Science.gov

Sample records for abel inversion technique

  1. Improved Abel transform inversion: First application to COSMIC/FORMOSAT-3

    NASA Astrophysics Data System (ADS)

    Aragon-Angel, A.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.

    2007-05-01

    In this paper the first results of Ionospheric Tomographic inversion are presented, using the Improved Abel Transform on the COSMIC/FORMOSAT-3 constellation of 6 LEO satellites, carrying on-board GPS receivers.[- 4mm] The Abel transform inversion is a wide used technique which in the ionospheric context makes it possible to retrieve electron densities as a function of height based of STEC (Slant Total Electron Content) data gathered from GPS receivers on board of LEO (Low Earth Orbit) satellites. Within this precise use, the classical approach of the Abel inversion is based on the assumption of spherical symmetry of the electron density in the vicinity of an occultation, meaning that the electron content varies in height but not horizontally. In particular, one implication of this assumption is that the VTEC (Vertical Total Electron Content) is a constant value for the occultation region. This assumption may not always be valid since horizontal ionospheric gradients (a very frequent feature in some ionosphere problematic areas such as the Equatorial region) could significantly affect the electron profiles. [- 4mm] In order to overcome this limitation/problem of the classical Abel inversion, a studied improvement of this technique can be obtained by assuming separability in the electron density (see Hernández-Pajares et al. 2000). This means that the electron density can be expressed by the multiplication of VTEC data and a shape function which assumes all the height dependency in it while the VTEC data keeps the horizontal dependency. Actually, it is more realistic to assume that this shape fuction depends only on the height and to use VTEC information to take into account the horizontal variation rather than considering spherical symmetry in the electron density function as it has been carried out in the classical approach of the Abel inversion.[-4mm] Since the above mentioned improved Abel inversion technique has already been tested and proven to be a useful

  2. Fast algorithm for computing the Abel inversion integral in broadband reflectometry

    SciTech Connect

    Nunes, F.D.

    1995-10-01

    The application of the Hansen--Jablokow recursive technique is proposed for the numerical computation of the Abel inversion integral which is used in ({ital O}-mode) frequency-modulated broadband reflectometry to evaluate plasma density profiles. Compared to the usual numerical methods the recursive algorithm allows substantial time savings that can be important when processing massive amounts of data aiming to control the plasma in real time. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; Mitchell, Stephen E.; Hock, Margaret C.

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  4. A new Abel inversion by means of the integrals of an input function with noise

    NASA Astrophysics Data System (ADS)

    Li, Xian-Fang; Huang, Li; Huang, Yong

    2007-01-01

    Abel's integral equations arise in many areas of natural science and engineering, particularly in plasma diagnostics. This paper proposes a new and effective approximation of the inversion of Abel transform. This algorithm can be simply implemented by symbolic computation, and moreover an nth-order approximation reduces to the exact solution when it is a polynomial in r2 of degree less than or equal to n. Approximate Abel inversion is expressed in terms of integrals of input measurement data; so the suggested approach is stable for experimental data with random noise. An error analysis of the approximation of Abel inversion is given. Finally, several test examples used frequently in plasma diagnostics are given to illustrate the effectiveness and stability of this method.

  5. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    NASA Astrophysics Data System (ADS)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  6. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  7. An efficient and flexible Abel-inversion method for noisy data

    NASA Astrophysics Data System (ADS)

    Antokhin, Igor I.

    2016-08-01

    We propose an efficient and flexible method for solving Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization on itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.

  8. Abell Clusters

    NASA Astrophysics Data System (ADS)

    Katgert, P.; Murdin, P.

    2000-11-01

    Abell clusters are the most conspicuous groupings of galaxies identified by George Abell on the plates of the first photographic survey made with the SCHMIDT TELESCOPE at Mount Palomar in the 1950s. Sometimes, the term Abell clusters is used as a synonym of nearby, optically selected galaxy clusters....

  9. Mathematics of Radiation Propagation in Planetary Atmospheres: Absorption, Refraction, Time Delay, Occultation, and Abel Inversion

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.

    Forward integration calculation of air mass, refraction, and time delay requires care even for very smooth model atmospheres. The literature abounds in examples of injudicious approximations, assumptions, transformations, variable substitutions, and failures to verify that the formulas work with unlimited accuracy for simple cases and also survive challenges from mathematically pathological but physically realizable cases. A few years ago we addressed the problem of evaluation of the Chapman function for attenuation along a straight line path in an exponential atmosphere. In this presentation we will describe issues and approaches for integration over light paths curved by refraction. The inverse problem, determining the altitude profile of mass density (index of refraction) or the concentration of an individual chemical species (absorption), from occultation data, also has its mathematically interesting (i.e., difficult) aspects. Now we automatically have noise and thus statistical analysis is just as important as calculus and numerical analysis. Here we will describe a new approach of least-squares fitting occultation data to an expansion over compact basis functions. This approach, which avoids numerical differentiation and singular integrals, was originally developed to analyze laboratory imaging data.Forward integration calculation of air mass, refraction, and time delay requires care even for very smooth model atmospheres. The literature abounds in examples of injudicious approximations, assumptions, transformations, variable substitutions, and failures to verify that the formulas work with unlimited accuracy for simple cases and also survive challenges from mathematically pathological but physically realizable cases. A few years ago we addressed the problem of evaluation of the Chapman function for attenuation along a straight line path in an exponential atmosphere. In this presentation we will describe issues and approaches for integration over light paths

  10. Inverse Raman effect: applications and detection techniques

    SciTech Connect

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  11. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  12. Trimming and procrastination as inversion techniques

    NASA Astrophysics Data System (ADS)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  13. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  14. Two-dimensional inversion technique for satellite airglow data

    NASA Technical Reports Server (NTRS)

    Fesen, C. G.; Hays, P. B.

    1982-01-01

    A technique is described which inverts satellite airglow data producing volume emission rates as functions of altitude and position. The inversion is applied to data obtained when the spacecraft spins in the orbital plane. The altitude and height resolutions are constrained by the geometry chosen to simplify the inversion. The limitations of the method and its implementation on data from the Visual Airglow Experiment onboard the Atmosphere Explorer satellite are discussed. Sample maps of brightness and volume emission rates are shown.

  15. Two-dimensional inversion technique for satellite airglow data.

    PubMed

    Fesen, C G; Hays, P B

    1982-10-15

    A technique is described which inverts satellite airglow data producing volume emission rates as functions of altitude and position. The inversion is applied to data obtained when the spacecraft spins in the orbital plane. The altitude and height resolutions are constrained by the geometry chosen to simplify the inversion. The limitations of the method and its implementation on data from the Visual Airglow Experiment onboard the Atmosphere Explorer satellite are discussed. Sample maps of brightness and volume emission rates are shown.

  16. Two-frequency lidar inversion technique.

    PubMed

    Potter, J F

    1987-04-01

    An analytical technique for inverting lidar returns is proposed and tested on simulated data. The technique requires simultaneous lidar returns at two frequencies and is based on the assumptions that (1) the ratio of backscatter to extinction is independent of position along the lidar line and (2) the ratio of the extinction coefficients at the two frequencies is independent of position along the lidar line. These assumptions are met if molecular scattering can be neglected and the aerosol is composed of the same kind of particle at all points along the lidar line. The simulated data corresponded to a lidar line of 1.0-km length with a uniform aerosol having a total optical depth of 1.0. The quantities determined by the analysis are the total transmittance T, the ratio between the extinction coefficients at the two frequencies k, and the extinction profiles at the two frequencies. The errors in these quantities are critically dependent on the noise level in the data. When 100 shots were averaged to reduce noise, the rms errors in T and k were 1.93 and 1.54%, respectively, and the maximum error in the extinction profile was 6%. An appendix describes possible extensions to include molecular scattering.

  17. AVO Seismic data inversion using global simultaneous technique

    NASA Astrophysics Data System (ADS)

    Eladj, S.; Ouadfeul, S.; Aliouane, L.; Djarfour, N.

    2012-04-01

    The main objective of this work is to apply the global simultaneous inversion of AVO real seismic data of the NORNE petroleum field located in the North Sea. Inversion has been applied to characterize the physical reservoir properties in term of acoustic impedance, Poisson's coefficient and Density. The proposed technique is applied at a small seismic cube of an hydrocarbon reservoir. Obtained results consists of the three cube cited above. Comparison of these last with a well-logs data of a borehole located in the area shows that the global simultaneous inversion can be used for reservoir properties prediction. These results can be used by geoscientists for better reservoir characterization and built a sub-surface dynamic model. The goal is to minimize the hydrocarbon exploration uncertainly. Keywords: global simultaneous inversion, AVO, North Sea, cube, reservoir characterization.

  18. Extended mapping and characteristics techniques for inverse aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Qian, Y. J.

    1991-01-01

    Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves.

  19. A fast Stokes inversion technique based on quadratic regression

    NASA Astrophysics Data System (ADS)

    Teng, Fei; Deng, Yuan-Yong

    2016-05-01

    Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermodynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with multiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).

  20. Locally tuned inverse sine nonlinear technique for color image enhancement

    NASA Astrophysics Data System (ADS)

    Arigela, Saibabu; Asari, Vijayan K.

    2013-02-01

    In this paper, a novel inverse sine nonlinear transformation based image enhancement technique is proposed to improve the visual quality of images captured in extreme lighting conditions. This method is adaptive, local and simple. The proposed technique consists of four main stages namely histogram adjustment, dynamic range compression, contrast enhancement and nonlinear color restoration. Histogram adjustment on each spectral band is performed to belittle the effect of illumination. Dynamic range compression is accomplished by an inverse sine nonlinear function with a locally tunable image dependent parameter based on the local statistics of each pixel's neighborhood regions of the luminance image. A nonlinear color restoration process based on the chromatic information and luminance of the original image is employed. A statistical quantitative evaluation is performed with the state of the art techniques to analyze and compare the performance of the proposed technique. The proposed technique is also tested on face detection in complex lighting conditions. The results of this technique on images captured in hazy/foggy weather environment are also presented. The evaluation results confirm that the proposed method can be applied to surveillance, security applications in complex lighting environments.

  1. MASS SUBSTRUCTURE IN ABELL 3128

    SciTech Connect

    McCleary, J.; Dell’Antonio, I.; Huwe, P.

    2015-05-20

    We perform a detailed two-dimensional weak gravitational lensing analysis of the nearby (z = 0.058) galaxy cluster Abell 3128 using deep ugrz imaging from the Dark Energy Camera (DECam). We have designed a pipeline to remove instrumental artifacts from DECam images and stack multiple dithered observations without inducing a spurious ellipticity signal. We develop a new technique to characterize the spatial variation of the point-spread function that enables us to circularize the field to better than 0.5% and thereby extract the intrinsic galaxy ellipticities. By fitting photometric redshifts to sources in the observation, we are able to select a sample of background galaxies for weak-lensing analysis free from low-redshift contaminants. Photometric redshifts are also used to select a high-redshift galaxy subsample with which we successfully isolate the signal from an interloping z = 0.44 cluster. We estimate the total mass of Abell 3128 by fitting the tangential ellipticity of background galaxies with the weak-lensing shear profile of a Navarro–Frenk–White (NFW) halo and also perform NFW fits to substructures detected in the 2D mass maps of the cluster. This study yields one of the highest resolution mass maps of a low-z cluster to date and is the first step in a larger effort to characterize the redshift evolution of mass substructures in clusters.

  2. Mass Substructure in Abell 3128

    NASA Astrophysics Data System (ADS)

    McCleary, J.; dell'Antonio, I.; Huwe, P.

    2015-05-01

    We perform a detailed two-dimensional weak gravitational lensing analysis of the nearby (z = 0.058) galaxy cluster Abell 3128 using deep ugrz imaging from the Dark Energy Camera (DECam). We have designed a pipeline to remove instrumental artifacts from DECam images and stack multiple dithered observations without inducing a spurious ellipticity signal. We develop a new technique to characterize the spatial variation of the point-spread function that enables us to circularize the field to better than 0.5% and thereby extract the intrinsic galaxy ellipticities. By fitting photometric redshifts to sources in the observation, we are able to select a sample of background galaxies for weak-lensing analysis free from low-redshift contaminants. Photometric redshifts are also used to select a high-redshift galaxy subsample with which we successfully isolate the signal from an interloping z = 0.44 cluster. We estimate the total mass of Abell 3128 by fitting the tangential ellipticity of background galaxies with the weak-lensing shear profile of a Navarro-Frenk-White (NFW) halo and also perform NFW fits to substructures detected in the 2D mass maps of the cluster. This study yields one of the highest resolution mass maps of a low-z cluster to date and is the first step in a larger effort to characterize the redshift evolution of mass substructures in clusters.

  3. Rapid Probabilistic Source Inversion Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Kaeufl, P.; Valentine, A. P.; Trampert, J.

    2013-12-01

    Determination of earthquake source parameters is an important task in seismology. For many applications, it is also valuable to understand the uncertainties associated with these determinations, and this is particularly true in the context of earthquake early warning and hazard mitigation. We present a framework for probabilistic centroid moment tensor point source inversions in near real-time, applicable to a wide variety of data-types. Our methodology allows us to find an approximation to p(m|d), the conditional probability of source parameters (m) given observations, (d). This approximation is obtained by smoothly interpolating a set of random prior samples, using a machine learning algorithm able to learn the mapping from d to m. The approximation obtained can be evaluated within milliseconds on a standard desktop computer for a new observation (d). This makes the method well suited for use in situations such as earthquake early warning, where inversions must be performed routinely, for a fixed station geometry, and where it is important that results are obtained rapidly. This is a major advantage over traditional sampling based techniques, such as Markov-Chain Monte-Carlo methods, where a re-sampling of the posterior is necessary every time a new observation is made. We demonstrated the method by applying it to a regional static GPS displacement data set for the 2010 MW 7.2 El Mayor Cucapah earthquake in Baja California and obtained estimates of logarithmic magnitude, centroid location and depth, and focal mechanism (Käufl et al., submitted). We will present an extension of this approach to the inversion of full waveforms and explore possibilities for jointly inverting seismic and geodetic data. (1) P. Käufl, A. P. Valentine, T.B. O'Toole, J. Trampert, submitted, Geophysical Journal International

  4. A comparison of techniques for inversion of radio-ray phase data in presence of ray bending

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.; Grossi, M. D.

    1972-01-01

    Derivations are presented of the straight-line Abel transform and the seismological Herglotz-Wiechert transform (which takes ray bending into account) that are used in the reconstruction of refractivity profiles from radio-wave phase data. Profile inversion utilizing these approaches, performed in computer-simulated experiments, are compared for cases of positive, zero, and negative ray bending. For thin atmospheres and ionospheres, such as the Martian atmosphere and ionosphere, radio wave signals are shown to be inverted accurately with both methods. For dense media, such as the solar corona or the lower Venus atmosphere, the refractive recovered by the seismological Herglotz-Wiechert transform provide a significant improvement compared with the straight-line Abel transform.

  5. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  6. Inversion of SOHO/EPHIN data using regularization techniques

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Böhm, E.; Kharytonov, A.; Müller-Mellin, R.; Gomez-Herrero, R.; Heber, B.

    2006-12-01

    We analyze data from the Solar and Heliospheric Observatory (SOHO) instrument EPHIN (electron, proton, helium instrument) by full deconvolution of the measured data with the instrument response function. We show how regularization methods can be applied to energetic particle measurements to derive unambiguously the original particle spectrum - devoid of any assumptions made about its functional behaviour. This inversion thechnique still requires knowledge of the instrument response function, however, it is an improvement upon normal least-squares or maximum-likelihood fitting procedures because it does not require any a-priori knowlwdge of the underlying particle spectra. Given the instrument response function in matrix form (here derived using Monte Carlo techniques), the original Fredholm integral equations reduce to a discrete system of linear algebraic equations that can be solved by ordinary regularization methods such as singular value decomposition or the Tikhonov method. This procedure alone may laed to unphysical negative results, requiring the further constraint of non-negative count rates. We apply the SVD and Thikonov methods with and without constraints to measured data from SOHO/EPHIN. The derived results agree well with those of other methods that rely on a-priori knowledge of the spectral shape of the particle distribution function, demonstrating the power of the method for more general cases.

  7. Vicarious Adjustment of MERIS Reflectances Using an Inverse Technique

    NASA Astrophysics Data System (ADS)

    McCulloch, M. E.; Barker, K. L.; Zibordi, G..

    2010-12-01

    The method used for the vicarious adjustment of the SeaWiFS & MERIS ocean colour data relies on the assumptions that the water-leaving radiance is negligible in the Near Infra-Red (NIR) in oligotrophic waters, and the NIR band is perfectly calibrated. Here, a novel approach to vicarious adjustment is proposed that does not need these assumptions: a least-squares inverse technique is used to adjust the most uncertain parameters in the atmosphere model: the aerosol scattering (ρa) and the error in the ozone optical depth (dτoz) within their error bars to obtain a best fit between the satellite and buoy water reflectance. Examples are presented using match-ups of satellite and in situ observations from MERMAID (the MERis Match- up In-situ Database) for the MOBY, Gustav Dalen, BOUSSOLE and AAOT platforms. The new method predicts the lowest dτ for MOBY, the lowest ρ for the Gustav Dalen site, and the largest a values of both at AAOT. The method is simple to code, potentially more flexible than the present gain method, can weight observations for reliability and predicts poorly-known atmospheric properties. However, it requires accurate physics, a good initial guess, enough data for convergence and cannot correct biases. The method could be tested by running it in parallel with the existing method.

  8. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  9. One-dimensional tomography - A comparison of Abel, onion-peeling, and filtered backprojection methods

    NASA Astrophysics Data System (ADS)

    Dasch, Cameron J.

    1992-03-01

    It is shown that the Abel inversion, onion-peeling, and filtered backprojection methods can be intercompared without assumptions about the object being deconvolved. If the projection data are taken at equally spaced radial positions, the deconvolved field is given by weighted sums of the projections divided by the data spacing. The weighting factors are independent of the data spacing. All the methods are remarkably similar and have Abelian behavior: the field at a radial location is primarily determined by the weighted differences of a few projections around the radial position. Onion-peeling and an Abel inversion using two-point interpolation are similar. When the Shepp-Logan filtered backprojection method is reduced to one dimension, it is essentially identical to an Abel inversion using three-point interpolation. The weighting factors directly determine the relative noise performance: the three-point Abel inversion is the best, while onion peeling is the worst with approximately twice the noise. Based on ease of calculation, robustness, and noise, the three-point Abel inversion is recommended.

  10. Implementation of MASW and waveform inversion techniques for new seismic hazard estimation technique

    NASA Astrophysics Data System (ADS)

    el-aziz abd el-aal, abd; Kamal, heba

    2016-04-01

    In this contribution, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana Wind Farm site. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of waveform inversion method and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern Desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses new an extended stochastic technique to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers sites at Zafarana Wind Farm and its vicinity. The essential characteristics of the extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. Key words: MASW, waveform inversion, extended stochastic technique, Zafarana Wind Farm

  11. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  12. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    SciTech Connect

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  13. Nonlinear inversion for arbitrarily-oriented anisotropic models II: Inversion techniques

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.

    2011-12-01

    We present output models from inversion of a synthetic surface wave dataset. We implement new 3-D finite-frequency kernels, based on the Born approximation, to invert for upper mantle structure beneath western North America. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. Numerical tests were performed to achieve a robust inversion scheme. Four synthetic input models were created, to include: isotropic, constant strength anisotropic, variable strength anisotropic, and both anisotropic and isotropic together. The reference model was a simplified version of PREM (dubbed PREM LIGHT) in which the crust and 220 km discontinuity have been removed. Output models from inversions of calculated synthetic data are compared against these input models to test for accurate reproduction of input model features, and the resolution of those features. The object of this phase of the study was to determine appropriate nonlinear inversion schemes that adequately recover the input models. The synthetic dataset consists of collected seismic waveforms of 126 earthquake mechanisms, of magnitude 6-7 from Dec 2006 to Feb 2009, from the IRIS database. Events were selected to correlate with USArray deployments, and to have as complete an azimuthal coverage as possible. The events occurred within a circular region of radius 150o centered about 44o lat, -110o lon (an arbitrary location within USArray coverage). Synthetic data were calculated utilizing a spectral element code (SEM) coupled to a normal mode solution. The mesh consists of a 3-D heterogeneous outer shell, representing the upper mantle above 450 km depth, coupled to a spherically symmetric inner sphere. From the synthetic dataset, multi-taper fundamental mode surface wave phase delay measurements are taken. The orthogonal 2.5π -prolate spheroidal wave function eigentapers (Slepian tapers) reduce noise biasing, and can provide error estimates in phase delay measurements. This study is a

  14. Asynchronous global optimization techniques for medium and large inversion problems

    SciTech Connect

    Pereyra, V.; Koshy, M.; Meza, J.C.

    1995-04-01

    We discuss global optimization procedures adequate for seismic inversion problems. We explain how to save function evaluations (which may involve large scale ray tracing or other expensive operations) by creating a data base of information on what parts of parameter space have already been inspected. It is also shown how a correct parallel implementation using PVM speeds up the process almost linearly with respect to the number of processors, provided that the function evaluations are expensive enough to offset the communication overhead.

  15. A New Technique for Inversion of Helioseismic Data

    NASA Astrophysics Data System (ADS)

    Larsen, R. M.; Kosovichev, A. G.; Schou, J.

    1999-05-01

    Inversions of rotational frequency splittings derived from helioseismic data obtained by the MDI instrument and the GONG network have given a detailed picture of the differential rotation in the convection zone (Schou et al. 1998). However, features associated with sharp gradients of the rotation rate such as jets, near surface shear layers (torsional oscillations) as well as the transition layer to the radiative interior (the "tachocline") are usually not well resolved. This is due to the smoothing applied by traditional inversion methods such as Regularized Least Squares (RLS) and Optimally Localized Averages (OLA). In this work we show how a generalized version of the method proposed by Thompson (1990) can used be to study these features by inverting directly for the radial or latitudinal derivative of the rotation rate. This research is supported by the SOI-MDI NASA grant NAG5-3077 at Stanford University. References: G.I. Marchuk, Methods of Numerical Mathematics, New York, Springer-Verlag, 1975. Schou, J. et al., 1998, Astrophys J., 505, 390. Thompson, M. J., 1990, Sol. Phys., 125, 1.

  16. Multidimensional Analysis of Quenching: Comparison of Inverse Techniques

    SciTech Connect

    Dowding, K.J.

    1998-11-18

    Understanding the surface heat transfer during quenching can be beneficial. Analysis to estimate the surface heat transfer from internal temperature measurements is referred to as the inverse heat conduction problem (IHCP). Function specification and gradient adjoint methods, which use a gradient search method coupled with an adjoint operator, are widely u led methods to solve the IHCP. In this paper the two methods are presented for the multidimensional case. The focus is not a rigorous comparison of numerical results. Instead after formulating the multidimensional solutions, issues associated with the numerical implementation and practical application of the methods are discussed. In addition, an experiment that measured the surface heat flux and temperatures for a transient experimental case is analyzed. Transient temperatures are used to estimate the surface heat flux, which is compared to the measured values. The estimated surface fluxes are comparable for the two methods.

  17. Inversion techniques for determining the droplet size distribution in clouds: numerical examination.

    PubMed

    Chow, L C; Tien, C L

    1976-02-01

    The Phillips-Twomey and Backus-Gilbert inversion techniques are applied to determine the size distribution of water droplets in clouds from light scattering data at backward angles. The data are generated numerically from the Mie scattering functions and an assumed cloud model. The size distribution is recovered from these data using the two inversion techniques and is compared with the assumed model. It is found that the Phillips-Twomey technique gives better agreement between the assumed and recovered size distributions than the Backus-Gilbert technique. Also, it is more stable to random errors artificially introduced into the scattering data.

  18. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  19. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  20. Development and evaluation of an inverse solution technique for studying helicopter maneuverability and agility

    NASA Technical Reports Server (NTRS)

    Whalley, Matthew S.

