (NTRS)
Kittl, P.
1984-01-01
It is demonstrated how with the aid of a bending test, the Weibull fracture risk function can be determined - without postulating its analytical form - by resolving an integral equation. The respective solutions for rectangular and circular section beams are given. In the first case the function is expressed as an algorithm and in the second, in the form of series. Taking into account that the cumulative fracture probability appearing in the solution to the integral equation must be continuous and monotonically increasing, any case of fabrication or selection of samples can be treated.
Quadrature methods for periodic singular and weakly singular Fredholm integral equations
NASA Technical Reports Server (NTRS)
Sidi, Avram; Israeli, Moshe
1988-01-01
High-accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are subsequently used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Throughout the development the periodic nature of the problem plays a crucial role. Such periodic equations are used in the solution of planar elliptic boundary value problems such as those that arise in elasticity, potential theory, conformal mapping, and free surface flows. The use of the quadrature methods is demonstrated with numerical examples.
Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras
NASA Astrophysics Data System (ADS)
Grahovski, Georgi G.; Mikhailov, Alexander V.
2013-12-01
Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.
The genus curve of the Abell clusters
NASA Technical Reports Server (NTRS)
Rhoads, James E.; Gott, J. Richard, III; Postman, Marc
1994-01-01
We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).
NASA Astrophysics Data System (ADS)
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of the `SIDE8 International Conference', Sainte-Adéle, Canada, 22-28 June 2008 (http://www.crm.umontreal.ca/SIDE8/index_e.shtml). Participants at that meeting, as well as other researchers working in the field, are invited to submit a research paper to this issue. Editorial policy The Editorial Board has invited Decio Levi, Peter Olver, Zora Thomova and Pavel Winternitz to serve as Guest Editors for the special issue. Their criteria for the acceptance of contributions are as follows. The subject of the paper should relate to the subject of the conference: Ordinary and partial difference equations Analytic difference equations Orthogonal polynomials and special functions Symmetries and reductions Difference geometry Integrable discrete systems on graphs Integrable dynamical mappings Discrete Painlevè equations Singularity confinement Algebraic entropy Complexity and growth of multivalued mapping Representations of affine Weyl groups Quantum mappings Quantum field theory on the space-time lattice All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The DEADLINE for contributed papers will be 1 March 2009. This deadline will allow the special issue to appear in October 2009. There is a nominal page limit of 12 printed pages (approximately 7200 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at www.iop.org/Journals/jphysa. Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa
NASA Astrophysics Data System (ADS)
Utama, Briandhika; Purqon, Acep
2016-08-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.
NASA Astrophysics Data System (ADS)
Fedotov, I. A.; Polyanin, A. D.
2011-09-01
Broad classes of nonlinear equations of mathematical physics are described that admit order reduction by applying the von Mises transformation (with the unknown function used as a new independent variable and with a suitable partial derivative used as a new dependent variable) and by applying the Crocco transformation (with the first and second partial derivatives used as new independent and dependent variables, respectively). Associated Bäcklund transformations are constructed that connect evolution equations of general form (their special cases include Burgers, Korteweg-de Vries, and Harry Dym type equations and many other nonlinear equations of mathematical physics). Transformations are indicated that reduce the order of hydrodynamic-type equations of higher orders. The generalized Calogero equation and a number of other new integrable nonlinear equations, reducible to linear equations, are considered.
Symplectic integration of post-Newtonian equations of motion with spin
Lubich, Christian; Walther, Benny; Bruegmann, Bernd
2010-05-15
We present a noncanonically symplectic integration scheme tailored to numerically computing the post-Newtonian motion of a spinning black-hole binary. Using a splitting approach we combine the flows of orbital and spin contributions. In the context of the splitting, it is possible to integrate the individual terms of the spin-orbit and spin-spin Hamiltonians analytically, exploiting the special structure of the underlying equations of motion. The outcome is a symplectic, time-reversible integrator, which can be raised to arbitrary order by composition. A fourth-order version is shown to give excellent behavior concerning error growth and conservation of energy and angular momentum in long-term simulations. Favorable properties of the integrator are retained in the presence of weak dissipative forces due to radiation damping in the full post-Newtonian equations.
The magnitude-redshift relation for 561 Abell clusters
NASA Technical Reports Server (NTRS)
Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.
1985-01-01
The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.
Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method
NASA Astrophysics Data System (ADS)
Kruglyakov, M.; Geraskin, A.; Kuvshinov, A.
2016-11-01
We present a novel, open source 3-D MT forward solver based on a method of integral equations (IE) with contracting kernel. Special attention in the solver is paid to accurate calculations of Green's functions and their integrals which are cornerstones of any IE solution. The solver supports massive parallelization and is able to deal with highly detailed and contrasting models. We report results of a 3-D numerical experiment aimed at analyzing the accuracy and scalability of the code.
Functional integral derivation of the kinetic equation of two-dimensional point vortices
NASA Astrophysics Data System (ADS)
Fouvry, Jean-Baptiste; Chavanis, Pierre-Henri; Pichon, Christophe
2016-08-01
We present a brief derivation of the kinetic equation describing the secular evolution of point vortices in two-dimensional hydrodynamics, by relying on a functional integral formalism. We start from Liouville's equation which describes the exact dynamics of a two-dimensional system of point vortices. At the order 1 / N, the evolution of the system is characterised by the first two equations of the BBGKY hierarchy involving the system's 1-body distribution function and its 2-body correlation function. Thanks to the introduction of auxiliary fields, these two evolution constraints may be rewritten as a functional integral. When functionally integrated over the 2-body correlation function, this rewriting leads to a new constraint coupling the 1-body distribution function and the two auxiliary fields. Once inverted, this constraint provides, through a new route, the closed non-linear kinetic equation satisfied by the 1-body distribution function. Such a method sheds new lights on the origin of these kinetic equations complementing the traditional derivation methods.
Solving the hypersingular boundary integral equation for the Burton and Miller formulation.
Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc
2015-11-01
This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces. PMID:26627805
Surface integral equation formulation for the analysis of left-handed metamaterials.
Rivero, J; Taboada, J M; Landesa, L; Obelleiro, F; García-Tuñón, I
2010-07-19
A surface integral equation (SIE) formulation is applied to the analysis of electromagnetic problems involving three-dimensional (3D) piecewise homogenized left-handed metamaterials (LHM). The resulting integral equations are discretized by the well-known method of moments (MoM) and solved via an iterative process. The unknowns are defined only on the interfaces between different media, avoiding the discretization of volumes and surrounding space, which entails a drastic reduction in the number of unknowns arising in the numerical discretization of the equations. Besides, the SIE-MoM formulation inherently includes the radiation condition at infinity, so it is not necessary to artificially include termination absorbing boundary conditions. Some 3D numerical examples are presented to confirm the validity and versatility of this approach on dealing with LHM, also providing some intuitive verifications of the singular properties of these amazing materials. PMID:20720970
NASA Astrophysics Data System (ADS)
Ashrafi, H.; Shariyat, M.
2015-09-01
In the present research, a functionally graded (FG) boundary integral equation method capable of modeling quasistatic behavior of heterogeneous media fabricated from functionally graded materials (FGMs) whose distributions of the material properties obey either power or exponential laws is developed. Two heterogeneous material gradation models were employed to present the numerical formulations and solution algorithm. Somigliana's identity in 2D displacement fields of the isotropic heterogeneous domains is numerically implemented, employing FG elements. Based on the constitutive and governing equations and the weighted residual technique, the proposed boundary integral equation formulations are implemented for behavior analysis of the elastic heterogeneous isotropic solid structures. Results are verified and the proposed boundary element (BE) formulation is employed for behavior analysis of the plates and cylinders to demonstrate the proposed procedure more adequately.
Functional integral equation for the complete effective action in quantum field theory
NASA Astrophysics Data System (ADS)
Scharnhorst, K.
1997-02-01
Based on a methodological analysis of the effective action approach, certain conceptual foundations of quantum field theory are reconsidered to establish a quest for an equation for the effective action. Relying on the functional integral formulation of Lagrangian quantum field theory, we propose a functional integral equation for the complete effective action which can be understood as a certain fixed-point condition. This is motivated by a critical attitude toward the distinction, artificial from an experimental point of view, between classical and effective action. While for free field theories nothing new is accomplished, for interacting theories the concept differs from the established paradigm. The analysis of this new concept concentrates on gauge field theories, treating QED as the prototype model. An approximative approach to the functional integral equation for the complete effective action of QED is exploited to obtain certain nonperturbative information about the quadratic kernels of the action. As a particular application the approximate calculation of the QED coupling constant α is explicitly studied. It is understood as one of the characteristics of a fixed point given as a solution of the functional integral equation proposed. Finally, within the present approach the vacuum energy problem is considered, as are possible implications for the concept of induced gravity.
The Transmission Line as a Simple Example for Introducing Integral Equations to Undergraduates
ERIC Educational Resources Information Center
Rothwell, E. J.
2009-01-01
Integral equations are becoming a common means for describing problems in electromagnetics, and so it is important to expose students to methods for their solution. Typically this is done using examples in antennas, scattering, or electrostatics. Unfortunately, many difficult issues arise in the formulation and solution of the associated…
The Integration of Teacher's Pedagogical Content Knowledge Components in Teaching Linear Equation
ERIC Educational Resources Information Center
Yusof, Yusminah Mohd.; Effandi, Zakaria
2015-01-01
This qualitative research aimed to explore the integration of the components of pedagogical content knowledge (PCK) in teaching Linear Equation with one unknown. For the purpose of the study, a single local case study with multiple participants was used. The selection of the participants was made based on various criteria: having more than 5 years…
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency.
NASA Astrophysics Data System (ADS)
Kukudzhanov, V.
2009-08-01
Integration of the constitutive equations of ductile fracture models is analyzed in this paper. The splitting method is applied to the Gurson's and Kukudzhanov's models. The analysis of validity of this method is done. It was shown that Kukudzhanov's model describes a large variety of materials since it involves residual stress and viscosity.
One-loop pentagon integral in d dimensions from differential equations in ɛ-form
NASA Astrophysics Data System (ADS)
Kozlov, Mikhail G.; Lee, Roman N.
2016-02-01
We apply the differential equation technique to the calculation of the one-loop massless diagram with five onshell legs. Using the reduction to ɛ-form, we manage to obtain a simple one-fold integral representation exact in space-time dimensionality. The expansion of the obtained result in ɛ and the analytical continuation to physical regions are discussed.
Chen, Ke
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Integral Equations and Scattering Solutions for a Square-Well Potential.
ERIC Educational Resources Information Center
Bagchi, B.; Seyler, R. G.
1979-01-01
Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)
NASA Astrophysics Data System (ADS)
Muthuvalu, Mohana Sundaram
2016-06-01
In this paper, performance analysis of the preconditioned Gauss-Seidel iterative methods for solving dense linear system arise from Fredholm integral equations of the second kind is investigated. The formulation and implementation of the preconditioned Gauss-Seidel methods are presented. Numerical results are included in order to verify the performance of the methods.
AN INTEGRAL EQUATION REPRESENTATION OF WIDE-BAND ELECTROMAGNETIC SCATTERING BY THIN SHEETS
An efficient, accurate numerical modeling scheme has been developed, based on the integral equation solution to compute electromagnetic (EM) responses of thin sheets over a wide frequency band. The thin-sheet approach is useful for simulating the EM response of a fracture system ...
The galaxy population of Abell 1367: photometric and spectroscopic data
NASA Astrophysics Data System (ADS)
Kriwattanawong, W.; Moss, C.; James, P. A.; Carter, D.
2011-03-01
Aims: Photometric and spectroscopic observations of the galaxy population of the galaxy cluster Abell 1367 have been obtained, over a field of 34' × 90', covering the cluster centre out to a radius of ~2.2 Mpc. Optical broad- and narrow-band imaging was used to determine galaxy luminosities, diameters and morphologies, and to study current star formation activity of a sample of cluster galaxies. Near-infrared imaging was obtained to estimate integrated stellar masses, and to aid the determination of mean stellar ages and metallicities for the future investigation of the star formation history of those galaxies. Optical spectroscopic observations were also taken, to confirm cluster membership of galaxies in the sample through their recession velocities. Methods.U, B and R broad-band and Hα narrow-band imaging observations were carried out using the Wide Field Camera (WFC) on the 2.5 m Isaac Newton Telescope on La Palma, covering the field described above. J and K near-infrared imaging was obtained using the Wide Field Camera (WFCAM) on the 3.8 m UK Infrared Telescope on Mauna Kea, covering a somewhat smaller field of 0.75 square degrees on the cluster centre. The spectroscopic observations were carried out using a multifibre spectrograph (WYFFOS) on the 4.2 m William Herschel Telecope on La Palma, over the same field as the optical imaging observations. Results: Our photometric data give optical and near-infrared isophotal magnitudes for 303 galaxies in our survey regions, down to stated diameter and B-band magnitude limits, determined within R24 isophotal diameters. Our spectroscopic data of 328 objects provide 84 galaxies with detections of emission and/or absorption lines. Combining these with published spectroscopic data gives 126 galaxies within our sample for which recession velocities are known. Of these, 72 galaxies are confirmed as cluster members of Abell 1367, 11 of which are identified in this study and 61 are reported in the literature. Hα equivalent
Connectivity as an alternative to boundary integral equations: Construction of bases
Herrera, Ismael; Sabina, Federico J.
1978-01-01
In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522
New integration techniques for chemical kinetic rate equations. 2: Accuracy comparison
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1985-01-01
A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.
New integration techniques for chemical kinetic rate equations. II - Accuracy comparison
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1986-01-01
A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction heat release, and equilibration. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.
A generalized Clebsch transformation leading to a first integral of Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Scholle, M.; Marner, F.
2016-09-01
In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented.
Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside
NASA Astrophysics Data System (ADS)
Kot, V. A.
2016-03-01
An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.
Xiong, Z.; Tripp, A.C.
1994-12-31
This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces.
NASA Astrophysics Data System (ADS)
Cruse, Thomas A.; Novati, Giorgio
The hypersingular Somigliana identity for the stress tensor is used as the basis for a traction boundary integral equation (BIE) suitable for numerical application to nonplanar cracks and to multiple cracks. The variety of derivations of hypersingular traction BIE formulations is reviewed and extended for this problem class. Numerical implementation is accomplished for piecewise-flat models of curved cracks, using local coordinate system integrations. A nonconforming, triangular boundary element implementation of the integral equations is given. Demonstration problems include several three-dimensional approximations to plane-strain fracture mechanics problems, for which exact or highly accurate numerical solutions exist. In all cases, the use of a piecewise-flat traction BIE implementation is shown to give excellent results.
The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tweed, J.; Farassat, F.
1999-01-01
The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.
Numerical solution of random singular integral equation appearing in crack problems
NASA Technical Reports Server (NTRS)
Sambandham, M.; Srivatsan, T. S.; Bharucha-Reid, A. T.
1986-01-01
The solution of several elasticity problems, and particularly crack problems, can be reduced to the solution of one-dimensional singular integral equations with a Cauchy-type kernel or to a system of uncoupled singular integral equations. Here a method for the numerical solution of random singular integral equations of Cauchy type is presented. The solution technique involves a Chebyshev series approximation, the coefficients of which are the solutions of a system of random linear equations. This method is applied to the problem of periodic array of straight cracks inside an infinite isotropic elastic medium and subjected to a nonuniform pressure distribution along the crack edges. The statistical properties of the random solution are evaluated numerically, and the random solution is used to determine the values of the stress-intensity factors at the crack tips. The error, expressed as the difference between the mean of the random solution and the deterministic solution, is established. Values of stress-intensity factors at the crack tip for different random input functions are presented.
CALL FOR PAPERS: Special issue on Symmetries and Integrability of Difference Equations
NASA Astrophysics Data System (ADS)
Doliwa, Adam; Korhonen, Risto; Lafortune, Stephane
2006-10-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Special issue on Symmetries and Integrability of Difference Equations' as featured at the SIDE VII meeting held during July 2006 in Melbourne (http://web.maths.unsw.edu.au/%7Eschief/side/side.html). Participants at that meeting, as well as other researchers working in the field of difference equations and discrete systems, are invited to submit a research paper to this issue. This meeting was the seventh of a series of biennial meetings devoted to the study of integrable difference equations and related topics. The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations, just as differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as: mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, quantum field theory, etc. It is thus crucial to develop tools to study and solve difference equations. While the theory of symmetry and integrability for differential equations is now well-established, this is not yet the case for discrete equations. The situation has undergone impressive development in recent years and has affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular
Temperature-dependent isovector pairing gap equations using a path integral approach
Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.
2007-10-15
Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.
Numerical comparison of spectral properties of volume-integral-equation formulations
NASA Astrophysics Data System (ADS)
Markkanen, Johannes; Ylä-Oijala, Pasi
2016-07-01
We study and compare spectral properties of various volume-integral-equation formulations. The equations are written for the electric flux, current, field, and potentials, and discretized with basis functions spanning the appropriate function spaces. Each formulation leads to eigenvalue distributions of different kind due to the effects of discretization procedure, namely, the choice of basis and testing functions. The discrete spectrum of the potential formulation reproduces the theoretically predicted spectrum almost exactly while the spectra of other formulations deviate from the ideal one. It is shown that the potential formulation has the spectral properties desired from the preconditioning perspective.
NASA Technical Reports Server (NTRS)
Rosenbaum, J. S.
1976-01-01
If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.
On the solution of integral equations with a generalized Cauchy kernel
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1987-01-01
A numerical technique is developed analytically to solve a class of singular integral equations occurring in mixed boundary-value problems for nonhomogeneous elastic media with discontinuities. The approach of Kaya and Erdogan (1987) is extended to treat equations with generalized Cauchy kernels, reformulating the boundary-value problems in terms of potentials as the unknown functions. The numerical implementation of the solution is discussed, and results for an epoxy-Al plate with a crack terminating at the interface and loading normal to the crack are presented in tables.
Solutions of singular integral equations from gas dynamics and plasma physics
Rondoni, L.; Zweifel, P.F. )
1993-03-01
In this paper we give the explicit form of the solutions of the singular integral equations associated with some models of gas dynamics and plasma physics which are extensively investigated in the existing literature. In particular, we deal with equations on infinite and semi-infinite contours, where the data are assumed to be meromorphic functions. In this context we rederive some published results and present some new results which show how out method can be successfully used to obtain the explicit form of the solutions in much more general cases than those found in the literature.
Splines and the Galerkin method for solving the integral equations of scattering theory
NASA Astrophysics Data System (ADS)
Brannigan, M.; Eyre, D.
1983-06-01
This paper investigates the Galerkin method with cubic B-spline approximants to solve singular integral equations that arise in scattering theory. We stress the relationship between the Galerkin and collocation methods.The error bound for cubic spline approximates has a convergence rate of O(h4), where h is the mesh spacing. We test the utility of the Galerkin method by solving both two- and three-body problems. We demonstrate, by solving the Amado-Lovelace equation for a system of three identical bosons, that our numerical treatment of the scattering problem is both efficient and accurate for small linear systems.
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The linear transonic perturbation integral equation previously derived for nonlifting airfoils is formulated for lifting cases. In order to treat shock wave motions, a strained coordinate system is used in which the shock location is invariant. The tangency boundary conditions are either formulated using the thin airfoil approximation or by using the analytic continuation concept. A direct numerical solution to this equation is derived in contrast to the iterative scheme initially used, and results of both lifting and nonlifting examples indicate that the method is satisfactory.
On a method for constructing the Lax pairs for nonlinear integrable equations
NASA Astrophysics Data System (ADS)
Habibullin, I. T.; Khakimova, A. R.; Poptsova, M. N.
2016-01-01
We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov-Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier.
Chandra View of Galaxy Cluster Abell 2554
NASA Astrophysics Data System (ADS)
kıyami Erdim, Muhammed; Hudaverdi, Murat
2016-07-01
We study the structure of the galaxy cluster Abell 2554 at z = 0.11, which is a member of Aquarius Super cluster using the Chandra archival data. The X-ray peak coincides with a bright elliptical cD galaxy. Slightly elongated X-ray plasma has an average temperature and metal abundance values of ˜6 keV and 0.28 solar, respectively. We observe small-scale temperature variations in the ICM. There is a significantly hot wall-like structure with 9 keV at the SE and also radio-lope locates at the tip of this hot region. A2554 is also part of a trio-cluster. Its close neighbors A2550 (at SW) and A2556 (at SE) have only 2 Mpc and 1.5 Mpc separations with A2554. Considering the temperature fluctuations and the dynamical environment of super cluster, we examine the possible ongoing merger scenarios within A2554.
Mukherjee, Abhik Janaki, M. S. Kundu, Anjan
2015-07-15
A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the corresponding growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.
The SAMI Pilot Survey: stellar kinematics of galaxies in Abell 85, 168 and 2399
NASA Astrophysics Data System (ADS)
Fogarty, L. M. R.; Scott, N.; Owers, M. S.; Croom, S. M.; Bekki, K.; Houghton, R. C. W.; van de Sande, J.; D'Eugenio, F.; Cecil, G. N.; Colless, M. M.; Bland-Hawthorn, J.; Brough, S.; Cortese, L.; Davies, R. L.; Jones, D. H.; Pracy, M.; Allen, J. T.; Bryant, J. J.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Richards, S.; Sharp, R. G.
2015-12-01
We present the SAMI Pilot Survey, consisting of integral field spectroscopy of 106 galaxies across three galaxy clusters, Abell 85, Abell 168 and Abell 2399. The galaxies were selected by absolute magnitude to have Mr < -20.25 mag. The survey, using the Sydney-AAO Multi-object Integral field spectrograph (SAMI), comprises observations of galaxies of all morphological types with 75 per cent of the sample being early-type galaxies (ETGs) and 25 per cent being late-type galaxies (LTGs). Stellar velocity and velocity dispersion maps are derived for all 106 galaxies in the sample. The λR parameter, a proxy for the specific stellar angular momentum, is calculated for each galaxy in the sample. We find a trend between λR and galaxy concentration such that LTGs are less concentrated higher angular momentum systems, with the fast-rotating ETGs (FRs) more concentrated and lower in angular momentum. This suggests that some dynamical processes are involved in transforming LTGs to FRs, though a significant overlap between the λR distributions of these classes of galaxies implies that this is just one piece of a more complicated picture. We measure the kinematic misalignment angle, Ψ, for the ETGs in the sample, to probe the intrinsic shapes of the galaxies. We find the majority of FRs (83 per cent) to be aligned, consistent with them being oblate spheroids (i.e. discs). The slow rotating ETGs (SRs), on the other hand, are significantly more likely to show kinematic misalignment (only 38 per cent are aligned). This confirms previous results that SRs are likely to be mildly triaxial systems.
A robust stabilization methodology for time domain integral equations in electromagnetics
NASA Astrophysics Data System (ADS)
Pray, Andrew J.
Time domain integral equations (TDIEs) are an attractive framework from which to analyze electromagnetic scattering problems. Casting problems in the time domain enables study of systems with nonlinearities, characterization of transient behavior both at the early and late time, and broadband analysis within a single simulation. Integral equation frameworks have the advantages of restricting the computational domain to the scatterer surface (boundary integral equations) or volume (volume integral equations), implicitly satisfying the radiation boundary condition, and being free of numerical dispersion error. Despite these advantages, TDIE solvers are not widely used by computational practitioners; principally because TDIE solutions are susceptible to late-time instability. While a plethora of stabilization schemes have been developed, particularly since the early 1980s, most of these schemes either do not guarantee stability, are difficult to implement, or are impractical for certain problems. The most promising methods seem to be the space-time Galerkin schemes. These are very challenging to implement as they require the accurate evaluation of 4-dimensional spatial integrals. The most successful recent approach to implementing these schemes has been to approximate a subset of these integrals, and evaluate the remaining integrals analytically. This approach describes the quasi-exact integration methods [Shanker et al. IEEE TAP 2009, Shi et al. IEEE TAP 2011]. The method of [Shanker et al. IEEE TAP 2009] approximates 2 of the 4 dimensions using numerical quadrature. The remaining integrals are evaluated analytically by determining shadow boundaries on the domain of integration. In [Shi et al. IEEE TAP 2011], only 1 dimension is approximated, but the procedure also relies on analytical integration between shadow boundaries. These two characteristics-the need to find shadow boundaries and develop analytical integration rules-prevent these methods from being extended
Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations
NASA Astrophysics Data System (ADS)
Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert
2016-08-01
We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.
Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems
Linsker, R.
1980-12-01
A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found.
An, Hongli; Fan, Engui; Zhu, Haixing
2015-01-01
The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to notice that such an integrable Ermakov structure exists not only in the density representations but also in the velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the connection with stationary nonlinear cubic Schrödinger equations is established.
Do, D D; Nicholson, D; Fan, Chunyan
2011-12-01
We present equations to calculate the differential and integral enthalpy changes of adsorption for their use in Monte Carlo simulation. Adsorption of a system of N molecules, subject to an external potential energy, is viewed as one of transferring these molecules from a reference gas phase (state 1) to the adsorption system (state 2) at the same temperature and equilibrium pressure (same chemical potential). The excess amount adsorbed is the difference between N and the hypothetical amount of gas occupying the accessible volume of the system at the same density as the reference gas. The enthalpy change is a state function, which is defined as the difference between the enthalpies of state 2 and state 1, and the isosteric heat is defined as the negative of the derivative of this enthalpy change with respect to the excess amount of adsorption. It is suitable to determine how the system behaves for a differential increment in the excess phase adsorbed under subcritical conditions. For supercritical conditions, use of the integral enthalpy of adsorption per particle is recommended since the isosteric heat becomes infinite at the maximum excess concentration. With these unambiguous definitions we derive equations which are applicable for a general case of adsorption and demonstrate how they can be used in a Monte Carlo simulation. We apply the new equations to argon adsorption at various temperatures on a graphite surface to illustrate the need to use the correct equation to describe isosteric heat of adsorption.
NASA Technical Reports Server (NTRS)
Walker, K. P.; Freed, A. D.
1991-01-01
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.
A three dimensional integral equation approach for fluids under confinement: Argon in zeolites
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Bores, Cecilia; Sánchez-Gil, Vicente; Noya, Eva G.
2015-10-01
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials.
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Tam, Honwah
2016-03-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and Hong Kong Research Grant Council under Grant No. HKBU202512, as well as the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Tam, Honwah
2016-03-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz-Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and Hong Kong Research Grant Council under Grant No. HKBU202512, as well as the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
A path-integral Langevin equation treatment of low-temperature doped helium clusters
NASA Astrophysics Data System (ADS)
Ing, Christopher; Hinsen, Konrad; Yang, Jing; Zeng, Toby; Li, Hui; Roy, Pierre-Nicholas
2012-06-01
We present an implementation of path integral molecular dynamics for sampling low temperature properties of doped helium clusters using Langevin dynamics. The robustness of the path integral Langevin equation and white-noise Langevin equation [M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010)], 10.1063/1.3489925 sampling methods are considered for those weakly bound systems with comparison to path integral Monte Carlo (PIMC) in terms of efficiency and accuracy. Using these techniques, convergence studies are performed to confirm the systematic error reduction introduced by increasing the number of discretization steps of the path integral. We comment on the structural and energetic evolution of HeN-CO2 clusters from N = 1 to 20. To quantify the importance of both rotations and exchange in our simulations, we present a chemical potential and calculated band origin shifts as a function of cluster size utilizing PIMC sampling that includes these effects. This work also serves to showcase the implementation of path integral simulation techniques within the molecular modelling toolkit [K. Hinsen, J. Comp. Chem. 21, 79 (2000)], 10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B, an open-source molecular simulation package.
On the validity of conforming BEM algorithms for hypersingular boundary integral equations
NASA Astrophysics Data System (ADS)
Richardson, J. D.; Cruse, T. A.; Huang, Q.
The widely held notion that the use of standard conforming isoparametric boundary elements may not be used in the solution of hypersingular integral equations is investigated. It is demonstrated that for points on the boundary where the underlying field is C1,α continuous, a class of rigorous nonsingular conforming BEM algorithms may be applied. The justification for this class of algorithms is interpreted in terms of some recent criticism. It is shown that the numerical integration in these conforming BEM algorithms using relaxed regularization represents a finite approximation to the standard two-sided Hadamard finite part interpretation of hypersingular integrals. It is also shown that the integration schemes in this class of algorithms are not based upon one-sided finite part interpretations. As a result, the attendant ambiguities associated with the incorrect use of the one-sided interpretations in boundary integral equations pose no problem for this class of algorithms. Additionally, the distinction is made between the analytic discontinuities in the field which place limitations on the applicability of the conforming BEM and the discontinuities resulting from the use of piece-wise C1,α interpolations.
Phase diagram of the hard-core Yukawa fluid within the integral equation method.
El Mendoub, E B; Wax, J-F; Jakse, N
2006-11-01
In this study, the integral equation method proposed recently by Sarkisov [J. Chem. Phys. 114, 9496 (2001).], which has proved accurate for continuous potentials, is extended successfully to the hard sphere potential plus an attractive Yukawa tail. By comparing the results of thermodynamic properties, including the liquid-vapor phase diagram, with available simulation data, it is found that this method remains reliable for this class of models of interaction often used in colloid science.
Collision integrals and the generalized kinetic equation for charged particle beams
Tzenov, S. I.
1998-10-01
In the present paper we study the role of particle interactions on the evolution of a high energy beam. The interparticle forces taken into account are due to space charge alone. We derive the collision integral for a charged particle beam in the form of Balescu-Lenard and Landau and consider its further simplifications. Finally, the transition to the generalized kinetic equation has been accomplished by using the method of adiabatic elimination of fast variables.
Integral equation for a strip coil antenna located on a dielectric cylinder
NASA Astrophysics Data System (ADS)
Dementyev, A. N.; Klyuev, D. S.; Shatrov, S. A.
2016-01-01
The problem about the distribution of the surface current density in a narrow circular strip antenna as an infinitely thin perfectly conducting ribbon folded in a circle and positioned on the surface of a dielectric cylinder is reduced to a one-dimensional integral equation (IE). A method for solving the obtained IE is proposed. Complex distributions of the azimuthal component of the surface current density over the circular conductor are presented for different values of the dielectric permittivity of the cylinder.
The Reduction of Ducted Fan Engine Noise Via a Boundary Integral Equation Method
NASA Technical Reports Server (NTRS)
Tweed, John
2000-01-01
Engineering studies for reducing ducted fan engine noise were conducted using the noise prediction code TBIEM3D. To conduct parametric noise reduction calculations, it was necessary to advance certain theoretical and computational aspects of the boundary integral equation method (BIEM) described in and implemented in TBIEM3D. Also, enhancements and upgrades to TBIEM3D were made for facilitating the code's use in this research and by the aeroacoustics engineering community.
Integral equation study of particle confinement effects in a polymer/particle mixture
Henderson, D; Trokhymchuk, A; Kalyuzhnyi, Y; Gee, R; Lacevic, N
2007-05-09
Integral equation theory techniques are applied to evaluate the structuring of the polymer when large solid particles are embedded into a bulk polymer melt. The formalism presented here is applied to obtain an insight into the filler particle aggregation tendency. We find that with the employed polymer-particle interaction model it is very unlikely that the particles will aggregate. We believe that in such a system aggregation and clustering can occur when the filler particles are dressed by tightly bound polymer layers.
NASA Astrophysics Data System (ADS)
Bomont, Jean-Marc; Pastore, Giorgio
2015-09-01
We propose and discuss a straightforward search protocol for the glass-like solutions of the integral equations of the two-replica approach to the random first-order transition theory of the liquid-glass transition. The new numerical strategy supplements those recently introduced by Jean-Pierre Hansen and ourselves. A few results for inverse power (1/r12) fluid are discussed and critically compared with results from other approaches.
Parameter estimation for boundary value problems by integral equations of the second kind
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1988-01-01
This paper is concerned with the parameter estimation for boundary integral equations of the second kind. The parameter estimation technique through use of the spline collocation method is proposed. Based on the compactness assumption imposed on the parameter space, the convergence analysis for the numerical method of parameter estimation is discussed. The results obtained here are applied to a boundary parameter estimation for 2-D elliptic systems.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.
2016-01-01
Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete Ec(t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
The Dark Matter filament between Abell 222/223
NASA Astrophysics Data System (ADS)
Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora
2016-10-01
Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.
A 1400-MHz survey of 1478 Abell clusters of galaxies
NASA Technical Reports Server (NTRS)
Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.
1982-01-01
Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.
The Merger Dynamics of Abell 2061
NASA Astrophysics Data System (ADS)
Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea
2016-04-01
Abell 2061, a galaxy cluster at a redshift of z=.0784 in the Corona Borealis Supercluster, displays features in both the X-ray and radio indicative of merger activity. Observations by the GBT and the Westerbork Northern Sky Survey (WENSS) have indicated the presence of an extended, central radio halo/relic coincident with the cluster's main X-ray emission and a bright radio relic to the SW of the center of the cluster. Previous observations by ROSAT, Beppo-SAX, and Chandra show an elongated structure (referred to as the ‘Plume’), emitting in the soft X-ray and stretching to the NE of the cluster’s center. The Beppo-SAX and Chandra observations also suggest the presence of a hard X-ray shock slightly NE of the cluster’s center. Here we present the details of an August 2013 XMM-Newton observation of A2061 which has greater field of view and longer exposure (48.6 ks) than the previous Chandra observation. We present images displaying the cluster’s soft and hard X-ray emission and also a temperature map of the cluster. This temperature map highlights the presence of a previously unseen cool region of the cluster which we hypothesize to be the cool core of one of the subclusters involved in this merger. We also discuss the structural similarity of this cluster with a simulated high mass-ratio offset cluster merger taken from the Simulation Library of Astrophysical cluster Mergers (SLAM). This simulation would suggest that the Plume is gas from the cool core of a subcluster which is now falling back into the center of the cluster after initial core passage.
LensPerfect Analysis of Abell 1689
NASA Astrophysics Data System (ADS)
Coe, Dan A.
2007-12-01
I present the first massmap to perfectly reproduce the position of every gravitationally-lensed multiply-imaged galaxy detected to date in ACS images of Abell 1689. This massmap was obtained using a powerful new technique made possible by a recent advance in the field of Mathematics. It is the highest resolution assumption-free Dark Matter massmap to date, with the resolution being limited only by the number of multiple images detected. We detect 8 new multiple image systems and identify multiple knots in individual galaxies to constrain a grand total of 168 knots within 135 multiple images of 42 galaxies. No assumptions are made about mass tracing light, and yet the brightest visible structures in A1689 are reproduced in our massmap, a few with intriguing positional offsets. Our massmap probes radii smaller than that resolvable in current Dark Matter simulations of galaxy clusters. And at these radii, we observe slight deviations from the NFW and Sersic profiles which describe simulated Dark Matter halos so well. While we have demonstrated that our method is able to recover a known input massmap (to limited resolution), further tests are necessary to determine the uncertainties of our mass profile and positions of massive subclumps. I compile the latest weak lensing data from ACS, Subaru, and CFHT, and attempt to fit a single profile, either NFW or Sersic, to both the observed weak and strong lensing. I confirm the finding of most previous authors, that no single profile fits extremely well to both simultaneously. Slight deviations are revealed, with the best fits slightly over-predicting the mass profile at both large and small radius. Our easy-to-use software, called LensPerfect, will be made available soon. This research was supported by the European Commission Marie Curie International Reintegration Grant 017288-BPZ and the PNAYA grant AYA2005-09413-C02.
Computational attributes of the integral form of the equation of transfer
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1991-01-01
Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.
NASA Astrophysics Data System (ADS)
Dault, Daniel Lawrence
The moment method is the predominant approach for the solution of electromagnetic boundary integral equations. Traditional moment method discretizations rely on the projection of solution currents onto basis sets that must satisfy strict continuity properties to model physical currents. The choice of basis sets is further restricted by the tight coupling of traditional functional descriptions to the underlying geometrical approximation of the scattering or radiating body. As a result, the choice of approximation function spaces and geometry discretizations for a given boundary integral equation is significantly limited. A quasi-meshless partition of unity based method called the Generalized Method of Moments (GMM) was recently introduced to overcome some of these limitations. The GMM partition of unity scheme affords automatic continuity of solution currents, and therefore permits the use of a much wider range of basis functions than traditional moment methods. However, prior to the work in this thesis, GMM was limited in practical applicability because it was only formulated for a few geometry types, could not be accurately applied to arbitrary scatterers, e.g. those with mixtures of geometrical features, and was not amenable to traditional acceleration methodologies that would permit its application to electrically large problems. The primary contribution of this thesis is to introduce several new GMM formulations that significantly expand the capabilities of the method to make it a practical, broadly applicable approach for solving boundary integral equations and overcoming the limitations inherent in traditional moment method discretizations. Additionally, several of the topics covered address continuing open problems in electromagnetic boundary integral equations with applicability beyond GMM. The work comprises five broad contributions. The first is a new GMM formulation capable of mixing both GMM-type basis sets and traditional basis sets in the same
NASA Astrophysics Data System (ADS)
Enukashvily, Isaac M.
1980-11-01
An extension of Bleck' method and of the method of moments is developed for the numerical integration of the kinetic equation of coalescence and breakup of cloud droplets. The number density function nk(x,t) in each separate cloud droplet packet between droplet mass grid points (xk,xk+1) is represented by an expansion in orthogonal polynomials with a given weighting function wk(x,k). The expansion coefficients describe the deviations of nk(x,t) from wk(x,k). In this way droplet number concentrations, liquid water contents and other moments in each droplet packet are conserved, and the problem of solving the kinetic equation is replaced by one of solving a set of coupled differential equations for the moments of the number density function nk(x,t). Equations for these moments in each droplet packet are derived. The method is tested against existing solutions of the coalescence equation. Numerical results are obtained when Bleck's uniform distribution hypothesis for nk(x,t) and Golovin's asymptotic solution of the coalescence equation is chosen for the, weighting function wk(x, k). A comparison between numerical results computed by Bleck's method and by the method of this study is made. It is shown that for the correct computation of the coalescence and breakup interactions between cloud droplet packets it is very important that the, approximation of the nk(x,t) between grid points (xk,xk+1) satisfies the conservation conditions for the number concentration, liquid water content and other moments of the cloud droplet packets. If these conservation conditions are provided, even the quasi-linear approximation of the nk(x,t) in comparison with Berry's six-point interpolation will give reasonable results which are very close to the existing analytic solutions.
White, J.; Phillips, J.R.; Korsmeyer, T.
1994-12-31
Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.
Mass Profile of Abell 2204 An X-Ray Analysis of Abell 2204 using XMM-Newton Data
Lau, Travis
2003-09-05
The vast majority of the matter in the universe is of an unknown type. This matter is called dark matter by astronomers. The dark matter manifests itself only through gravitational interaction and is otherwise undetectable. The distribution of this matter in can be better understood by studying the mass profile of galaxy clusters. The X-ray emissions of the galaxy cluster Abell 2204 were analyzed using archived data from the XMM-Newton space telescope. We analyze a 40ks observation of Abell 2204 and present a radial temperature and radial mass profile based on hydrostatic equilibrium calculations.
NASA Astrophysics Data System (ADS)
Fujiwara, Hiroyuki
2000-01-01
The fast multipole method is developed for the solution of the boundary integral equations arising in wave scattering problems involving 3-D topography and 3-D basin problems. When coupled with an iterative solver for linear equations, the fast multipole method can significantly reduce memory requirements. The order of operations for the product of the matrix obtained from the discretization of the integral kernel and a vector is reduced from N2 to the order of pα N, where p is the order of the multipole expansion and α depends on the details of the implementation. In order to achieve efficient implementation the translation operators for the multipole expansion need to be used in the diagonal form based on a spherical wave decomposition. For problems with topography, the number of iterations required of the linear equation solver to achieve convergence is small and no preconditioning is necessary. However, for a basin problem, block-diagonal preconditioning is essential in the application of the iterative solver. Both the memory requirements and the CPU time are considerably reduced for topography problems. Although the memory requirement is reduced for a basin problem used in this numerical experiment, the CPU time would be still longer than that for the ordinary boundary element method if sufficient memory were available. These results indicate that the fast multipole method might be much more efficient than the ordinary method for 3-D elastic wave scattering problems with more than several tens of thousands of unknown variables.
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
Solution of fractional kinetic equation by a class of integral transform of pathway type
NASA Astrophysics Data System (ADS)
Kumar, Dilip
2013-04-01
Solutions of fractional kinetic equations are obtained through an integral transform named Pα-transform introduced in this paper. The Pα-transform is a binomial type transform containing many class of transforms including the well known Laplace transform. The paper is motivated by the idea of pathway model introduced by Mathai [Linear Algebra Appl. 396, 317-328 (2005), 10.1016/j.laa.2004.09.022]. The composition of the transform with differential and integral operators are proved along with convolution theorem. As an illustration of applications to the general theory of differential equations, a simple differential equation is solved by the new transform. Being a new transform, the Pα-transform of some elementary functions as well as some generalized special functions such as H-function, G-function, Wright generalized hypergeometric function, generalized hypergeometric function, and Mittag-Leffler function are also obtained. The results for the classical Laplace transform is retrieved by letting α → 1.
The Prediction of Ducted Fan Engine Noise Via a Boundary Integral Equation Method
NASA Technical Reports Server (NTRS)
Farassat, F.; Dunn, M. H.; Tweed, J.
1996-01-01
A computationally efficient Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is presented. The key features of the BIEM are its versatility and the ability to compute rapidly any portion of the sound field without the need to compute the entire field. Governing equations for the BIEM are based on the assumptions that all acoustic processes are linear, generate spinning modes, and occur in a uniform flow field. An exterior boundary value problem (BVP) is defined that describes the scattering of incident sound by an engine duct with arbitrary profile. Boundary conditions on the duct walls are derived that allow for passive noise control treatment. The BVP is recast as a system of hypersingular boundary integral equations for the unknown duct surface quantities. BIEM solution methodology is demonstrated for the scattering of incident sound by a thin cylindrical duct with hard walls. Numerical studies are conducted for various engine parameters and continuous portions of the total pressure field are computed. Radiation and duct propagation results obtained are in agreement with the classical results of spinning mode theory for infinite ducts.
Analytical integrability and physical solutions of d-KdV equation
Karmakar, P.K.; Dwivedi, C.B.
2006-03-15
A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries (d-KdV) equation describes the nonlinear ion sound wave propagation behavior. By numerical techniques, two distinct classes of solution (soliton and oscillatory shocklike structures) are obtained. Present contribution deals with the systematic methodological efforts to find out its (d-KdV) analytical solutions. As a first step, we apply the Painleve method to test whether the derived d-KdV equation is analytically integrable or not. We find that the derived d-KdV equation is indeed analytically integrable since it satisfies Painleve property. Hirota's bilinearization method and the modified sine-Gordon method (also termed as sine-cosine method) are used to derive the analytical results. Perturbative technique is also applied to find out quasistationary solutions. A few graphical plots are provided to offer a glimpse of the structural profiles obtained by different methods applied. It is conjectured that these solutions may open a new scope of acoustic spectroscopy in plasma hydrodynamics.
Integral equation for the Smith-Nezbeda model of associated fluids
NASA Astrophysics Data System (ADS)
Wertheim, M. S.