    1991-01-01

    An inverse solution technique for determining the maximum maneuvering performance of a helicopter using smooth, pilotlike control inputs is presented. Also described is a pilot simulation experiment performed to investigate the accuracy of the solution resulting from this technique. The maneuverability and agility capability of the helicopter math model was varied by varying the pitch and roll damping, the maximum pitch and roll rate, and the maximum load-factor capability. Three maneuvers were investigated: a 180-deg turn, a longitudinal pop-up, and a lateral jink. The inverse solution technique yielded accurate predictions of pilot-in-the-loop maneuvering performance for two of the three maneuvers.

  1. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Alvarez, J. M.

    1981-01-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic CIO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations.

  2. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms.

    PubMed

    Abbas, M M; Shapiro, G L; Alvarez, J M

    1981-11-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic ClO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations. PMID:20372255

  3. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  4. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications.

  5. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  6. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  7. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  8. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  9. Improving carbon cycle models using inverse modelling techniques with in-situ measurements and satellite observations

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2014-05-01

    Improving our understanding of the carbon cycle is an important component of modelling climate and the Earth system, and a variety of inverse modelling techniques have been used to combine process models with different types of observational data. Model data fusion, or inverse modelling, is the process of best combining our under- standing of the dynamics of a system, observations and our prior knowledge of the state of the system. We consider a simple model for the carbon budget allocation for terrestrial ecosystems, the Data Assimilation-Linked Ecosystem model (DALEC). DALEC is a box model simulating a large range of processes occurring at different time scales from days to millennia. Eddy covariance measurements of net ecosystem exchange of CO2 have been used intensively for over a decade to confront DALEC with real data to estimate model parameters and quantify uncertainty of the model predictions. The REgional FLux Estimation eXperiment (REFLEX), compared the strengths and weaknesses of various inverse modelling strategies (MCMC, ENKF) to estimate parameters and initial stocks for DALEC; most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results of REFLEX. One of the merits of DALEC is its simplicity that facilitates close mathematical scrutiny. Using variational techniques we quantify the ill-posedness of the inverse problem and we discuss various regularisation techniques. Using the tangent linear model we study the information content of multiple data sources and show how these multiple data sources help constraining initial carbon

  10. An inversion method for cometary atmospheres

    NASA Astrophysics Data System (ADS)

    Hubert, B.; Opitom, C.; Hutsemékers, D.; Jehin, E.; Munhoven, G.; Manfroid, J.; Bisikalo, D. V.; Shematovich, V. I.

    2016-10-01

    Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight. This integration is the so-called Abel transform of the local emission rate. The observation is generally interpreted under the hypothesis of spherical symmetry of the coma. Under that hypothesis, the Abel transform can be inverted. We derive a numerical inversion method adapted to cometary atmospheres using both analytical results and least squares fitting techniques. This method, derived under the usual hypothesis of spherical symmetry, allows us to retrieve the radial distribution of the emission rate of any unabsorbed emission, which is the fundamental, physically meaningful quantity governing the observation. A Tikhonov regularization technique is also applied to reduce the possibly deleterious effects of the noise present in the observation and to warrant that the problem remains well posed. Standard error propagation techniques are included in order to estimate the uncertainties affecting the retrieved emission rate. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness. In particular, we show that the Abel inversion of real data is only weakly sensitive to an offset applied to the input flux, which implies that the method, applied to the study of a cometary atmosphere, is only weakly dependent on uncertainties on the sky background which has to be subtracted from the raw observations of the coma. We apply the method to observations of three different comets observed using the TRAPPIST telescope: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding Spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the retrieved characteristic lengths can differ from those obtained from a direct least squares fitting over the observed flux of radiation, and

  11. Geoacoustic inversion techniques (GAIT) Version 1.0 global search (GS)

    NASA Astrophysics Data System (ADS)

    Neumann, Peter; Muncill, Gregory

    2003-04-01

    Geoacoustic Inversion Techniques (GAIT) Version 1.0 is a PEO (C4I and Space) PMW 155 funded product that accepts measured acoustic data and produces an optimized estimate of the bottom environment that produced the observed acoustic data. The Global Search (GS) segment of GAIT pairs the Adaptive Simulated Annealing (ASA) algorithm with a variety of Navy standard propagation loss models (PE, ASTRAL and Nautilus) and an active sonar performance prediction model (ASPM). The goal of the GS segment of GAIT is to provide a best estimate of the geoacoustic properties of the ocean bottom that, when paired with a selected model, result in the observed acoustic data. An overview of the GS segment of GAIT 1.0 will be presented with details on the ASA algorithm, component models, cost functions and geoacoustic parametrizations. Inversion results will be shown for synthetic test cases from the Inversion Technique Workshop (ITW) held in May 2001 and from both narrowband and broadband measured data test cases. [Work supported by PEO (C4I and Space) PMW 155 and uses the products of a Phase I and II SBIR from the ONR (Code 321US).

  12. The updated statistical inversion technique to the evaluation of Umkehr observations

    NASA Technical Reports Server (NTRS)

    Frolov, Alexander D.; Obrazcov, Sergey P.

    1994-01-01

    In the present study the standard retrieval Umkehr method to estimate the vertical distribution of ozone was updated using a statistical approach to the mathematical inversion scheme. The vertical ozone profile covariance matrix was used as a priori information for the inverse problem. A new method of the ozonesonde data organization according to air mass types helped to improve the covariance matrix quality. A retrieval method was developed using eigenvector technique. An optimal vertical ozone profile resolution was determined from the mathematical inversion scheme analysis based on the same technique. The sun radiation transfer was accounted for multiple scattering and atmospheric sphericity in this calculation. The retrievals using actual Umkehr Dobson spectrophotometer observations were also performed to provide the comparison of the standard and updated methods with concurrent ozone sound data at Boulder U.S. The comparison has revealed that the present method has some advantages in both resolution and accuracy, as compared to the standard one, especially for the atmospheric layers below ozone maximum.

  13. Inversion Technique for Estimating Emissions of Volcanic Ash from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Pelley, Rachel; Cooke, Michael; Manning, Alistair; Thomson, David; Witham, Claire; Hort, Matthew

    2014-05-01

    When using dispersion models such as NAME (Numerical Atmospheric-dispersion Modelling Environment) to predict the dispersion of volcanic ash, a source term defining the mass release rate of ash is required. Inversion modelling using observations of the ash plume provides a method of estimating the source term for use in NAME. Our inversion technique makes use of satellite retrievals, calculated using data from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument on-board the MSG (Meteosat Second Generation) satellite, as the ash observations. InTEM (Inversion Technique for Emission Modelling) is the UK Met Office's inversion modelling system. Recently the capability to estimate time and height varying source terms has been implemented and applied to volcanic ash. InTEM uses a probabilistic approach to fit NAME model concentrations to satellite retrievals. This is achieved by applying Bayes Theorem to give a cost function for the source term. Source term profiles with lower costs generate model concentrations that better fit the satellite retrievals. InTEM uses the global optimisation technique, simulated annealing, to find the minimum of the cost function. The use of a probabilistic approach allows the uncertainty in the satellite retrievals to be incorporated into the inversion technique. InTEM makes use of satellite retrievals of both ash column loadings and of cloud free regions. We present a system that allows InTEM to be used during an eruption. The system is automated and can produce source term updates up to four times a day. To allow automation hourly satellite retrievals of ash are routinely produced using conservative detection limits. The conservative detection limits provide good detection of the ash plume while limiting the number of false alarms. Regions which are flagged as ash contaminated or free from cloud (both meteorological and ash) are used in the InTEM system. This approach is shown to improve the concentrations in the

  14. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  15. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse-Emulsion Technique.

    PubMed

    Chowdhuri, Sampreeti; Cole, Christian M; Devaraj, Neal K

    2016-05-17

    Liposomes form spontaneously by the assimilation of phospholipids, the primary component of cell membranes. Due to their unique ability to form selectively permeable bilayers in situ, they are widely used as nanocarriers for drug and small-molecule delivery. However, there is a lack of straightforward methodologies to encapsulate living microorganisms. Here we demonstrate the successful encapsulation of whole cells in phospholipid vesicles by using the inverse-emulsion technique of generating unilamellar vesicles. This method of liposome preparation allows for a facile encapsulation of large biomaterials that previously was not easily attainable. Using Escherichia coli as a model organism, we found that liposomes can protect the bacterium against external protease degradation and from harsh biological environments. Liposomes prepared by the inverse-emulsion method were also capable of encapsulating yeast and were found to be naturally susceptible to hydrolysis by enzymes such as phospholipases, thus highlighting their potential role as cell delivery carriers. PMID:26919463

  16. Efficient technique for the numerical solution of the one-dimensional inverse problem of heat conduction

    NASA Astrophysics Data System (ADS)

    Blackwell, B. F.

    1981-06-01

    A very efficient numerical technique has been developed to solve the one-dimensional inverse problem of heat conduction. The Gauss elimination algorithm for solving the tridiagonal system of linear algebraic equations associated with most implicit heat conduction codes is specialized to the inverse problem. When compared to the corresponding direct problem, the upper limit in additional computation time generally does not exceed 27-36%. The technique can be adapted to existing one-dimensional implicit heat conduction codes with minimal effort and applied to difference equations obtained from finite-difference, finite-element, finite control volume, or similar techniques, provided the difference equations are tridiagonal in form. It is also applicable to the nonlinear case in which thermal properties are temperature-dependent and is valid for one-dimensional radial cylindrical and spherical geometries as well as composite bodies. The calculations reported here were done by modifying a one-dimensional implicit (direct) heat conduction code. Program changes consisted of 13 additional lines of FORTRAN coding.

  17. Encapsulated metal nanocluster materials prepared by a novel inverse micelle/sol-gel technique

    SciTech Connect

    Yamanaka, S.A.; Martino, A.; Kawola, J.S.

    1995-12-31

    A wide variety of manometer sized metal and semiconductor particles (Au, Ag, Pd, Pt, Rh, Fe, Ni, CdS, MoS{sub 2} and FeS{sub 2}) can be prepared using an inverse micelle technique. Such materials are of great interest for their potential use in catalytic, photochemical, electrochemical and optical applications but their practicality is often hindered by the agglomeration of the particles. Agglomeration may be prevented by using a porous support matrix where the nanoclusters are sterically trapped within the pores. The sol-gel process results in the formation of such a porous support material. We have thus combined the technique of forming metal nanoclusters in inverse micelle solutions with the technique of forming sol-gel materials. Using our novel method, we have succeeded in preparing manometer sized metal colloids encapsulated in both xerogel and aerogel materials. Characterization of these materials has been carried out by TEM, SEM, UV/Vis, NMR and nitrogen sorption porosimetry.

  18. Generalization of Abel's mechanical problem: The extended isochronicity condition and the superposition principle

    SciTech Connect

    Kinugawa, Tohru

    2014-02-15

    This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing

  19. Iterative matrix inversion technique for simultaneous strain and temperature sensing in an extended temperature range

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    The linear matrix approach is the common method for multi-parameter FBG-based strain and temperature sensing. As it does not include non-linear temperature responses and hence lacks accuracy, the application of an iterative matrix inversion technique can be used to remedy this deficiency. Employing this method in a set-up using a multi-parameter sensor system that consists of two FBGs in fibers, which differ in cladding diameters, significantly reduced temperature uncertainties of +/- 1°C could be achieved within a temperature range between -20°C and 150°C.

  20. VLP Source Inversion and Evaluation of Error Analysis Techniques at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Brill, K. A.; Waite, G. P.

    2015-12-01

    In January of 2012, our team occupied 10 sites around Fuego volcano with broadband seismometers, two of which were collocated with infrasound microphone arrays and tilt-meters (see Figure 1 for full deployment details). Our radial coverage around Fuego during the 2012 campaign satisfies conditions outlined by Dawson et al. [2011] for good network coverage. Very-long-period (VLP) events that accompany small-scale explosions were classified by waveform and eruption style. We located these VLP event families which have been persistent at Fuego since at least 2008 through inversion in the same manner employed by Lyons and Waite [2011] with improved radial coverage in our network. We compare results for source inversions performed with independent tilt data against inversions incorporating tilt data extracted from the broadband. The current best-practice method for choosing an optimum solution for inversion results is based on each solution's residual error, the relevance of free parameters used in the model, and the physical significance of the source mechanism. Error analysis was performed through a boot strapping in order to explore the source location uncertainty and significance of components of the moment tensor. The significance of the number of free parameters has mostly been evaluated by calculating Akaike's Information Criterion (AIC), but little has been done to evaluate the sensitivity of AIC or other criteria (i.e. Bayesian Information Criterion) to the number of model parameters. We compare solutions as chosen by these alternate methods with more standard techniques for our real data set as well through the use of synthetic data and make recommendations as to best practices. Figure 1: a) Map of 2012 station network: stations highlighted in red were collocated with infrasound arrays. b) Location of Fuego within Guatemala and view of the complex from the west with different eruptive centers labeled. c) Operational times for each of the stations and cameras.

  1. Disentangling Structures in the Cluster of Galaxies Abell 133

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    A dynamical analysis of the structure of the cluster of galaxies Abell 133 will be presented using multi-wavelength data combined from multiple space and earth based observations. New and familiar statistical clustering techniques are used in combination in an attempt to gain a fully consistent picture of this interesting nearby cluster of galaxies. The type of analysis presented should be typical of cluster studies in the future, especially those to come from the surveys like the Sloan Digital Sky Survey and the 2DF.

  2. A comparative assessment of information-exploitation techniques for GPR data inversion

    NASA Astrophysics Data System (ADS)

    Salucci, M.; Tenuti, L.; Poli, L.; Oliveri, G.; Massa, A.

    2015-11-01

    The inversion of Ground Penetrating Radar (GPR) data requires the development of suitable information-exploitation techniques that are able to extract as much as possible information on the unknown targets from the available measurements. An innovative singlefrequency (SF) inversion technique based on a deterministic conjugate-gradient (CG) minimization and the iterative multi-scaling approach (IMSA) is described. It is then shown how to improve the performances of the SF-IMSA-CG method by the introduction of an external frequency hopping (FH) iterative loop. On the one hand, the proposed FH-IMSA-CG method allows to exploit the intrinsic frequency diversity of wideband GPR measurements thanks to the FH strategy. On the other hand, the IMSA approach guarantees a significant reduction of the problem unknowns, providing an increased resolution within the identified regions of interest (RoIs). A numerical comparison shows the advantages of the FH-IMSA-CG over its single-frequency version. Moreover, the benefits of integrating the IMSA within the FH are verified by directly comparing the FH-IMSA-CG with its single-resolution (BARE) version (FH-BARE-CG).

  3. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  4. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    PubMed

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  5. Implementation of the Earth-based planetary radio occultation inversion technique

    NASA Astrophysics Data System (ADS)

    Zhang, SuJun; Ping, JinSong; Han, TingTing; Mao, XiaoFei; Hong, ZhenJie

    2011-07-01

    The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere, and has been conducted by almost every deep space planetary probe. The principles, modules, inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system (SPOPs) are presented in this paper. Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS, the temperature, pressure, molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved, and the results are validated by the released radio science level 04 products of the ESA MaRS group. This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites. The implementation of the planetary radio occultation technique is of significance to China's YH-1 Mars exploration project, as well as for future planetary exploration missions from China.

  6. Constraints on the structure of 16 Cygni A and 16 Cygni B using inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.

    2016-01-01

    Context. Constraining additional mixing processes and chemical composition is a central problem in stellar physics as their impact on determining stellar age leads to biases in our studies of stellar evolution, galactic history and exoplanetary systems. In two previous papers, we have shown how seismic inversion techniques could be used to offer strong constraints on such processes by pointing out weaknesses in current theoretical models. The theoretical approach having been tested, we now wish to apply our technique to observations. In that sense, the solar analogues 16CygA and 16CygB, being amongst the best targets in the Kepler field, are probably currently the most well suited stars to test the diagnostic potential of seismic inversions. Aims: We wish to use seismic indicators obtained through inversion techniques to constrain additional mixing processes in the components of the binary system 16Cyg. The combination of various seismic indicators will help to point out the weaknesses of stellar models and thus obtain more constrained and accurate fundamendal parameters for these stars. Methods: First, we used the latest seismic, spectroscopic and interferometric observational constraints in the literature for this system to independently determine suitable reference models for both stars. We then carried out seismic inversions of the acoustic radius, the mean density and a core conditions indicator. These additional constraints will be used to improve the reference models for both stars. Results: The combination of seismic, interferometric and spectroscopic constraints allows us to obtain accurate reference models for both stars. However, we note that it is possible to achieve similar accuracy for a range of model parameters. Namely, changing the diffusion coefficient or the chemical composition within the observational values could lead to a 5% uncertainty in mass, a 3% uncertainty in radius and up to an 8% uncertainty in age. We used acoustic radius and mean

  7. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  8. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  9. Preparation and characterisation of gelatin-gum arabic aldehyde nanogels via inverse miniemulsion technique.

    PubMed

    Sarika, P R; James, Nirmala Rachel

    2015-05-01

    Gelatin-gum arabic aldehyde nanogels designed by a nanoreactor concept using inverse miniemulsion technique were reported. Stable separate miniemulsions were prepared from gelatin (Gel) and gum arabic aldehyde (GAA). These emulsions were intermixed under sonication to obtain cross-linked nanogels. During fusion, cross-linking occurred between aldehyde groups of GAA and amino groups of gelatin. The concentration of the surfactant and weight fraction of water in the inverse miniemulsion was optimised so as to yield nanogels with controlled particle size. Properties of the nanogels were studied by FT-IR spectroscopy, particle size analysis and XRD. Surface morphology of the nanogels was established by Scanning Electron Microscopy (SEM). SEM and particle size analysis confirmed that nanogels possess spherical morphology with an average diameter of 151 ± 6 nm. Hemolysis property of the nanogels was examined and the results indicated that the nanogels were hemocompatible. The in vitro cytotoxicity of the nanogels towards MCF-7 cells was evaluated by MTT assay and the nanogels showed nontoxic behaviour towards the cells. All these studies confirm that these nanogels are potential candidates in applications such as drug and gene delivery.

  10. Inversion kinematics at deep-seated gravity slope deformations revealed by trenching techniques

    NASA Astrophysics Data System (ADS)

    Pasquaré Mariotto, Federico; Tibaldi, Alessandro

    2016-03-01

    We compare data from three deep-seated gravitational slope deformations (DSGSDs) where palaeoseismological techniques were applied in artificial trenches. At all trenches, located in metamorphic rocks of the Italian Alps, there is evidence of extensional deformation given by normal movements along slip planes dipping downhill or uphill, and/or fissures, as expected in gravitational failure. However, we document and illustrate - with the aid of trenching - evidence of reverse movements. The reverse slips occurred mostly along the same planes along which normal slip occurred, and they produced drag folds in unconsolidated Holocene sediments as well as the superimposition of substrate rocks on Holocene sediments. The studied trenches indicate that reverse slip might occur not only at the toe portions of DSGSDs but also in their central-upper portions. When the age relationships between the two deformation kinematics can be determined, they clearly indicate that reverse slips postdate normal ones. Our data suggest that, during the development of long-lived DSGSDs, inversion kinematics may occur in different sectors of the unstable rock mass. The inversion is interpreted as due either to locking of the frontal blocks of a DSGSD or to the relative decrease in the rate of downward movement in the frontal blocks with respect to the rear blocks.

  11. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  12. LensPerfect Analysis of Abell 1689

    NASA Astrophysics Data System (ADS)

    Coe, Dan A.

    2007-12-01

    I present the first massmap to perfectly reproduce the position of every gravitationally-lensed multiply-imaged galaxy detected to date in ACS images of Abell 1689. This massmap was obtained using a powerful new technique made possible by a recent advance in the field of Mathematics. It is the highest resolution assumption-free Dark Matter massmap to date, with the resolution being limited only by the number of multiple images detected. We detect 8 new multiple image systems and identify multiple knots in individual galaxies to constrain a grand total of 168 knots within 135 multiple images of 42 galaxies. No assumptions are made about mass tracing light, and yet the brightest visible structures in A1689 are reproduced in our massmap, a few with intriguing positional offsets. Our massmap probes radii smaller than that resolvable in current Dark Matter simulations of galaxy clusters. And at these radii, we observe slight deviations from the NFW and Sersic profiles which describe simulated Dark Matter halos so well. While we have demonstrated that our method is able to recover a known input massmap (to limited resolution), further tests are necessary to determine the uncertainties of our mass profile and positions of massive subclumps. I compile the latest weak lensing data from ACS, Subaru, and CFHT, and attempt to fit a single profile, either NFW or Sersic, to both the observed weak and strong lensing. I confirm the finding of most previous authors, that no single profile fits extremely well to both simultaneously. Slight deviations are revealed, with the best fits slightly over-predicting the mass profile at both large and small radius. Our easy-to-use software, called LensPerfect, will be made available soon. This research was supported by the European Commission Marie Curie International Reintegration Grant 017288-BPZ and the PNAYA grant AYA2005-09413-C02.

  13. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  14. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  15. Photometric Observations of the Binary Nuclei of Three Abell Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Afşar, M.; Ibanoǧlu, C.

    2004-07-01

    CCD photometric observations of the three Abell planetary nebulae (Abell 63, Abell 46 and Abell 41) nuclei are presented. These systems are binary systems which allow us to derive model-independent parameters. Also the results of the light curve solution of UU Sge (binary nucleus of Abell 63) are discussed.

  16. Revisiting the time domain induced polarization technique, from linearization to inversion

    NASA Astrophysics Data System (ADS)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  17. Inverse solution technique of steady-state responses for local nonlinear structures

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Guan, Xin; Zheng, Gangtie

    2016-03-01

    An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.

  18. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  19. Receiver Function Inversion Using Fitness Proportionate Niching (FPN) and Generalized Pattern Search (GPS) Techniques

    NASA Astrophysics Data System (ADS)

    Dugda, M. T.; Workineh, A. T.; Homaifar, A.; Kim, J. H.

    2013-12-01

    In order to determine crustal thickness (H) and Vp/Vs ratio (κ) parameters and associated weights from Hκ stacking of receiver functions, an effort has been made to develop a technique that combines Fitness Proportionate Niching (FPN) and Generalized Pattern Search (GPS) techniques by employing their strengths. The problem here involves global optimization for the inversion of receiver functions based on Hκ stacking. Generally, the objective function of the Hκ stacking algorithm displays multimodal surfaces with multiple local maxima. Niching mechanism permits standard Genetic Algorithms (GAs) to identify different subpopulations representing various peaks by maintaining population diversity and avoiding early convergence so as to enable adequate exploration of the search space for the GA to discover multiple optima. In multimodal optimization, fitness sharing has been commonly used to generate stable subpopulations of individuals around multiple optimum points in the search space. In this study newly developed Fitness Proportionate Niching (FPN) of Genetic Algorithms is implemented to identify the different local maxima regions (niches). The basis for FPN is the idea of limited resources where individuals in a given niche share the resource of that niche in proportion to the fitness strength. Among the FPN identified niches, the niche of correct phases is designated for a faster search using GPS approach. Application of GPS technique provides quick and optimal solutions for the different parameters under investigation - the crustal thickness (H), Vp/Vs ratio (κ), and the three associated weights (W1, W2, W3). The GPS technique is among the very few provably convergent, derivative-free search methods for linearly constrained optimization problems. One of the key features of GPS technique is the repeatability of the outcomes unlike some heuristic search approaches. The number of iterations as well as the number of objective function evaluations will remain the

  20. A multi-electrode array and inversion technique for retrieving six conductivities from heart potential measurements.

    PubMed

    Johnston, Barbara M; Johnston, Peter R

    2013-12-01

    A method for accurately finding cardiac bidomain conductivity parameters is a crucial part of efforts to study and understand the electrical functioning of the heart. The bidomain model considers current flowing along (longitudinal) and across (transverse) sheets of cardiac fibres, as well as between these sheets (normal), in both the extracellular and intracellular domains, which leads to six conductivity values. To match experimental studies, such a method must be able to determine these six conductivity values, not just the four where it is assumed that the transverse and normal conductivities are equal. This study presents a mathematical model, solution technique, multi-electrode array and two-pass inversion method, which can be used to retrieve all six conductivities from measurements of electrical potential made on the array. Simulated measurements of potential, to which noise is added, are used to demonstrate the ability of the method to retrieve the conductivity values. It is found that not only is it possible to accurately retrieve all six conductivity values, as well as a value for fibre rotation angle, but that the accuracy of such retrievals is comparable to the accuracy found in a previous study when only four conductivities (and fibre rotation) were retrieved.