1988-01-01
Our recent reformulation of statistical thermodynamics for fluids of molecules interacting by site-site bonding forces is extended to the Smith-Nezbeda (SN) model of associated fluids, where sites bond to the hard core of another molecule. The formal theory of the SN model with one molecular site is similar to the case of site-site bonding with one site, with many formal expressions identical. The difference in physical behavior is attributable to the quite different graph content of the functions that enter. The reformulated theory contains two densities, a number density ρ and a density ρ0 of molecules with site unbonded. An integral equation of Percus-Yevick type is derived and transformed using factorization methods. Accurate numerical solutions are obtained and pressures, internal energies, and concentrations of molecules with site unbonded, bonded, and bonded partaking in a double bond are calculated. No gas-liquid phase transition is found. This is explained by insufficient clustering due to a preference for double bond formation, which is strongest at low ρ and temperature T. The degree of consistency of the virial and compressibility equations of state improves with decreasing T and becomes extraordinarily high over an extended density range at low T. Agreement with the twelve Monte Carlo simulation states of SN is excellent for the internal energy and the pair distribution function near contact. For the pressure the agreement is not quite as good, with no clear trend visible in the discrepancy between integral equation and simulation.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
New integration techniques for chemical kinetic rate equations. I - Efficiency comparison
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1986-01-01
A comparison of the efficiency of several recently developed numerical techniques for solving chemical kinetic rate equations is presented. The solution procedures examined include two general-purpose codes, EPISODE and LSODE, developed as multipurpose differential equation solvers, and three specialzed codes, CHEMEQ, CREK1D, and GCKP84, developed specifically for chemical kinetics. The efficiency comparison is made by applying these codes to two practical combustion kinetics problems. Both problems describe adiabatic, constant-pressure, gas-phase chemical reactions and include all three combustion regimes: induction, heat release, and equilibration. The comparison shows that LSODE is the fastest routine currently available for solving chemical kinetic rate equations. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for temperature can be significantly faster than evaluation of the temperature by integration of its time derivative. Significant increases in computational speed are realized by updating the reaction rate constants only when the temperature change exceeds an amount Delta-T that is problem dependent. An approximate expression for the automatic evaluation of Delta-T is presented and is shown to result in increased computational speed.
NASA Technical Reports Server (NTRS)
Clarke, R.; Lintereur, L.; Bahm, C.
2016-01-01
A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system. PMID:26382492
WKB theory of wave tunneling for Hermitian and nearly Hermitian vector systems of integral equations
NASA Astrophysics Data System (ADS)
Kull, H. J.; Kashuba, R. J.; Berk, H. L.
1989-11-01
A general theory of wave tunneling in one dimension for Hermitian and nearly Hermitian vector systems of integral equations is presented. It describes mode conversion in terms of the general dielectric tensor of the medium and properly accounts for the forward and backward nature of the waves without regard to specific models. Energy conservation in the WKB approximation can be obtained for general Hermitian systems by the use of modified Furry rules that are similar to those used by Heading for second-order differential equations. Wave energy absorption can then be calculated perturbatively using the conservation properties of the dominant Hermitian operator. Operational graphical rules are developed to construct global wave solutions and to determine the direction of energy flow for spatially disconnected roots. In principle, these rules could be applied to systems with arbitrary mode complexity. Coupling coefficients for wave tunneling problems with up to four interacting modes are calculated explicitly.
NASA Astrophysics Data System (ADS)
Chakraborty, Rumpa; Mondal, Arpita; Gayen, R.
2016-10-01
In this paper, we present an alternative method to investigate scattering of water waves by a submerged thin vertical elastic plate in the context of linear theory. The plate is submerged either in deep water or in the water of uniform finite depth. Using the condition on the plate, together with the end conditions, the derivative of the velocity potential in the direction of normal to the plate is expressed in terms of a Green's function. This expression is compared with that obtained by employing Green's integral theorem to the scattered velocity potential and the Green's function for the fluid region. This produces a hypersingular integral equation of the first kind in the difference in potential across the plate. The reflection coefficients are computed using the solution of the hypersingular integral equation. We find good agreement when the results for these quantities are compared with those for a vertical elastic plate and submerged and partially immersed rigid plates. New results for the hydrodynamic force on the plate, the shear stress and the shear strain of the vertical elastic plate are also evaluated and represented graphically.
Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs.
Magath, Thore; Serebryannikov, Andriy E
2005-11-01
A fast coupled-integral-equation (CIE) technique is developed to compute the plane-TE-wave scattering by a wide class of periodic 2D inhomogeneous structures with curvilinear boundaries, which includes finite-thickness relief and rod gratings made of homogeneous material as special cases. The CIEs in the spectral domain are derived from the standard volume electric field integral equation. The kernel of the CIEs is of Picard type and offers therefore the possibility of deriving recursions, which allow the computation of the convolution integrals occurring in the CIEs with linear amounts of arithmetic complexity and memory. To utilize this advantage, the CIEs are solved iteratively. We apply the biconjugate gradient stabilized method. To make the iterative solution process faster, an efficient preconditioning operator (PO) is proposed that is based on a formal analytical inversion of the CIEs. The application of the PO also takes only linear complexity and memory. Numerical studies are carried out to demonstrate the potential and flexibility of the CIE technique proposed. Though the best efficiency and accuracy are observed at either low permittivity contrast or high conductivity, the technique can be used in a wide range of variation of material parameters of the structures including when they contain components made of both dielectrics with high permittivity and typical metals.
Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs
NASA Astrophysics Data System (ADS)
Magath, Thore; Serebryannikov, Andriyâ E.
2005-11-01
A fast coupled-integral-equation (CIE) technique is developed to compute the plane-TE-wave scattering by a wide class of periodic 2D inhomogeneous structures with curvilinear boundaries, which includes finite-thickness relief and rod gratings made of homogeneous material as special cases. The CIEs in the spectral domain are derived from the standard volume electric field integral equation. The kernel of the CIEs is of Picard type and offers therefore the possibility of deriving recursions, which allow the computation of the convolution integrals occurring in the CIEs with linear amounts of arithmetic complexity and memory. To utilize this advantage, the CIEs are solved iteratively. We apply the biconjugate gradient stabilized method. To make the iterative solution process faster, an efficient preconditioning operator (PO) is proposed that is based on a formal analytical inversion of the CIEs. The application of the PO also takes only linear complexity and memory. Numerical studies are carried out to demonstrate the potential and flexibility of the CIE technique proposed. Though the best efficiency and accuracy are observed at either low permittivity contrast or high conductivity, the technique can be used in a wide range of variation of material parameters of the structures including when they contain components made of both dielectrics with high permittivity and typical metals.
Retrieval Performance and Indexing Differences in ABELL and MLAIB
ERIC Educational Resources Information Center
Graziano, Vince
2012-01-01
Searches for 117 British authors are compared in the Annual Bibliography of English Language and Literature (ABELL) and the Modern Language Association International Bibliography (MLAIB). Authors are organized by period and genre within the early modern era. The number of records for each author was subdivided by format, language of publication,…
Really TVD advection schemes for the depth-integrated transport equation
NASA Astrophysics Data System (ADS)
Mercier, Ch.; Delhez, E. J. M.
This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.
Phase Behavior of Active Swimmers in Depletants: Molecular Dynamics and Integral Equation Theory
NASA Astrophysics Data System (ADS)
Das, Subir K.; Egorov, Sergei A.; Trefz, Benjamin; Virnau, Peter; Binder, Kurt
2014-05-01
We study the structure and phase behavior of a binary mixture where one of the components is self-propelling in nature. The interparticle interactions in the system are taken from the Asakura-Oosawa model for colloid-polymer mixtures for which the phase diagram is known. In the current model version, the colloid particles are made active using the Vicsek model for self-propelling particles. The resultant active system is studied by molecular dynamics methods and integral equation theory. Both methods produce results consistent with each other and demonstrate that the Vicsek model-based activity facilitates phase separation, thus, broadening the coexistence region.
Phase behavior of active swimmers in depletants: molecular dynamics and integral equation theory.
Das, Subir K; Egorov, Sergei A; Trefz, Benjamin; Virnau, Peter; Binder, Kurt
2014-05-16
We study the structure and phase behavior of a binary mixture where one of the components is self-propelling in nature. The interparticle interactions in the system are taken from the Asakura-Oosawa model for colloid-polymer mixtures for which the phase diagram is known. In the current model version, the colloid particles are made active using the Vicsek model for self-propelling particles. The resultant active system is studied by molecular dynamics methods and integral equation theory. Both methods produce results consistent with each other and demonstrate that the Vicsek model-based activity facilitates phase separation, thus, broadening the coexistence region. PMID:24877969
Martingale integrals over Poissonian processes and the Ito-type equations with white shot noise
NASA Astrophysics Data System (ADS)
Zygadło, Ryszard
2003-10-01
The construction of the Ito-type stochastic integrals and differential equations for compound Poisson processes is provided. The general martingale and nonanticipating properties of the ordinary (Gaussian) Ito theory are conserved. These properties appear particularly important if the stochastic description has to be proposed according to game theory or the linear relaxation (or the exponential growth) requirements. In contrast to the ordinary Ito theory the (uncorrelated) parametric fluctuation of a definite sign can be still modeled by asymmetric white shot noise, so the general scope of applications is not restricted by the positivity requirements. The possible use of the developed formalism in econophysics is addressed.
NASA Technical Reports Server (NTRS)
Madsen, Niel K.
1992-01-01
Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.
Variational Integration for Ideal MHD with Built-in Advection Equations
Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.
2014-08-05
Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Integrating matrix solution of the hybrid state vector equations for beam vibration
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1982-01-01
A simple, versatile, and efficient computational technique has been developed for dynamic analysis of linear elastic beam and rod type of structures. Moreover, the method provides a rather general solution approach for two-point boundary value problems that are described by a single independent spatial variable. For structural problems, the method is implemented by a mixed state vector formulation of the differential equations, combined with an integrating matrix solution procedure. Highly accurate solutions are easily achieved with this approach. Example solutions are given for beam vibration problems including discontinuous stiffness and mass parameters, elastic restraint boundary conditions, concentrated inertia loading, and rigid body modes
NASA Technical Reports Server (NTRS)
Sharafeddin, Omar A.; Judson, Richard S.; Kouri, Donald J.; Hoffman, David K.
1990-01-01
The novel wave-packet propagation scheme presented is based on the time-dependent form of the Lippman-Schwinger integral equation and does not require extensive matrix inversions, thereby facilitating application to systems in which some degrees of freedom express the potential in a basis expansion. The matrix to be inverted is a function of the kinetic energy operator, and is accordingly diagonal in a Bessel function basis set. Transition amplitudes for various orbital angular momentum quantum numbers are obtainable via either Fourier transform of the amplitude density from the time to the energy domain, or the direct analysis of the scattered wave packet.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2006-01-01
The radial return and Mendelson methods for integrating the equations of classical plasticity, which appear independently in the literature, are shown to be identical. Both methods are presented in detail as are the specifics of their algorithmic implementation. Results illustrate the methods' equivalence across a range of conditions and address the question of when the methods require iteration in order for the plastic state to remain on the yield surface. FORTRAN code implementations of the radial return and Mendelson methods are provided in the appendix.
NASA Astrophysics Data System (ADS)
Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin
2006-05-01
In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.
Steady and unsteady three-dimensional transonic flow computations by integral equation method
NASA Technical Reports Server (NTRS)
Hu, Hong
1994-01-01
This is the final technical report of the research performed under the grant: NAG1-1170, from the National Aeronautics and Space Administration. The report consists of three parts. The first part presents the work on unsteady flows around a zero-thickness wing. The second part presents the work on steady flows around non-zero thickness wings. The third part presents the massively parallel processing implementation and performance analysis of integral equation computations. At the end of the report, publications resulting from this grant are listed and attached.
Percolation of clusters with a residence time in the bond definition: Integral equation theory.
Zarragoicoechea, Guillermo J; Pugnaloni, Luis A; Lado, Fred; Lomba, Enrique; Vericat, Fernando
2005-03-01
We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
Communication: An exact bound on the bridge function in integral equation theories.
Kast, Stefan M; Tomazic, Daniel
2012-11-01
We show that the formal solution of the general closure relation occurring in Ornstein-Zernike-type integral equation theories in terms of the Lambert W function leads to an exact relation between the bridge function and correlation functions, most notably to an inequality that bounds possible bridge values. The analytical results are illustrated on the example of the Lennard-Jones fluid for which the exact bridge function is known from computer simulations under various conditions. The inequality has consequences for the development of bridge function models and rationalizes numerical convergence issues.
Kamon, M.; Phillips, J.R.
1994-12-31
In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems. The authors present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more than an order of magnitude.
On integrability of D0-brane equations on AdS4 × Bbb CBbb P3 superbackground
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2014-03-01
Equations of motion for the D0-brane on AdS4 × Bbb CBbb P3 superbackground are shown to be classically integrable by extending the argument previously elaborated for the massless superparticle model.
2014-06-01
ARKode is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/ALgebraic equation Solvers [1]. The ARKode solver library provides an adaptive-step time integration package for stiff, nonstiff and multi-rate systems of ordinary differential equations (ODEs) using Runge Kutta methods [2].
On the Regularity Set and Angular Integrability for the Navier-Stokes Equation
NASA Astrophysics Data System (ADS)
D'Ancona, Piero; Lucà, Renato
2016-09-01
We investigate the size of the regular set for suitable weak solutions of the Navier-Stokes equation, in the sense of Caffarelli-Kohn-Nirenberg (Commun Pure Appl Math 35:771-831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space {\\{t > 0\\}} in an appropriate limit. In particular, we obtain that if the {L2} norm with weight {|x|^{-frac12}} of the data tends to 0, the regular set invades {\\{t > 0\\}}; this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771-831, 1982).
Fast Spectral Collocation Method for Surface Integral Equations of Potential Problems in a Spheroid
Xu, Zhenli; Cai, Wei
2009-01-01
This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid. The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid. With the proposed technique, the computation cost of collocation matrix entries is reduced from 𝒪(M2N4) to 𝒪(MN4), where N2 is the number of spherical harmonics (i.e., size of the matrix) and M is the number of one-dimensional integration quadrature points. Numerical results demonstrate the spectral accuracy of the method. PMID:20414359
The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey
NASA Technical Reports Server (NTRS)
Burg, R.; Giacconi, R.; Forman, W.; Jones, C.
1994-01-01
We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Taflove, Allen
1992-01-01
The initial results for femtosecond electromagnetic soliton propagation and collision obtained from first principles, i.e., by a direct time integration of Maxwell's equations are reported. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of 2D and 3D optical soliton propagation, scattering, and switching from the full-vector Maxwell's equations.
NASA Astrophysics Data System (ADS)
Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.
2013-09-01
Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A.M.; Cohen, B.I.; Caflisch, R.E.; Rosin, M.S.; Ricketson, L.F.
2013-06-01
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler–Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt{sup 1/2})] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering if and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler–Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. This method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; Rosin, M. S.; Ricketson, L. F.
2013-02-08
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt^{1/2})] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering if and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; Rosin, M. S.; Ricketson, L. F.
2013-02-08
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering if andmore » only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less
Integral representation of singular solutions to BVP for the wave equation
NASA Astrophysics Data System (ADS)
Nikolov, Aleksey
2014-12-01
We consider the Protter problem for the four-dimensional wave equation, where the boundary conditions are posed on a characteristic surface and on a non-characteristic one. In particular, we consider a case when the right-hand side of the equation is of the form of harmonic polynomial. This problem is known to be ill-posed, because its adjoint homogeneous problem has infinitely many nontrivial classical solutions. The solutions of the Protter problem may have strong power type singularity isolated at one boundary point. Bounded solutions are possible only if the right-hand side of the equation is orthogonal to all the classical solutions of the adjoint homogeneous problem, which in fact is a necessary but not sufficient condition for the classical solvability of the problem. In this paper we offer an explicit integral form of the solutions of the problem, which is more simple than the known so far. Additionally, we give a condition on the coefficients of the harmonic polynomial to obtain not only bounded but also continuous solution.
Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2016-09-01
In this paper we suggest generalizations of elliptic integrable tops to matrix-valued variables. Our consideration is based on the R-matrix description which provides Lax pairs in terms of quantum and classical R-matrices. First, we prove that for relativistic (and non-relativistic) tops, such Lax pairs with spectral parameters follow from the associative Yang–Baxter equation and its degenerations. Then we proceed to matrix extensions of the models and find out that some additional constraints are required for their construction. We describe a matrix version of the {{{Z}}}2 reduced elliptic top and verify that the latter constraints are fulfilled in this case. The construction of matrix extensions is naturally generalized to the monodromy preserving equation. In this way we get matrix extensions of the Painlevé VI equation and its multidimensional analogues written in the form of non-autonomous elliptic tops. Finally, it is mentioned that the matrix valued variables can be replaced by elements of noncommutative associative algebra. At the end of the paper we also describe special elliptic Gaudin models which can be considered as matrix extensions of the ({{{Z}}}2 reduced) elliptic top.
Noncommutative extensions of elliptic integrable Euler-Arnold tops and Painlevé VI equation
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2016-09-01
In this paper we suggest generalizations of elliptic integrable tops to matrix-valued variables. Our consideration is based on the R-matrix description which provides Lax pairs in terms of quantum and classical R-matrices. First, we prove that for relativistic (and non-relativistic) tops, such Lax pairs with spectral parameters follow from the associative Yang-Baxter equation and its degenerations. Then we proceed to matrix extensions of the models and find out that some additional constraints are required for their construction. We describe a matrix version of the {{{Z}}}2 reduced elliptic top and verify that the latter constraints are fulfilled in this case. The construction of matrix extensions is naturally generalized to the monodromy preserving equation. In this way we get matrix extensions of the Painlevé VI equation and its multidimensional analogues written in the form of non-autonomous elliptic tops. Finally, it is mentioned that the matrix valued variables can be replaced by elements of noncommutative associative algebra. At the end of the paper we also describe special elliptic Gaudin models which can be considered as matrix extensions of the ({{{Z}}}2 reduced) elliptic top.
Uysal, Ismail E; Arda Ülkü, H; Bağci, Hakan
2016-09-01
Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium's permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. PMID:27607496
Integrating the quantum Hamilton-Jacobi equations by wavefront expansion and phase space analysis
NASA Astrophysics Data System (ADS)
Bittner, Eric R.; Wyatt, Robert E.
2000-11-01
In this paper we report upon our computational methodology for numerically integrating the quantum Hamilton-Jacobi equations using hydrodynamic trajectories. Our method builds upon the moving least squares method developed by Lopreore and Wyatt [Phys. Rev. Lett. 82, 5190 (1999)] in which Lagrangian fluid elements representing probability volume elements of the wave function evolve under Newtonian equations of motion which include a nonlocal quantum force. This quantum force, which depends upon the third derivative of the quantum density, ρ, can vary rapidly in x and become singular in the presence of nodal points. Here, we present a new approach for performing quantum trajectory calculations which does not involve calculating the quantum force directly, but uses the wavefront to calculate the velocity field using mv=∇S, where S/ℏ is the argument of the wave function ψ. Additional numerical stability is gained by performing local gauge transformations to remove oscillatory components of the wave function. Finally, we use a dynamical Rayleigh-Ritz approach to derive ancillary equations-of-motion for the spatial derivatives of ρ, S, and v. The methodologies described herein dramatically improve the long time stability and accuracy of the quantum trajectory approach even in the presence of nodes. The method is applied to both barrier crossing and tunneling systems. We also compare our results to semiclassical based descriptions of barrier tunneling.
Wave-Propagation Modeling and Inversion Using Frequency-Domain Integral Equation Methods
NASA Astrophysics Data System (ADS)
Strickland, Christopher E.
Full waveform inverse methods describe the full physics of wave propagation and can potentially overcome the limitations of ray theoretic methods. This work explores the use of integral equation based methods for simulation and inversion and illustrates their potential for computationally demanding problems. A frequency-domain integral equation approach to simulate wave-propagation in heterogeneous media and solve the inverse wave-scattering problem will be presented for elastic, acoustic, and electromagnetic systems. The method will be illustrated for georadar (ground- or ice-penetrating radar) applications and compared to results obtained using ray theoretic methods. In order to tackle the non-linearity of the problem, the inversion incorporates a broad range of frequencies to stabilize the solution. As with most non-linear inversion methods, a starting model that reasonably approximates the true model is critical to convergence of the algorithm. To improve the starting model, a variable reference inversion technique is developed that allows the background reference medium to vary for each source-receiver data pair and is less restrictive than using a single reference medium for the entire dataset. The reference medium can be assumed homogeneous (although different for each data point) to provide a computationally efficient, single-step, frequency-domain inversion approach that incorporates finite frequency effects not captured by ray based methods. The inversion can then be iterated on to further refine the solution.
NASA Astrophysics Data System (ADS)
Vaneeva, Olena; Sophocleous, Christodoulos; Popovych, Roman; Boyko, Vyacheslav; Damianou, Pantelis
2015-06-01
The Seventh International Workshop "Group Analysis of Differential Equations and Integrable Systems" (GADEIS-VII) took place at Flamingo Beach Hotel, Larnaca, Cyprus during the period June 15-19, 2014. Fifty nine scientists from nineteen countries participated in the Workshop, and forty one lectures were presented. The Workshop topics ranged from theoretical developments of group analysis of differential equations, hypersymplectic structures, theory of Lie algebras, integrability and superintegrability to their applications in various fields. The Series of Workshops is a joint initiative by the Department of Mathematics and Statistics, University of Cyprus, and the Department of Applied Research of the Institute of Mathematics, National Academy of Sciences, Ukraine. The Workshops evolved from close collaboration among Cypriot and Ukrainian scientists. The first three meetings were held at the Athalassa campus of the University of Cyprus (October 27, 2005, September 25-28, 2006, and October 4-5, 2007). The fourth (October 26-30, 2008), the fifth (June 6-10, 2010) and the sixth (June 17-21, 2012) meetings were held at the coastal resort of Protaras. We would like to thank all the authors who have published papers in the Proceedings. All of the papers have been reviewed by at least two independent referees. We express our appreciation of the care taken by the referees. Their constructive suggestions have improved most of the papers. The importance of peer review in the maintenance of high standards of scientific research can never be overstated. Olena Vaneeva, Christodoulos Sophocleous, Roman Popovych, Vyacheslav Boyko, Pantelis Damianou
Three-body-continuum Coulomb problem using a compact-kernel-integral-equation approach
NASA Astrophysics Data System (ADS)
Silenou Mengoue, M.
2013-02-01
We present an approach associated with the Jacobi matrix method to calculate a three-body wave function that describes the double continuum of an atomic two-electron system. In this approach, a symmetrized product of two Coulomb waves is used to describe the asymptotic wave function, while a smooth cutoff function is introduced to the dielectronic potential that enters its integral part in order to have a compact kernel of the corresponding Lippmann-Schwinger-type equation to be solved. As an application, the integral equation for the (e-,e-,He2+) system is solved numerically; the fully fivefold differential cross sections (FDCSs) for (e,3e) processes in helium are presented within the first-order Born approximation. The calculation is performed for a coplanar geometry in which the incident electron is fast (˜6 keV) and for a symmetric energy sharing between both slow ejected electrons at excess energy of 20 eV. The experimental and theoretical FDCSs agree satisfactorily both in shape and in magnitude. Full convergence in terms of the basis size is reached and presented.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu
2009-01-01
Deposition of large particles such as colloidal or bio-particles on a solid surface is usually modeled by the random sequential adsorption (RSA). The model was previously described by the integral-equation theory whose validity was proved by Monte Carlo simulation. This work generalized the model to include the concentration effect of added particles on the surface. The fraction of particles inserted was varied by the reduced number density of 0.05, 0.1, and 0.2. It was found that the modified integral-equation theory yielded the results in good accordance with the simulation. Regarding colloidal particles as hard spheres, when the fraction of particles added was increased, the radial distribution function has higher peak, due to the cooperative and entropic effects. This work could bridge the gap between equilibrium adsorption, where all particles may be considered moving and RSA, where there is no moving particle on the surface. In addition, the effect of attractive interaction was also incorporated and it was found that increasing number of added particles at one time yields less values of the radial distribution function.
NASA Astrophysics Data System (ADS)
Li, Jie; Dault, Daniel; Liu, Beibei; Tong, Yiying; Shanker, Balasubramaniam
2016-08-01
The analysis of electromagnetic scattering has long been performed on a discrete representation of the geometry. This representation is typically continuous but not differentiable. The need to define physical quantities on this geometric representation has led to development of sets of basis functions that need to satisfy constraints at the boundaries of the elements/tessellations (viz., continuity of normal or tangential components across element boundaries). For electromagnetics, these result in either curl/div-conforming basis sets. The geometric representation used for analysis is in stark contrast with that used for design, wherein the surface representation is higher order differentiable. Using this representation for both geometry and physics on geometry has several advantages, and is elucidated in Hughes et al. (2005) [7]. Until now, a bulk of the literature on isogeometric methods have been limited to solid mechanics, with some effort to create NURBS based basis functions for electromagnetic analysis. In this paper, we present the first complete isogeometry solution methodology for the electric field integral equation as applied to simply connected structures. This paper systematically proceeds through surface representation using subdivision, definition of vector basis functions on this surface, to fidelity in the solution of integral equations. We also present techniques to stabilize the solution at low frequencies, and impose a Calderón preconditioner. Several results presented serve to validate the proposed approach as well as demonstrate some of its capabilities.
The Reduction of Ducted Fan Engine Noise Via A Boundary Integral Equation Method
NASA Technical Reports Server (NTRS)
Tweed, J.; Dunn, M.
1997-01-01
The development of a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is discussed. The method is motivated by the need for an efficient and versatile computational tool to assist in parametric noise reduction studies. In this research, the work in reference 1 was extended to include passive noise control treatment on the duct interior. The BEM considers the scattering of incident sound generated by spinning point thrust dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by term. The BEM theoretical framework is based on Helmholtz potential theory. A boundary value problem is converted to a boundary integral equation formulation with unknown single and double layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily calculated. The main feature of the BIEM is the ability to compute any portion of the sound field without the need to compute the entire field. Other noise prediction methods such as CFD and Finite Element methods lack this property. Additional BIEM attributes include versatility, ease of use, rapid noise predictions, coupling of propagation and radiation both forward and aft, implementable on midrange personal computers, and valid over a wide range of frequencies.
NASA Technical Reports Server (NTRS)
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
Generalized method of moments: A novel discretization technique for integral equations
NASA Astrophysics Data System (ADS)
Nair, Naveen V.
Integral equation formulations to solve electromagnetic scattering and radiation problems have existed for over a century. The method of moments (MoM) technique to solve these integral equations has been in active use for over 40 years and has become one of the cornerstones of electromagnetic analysis. It has been successfully employed in a wide variety of problems ranging from scattering and antenna analysis to electromagnetic compatibility analysis to photonics. In MoM, the unknown quantity (currents or fields) is represented using a set of basis functions. This representation, together with Galerkin testing, results in a set of equations that may then be solved to obtain the coefficients of expansion. The basis functions are typically constructed on a tessellation of the geometry and its choice is critical to the accuracy of the final solution. As a result, considerable energy has been expended in the design and construction of optimal basis functions. The most common of these functions in use today are the Rao-Wilton-Glisson (RWG) functions that have become the de-facto standard and have also spawned a set of higher order complete and singular variants. However, their near-ubiquitous popularity and success notwithstanding, they come with certain important limitations. The chief among these is the intimate marriage between the underlying triangulation of the geometry and the basis function. While this coupling maintains continuity of the normal component of these functions across triangle boundaries and makes them very easy to implement, this also implies an inherent restriction on the kind of basis function spaces that can be employed. This thesis aims to address this issue and provides a novel framework for the discretization of integral equations that demonstrates several significant advantages. In this work, we will describe a new umbrella framework for the discretization of integral equations called the Generalized Method of Moments (GMM). We will show that
CALL FOR PAPERS: Special Issue on `Geometric Numerical Integration of Differential Equations'
NASA Astrophysics Data System (ADS)
Quispel, G. R. W.; McLachlan, R. I.
2005-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Geometric Numerical Integration of Differential Equations'. This issue should be a repository for high quality original work. We are interested in having the topic interpreted broadly, that is, to include contributions dealing with symplectic or multisymplectic integration; volume-preserving integration; symmetry-preserving integration; integrators that preserve first integrals, Lyapunov functions, or dissipation; exponential integrators; integrators for highly oscillatory systems; Lie-group integrators, etc. Papers on geometric integration of both ODEs and PDEs will be considered, as well as application to molecular-scale integration, celestial mechanics, particle accelerators, fluid flows, population models, epidemiological models and/or any other areas of science. We believe that this issue is timely, and hope that it will stimulate further development of this new and exciting field. The Editorial Board has invited G R W Quispel and R I McLachlan to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are the following: • The subject of the paper should relate to geometric numerical integration in the sense described above. • Contributions will be refereed and processed according to the usual procedure of the journal. • Papers should be original; reviews of a work published elsewhere will not be accepted. The guidelines for the preparation of contributions are as follows: • The DEADLINE for submission of contributions is 1 September 2005. This deadline will allow the special issue to appear in late 2005 or early 2006. • There is a strict page limit of 16 printed pages (approximately 9600 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and General
ERIC Educational Resources Information Center
Santos-George, Arlene A.
2012-01-01
This dissertation empirically tested Tinto's student integration theory through structural equation modeling using a national sample of 2,847 first-time entering community college students. Tinto theorized that the more academically and socially integrated a student is to the college environment, the more likely the student will persist…
Study of time-accurate integration of the variable-density Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Lu, Xiaoyi; Pantano, Carlos
2015-11-01
We present several theoretical elements that affect time-consistent integration of the low-Mach number approximation of variable-density Navier-Stokes equations. The goal is for velocity, pressure, density, and scalars to achieve uniform order of accuracy, consistent with the time integrator being used. We show examples of second-order (using Crank-Nicolson and Adams-Bashforth) and third-order (using additive semi-implicit Runge-Kutta) uniform convergence with the proposed conceptual framework. Furthermore, the consistent approach can be extended to other time integrators. In addition, the method is formulated using approximate/incomplete factorization methods for easy incorporation in existing solvers. One of the observed benefits of the proposed approach is improved stability, even for large density difference, in comparison with other existing formulations. A linearized stability analysis is also carried out for some test problems to better understand the behavior of the approach. This work was supported in part by the Department of Energy, National Nuclear Security Administration, under award no. DE-NA0002382 and the California Institute of Technology.
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points. PMID:27652048
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.
NASA Astrophysics Data System (ADS)
Zhang, Xiang
2013-05-01
Llibre and Valls, in [Physica D, 241(2012) 1417-1420], proved that, if the Kirchoff equations have a proper Darboux polynomial with its cofactor satisfying some symmetry, they have a polynomial first integral. In this note we will improve this last result, and obtain that, if the Kirchoff equations have a proper Darboux polynomial, they always have a polynomial first integral functionally independent of the three known ones. Our result improves that of Llibre and Valls in two aspects: we drop the symmetric condition, and prove that the obtained first integral is functionally independent of the known ones.
X-Ray Imaging-Spectroscopy of Abell 1835
NASA Technical Reports Server (NTRS)
Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.
2000-01-01
We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (10(exp 46)ergs/s), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT(sub e) = 8.2 keV) outer envelope. We detect O VIII Ly(alpha) and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT(sub e) = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.
MUSE observations of the lensing cluster Abell 1689
NASA Astrophysics Data System (ADS)
Bina, D.; Pelló, R.; Richard, J.; Lewis, J.; Patrício, V.; Cantalupo, S.; Herenz, E. C.; Soto, K.; Weilbacher, P. M.; Bacon, R.; Vernet, J. D. R.; Wisotzki, L.; Clément, B.; Cuby, J. G.; Lagattuta, D. J.; Soucail, G.; Verhamme, A.
2016-05-01
Context. This paper presents the results obtained with the Multi Unit Spectroscopic Explorer (MUSE) for the core of the lensing cluster Abell 1689, as part of MUSE's commissioning at the ESO Very Large Telescope. Aims: Integral-field observations with MUSE provide a unique view of the central 1 × 1 arcmin2 region at intermediate spectral resolution in the visible domain, allowing us to conduct a complete census of both cluster galaxies and lensed background sources. Methods: We performed a spectroscopic analysis of all sources found in the MUSE data cube. Two hundred and eighty-two objects were systematically extracted from the cube based on a guided-and-manual approach. We also tested three different tools for the automated detection and extraction of line emitters. Cluster galaxies and lensed sources were identified based on their spectral features. We investigated the multiple-image configuration for all known sources in the field. Results: Previous to our survey, 28 different lensed galaxies displaying 46 multiple images were known in the MUSE field of view, most of them were detected through photometric redshifts and lensing considerations. Of these, we spectroscopically confirm 12 images based on their emission lines, corresponding to 7 different lensed galaxies between z = 0.95 and 5.0. In addition, 14 new galaxies have been spectroscopically identified in this area thanks to MUSE data, with redshifts ranging between 0.8 and 6.2. All background sources detected within the MUSE field of view correspond to multiple-imaged systems lensed by A1689. Seventeen sources in total are found at z ≥ 3 based on their Lyman-α emission, with Lyman-α luminosities ranging between 40.5 ≲ log (Lyα) ≲ 42.5 after correction for magnification. This sample is particularly sensitive to the slope of the luminosity function toward the faintest end. The density of sources obtained in this survey is consistent with a steep value of α ≤ -1.5, although this result still
NASA Astrophysics Data System (ADS)
Abas, Z. Abal; Salleh, S.; Basari, A. S. Hassan; Ibrahim, Nuzulha Khilwani
2010-11-01
A conceptual model of integrating the sensor network and the radiative heat transfer equation is developed and presented in this paper. The idea is to present possible deployment of sensor networks in the Ethylene furnace so that valuable input in the form of boundary value can be generated in order to produce intensity distribution and heat flux distribution. Once the location of sensor deployment has been recommended, the mesh at the physical space between the furnace wall and the reactor tube is constructed. The paper concentrates only at 2D model with only 1 U-bend reactor tube in the ethylene furnace as an initial phase of constructing a complete simulation in real furnace design.
On the derivation of variational integrators for the rotating shallow-water equations
NASA Astrophysics Data System (ADS)
Bauer, Werner; Gay-Balmaz, François
2016-04-01
We present a structure-preserving discretization of the rotating shallow-water equations. This novel numerical scheme is based on a finite dimensional approximation of the group of diffeomorphisms and is derived via a discrete version of the Euler-Poincaré variational formulation of rotating compressible fluids. The resulting variational integrator, currently derived for regular triangular meshes, provides the first successful derivation and implementation of a compressible two-dimensional model by this discrete variational principle. We illustrate on various test cases that this variationally derived scheme exhibits excellent long term energy behavior, shows a second order convergence rate in space, and respects conservation laws such as geostrophic balance and mass conservation.
Efficient solution of liquid state integral equations using the Newton-GMRES algorithm
NASA Astrophysics Data System (ADS)
Booth, Michael J.; Schlijper, A. G.; Scales, L. E.; Haymet, A. D. J.
1999-06-01
We present examples of the accurate, robust and efficient solution of Ornstein-Zernike type integral equations which describe the structure of both homogeneous and inhomogeneous fluids. In this work we use the Newton-GMRES algorithm as implemented in the public-domain nonlinear Krylov solvers NKSOL [ P. Brown, Y. Saad, SIAM J. Sci. Stat. Comput. 11 (1990) 450] and NITSOL [ M. Pernice, H.F. Walker, SIAM J. Sci. Comput. 19 (1998) 302]. We compare and contrast this method with more traditional approaches in the literature, using Picard iteration (successive-substitution) and hybrid Newton-Raphson and Picard methods, and a recent vector extrapolation method [ H.H.H. Homeier, S. Rast, H. Krienke, Comput. Phys. Commun. 92 (1995) 188]. We find that both the performance and ease of implementation of these nonlinear solvers recommend them for the solution of this class of problem.
Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto
2014-09-30
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
Generalized Theodorsen solution for singular integral equations of the airfoil class
NASA Technical Reports Server (NTRS)
Williams, M. H.
1977-01-01
A class of singular integral equations is considered which arise in various two-dimensional mixed boundary-value problems with simple harmonic time variation. A problem typical of this class is that of determining the lifting pressure distribution on an oscillating airfoil in an unbounded incompressible potential flow. It is shown that Theodorsen's (1935) solution to this problem, with some modification, is valid for a general class of unsteady kernel functions. The technique employed is to consider an equivalent steady problem and then show that the unsteady resolvent and unsteady homogeneous solution can be written directly in terms of the steady solutions and a single frequency-dependent function which reduces to the Theodorsen function for the steady kernel.
Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps
Yuan Jianhua; Lu Yayan Antoine, Xavier
2008-04-20
Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation to the boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells containing circular cylinders, the DtN maps can be constructed from analytic solutions (the cylindrical waves). In this paper, we develop a boundary integral equation method for computing DtN maps of general unit cells containing cylinders with arbitrary cross sections. The DtN map method is used to analyze band structures for 2D PhCs with elliptic and other cylinders.
NASA Astrophysics Data System (ADS)
Zhao, Huaqing
There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in
Integral equation and discontinuous Galerkin methods for the analysis of light-matter interaction
NASA Astrophysics Data System (ADS)
Baczewski, Andrew David
Light-matter interaction is among the most enduring interests of the physical sciences. The understanding and control of this physics is of paramount importance to the design of myriad technologies ranging from stained glass, to molecular sensing and characterization techniques, to quantum computers. The development of complex engineered systems that exploit this physics is predicated at least partially upon in silico design and optimization that properly capture the light-matter coupling. In this thesis, the details of computational frameworks that enable this type of analysis, based upon both Integral Equation and Discontinuous Galerkin formulations will be explored. There will be a primary focus on the development of efficient and accurate software, with results corroborating both. The secondary focus will be on the use of these tools in the analysis of a number of exemplary systems.
Boundary integral equation method calculations of surface regression effects in flame spreading
NASA Technical Reports Server (NTRS)
Altenkirch, R. A.; Rezayat, M.; Eichhorn, R.; Rizzo, F. J.
1982-01-01
A solid-phase conduction problem that is a modified version of one that has been treated previously in the literature and is applicable to flame spreading over a pyrolyzing fuel is solved using a boundary integral equation (BIE) method. Results are compared to surface temperature measurements that can be found in the literature. In addition, the heat conducted through the solid forward of the flame, the heat transfer responsible for sustaining the flame, is also computed in terms of the Peclet number based on a heated layer depth using the BIE method and approximate methods based on asymptotic expansions. Agreement between computed and experimental results is quite good as is agreement between the BIE and the approximate results.
Effective integration of ultra-elliptic solutions of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Wright, O. C.
2016-05-01
An effective integration method based on the classical solution of the Jacobi inversion problem, using Kleinian ultra-elliptic functions and Riemann theta functions, is presented for the quasi-periodic two-phase solutions of the focusing cubic nonlinear Schrödinger equation. Each two-phase solution with real quasi-periods forms a two-real-dimensional torus, modulo a circle of complex-phase factors, expressed as a ratio of theta functions associated with the Riemann surface of the invariant spectral curve. The initial conditions of the Dirichlet eigenvalues satisfy reality conditions which are explicitly parametrized by two physically-meaningful real variables: the squared modulus and a scalar multiple of the wavenumber. Simple new formulas for the maximum modulus and the minimum modulus are obtained in terms of the imaginary parts of the branch points of the Riemann surface.
NASA Technical Reports Server (NTRS)
Mager, Arthur
1952-01-01
The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
Bokhari, Ashfaque H.; Zaman, F. D.; Mahomed, F. M.
2010-05-15
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Efficient solution of time-domain boundary integral equations arising in sound-hard scattering
NASA Astrophysics Data System (ADS)
Veit, Alexander; Merta, Michal; Zapletal, Jan; Lukáš, Dalibor
2016-08-01
We consider the efficient numerical solution of the three-dimensional wave equation with Neumann boundary conditions via time-domain boundary integral equations. A space-time Galerkin method with $C^\\infty$-smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time.
NASA Astrophysics Data System (ADS)
Gazzillo, Domenico; Munaò, Gianmarco; Prestipino, Santi
2016-06-01
We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete chemical association between unlike species in an initially equimolar mixture of hard spheres (species A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose attractive surface layer is infinitely thin. Wertheim's two-density integral equations are employed to describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factorization, these equations are solved analytically within the associative Percus-Yevick approximation. The limit of complete association is taken at the end. The present paper extends to the more general, heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J. Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters. Furthermore, the solution for the Baxter factor correlation functions qi j α β ( r ) is determined here in a fully analytic way, since we have been able to find explicit analytic expressions for all the intervening parameters.
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
A hybrid boundary-integral/thin-sheet equation for subduction modelling
NASA Astrophysics Data System (ADS)
Xu, Bingrui; Ribe, Neil M.
2016-09-01
Subducting oceanic lithosphere is an example of a thin sheet-like object whose characteristic lateral dimension greatly exceeds its thickness. Here we exploit this property to derive a new hybrid boundary-integral/thin sheet (BITS) representation of subduction that combines in a single equation all the forces acting on the sheet: gravity, internal resistance to bending and stretching, and the tractions exerted by the ambient mantle. For simplicity, we limit ourselves to 2-D. We solve the BITS equations using a discrete Lagrangian approach in which the sheet is represented by a set of vertices connected by edges. Instantaneous solutions for the sinking speed of a slab attached to a trailing flat sheet obey a scaling law of the form V/VStokes = fct(St), where VStokes is a characteristic Stokes sinking speed and St is the sheet's flexural stiffness. Time-dependent solutions for the evolution of the sheet's shape and thickness show that these are controlled by the viscosity ratio between the sheet and its surroundings. An important advantage of the BITS approach is the possibility of generalizing the sheet's rheology, either to a viscosity that varies along the sheet or to a non-Newtonian shear-thinning rheology.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
A hybrid boundary-integral/thin-sheet equation for subduction modeling
NASA Astrophysics Data System (ADS)
Xu, Bingrui; Ribe, Neil M.
2016-06-01
Subducting oceanic lithosphere is an example of a thin sheet-like object whose characteristic lateral dimension greatly exceeds its thickness. Here we exploit this property to derive a new hybrid boundary-integral/thin sheet (BITS) representation of subduction that combines in a single equation all the forces acting on the sheet: gravity, internal resistance to bending and stretching, and the tractions exerted by the ambient mantle. For simplicity, we limit ourselves to two dimensions. We solve the BITS equations using a discrete Lagrangian approach in which the sheet is represented by a set of vertices connected by edges. Instantaneous solutions for the sinking speed of a slab attached to a trailing flat sheet obey a scaling law of the form V/VStokes = fct(St), where VStokes is a characteristic Stokes sinking speed and St is the sheet's flexural stiffness. Time-dependent solutions for the evolution of the sheet's shape and thickness show that these are controlled by the viscosity ratio between the sheet and its surroundings. An important advantage of the BITS approach is the possibility of generalizing the sheet's rheology, either to a viscosity that varies along the sheet or to a non-Newtonian shear-thinning rheology.
Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids
NASA Astrophysics Data System (ADS)
Mahalov, A.; Moustaoui, M.