  1. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  2. A new co-operative inversion strategy via fuzzy clustering technique applied to seismic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Thong Kieu, Duy; Kepic, Anton

    2015-04-01

    Geophysical inversion produces very useful images of earth parameters; however, inversion results usually suffer from inherent non-uniqueness: many subsurface models with different structures and parameters can explain the measurements. To reduce the ambiguity, extra information about the earth's structure and physical properties is needed. This prior information can be extracted from geological principles, prior petrophysical information from well logs, and complementary information from other geophysical methods. Any technique used to constrain inversion should be able to integrate the prior information and to guide updating inversion process in terms of the geological model. In this research, we have adopted fuzzy c-means (FCM) clustering technique for this purpose. FCM is a clustering method that allows us to divide the model of physical parameters into a few clusters of representative values that also may relate to geological units based on the similarity of the geophysical properties. This exploits the fact that in many geological environments the earth is comprised of a few distinctive rock units with different physical properties. Therefore FCM can provide a platform to constrain geophysical inversion, and should tend to produce models that are geologically meaningful. FCM was incorporated in both separate and co-operative inversion processing of seismic and magnetotelluric (MT) data with petrophysical constraints. Using petrophysical information through FCM assists the inversion to build a reliable earth model. In this algorithm, FCM plays a role of guider; it uses the prior information to drive the model update process, and also forming an earth model filled with rocks units rather than smooth transitions when the boundary is in doubt. Where petrophysical information from well logs or core measurement is not locally available the cluster petrophysics may be solved for in inversion as well if some knowledge of how many distinctive geological exist. A

  3. Application of direct inverse analogy method (DIVA) and viscous design optimization techniques

    NASA Technical Reports Server (NTRS)

    Greff, E.; Forbrich, D.; Schwarten, H.

    1991-01-01

    A direct-inverse approach to the transonic design problem was presented in its initial state at the First International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-1). Further applications of the direct inverse analogy (DIVA) method to the design of airfoils and incremental wing improvements and experimental verification are reported. First results of a new viscous design code also from the residual correction type with semi-inverse boundary layer coupling are compared with DIVA which may enhance the accuracy of trailing edge design for highly loaded airfoils. Finally, the capabilities of an optimization routine coupled with the two viscous full potential solvers are investigated in comparison to the inverse method.

  4. The X-ray cluster Abell 744

    NASA Technical Reports Server (NTRS)

    Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.

    1985-01-01

    X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.

  5. Recursive Ant Colony Global Optimization: a new technique for the inversion of geophysical data

    NASA Astrophysics Data System (ADS)

    Gupta, D. K.; Gupta, J. P.; Arora, Y.; Singh, U. K.

    2011-12-01

    We present a new method called Recursive Ant Colony Global Optimization (RACO) technique, a modified form of general ACO, which can be used to find the best solutions to inversion problems in geophysics. RACO simulates the social behaviour of ants to find the best path between the nest and the food source. A new term depth has been introduced, which controls the extent of recursion. A selective number of cities get qualified for the successive depth. The results of one depth are used to construct the models for the next depth and the range of values for each of the parameters is reduced without any change to the number of models. The three additional steps performed after each depth, are the pheromone tracking, pheromone updating and city selection. One of the advantages of RACO over ACO is that if a problem has multiple solutions, then pheromone accumulation will take place at more than one city thereby leading to formation of multiple nested ACO loops within the ACO loop of the previous depth. Also, while the convergence of ACO is almost linear, RACO shows exponential convergence and hence is faster than the ACO. RACO proves better over some other global optimization techniques, as it does not require any initial values to be assigned to the parameters function. The method has been tested on some mathematical functions, synthetic self-potential (SP) and synthetic gravity data. The obtained results reveal the efficiency and practicability of the method. The method is found to be efficient enough to solve the problems of SP and gravity anomalies due to a horizontal cylinder, a sphere, an inclined sheet and multiple idealized bodies buried inside the earth. These anomalies with and without noise were inverted using the RACO algorithm. The obtained results were compared with those obtained from the conventional methods and it was found that RACO results are more accurate. Finally this optimization technique was applied to real field data collected over the Surda

  6. ABEL description and implementation of cyber net system

    NASA Astrophysics Data System (ADS)

    Lu, Jiyuan; Jing, Liang

    2013-03-01

    Cyber net system is a subclass of Petri Nets. It has more powerful description capability and more complex properties compared with P/T system. Due to its nonlinear relation, it can't use analysis techniques of other net systems directly. This influences the research on cyber net system. In this paper, the author uses hardware description language to describe cyber net system. Simulation analysis is carried out through EDA software tools to disclose properties of the system. This method is introduced in detail through cyber net system model of computing Fibonacci series. ABEL source codes and simulation wave are also presented. The source codes are compiled, optimized, fit design and downloaded to the Programmable Logic Device. Thus ASIC of computing Fibonacci series is obtained. It will break a new path for the analysis and application study of cyber net system.

  7. Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements

    NASA Technical Reports Server (NTRS)

    Mcdade, Ian. C.; Llewellyn, Edward J.

    1991-01-01

    This paper demonstrates how the spatial distribution of optical emission rates within an auroral arc may be recovered from rocket photometer measurements made in a tomographic spin scan mode. The tomographic inversion procedures required to recover this information and the implementation of two inversion algorithms that are particularly well suited for dealing with the problem of noise in the observational data are described. The performance of the inversion algorithms and the limitations of the rocket tomography technique are assessed using various sets of simulated rocket measurements that were generated from 'known' auroral emission-rate distributions. The simulations are used to investigate how the quality of the tomographic recovery may be influenced by various factors such as noise in the data, rocket penetration of the auroral form, background sources of emission, smearing due to the photometer field of view, and temporal variations in the auroral form.

  8. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Biviano, A.; Mamon, G. A.

    2014-06-01

    Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.

  9. Tauberian theorems for Abel summability of sequences of fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Yavuz, Enes; ćoşkun, Hüsamettin

    2015-09-01

    We give some conditions under which Abel summable sequences of fuzzy numbers are convergent. As corollaries we obtain the results given in [E. Yavuz, Ö. Talo, Abel summability of sequences of fuzzy numbers, Soft computing 2014, doi: 10.1007/s00500-014-1563-7].

  10. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  11. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  12. Magnetic moment measurement in 72Zn using the Transient Field technique and Coulomb excitation in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Illana Sisón, A.; Jungclaus, A.; Orlandi, R.; Perea, A.; Briz, J. A.; Bauer, C.; Gernhäuser, R.; Leske, J.; Mücher, D.; Pakarinen, J.; Pietralla, N.; Rajabali, M. M.; Seiler, D.; Stahl, C.

    2014-03-01

    The g factor of the first excited 2+ state of 72Zn has been measured using the Low Velocity Transient Field (LVTF) technique in combination with Coulomb excitation in inverse kinematics. The aim of the experiment was to test the viability of this method when applied to short-lived radioactive ISOL beams, in particular in comparison to the alternative High Velocity Transient Field (HVTF) technique using fragment beams. The result obtained for g(2+) in 72Zn in the present experiment follows the trend observed for the lighter stables Zn isotopes.

  13. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  14. Are Abell Clusters Correlated with Gamma-Ray Bursts?

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Hartmann, D.; Kouveliotou, C.; Fishman, G.; Laros, J.; Cline, T.; Boer, M.

    1997-01-01

    A recent study has presented marginal statistical evidence that gamma-ray burst (GRB) sources are correlated with Abell clusters, based on analyses of bursts in the BATSE 3B catalog. Using precise localization information from the Third Interplanetary Network, we have reanalyzed this possible correlation. We find that most of the Abell clusters that are in the relatively large 3B error circles are not in the much smaller IPN/BATSE error regions. We believe that this argues strongly against an Abell cluster-GRB correlation.

  15. {sup 128}Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics

    SciTech Connect

    Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.

    2008-05-12

    The lifetimes of the lowest collective yrast and non-yrast states in {sup 128}Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in {sup 128}Xe were populated using a {sup 128}Xe beam impinging on a {sup nat}Fe target with E({sup 128}Xe){approx_equal}525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated {gamma}-spectra were measured at different plunger distances.

  16. Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

    SciTech Connect

    Lopez, C.; Koski, J.A.; Razani, A.

    2000-01-06

    A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360{degree}, 180{degree}, and 90{degree} sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360{degree}, 180{degree}, and 90{degree} cases, respectively.

  17. A least-squares inversion technique for identification of a point release: Application to Fusion Field Trials 2007

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2014-08-01

    Identification of a point release is a parametric estimation problem associated with the estimation of its parameters namely, location and strength. A least-squares inversion algorithm, free from initial guess of release parameters, is utilized here for the source identification in eleven trials of single continuous point releases conducted during Fusion Field Trials 2007. The source locations are retrieved within an average error of 23 m from their true locations. The maximum and minimum errors in the retrieval of the source location are obtained as 57.3 m and 3 m respectively. The source strength is retrieved within a factor of 1.6 in all the trials. The sensitivity of the source estimation is analysed with respect to (i) variation of grid sizes in discretized space, (ii) inclusion of zero measurements and (iii) addition of new measurements. Posterior uncertainty is mentioned in terms of variance of the source parameters, approximated by using the Hessian of the cost function. In addition, an attempt is made to obtain the minimum number of measurements for a successful source inversion. The study explores the future applicability of this least-squares inversion technique for point source identification.

  18. The Abell 85 BCG: A Nucleated, Coreless Galaxy

    NASA Astrophysics Data System (ADS)

    Madrid, Juan P.; Donzelli, Carlos J.

    2016-03-01

    New high-resolution r-band imaging of the brightest cluster galaxy (BCG) in Abell 85 (Holm 15A) was obtained using the Gemini Multi Object Spectrograph. These data were taken with the aim of deriving an accurate surface brightness profile of the BCG of Abell 85, in particular, its central region. The new Gemini data show clear evidence of a previously unreported nuclear emission that is evident as a distinct light excess in the central kiloparsec of the surface brightness profile. We find that the light profile is never flat nor does it present a downward trend toward the center of the galaxy. That is, the new Gemini data show a different physical reality from the featureless, “evacuated core” recently claimed for the Abell 85 BCG. After trying different models, we find that the surface brightness profile of the BCG of Abell 85 is best fit by a double Sérsic model.

  19. Optical properties of atmospheric particles: complete parameter sets obtained through polar photometry and an improved inversion technique.

    PubMed

    Hänel, G

    1994-10-20

    Complete sets of optical parameters of dry particles sampled on a Nuclepore filter are derived through interpretation of photometric data with an improved inversion technique. The parameters are the volume-extinction and absorption coefficients, the single-scattering albedo, the asymmetry parameter of the volume scattering function, the apparent complex refractive index, and the apparent soot content. They may serve as input data for solar radiation-budget considerations. Results from preliminary measurements taken in Central Europe and Italy show an extreme variability of the optical parameters. Both large regional and temporal variabilities have been observed caused by the fluctuating midlatitude weather systems and human activities.

  20. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    NASA Astrophysics Data System (ADS)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  1. The genus curve of the Abell clusters

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).

  2. The magnitude-redshift relation for 561 Abell clusters

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.

    1985-01-01

    The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.

  3. An Inversion Technique for Constraining the Interior Structure of Small Exoplanets

    NASA Astrophysics Data System (ADS)

    Dorn, Caroline; Khan, Amir; Heng, Kevin; Benz, Willy

    2014-05-01

    Characterizing the interior structure of exoplanets is key to understand planet formation and to evaluate the probability of the existence of habitable planets outside our solar system. Several studies have been dedicated to examine effects of composition and temperature on exoplanet mass and radius, while few have tried to solve this as an inverse problem. Here we proceed along these lines and adopt an inverse approach based on a stochastic sampling algorithm to invert for physico-chemical structure of the interior of the planets given observations of mass, radius, and stellar photospheric Fe/Si abundances. With the inversion method employed here we are able to determine model parameter uncertainties, i.e., ranges in composition and core radius that are compatible with the observations. For the inversions we make the following assumptions: (1) only rocky silicate exoplanets are considered, i.e., no oceans nor atmospheres; (2) bulk exoplanet composition is dictated by stellar photospheric abundance measurements (=CI-chondrites in the case of the Sun); (3) exoplanet cores are assumed to be made of pure iron. We apply a Markov chain Monte Carlo (McMC) algorithm to constrain model parameters: core radius, mantle Mg/Si, Fe/Si ratios and Si-content. In order to predict data, or equivalently, solve for planetary mass and bulk composition, we use thermodynamic modeling methods to compute stable mantle mineralogy and density as a function of the considered composition, temperature, and pressure profile. For the core we employ an equation-of-state approach for pure iron to compute the density profile. We applied our method to a series of planetary bodies of masses between 0.1 and 10 ME and radii between 0.4 and 2 RE, assuming both specific stellar and unconstrained bulk compositions. Overall, we find that core radius and mantle composition of rocky exoplanets can be constrained, although core radius appears to be better resolved because of increased sensitivity of data to

  4. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  5. Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique

    SciTech Connect

    Ford, S R; Dreger, D S; Walter, W R

    2007-07-06

    Using a regional time-domain waveform inversion for the complete moment tensor we calculate the deviatoric and isotropic source components for several explosions at the Nevada Test Site as well as earthquakes, and collapses in the surrounding region of the western US. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Error in the moment tensor solutions and source parameters is also calculated. We investigate the sensitivity of the moment tensor solutions to Green's functions calculated with imperfect Earth models, inaccurate event locations, and data with a low signal-to-noise ratio. We also test the performance of the method under a range of recording conditions from excellent azimuthal coverage to cases of sparse station availability, as might be expected for smaller events. Finally, we assess the depth and frequency dependence upon event size. This analysis will be used to determine the range where well-constrained solutions can be obtained.

  6. The merging cluster Abell 1758: an optical and dynamical view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  7. A comparison of solute-transport solution techniques based on inverse modelling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2000-01-01

    Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly

  8. Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion

    SciTech Connect

    Anastasia Dobroskok; Yevhen Holubnyak; James Sorensen

    2009-05-01

    Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.

  9. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  10. The Filtered Abel Transform and Its Application in Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang

    2003-01-01

    Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal

  11. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  12. Study of 12C excited states decaying into three α particles using the thick target inverse kinematic technique

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; de Souza, R. T.; Hudan, S.; Fang, D.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.

    2016-05-01

    We will show that the Thick Target Inverse Kinematics (TTIK) technique can be used to investigate the breakup of excited selfconjugate nuclei into many alpha particles. Two test runs were performed at Cyclotron Institute of Texas A&M University to study the reaction 20Ne+α at maximum beam energies of 10 and 12 AMeV. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature.

  13. Chandra View of Galaxy Cluster Abell 2554

    NASA Astrophysics Data System (ADS)

    kıyami Erdim, Muhammed; Hudaverdi, Murat

    2016-07-01

    We study the structure of the galaxy cluster Abell 2554 at z = 0.11, which is a member of Aquarius Super cluster using the Chandra archival data. The X-ray peak coincides with a bright elliptical cD galaxy. Slightly elongated X-ray plasma has an average temperature and metal abundance values of ˜6 keV and 0.28 solar, respectively. We observe small-scale temperature variations in the ICM. There is a significantly hot wall-like structure with 9 keV at the SE and also radio-lope locates at the tip of this hot region. A2554 is also part of a trio-cluster. Its close neighbors A2550 (at SW) and A2556 (at SE) have only 2 Mpc and 1.5 Mpc separations with A2554. Considering the temperature fluctuations and the dynamical environment of super cluster, we examine the possible ongoing merger scenarios within A2554.

  14. Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique

    SciTech Connect

    Brioude, J.; Kim, S. W.; Angevine, Wayne M.; Frost, G. J.; Lee, S. H.; McKeen, S. A.; Trainer, Michael; Fehsenfeld, Fred C.; Holloway, J. S.; Ryerson, T. B.; Williams, E. J.; Petron, Gabrielle; Fast, Jerome D.

    2011-10-31

    The 2000 and 2006 Texas Air Quality Study (TexAQS 2000 and 2006) field campaigns took place in eastern Texas in August-October of 2000 and 2006. Several flights of the National Oceanic and Atmospheric Administration (NOAA) and National Center for Atmospheric Research (NCAR) research aircraft were dedicated to characterizing anthropogenic emissions over Houston. Houston is known for having serious problems with non-attainment of air quality standards. We present a method that uses three models and aircraft observations to assess and improve existing emission inventories using an inverse modeling technique. We used 3-dimensional and 4-dimensional variational (3D-VAR and 4D-VAR) inverse modeling techniques based on a least-squares method to improve the spatial and temporal distribution of CO, NOy (sum of all reactive nitrogen compounds), and SO2 emissions predicted by the 4-km-resolution U.S. Environmental Protection Agency (EPA) National Emission Inventory (NEI) for 2005. Differences between the prior and posterior inventories are discussed in detail. We found that in 2006 the prior daytime emissions in the urban area of Houston have to be reduced by 40% {+-} 12% for CO and 7% {+-} 13% for NOy. Over the Houston Ship Channel, where industrial emissions are predominant, the prior emissions have to be reduced by 41% {+-} 15% for CO and 51% {+-} 9% for NOy. Major ports around Houston have their NOy emissions reduced as well, probably due to uncertainties in near-shore ship emissions in the EPA NEI inventory. Using the measurements from the two field campaigns, we assessed the interannual emission variability between 2000 and 2006. Daytime CO emissions from the Houston urban area have been reduced by 8% {+-} 20%, while the NOy emissions have increased by 20% {+-} 12% from 2000 to 2006. In the Houston Ship Channel, the daytime NOy emissions have increased by 13% {+-} 17%. Our results show qualitative consistencies with known changes in Houston emissions sources.

  15. Inverse measurement of stiffness by the normalization technique for J-integral fracture toughness

    SciTech Connect

    Brown, Eric

    2012-06-07

    The single specimen normalization technique for J-integral fracture toughness has been successfully employed by several researchers to study the strongly non-linear fracture response of ductile semicrystalline polymers. As part of the normalization technique the load and the plastic component of displacement are normalized. The normalized data is then fit with a normalization function that approximates a power law for small displacements that are dominated by blunting and smoothly transitions to a linear relationship for large displacements that are dominated by stable crack extension. Particularly for very ductile polymers the compliance term used to determine the plastic displacement can dominate the solution and small errors in determining the elastic modulus can lead to large errors in the normalization or even make it ill-posed. This can be further complicated for polymers where the elastic modulus is strong strain rate dependent and simply using a 'quasistatic' modulus from a dogbone measurement may not equate to the dominant strain rate in the compact tension specimen. The current work proposes directly measuring the compliance of the compact tension specimen in the solution of J-integral fracture toughness and then solving for the elastic modulus. By comparison with a range of strain rate data the dominant strain rate can then be determined.

  16. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.

    PubMed

    Khanna, Jaya; Bandoro, Justin; Sica, R J; McElroy, C Thomas

    2012-11-20

    The conventional method of calculating atmospheric temperature profiles using Rayleigh-scattering lidar measurements has limitations that necessitate abandoning temperatures retrieved at the greatest heights, due to the assumption of a pressure value required to initialize the integration at the highest altitude. An inversion approach is used to develop an alternative way of retrieving nightly atmospheric temperature profiles from the lidar measurements. Measurements obtained by the Purple Crow lidar facility located near The University of Western Ontario are used to develop and test this new technique. Our results show temperatures can be reliably retrieved at all heights where measurements with adequate signal-to-noise ratio exist. A Monte Carlo technique was developed to provide accurate estimates of both the systematic and random uncertainties for the retrieved nightly average temperature profile. An advantage of this new method is the ability to seed the temperature integration from the lowest rather than the greatest height, where the variability of the pressure is smaller than in the mesosphere or lower thermosphere and may in practice be routinely measured by a radiosonde, rather than requiring a rocket or satellite-borne measurement. Thus, this new technique extends the altitude range of existing Rayleigh-scatter lidars 10-15 km, producing the equivalent of four times the power-aperture product.

  17. On sky characterization of the BAORadio wide band digital backend. Search for HI emission in Abell85, Abell1205 and Abell2440 galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Campagne, J. E.; Colom, P.; Ferrari, C.; Magneville, Ch.; Martin, J. M.; Moniez, M.; Torrentó, A. S.

    2016-02-01

    We have observed regions of three galaxy clusters at z˜[0.06÷0.09] (Abell85, Abell1205, Abell2440) with the Nançay radiotelescope (NRT) to search for 21 cm emission and to fully characterize the FPGA based BAORadio digital backend. We have tested the new BAORadio data acquisition system by observing sources in parallel with the NRT standard correlator (ACRT) back-end over several months. BAORadio enables wide band instantaneous observation of the [1250,1500] MHz frequency range, as well as the use of powerful RFI mitigation methods thanks to its fine time sampling. A number of questions related to instrument stability, data processing and calibration are discussed. We have obtained the radiometer curves over the integration time range [0.01,10 000] seconds and we show that sensitivities of few mJy over most of the wide frequency band can be reached with the NRT. It is clearly shown that in blind line search, which is the context of H I intensity mapping for Baryon Acoustic Oscillations, the new acquisition system and processing pipeline outperforms the standard one. We report a positive detection of 21 cm emission at 3 σ-level from galaxies in the outer region of Abell85 at ≃1352 MHz (14400 km/s) corresponding to a line strength of ≃0.8 Jy km/s. We also observe an excess power around ≃1318 MHz (21600 km/s), although at lower statistical significance, compatible with emission from Abell1205 galaxies. Detected radio line emissions have been cross matched with optical catalogs and we have derived hydrogen mass estimates.

  18. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  19. The Dark Matter filament between Abell 222/223

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2016-10-01

    Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

  20. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  1. A 1400-MHz survey of 1478 Abell clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1982-01-01

    Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.

  2. Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques

    NASA Astrophysics Data System (ADS)

    Lemaire, Romain; Mobtil, Mohammed

    2015-03-01

    Two LII models derived from the literature have been tested to simulate signals provided in a recently published extensive set of experimental data collected in a non-smoking laminar diffusion flame of ethylene. The first model classically accounts for particle heating by absorption and cooling by radiation, sublimation and conduction. The second one also integrates an alternative absorption term that accounts for saturation of the linear, single-photon and multi-photon absorption leading to C2-photodesorption at high fluence, a heating flux attributable to oxidation and a cooling process based on thermionic emission. Obtained results illustrate that both models fail to reproduce the LII signals experimentally monitored on a wide range of fluences (up to ~1 J cm-2) regardless of the value implemented for the main parameters involved in the energy- and mass-balance equations. We therefore originally proposed a new modeling approach based on the use of inverse techniques to gain information about the specific terms that should be integrated into the calculation. The inverse procedure allows inferring the temporal evolution of the soot diameter as well as the temporal and fluence dependence of additional energy rates that have to be considered to fulfill the particle energy and mass balances while providing a complete fit with experimental data. Conclusions issued from the present work indicate that modeling soot LII using only absorption, radiation, conduction and sublimation rates (as these fluxes are generally expressed and computed in the literature) is inadequate to correctly simulate the soot heating and cooling mechanisms over a wide range of fluences. The inverse modeling procedure also gave insights concerning the relevance of integrating photolytic mechanisms such as multi-photon absorption and carbon cluster photodesorption as previously proposed by Michelsen. Additional calculations performed using a new model formulation integrating such processes finally

  3. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography.