2016-11-01
A finite-difference time-domain method for integration of Maxwell equations is presented. The computational algorithm is based on the leapfrog time stepping scheme with unstaggered temporal grids. It uses a fourth-order implicit time filter that reduces computational modes and fourth-order finite difference approximations for spatial derivatives. The method can be applied within both staggered and collocated spatial grids. It has the advantage of allowing explicit treatment of terms involving electric current density and application of selective numerical smoothing which can be used to smooth out errors generated by finite differencing. In addition, the method does not require iteration of the electric constitutive relation in nonlinear electromagnetic propagation problems. The numerical method is shown to be effective and stable when employed within Perfectly Matched Layers (PML). Stability analysis demonstrates that the proposed method is effective in stabilizing and controlling numerical instabilities of computational modes arising in wave propagation problems with physical damping and artificial smoothing terms while maintaining higher accuracy for the physical modes. Comparison of simulation results obtained from the proposed method and those computed by the classical time filtered leapfrog, where Maxwell equations are integrated for a lossy medium, within PML regions and for Kerr-nonlinear media show that the proposed method is robust and accurate. The performance of the computational algorithm is also verified by analyzing parametric four wave mixing in an optical nonlinear Kerr medium. The algorithm is found to accurately predict frequencies and amplitudes of nonlinearly converted waves under realistic conditions proposed in the literature.
Giurgiutiu, V.; Ionita, A.; Dillard, D.A.; Graffeo, J.K.
1996-12-31
Fracture mechanics analysis of adhesively bonded joints has attracted considerable attention in recent years. A possible approach to the analysis of adhesive layer cracks is to study a brittle adhesive between 2 elastic half-planes representing the substrates. A 2-material 3-region elasticity problem is set up and has to be solved. A modeling technique based on the work of Fleck, Hutchinson, and Suo is used. Two complex potential problems using Muskelishvili`s formulation are set up for the 3-region, 2-material model: (a) a distribution of edge dislocations is employed to simulate the crack and its near field; and (b) a crack-free problem is used to simulate the effect of the external loading applied in the far field. Superposition of the two problems is followed by matching tractions and displacements at the bimaterial boundaries. The Cauchy principal value integral is used to treat the singularities. Imposing the traction-free boundary conditions over the entire crack length yielded a linear system of two integral equations. The parameters of the problem are Dundurs` elastic mismatch coefficients, {alpha} and {beta}, and the ratio c/H representing the geometric position of the crack in the adhesive layer.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.
2002-01-01
The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.
Baczewski, Andrew D; Bond, Stephen D
2013-07-28
Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.
NASA Astrophysics Data System (ADS)
Baczewski, Andrew D.; Bond, Stephen D.
2013-07-01
Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.
NASA Astrophysics Data System (ADS)
Fishman, Louis
2000-11-01
The role of mathematical modeling in the physical sciences will be briefly addressed. Examples will focus on computational acoustics, with applications to underwater sound propagation, electromagnetic modeling, optics, and seismic inversion. Direct and inverse wave propagation problems in both the time and frequency domains will be considered. Focusing on fixed-frequency (elliptic) wave propagation problems, the usual, two-way, partial differential equation formulation will be exactly reformulated, in a well-posed manner, as a one-way (marching) problem. This is advantageous for both direct and inverse considerations, as well as stochastic modeling problems. The reformulation will require the introduction of pseudodifferential operators and their accompanying phase space analysis (calculus), in addition to path integral representations for the fundamental solutions and their subsequent computational algorithms. Unlike the more traditional, purely numerical applications of, for example, finite-difference and finite-element methods, this approach, in effect, writes the exact, or, more generally, the asymptotically correct, answer as a functional integral and, subsequently, computes it directly. The overall computational philosophy is to combine analysis, asymptotics, and numerical methods to attack complicated, real-world problems. Exact and asymptotic analysis will stress the complementary nature of the direct and inverse formulations, as well as indicating the explicit structural connections between the time- and frequency-domain solutions.
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1980-01-01
New methods are introduced for the time integration of the Fourier and Chebyshev methods of solution for dynamic differential equations. These methods are unconditionally stable, even though no matrix inversions are required. Time steps are chosen by accuracy requirements alone. For the Fourier method both leapfrog and Runge-Kutta methods are considered. For the Chebyshev method only Runge-Kutta schemes are tested. Numerical calculations are presented to verify the analytic results. Applications to the shallow water equations are presented.
NASA Astrophysics Data System (ADS)
Kimoto, K.; Hirose, S.
2002-05-01
This paper presents a boundary integral equation method for 3D ultrasonic scattering problems in a fluid-loaded elastic half space. Since full scale of numerical calculation using finite element or boundary element method is still very expensive, we formulate a boundary integral equation for the scattered field, which is amenable to numerical treatment. In order to solve the problem using the integral equation, however, the wave field without scattering objects, so-called free field need to be given in advance. We calculate the free field by the plane wave spectral method where the asymptotic approximation is introduced for computational efficiency. To show the efficiency of our method, scattering by a spherical cavity near fluid-solid interface is solved and the validity of the results is discussed.
Internal dynamics of Abell 1240: a galaxy cluster with symmetric double radio relics
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.; Dasí, M.
2009-08-01
Context: The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. Aims: We aim to obtain new insights into the internal dynamics of the cluster Abell 1240, which appears to contain two roughly symmetric radio relics, separated by ~2 h_70-1 Mpc. Methods: Our analysis is based mainly on redshift data for 145 galaxies mostly acquired at the Telescopio Nazionale Galileo and on new photometric data acquired at the Isaac Newton Telescope. We also use X-ray data from the Chandra archive and photometric data from the Sloan Digital Sky Survey (Data Release 7). We combine galaxy velocities and positions to select 89 cluster galaxies and analyze the internal dynamics of the Abell 1237 + Abell 1240 cluster complex, Abell 1237 being a close companion of Abell 1240 in its southern direction. Results: We estimate similar redshifts for Abell 1237 and Abell 1240, < z > = 0.1935 and < z > = 0.1948, respectively. For Abell 1237, we estimate a line-of-sight (LOS) velocity dispersion of σV ~ 740 km s-1and a mass of M ~ 6 × 1014 h_70-1 M⊙. For Abell 1240, we estimate a LOS σV ~ 870 km s-1and a mass in the range M ~ 0.9-1.9 × 1015 h_70-1 M⊙, which takes account of its complex dynamics. Abell 1240 is shown to have a bimodal structure with two galaxy clumps roughly aligned along its N-S direction, the same as defined by the elongation of its X-ray surface brightness and the axis of symmetry of the relics. The two brightest galaxies of Abell 1240, associated with the northern and southern clumps, are separated by a LOS rest-frame velocity difference Vrf ~ 400 km s-1and a projected distance D ~ 1.2 h_70-1 Mpc. The two-body model agrees with the hypothesis that we are looking at a cluster merger that occurred largely in the plane of the sky, the two galaxy clumps being separated by a rest-frame velocity difference Vrf ~ 2000 km s-1at a time of 0.3 Gyr after the crossing core, while Abell 1237
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis.
Monte Carlo solution of the volume-integral equation of electromagnetic scattering
NASA Astrophysics Data System (ADS)
Peltoniemi, J.; Muinonen, K.
2014-07-01
Electromagnetic scattering is often the main physical process to be understood when interpreting the observations of asteroids, comets, and meteors. Modeling the scattering faces still many problems, and one needs to assess several different cases: multiple scattering and shadowing by the rough surface, multiple scattering inside a surface element, and single scattering by a small object. Our specific goal is to extend the electromagnetic techniques to larger and more complicated objects, and derive approximations taking into account the most important effects of waves. Here we experiment with Monte Carlo techniques: can they provide something new to solving the scattering problems? The electromagnetic wave equation in the presence of a scatterer of volume V and refractive index m, with an incident wave EE_0, including boundary conditions and the scattering condition at infinity, can be presented in the form of an integral equation EE(rr)(1+suski(rr) Q(ρ))-int_{V-V_ρ}ddrr' GG(rr-rr')suski(rr')EE(rr') =EE_0, where suski(rr)=m(rr)^2-1, Q(ρ)=-1/3+{cal O}(ρ^2)+{O'}(m^2ρ^2), {O}, and {O'} are some second- and higher-order corrections for the finite-size volume V_ρ of radius ρ around the singularity and GG is the dyadic Green's function of the form GG(RR)={exp(im kR)}/{4π R}[unittensor(1+{im}/{R}-{1}/{R^2})-RRRR(1+{3im}/{R}-{3}/{R^2})]. In general, this is solved by extending the internal field in terms of some simple basis functions, e.g., plane or spherical waves or a cubic grid, approximating the integrals in a clever way, and determining the goodness of the solution somehow, e.g., moments or least square. Whatever the choice, the solution usually converges nicely towards a correct enough solution when the scatterer is small and simple, and diverges when the scatterer becomes too complicated. With certain methods, one can reach larger scatterers faster, but the memory and CPU needs can be huge. Until today, all successful solutions are based on more or less
Lee, Yong Woo; Lee, Duck Joo
2014-12-01
Kirchhoff's formula for the convective wave equation is derived using the generalized function theory. The generalized convective wave equation for a stationary surface is obtained, and the integral formulation, the convective Kirchhoff's formula, is derived. The formula has a similar form to the classical Kirchhoff's formula, but an additional term appears due to a moving medium effect. For convenience, the additional term is manipulated to a final form as the classical Kirchhoff's formula. The frequency domain boundary integral can be obtained from the current time domain boundary integral form. The derived formula is verified by comparison with the analytic solution of source in the uniform flow. The formula is also utilized as a boundary integral equation. Time domain boundary element method (BEM) analysis using the boundary integral equation is conducted, and the results show good agreement with the analytical solution. The formula derived here can be useful for sound radiation and scattering by arbitrary bodies in a moving medium in the time domain. PMID:25480045
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
Yu, Zhang; Zhang, Yufeng
2009-01-30
Three semi-direct sum Lie algebras are constructed, which is an efficient and new way to obtain discrete integrable couplings. As its applications, three discrete integrable couplings associated with the modified KdV lattice equation are worked out. The approach can be used to produce other discrete integrable couplings of the discrete hierarchies of solition equations. PMID:20119478
Tunç, Cemil; Tunç, Osman
2016-01-01
In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results. PMID:26843982
NASA Astrophysics Data System (ADS)
Zinser, Brian
We present two distinct mathematical models where high-order integral equations are applied to electromagnetic problems. The first problem is to find the electric potential in and around ion channels and Janus particles. The second problem is to find the electromagnetic scattering caused by a set of simple geometric objects. In biology, we consider two types of inhomogeneities: the first one is a simple model of an ion channel which consists of a finite height cylindrical cavity embedded in a layered electrolytes/membrane environment, and the second one is a Janus particle made of two different semi-spherical dielectric materials. A boundary element method (BEM) for the Poisson-Boltzmann equation based on Muller's hyper-singular second kind integral equation formulation is used to accurately compute electrostatic potentials. The proposed BEM gives O(1) condition numbers and we show that the second order basis converges faster and is more accurate than the first order basis. For solar cells, we develop a Nystrom volume integral equation (VIE) method for calculating the electromagnetic scattering according to the Maxwell equations. The Cauchy principal values (CPVs) that arise from the VIE are computed using a finite size exclusion volume with explicit correction integrals. Outside the exclusion, the hyper-singular integrals are computed using an interpolated quadrature formulae with tensor-product quadrature nodes. We considered cubes, rectangles, cylinders, spheres, and ellipsoids. As the new quadrature weights are pre-calculated and tabulated, the integrals are calculated efficiently at runtime. Simulations with many scatterers demonstrate the efficiency of the interpolated quadrature formulae. We also demonstrate that the resulting VIE has high accuracy and p-convergence.
Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang
2014-11-15
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested.
Studies of the accuracy of time integration methods for reaction-diffusion equations
NASA Astrophysics Data System (ADS)
Ropp, David L.; Shadid, John N.; Ober, Curtis C.
2004-03-01
In this study we present numerical experiments of time integration methods applied to systems of reaction-diffusion equations. Our main interest is in evaluating the relative accuracy and asymptotic order of accuracy of the methods on problems which exhibit an approximate balance between the competing component time scales. Nearly balanced systems can produce a significant coupling of the physical mechanisms and introduce a slow dynamical time scale of interest. These problems provide a challenging test for this evaluation and tend to reveal subtle differences between the various methods. The methods we consider include first- and second-order semi-implicit, fully implicit, and operator-splitting techniques. The test problems include a prototype propagating nonlinear reaction-diffusion wave, a non-equilibrium radiation-diffusion system, a Brusselator chemical dynamics system and a blow-up example. In this evaluation we demonstrate a "split personality" for the operator-splitting methods that we consider. While operator-splitting methods often obtain very good accuracy, they can also manifest a serious degradation in accuracy due to stability problems.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution. PMID:25377116
NASA Astrophysics Data System (ADS)
Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao
2014-02-01
Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.
Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations
NASA Astrophysics Data System (ADS)
Assis, M.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J.-M.; McCoy, B. M.
2012-02-01
We give the exact expressions of the partial susceptibilities χ(3)d and χ(4)d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3, 2/3, 3/2], [1, 1] z) and 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1] z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χ(3)d and χ(4)d. We also give new results for χ(5)d. We see, in particular, the emergence of a remarkable order-6 operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the n-fold integrals of the Ising model are not only ‘derived from geometry’ (globally nilpotent), but actually correspond to ‘special geometry’ (homomorphic to their formal adjoint). This raises the question of seeing if these ‘special geometry’ Ising operators are ‘special’ ones, reducing, in fact systematically, to (selected, k-balanced, ...) q + 1Fq hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.
NASA Astrophysics Data System (ADS)
Kalogiratou, Z.; Monovasilis, Th.; Psihoyios, G.; Simos, T. E.
2014-03-01
In this work we review single step methods of the Runge-Kutta type with special properties. Among them are methods specially tuned to integrate problems that exhibit a pronounced oscillatory character and such problems arise often in celestial mechanics and quantum mechanics. Symplectic methods, exponentially and trigonometrically fitted methods, minimum phase-lag and phase-fitted methods are presented. These are Runge-Kutta, Runge-Kutta-Nyström and Partitioned Runge-Kutta methods. The theory of constructing such methods is given as well as several specific methods. In order to present the performance of the methods we have tested 58 methods from all categories. We consider the two dimensional harmonic oscillator, the two body problem, the pendulum problem and the orbital problem studied by Stiefel and Bettis. Also we have tested the methods on the computation of the eigenvalues of the one dimensional time independent Schrödinger equation with the harmonic oscillator, the doubly anharmonic oscillator and the exponential potentials.
Coupled integral equations for sound propagation above a hard ground surface with trench cuttings.
Wang, Gong Li; Chew, Weng Cho; White, Michael J
2006-09-01
A set of coupled integral equations is formulated for the investigation of sound propagation from an infinitesimal harmonic line source above a hard ground surface corrugated with cuttings. Two half-space Green's functions are employed in the formulation. The first one defined for the upper half space is used to reduce the problem size and eliminate the edge effect resulting from the boundary truncation; the other one for the lower half space is to simplify the representation of the Neumann-Dirichlet map. As a result, the unknowns are only distributed over the corrugated part of the surface, which leads to substantial reduction in the size of the final linear system. The computational complexity of the Neumann-Dirichlet map is also reduced. The method is used to analyze the behavior of sound propagation above textured surfaces the impedance of which is expectedly altered. The effects of number and opening of trench cuttings, and the effect of source height are investigated. The conclusions drawn can be used for reference in a practical problem of mitigating gun blast noise. PMID:17004443
Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak
2012-10-01
The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration. PMID:23265017
The galaxy population of Abell 1367: the stellar mass-metallicity relation
NASA Astrophysics Data System (ADS)
Mouhcine, M.; Kriwattanawong, W.; James, P. A.
2011-04-01
Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.
NASA Astrophysics Data System (ADS)
Yang, Yunqing; Yan, Zhenya; Malomed, Boris A.
2015-10-01
We analytically study rogue-wave (RW) solutions and rational solitons of an integrable fifth-order nonlinear Schrödinger (FONLS) equation with three free parameters. It includes, as particular cases, the usual NLS, Hirota, and Lakshmanan-Porsezian-Daniel equations. We present continuous-wave (CW) solutions and conditions for their modulation instability in the framework of this model. Applying the Darboux transformation to the CW input, novel first- and second-order RW solutions of the FONLS equation are analytically found. In particular, trajectories of motion of peaks and depressions of profiles of the first- and second-order RWs are produced by means of analytical and numerical methods. The solutions also include newly found rational and W-shaped one- and two-soliton modes. The results predict the corresponding dynamical phenomena in extended models of nonlinear fiber optics and other physically relevant integrable systems.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; Maalek Ghaini, F.M.
2015-02-15
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.
Solving a system of Volterra-Fredholm integral equations of the second kind via fixed point method
NASA Astrophysics Data System (ADS)
Hasan, Talaat I.; Salleh, Shaharuddin; Sulaiman, Nejmaddin A.
2015-12-01
In this paper, we consider the system of Volterra-Fredholm integral equations of the second kind (SVFI-2). We propose fixed point method (FPM) to solve SVFI-2. In addition, a few theorems and new algorithm is introduced. They are supported by numerical examples and simulations using Matlab. The results are reasonably good when compared with the exact solutions.
NASA Astrophysics Data System (ADS)
Wiese, Kay Jörg
2016-04-01
We derive and study two different formalisms used for nonequilibrium processes: the coherent-state path integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the corresponding field theory, using the annihilation process A +A →A as an example. The field theory contains counterintuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained stochastic equation of motion with real noise.
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1994-01-01
It has been found that the Discrete Integral Equation (DSI)technique is a highly effective technique for the analysis of microwave circuits and devices [1,2]. The DSI is much more robust than the traditional Finite Difference Time Domain (FDTD) method in a number of ways.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.
2008-01-01
Meta-analysis and structural equation modeling (SEM) are two important statistical methods in the behavioral, social, and medical sciences. They are generally treated as two unrelated topics in the literature. The present article proposes a model to integrate fixed-, random-, and mixed-effects meta-analyses into the SEM framework. By applying an…
Hansson, T; Lisak, M; Anderson, D
2012-02-10
It is shown that the evolution equations describing partially coherent wave propagation in noninstantaneous Kerr media are integrable and have an infinite number of invariants. A recursion relation for generating these invariants is presented, and it is demonstrated how to express them in the coherent density, self-consistent multimode, mutual coherence, and Wigner formalisms.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin
2009-01-01
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Bayesian Abel Inversion in Quantitative X-Ray Radiography
Howard, Marylesa; Fowler, Michael; Luttman, Aaron; Mitchell, Stephen E.; Hock, Margaret C.
2016-05-19
A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less
Internal dynamics of Abell 2294: a massive, likely merging cluster
NASA Astrophysics Data System (ADS)
Girardi, M.; Boschin, W.; Barrena, R.
2010-07-01
Context. The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. Aims: We seek to explore the internal dynamics of the cluster Abell 2294, which has been shown to host a radio halo. Methods: Our analysis is mainly based on redshift data for 88 galaxies acquired at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 78 cluster galaxies and analyze its internal dynamics. We also use both photometric data acquired at the Isaac Newton Telescope and X-ray data from the Chandra archive. Results: We re-estimate the redshift of the large, brightest cluster galaxy (BCG) obtaining < z > = 0.1690, which closely agrees with the mean cluster redshift. We estimate a quite large line-of-sight (LOS) velocity dispersion σ_V ~ 1400 km s-1 and X-ray temperature TX ~ 10 keV. Our optical and X-ray analyses detect substructure. Our results imply that the cluster is composed of two massive subclusters separated by a LOS rest frame velocity difference Vrf ~ 2000 km s-1, very closely projected in the plane of sky along the SE-NW direction. This observational picture, interpreted in terms of the analytical two-body model, suggests that Abell 2294 is a cluster merger elongated mainly in the LOS direction and captured during the bound outgoing phase, a few fractions of Gyr after the core crossing. We find that Abell 2294 is a very massive cluster with a range of M = 2-4 × 1015 h70-1 M⊙, depending on the adopted model. In contrast to previous findings, we find no evidence of Hα emission in the spectrum of the BCG galaxy. Conclusions: The emerging picture of Abell 2294 is that of a massive, quite “normal” merging cluster, like many clusters hosting diffuse radio sources. However, perhaps because of its particular geometry, more data are needed for reach a definitive, more quantitative conclusion.
Disentangling Structures in the Cluster of Galaxies Abell 133
NASA Technical Reports Server (NTRS)
Way, Michael J.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
A dynamical analysis of the structure of the cluster of galaxies Abell 133 will be presented using multi-wavelength data combined from multiple space and earth based observations. New and familiar statistical clustering techniques are used in combination in an attempt to gain a fully consistent picture of this interesting nearby cluster of galaxies. The type of analysis presented should be typical of cluster studies in the future, especially those to come from the surveys like the Sloan Digital Sky Survey and the 2DF.
Integrability and Solutions of the (2 + 1)-dimensional Hunter-Saxton Equation
NASA Astrophysics Data System (ADS)
Cai, Hong-Liu; Qu, Chang-Zheng
2016-04-01
In this paper, the (2 + 1)-dimensional Hunter-Saxton equation is proposed and studied. It is shown that the (2 + 1)-dimensional Hunter-Saxton equation can be transformed to the Calogero-Bogoyavlenskii-Schiff equation by reciprocal transformations. Based on the Lax-pair of the Calogero-Bogoyavlenskii-Schiff equation, a non-isospectral Lax-pair of the (2 + 1)-dimensional Hunter-Saxton equation is derived. In addition, exact singular solutions with a finite number of corners are obtained. Furthermore, the (2 + 1)-dimensional μ-Hunter-Saxton equation is presented, and its exact peaked traveling wave solutions are derived. Supported by National Natural Science Foundation of China under Grant No. 11471174 and NSF of Ningbo under Grant No. 2014A610018
Orbit determination based on meteor observations using numerical integration of equations of motion
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2015-11-01
Recently, there has been a worldwide proliferation of instruments and networks dedicated to observing meteors, including airborne and future space-based monitoring systems . There has been a corresponding rapid rise in high quality data accumulating annually. In this paper, we present a method embodied in the open-source software program "Meteor Toolkit", which can effectively and accurately process these data in an automated mode and discover the pre-impact orbit and possibly the origin or parent body of a meteoroid or asteroid. The required input parameters are the topocentric pre-atmospheric velocity vector and the coordinates of the atmospheric entry point of the meteoroid, i.e. the beginning point of visual path of a meteor, in an Earth centered-Earth fixed coordinate system, the International Terrestrial Reference Frame (ITRF). Our method is based on strict coordinate transformation from the ITRF to an inertial reference frame and on numerical integration of the equations of motion for a perturbed two-body problem. Basic accelerations perturbing a meteoroid's orbit and their influence on the orbital elements are also studied and demonstrated. Our method is then compared with several published studies that utilized variations of a traditional analytical technique, the zenith attraction method, which corrects for the direction of the meteor's trajectory and its apparent velocity due to Earth's gravity. We then demonstrate the proposed technique on new observational data obtained from the Finnish Fireball Network (FFN) as well as on simulated data. In addition, we propose a method of analysis of error propagation, based on general rule of covariance transformation.
The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?
Goličnik, Marko
2013-08-01
A recent article of Johnson and Goody (Biochemistry, 2011;50:8264-8269) described the almost-100-years-old paper of Michaelis and Menten. Johnson and Goody translated this classic article and presented the historical perspective to one of incipient enzyme-reaction data analysis, including a pioneering global fit of the integrated rate equation in its implicit form to the experimental time-course data. They reanalyzed these data, although only numerical techniques were used to solve the model equations. However, there is also the still little known algebraic rate-integration equation in a closed form that enables direct fitting of the data. Therefore, in this commentary, I briefly present the integral solution of the Michaelis-Menten rate equation, which has been largely overlooked for three decades. This solution is expressed in terms of the Lambert W function, and I demonstrate here its use for global nonlinear regression curve fitting, as carried out with the original time-course dataset of Michaelis and Menten.
Pilati, S.; Giorgini, S.; Sakkos, K.; Boronat, J.; Casulleras, J.
2006-10-15
By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.
NASA Technical Reports Server (NTRS)
Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen
1991-01-01
The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.
DIFFUSE RADIO EMISSION IN ABELL 754
Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.in
2009-07-10
We present a low-frequency study of the diffuse radio emission in the galaxy cluster A754. We present a new 150 MHz image of the galaxy cluster A754 made with the Giant Metrewave Radio Telescope and discuss the detection of four diffuse features. We compare the 150 MHz image with the images at 74, 330, and 1363 MHz; one new diffuse feature is detected. The flux density upper limits at 330 and 1363 MHz imply a synchrotron spectral index, {alpha}>2 (S {proportional_to} {nu}{sup -{alpha}}), for the new feature. The 'west relic' detected at 74 MHz is not detected at 150 MHz and is thus consistent with its nondetection at 1363 MHz and 330 MHz. Integrated spectra of all the diffuse features are presented. The fourth diffuse feature is located along the proposed merger axis in A754 and 0.7 Mpc away from the peak of X-ray emission; we refer to it as a relic. We have made use of the framework of the adiabatic compression model to obtain spectra. We show that the spectrum of the fourth diffuse feature is consistent with that of a cocoon of a radio galaxy lurking for about 9 x 10{sup 7} yr; no shock compression is required. The other three diffuse emission have spectra steeper than 1.5 and could be cocoons lurking for longer time. We discuss other possibilities such as shocks and turbulent reacceleration being responsible for the diffuse emission in A754.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
NASA Astrophysics Data System (ADS)
Yla-Oijala, Pasi
Electron multipacting is a serious problem in many rf components operating in vacuum. Multipacting can cause remarkable power losses and heating of the walls. This phenomenon starts if certain resonant conditions for electron trajectories are fulfilled and if the impacted surface has a secondary yield larger than one. In this work new computational methods have been developed which combine the standard trajectory calculations with advanced searching and analyzing methods for multipacting resonances. These methods have been applied to the analysis of electron multipacting in TESLA superconducting cavities and input power couplers with ceramic windows. TESLA is an international linear collider research and development project. Since even small errors in the rf field may destroy the trajectory calculation of a relativistic electron, the electromagnetic fields must be known accurately, especially close to the surfaces. The electromagnetic field computation is carried out by the boundary integral equation method. Due to the singularities of the integral equations, the numerical computations become rather involved, especially when computing the fields near the boundaries. Therefore, in this work special integration techniques and algorithms have been developed. In the axisymmetric geometries the numerical efficiency of various boundary integral equations has been studied.
Browne, P.L.
1986-02-01
This report derives, then shows the equivalence of, the Lagrangian and Eulerian equations by use of Reynolds' Transport Theorem. The differential forms of the equations are also deduced from the integral forms. Finally, some common simplifications of the equations are derived. 3 refs., 1 fig.
NASA Astrophysics Data System (ADS)
Kashirin, A. A.; Smagin, S. I.; Taltykina, M. Yu.
2016-04-01
Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.
Wilson, D Scott; Lee, Lloyd L
2005-07-22
We explore the vapor-liquid phase behavior of binary mixtures of Lennard-Jones-type molecules where one component is supercritical, given the system temperature. We apply the self-consistency approach to the Ornstein-Zernike integral equations to obtain the correlation functions. The consistency checks include not only thermodynamic consistencies (pressure consistency and Gibbs-Duhem consistency), but also pointwise consistencies, such as the zero-separation theorems on the cavity functions. The consistencies are enforced via the bridge functions in the closure which contain adjustable parameters. The full solution requires the values of not only the monomer chemical potentials, but also the dimer chemical potentials present in the zero-separation theorems. These are evaluated by the direct chemical-potential formula [L. L. Lee, J. Chem. Phys. 97, 8606 (1992)] that does not require temperature nor density integration. In order to assess the integral equation accuracy, molecular-dynamics simulations are carried out alongside the states studied. The integral equation results compare well with simulation data. In phase calculations, it is important to have pressure consistency and valid chemical potentials, since the matching of phase boundaries requires the equality of the pressures and chemical potentials of both the liquid and vapor phases. The mixtures studied are methane-type and pentane-type molecules, both characterized by effective Lennard-Jones potentials. Calculations on one isotherm show that the integral equation approach yields valid answers as compared with the experimental data of Sage and Lacey. To study vapor-liquid phase behavior, it is necessary to use consistent theories; any inconsistencies, especially in pressure, will vitiate the phase boundary calculations.
NASA Astrophysics Data System (ADS)
Tsalamengas, John L.
2016-11-01
We present Gauss-Jacobi quadrature rules in terms of hypergeometric functions for the discretization of weakly singular, strongly singular, hypersingular, and nearly singular integrals that arise in integral equation formulations of potential problems for domains with sharp edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities of a fairly general form, thus allowing one to easily incorporate a wide class of domains into the analysis. Numerical examples illustrate the accuracy and stability of the proposed algorithms; it is shown that the same level of high accuracy can be achieved for any choice of the external variable. The usefulness of the method is exemplified by application to the solution of a singular integral equation that arises in time-harmonic electromagnetic scattering by either closed or open perfectly conducting cylindrical objects with edges and corners, such as polygon cylinders and bent strips. Some practical aspects concerning the role of nearby singularities in achieving a highly accurate solution of singular integral equations are, also, discussed.
NASA Astrophysics Data System (ADS)
Norman, Matthew Ross
The social need for realistic atmospheric simulation in weather prediction, climate change attribution, seasonal forecasting, and climate projection is great. To obtain realistic simulations, we need more physical processes included in the model with greater fidelity and finer spatial resolution. Spatial resolution primarily drives the need for computational resources because reducing the model grid spacing by a factor f requires f 4 times more computation (assuming 3-D refinement). This compute power comes from large parallel machines with 10,000s of separate nodes and accelerators such as graphics processing units (GPUs) making efficiency a complicated problem. Efficiency parallel integration algorithms need low internode communication, minimal synchronization, large time steps, and clustered computation. To this end, we propose new characteristics-based methods for the atmospheric dynamical equations with these properties in mind. These schemes are capable of simulating at a large CFL time step in only one stage of computations, needing only one copy of the state variables. They are implemented in a 2-D non-hydrostatic compressible equation set in an x-z (horizontal-vertical) Cartesian plane to simulate buoyancy-driven flows such as rising thermals and internal gravity waves. The schemes are implemented to run on CPU and multi-GPU architectures using Nvidia's CUDA (Compute Unified Device Architecture) language to test relative efficiency. Even with- out memory tuning, the GPU code showed roughly 2.5x (5x) better performance per Watt. With optimization, this could increase by an order of magnitude. The methods can use any spatial interpolant, so two major formulations are proposed and tested. One uses WENO interpolants which are pre-computed, and the other uses standard polynomials and computes them on-the-fly. The advantage of on-the-fly calculations is a significant reduction in the volume of data communicated to and from the GPU's slow global memory. In some
NASA Astrophysics Data System (ADS)
Kitanine, N.; Maillet, J. M.; Niccoli, G.
2014-05-01
We solve the longstanding problem of defining a functional characterization of the spectrum of the transfer matrix associated with the most general spin-1/2 representations of the six-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variables (SOV) representation, hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial form of the Q-function allows us to show that a finite system of generalized Bethe equations can also be used to describe the complete transfer matrix spectrum.
NASA Astrophysics Data System (ADS)
Xu, Gui-qiong; Deng, Shu-fang
2016-06-01
In this article, we apply the singularity structure analysis to test an extended 2+1-dimensional fifth-order KdV equation for integrability. It is proven that the generalized equation passes the Painlevé test for integrability only in three distinct cases. Two of those cases are in agreement with the known results, and a new integrable equation is first given. Then, for the new integrable equation, we employ the Bell polynomial method to construct its bilinear forms, bilinear Bäcklund transformation, Lax pair, and infinite conversation laws systematically. The N-soliton solutions of this new integrable equation are derived, and the propagations and collisions of multiple solitons are shown by graphs.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.
1993-01-01
By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.
Sasorov, P. V.; Fomin, I. V.
2015-06-15
The collision integral in the kinetic equation for a rarefied spin-polarized gas of fermions (electrons) is derived. The collisions between these fermions and the collisions with much heavier particles (ions) forming a randomly located stationary background (gas) are taken into account. An important new circumstance is that the particle-particle scattering amplitude is not assumed to be small, which could be obtained, for example, in the first Born approximation. The derived collision integral can be used in the kinetic equation, including that for a relatively cold rarefied spin-polarized plasma with a characteristic electron energy below α{sup 2}m{sub e}c{sup 2}, where α is the fine-structure constant.
Stamatakos, G S; Yova, D; Uzunoglu, N K
1997-09-01
A novel mathematical model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids of complex index of refraction is presented. It is based on an integral equation solution to the scattering of a plane electromagnetic wave by a single triaxial dielectric ellipsoid. Both the position and the orientation of a single representative scatterer in a given coordinate system are considered arbitrary. A Monte Carlo simulation is developed to reproduce the diffraction pattern of a population of aligned ellipsoids. As an example of practical importance, light scattering by a population of erythrocytes subjected to intense shear stress is modeled. Agreement with experimental observations and the anomalous diffraction theory is illustrated. Thus a novel check of the electromagnetic basis of ektacytometry is provided. Furthermore, the versatility of the integral equation method, particularly in the advent of parallel processing systems, is demonstrated. PMID:18259511
Schmidt, Rita; Webb, Andrew
2016-01-01
Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3T to generate the B1(+) field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum.
NASA Astrophysics Data System (ADS)
Schmidt, Rita; Webb, Andrew
2016-01-01
Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3 T to generate the B1+ field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum.
The Lagrange-D'Alembert-Poincaré equations and integrability for the Euler's disk
NASA Astrophysics Data System (ADS)
Cendra, H.; Díaz, V. A.
2007-01-01
Nonholonomic systems are described by the Lagrange-D’Alembert’s principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced D’Alembert’s principle and to the Lagrange-D’Alembert-Poincaré reduced equations. The case of rolling constraints has a long history and it has been the purpose of many works in recent times. In this paper we find reduced equations for the case of a thick disk rolling on a rough surface, sometimes called Euler’s disk, using a 3-dimensional abelian group of symmetry. We also show how the reduced system can be transformed into a single second order equation, which is an hypergeometric equation.
NASA Technical Reports Server (NTRS)
Joseph, Rose M.; Goorjian, Peter M.; Taflove, Allen
1993-01-01
We present what are to our knowledge first-time calculations from vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional dielectric waveguides. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and the nonlinear convolution accounts for two quantum effects, the Kerr and Raman interactions. By retaining the optical carrier, the new method solves for fundamental quantities - optical electric and magnetic fields in space and time - rather than a nonphysical envelope function. It has the potential to provide an unprecedented two- and three-dimensional modeling capability for millimeter-scale integrated-optical circuits with submicrometer engineered inhomogeneities.
NASA Technical Reports Server (NTRS)
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
Ciraolo, Giulio Gargano, Francesco Sciacca, Vincenzo
2013-08-01
We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.
NASA Astrophysics Data System (ADS)
Zouros, Grigorios P.; Budko, Neil V.
2011-09-01
Preconditioning of the domain integral equation (DIE) method for electromagnetic scattering is considered. The present study is focused on the transverse electric (TE) scattering from inhomogeneous objects having high permittivity value. We explicity derive the symbol and the essential spectrum of the two-dimensional singular integral operator, its left regularizer, and obtain a manifestly Fredholm operator of the form `identity plus compact'. This regularized system shows an improved performance in terms of convergence, and an even better performance is achieved by further applying deflation on a finite set of largest-magnitude eigenvalues.
Soliton solutions and integrability of a deformed Maxwell-Bloch equation
NASA Astrophysics Data System (ADS)
Baran, Mehmet Kadir
In this thesis we will investigate the deformed Maxwell-Bloch equation with an extra field, which is obtained from the Maxwell-Bloch equations of nonlinear optics by using the spectral deformation technique. We will first develop a Darboux transformation formalism which will allow us to construct its multi-soliton solutions. Next, we will show that DMBef possesses Painleve property. Lastly, we will construct the infinite hierarchy of conservation laws for its analytic solutions.
Planck constant as spectral parameter in integrable systems and KZB equations
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-10-01
We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.
NASA Astrophysics Data System (ADS)
Ciric, I. R.
2008-08-01
A reduction procedure is developed for an arbitrarily shaped layered dielectric body using for each interface a single unknown function to which the classical surface electric and magnetic currents are related by some surface operators. These operators and single functions are determined recursively from one interface to the next. This allows us to derive the field everywhere from the solution of a surface integral equation in only one vector function relative to only the interface between the layered body and the source region. Since the reduction operators are independent of the structure of the outside region and of the given field source, and also invariant under translation and rotation, the analysis of the three-dimensional electromagnetic wave scattering and propagation for systems of multilayered or/and multiply nested dielectric bodies based on reduced single integral equations is substantially more efficient than that based on existing coupled integral equation formulations using electric and magnetic currents on all the interfaces, especially for configurations with identical such bodies arbitrarily located and oriented with respect to each other.
Combining Strong and Weak Gravitational Lensing in Abell 1689
NASA Astrophysics Data System (ADS)
Limousin, Marceau; Richard, Johan; Jullo, Eric; Kneib, Jean-Paul; Fort, Bernard; Soucail, Geneviève; Elíasdóttir, Árdís; Natarajan, Priyamvada; Ellis, Richard S.; Smail, Ian; Czoske, Oliver; Smith, Graham P.; Hudelot, Patrick; Bardeau, Sébastien; Ebeling, Harald; Egami, Eiichi; Knudsen, Kirsten K.
2007-10-01
We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have reported up to 32 multiply imaged systems in this cluster, of which only 3 were spectroscopically confirmed. In this work, we present a parametric strong lensing mass reconstruction using 34 multiply imaged systems of which 24 have newly determined spectroscopic redshifts, which is a major step forward in building a robust mass model. In turn, the new spectroscopic data allows a more secure identification of multiply imaged systems. The resultant mass model enables us to reliably predict the redshifts of additional multiply imaged systems for which no spectra are currently available, and to use the location of these systems to further constrain the mass model. Using our strong lensing mass model, we predict on larger scale a shear signal which is consistent with that inferred from our large scale weak lensing analysis derived using CFH12K wide field images. Thanks to a new method for reliably selecting a well defined background lensed galaxy population, we resolve the discrepancy found between the NFW concentration parameters derived from earlier strong and weak lensing analysis. The derived parameters for the best fit NFW profile is found to be c200=7.6+/-1.6 and r200=2.16+/-0.10 h-170 Mpc (corresponding to a 3D mass equal to M200=[1.32+/-0.2]×1015 h70 Msolar). The large number of new constraints incorporated in this work makes Abell 1689 the most reliably reconstructed cluster to date. This well calibrated mass model, which we here make publicly available, will enable us to exploit Abell 1689 efficiently as a gravitational telescope, as well as to potentially constrain cosmology. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des
SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744
Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.
2012-05-01
We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.
Giant ringlike radio structures around galaxy cluster Abell 3376.
Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit
2006-11-01
In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.
The central star of the planetary nebula Abell 78
NASA Technical Reports Server (NTRS)
Kaler, J. B.; Feibelman, W. A.
1984-01-01
The ultraviolet spectrum of the nucleus of Abell 78, one of the two planetaries known to contain zones of nearly pure helium, is studied. The line spectrum and wind velocities are examined, the determination of interstellar extinction for assessing circumstellar dust is improved, and the temperature, luminosity, and core mass are derived. The results for A78 are compared with results for A30, and it is concluded that the dust distributions around the two central stars are quite different. The temperature of the A78 core is not as high as previously believed, and almost certainly lies between 67,000 K and 130,000 K. The most likely temperature range is 77,000-84,000 K. The core mass lies between 0.56 and 0.70 solar mass, with the most likely values between 0.56 and 0.58 solar mass.
Shocking Tails in the Major Merger Abell 2744
NASA Astrophysics Data System (ADS)
Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.
2012-05-01
We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.
The Sunyaev-Zeldovich Effect Spectrum of Abell 2163
NASA Technical Reports Server (NTRS)
LaRoque, S.; Reese, E. D.; Holder, G. P.; Carlstrom, J. E.; Holzapfel, W. L.; Joy, M. K.; Grego, L.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We present a measurement of the Sunyaev-Zeldovich effect (SZE) at 30 GHz for the galaxy cluster Abell 2163. Combining this data point with previous measurements at 140, 220, and 270 GHz from the SuZIE and Daibolo experiments, we construct them most complete SZE spectrum to date. The spectrum is fitted to determine the compton y parameter and the peculiar velocity for this cluster; our results are y_0=3.6 x 10(circumflex)4 and v_p=360 km s(circumflex)-1. These results include corrections for contamination by Galactic dust emission; we find the contamination level to be much less than previously reported. The dust emission, while strong, is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the proper SZE observing strategy is taken into account.
Black holes a-wandering in Abell 2261
NASA Astrophysics Data System (ADS)
Spolaor, Sarah; Ford, Holland; Gultekin, Kayhan; Lauer, Tod R.; Lazio, T. Joseph W.; Loeb, Abraham; Moustakas, Leonidas A.; Postman, Marc; Taylor, Joanna M.
2016-01-01
The brightest cluster galaxy in Abell 2261 (BCG2261) has an exceptionally large, flat, and asymmetric core, thought to have been shaped by a binary supermassive black hole inspiral and subsequent gravitational recoil. BCG2261 should contain a 10^10 Msun black hole, but it lacks the central cusp that should mark such a massive black hole. Based on the presence of central radio emission, we have explored the core of this galaxy with HST and the VLA to identify the presence and location of the active nucleus in this galaxy's core. We present our exploration of whether this system in fact contains direct evidence of a recoiling binary supermassive black hole. A recoiling core in this system would represent a pointed observational test of three preeminent theoretical predictions: that scouring forms cores, that SMBHs may recoil after coalescence, and that recoil can strongly influence core formation and morphology.
A shock front at the radio relic of Abell 2744
NASA Astrophysics Data System (ADS)
Eckert, D.; Jauzac, M.; Vazza, F.; Owers, M. S.; Kneib, J.-P.; Tchernin, C.; Intema, H.; Knowles, K.
2016-09-01
Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z = 0.306), which reveal the presence of a shock front 1.5 Mpc east of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number M=1.7_{-0.3}^{+0.5}, the plasma in the post-shock region has been heated to a very high temperature (˜13 keV) by the passage of the shock wave. The low-acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.
Giant ringlike radio structures around galaxy cluster Abell 3376.
Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit
2006-11-01
In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts. PMID:17082451
ABEL description and implementation of cyber net system
NASA Astrophysics Data System (ADS)
Lu, Jiyuan; Jing, Liang
2013-03-01
Cyber net system is a subclass of Petri Nets. It has more powerful description capability and more complex properties compared with P/T system. Due to its nonlinear relation, it can't use analysis techniques of other net systems directly. This influences the research on cyber net system. In this paper, the author uses hardware description language to describe cyber net system. Simulation analysis is carried out through EDA software tools to disclose properties of the system. This method is introduced in detail through cyber net system model of computing Fibonacci series. ABEL source codes and simulation wave are also presented. The source codes are compiled, optimized, fit design and downloaded to the Programmable Logic Device. Thus ASIC of computing Fibonacci series is obtained. It will break a new path for the analysis and application study of cyber net system.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as an example of the power of the method.