    PubMed

    Yin, Zhifu; Cheng, E; Zou, Helin

    2014-05-01

    Nanofluidic devices with micro and nanostructures are becoming increasingly important for biological and chemical applications. However, the majority of the present fabrication methods suffer from a low pattern transfer quality during the simultaneous embossing of the microscale and nanoscale patterns into a thermoplastic polymer due to insufficient polymer flow. In this work, a novel hybrid patterning technique, integrating hot embossing and inverse ultraviolet (UV) photolithography, is developed to fabricate micro and nanochannels with a high replication precision of the SU-8 layer. The influence of embossing temperature and time on the replication precision was investigated. The effect of UV lithography parameters on the micro and nanochannel pattern was analyzed. To improve the SU-8 bonding strength, the influence of the O2 plasma treatment parameters on the water contact angles of the exposed and unexposed SU-8 layer were studied. A complete SU-8 nanofluidic chip with 130 nm wide and 150 nm deep nanochannels was successfully fabricated with a replication precision of 99.5%. Compared with most of the current processing methods, this fabrication technique has great potential due to its low cost and high pattern transfer quality of the SU-8 micro and nanochannels.

  4. The Merger Dynamics of Abell 2061

    NASA Astrophysics Data System (ADS)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2016-04-01

    Abell 2061, a galaxy cluster at a redshift of z=.0784 in the Corona Borealis Supercluster, displays features in both the X-ray and radio indicative of merger activity. Observations by the GBT and the Westerbork Northern Sky Survey (WENSS) have indicated the presence of an extended, central radio halo/relic coincident with the cluster's main X-ray emission and a bright radio relic to the SW of the center of the cluster. Previous observations by ROSAT, Beppo-SAX, and Chandra show an elongated structure (referred to as the ‘Plume’), emitting in the soft X-ray and stretching to the NE of the cluster’s center. The Beppo-SAX and Chandra observations also suggest the presence of a hard X-ray shock slightly NE of the cluster’s center. Here we present the details of an August 2013 XMM-Newton observation of A2061 which has greater field of view and longer exposure (48.6 ks) than the previous Chandra observation. We present images displaying the cluster’s soft and hard X-ray emission and also a temperature map of the cluster. This temperature map highlights the presence of a previously unseen cool region of the cluster which we hypothesize to be the cool core of one of the subclusters involved in this merger. We also discuss the structural similarity of this cluster with a simulated high mass-ratio offset cluster merger taken from the Simulation Library of Astrophysical cluster Mergers (SLAM). This simulation would suggest that the Plume is gas from the cool core of a subcluster which is now falling back into the center of the cluster after initial core passage.

  5. Mass Profile of Abell 2204 An X-Ray Analysis of Abell 2204 using XMM-Newton Data

    SciTech Connect

    Lau, Travis

    2003-09-05

    The vast majority of the matter in the universe is of an unknown type. This matter is called dark matter by astronomers. The dark matter manifests itself only through gravitational interaction and is otherwise undetectable. The distribution of this matter in can be better understood by studying the mass profile of galaxy clusters. The X-ray emissions of the galaxy cluster Abell 2204 were analyzed using archived data from the XMM-Newton space telescope. We analyze a 40ks observation of Abell 2204 and present a radial temperature and radial mass profile based on hydrostatic equilibrium calculations.

  6. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    SciTech Connect

    Jin, J; Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  7. Retrieval Performance and Indexing Differences in ABELL and MLAIB

    ERIC Educational Resources Information Center

    Graziano, Vince

    2012-01-01

    Searches for 117 British authors are compared in the Annual Bibliography of English Language and Literature (ABELL) and the Modern Language Association International Bibliography (MLAIB). Authors are organized by period and genre within the early modern era. The number of records for each author was subdivided by format, language of publication,…

  8. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  9. Near-infrared optical properties of ex vivo human uterus determined by the Monte Carlo inversion technique

    NASA Astrophysics Data System (ADS)

    Ripley, P. M.; Laufer, J. G.; Gordon, A. D.; Connell, R. J.; Bown, S. G.

    1999-10-01

    The optical properties, absorption (µa) and reduced scattering coefficient (µs´), of ex vivo human myometrium and leiomyoma (fibroid) have been determined by the Monte Carlo inversion technique over the wavelength range 600 - 1000 nm. This region is currently of interest for new, minimal-access, surgical laser procedures such as photodynamic therapy (PDT) for abnormalities of the uterus, and interstitial laser photocoagulation (ILP) for the thermal ablation of fibroids. In the region 630 - 675 nm (corresponding to PDT), the optical coefficients of myometrium are µa = 0.041±0.012 mm-1 and µs´ = 1.37±0.19 mm-1. For the wavelength range 800-1000 nm (associated with infrared lasers for ILP), the optical coefficients of fibroid were found to be µa = 0.020±0.003 mm-1 and µs´ = 0.56±0.03 mm-1. Overall, the optical properties of fibroid were found to be lower than myometrium, and this was attributed to the differences in both anatomy and vascularity. The results show that PDT for ablation of the uterine endometrium is most unlikely to affect any tissues beyond the myometrium, and that the region around 800 nm is the most effective for ablation of fibroids using ILP as the penetration depth of light is greatest at this wavelength.

  10. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    NASA Astrophysics Data System (ADS)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  11. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  12. Estimation of spatial apportionment of greenhouse gas emissions for the UK using boundary layer measurements and inverse modelling technique

    NASA Astrophysics Data System (ADS)

    Polson, D.; Fowler, D.; Nemitz, E.; Skiba, U.; McDonald, A.; Famulari, D.; Di Marco, C.; Simmons, I.; Weston, K.; Purvis, R.; Coe, H.; Manning, A. J.; Webster, H.; Harrison, M.; O'Sullivan, D.; Reeves, C.; Oram, D.

    2011-02-01

    A technique is described to independently validate the national emission inventories produced using the methodology of the Intergovernmental Panel on Climate Change (IPCC). A boundary layer budget approach is applied to the United Kingdom and an inverse modelling technique is used to derive total and spatial apportionment of emissions for CO, CO 2, CH 4, N 2O, HFC-134a, HCFC-141b, HCFC-142b and HCFC-22. During the summer of 2005 and September 2006 an aircraft circumnavigating the UK was used to collect data upwind and downwind of the UK coast. The concentration measurements were inverted to produce mapped emissions of the UK. The modelled overall CO flux (2900 ± 107 kt yr -1) and spatial apportionment throughout the UK are remarkably consistent with the official UK NAEI (National Atmospheric Emission Inventory) inventory. The CO 2 total emissions (620 ± 105 Mt yr -1) and spatial apportionment are also close to the NAEI. However for N 2O and CH 4, the estimated annual fluxes, 500 ± 370 kt yr -1 and 3500 (range 0-8000 kt yr -1) respectively, are larger than the NAEI albeit with significant uncertainty. Emissions of four halocarbon compounds were also calculated with total emissions of 3.1 ± 0.4 kt yr -1 for HFC-134a, 0.9 ± 0.6 kt yr -1 for HCFC-141b, 0.56 ± 0.2 kt yr -1 for HCFC-142b and 3.8 ± 1.0 kt yr -1 for HCFC-22 consistent with other published data.

  13. The application of tomographic reconstruction techniques to ill-conditioned inverse problems in atmospheric science and biomedical imaging

    NASA Astrophysics Data System (ADS)

    Hart, Vern Philip, II

    A methodology is presented for creating tomographic reconstructions from various projection data, and the relevance of the results to applications in atmospheric science and biomedical imaging is analyzed. The fundamental differences between transform and iterative methods are described and the properties of the imaging configurations are addressed. The presented results are particularly suited for highly ill-conditioned inverse problems in which the imaging data are restricted as a result of poor angular coverage, limited detector arrays, or insufficient access to an imaging region. The class of reconstruction algorithms commonly used in sparse tomography, the algebraic reconstruction techniques, is presented, analyzed, and compared. These algorithms are iterative in nature and their accuracy depends significantly on the initialization of the algorithm, the so-called initial guess. A considerable amount of research was conducted into novel initialization techniques as a means of improving the accuracy. The main body of this paper is comprised of three smaller papers, which describe the application of the presented methods to atmospheric and medical imaging modalities. The first paper details the measurement of mesospheric airglow emissions at two camera sites operated by Utah State University. Reconstructions of vertical airglow emission profiles are presented, including three-dimensional models of the layer formed using a novel fanning technique. The second paper describes the application of the method to the imaging of polar mesospheric clouds (PMCs) by NASA's Aeronomy of Ice in the Mesosphere (AIM) satellite. The contrasting elements of straight-line and diffusive tomography are also discussed in the context of ill-conditioned imaging problems. A number of developing modalities in medical tomography use near infrared light, which interacts strongly with biological tissue and results in significant optical scattering. In order to perform tomography on the

  14. Error analysis applied to several inversion techniques used for the retrieval of middle atmospheric constituents from limb-scanning MM-wave spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.

    1992-01-01

    The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.

  15. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.

    PubMed

    Pérez, Germán M; Salomón, Luis A; Montero-Cabrera, Luis A; de la Vega, José M García; Mascini, Marcello

    2016-05-01

    A novel heuristic using an iterative select-and-purge strategy is proposed. It combines statistical techniques for sampling and classification by rigid molecular docking through an inverse virtual screening scheme. This approach aims to the de novo discovery of short peptides that may act as docking receptors for small target molecules when there are no data available about known association complexes between them. The algorithm performs an unbiased stochastic exploration of the sample space, acting as a binary classifier when analyzing the entire peptides population. It uses a novel and effective criterion for weighting the likelihood of a given peptide to form an association complex with a particular ligand molecule based on amino acid sequences. The exploratory analysis relies on chemical information of peptides composition, sequence patterns, and association free energies (docking scores) in order to converge to those peptides forming the association complexes with higher affinities. Statistical estimations support these results providing an association probability by improving predictions accuracy even in cases where only a fraction of all possible combinations are sampled. False positives/false negatives ratio was also improved with this method. A simple rigid-body docking approach together with the proper information about amino acid sequences was used. The methodology was applied in a retrospective docking study to all 8000 possible tripeptide combinations using the 20 natural amino acids, screened against a training set of 77 different ligands with diverse functional groups. Afterward, all tripeptides were screened against a test set of 82 ligands, also containing different functional groups. Results show that our integrated methodology is capable of finding a representative group of the top-scoring tripeptides. The associated probability of identifying the best receptor or a group of the top-ranked receptors is more than double and about 10 times higher

  16. Comparison of three IMRT inverse planning techniques that allow for partial esophagus sparing in patients receiving thoracic radiation therapy for lung cancer.

    PubMed

    Xiao, Ying; Werner-Wasik, Maria; Michalski, D; Houser, C; Bednarz, G; Curran, W; Galvin, James

    2004-01-01

    The purpose of this study is to compare 3 intensity-modulated radiation therapy (IMRT) inverse treatment planning techniques as applied to locally-advanced lung cancer. This study evaluates whether sufficient radiotherapy (RT) dose is given for durable control of tumors while sparing a portion of the esophagus, and whether large number of segments and monitor units are required. We selected 5 cases of locally-advanced lung cancer with large central tumor, abutting the esophagus. To ensure that no more than half of the esophagus circumference at any level received the specified dose limit, it was divided into disk-like sections and dose limits were imposed on each. Two sets of dose objectives were specified for tumor and other critical structures for standard dose RT and for dose escalation RT. Plans were generated using an aperture-based inverse planning (ABIP) technique with the Cimmino algorithm for optimization. Beamlet-based inverse treatment planning was carried out with a commercial simulated annealing package (CORVUS) and with an in-house system that used the Cimmino projection algorithm (CIMM). For 3 of the 5 cases, results met all of the constraints from the 3 techniques for the 2 sets of dose objectives. The CORVUS system without delivery efficiency consideration required the most segments and monitor units. The CIMM system reduced the number while the ABIP techniques showed a further reduction, although for one of the cases, a solution was not readily obtained using the ABIP technique for dose escalation objectives. PMID:15324918

  17. Comparing source inversion techniques for GPS-based local tsunami forecasting: A case study for the April 2014 M8.1 Iquique, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Kejie; Babeyko, Andrey; Hoechner, Andreas; Ge, Maorong

    2016-04-01

    Real-time GPS is nowadays considered as a valuable component of next generation near-field tsunami early warning systems able to provide fast and reliable source parameters. Looking for optimal methodologies and assessing corresponding uncertainties becomes an important task. We take the opportunity and consider the 2014 Pisagua event as a case study to explore tsunami forecast uncertainty related to the GPS-based source inversion. We intentionally neglect all other sources of uncertainty (observation set, signal processing, wave simulation, etc.) and exclusively assess the effect of inversion technique. In particular, we compare three end-member methods: (1) point-source fastCMT (centroid moment tensor), (2) distributed slip along predefined plate interface, and (3) unconstrained inversion into a single uniform slip finite fault. The three methods provide significantly different far-field tsunami forecast but show surprisingly similar tsunami predictions in the near field.

  18. Study of the technique of stellar occultation

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Graves, M. E.; Roble, R. G.; Shah, A. N.

    1973-01-01

    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study.

  19. X-Ray Imaging-Spectroscopy of Abell 1835

    NASA Technical Reports Server (NTRS)

    Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.

    2000-01-01

    We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (10(exp 46)ergs/s), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT(sub e) = 8.2 keV) outer envelope. We detect O VIII Ly(alpha) and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT(sub e) = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.

  20. The GenABEL Project for statistical genomics

    PubMed Central

    Karssen, Lennart C.; van Duijn, Cornelia M.; Aulchenko, Yurii S.

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381

  1. The GenABEL Project for statistical genomics.

    PubMed

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  2. The GenABEL Project for statistical genomics.

    PubMed

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381

  3. Comparing source inversion techniques for GPS-based tsunami early warning: a case study 2014 Pisagua M8.1 earthquake, northern Chile

    NASA Astrophysics Data System (ADS)

    Babeyko, Andrey; Chen, Kejie

    2016-04-01

    Real-time GPS is nowadays considered as a valuable component of next-generation near-field tsunami early warning systems. A fast and reliable source inversion technique, whose function is to convert co-seismic displacements into seismic source parameters for subsequent tsunami modeling and forecasting, plays a central role in the entire warning chain. To date, there have been suggested various inversion approaches and, not surprisingly, different methods yield different inversion results even for the same input information. Differences in source parameters are then propagated to the coast by means of wave simulation and thus contribute to the total forecast uncertainty. The northern Chile April 2014 Mw8.1 Pisagua earthquake and aftermath tsunami were extensively recorded by a large number of land- and ocean-based sensors including real-time GPS. We take the opportunity and consider the 2014 Pisagua event as a case study to explore possible sources and magnitudes of forecast uncertainty related to the GPS-based source inversion. In particular, we test uncertainties related to different inversion approaches: fastCMT (centroid moment tensor); unconstrained inversion into a single Okada fault; distributed slip along curved plate interface. The three different source models provide very different far-field tsunami forecasts but show surprisingly similar predictions in the near-field. The predictions are also consistent with coastal tide gauge observations. In addition, we demonstrate how incorporation of real-time GPS-observations reduces forecast uncertainty imminent to the classical, epicentre/magnitude tsunami early warning scheme.

  4. A wide-field spectroscopic survey of Abell 1689 and Abell 1835 with VIMOS

    NASA Astrophysics Data System (ADS)

    Czoske, Oliver

    2004-12-01

    Spectroscopic surveys can add a third dimension, velocity, to the galaxy distribution in and PoS(BDMH2004)099 around clusters. The largest wide-field spectroscopic samples at present exist for near-by clusters. Czoske et al. (2001: A&A 372, 391; 2002: A&A 386, 31) present a catalogue of redshifts for 300 cluster members with V < 22 in Cl0024+1654 at z = 0.395, the largest currently available cluster ˜ redshift catalogue at such a high redshift. In that case, it was only the redshift information ex- tending to large cluster-centric distances which revealed the complex structure of what appeared in other observations to be a relaxed rich cluster. The recent advent of high-multiplex spectrographs on 8 10 meter class telescopes has made it possible to obtain large numbers of high-quality spectra of galaxies and around clusters of galaxies in a short amount of time. The data described by Czoske et al. (2001) were obtained over the course of four years. Samples larger by a factor of 2 . . . 3 can now be obtained in ˜ 10 hours of observation time. Here I present the first results from a spectroscopic survey of the two X-ray luminous clusters Abell 1689 (z = 0.185) and Abell 1835 (z = 0.25). We use the VIsible imaging Multi-Object Spectrograph (VIMOS) on VLT UT3/Melipal. The field of view of VIMOS available for spectroscopy consists of four quadrants of ˜ 7 × 7 , the separa- tion between the quadrants is ˜ 2 . Using the LR-Blue grism, one can place ˜ 100 . . . 150 slits per quadrant. The resulting spectra cover the wavelength range 3700 . . . 6700 Å with a resolution R 200. We use as the basis for object selection panoramic multi-colour images obtained with the CFH12k camera on CFHT (Czoske, 2002, PhD thesis), covering 40 × 30 in BRI for A1689 and VRI for A1835. The input catalogue has been cleaned of stars. We attempted to cover the entire CFH12k field of view by using 10 VIMOS pointings for each cluster. Due to technical problems with VIMOS only 8 and 9 masks

  5. RADIO AND DEEP CHANDRA OBSERVATIONS OF THE DISTURBED COOL CORE CLUSTER ABELL 133

    SciTech Connect

    Randall, S. W.; Nulsen, P. E. J.; Forman, W. R.; Murray, S. S.; Clarke, T. E.; Owers, M. S.; Sarazin, C. L.

    2010-10-10

    We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features. The plume is capped with a filamentary radio structure that has been previously classified as a radio relic. X-ray spectral fits in the region of the relic indicate the presence of either high-temperature gas or non-thermal emission, although the measured photon index is flatter than would be expected if the non-thermal emission is from inverse Compton scattering of the cosmic microwave background by the radio-emitting particles. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, which we show is consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic, and has properties consistent with buoyantly lifted plumes seen in other systems (e.g., M87). Alternatively, the plume may be a gas sloshing spiral viewed edge-on. Results from spectral analysis of the wing-like features are inconsistent with the previous suggestion that the wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by displacement of X-ray gas by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their optical and UV counterparts, suggestive of a galaxy-galaxy merger event. On larger scales, there is evidence for cluster substructure in both optical observations and the X-ray temperature map. We suggest that the Abell 133 cluster has recently undergone a merger event with an interloping subgroup, initialing gas sloshing in the core. The torus of sloshed gas is seen close to edge-on, leading to the somewhat ragged appearance of the elliptical surface brightness edge. We show

  6. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    NASA Astrophysics Data System (ADS)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through

  7. Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108

    NASA Astrophysics Data System (ADS)

    Edwards, L. O. V.; Alpert, H. S.; Trierweiler, I. L.; Abraham, T.; Beizer, V. G.

    2016-09-01

    We present the first results from an integral field unit (IFU) spectroscopic survey of a ˜75 kpc region around three brightest cluster galaxies (BCGs), combining over 100 IFU fibres to study the intracluster light (ICL). We fit population synthesis models to estimate age and metallicity. For Abell 85 and Abell 2457, the ICL is best-fit with a fraction of old, metal-rich stars like in the BCG, but requires 30-50 per cent young and metal-poor stars, a component not found in the BCGs. This is consistent with the ICL having been formed by a combination of interactions with less massive, younger, more metal-poor cluster members in addition to stars that form the BCG. We find that the three galaxies are in different stages of evolution and may be the result of different formation mechanisms. The BCG in Abell 85 is near a relatively young, metal-poor galaxy, but the dynamical friction time-scale is long and the two are unlikely to be undergoing a merger. The outer regions of Abell 2457 show a higher relative fraction of metal-poor stars, and we find one companion, with a higher fraction of young, metal-poor stars than the BCG, which is likely to merge within a gigayear. Several luminous red galaxies are found at the centre of the cluster IIZw108, with short merger time-scales, suggesting that the system is about to embark on a series of major mergers to build up a dominant BCG. The young, metal-poor component found in the ICL is not found in the merging galaxies.

  8. Towards 3D multi-scale teleseismic and gravity data inversion using hybrid DSM/SPECFEM technique : application to the Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Komatitsch, Dimitri; Dufréchou, Grégory

    2015-04-01

    We describe here a method of inversion applied to seismic data sets constrained by gravity data at the regional scale. This will allow us to obtain robust models of P and S wave velocities but also of density, providing key constraints on the composition and thermal state of the lithosphere. Our approach relies on teleseimic waves, which illuminate the medium from below. We have developped a hybrid method in which a wave propagation method at the global scale (DSM/Direct solution method) is coupled with a spectral element method at the regional scale (Monteiller et al. 2013). With the spectral element method, we are able to model the 3D wave propagation effects in a computational domain of 400km long x 400km wide and 200 km deep, for an incident teleseismic wavefront introduced at the boundaries of this domain with periods as short as 2 s. The DSM global method allows to compute this incident field for a spherical Earth model. We use a multi-scale joint inversion of both gravity and seismic waveform data, accounting for the long wavelengths of the gravity field taken from a global model. In terms of inversion technique, we have validated an adjoint method for the inversion of seismic waveforms. An optimized BFGS inversion technique is used to minimize the difference between observed and computed full waveforms. The gradient of the misfit function gives the direction over which the model must be perturbed to minimize this difference. At each step of the inversion procedure we choose an optimal step length that accelerates the minimization. This is the crucial ingredient that allows us to build an efficient iterative full waveform inversion. We have extended this method by incorporating gravity data provided by the BGI/Bureau Gravimétrique International into the inversion. If the waveforms allow us to constrain the seismic velocities, they are less sensitive to the structure in density, which gives independent and crucial information to constrain the nature of rocks

  9. Internal dynamics of Abell 1240: a galaxy cluster with symmetric double radio relics

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Girardi, M.; Boschin, W.; Dasí, M.

    2009-08-01

    Context: The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. Aims: We aim to obtain new insights into the internal dynamics of the cluster Abell 1240, which appears to contain two roughly symmetric radio relics, separated by ~2 h_70-1 Mpc. Methods: Our analysis is based mainly on redshift data for 145 galaxies mostly acquired at the Telescopio Nazionale Galileo and on new photometric data acquired at the Isaac Newton Telescope. We also use X-ray data from the Chandra archive and photometric data from the Sloan Digital Sky Survey (Data Release 7). We combine galaxy velocities and positions to select 89 cluster galaxies and analyze the internal dynamics of the Abell 1237 + Abell 1240 cluster complex, Abell 1237 being a close companion of Abell 1240 in its southern direction. Results: We estimate similar redshifts for Abell 1237 and Abell 1240, < z > = 0.1935 and < z > = 0.1948, respectively. For Abell 1237, we estimate a line-of-sight (LOS) velocity dispersion of σV ~ 740 km s-1and a mass of M ~ 6 × 1014 h_70-1 M⊙. For Abell 1240, we estimate a LOS σV ~ 870 km s-1and a mass in the range M ~ 0.9-1.9 × 1015 h_70-1 M⊙, which takes account of its complex dynamics. Abell 1240 is shown to have a bimodal structure with two galaxy clumps roughly aligned along its N-S direction, the same as defined by the elongation of its X-ray surface brightness and the axis of symmetry of the relics. The two brightest galaxies of Abell 1240, associated with the northern and southern clumps, are separated by a LOS rest-frame velocity difference Vrf ~ 400 km s-1and a projected distance D ~ 1.2 h_70-1 Mpc. The two-body model agrees with the hypothesis that we are looking at a cluster merger that occurred largely in the plane of the sky, the two galaxy clumps being separated by a rest-frame velocity difference Vrf ~ 2000 km s-1at a time of 0.3 Gyr after the crossing core, while Abell 1237

  10. Electromagnetic modelling, inversion and data-processing techniques for GPR: ongoing activities in Working Group 3 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Giannopoulos, Antonis; van der Kruk, Jan

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 3 (WG3) 'EM methods for near-field scattering problems by buried structures; data processing techniques' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. WG3 is structured in four Projects. Project 3.1 deals with 'Electromagnetic modelling for GPR applications.' Project 3.2 is concerned with 'Inversion and imaging techniques for GPR applications.' The topic of Project 3.3 is the 'Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion.' Project 3.4 focuses on 'Advanced GPR data-processing algorithms.' Electromagnetic modeling tools that are being developed and improved include the Finite-Difference Time-Domain (FDTD) technique and the spectral domain Cylindrical-Wave Approach (CWA). One of the well-known freeware and versatile FDTD simulators is GprMax that enables an improved realistic representation of the soil/material hosting the sought structures and of the GPR antennas. Here, input/output tools are being developed to ease the definition of scenarios and the visualisation of numerical results. The CWA expresses the field scattered by subsurface two-dimensional targets with arbitrary cross-section as a sum of cylindrical waves. In this way, the interaction is taken into account of multiple scattered fields within the medium hosting the sought targets. Recently, the method has been extended to deal with through-the-wall scenarios. One of the

  11. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse.