Harms, A V; Jerome, S M
2004-01-01
In the measurement of radioactivity, a finite measurement time is employed to collect data. Usually, this time is small with respect to the half-life of the nuclide being measured and the 'usual' decay equations can be used to decay measured activities to a given reference time. In some applications, such as neutron activation, an integrated form of the decay equation needs to be employed as the measurement time is comparable to the half-life and using the non-integrated form introduces a significant error. This correction is well known and is used widely. For radionuclide families, such as the natural decay series of uranium and thorium or simple parent--daughter systems, no such integrated form of the decay and ingrowth series appears to have been published in the open literature. This paper sets out the general solution for integrated decay and ingrowth of sequential decay and illustrates the validity of this theoretical solution by applying it to real examples.
The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146
NASA Astrophysics Data System (ADS)
King, Lindsay J.; Clowe, Douglas I.; Coleman, Joseph E.; Russell, Helen R.; Santana, Rebecca; White, Jacob A.; Canning, Rebecca E. A.; Deering, Nicole J.; Fabian, Andrew C.; Lee, Brandyn E.; Li, Baojiu; McNamara, Brian R.
2016-06-01
Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the Chandra X-ray Observatory, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on Hubble Space Telescope, is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields M200 = 1.1^{+0.3}_{-0.4} × 1015 and 3^{+1}_{-2} × 1014 M⊙ for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of c = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger.
The wonderful apparatus of John Jacob Abel called the "artificial kidney".
Eknoyan, Garabed
2009-01-01
Hemodialysis, which now provides life-saving therapy to millions of individuals, began as an exploratory attempt to sustain the lives of selected patients in the 1950s. That was a century after the formulation of the concept and determination of the laws governing dialysis. The first step in the translation of the laboratory principles of dialysis to living animals was the "vividiffusion" apparatus developed by John Jacob Abel (1859-1938), dubbed the "artificial kidney" in the August 11, 1913 issue of The Times of London reporting the demonstration of vividiffusion by Abel at University College. The detailed article in the January 18, 1914 of the New York Times, reproduced here, is based on the subsequent medical reports published by Abel et al. Tentative attempts of human dialysis in the decade that followed based on the vividiffusion apparatus of Abel and his materials (collodion, hirudin, and glass) met with failure and had to be abandoned. Practical dialysis became possible in the 1940s and thereafter after cellophane, heparin, and teflon became available. Abel worked in an age of great progress and experimental work in the basic sciences that laid the foundations of science-driven medicine. It was a "Heroic Age of Medicine," when medical discoveries and communicating them to the public were assuming increasing importance. This article provides the cultural, social, scientific, and medical background in which Abel worked, developed and reported his wonderful apparatus called the "artificial kidney."
ERIC Educational Resources Information Center
Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.
2012-01-01
Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…
Two-component integrable generalizations of Burgers equations with nondiagonal linearity
NASA Astrophysics Data System (ADS)
Talati, Daryoush; Turhan, Refi˙k.
2016-04-01
Two-component second- and third-order Burgers type systems with nondiagonal constant matrix of leading order terms are classified for higher symmetries. New integrable systems are obtained. Master symmetries of the obtained symmetry integrable systems, and bi-Poisson structures of those that also possess conservation laws, are given.
NASA Astrophysics Data System (ADS)
Plakhov, Iu. V.; Mytsenko, A. V.; Shel'Pov, V. A.
A numerical integration method is developed that is more accurate than Everhart's (1974) implicit single-sequence approach for integrating orbits. This method can be used to solve problems of space geodesy based on the use of highly precise laser observations.
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Bores, Cecilia; Notario, Rafael; Sánchez-Gil, V.
2016-09-01
In this work we have assessed the ability of a recently proposed three-dimensional integral equation approach to describe the explicit spatial distribution of molecular hydrogen confined in a crystal formed by short-capped nanotubes of C50 H10. To that aim we have resorted to extensive molecular simulation calculations whose results have been compared with our three-dimensional integral equation approximation. We have first tested the ability of a single C50 H10 nanocage for the encapsulation of H2 by means of molecular dynamics simulations, in particular using targeted molecular dynamics to estimate the binding Gibbs energy of a host hydrogen molecule inside the nanocage. Then, we have investigated the adsorption isotherm of the nanocage crystal using grand canonical Monte Carlo simulations in order to evaluate the maximum load of molecular hydrogen. For a packing close to the maximum load explicit hydrogen density maps and density profiles have been determined using molecular dynamics simulations and the three-dimensional Ornstein–Zernike equation with a hypernetted chain closure. In these conditions of extremely tight confinement the theoretical approach has shown to be able to reproduce the three-dimensional structure of the adsorbed fluid with accuracy down to the finest details.
Du, Qi-Shi; Liu, Peng-Jun; Huang, Ri-Bo
2008-02-01
In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.
Lomba, Enrique; Bores, Cecilia; Notario, Rafael; Sánchez-Gil, V
2016-09-01
In this work we have assessed the ability of a recently proposed three-dimensional integral equation approach to describe the explicit spatial distribution of molecular hydrogen confined in a crystal formed by short-capped nanotubes of C50 H10. To that aim we have resorted to extensive molecular simulation calculations whose results have been compared with our three-dimensional integral equation approximation. We have first tested the ability of a single C50 H10 nanocage for the encapsulation of H2 by means of molecular dynamics simulations, in particular using targeted molecular dynamics to estimate the binding Gibbs energy of a host hydrogen molecule inside the nanocage. Then, we have investigated the adsorption isotherm of the nanocage crystal using grand canonical Monte Carlo simulations in order to evaluate the maximum load of molecular hydrogen. For a packing close to the maximum load explicit hydrogen density maps and density profiles have been determined using molecular dynamics simulations and the three-dimensional Ornstein-Zernike equation with a hypernetted chain closure. In these conditions of extremely tight confinement the theoretical approach has shown to be able to reproduce the three-dimensional structure of the adsorbed fluid with accuracy down to the finest details. PMID:27367179
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Bores, Cecilia; Notario, Rafael; Sánchez-Gil, V.
2016-09-01
In this work we have assessed the ability of a recently proposed three-dimensional integral equation approach to describe the explicit spatial distribution of molecular hydrogen confined in a crystal formed by short-capped nanotubes of C50 H10. To that aim we have resorted to extensive molecular simulation calculations whose results have been compared with our three-dimensional integral equation approximation. We have first tested the ability of a single C50 H10 nanocage for the encapsulation of H2 by means of molecular dynamics simulations, in particular using targeted molecular dynamics to estimate the binding Gibbs energy of a host hydrogen molecule inside the nanocage. Then, we have investigated the adsorption isotherm of the nanocage crystal using grand canonical Monte Carlo simulations in order to evaluate the maximum load of molecular hydrogen. For a packing close to the maximum load explicit hydrogen density maps and density profiles have been determined using molecular dynamics simulations and the three-dimensional Ornstein-Zernike equation with a hypernetted chain closure. In these conditions of extremely tight confinement the theoretical approach has shown to be able to reproduce the three-dimensional structure of the adsorbed fluid with accuracy down to the finest details.
NASA Technical Reports Server (NTRS)
Shia, R.-L.; Yung, Y. L.
1986-01-01
The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.
Benchmark values for molecular two-electron integrals arising from the Dirac equation
NASA Astrophysics Data System (ADS)
Baǧcı, A.; Hoggan, P. E.
2015-02-01
The two-center two-electron Coulomb and hybrid integrals arising in relativistic and nonrelativistic ab initio calculations on molecules are evaluated. Compact, arbitrarily accurate expressions are obtained. They are expressed through molecular auxiliary functions and evaluated with the numerical Global-adaptive method for arbitrary values of parameters in the noninteger Slater-type orbitals. Highly accurate benchmark values are presented for these integrals. The convergence properties of new molecular auxiliary functions are investigated. The comparison for two-center two-electron integrals is made with results obtained from single center expansions by translation of the wave function to a single center with integer principal quantum numbers and results obtained from the Cuba numerical integration algorithm, respectively. The procedures discussed in this work are capable of yielding highly accurate two-center two-electron integrals for all ranges of orbital parameters.
Finite-dimensional integrable systems related to the n-wave interaction equations
NASA Astrophysics Data System (ADS)
Shi, Qi-Yan
2001-08-01
Under a constraint between the potentials and the eigenfunctions, Lax pairs and adjoint Lax pairs of a soliton hierarchy associated with the n×n generalized Zakharov-Shabat eigenvalue problem are transformed into a spatial finite-dimensional Hamiltonian system and a hierarchy of temporal finite-dimensional Hamiltonian systems. The Lax representations, r-matrix structure and integrals of motion are explicitly presented. These integrals of motion are functionally independent and in involution in pairs, which shows that these systems, especially the whole hierarchy of temporal finite-dimensional Hamiltonian systems, are Liouville integrable.
Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas
2014-06-21
We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.
The solution of the relaxation problem for the Boltzmann equation by the integral iteration method
NASA Technical Reports Server (NTRS)
Limar, Y. F.
1972-01-01
The Boltzmann equation is considered in terms of the problem of relaxation of some initial distribution function which depends only on velocities, to Maxwell's distribution function. The Boltzmann equation is given for the relaxation problem in which the distribution function f(t, u, v) is time dependent and is also dependent on two other variables u and v (the velocities of rigid spherical molecules). An iteration process is discussed in which the velocity space u, v is subdivided into squares, the distribution function in each square being approximated by the second-order surface from the values of the distribution function at nine points. The set of all of these points forms a network of u, v values at the nodes of which the distribution function can be found.
New types of multisoliton solutions of some integrable equations via direct methods
NASA Astrophysics Data System (ADS)
Burde, Georgy I.
2016-06-01
Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.
Periodic wave solutions of coupled integrable dispersionless equations by residue harmonic balance
NASA Astrophysics Data System (ADS)
Leung, A. Y. T.; Yang, H. X.; Guo, Z. J.
2012-11-01
We introduce the residue harmonic balance method to generate periodic solutions for nonlinear evolution equations. A PDE is firstly transformed into an associated ODE by a wave transformation. The higher-order approximations to the angular frequency and periodic solution of the ODE are obtained analytically. To improve the accuracy of approximate solutions, the unbalanced residues appearing in harmonic balance procedure are iteratively considered by introducing an order parameter to keep track of the various orders of approximations and by solving linear equations. Finally, the periodic solutions of PDEs result. The proposed method has the advantage that the periodic solutions are represented by Fourier functions rather than the sophisticated implicit functions as appearing in most methods.
Fast methods to numerically integrate the Reynolds equation for gas fluid films
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1992-01-01
The alternating direction implicit (ADI) method is adopted, modified, and applied to the Reynolds equation for thin, gas fluid films. An efficient code is developed to predict both the steady-state and dynamic performance of an aerodynamic journal bearing. An alternative approach is shown for hybrid journal gas bearings by using Liebmann's iterative solution (LIS) for elliptic partial differential equations. The results are compared with known design criteria from experimental data. The developed methods show good accuracy and very short computer running time in comparison with methods based on an inverting of a matrix. The computer codes need a small amount of memory and can be run on either personal computers or on mainframe systems.
NASA Astrophysics Data System (ADS)
Kovalchuk, Valery I.
2014-11-01
In this paper, a method has been developed to solve three-particle Faddeev equations in the configuration space making use of a series expansion in hyperspherical harmonics. The following parameters of the bound state of triton and helium-3 nuclei have been calculated: the binding energies, the weights of symmetric and mixed-symmetry components of the wave function, the magnetic moments, and the charge radii.
Integrability and supersymmetry of Schroedinger-Pauli equations for neutral particles
Nikitin, A. G.
2012-12-15
Integrable quantum mechanical systems for neutral particles with spin (1/2) and nontrivial dipole momentum are classified. It is demonstrated that such systems give rise to new exactly solvable problems of quantum mechanics with clear physical content. Solutions for three of them are given in explicit form. The related symmetry algebras and superalgebras are discussed. The presented classification is restricted to two-dimensional systems, which admit matrix integrals of motion linear in momenta.
Liu, Y.; Rizzo, F.J.
1997-08-01
In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. The composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}
NASA Astrophysics Data System (ADS)
Chong, Song-Ho; Ham, Sihyun
2011-03-01
We report the recent development of a theoretical method to calculate the protein configurational entropy in explicit solvent from statistical properties of the solvent-averaged protein potential energy surface. This method can be implemented by combining molecular simulation and integral-equation theory of liquids. Our method does not assume Gaussian distribution of protein configurations, and can be applied to unfolded or misfolded states of protein in which an average protein structure is not well defined. An illustrative application is made to misfolded state of 42-residue amyloid beta protein in water.
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
NASA Astrophysics Data System (ADS)
Tanaka, Masataka; Nakamura, Masayuki; Aoki, Kazuhiko; Matsumoto, Toshiro
1993-07-01
This paper presents a computational method of dynamic stress intensity factors (DSIF) in two-dimensional problems. In order to obtain accurate numerical results of DSIF, the boundary element method based on the Laplace transform and regularized boundary integral equations is applied to the computation of transient elastodynamic responses. A computer program is newly developed for two-dimensional elastodynamics. Numerical computation of DSIF is carried out for a rectangular plate with a center crack under impact tension. Accuracy of the results is investigated from the viewpoint of computational conditions such as the number of sampling points of the inverse Laplace transform and the number of boundary elements.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
In this article, we focus on linear and nonlinear fuzzy Volterra integral equations of the second kind and we propose a numerical scheme using homotopy perturbation method (HPM) to obtain fuzzy approximate solutions to them. To facilitate the benefits of this proposal, an algorithmic form of the HPM is also designed to handle the same. In order to illustrate the potentiality of the approach, two test problems are offered and the obtained numerical results are compared with the existing exact solutions and are depicted in terms of plots to reveal its precision and reliability.
NASA Astrophysics Data System (ADS)
Masuda, Kazuhiko; Ishimoto, Hiroshi; Sakai, Tetsu; Okamoto, Hajime
2016-06-01
Backscattering properties of ice crystal models (Voronoi aggregates (VA), hexagonal columns (COL), and six-branched bullet rosettes (BR6)) are calculated by using geometrical-opticsintegral-equation (GOIE) method. Characteristics of depolarization ratio (δ) and lidar ratio (L) of the crystal models are examined. δ (L) values are 0.2~0.3 (4~50), 0.3~0.4 (10~25), and 0.5~0.6 (50~100) for COL, BR6, and VA, respectively, at wavelength λ=0.532 μm. It is found that small deformation of COL model could produce significant changes in δ and L.
NASA Astrophysics Data System (ADS)
Heltemes, Thad; Moses, Gregory
2010-11-01
A new quotidian equation of state model (QEOS) has been developed to perform integrated inertial fusion energy (IFE) target explosion-chamber response simulations. This QEOS model employs a scaled binding energy model for the ion EOS and utilizes both n- and l-splitting for determining the ionization state and electron EOS. This QEOS model, named BADGER, can perform both local thermodynamic equilibrium (LTE) and non-LTE EOS calculations. BADGER has been integrated with the 1-D radiation hydrodynamics code BUCKY to simulate the chamber response of an exploding indirect-drive deuterium-tritium (DT) target, xenon gas-filled chamber and tungsten first-wall armor. The simulated system is a prototypical configuration for the LIFE reactor study being conducted by Lawrence Livermore National Laboratory (LLNL).
NASA Technical Reports Server (NTRS)
Cain, Judith B.; Baird, James K.
1992-01-01
An integral of the form, t = B0 + BL ln(Delta-c) + B1(Delta-c) + B2(Delta-c)-squared + ..., where t is the time and Delta-c is the concentration difference across the frit, is derived in the case of the diaphragm cell transport equation where the interdiffusion coefficient is a function of concentration. The coefficient, B0, is a constant of the integration, while the coefficients, BL, B1, B2,..., depend in general upon the constant, the compartment volumes, and the interdiffusion coefficient and various of its concentration derivatives evaluated at the mean concentration for the cell. Explicit formulas for BL, B1, B2,... are given.
NASA Technical Reports Server (NTRS)
Ghosn, L. J.
1988-01-01
Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
The merging cluster Abell 1758: an optical and dynamical view
NASA Astrophysics Data System (ADS)
Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.
2015-08-01
The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between
The planetary nebula Abell 48 and its [WN] nucleus
NASA Astrophysics Data System (ADS)
Frew, David J.; Bojičić, I. S.; Parker, Q. A.; Stupar, M.; Wachter, S.; DePew, K.; Danehkar, A.; Fitzgerald, M. T.; Douchin, D.
2014-05-01
We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B - V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (˜0.3 M⊙) and electron density (700 cm-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best-fitting temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ˜5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium- and carbon-dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Grossman, Robert
1992-01-01
This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.
VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT
A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...
Kettunen, L.; Forsman, K.; Levine, D.; Gropp, W.
1993-12-31
In this paper a brief discussion of h-type volume integral formulations implemented in GFUNET/CORAL code is given and solutions of TEAM benchmark No. 13 are shown. GFUNET/CORAL is a general purpose code for 2D and 3D magnetostatics. Solutions of TEAM problem No. 13 are computed using both a sequential and parallel version of GFUNET/CORAL.
NASA Astrophysics Data System (ADS)
Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao
2016-08-01
The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.
NASA Astrophysics Data System (ADS)
Gaudreault, Stéphane; Pudykiewicz, Janusz A.
2016-10-01
The exponential propagation methods were applied in the past for accurate integration of the shallow water equations on the sphere. Despite obvious advantages related to the exact solution of the linear part of the system, their use for the solution of practical problems in geophysics has been limited because efficiency of the traditional algorithm for evaluating the exponential of Jacobian matrix is inadequate. In order to circumvent this limitation, we modify the existing scheme by using the Incomplete Orthogonalization Method instead of the Arnoldi iteration. We also propose a simple strategy to determine the initial size of the Krylov space using information from previous time instants. This strategy is ideally suited for the integration of fluid equations where the structure of the system Jacobian does not change rapidly between the subsequent time steps. A series of standard numerical tests performed with the shallow water model on a geodesic icosahedral grid shows that the new scheme achieves efficiency comparable to the semi-implicit methods. This fact, combined with the accuracy and the mass conservation of the exponential propagation scheme, makes the presented method a good candidate for solving many practical problems, including numerical weather prediction.
NASA Astrophysics Data System (ADS)
Ishizuka, Ryosuke; Yoshida, Norio
2013-08-01
An extended molecular Ornstein-Zernike (XMOZ) integral equation is formulated to calculate the spatial distribution of solvent around a solute of arbitrary shape and solid surfaces. The conventional MOZ theory employs spherical harmonic expansion technique to treat the molecular orientation of components of solution. Although the MOZ formalism is fully exact analytically, the truncation of the spherical harmonic expansion requires at a finite order for numerical calculation and causes the significant error for complex molecules. The XMOZ integral equation is the natural extension of the conventional MOZ theory to a rectangular coordinate system, which is free from the truncation of spherical harmonic expansion with respect to solute orientation. In order to show its applicability, we applied the XMOZ theory to several systems using the hypernetted-chain (HNC) and Kovalenko-Hirata approximations. The quality of results obtained within our theory is discussed by comparison with values from the conventional MOZ theory, molecular dynamics simulation, and three-dimensional reference interaction site model theory. The spatial distributions of water around the complex of non-charged sphere and dumbbell were calculated. Using this system, the approximation level of the XMOZ and other methods are discussed. To assess our theory, we also computed the excess chemical potentials for three realistic molecules (water, methane, and alanine dipeptide). We obtained the qualitatively reasonable results by using the XMOZ/HNC theory. The XMOZ theory covers a wide variety of applications in solution chemistry as a useful tool to calculate solvation thermodynamics.
Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs
Archibald, R.; Evans, K. J.; Salinger, A.
2015-06-01
The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable time-stepping methods capable of accelerating throughput on high performance computing. This work details the recent advances in the implementation of implicit time stepping on a spectral element cube-sphere grid using graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACME and GPU kernels can significantly increase computational speed of the residual calculations in themore » implicit time stepping method for the shallow water equations on the sphere. We show the optimization gains and data structure reorganization that facilitates the performance improvements.« less
Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs
Archibald, R.; Evans, K. J.; Salinger, A.
2015-06-01
The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable time-stepping methods capable of accelerating throughput on high performance computing. This work details the recent advances in the implementation of implicit time stepping on a spectral element cube-sphere grid using graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACME and GPU kernels can significantly increase computational speed of the residual calculations in the implicit time stepping method for the shallow water equations on the sphere. We show the optimization gains and data structure reorganization that facilitates the performance improvements.
Gallivan, K. A.
1980-12-01
Within any general class of problems there typically exist subclasses possessed of characteristics that can be exploited to create techniques more efficient than general methods applied to these subclasses. Two such subclasses of initial-value problems in ordinary differential equations are stiff and oscillatory problems. Indeed, the subclass of oscillatory problems can be further refined into stiff and nonstiff oscillatory problems. This refinement is discussed in detail. The problem of developing a method of detection for nonstiff and stiff oscillatory behavior in initial-value problems is addressed. For this method of detection a control structure is proposed upon which a production code could be based. An experimental code using this control structure is described, and results of numerical tests are presented. 3 figures.
Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
NASA Astrophysics Data System (ADS)
Rohrmann, René D.; Santos, Andrés
2011-10-01
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.011201 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms ĉij(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of ĉij(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres.
Rohrmann, René D; Santos, Andrés
2011-10-01
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms c(ij)(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of c(ij)(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
Integrating occupancy models and structural equation models to understand species occurrence
Joseph, Maxwell B.; Preston, Daniel L.; Johnson, Pieter T. J.