    PubMed

    Yamada, S; Tsuchiya, K; Bradley, W G; Law, M; Winkler, M L; Borzage, M T; Miyazaki, M; Kelly, E J; McComb, J G

    2015-04-01

    This article provides an overview of phase-contrast and time-spatial labeling inversion pulse MR imaging techniques to assess CSF movement in the CNS under normal and pathophysiologic situations. Phase-contrast can quantitatively measure stroke volume in selected regions, notably the aqueduct of Sylvius, synchronized to the heartbeat. Judicious fine-tuning of the technique is needed to achieve maximal temporal resolution, and it has limited visualization of CSF motion in many CNS regions. Phase-contrast is frequently used to evaluate those patients with suspected normal pressure hydrocephalus and a Chiari I malformation. Correlation with successful treatment outcome has been problematic. Time-spatial labeling inversion pulse, with a high signal-to-noise ratio, assesses linear and turbulent motion of CSF anywhere in the CNS. Time-spatial labeling inversion pulse can qualitatively visualize whether CSF flows between 2 compartments and determine whether there is flow through the aqueduct of Sylvius or a new surgically created stoma. Cine images reveal CSF linear and turbulent flow patterns.

  12. Three-Dimensional Joint Geophysical Imaging Using an Advanced Multivariate Inversion Technique: the Method and its Application to the Utah area, United States

    NASA Astrophysics Data System (ADS)

    Zhang, Haijiang; Maceira, Monica; Benson, Thomas; Nafi Toksoz, M.

    2010-05-01

    We present an advanced multivariate inversion technique to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle. The model satisfies several independent geophysical datasets including seismic surface wave dispersion measurements, gravity, and seismic arrival time. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the seismic velocity models from shallower to greater depths. To combine different geophysical datasets into a common system, we design an optimal weighting scheme that is based on relative uncertainties of individual observations, their sensitivities to model parameters, and the trade-off of different data fitting. We apply this joint inversion method to determine the 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network and the EarthScope/USArray network. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The joint inversions using two individual data sets such as seismic arrival time and gravity data, as well as seismic surface wave and gravity data indicate strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion of all three data sets will be presented and is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  13. Interpretation of Magnetic Anomalies in Salihli (Turkey) Geothermal Area Using 3-D Inversion and Edge Detection Techniques

    NASA Astrophysics Data System (ADS)

    Timur, Emre

    2016-04-01

    There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.

  14. Basis set expansion for inverse problems in plasma diagnostic analysis.

    PubMed

    Jones, B; Ruiz, C L

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  15. Basis set expansion for inverse problems in plasma diagnostic analysis

    SciTech Connect

    Jones, B.; Ruiz, C. L.

    2013-07-15

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  16. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  17. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE PAGES

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  18. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si-Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-01

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. We estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  19. Weighting technique using backpropagated wavefields incited by deconvolved residuals for frequency-domain elastic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Min, Dong-Joo

    2013-07-01

    To enhance the feasibility of seismic full waveform inversion (FWI) for various types of geological structures, the model parameters should be updated along directions such that both long- and short-wavelength structures can be properly resolved. These long- and short-wavelength structures are primarily influenced by the low- and high-frequency components of the gradients, respectively. In some cases, however, the gradients are not flexible to reconstruct both the long- and the short-wavelength structures. This problem can be related to the scaling method using the Hessian matrix and the effect of the source spectrum. In this study, we analyse the problems of conventional scaling methods in frequency-domain FWI and propose a weighting method to compensate for these problems. The weighting method is applied to the conventional elastic FWI, where the gradient is scaled by the diagonal of the pseudo-Hessian matrix inside the frequency loop so that the effect of the source spectrum can be removed through cancellation. The weighting factors are designed using the backpropagated wavefields incited by the deconvolved residuals, which play a role in making the descent directions appropriately reflect the spectral differences between the observed data and the initial (or the inverted) modelling responses. We analyse the characteristics of the Jacobians and residuals and compare the descent directions of the two conventional waveform inversion methods with descent directions of the weighting method for thick rectangular-shaped and thin-layers models. The results indicate that the descent directions computed using the conventional inversion methods do not reflect the characteristics of deconvolved residuals and that particular frequency components are always emphasized regardless of geological models, while the spatial resolution of the descent direction calculated using the weighting method is flexibly determined depending on the differences between the true and the assumed

  20. Internal dynamics of Abell 2294: a massive, likely merging cluster

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Barrena, R.

    2010-07-01

    Context. The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. Aims: We seek to explore the internal dynamics of the cluster Abell 2294, which has been shown to host a radio halo. Methods: Our analysis is mainly based on redshift data for 88 galaxies acquired at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 78 cluster galaxies and analyze its internal dynamics. We also use both photometric data acquired at the Isaac Newton Telescope and X-ray data from the Chandra archive. Results: We re-estimate the redshift of the large, brightest cluster galaxy (BCG) obtaining < z > = 0.1690, which closely agrees with the mean cluster redshift. We estimate a quite large line-of-sight (LOS) velocity dispersion σ_V ~ 1400 km s-1 and X-ray temperature TX ~ 10 keV. Our optical and X-ray analyses detect substructure. Our results imply that the cluster is composed of two massive subclusters separated by a LOS rest frame velocity difference Vrf ~ 2000 km s-1, very closely projected in the plane of sky along the SE-NW direction. This observational picture, interpreted in terms of the analytical two-body model, suggests that Abell 2294 is a cluster merger elongated mainly in the LOS direction and captured during the bound outgoing phase, a few fractions of Gyr after the core crossing. We find that Abell 2294 is a very massive cluster with a range of M = 2-4 × 1015 h70-1 M⊙, depending on the adopted model. In contrast to previous findings, we find no evidence of Hα emission in the spectrum of the BCG galaxy. Conclusions: The emerging picture of Abell 2294 is that of a massive, quite “normal” merging cluster, like many clusters hosting diffuse radio sources. However, perhaps because of its particular geometry, more data are needed for reach a definitive, more quantitative conclusion.

  1. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences.

    PubMed

    Abe, Kayoko; Ono, Yuko; Yoneyama, Hiroko; Nishina, Yu; Aihara, Yasuo; Okada, Yoshikazu; Sakai, Shuji

    2014-06-01

    CSF imaging using the time-spatial labeling inversion pulse (time-SLIP) technique at 3T magnetic resonance imaging (MRI) was performed to assess cerebrospinal fluid (CSF) dynamics. The study population comprised 15 healthy volunteers and five patients with MR findings showing expansive dilation of the third and lateral ventricles suggesting aqueductal stenosis (AS). Signal intensity changes were evaluated in the tag-labeled CSF, untagged brain parenchyma, and untagged CSF of healthy volunteers by changing of black-blood time-inversion pulse (BBTI). CSF flow from the aqueduct to the third ventricle, the aqueduct to the fourth ventricle, and the foramen of Monro to the lateral ventricle was clearly rendered in all healthy volunteers with suitable BBTI. The travel distance of CSF flow as demonstrated by the time-SLIP technique was compared with the distance between the aqueduct and the fourth ventricle. The distance between the foramen of Monro and the lateral ventricle was used to calculate the CSF flow/distance ratio (CD ratio). The CD ratio at each level was significantly reduced in patients suspected to have AS compared to healthy volunteers. CSF flow was not identified at the aqueductal level in most of the patients. Two patients underwent time-SLIP assessments before and after endoscopic third ventriculostomies (ETVs). CSF flow at the ETV site was confirmed in each patient. With the time-SLIP technique, CSF imaging is sensitive enough to detect kinetic changes in CSF flow due to AS and ETV.

  2. Seismic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2009-09-01

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  3. Seismic Inversion Methods

    SciTech Connect

    Jackiewicz, Jason

    2009-09-16

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  4. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  5. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  6. Order preserving contact transformations and dynamical symmetries of scalar and coupled Riccati and Abel chains

    NASA Astrophysics Data System (ADS)

    Gladwin Pradeep, R.; Chandrasekar, V. K.; Mohanasubha, R.; Senthilvelan, M.; Lakshmanan, M.

    2016-07-01

    We identify contact transformations which linearize the given equations in the Riccati and Abel chains of nonlinear scalar and coupled ordinary differential equations to the same order. The identified contact transformations are not of Cole-Hopf type and are new to the literature. The linearization of Abel chain of equations is also demonstrated explicitly for the first time. The contact transformations can be utilized to derive dynamical symmetries of the associated nonlinear ODEs. The wider applicability of identifying this type of contact transformations and the method of deriving dynamical symmetries by using them is illustrated through two dimensional generalizations of the Riccati and Abel chains as well.

  7. Stabilization of the total force in multi-finger pressing tasks studied with the 'inverse piano' technique.

    PubMed

    Martin, J R; Budgeon, M K; Zatsiorsky, V M; Latash, M L

    2011-06-01

    When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the "inverse piano", was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n=10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results showed that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction "not to interfere" leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360

  8. Emission source strengths of gasoline-filling processes determined by open-path spectroscopic techniques and inverse modeling

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Stockhause, Martina; Hoffmann, Herbert; Sedlmaier, Achim; Emeis, Stefan M.

    1998-12-01

    Up to now emission source strengths of diffuse and heterogenous emission of important VOCs are not well known especially from gas stations and gasoline tank farms. To estimate the total emission of these sources non-intrusive measurements were performed by a differential optical absorption spectroscopy (DOAS) system to determine the path- integrated concentrations of exhaust compounds downwind of the source through the whole exhaust plume. Simultaneously, the meteorological parameters were measured for modeling the dispersion of the plume inversely to obtain the emission source strengths of these compounds. The emissions by road traffic were determined by an additional open-path DOAS measurement. Measurement campaigns were performed during different wether conditions and at different sources which were characterized by well defined and easy air flow conditions. The emission source strengths were calculated with the Gaussian model PAL. The determined total emission of gas stations with gasoline vapor recovery system are about 20 mg benzene per kg refueled gasoline and the emission from refueling activities vary between 1 and 9 benzene per kg refueled gasoline depending on the technical behavior of the gasoline vapor recovery system. These values which were found from measurements during times with a and without refueling activities show a high amount of diffuse emissions. The emission rates from a gasoline taken farm were measured on an open path through the middle of that area and a maximum of 8 (mu) g/(m2s) was determined.

  9. Terahertz Wide-Angle Imaging and Analysis on Plane-wave Criteria Based on Inverse Synthetic Aperture Techniques

    NASA Astrophysics Data System (ADS)

    Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang

    2016-04-01

    This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.

  10. Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique

    PubMed Central

    Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.

    2010-01-01

    When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360

  11. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  12. Combining Strong and Weak Gravitational Lensing in Abell 1689

    NASA Astrophysics Data System (ADS)

    Limousin, Marceau; Richard, Johan; Jullo, Eric; Kneib, Jean-Paul; Fort, Bernard; Soucail, Geneviève; Elíasdóttir, Árdís; Natarajan, Priyamvada; Ellis, Richard S.; Smail, Ian; Czoske, Oliver; Smith, Graham P.; Hudelot, Patrick; Bardeau, Sébastien; Ebeling, Harald; Egami, Eiichi; Knudsen, Kirsten K.

    2007-10-01

    We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have reported up to 32 multiply imaged systems in this cluster, of which only 3 were spectroscopically confirmed. In this work, we present a parametric strong lensing mass reconstruction using 34 multiply imaged systems of which 24 have newly determined spectroscopic redshifts, which is a major step forward in building a robust mass model. In turn, the new spectroscopic data allows a more secure identification of multiply imaged systems. The resultant mass model enables us to reliably predict the redshifts of additional multiply imaged systems for which no spectra are currently available, and to use the location of these systems to further constrain the mass model. Using our strong lensing mass model, we predict on larger scale a shear signal which is consistent with that inferred from our large scale weak lensing analysis derived using CFH12K wide field images. Thanks to a new method for reliably selecting a well defined background lensed galaxy population, we resolve the discrepancy found between the NFW concentration parameters derived from earlier strong and weak lensing analysis. The derived parameters for the best fit NFW profile is found to be c200=7.6+/-1.6 and r200=2.16+/-0.10 h-170 Mpc (corresponding to a 3D mass equal to M200=[1.32+/-0.2]×1015 h70 Msolar). The large number of new constraints incorporated in this work makes Abell 1689 the most reliably reconstructed cluster to date. This well calibrated mass model, which we here make publicly available, will enable us to exploit Abell 1689 efficiently as a gravitational telescope, as well as to potentially constrain cosmology. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des

  13. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  14. Application of stacking and inversion techniques to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Behm, Michael; Brückl, Ewald; Chwatal, Werner; Thybo, Hans

    2007-07-01

    We present new methods for the interpretation of 3-D seismic wide-angle reflection and refraction data with application to data acquired during the experiments CELEBRATION, 2000 and ALP 2002 in the area of the Eastern Alps and their transition to the surrounding tectonic provinces (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was acquired on a net of arbitrarily oriented seismic lines by simultaneous recording on all lines of seismic waves from the shots, which allows 2-D and 3-D interpretations. Much (80%) of the data set consists of crossline traces. Low signal to noise (S/N) ratio in the area of the young orogens decreases the quality of travel time picks. In these seismically heterogeneous areas it is difficult to assign clearly defined arrivals to the seismic phases, in particular on crossline record sections. In order to enhance the S/N ratio, signal detection and stacking techniques have been applied to enhance the Pg-, Pn- and PmP phases. Further, inversion methods have been developed for the interpretation of WAR/R-data, based on automated 1-D inversion (Pg) and the application of the delay time concept (Pn). The results include a 3-D velocity model of the crust based on Pg waves, time and depth maps of the Moho and a Pn-velocity map. The models based on stacked data are robust and provide a larger coverage, than models based on travel time picks from single-fold (unstacked) traces, but have relatively low resolution, especially near the surface. They were used as the basis for constructing models with improved resolution by the inversion of picks from single-fold data. The results correlate well with geological structures and show new prominent features in the Eastern Alps area and their surrounds. The velocity distribution in the crust has strong lateral variations and the Moho in the investigation area appears to be fragmented into three parts.

  15. Electromagnetic models and inversion techniques for Titan’s Ontario Lacus depth estimation from Cassini RADAR data

    NASA Astrophysics Data System (ADS)

    Ventura, Bartolomeo; Notarnicola, Claudia; Casarano, Domenico; Posa, Francesco; Hayes, Alexander G.; Wye, Lauren

    2012-11-01

    Since 2004, Cassini RADAR, operating at 13.8 GHz as a radiometer, scatterometer, altimeter and synthetic aperture radar (SAR), provides a vast amount of data, suggesting new scenarios for Titan’s morphology and evolution. An important result was the detection of lakes constituted by liquid hydrocarbons, thus supporting the hypothesis of a methane and ethane cycle similar to water cycle on Earth. In 2007 Ontario Lacus, a 200 km × 70 km lake, was detected near the South pole. To date Ontario is the only large liquid area sensed by Cassini RADAR in the southern hemisphere of Titan. In this work, we analyze the SAR data using two different electromagnetic modeling approaches to retrieve the optical thickness parameter of the liquid hydrocarbon layer. A physically-based model, IEM combined with a gravity capillary wave spectra and integrated into a Bayesian statistical inversion is compared with a semi-empirical model also based on a double-layer description. We consider the impact of the dielectric constant of the surface constituents, as well as wind speed and wave motion scenarios, on the retrieved optical thickness, and by extension, the lake depth and volume estimation. Wind speed can be constrained below 0.7 m/s, in good agreement with the forecasts of Global Circulation Models on Titan. Lake depths estimates depend on the hypotheses on wind speed and loss tangent of the liquid. The average depth lake estimates obtained with the physically based approach range from 2.7 and 8.3 m, with the 95% of the lake area not exceeding 30 m depth. The semiempirical model results confirm this interval, also considering the hypothesis of a low reflectivity lake bed: this would imply lower depth, with a significant part of the lake area not liquid-filled at the present.

  16. [Study of elliptical centric view ordering technique with spectrally selected inversion recovery pulse (spec-IR pulse)].

    PubMed

    Okuaki, Tomoyuki; Yamashita, Midori; Wakamatsu, Osamu; Shirouzu, Ichiro; Machida, Toru; Matsuda, Tsuyoshi

    2003-03-01

    Among several techniques for contrast-enhanced MRA, the elliptical centric view ordering method, originally developed at the Mayo Clinic, is a promising one. It has been difficult to apply a fat-suppression prepulse, mainly because the conventional fat suppression method requires a longer acquisition time during sampling of the low-frequency domain in k-space, and it causes severe image distortion due to the great change in longitudinal magnetization derived from fat tissue. We developed a novel method to append fat saturation to the elliptical centric view ordering technique, and assessed the feasibility of its use. Our method is to apply fat-saturation pulses only at selected sampling points when any gradient is applied in the slice-encoding direction. In this way, we achieved efficient suppression of fat-derived signal within a relatively short time, comparable to that of the conventional fat-saturation method, and succeeded in minimizing artifacts. PMID:12740563

  17. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    SciTech Connect

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  18. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-01

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.

  19. The central star of the planetary nebula Abell 78

    NASA Technical Reports Server (NTRS)

    Kaler, J. B.; Feibelman, W. A.

    1984-01-01

    The ultraviolet spectrum of the nucleus of Abell 78, one of the two planetaries known to contain zones of nearly pure helium, is studied. The line spectrum and wind velocities are examined, the determination of interstellar extinction for assessing circumstellar dust is improved, and the temperature, luminosity, and core mass are derived. The results for A78 are compared with results for A30, and it is concluded that the dust distributions around the two central stars are quite different. The temperature of the A78 core is not as high as previously believed, and almost certainly lies between 67,000 K and 130,000 K. The most likely temperature range is 77,000-84,000 K. The core mass lies between 0.56 and 0.70 solar mass, with the most likely values between 0.56 and 0.58 solar mass.

  20. Shocking Tails in the Major Merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  1. The Sunyaev-Zeldovich Effect Spectrum of Abell 2163

    NASA Technical Reports Server (NTRS)

    LaRoque, S.; Reese, E. D.; Holder, G. P.; Carlstrom, J. E.; Holzapfel, W. L.; Joy, M. K.; Grego, L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We present a measurement of the Sunyaev-Zeldovich effect (SZE) at 30 GHz for the galaxy cluster Abell 2163. Combining this data point with previous measurements at 140, 220, and 270 GHz from the SuZIE and Daibolo experiments, we construct them most complete SZE spectrum to date. The spectrum is fitted to determine the compton y parameter and the peculiar velocity for this cluster; our results are y_0=3.6 x 10(circumflex)4 and v_p=360 km s(circumflex)-1. These results include corrections for contamination by Galactic dust emission; we find the contamination level to be much less than previously reported. The dust emission, while strong, is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the proper SZE observing strategy is taken into account.

  2. Black holes a-wandering in Abell 2261

    NASA Astrophysics Data System (ADS)

    Spolaor, Sarah; Ford, Holland; Gultekin, Kayhan; Lauer, Tod R.; Lazio, T. Joseph W.; Loeb, Abraham; Moustakas, Leonidas A.; Postman, Marc; Taylor, Joanna M.

    2016-01-01

    The brightest cluster galaxy in Abell 2261 (BCG2261) has an exceptionally large, flat, and asymmetric core, thought to have been shaped by a binary supermassive black hole inspiral and subsequent gravitational recoil. BCG2261 should contain a 10^10 Msun black hole, but it lacks the central cusp that should mark such a massive black hole. Based on the presence of central radio emission, we have explored the core of this galaxy with HST and the VLA to identify the presence and location of the active nucleus in this galaxy's core. We present our exploration of whether this system in fact contains direct evidence of a recoiling binary supermassive black hole. A recoiling core in this system would represent a pointed observational test of three preeminent theoretical predictions: that scouring forms cores, that SMBHs may recoil after coalescence, and that recoil can strongly influence core formation and morphology.

  3. A shock front at the radio relic of Abell 2744

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Jauzac, M.; Vazza, F.; Owers, M. S.; Kneib, J.-P.; Tchernin, C.; Intema, H.; Knowles, K.

    2016-09-01

    Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z = 0.306), which reveal the presence of a shock front 1.5 Mpc east of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number M=1.7_{-0.3}^{+0.5}, the plasma in the post-shock region has been heated to a very high temperature (˜13 keV) by the passage of the shock wave. The low-acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.

  4. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-01

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts. PMID:17082451

  5. The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146

    NASA Astrophysics Data System (ADS)

    King, Lindsay J.; Clowe, Douglas I.; Coleman, Joseph E.; Russell, Helen R.; Santana, Rebecca; White, Jacob A.; Canning, Rebecca E. A.; Deering, Nicole J.; Fabian, Andrew C.; Lee, Brandyn E.; Li, Baojiu; McNamara, Brian R.

    2016-06-01

    Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the Chandra X-ray Observatory, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on Hubble Space Telescope, is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields M200 = 1.1^{+0.3}_{-0.4} × 1015 and 3^{+1}_{-2} × 1014 M⊙ for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of c = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger.

  6. The wonderful apparatus of John Jacob Abel called the "artificial kidney".

    PubMed

    Eknoyan, Garabed

    2009-01-01

    Hemodialysis, which now provides life-saving therapy to millions of individuals, began as an exploratory attempt to sustain the lives of selected patients in the 1950s. That was a century after the formulation of the concept and determination of the laws governing dialysis. The first step in the translation of the laboratory principles of dialysis to living animals was the "vividiffusion" apparatus developed by John Jacob Abel (1859-1938), dubbed the "artificial kidney" in the August 11, 1913 issue of The Times of London reporting the demonstration of vividiffusion by Abel at University College. The detailed article in the January 18, 1914 of the New York Times, reproduced here, is based on the subsequent medical reports published by Abel et al. Tentative attempts of human dialysis in the decade that followed based on the vividiffusion apparatus of Abel and his materials (collodion, hirudin, and glass) met with failure and had to be abandoned. Practical dialysis became possible in the 1940s and thereafter after cellophane, heparin, and teflon became available. Abel worked in an age of great progress and experimental work in the basic sciences that laid the foundations of science-driven medicine. It was a "Heroic Age of Medicine," when medical discoveries and communicating them to the public were assuming increasing importance. This article provides the cultural, social, scientific, and medical background in which Abel worked, developed and reported his wonderful apparatus called the "artificial kidney."

  7. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  8. Disentangling the ICL with the CHEFs: Abell 2744 as a Case Study

    NASA Astrophysics Data System (ADS)

    Jiménez-Teja, Y.; Dupke, R.

    2016-03-01

    Measurements of the intracluster light (ICL) are still prone to methodological ambiguities, and there are multiple techniques in the literature to address them, mostly based on the binding energy, the local density distribution, or the surface brightness. A common issue with these methods is the a priori assumption of a number of hypotheses on either the ICL morphology, its surface brightness level, or some properties of the brightest cluster galaxy (BCG). The discrepancy in the results is high, and numerical simulations just place a boundary on the ICL fraction in present-day galaxy clusters in the range 10%-50%. We developed a new algorithm based on the Chebyshev-Fourier functions to estimate the ICL fraction without relying on any a priori assumption about the physical or geometrical characteristics of the ICL. We are able to not only disentangle the ICL from the galactic luminosity but mark out the limits of the BCG from the ICL in a natural way. We test our technique with the recently released data of the cluster Abell 2744, observed by the Frontier Fields program. The complexity of this multiple merging cluster system and the formidable depth of these images make it a challenging test case to prove the efficiency of our algorithm. We found a final ICL fraction of 19.17 ± 2.87%, which is very consistent with numerical simulations.

  9. A comparison of geostatistically based inverse techniques for use in performance assessment analysis at the Waste Isolation Pilot Plant Site: Results from Test Case No. 1

    SciTech Connect

    Zimmerman, D.A.; Gallegos, D.P.

    1993-10-01

    The groundwater flow pathway in the Culebra Dolomite aquifer at the Waste Isolation Pilot Plant (WIPP) has been identified as a potentially important pathway for radionuclide migration to the accessible environment. Consequently, uncertainties in the models used to describe flow and transport in the Culebra need to be addressed. A ``Geostatistics Test Problem`` is being developed to evaluate a number of inverse techniques that may be used for flow calculations in the WIPP performance assessment (PA). The Test Problem is actually a series of test cases, each being developed as a highly complex synthetic data set; the intent is for the ensemble of these data sets to span the range of possible conceptual models of groundwater flow at the WIPP site. The Test Problem analysis approach is to use a comparison of the probabilistic groundwater travel time (GWTT) estimates produced by each technique as the basis for the evaluation. Participants are given observations of head and transmissivity (possibly including measurement error) or other information such as drawdowns from pumping wells, and are asked to develop stochastic models of groundwater flow for the synthetic system. Cumulative distribution functions (CDFs) of groundwater flow (computed via particle tracking) are constructed using the head and transmissivity data generated through the application of each technique; one semi-analytical method generates the CDFs of groundwater flow directly. This paper describes the results from Test Case No. 1.

  10. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    NASA Astrophysics Data System (ADS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  11. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    PubMed

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  12. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  13. The galaxy population of Abell 1367: photometric and spectroscopic data

    NASA Astrophysics Data System (ADS)

    Kriwattanawong, W.; Moss, C.; James, P. A.; Carter, D.

    2011-03-01

    Aims: Photometric and spectroscopic observations of the galaxy population of the galaxy cluster Abell 1367 have been obtained, over a field of 34' × 90', covering the cluster centre out to a radius of ~2.2 Mpc. Optical broad- and narrow-band imaging was used to determine galaxy luminosities, diameters and morphologies, and to study current star formation activity of a sample of cluster galaxies. Near-infrared imaging was obtained to estimate integrated stellar masses, and to aid the determination of mean stellar ages and metallicities for the future investigation of the star formation history of those galaxies. Optical spectroscopic observations were also taken, to confirm cluster membership of galaxies in the sample through their recession velocities. Methods.U, B and R broad-band and Hα narrow-band imaging observations were carried out using the Wide Field Camera (WFC) on the 2.5 m Isaac Newton Telescope on La Palma, covering the field described above. J and K near-infrared imaging was obtained using the Wide Field Camera (WFCAM) on the 3.8 m UK Infrared Telescope on Mauna Kea, covering a somewhat smaller field of 0.75 square degrees on the cluster centre. The spectroscopic observations were carried out using a multifibre spectrograph (WYFFOS) on the 4.2 m William Herschel Telecope on La Palma, over the same field as the optical imaging observations. Results: Our photometric data give optical and near-infrared isophotal magnitudes for 303 galaxies in our survey regions, down to stated diameter and B-band magnitude limits, determined within R24 isophotal diameters. Our spectroscopic data of 328 objects provide 84 galaxies with detections of emission and/or absorption lines. Combining these with published spectroscopic data gives 126 galaxies within our sample for which recession velocities are known. Of these, 72 galaxies are confirmed as cluster members of Abell 1367, 11 of which are identified in this study and 61 are reported in the literature. Hα equivalent

  14. The planetary nebula Abell 48 and its [WN] nucleus

    NASA Astrophysics Data System (ADS)

    Frew, David J.; Bojičić, I. S.; Parker, Q. A.; Stupar, M.; Wachter, S.; DePew, K.; Danehkar, A.; Fitzgerald, M. T.; Douchin, D.

    2014-05-01

    We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B - V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (˜0.3 M⊙) and electron density (700 cm-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best-fitting temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ˜5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium- and carbon-dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.

  15. A shock at the radio relic position in Abell 115

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Gastaldello, F.; Brunetti, G.; Dallacasa, D.

    2016-07-01

    We analysed a deep Chandra observation (334 ks) of the galaxy cluster Abell 115 and detected a shock cospatial with the radio relic. The X-ray surface brightness profile across the shock region presents a discontinuity, corresponding to a density compression factor {C}=2.0± 0.1, leading to a Mach number {M}=1.7± 0.1 ({M}=1.4-2 including systematics). Temperatures measured in the upstream and downstream regions are consistent with what expected for such a shock: T_u=4.3^{+1.0}_{-0.6}{keV} and T_d=7.9^{+1.4}_{-1.1}{keV}, respectively, implying a Mach number {M}=1.8^{+0.5}_{-0.4}. So far, only few other shocks discovered in galaxy clusters are consistently detected from both density and temperature jumps. The spatial coincidence between this discontinuity and the radio relic edge strongly supports the view that shocks play a crucial role in powering these synchrotron sources. We suggest that the relic is originated by shock re-acceleration of relativistic electrons rather than acceleration from the thermal pool. The position and curvature of the shock and the associated relic are consistent with an off-axis merger with unequal mass ratio where the shock is expected to bend around the core of the less massive cluster.

  16. The Radio Luminosity Function and Galaxy Evolution of Abell 2256

    NASA Astrophysics Data System (ADS)

    Forootaninia, Zahra

    2015-05-01

    This thesis presents a study of the radio luminosity function and the evolution of galaxies in the Abell 2256 cluster (z=0.058, richness class 2). Using the NED database and VLA deep data with an rms sensitivity of 18 mu Jy.beam--1, we identified 257 optical galaxies as members of A2256, of which 83 are radio galaxies. Since A2256 is undergoing a cluster-cluster merger, it is a good candidate to study the radio activity of galaxies in the cluster. We calculated the Univariate and Bivariate radio luminosity functions for A2256, and compared the results to studies on other clusters. We also used the SDSS parameter fracDev to roughly classify galaxies as spirals and ellipticals, and investigated the distribution and structure of galaxies in the cluster. We found that most of the radio galaxies in A2256 are faint, and are distributed towards the outskirts of the cluster. On the other hand, almost all very bright radio galaxies are ellipticals which are located at the center of the cluster. We also found there is an excess in the number of radio spiral galaxies in A2256 compared to the number of radio ellipticals, counting down to a radio luminosity of log(luminosity)=20.135 W/Hz..

  17. Abell 1201: A Minor Merger at Second Core Passage

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun; Owers, Matt; Nulsen, Paul E. J.; McNamara, Brian R.; Murray, Stephen S.; Couch, Warrick J.

    2012-06-01

    We present an analysis of the structures and dynamics of the merging cluster Abell 1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500 kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core, and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~= 1000 km s-1. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.

  18. Chandra Observations of Point Sources in Abell 2255

    NASA Technical Reports Server (NTRS)

    Davis, David S.; Miller, Neal A.; Mushotzky, Richard F.

    2003-01-01

    In our search for "hidden" AGN we present results from a Chandra observation of the nearby cluster Abell 2255. Eight cluster galaxies are associated with point-like X-ray emission, and we classify these galaxies based on their X-ray, radio, and optical properties. At least three are associated with active galactic nuclei (AGN) with no optical signatures of nuclear activity, with a further two being potential AGN. Of the potential AGN, one corresponds to a galaxy with a post-starburst optical spectrum. The remaining three X-ray detected cluster galaxies consist of two starbursts and an elliptical with luminous hot gas. Of the eight cluster galaxies five are associated with luminous (massive) galaxies and the remaining three lie in much lower luminosity systems. We note that the use of X-ray to optical flux ratios for classification of X-ray sources is often misleading, and strengthen the claim that the fraction of cluster galaxies hosting an AGN based on optical data is significantly lower than the fraction based on X-ray and radio data.

  19. ABELL 1201: A MINOR MERGER AT SECOND CORE PASSAGE

    SciTech Connect

    Ma Chengjiun; Nulsen, Paul E. J.; McNamara, Brian R.; Murray, Stephen S.; Owers, Matt; Couch, Warrick J.

    2012-06-20

    We present an analysis of the structures and dynamics of the merging cluster Abell 1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500 kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core, and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at {approx_equal} 1000 km s{sup -1}. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.

  20. The Sunyaev-Zeldovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.

    2000-01-01

    We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).

  1. The Sunyaev-Zel'dovich Effect Spectrum of Abell 2163

    NASA Technical Reports Server (NTRS)

    LaRoque, S. J.; Carlstrom, J. E.; Reese, E. D.; Holder, G. P.; Holzapfel, W. L.; Joy, M.; Grego, L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present an interferometric measurement of the Sunyaev-Zel'dovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most complete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the Compton y-parameter (y(sub 0)) and the peculiar velocity (v(sub p)) for this cluster. Our results are y(sub 0) = 3.56((sup +0.41+0.27)(sub -0.41-0.19)) X 10(exp -4) and v(sub p) = 410((sup +1030+460) (sub -850-440)) km s(exp -1) where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.

  2. Saturation of superstorms and finite compressibility of the magnetosphere: Results of the magnetogram inversion technique and global PPMLR-MHD model

    NASA Astrophysics Data System (ADS)

    Mishin, V. V.; Mishin, V. M.; Karavaev, Yu.; Han, J. P.; Wang, C.

    2016-07-01

    We report on novel features of the saturation process of the polar cap magnetic flux and Poynting flux into the magnetosphere from the solar wind during three superstorms. In addition to the well-known effect of the interplanetary electric (Esw) and southward magnetic (interplanetary magnetic field (IMF) Bz) fields, we found that the saturation depends also on the solar wind ram pressure Pd. By means of the magnetogram inversion technique and a global MHD numerical model Piecewise Parabolic Method with a Lagrangian Remap, we explore the dependence of the magnetopause standoff distance on ram pressure and the southward IMF. Unlike earlier studies, in the considered superstorms both Pd and Bz achieve extreme values. As a result, we show that the compression rate of the dayside magnetosphere decreases with increasing Pd and the southward Bz, approaching very small values for extreme Pd ≥ 15 nPa and Bz ≤ -40 nT. This dependence suggests that finite compressibility of the magnetosphere controls saturation of superstorms.

  3. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  4. Narrow-angle tail radio sources and the distribution of galaxy orbits in Abell clusters

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Sarazin, Craig L.; Owen, Frazer N.

    1987-01-01

    The present data on the orientations of the tails with respect to the cluster centers of a sample of 70 narrow-angle-tail (NAT) radio sources in Abell clusters show the distribution of tail angles to be inconsistent with purely radial or circular orbits in all the samples, while being consistent with isotropic orbits in (1) the whole sample, (2) the sample of NATs far from the cluster center, and (3) the samples of morphologically regular Abell clusters. Evidence for very radial orbits is found, however, in the sample of NATs near the cluster center. If these results can be generalized to all cluster galaxies, then the presence of radial orbits near the center of Abell clusters suggests that violent relaxation may not have been fully effective even within the cores of the regular clusters.

  5. Nonlocal symmetries of Riccati and Abel chains and their similarity reductions

    NASA Astrophysics Data System (ADS)

    Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M.

    2012-02-01

    We study nonlocal symmetries and their similarity reductions of Riccati and Abel chains. Our results show that all the equations in Riccati chain share the same form of nonlocal symmetry. The similarity reduced Nth order ordinary differential equation (ODE), N = 2, 3, 4, …, in this chain yields (N - 1)th order ODE in the same chain. All the equations in the Abel chain also share the same form of nonlocal symmetry (which is different from the one that exist in Riccati chain) but the similarity reduced Nth order ODE, N = 2, 3, 4, …, in the Abel chain always ends at the (N - 1)th order ODE in the Riccati chain. We describe the method of finding general solution of all the equations that appear in these chains from the nonlocal symmetry.

  6. The nearby Abell clusters. III. Luminosity functions for eight rich clusters

    SciTech Connect

    Oegerle, W.R.; Hoessel, J.G. Washburn Observatory, Madison, WI )

    1989-11-01

    Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies. 40 refs.

  7. U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations

    SciTech Connect

    Zheltukhin, A. A.; Trzetrzelewski, M.

    2010-06-15

    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.

  8. THE GALAXY POPULATION OF LOW-REDSHIFT ABELL CLUSTERS

    SciTech Connect

    Barkhouse, Wayne A.; Yee, H. K. C.; Lopez-Cruz, Omar E-mail: hyee@astro.utoronto.c

    2009-10-01

    We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (f{sub b} ) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r {sub 200} to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (B {sub gc}), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The f{sub b} is found not to correlate with B {sub gc}; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy f{sub b} is approximately constant with clustercentric radius except for the inner-cluster core region where f{sub b} decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.

  9. The Sunyaev-Zel'dovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.

    1999-01-01

    We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).

  10. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  11. Reconstructing the projected gravitational potential of Abell 1689 from X-ray measurements

    NASA Astrophysics Data System (ADS)

    Tchernin, Céline; Majer, Charles L.; Meyer, Sven; Sarli, Eleonora; Eckert, Dominique; Bartelmann, Matthias

    2015-02-01

    Context. Galaxy clusters can be used as cosmological probes, but to this end, they need to be thoroughly understood. Combining all cluster observables in a consistent way will help us to understand their global properties and their internal structure. Aims: We provide proof of the concept that the projected gravitational potential of galaxy clusters can directly be reconstructed from X-ray observations. We also show that this joint analysis can be used to locally test the validity of the equilibrium assumptions in galaxy clusters. Methods: We used a newly developed reconstruction method, based on Richardson-Lucy deprojection, that allows reconstructing projected gravitational potentials of galaxy clusters directly from X-ray observations. We applied this algorithm to the well-studied cluster Abell 1689 and compared the gravitational potential reconstructed from X-ray observables to the potential obtained from gravitational lensing measurements. We also compared the X-ray deprojected profiles obtained by the Richardson-Lucy deprojection algorithm with the findings from the more conventional onion-peeling technique. Results: Assuming spherical symmetry and hydrostatic equilibrium, the potentials recovered from gravitational lensing and from X-ray emission agree very well beyond 500 kpc. Owing to the fact that the Richardson-Lucy deprojection algorithm allows deprojecting each line of sight independently, this result may indicate that non-gravitational effects and/or asphericity are strong in the central regions of the clusters. Conclusions: We demonstrate the robustness of the potential reconstruction method based on the Richardson-Lucy deprojection algorithm and show that gravitational lensing and X-ray emission lead to consistent gravitational potentials. Our results illustrate the power of combining galaxy-cluster observables in a single, non-parametric, joint reconstruction of consistent cluster potentials that can be used to locally constrain the physical state

  12. Origin of galactic bulges, the evolution of groups, and the distribution of Abell clusters

    SciTech Connect

    Barnes, J.E.

    1984-01-01

    Various dynamical topics connected with the origins of galaxies and large scale structure were studied. In Chapter 1 the hypothesis that galactic bulges are simply ellipticals modified by the gravitational field of exponential disks is tested with N-body experiments and an analysis of S. Kent's data-set. The author concludes that, unless disks have improbably low M/L ratios, bulges were not ellipticals; disk fields should produce significant effects, but generally in the wrong direction to explain the differences between bulges and ellipticals. Chapters 2, 3 and 4 explore the evolution of groups of galaxies under the general assumption that galaxies possess massive halos. A sequence of increasingly realistic techniques are employed, culminating in an extensive series of large direct-summation N-body simulations. It is shown that groups of halo-galaxies evolve rapidly, the galaxies becoming segregated at the center of the system. This induces a systematic bias in the observed virial parameters, underestimating the total mass of the system, which may account for the relative M/L ratios of groups and rich clusters, and for the general trend of M/L with scale size between approx.0.1 and approx.1.0 Mpc. Groups with apparent crossing times of approx.0.1 H/sub 0//sup -1/ have probably only just collapsed and are rapidly evolving toward multiple-merger systems. Chapter 5 compares the clustering statistics of rich clusters in N-body simulations with recent observations for Abell clusters. It was found that models with significant power on large scales, such as the cold particle models have the best chance of accounting for the observations.

  13. THE DISTRIBUTION OF DARK MATTER OVER THREE DECADES IN RADIUS IN THE LENSING CLUSTER ABELL 611

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Marshall, Philip J.; Sand, David J.; Richard, Johan; Capak, Peter; Miyazaki, Satoshi

    2009-12-01

    We present a detailed analysis of the baryonic and dark matter distribution in the lensing cluster Abell 611 (z = 0.288), with the goal of determining the dark matter profile over an unprecedented range of cluster-centric distance. By combining three complementary probes of the mass distribution, weak lensing from multi-color Subaru imaging, strong lensing constraints based on the identification of multiply imaged sources in Hubble Space Telescope images, and resolved stellar velocity dispersion measures for the brightest cluster galaxy secured using the Keck telescope, we extend the methodology for separating the dark and baryonic mass components introduced by Sand et al. Our resulting dark matter profile samples the cluster from approx3 kpc to 3.25 Mpc, thereby providing an excellent basis for comparisons with recent numerical models. We demonstrate that only by combining our three observational techniques can degeneracies in constraining the form of the dark matter profile be broken on scales crucial for detailed comparisons with numerical simulations. Our analysis reveals that a simple Navarro-Frenk-White (NFW) profile is an unacceptable fit to our data. We confirm earlier claims based on less extensive analyses of other clusters that the inner profile of the dark matter profile deviates significantly from the NFW form and find a inner logarithmic slope beta flatter than 0.3 (68%; where rho{sub DM} propor to r{sup -b}eta at small radii). In order to reconcile our data with cluster formation in a LAMBDACDM cosmology, we speculate that it may be necessary to revise our understanding of the nature of baryon-dark matter interactions in cluster cores. Comprehensive weak and strong lensing data, when coupled with kinematic information on the brightest cluster galaxy, can readily be applied to a larger sample of clusters to test the universality of these results.

  14. Red population of Abell 1314 : A rest-frame narrowband photometric evolutionary analysis

    NASA Astrophysics Data System (ADS)

    Sreedhar, Yuvraj Harsha

    2014-06-01

    Red sequence galaxies form with an intense burst of star formation in the early universe to evolve passively into massive, metal rich, old galaxies at z ˜ 0. But Abell 1314 (z=0.034) is found to host almost all red sequence galaxy members - identified using the mz index, classified using the Principle Component Analysis technique and SDSS colour correlations - some of which show properties of low-mass, star forming, and metal rich galaxies. The variably spread Intra-Cluster Medium (ICM) near the core forms a vital part in influencing the evolution of these members. To study their evolution, I correlated different parameters of the rest-frame narrowband photometry and the derived luminosity-weighted mean Single Stellar Population model ages and metallicities. The study finds the member galaxies evolve differently in three different sections of the cluster: 1. the region of ≤ 200 kpc hosts passively evolving old, massive systems which accumulate mass by dry, minor mergers, 2. the zone between 200-500 kpc shows stripped systems (or in the process of being gas stripped) by ram pressure with moderate star formation history, 3. the outer regions (≥ 500 kpc) show low-mass red objects with blue, star forming Butcher-Oemler galaxy like colours. This sort of environmental condition is known to harbour hybrid systems, like, the pseudo bulges, blue sequence E/S0 and Butcher-Oemler like satellite cluster galaxies. Overall, the cluster is found to be poor, quiescent with galaxies to have formed by the monolithic structure formation in the early universe and are now evolving with mergers and gas stripping processes by ram pressure.

  15. Inversion of triton moments

    NASA Astrophysics Data System (ADS)

    Clare, R. B.; Levinger, J. S.

    1981-02-01

    We use the formalism of hyperspherical harmonics to calculate several moments for the triton photoeffect, for a Volkov spin-independent potential. First, we improve the accuracy of Maleki's calculations of the moments σ2 and σ3 by including more terms in the hyperspherical expansion. We also calculate moments σ0 and σ1 for a Serber mixture. We find reasonable agreement between our moments found by sum rules and those found from the cross sections calculated by Fang et al. and Levinger-Fitzgibbon. We then develop a technique of inversion of a finite number of moments by making the assumption that the cross section can be written as a sum of several Laguerre polynomials multiplied by a decreasing exponential. We test our inversion technique successfully on several model potentials. We then modify it and apply it to the five moments (σ-1 to σ3) for a force without exchange, and find fair agreement with Fang's values of the cross section. Finally, we apply the inversion technique to our three moments (σ-1,σ0,and σ1) for a Serber mixture, and find reasonable agreement with Gorbunov's measurements of the 3He photoeffect. NUCLEAR REACTIONS Triton photoeffects, hyperspherical harmonics, moments of photoeffect, inversion of moments.

  16. VizieR Online Data Catalog: Deep spectroscopy of Abell 85 (Agulli+, 2016)

    NASA Astrophysics Data System (ADS)

    Agulli, I.; Aguerri, J. A. L.; Sanchez-Janssen, R.; Dalla Vecchia, C.; Diaferio, A.; Barrena, R.; Palmero, L. D.; Yu, H.

    2016-07-01

    File a85_memb.dat contains 5 columns with the sky coordinates (RA;DE), the r and g band magnitudes and the recessional velocities for each 460 confirmed members of Abell 85 cluster. Details on the data set can be found in the paper. (1 data file).

  17. Abell 58 - a Planetary Nebula with an ONe-rich knot: a signature of binary interaction? .

    NASA Astrophysics Data System (ADS)

    Lau, H. H. B.; De Marco, O.; Liu, X.-W.

    We have investigated the possibility that binary evolution is involved in the formation of the planetary nebula Abell 58. In particular, we assume a neon nova is responsible for the observed high oxygen and neon abundances of the central hydrogen-deficient knot of the H-deficient planetary nebula Abell 58 and the ejecta from the explosion are mixed with the planetary nebula. We have investigated different scenarios involving mergers and wind accretion and found that the most promising formation scenario involves a primary SAGB star that ends its evolution as an ONe white dwarf with an AGB companion at a moderately close separation. Mass is deposited on the white dwarf through wind accretion. So neon novae could occur just after the secondary AGB companion undergoes its final flash. However, the initial separation has to be fine-tuned. To estimate the frequency of such systems we evolve a population of binary systems and find that that Abell 58-like objects should indeed be rare and the fraction of Abell-58 planetary nebula is on the order of 10-4, or lower, among all planetary nebulae.

  18. Crazy heart: kinematics of the "star pile" in Abell 545

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Richtler, T.; West, M. J.; Romanowsky, A. J.; Lloyd-Davies, E.; Schuberth, Y.

    2011-04-01

    We study the structure and internal kinematics of the "star pile" in Abell 545 - a low surface brightness structure lying in the center of the cluster. We have obtained deep long-slit spectroscopy of the star pile using VLT/FORS2 and Gemini/GMOS, which is analyzed in conjunction with deep multiband CFHT/MEGACAM imaging. As presented in a previous study the star pile has a flat luminosity profile and its color is consistent with the outer parts of elliptical galaxies. Its velocity map is irregular, with parts being seemingly associated with an embedded nucleus, and others which have significant velocity offsets to the cluster systemic velocity with no clear kinematical connection to any of the surrounding galaxies. This would make the star pile a dynamically defined stellar intra-cluster component. The complicated pattern in velocity and velocity dispersions casts doubts on the adequacy of using the whole star pile as a dynamical test for the innermost dark matter profile of the cluster. This status is fulfilled only by the nucleus and its nearest surroundings which lie at the center of the cluster velocity distribution. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under programme ID 080.B-0529. Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina); and on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National

  19. MUSE observations of the lensing cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Bina, D.; Pelló, R.; Richard, J.; Lewis, J.; Patrício, V.; Cantalupo, S.; Herenz, E. C.; Soto, K.; Weilbacher, P. M.; Bacon, R.; Vernet, J. D. R.; Wisotzki, L.; Clément, B.; Cuby, J. G.; Lagattuta, D. J.; Soucail, G.; Verhamme, A.