2016-01-01
Understanding the drivers of species occurrence is a fundamental goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambystoma californiense), and the California red-legged frog (Rana draytonii). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions. PMID:27197402
Integrating occupancy models and structural equation models to understand species occurrence.
Joseph, Maxwell B; Preston, Daniel L; Johnson, Pieter T J
2016-03-01
Understanding the drivers of species occrrece s a fundamenal goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambysloma californiense) and the California red-legged frog (Rana draytonil). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions. PMID:27197402
A shock at the radio relic position in Abell 115
NASA Astrophysics Data System (ADS)
Botteon, A.; Gastaldello, F.; Brunetti, G.; Dallacasa, D.
2016-07-01
We analysed a deep Chandra observation (334 ks) of the galaxy cluster Abell 115 and detected a shock cospatial with the radio relic. The X-ray surface brightness profile across the shock region presents a discontinuity, corresponding to a density compression factor {C}=2.0± 0.1, leading to a Mach number {M}=1.7± 0.1 ({M}=1.4-2 including systematics). Temperatures measured in the upstream and downstream regions are consistent with what expected for such a shock: T_u=4.3^{+1.0}_{-0.6}{keV} and T_d=7.9^{+1.4}_{-1.1}{keV}, respectively, implying a Mach number {M}=1.8^{+0.5}_{-0.4}. So far, only few other shocks discovered in galaxy clusters are consistently detected from both density and temperature jumps. The spatial coincidence between this discontinuity and the radio relic edge strongly supports the view that shocks play a crucial role in powering these synchrotron sources. We suggest that the relic is originated by shock re-acceleration of relativistic electrons rather than acceleration from the thermal pool. The position and curvature of the shock and the associated relic are consistent with an off-axis merger with unequal mass ratio where the shock is expected to bend around the core of the less massive cluster.
The Radio Luminosity Function and Galaxy Evolution of Abell 2256
NASA Astrophysics Data System (ADS)
Forootaninia, Zahra
2015-05-01
This thesis presents a study of the radio luminosity function and the evolution of galaxies in the Abell 2256 cluster (z=0.058, richness class 2). Using the NED database and VLA deep data with an rms sensitivity of 18 mu Jy.beam--1, we identified 257 optical galaxies as members of A2256, of which 83 are radio galaxies. Since A2256 is undergoing a cluster-cluster merger, it is a good candidate to study the radio activity of galaxies in the cluster. We calculated the Univariate and Bivariate radio luminosity functions for A2256, and compared the results to studies on other clusters. We also used the SDSS parameter fracDev to roughly classify galaxies as spirals and ellipticals, and investigated the distribution and structure of galaxies in the cluster. We found that most of the radio galaxies in A2256 are faint, and are distributed towards the outskirts of the cluster. On the other hand, almost all very bright radio galaxies are ellipticals which are located at the center of the cluster. We also found there is an excess in the number of radio spiral galaxies in A2256 compared to the number of radio ellipticals, counting down to a radio luminosity of log(luminosity)=20.135 W/Hz..
Abell 1201: A Minor Merger at Second Core Passage
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; Owers, Matt; Nulsen, Paul E. J.; McNamara, Brian R.; Murray, Stephen S.; Couch, Warrick J.
2012-06-01
We present an analysis of the structures and dynamics of the merging cluster Abell 1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500 kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core, and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~= 1000 km s-1. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.
Chandra Observations of Point Sources in Abell 2255
NASA Technical Reports Server (NTRS)
Davis, David S.; Miller, Neal A.; Mushotzky, Richard F.
2003-01-01
In our search for "hidden" AGN we present results from a Chandra observation of the nearby cluster Abell 2255. Eight cluster galaxies are associated with point-like X-ray emission, and we classify these galaxies based on their X-ray, radio, and optical properties. At least three are associated with active galactic nuclei (AGN) with no optical signatures of nuclear activity, with a further two being potential AGN. Of the potential AGN, one corresponds to a galaxy with a post-starburst optical spectrum. The remaining three X-ray detected cluster galaxies consist of two starbursts and an elliptical with luminous hot gas. Of the eight cluster galaxies five are associated with luminous (massive) galaxies and the remaining three lie in much lower luminosity systems. We note that the use of X-ray to optical flux ratios for classification of X-ray sources is often misleading, and strengthen the claim that the fraction of cluster galaxies hosting an AGN based on optical data is significantly lower than the fraction based on X-ray and radio data.
ABELL 1201: A MINOR MERGER AT SECOND CORE PASSAGE
Ma Chengjiun; Nulsen, Paul E. J.; McNamara, Brian R.; Murray, Stephen S.; Owers, Matt; Couch, Warrick J.
2012-06-20
We present an analysis of the structures and dynamics of the merging cluster Abell 1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500 kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core, and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at {approx_equal} 1000 km s{sup -1}. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.
The Sunyaev-Zeldovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.
2000-01-01
We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).
The Sunyaev-Zel'dovich Effect Spectrum of Abell 2163
NASA Technical Reports Server (NTRS)
LaRoque, S. J.; Carlstrom, J. E.; Reese, E. D.; Holder, G. P.; Holzapfel, W. L.; Joy, M.; Grego, L.; Six, N. Frank (Technical Monitor)
2002-01-01
We present an interferometric measurement of the Sunyaev-Zel'dovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most complete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the Compton y-parameter (y(sub 0)) and the peculiar velocity (v(sub p)) for this cluster. Our results are y(sub 0) = 3.56((sup +0.41+0.27)(sub -0.41-0.19)) X 10(exp -4) and v(sub p) = 410((sup +1030+460) (sub -850-440)) km s(exp -1) where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.
NASA Astrophysics Data System (ADS)
Dasch, Cameron J.
1992-03-01
It is shown that the Abel inversion, onion-peeling, and filtered backprojection methods can be intercompared without assumptions about the object being deconvolved. If the projection data are taken at equally spaced radial positions, the deconvolved field is given by weighted sums of the projections divided by the data spacing. The weighting factors are independent of the data spacing. All the methods are remarkably similar and have Abelian behavior: the field at a radial location is primarily determined by the weighted differences of a few projections around the radial position. Onion-peeling and an Abel inversion using two-point interpolation are similar. When the Shepp-Logan filtered backprojection method is reduced to one dimension, it is essentially identical to an Abel inversion using three-point interpolation. The weighting factors directly determine the relative noise performance: the three-point Abel inversion is the best, while onion peeling is the worst with approximately twice the noise. Based on ease of calculation, robustness, and noise, the three-point Abel inversion is recommended.
Feasibility study of the numerical integration of shell equations using the field method
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
The field method is developed for arbitrary open branch domains subjected to general linear boundary conditions. Although closed branches are within the scope of the method, they are not treated here. The numerical feasibility of the method has been demonstrated by implementing it in a computer program for the linear static analysis of open branch shells of revolution under asymmetric loads. For such problems the field method eliminates the well-known numerical problem of long subintervals associated with the rapid growth of extraneous solutions. Also, the method appears to execute significantly faster than other numerical integration methods.
ERIC Educational Resources Information Center
Yu, Baohua
2013-01-01
This study examined the interrelationships of integrative motivation, competence in second language (L2) communication, sociocultural adaptation, academic adaptation and persistence of international students at an Australian university. Structural equation modelling demonstrated that the integrative motivation of international students has a…
Parallel numerical integration of Maxwell's full-vector equations in nonlinear focusing media
NASA Astrophysics Data System (ADS)
Bennett, Paul Murray
Maxwell's equations governing the evolution of ultrashort intense coherent pulses of light in a nonlinear focusing dielectric are presented. A discretization of this model using Kane Yee's grid is presented. Initial and boundary conditions are derived, and a serial finite difference algorithm using Yee's grid with the initial and boundary conditions is given. A parallelization of the serial algorithm to more aptly handle the large computational size is performed, and speedup and efficiency results of the parallel program are presented. The parallel code is first used to study the effect of the focusing nonlinearity upon dispersionless pulse propagation. Indications are given of the development of shocks on the optical carrier wave and upon the pulse envelope. The parallel code is then used to study the effect of varying the focusing of the light by varying the intensity as a way to compensate linear dispersion. Blow-up of the pulse in finite propagation distance is demonstrated, and the dependence of the blow-up position upon the intensity of the light is presented. Optical saturation is considered to counter blow-up of intense pulses. Finally, the parallel code is used to study the evolution of intense ultrashort optical pulses in a model featuring nonlinear dispersion, focusing, and optical saturation.
Xue, Chuan
2015-01-01
Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak-Keller-Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.
Application of integral-equation theory to aqueous two-phase partitioning systems
Haynes, C.A.; Benitez, F.J.; Blanch, H.W.; Prausnitz, J.M. )
1993-09-01
A molecular-thermodynamic model is developed for representing thermodynamic properties of aqueous two-phase systems containing polymers, electrolytes, and proteins. The model is based on McMillan-Mayer solution theory and the generalized mean-spherical approximation to account for electrostatic forces between unlike ions. The Boublik-Mansoori equation of state for hard-sphere mixtures is coupled with the osmotic virial expansion truncated after the second-virial terms to account for short-range forces between molecules. Osmotic second virial coefficients are reported from low-angle laser-light scattering (LALLS) data for binary and ternary aqueous solutions containing polymers and proteins. Ion-polymer specific-interaction coefficients are determined from osmotic-pressure data for aqueous solutions containing a water-soluble polymer and an alkali chloride, phosphate or sulfate salt. When coupled with LALLS and osmotic-pressure data reported here, the model is used to predict liquid-liquid equilibria, protein partition coefficients, and electrostatic potentials between phases for both polymer-polymer and polymer-salt aqueous two-phase systems. For bovine serum albumin, lysozyme, and [alpha]-chymotrypsin, predicted partition coefficients are in excellent agreement with experiment.
Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)
1999-01-01
A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically. it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved. but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. Tbc trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.
Neural network training by integration of adjoint systems of equations forward in time
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)
1992-01-01
A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically, it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved, but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. The trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.
Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang
2015-11-01
Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O
Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142
NASA Astrophysics Data System (ADS)
Munari, E.; Biviano, A.; Mamon, G. A.
2014-06-01
Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
Narrow-angle tail radio sources and the distribution of galaxy orbits in Abell clusters
NASA Technical Reports Server (NTRS)
O'Dea, Christopher P.; Sarazin, Craig L.; Owen, Frazer N.
1987-01-01
The present data on the orientations of the tails with respect to the cluster centers of a sample of 70 narrow-angle-tail (NAT) radio sources in Abell clusters show the distribution of tail angles to be inconsistent with purely radial or circular orbits in all the samples, while being consistent with isotropic orbits in (1) the whole sample, (2) the sample of NATs far from the cluster center, and (3) the samples of morphologically regular Abell clusters. Evidence for very radial orbits is found, however, in the sample of NATs near the cluster center. If these results can be generalized to all cluster galaxies, then the presence of radial orbits near the center of Abell clusters suggests that violent relaxation may not have been fully effective even within the cores of the regular clusters.
NASA Astrophysics Data System (ADS)
Mrugalla, Florian; Kast, Stefan M.
2016-09-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
Mrugalla, Florian; Kast, Stefan M
2016-09-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
NASA Astrophysics Data System (ADS)
Mrugalla, Florian; Kast, Stefan M.
2016-09-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute–solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute–solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
NASA Technical Reports Server (NTRS)
Nathenson, M.; Baganoff, D.; Yen, S. M.
1974-01-01
Data obtained from a numerical solution of the Boltzmann equation for shock-wave structure are used to test the accuracy of accepted approximate expressions for the two moments of the collision integral Delta (Q) for general intermolecular potentials in systems with a large translational nonequilibrium. The accuracy of the numerical scheme is established by comparison of the numerical results with exact expressions in the case of Maxwell molecules. They are then used in the case of hard-sphere molecules, which are the furthest-removed inverse power potential from the Maxwell molecule; and the accuracy of the approximate expressions in this domain is gauged. A number of approximate solutions are judged in this manner, and the general advantages of the numerical approach in itself are considered.
NASA Astrophysics Data System (ADS)
Fedotova, M. V.; Kruchinin, S. E.
2012-12-01
The structural parameters of glycine zwitterion in water were studied by means of the integral equation method in the framework of the RISM approximation. According to calculations, five water molecules are located in the nearest environment of the -NH{3/+} group, and two of them are the H-bonded with this group. At the same time, six water molecules are located in the nearest environment of the -COO- group, and three of them are the H-bonded with this group. The average number of water molecules in the first hydration shell of -CH2 group is four. It has been shown that the probability of hydrogen bond formation between water molecules and the hydrogen atom H1 of the -NH{3/+} group is low, and there is no H-bonding between water molecules and the nitrogen atom the -NH{3/+} group.
Feischl, Michael; Gantner, Gregor; Praetorius, Dirk
2015-01-01
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698
Pérez-Arancibia, Carlos; Bruno, Oscar P
2014-08-01
This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
NASA Astrophysics Data System (ADS)
Morii, Youhi; Terashima, Hiroshi; Koshi, Mitsuo; Shimizu, Taro; Shima, Eiji
2016-10-01
We herein propose a fast and robust Jacobian-free time integration method named as the extended robustness-enhanced numerical algorithm (ERENA) to treat the stiff ordinary differential equations (ODEs) of chemical kinetics. The formulation of ERENA is based on an exact solution of a quasi-steady-state approximation that is optimized to preserve the mass conservation law through use of a Lagrange multiplier method. ERENA exhibits higher accuracy and faster performance in homogeneous ignition simulations compared to existing popular explicit and implicit methods for stiff ODEs such as VODE, MTS, and CHEMEQ2. We investigate the effects of user-specified threshold values in ERENA, to provide trade-off information between the accuracy and the computational cost.
Chuev, Gennady N.; Valiev, Marat; Fedotova, Marina V.
2012-04-10
We have developed a hybrid approach based on a combination of integral equation theory of molecular liquids and QM/MM methodology in NorthWest computational Chemistry (NWChem) software package. We have split the evaluations into conse- quent QM/MM and statistical mechanics calculations based on the one-dimensional reference interaction site model, which allows us to reduce signicantly the time of computation. The method complements QM/MM capabilities existing in the NWChem package. The accuracy of the presented method was tested through com- putation of water structure around several organic solutes and their hydration free energies. We have also evaluated the solvent effect on the conformational equilibria. The applicability and limitations of the developed approach are discussed.
Huš, Matej; Urbic, Tomaz; Munaò, Gianmarco
2014-10-28
Thermodynamic and structural properties of a coarse-grained model of methanol are examined by Monte Carlo simulations and reference interaction site model (RISM) integral equation theory. Methanol particles are described as dimers formed from an apolar Lennard-Jones sphere, mimicking the methyl group, and a sphere with a core-softened potential as the hydroxyl group. Different closure approximations of the RISM theory are compared and discussed. The liquid structure of methanol is investigated by calculating site-site radial distribution functions and static structure factors for a wide range of temperatures and densities. Results obtained show a good agreement between RISM and Monte Carlo simulations. The phase behavior of methanol is investigated by employing different thermodynamic routes for the calculation of the RISM free energy, drawing gas-liquid coexistence curves that match the simulation data. Preliminary indications for a putative second critical point between two different liquid phases of methanol are also discussed.
NASA Technical Reports Server (NTRS)
Lamah, C. A.; Harris, W. L.
1983-01-01
A novel analytical-numerical method for calculating unsteady small disturbance transonic flow over airfoils has been developed. The method uses an extended integral equation technique, based on both the velocity potential and the acceleration potential, to predict unsteady aerodynamic loading on airfoils oscillating in subcritical transonic free stream conditions. The formulation is an extension of the work of Sivaneri and Harris (1980) for steady, non-lifting flows and utilizes the linear theory of Landahl (1961) for decoupling of steady and unsteady components. The analytical-numerical procedure involves several intnegrating schemes and applies to general frequencies of oscillations. The technique is illustrated by computing the transonic flow about parabolic arc airfoils. Specific unsteady results for reduced frequencies based on semi-chord of 0.01, 0.1, 0.3, 0.4 and 0.6 are given. Comparison of results with those obtained by an ADI finite difference scheme is made.
NASA Technical Reports Server (NTRS)
Watkins, Charles E; Berman, Julian H
1956-01-01
This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.
Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio
2014-11-07
Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a “soft-sphere” fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ε{sub 12}, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ε{sub 12} = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ε{sub 12}, two “glass” branches G{sub 1} and G{sub 2} are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ε{sub 12} → 0. Branch G{sub 2} is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical “ideal glass” phase. Branch G{sub 1} exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G{sub 2} branch. The free energies of the L and G{sub 2} branches are found to intersect at an alleged “random first-order transition” (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.
Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio
2014-11-01
Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a "soft-sphere" fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ɛ12, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ɛ12 = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ɛ12, two "glass" branches G1 and G2 are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ɛ12 → 0. Branch G2 is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical "ideal glass" phase. Branch G1 exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G2 branch. The free energies of the L and G2 branches are found to intersect at an alleged "random first-order transition" (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.
The nearby Abell clusters. III. Luminosity functions for eight rich clusters
Oegerle, W.R.; Hoessel, J.G. Washburn Observatory, Madison, WI )
1989-11-01
Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies. 40 refs.
Malcolm, A E; Reitich, F; Yang, J; Greenleaf, J F; Fatemi, M
2008-11-01
This paper aims to model ultrasound vibro-acoustography to improve our understanding of the underlying physics of the technique thus facilitating the collection of better images. Ultrasound vibro-acoustography is a novel imaging technique combining the resolution of high-frequency imaging with the clean (speckle-free) images obtained with lower frequency techniques. The challenge in modeling such an experiment is in the variety of scales important to the final image. In contrast to other approaches for modeling such problems, we break the experiment into three parts: high-frequency propagation, non-linear interaction and the propagation of the low-frequency acoustic emission. We then apply different modeling strategies to each part. For the high-frequency propagation we choose a parabolic approximation as the field has a strong preferred direction and small propagation angles. The non-linear interaction is calculated directly with Fourier methods for computing derivatives. Because of the low-frequency omnidirectional nature of the acoustic emission field and the piecewise constant medium we model the low-frequency field with a surface integral approach. We use our model to compare with experimental data and to visualize the relevant fields at points in the experiment where laboratory data is difficult to collect, in particular the source of the low-frequency field. To simulate experimental conditions we perform the simulations with the two frequencies 3 and 3.05 MHz with an inclusion of varying velocity submerged in water.
THE GALAXY POPULATION OF LOW-REDSHIFT ABELL CLUSTERS
Barkhouse, Wayne A.; Yee, H. K. C.; Lopez-Cruz, Omar E-mail: hyee@astro.utoronto.c
2009-10-01
We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (f{sub b} ) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r {sub 200} to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (B {sub gc}), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The f{sub b} is found not to correlate with B {sub gc}; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy f{sub b} is approximately constant with clustercentric radius except for the inner-cluster core region where f{sub b} decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.
The Sunyaev-Zel'dovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.
1999-01-01
We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).
The Layzer-Irvine equation in theories with non-minimal coupling between matter and curvature
Bertolami, O.; Gomes, C. E-mail: claudio.gomes@fc.up.pt
2014-09-01
We derive the Layzer-Irvine equation for alternative gravitational theories with non-minimal coupling between curvature and matter for an homogeneous and isotropic Universe. As an application, we study the case of Abell 586, a relaxed and spherically symmetric galaxy cluster, assuming some matter density profiles.
NASA Technical Reports Server (NTRS)
Rzasnicki, W.
1973-01-01
A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.
NASA Technical Reports Server (NTRS)
Pratt, D. T.; Radhakrishnan, K.
1986-01-01
The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.
NASA Astrophysics Data System (ADS)
Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred
2016-03-01
Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.
Abell 262 and RXJ0341: Two Brightest Cluster Galaxies with Line Emission Blanketing a Cool Core
NASA Astrophysics Data System (ADS)
Edwards, Louise O. V.; Heng, Renita
2014-08-01
Over the last decade, integral field (IFU) analysis of the brightest cluster galaxies (BCGs) in several cool core clusters has revealed the central regions of these massive old red galaxies to be far from dead. Bright line emission alongside extended X-ray emission links nearby galaxies, is superposed upon vast dust lanes and extends out in long thin filaments from the galaxy core. Yet, to date no unifying picture has come into focus, and the activity across systems is currently seen as a grab-bag of possibile emission line mechanisms. Our primary goal is to work toward a consistent picture for why the BCGs seem are undergoing a renewed level of activity. One problem is most of the current data remains focused on mapping the very core of the BCG, but neglects surrounding galaxies. We propose to discover the full extent of line emission in a complementary pair of BCGs. In Abell 262, an extensive dust patch screens large portions of an otherwise smooth central galaxy, whereas RXJ0341 appears to be a double-core dust free BCG. We will map the full extent of the line emission in order to deduce whether the line emission is a product of local interactions, or the large-scale cluster X-ray gas. The narrow band filter set and large FOV afforded by the the Mayall MOSAIC-1 (MOSA) imager allows us to concurrently conduct an emission line survey of both clusters, locating all line emitting members and beginning a search for the effect of the environment of the different regions (outskirts vs. cluster core) out to the virial radius. We will combine our results with publically available data from 2MASS to determine the upper limits on specific star formation in the BCG and other cluster galaxies within the cluster virial radius.
NASA Astrophysics Data System (ADS)
Khachatryan, Kh A.
2015-04-01
We study certain classes of non-linear Hammerstein integral equations on the semi-axis and the whole line. These classes of equations arise in the theory of radiative transfer in nuclear reactors, in the kinetic theory of gases, and for travelling waves in non-linear Richer competition systems. By combining special iteration methods with the methods of construction of invariant cone segments for the appropriate non-linear operator, we are able to prove constructive existence theorems for positive solutions in various function spaces. We give illustrative examples of equations satisfying all the hypotheses of our theorems.