    2016-05-01

    Context. This paper presents the results obtained with the Multi Unit Spectroscopic Explorer (MUSE) for the core of the lensing cluster Abell 1689, as part of MUSE's commissioning at the ESO Very Large Telescope. Aims: Integral-field observations with MUSE provide a unique view of the central 1 × 1 arcmin2 region at intermediate spectral resolution in the visible domain, allowing us to conduct a complete census of both cluster galaxies and lensed background sources. Methods: We performed a spectroscopic analysis of all sources found in the MUSE data cube. Two hundred and eighty-two objects were systematically extracted from the cube based on a guided-and-manual approach. We also tested three different tools for the automated detection and extraction of line emitters. Cluster galaxies and lensed sources were identified based on their spectral features. We investigated the multiple-image configuration for all known sources in the field. Results: Previous to our survey, 28 different lensed galaxies displaying 46 multiple images were known in the MUSE field of view, most of them were detected through photometric redshifts and lensing considerations. Of these, we spectroscopically confirm 12 images based on their emission lines, corresponding to 7 different lensed galaxies between z = 0.95 and 5.0. In addition, 14 new galaxies have been spectroscopically identified in this area thanks to MUSE data, with redshifts ranging between 0.8 and 6.2. All background sources detected within the MUSE field of view correspond to multiple-imaged systems lensed by A1689. Seventeen sources in total are found at z ≥ 3 based on their Lyman-α emission, with Lyman-α luminosities ranging between 40.5 ≲ log (Lyα) ≲ 42.5 after correction for magnification. This sample is particularly sensitive to the slope of the luminosity function toward the faintest end. The density of sources obtained in this survey is consistent with a steep value of α ≤ -1.5, although this result still

  20. Inversion layer MOS solar cells

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1986-01-01

    Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

  1. Applying the Time-Domain Moment Tensor Inversion technique to Regional Earthquake Data in the Puerto Rico-Virgin Island Region

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, F. A.; Lopez, A. M.

    2015-12-01

    The quick determination of an earthquake's moment tensor, whose description relate to centroid depth, faulting geometry and size, is crucial for tsunami warning systems. Whether an event possesses the critical parameters to produce a devastating tsunami, tsunami warning centers must knowThis research project seeks to test, well-formulated time-domain moment tensor inversion code in order to obtain in quasi real-time faulting parameters of significant regional earthquakes in the Puerto Rico-Virgin Islands region. The inversion code has been developed by researchers at the Berkeley Seismological Laboratory, whose main attractive is to decrease the time it takes to have an estimate calculation of a moment tensor for any major earthquake using regional data, approximately less than 7 minutes of an earthquake's origin time. Four seismic events in the region have been used as testbed to the inversion code configured for this area. In order to compare our results, previously computed and published moment tensor inversions from the Global CMT and USGS for the same events were used to assess the deviations from results obtained in this study. Our results indicate the inversion method is capable of reproducing the regional and teleseismic solutions, and thus can be incorporated into daily earthquake location operations at the Puerto Rico Seismic Network (PRSN) for quick estimation of faulting mechanisms and tsunami warning purposes.

  2. Abell 41: shaping of a planetary nebula by a binary central star

    NASA Astrophysics Data System (ADS)

    Jones, D.; Lloyd, M.; Santander-García, M.; López, J. A.; Meaburn, J.; Mitchell, D. L.; O'Brien, T. J.; Pollacco, D.; Rubio-Díez, M. M.; Vaytet, N. M. H.

    2010-11-01

    We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Hα and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: david.jones-3@postgrad.manchester.ac.uk

  3. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  4. Application of a XMM-Newton EPIC Monte Carlo to Analysis And Interpretation of Data for Abell 1689, RXJ0658-55 And the Centaurus Clusters of Galaxies

    SciTech Connect

    Andersson, Karl E.; Peterson, J.R.; Madejski, G.M.; /SLAC /KIPAC, Menlo Park

    2007-04-17

    We propose a new Monte Carlo method to study extended X-ray sources with the European Photon Imaging Camera (EPIC) aboard XMM Newton. The Smoothed Particle Inference (SPI) technique, described in a companion paper, is applied here to the EPIC data for the clusters of galaxies Abell 1689, Centaurus and RXJ 0658-55 (the ''bullet cluster''). We aim to show the advantages of this method of simultaneous spectral-spatial modeling over traditional X-ray spectral analysis. In Abell 1689 we confirm our earlier findings about structure in temperature distribution and produce a high resolution temperature map. We also confirm our findings about velocity structure within the gas. In the bullet cluster, RXJ 0658-55, we produce the highest resolution temperature map ever to be published of this cluster allowing us to trace what looks like the motion of the bullet in the cluster. We even detect a south to north temperature gradient within the bullet itself. In the Centaurus cluster we detect, by dividing up the luminosity of the cluster in bands of gas temperatures, a striking feature to the north-east of the cluster core. We hypothesize that this feature is caused by a subcluster left over from a substantial merger that slightly displaced the core. We conclude that our method is very powerful in determining the spatial distributions of plasma temperatures and very useful for systematic studies in cluster structure.

  5. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  6. VizieR Online Data Catalog: 1400-MHz Survey of 1478 Abell Clusters of Galaxies (Owen+ 1982)

    NASA Astrophysics Data System (ADS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1994-03-01

    This catalog contains observations of Abell clusters of galaxies which were obtained with the Green Bank 91-m telescope at 1400 MHz with an angular resolution of 10'x11' (RAxDEC). This catalog extends the sample of clusters originally published in Owen (1974AJ.....79..427O). The primary goals of this survey were to observe all Abell (1958ApJS....3..211A, Cat. VII/4) clusters with m10 (magnitude of the tenth brightest galaxy in the cluster) less than or equal to 17.0 and declinations north of -19 degrees, to observe all clusters with richness>=3 regardless of m10, and to obtain observations of a representative sample of the rest of the catalog (m10>=17.0; richness<=2). The abelclus.dat file contains ALL 957 detected sources (also beyond 0.5 corrected Abell radii). It contains 525 sources within 0.5 corrected Abell radii, while the published table1.dat file contains 487 entries corresponding to 485 distinct sources (in 442 clusters). The catalog entries contains the flux density at 1400 MHz, the Abell cluster number, richness class, distance class, m10, redshift estimate (z), corrected Abell cluster radius, right ascension (B1950), declination (B1950), deconvolved major and minor source axis lengths, position angle, and distance of the source from the cluster center. (2 data files).

  7. UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton

    NASA Technical Reports Server (NTRS)

    Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.

    2000-01-01

    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.

  8. A combined optical/X-ray study of the Galaxy cluster Abell 2256

    NASA Technical Reports Server (NTRS)

    Fabricant, Daniel G.; Kent, Stephen M.; Kurtz, Michael J.

    1989-01-01

    The dynamics of Abell 2256 is investigated by combining X-ray observations of the intracluster gas with optical observations of the galaxy distribution and kinematics. Magnitudes and positions are presented for 172 galaxies and new redshifts for 75. Abell 2256 is similar to the Coma Cluster in its X-ray luminosity, mass, and galaxy density. Both the X-ray surface brightness and the galaxy surface density distributions exhibit an elliptical morphology. The radial galaxy distribution is steeper than the density profile of the X-ray-emitting gas, yet the galaxy velocity dispersion is higher than the equivalent value for the gas. Under the simplest assumptions that the galaxy velocity distribution is isotropic and the gas is isothermal, the galaxies and gas cannot be in hydrostatic equilibrium in a common gravitational potential. Models consistent with available data have mass-to-light ratios which increase with radius and galaxy orbits that are anisotropic with a radial bias.

  9. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  10. RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763

    NASA Astrophysics Data System (ADS)

    Rodney, S.; Coe, D.; Bradley, L.; Strolger, L.; Brammer, G.; Avila, R.; Ryan, R.; Ogaz, S.; Riess, A.; Sharon, K.; Johnson, T.; Paterno-Mahler, R.; Molino, A.; Graham, M.; Kelly, P.; Filippenko, A.; Frye, B.; Foley, R.; Schmidt, K.; Umetsu, K.; Czakon, N.; Weiner, B.; Stark, D.; Mainali, R.; Zitrin, A.; Sendra, I.; Graur, O.; Grillo, C.; Hjorth, J.; Selsing, J.; Christensen, L.; Rosati, P.; Nonino, M.; Balestra, I.; Vulcani, B.; McCully, C.; Dawson, W.; Bouwens, R.; Lam, D.; Trenti, M.; Nunez, D. Carrasco; Matheson, T.; Merten, J.; Jha, S.; Jones, C.; Andrade-Santos, F.; Salmon, B.; Bradac, M.; Hoag, A.; Huang, K.; Wang, X.; Oesch, P.

    2016-07-01

    We report the discovery of a likely supernova (SN) in the background field of the galaxy cluster Abell 1763 (a.k.a. RXC J1335.3+4059, ZwCl 1333.7+4117). The SN candidate was detected in Hubble Space Telescope (HST) observations collected on June 17, 2016 as part of the Reionization Lensing Cluster Survey (RELICS, HST program ID: 14096, PI: D.Coe).

  11. An X-ray temperature map of Abell 754: A major merger

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick; Briel, Ulrich G.

    1995-01-01

    We present the first two-dimensional X-ray temperature map of the rich cluster of galaxies Abell 754. We also present an X-ray surface brightness map with improved spatial resolution and sensitivity compared with previous maps. Both the temperature map and the surface brightness map show that A754 is in the throes of a violent merger; it is probably far from hydrostatic equilibrium.

  12. The Extraordinary Amount of Substructure in the Hubble Frontier Fields Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Jauzac, M.; Eckert, D.; Schwinn, J.; Harvey, D.; Baugh, C. M.; Robertson, A.; Bose, S.; Massey, R.; Owers, M.; Ebeling, H.; Shan, H. Y.; Jullo, E.; Kneib, J.-P.; Richard, J.; Atek, H.; Clément, B.; Egami, E.; Israel, H.; Knowles, K.; Limousin, M.; Natarajan, P.; Rexroth, M.; Taylor, P.; Tchernin, C.

    2016-09-01

    We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z=0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e., at R < 1 Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark-matter halos are detected with a significance of at least 5σ and feature masses ranging from 0.5 to 1.4× 1014M⊙ within R < 150 kpc. Merten et al. (2011) and Medezinski et al. (2016) substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al. (2011), we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the MXXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to ΛCDM, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the sub-haloes finders. We discuss implications of Abell 2744 for the plausibility of different dark-matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of σDM < 1.28 cm2g-1(68% CL), in good agreement with previous results from Harvey et al. (2015).

  13. Proof of polar ejection from the close-binary core of the planetary nebula Abell 63

    NASA Astrophysics Data System (ADS)

    Mitchell, Deborah L.; Pollacco, Don; O'Brien, T. J.; Bryce, M.; López, J. A.; Meaburn, J.; Vaytet, N. M. H.

    2007-02-01

    We present the first detailed kinematical analysis of the planetary nebula Abell 63, which is known to contain the eclipsing close-binary nucleus UU Sge. Abell 63 provides an important test case in investigating the role of close-binary central stars on the evolution of planetary nebulae. Longslit observations were obtained using the Manchester echelle spectrometer combined with the 2.1-m San Pedro Martir Telescope. The spectra reveal that the central bright rim of Abell 63 has a tube-like structure. A deep image shows collimated lobes extending from the nebula, which are shown to be high-velocity outflows. The kinematic ages of the nebular rim and the extended lobes are calculated to be 8400 +/- 500 and 12900 +/- 2800 yr, respectively, which suggests that the lobes were formed at an earlier stage than the nebular rim. This is consistent with expectations that disc-generated jets form immediately after the common envelope phase. A morphological-kinematical model of the central nebula is presented and the best-fitting model is found to have the same inclination as the orbital plane of the central binary system; this is the first proof that a close-binary system directly affects the shaping of its nebula. A Hubble-type flow is well-established in the morphological-kinematical modelling of the observed line profiles and imagery. Two possible formation models for the elongated lobes of Abell 63 are considered, (i) a low-density, pressure-driven jet excavates a cavity in the remnant asymptotic giant branch (AGB) envelope; (ii) high-density bullets form the lobes in a single ballistic ejection event.

  14. X-ray cavities and temperature jumps in the environment of the strong cool core cluster Abell 2390

    NASA Astrophysics Data System (ADS)

    Sonkamble, S. S.; Vagshette, N. D.; Pawar, P. K.; Patil, M. K.

    2015-10-01

    We present results based on the systematic analysis of high resolution 95 ks Chandra observations of the strong cool core cluster Abell 2390 at the redshift of z = 0.228 that hosts an energetic radio AGN. This analysis has enabled us to investigate five X-ray deficient cavities in the atmosphere of Abell 2390 within central 30''. Presence of these cavities have been confirmed through a variety of image processing techniques like, the surface brightness profiles, unsharp masked image, as well as 2D elliptical model subtracted residual map. Temperature profile as well as 2D temperature map revealed structures in the distribution of ICM, in the sense that ICM in the NW direction is cooler than that on the SE direction. Temperature jump in all directions is evident near 25'' (90.5 kpc) corresponding to the average Mach number 1.44± 0.05, while another jump from 7.47 keV to 9.10 keV at 68'' (246 kpc) in the north-west direction, corresponding to Mach number 1.22± 0.06 and these jumps are associated with the cold fronts. Tricolour map as well as hardness ratio map detects cool gas clumps in the central 30 kpc region of temperature 4.45_{-0.10}^{+0.16} keV. The entropy profile derived from the X-ray analysis is found to fall systematically inward in a power-law fashion and exhibits a floor near 12.20± 2.54 keV cm2 in the central region. This flattening of the entropy profile in the core region confirms the intermittent heating at the centre by AGN. The diffuse radio emission map at 1.4 GHz using VLA L-band data exhibits highly asymmetric morphology with an edge in the north-west direction coinciding with the X-ray edge seen in the unsharp mask image. The mechanical power injected by the AGN in the form of X-ray cavities is found to be 5.94× 10^{45} erg s^{-1} and is roughly an order of magnitude higher than the energy lost by the ICM in the form of X-ray emission, confirming that AGN feedback is capable enough to quench the cooling flow in this cluster.

  15. Diffuse light and building history of the galaxy cluster Abell 2667

    NASA Astrophysics Data System (ADS)

    Covone, G.; Adami, C.; Durret, F.; Kneib, J.-P.; Lima Neto, G. B.; Slezak, E.

    2006-12-01

    Aims.We searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three broad band-filters. Methods: .We applied an iterative multi-scale wavelet analysis and reconstruction technique to these images, which allows to subtract stars and galaxies from the original images. Results: .We detect a zone of diffuse emission southwest of the cluster center (DS1) and a second faint object (ComDif) within DS1. Another diffuse source (DS2) may be detected at lower confidence level northeast of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or part of the very elliptical external envelope of the central galaxy remains unclear. Deep VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow a redshift to be computed, so we conclude if these sources are part of the central galaxy or not. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction to the one drawn by the DS1 - central galaxy - DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south, and hotter regions towards the northeast, southwest, and northwest. This might suggest shock fronts along these directions produced by infalling material, even if uncertainties remain quite large on the temperature determination far from the center. Conclusions: .These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions. Note, however

  16. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  17. Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies

    NASA Astrophysics Data System (ADS)

    Akras, S.; Clyne, N.; Boumis, P.; Monteiro, H.; Gonçalves, D. R.; Redman, M. P.; Williams, S.

    2016-04-01

    Abell 14 is a poorly studied object despite being considered a born-again planetary nebula. We performed a detailed study of its 3D morphology and ionization structure using the SHAPE and MOCASSIN codes. We found that Abell 14 is a highly evolved, bipolar nebula with a kinematical age of ˜19 400 yr for a distance of 4 kpc. The high He abundance, and N/O ratio indicate a progenitor of 5 M⊙ that has experienced the third dredge-up and hot bottom burning phases. The stellar parameters of the central source reveal a star at a highly evolved stage near to the white dwarf cooling track, being inconsistent with the born-again scenario. The nebula shows unexpectedly strong [N I] λ5200 and [O I] λ6300 emission lines indicating possible shock interactions. Abell 14 appears to be a member of a small group of highly evolved, extreme type-I planetary nebulae (PNe). The members of this group lie at the lower-left corner of the PNe regime on the [N II]/Hα versus [S II]/Hα diagnostic diagram, where shock-excited regions/objects are also placed. The low luminosity of their central stars, in conjunction with the large physical size of the nebulae, result in a very low photoionization rate, which can make any contribution of shock interaction easily perceptible, even for small velocities.

  18. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.

    PubMed

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  19. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software

    PubMed Central

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  20. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s‑1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX–TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  1. ASCA Temperature Maps of Three Clusters of Galaxies: Abell 1060, AWM 7, and the Centaurus Cluster

    NASA Astrophysics Data System (ADS)

    Furusho, Tae; Yamasaki, Noriko Y.; Ohashi, Takaya; Shibata, Ryo; Kagei, Tomohiro; Ishisaki, Yoshitaka; Kikuchi, Ken'ichi; Ezawa, Hajime; Ikebe, Yasushi

    2001-06-01

    We present two-dimensional temperature maps of three bright clusters of galaxies (Abell 1060, AWM 7, and the Centaurus cluster), based on multi-pointing observations with the ASCA GIS. The temperatures were derived from hardness ratios by taking into account the XRT response. For the Centaurus cluster, we subtracted the central cool component using the previous ASCA and ROSAT results, and the metallicity gradients observed in AWM 7 and the Centaurus cluster were included in deriving the temperatures. The intracluster medium in Abell 1060 and AWM 7 is almost isothermal from the center to the outer regions with temperatures of 3.3 and 3.9 keV, respectively. The Centaurus cluster exhibits remarkable hot regions within about 30' from the cluster center, showing a temperature increase of ×0.8 keV from the surrounding level of 3.5keV, and the outer cool regions with lower temperatures by -1.3 keV. These results imply that a strong merger has occurred in the Centaurus in the recent 2-3Gyr, and that the central cool component has survived it. In contrast, the gas in Abell 1060 was well-mixed in an early period, which probably has prevented the development of a central cool component. In AWM 7, mixing of the gas should have occurred in a period earlier than the epoch of metal enrichment.

  2. Intersections, ideals, and inversion

    SciTech Connect

    Vasco, D.W.

    1998-10-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.

  3. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  4. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap.

    PubMed

    Wang, Quan; Goldsmith, Randall H; Jiang, Yan; Bockenhauer, Samuel D; Moerner, W E

    2012-11-20

    Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately 1 ms in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, real-time feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the anti-Brownian electrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP using stepwise

  5. Inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Orlande, Helcio Rangel Barreto

    We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

  6. Uterine Inversion; A case report.

    PubMed

    Bouchikhi, C; Saadi, H; Fakhir, B; Chaara, H; Bouguern, H; Banani, A; Melhouf, Ma

    2008-01-01

    The puerperal uterine inversion is a rare and severe complication occurring in the third stage of labour. The mechanisms are not completely known. However, extrinsic factors such as oxytocic arrests after a prolonged labour, umbilical cord traction or abdominal expression are pointed. Other intrinsic factors such as primiparity, uterine hypotonia, various placental localizations, fundic myoma or short umbilical cord were also reported. The diagnosis of the uterine inversion is mainly supported by clinical symptoms. It is based on three elements: haemorrhage, shock and a strong pelvic pain. The immediate treatment of the uterine inversion is required. It is based on a medical reanimation associated with firstly a manual reduction then surgical treatment using various techniques. We report an observation of a 25 years old grand multiparous patient with a subacute uterine inversion after delivery at home. PMID:21516244

  7. Uterine Inversion; A case report

    PubMed Central

    Bouchikhi, C; Saadi, H; Fakhir, B; Chaara, H; Bouguern, H; Banani, A; Melhouf, MA

    2008-01-01

    The puerperal uterine inversion is a rare and severe complication occurring in the third stage of labour. The mechanisms are not completely known. However, extrinsic factors such as oxytocic arrests after a prolonged labour, umbilical cord traction or abdominal expression are pointed. Other intrinsic factors such as primiparity, uterine hypotonia, various placental localizations, fundic myoma or short umbilical cord were also reported. The diagnosis of the uterine inversion is mainly supported by clinical symptoms. It is based on three elements: haemorrhage, shock and a strong pelvic pain. The immediate treatment of the uterine inversion is required. It is based on a medical reanimation associated with firstly a manual reduction then surgical treatment using various techniques. We report an observation of a 25 years old grand multiparous patient with a subacute uterine inversion after delivery at home. PMID:21516244

  8. Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm

    NASA Astrophysics Data System (ADS)

    Fiorucci, I.; Muscari, G.; de Zafra, R. L.

    2011-07-01

    The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5° N, 68.8° W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100 ± 20 % from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1σ uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at ~15 % or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that

  9. Inverse gas chromatography as a technique for the characterization of the performance of Mn/Zr mixed oxides as combustion catalysts.

    PubMed

    Cuervo, Montserrat R; Díaz, Eva; de Rivas, Beatriz; López-Fonseca, Rubén; Ordóñez, Salvador; Gutiérrez-Ortiz, José I

    2009-11-01

    Adsorption of different volatile organic compounds (trichloroethylene, TCE; 1,2-dichloroethane, DCE; n-hexane) over different manganese-zirconia mixed oxides (Mn(x)Zr(1-x)O(2)) - widely used as combustion catalysts - was studied by inverse gas chromatography. Adsorption isotherms (calculated in the Henry region), adsorption enthalpies (DeltaH(ads)), and dispersive (gamma(S)(D)) and specific (I(sp)) components of the surface energy have been determined at infinite dilution for the investigated compounds. Both the adsorption enthalpy and the specificity of the interaction of TCE and DCE over Mn(x)Zr(1-x)O(2) catalysts depend strongly on manganese content. Thus, the adsorption strength of the reactants over the active sites is closely related with both the surface acidity and the accessibility of the lattice oxygen. A great influence of the specific interaction on the catalytic pattern has been also noticed. Since I(sp) depends on the redox properties, it has been proved that the specific interaction is determined by the presence of bulk Mn(3)O(4), which hinders the mobility of the oxygen lattice, and MnO(x), with the contrary effect. Finally, the selectivity to oxidation products has been correlated with both the enthalpy of adsorption and the specific interaction parameter, decreasing the selectivity to HCl with the increase of the enthalpy of adsorption.

  10. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  11. The SAMI Pilot Survey: stellar kinematics of galaxies in Abell 85, 168 and 2399

    NASA Astrophysics Data System (ADS)

    Fogarty, L. M. R.; Scott, N.; Owers, M. S.; Croom, S. M.; Bekki, K.; Houghton, R. C. W.; van de Sande, J.; D'Eugenio, F.; Cecil, G. N.; Colless, M. M.; Bland-Hawthorn, J.; Brough, S.; Cortese, L.; Davies, R. L.; Jones, D. H.; Pracy, M.; Allen, J. T.; Bryant, J. J.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Richards, S.; Sharp, R. G.

    2015-12-01

    We present the SAMI Pilot Survey, consisting of integral field spectroscopy of 106 galaxies across three galaxy clusters, Abell 85, Abell 168 and Abell 2399. The galaxies were selected by absolute magnitude to have Mr < -20.25 mag. The survey, using the Sydney-AAO Multi-object Integral field spectrograph (SAMI), comprises observations of galaxies of all morphological types with 75 per cent of the sample being early-type galaxies (ETGs) and 25 per cent being late-type galaxies (LTGs). Stellar velocity and velocity dispersion maps are derived for all 106 galaxies in the sample. The λR parameter, a proxy for the specific stellar angular momentum, is calculated for each galaxy in the sample. We find a trend between λR and galaxy concentration such that LTGs are less concentrated higher angular momentum systems, with the fast-rotating ETGs (FRs) more concentrated and lower in angular momentum. This suggests that some dynamical processes are involved in transforming LTGs to FRs, though a significant overlap between the λR distributions of these classes of galaxies implies that this is just one piece of a more complicated picture. We measure the kinematic misalignment angle, Ψ, for the ETGs in the sample, to probe the intrinsic shapes of the galaxies. We find the majority of FRs (83 per cent) to be aligned, consistent with them being oblate spheroids (i.e. discs). The slow rotating ETGs (SRs), on the other hand, are significantly more likely to show kinematic misalignment (only 38 per cent are aligned). This confirms previous results that SRs are likely to be mildly triaxial systems.

  12. Two long H I tails in the outskirts of Abell 1367

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Cortese, L.; Brinks, E.; Bravo-Alfaro, H.; Auld, R.; Minchin, R.

    2012-01-01

    We present VLA D-array H I observations of the RSCG 42 and FGC 1287 galaxy groups, in the outskirts of the Abell 1367 cluster. These groups are projected ˜1.8 and 2.7 Mpc west from the cluster centre. The Arecibo Galaxy Environment Survey provided evidence for H I extending over as much as 200 kpc in both groups. Our new, higher resolution observations reveal that the complex H I features detected by Arecibo are in reality two extraordinary long H I tails extending for ˜160 and 250 kpc, respectively, i.e. among the longest H I structures ever observed in groups of galaxies. Although in the case of RSCG 42 the morphology and dynamics of the H I tail, as well as the optical properties of the group members, support a low-velocity tidal interaction scenario, less clear is the origin of the unique features associated with FGC 1287. This galaxy displays an exceptionally long 'dog leg' H I tail, and the large distance from the X-ray-emitting region of Abell 1367 makes a ram-pressure stripping scenario highly unlikely. At the same time, a low-velocity tidal interaction seems unable to explain the extraordinary length of the tail and the lack of any sign of disturbance in the optical properties of FGC 1287. An intriguing possibility could be that this galaxy might have recently experienced a high-speed interaction with another member of the Coma-Abell 1367 Great Wall. We searched for the interloper responsible for this feature and, although we find a possible candidate, we show that without additional observations it is impossible to settle this issue. While the mechanism responsible for this extraordinary H I tail remains to be determined, our discovery highlights how little we know about environmental effects in galaxy groups.

  13. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  14. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.

    PubMed

    Vock, David M; Wolfson, Julian; Bandyopadhyay, Sunayan; Adomavicius, Gediminas; Johnson, Paul E; Vazquez-Benitez, Gabriela; O'Connor, Patrick J

    2016-06-01

    Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.

  15. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.

    PubMed

    Vock, David M; Wolfson, Julian; Bandyopadhyay, Sunayan; Adomavicius, Gediminas; Johnson, Paul E; Vazquez-Benitez, Gabriela; O'Connor, Patrick J

    2016-06-01

    Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. PMID:26992568

  16. Applications of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario

    NASA Astrophysics Data System (ADS)

    Roy, Baishali; Mereu, R. F.

    2000-12-01

    Project Lithoprobe's Abitibi-Grenville transect seismic reflection lines 32 and 33 traverse the exposed Central Metasedimentary Belt (CMB) located in the Grenville province of the Precambrian Shield of Canada in southern Ontario. These seismic lines image a zone with a protracted deformational history spanning more than 300Myr. Detailed examination of the commercially processed stacked sections reveals a number of significant deficiencies in some important areas. The image quality in these zones of reduced coherency needs to be enhanced to examine specific features and their relation to the surface geology. Examination of near-vertical seismic data from Lines 32 and 33 revealed that the signal-to-noise ratio was not improved by stacking, due to misalignment of signals even after static, normal moveout corrections and residual static corrections. The presumed reason is that reflected seismic energy following long ray paths in heterogeneous media suffers from relative advances and delays in its propagation, and hence arrives at slightly different times at the receivers, tending to be poorly aligned relative to its theoretical traveltime curves. A pattern recognition (PR) method for signal enhancement followed by energy stacking in moving time windows was used in this study to improve the images in spite of misalignments. Reprocessing has refined the geometry of the reflection profiles. The objective of this paper is to use enhanced images of the seismic reflection data obtained by using a PR approach together with gravity data, using 2.5-D forward and 3-D inversion routines, to give an improved model of subsurface structure in the vicinity of lines 32 and 33. Line 32 is dominated by southeast-dipping reflectors soling into the lower crust. The listric geometry of the strong reflection packages of the CMB boundary thrust zone is interpreted to represent a crustal-scale ramp-flat geometry that accommodated northwest-directed tectonic transport of the CMB. This

  17. Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site

    NASA Astrophysics Data System (ADS)

    Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli

    2014-09-01

    An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.

  18. Applications of inverse pattern projection

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Bothe, Thorsten; Kalms, Michael K.; von Kopylow, Christoph; Jueptner, Werner P. O.

    2003-05-01

    Fast and robust 3D quality control as well as fast deformation measurement is of particular importance for industrial inspection. Additionally a direct response about measured properties is desired. Therefore, robust optical techniques are needed which use as few images as possible for measurement and visualize results in an efficient way. One promising technique for this aim is the inverse pattern projection which has the following advantages: The technique codes the information of a preceding measurement into the projected inverse pattern. Thus, it is possible to do differential measurements using only one camera frame for each state. Additionally, the results are optimized straight fringes for sampling which are independent of the object curvature. The hardware needs are low as just a programmable projector and a standard camera are necessary. The basic idea of inverse pattern projection, necessary algorithms and found optimizations are demonstrated, roughly. Evaluation techniques were found to preserve a high quality phase measurement under imperfect conditions. The different application fields can be sorted out by the type of pattern used for inverse projection. We select two main topics for presentation. One is the incremental (one image per state) deformation measurement which is a promising technique for high speed deformation measurements. A video series of a wavering flag with projected inverse pattern was evaluated to show the complete deformation series. The other application is the optical feature marking (augmented reality) that allows to map any measured result directly onto the object under investigation. Any properties can be visualized directly on the object"s surface which makes inspections easier than with use of a separated indicating device. The general ability to straighten any kind of information on 3D surfaces is shown while preserving an exact mapping of camera image and object parts. In many cases this supersedes an additional monitor to

  19. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  20. Multiphase inverse modeling: An Overview

    SciTech Connect

    Finsterle, S.

    1998-03-01

    Inverse modeling is a technique to derive model-related parameters from a variety of observations made on hydrogeologic systems, from small-scale laboratory experiments to field tests to long-term geothermal reservoir responses. If properly chosen, these observations contain information about the system behavior that is relevant to the performance of a geothermal field. Estimating model-related parameters and reducing their uncertainty is an important step in model development, because errors in the parameters constitute a major source of prediction errors. This paper contains an overview of inverse modeling applications using the ITOUGH2 code, demonstrating the possibilities and limitations of a formalized approach to the parameter estimation problem.

  1. Inversion of monthly GRACE potentials for climate-based mass transports by a novel technique with locally adapted and increased resolution

    NASA Astrophysics Data System (ADS)

    Michel, Volker; Fischer, Doreen

    2013-04-01

    We show the applicability of a novel method called the Regularized Functional Matching Pursuit (RFMP) to the local analysis of mass transports. We consider monthly GRACE potentials for South America during one year and subtract a temporal mean. The resulting difference fields are denoised with Freeden's spherical wavelets. Finally, the obtained monthly potential anomalies are inverted for volumetric mass density anomalies with the RFMP. The calculated results clearly show seasonal variations in the mass density distribution in the Amazon area. For another application, we consider the detection of droughts and a flood in the summers of 2005 to 2010. The novel technique combines the advantages of global basis functions (spherical harmonics) and local trial functions (splines or wavelets) and yields a resolution which is locally adapted to the detail structure of the solution. We believe that this can contribute to an increased spatial resolution of the result.

  2. The Utility and Psychometric Properties of the Abel-Blasingame Assessment System for "Individuals with Intellectual Disabilities"

    ERIC Educational Resources Information Center

    Blasingame, Gerry D.; Abel, Gene G.; Jordan, Alan; Wiegel, Markus

    2011-01-01

    This article describes the development and utility of the Abel-Blasingame Assessment System for "individuals with intellectual disabilities" (ABID) for assessment of sexual interest and problematic sexual behaviors. The study examined the preliminary psychometric properties and evaluated the clinical utility of the ABID based on a sample of 495…

  3. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  4. Inverse anticipating chaos synchronization.

    PubMed

    Shahverdiev, E M; Sivaprakasam, S; Shore, K A

    2002-07-01

    We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.

  5. X-ray constraints on the shape of the dark matter in five Abell clusters

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1992-01-01

    X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.

  6. ULTRA DEEP AKARI OBSERVATIONS OF ABELL 2218: RESOLVING THE 15 {mu}m EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Hopwood, R.; Serjeant, S.; Negrello, M.; Pearson, C.; Egami, E.; Im, M.; Ko, J.; Lee, H. M.; Lee, M. G.; Kneib, J.-P.; Matsuhara, H.; Nakagawa, T.; Takagi, T.; Smail, I.

    2010-06-10

    We present extragalactic number counts and a lower limit estimate for the cosmic infrared background (CIRB) at 15 {mu}m from AKARI ultra deep mapping of the gravitational lensing cluster Abell 2218. These data are the deepest taken by any facility at this wavelength and uniquely sample the normal galaxy population. We have de-blended our sources, to resolve photometric confusion, and de-lensed our photometry to probe beyond AKARI's blank-field sensitivity. We estimate a de-blended 5{sigma} sensitivity of 28.7 {mu}Jy. The resulting 15 {mu}m galaxy number counts are a factor of 3 fainter than previous results, extending to a depth of {approx} 0.01 mJy and providing a stronger lower limit constraint on the CIRB at 15 {mu}m of 1.9 {+-} 0.5 nW m{sup -2} sr{sup -1}.

  7. Dirac neutrino mass from a neutrino dark matter model for the galaxy cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus Maria

    2016-03-01

    The dark matter in the galaxy cluster Abell 1689 is modelled as an isothermal sphere of neutrinos. New data on the 2d mass density allow an accurate description of its core and halo. The model has no “missing baryon problem” and beyond 2.1 Mpc the baryons have the cosmic mass abundance. Combination of cluster data with the cosmic dark matter fraction - here supposed to stem from the neutrinos - leads to a solution of the dark matter riddle by left and right handed neutrinos with mass (1.861 ± 0.016)h 70 -2eV/c 2. The thus far observed absence of neutrinoless double beta decay points to (quasi-) Dirac neutrinos: uncharged electrons with different flavour and mass eigenbasis, as for quarks. Though the cosmic microwave background spectrum is matched up to some 10% accuracy only, the case is not ruled out because the plasma phase of the early Universe may be turbulent.

  8. The photometric properties of brightest cluster galaxies. I - Absolute magnitudes in 116 nearby Abell clusters

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.; Gunn, J. E.; Thuan, T. X.

    1980-01-01

    Two-color aperture photometry of the brightest galaxies in a complete sample of nearby Abell clusters is presented. The results are used to anchor the bright end of the Hubble diagram; essentially the entire formal error for this method is then due to the sample of distant clusters used. New determinations of the systematic trend of galaxy absolute magnitude with the cluster properties of richness and Bautz-Morgan type are derived. When these new results are combined with the Gunn and Oke (1975) data on high-redshift clusters, a formal value (without accounting for any evolution) of q sub 0 = -0.55 + or - 0.45 (1 standard deviations) is found.

  9. Television documentary, history and memory. An analysis of Sergio Zavoli's The Gardens of Abel

    PubMed Central

    Foot, John

    2014-01-01

    This article examines a celebrated documentary made for Italian state TV in 1968 and transmitted in 1969 to an audience of millions. The programme – The Gardens of Abel – looked at changes introduced by the radical psychiatrist Franco Basaglia in an asylum in the north-east of Italy (Gorizia). The article examines the content of this programme for the first time, questions some of the claims that have been made for it, and outlines the sources used by the director, Sergio Zavoli. The article argues that the film was as much an expression of Zavoli's vision and ideas as it was linked to those of Franco Basaglia himself. Finally, the article highlights the way that this programme has become part of historical discourse and popular memory. PMID:25937804

  10. An Approximation to the Periodic Solution of a Differential Equation of Abel

    NASA Astrophysics Data System (ADS)

    Mickens, Ronald E.

    2011-10-01

    The Abel equation, in canonical form, is y^' = sint- y^3 (*) and corresponds to the singular (ɛ --> 0) limit of the nonlinear, forced oscillator ɛy^'' + y^' + y^3 = sint, ɛ-> 0. (**) Equation (*) has the property that it has a unique periodic solution defined on (-∞,∞). Further, as t increases, all solutions are attracted into the strip |y| < 1 and any two different solutions y1(t) and y2(t) satisfy the condition Lim [y1(t) - y2(t)] = 0, (***) t --> ∞ and for t negatively decreasing, each solution, except for the periodic solution, becomes unbounded.ootnotetextU. Elias, American Mathematical Monthly, vol.115, (Feb. 2008), pps. 147-149. Our purpose is to calculate an approximation to the unique periodic solution of Eq. (*) using the method of harmonic balance. We also determine an estimation for the blow-up time of the non-periodic solutions.

  11. Beneficial Effects of Camellia Oil (Camellia oleifera Abel.) on Hepatoprotective and Gastroprotective Activities.

    PubMed

    Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin

    2015-01-01

    Epidemiological studies have shown that increased dietary intake of natural antioxidants is beneficial for health because of their bioactivities, including antioxidant and anti-inflammation actions. Camellia oil made from tea seed (Camellia oleifera Abel.) is commonly used as an edible oil and a traditional medicine in Taiwan and China. Until now, the camellia oil has been widely considered as a dietary oil for heath. In this review, we summarize the protective effects of camellia oil with antioxidant activity against oxidative stress leading to hepatic damage and gastrointestinal ulcers. The information in this review leads to the conclusion that camellia oil is not only an edible oil but also a vegetable oil with a potential function for human health. PMID:26598814

  12. Narrow-angle tail radio sources and evidence for radial orbits in Abell clusters

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Owen, Frazer N.; Sarazin, Craig L.

    1986-01-01

    Published observational data on the tail orientations (TOs) of 60 narrow-angle-tail (NAT) radio sources in Abell clusters of galaxies are analyzed statistically using a maximum-likelihood approach. The results are presented in a table, and it is found that the observed TO distributions in the whole sample and in subsamples of morphologically regular NATs and NATs with pericentric distances d greater than 500 kpc are consistent with isotropic orbits, whereas the TOs for NATs with d less than 500 kpc are consistent with highly radial orbits. If radial orbits were observed near the centers of other types of cluster galaxies as well, it could be inferred that violent relaxation during cluster formation was incomplete, and that clusters form by spherical collapse and secondary infall, as proposed by Gunn (1977).

  13. The Mass of Abell 1060 and AWM 7 from Spatially Resolved X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Loewenstein, M.; Mushotzky, R. F.

    1996-11-01

    Using X-ray temperature and surface brightness profiles of the hot intracluster medium (ICM) derived from ASCA (Astro-D) and ROSAT observations, we place constraints on the dark matter (DM) and baryon fraction distributions in the poor clusters Abell 1060 (A1060) and AWM 7. Although their total mass distributions are similar, AWM 7 has twice the baryon fraction of A1060 in the best-fit models. The functional form of the DM distribution is ill determined; however, mass models where the baryon fractions in A1060 and AWM 7 significantly overlap are excluded. Such variations in baryon fraction are not predicted by standard models and imply that some mechanism in addition to gravity plays a major role in organizing matter on cluster scales.

  14. Galaxy Luminosity Function of the Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    NASA Astrophysics Data System (ADS)

    Lee, Youngdae; Rey, Soo-Chang; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K.

    2016-05-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to {M}r˜ -14 mag based on deep images in the u, g, and r bands taken by using MOSAIC II CCD mounted on the Blanco 4 m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information and on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at r˜ 18.5 mag ({M}r˜ -17.8 mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the clustercentric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely associated with the surrounding, possible filamentary structure. The combined LF of the overdense regions exhibits a two-component function with a distinct dip, while the LF of the central region is well described by a single Schechter function. We suggest that, in the context of the hierarchical cluster formation scenario, the observed overdense regions are the relics of galaxy groups, retaining their two-component LFs with a dip, which acquired their shapes through a galaxy merging process in group environments, before they fall into a cluster.

  15. A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Luckin, J.; Brüggen, M.; Brunetti, G.; Intema, H. T.; Owers, M. S.; Röttgering, H. J. A.; Stroe, A.; van Weeren, R. J.; Williams, W. L.; Cassano, R.; de Gasperin, F.; Heald, G. H.; Hoang, D. N.; Hardcastle, M. J.; Sridhar, S. S.; Sabater, J.; Best, P. N.; Bonafede, A.; Chyży, K. T.; Enßlin, T. A.; Ferrari, C.; Haverkorn, M.; Hoeft, M.; Horellou, C.; McKean, J. P.; Morabito, L. K.; Orrù, E.; Pizzo, R.; Retana-Montenegro, E.; White, G. J.

    2016-06-01

    With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intracluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5 Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.

  16. Deep spectroscopy of nearby galaxy clusters - I. Spectroscopic luminosity function of Abell 85

    NASA Astrophysics Data System (ADS)

    Agulli, I.; Aguerri, J. A. L.; Sánchez-Janssen, R.; Dalla Vecchia, C.; Diaferio, A.; Barrena, R.; Dominguez Palmero, L.; Yu, H.

    2016-05-01

    We present a new deep spectroscopic catalogue for Abell 85, within 3.0 × 2.6 Mpc2 and down to Mr ˜ Mr^{ast } +6. Using the Visible Multi-Object Spectrograph at the Very Large Telescope and the AutoFiber 2 at the William Herschel Telescope, we obtained almost 1430 new redshifts for galaxies with mr ≤ 21 mag and <μe,r> ≤ 24 mag arcsec-2. These redshifts, together with Sloan Digital Sky Survey Data Release 6 and NASA/IPAC Extragaalctic Database spectroscopic information, result in 460 confirmed cluster members. This data set allows the study of the luminosity function (LF) of the cluster galaxies covering three orders of magnitudes in luminosities. The total and radial LFs are best modelled by a double Schechter function. The normalized LFs show that their bright (Mr ≤ -21.5) and faint (Mr ≥ -18.0) ends are independent of clustercentric distance and similar to the field LFs unlike the intermediate luminosity range (-21.5 ≤ Mr ≤ -18.0). Similar results are found for the LFs of the dominant types of galaxies: red, passive, virialized and early-infall members. On the contrary, the LFs of blue, star forming, non-virialized and recent-infall galaxies are well described by a single Schechter function. These populations contribute to a small fraction of the galaxy density in the innermost cluster region. However, in the outskirts of the cluster, they have similar densities to red, passive, virialized and early-infall members at the LF faint end. These results confirm a clear dependence of the colour and star formation of Abell 85 members in the cluster centric distance.

  17. Search for a non-equilibrium plasma in the merging galaxy cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2016-06-01

    Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly α/Fe He α line ratio to search for possible deviation from ionization equilibrium. Fitting with a single-temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (net > 1013 s cm-3) except for the specific region with the highest temperature (kT=13.3_{-1.1}^{+1.4}keV) where n_et=10^{11.6_{-1.7}^{+0.6}}s cm-3. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This timescale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. However, we note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5}keV and very high kT >19.3 keV. The very high temperature component is alternatively fitted with a power-law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of the non-equilibrium ionization plasma.

  18. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  19. Revisiting Abell 2744: a powerful synergy of the GLASS spectroscopy and the HFF photometry.

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Borello Schmidt, Kasper; Treu, Tommaso

    2015-08-01

    We present new emission line identifications and improve the strong lensing reconstruction of the massive cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) observations and the full depth of the Hubble Frontier Fields (HFF) imaging. We performed a blind and targeted search for emission lines in objects within the full field of view (FoV) of the GLASS prime pointings, including all the previously known multiple arc images. We report over 50 high quality spectroscopic redshifts, 4 of which are for the arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric results of the same ensemble of sources. In order to improve the lens model of Abell 2744, we develop a rigorous alogorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 21 systems (corresponding to 59 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data in a fashion very similar to the reduction of the Spitzer UltRa Faint SUrvey Program (SURFS UP) clusters, in order to study the relative distribution of stars and dark matter in the cluster. The maps of convergence, shear, and magnification are made publicly available in the standard HFF format.

  20. Suzaku observation of a high-entropy cluster Abell 548W

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Kato, Yuichi; Gu, Liyi; Kawaharada, Madoka; Takizawa, Motokazu; Fujita, Yutaka; Makishima, Kazuo

    2016-06-01

    Abell 548W, one of the galaxy clusters located in the Abell 548 region, has about an order of magnitude lower X-ray luminosity compared to ordinal clusters in view of the well-known intracluster medium (ICM) temperature vs. X-ray luminosity (kT-LX) relation. The cluster hosts a pair of diffuse radio sources to the northwest and north, both about 10' apart from the cluster center. They are candidate radio relics, frequently associated with merging clusters. A Suzaku deep observation with exposure of 84.4 ks was performed to search for signatures of merging in this cluster. The XIS detectors successfully detected the ICM emission out to 16' from the cluster center. The temperature is ˜ 3.6 keV around its center, and ˜ 2 keV at the outermost regions. The hot region (˜ 6 keV) beside the relic candidates shifted to the cluster center reported by XMM-Newton was not seen in the Suzaku data, although its temperature of 3.6 keV itself is higher than the average temperature of 2.5 keV around the radio sources. In addition, the signature of a cool (kT ˜ 0.9 keV) component was found around the northwest source. A marginal temperature jump at its outer edge was also found, consistent with the canonical idea of the shock acceleration origin of the radio relics. The cluster has among the highest central entropy of ˜ 400 keV cm2 and is one of the so-called low surface brightness clusters. Taking into account the fact that its shape itself is relatively circular and smooth and also that its temperature structure is nearly flat, possible scenarios for merging are discussed.

  1. The Distance and Mass of the Galaxy Cluster Abell 1995 Derived From Sunyaev-Zel'dovich Effect and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.

    2000-01-01

    We present multi-wavelength observations of the Abell 1995 galaxy cluster. From analysis of x-ray spectroscopy and imaging data we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the SZE toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster.

  2. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  3. VizieR Online Data Catalog: r' photometry of Abell 1367 and Coma (Iglesias-Paramo+, 2003)

    NASA Astrophysics Data System (ADS)

    Iglesias-Paramo, J.; Boselli, A.; Gavazzi, G.; Cortese, L.; Vilchez, J. M.

    2002-11-01

    We provide the total r'-band galaxy counts corresponding to our observed fields of the clusters of galaxies Abell 1367 and Coma, as well as the r'-band background counts from Yasuda et al. (2001AJ....122.1104Y). We also provide some basic properties of the galaxies detected in our r'-band survey of the clusters of galaxies Abell 1367 and Coma: coordinates, r'-band magnitudes and surface brightness, position angles, recession velocities and ellipticities are provided. The observations were carried out with the Wide Field Camera (WFC) attached to the Prime Focus of the INT 2.5m located at Observatorio de El Roque de los Muchachos, on 26 and 28 April 2000, under photometric conditions, excepting the last half of the second night. (3 data files).

  4. Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.

    ERIC Educational Resources Information Center

    Bohn, C. L.; Flynn, R. W.

    1978-01-01

    Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)

  5. VizieR Online Data Catalog: Hα galaxies in Abell 1367 and Coma (Iglesias-Paramo+, 2002)

    NASA Astrophysics Data System (ADS)

    Iglesias-Paramo, J.; Boselli, A.; Cortese, L.; Vilchez, J. M.; Gavazzi, G.

    2002-04-01

    We present a deep wide field Hα imaging survey of the central regions of the two nearby clusters of galaxies Coma and Abell 1367, taken with the WFC at the Prime Focus at the NT 2.5m telescope located at Observatorio de El Roque de los Muchachos (La Palma), on April 26th and 28th 2000. We determine for the first time the Schechter parameters of the Hα luminosity function (LF) of cluster galaxies. (2 data files).

  6. The physical structure of planetary nebulae around sdO stars: Abell 36, DeHt 2, and RWT 152

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Vázquez, R.; Guillén, P. F.; Oreiro, R.; Ulla, A.; Solano, E.

    2015-01-01

    We present narrow-band Hα and [O III] images, and high-resolution, long-slit spectra of the planetary nebulae (PNe) Abell 36, DeHt 2, and RWT 152 aimed at studying their morphology and internal kinematics. These data are complemented with intermediate-resolution, long-slit spectra to describe the spectral properties of the central stars and nebulae. The morphokinematical analysis shows that Abell 36 consists of an inner spheroid and two bright point-symmetric arcs; DeHt 2 is elliptical with protruding polar regions and a bright non-equatorial ring; and RWT 152 is bipolar. The formation of Abell 36 and DeHt 2 requires several ejection events including collimated bipolar outflows that probably are younger than and have disrupted the main shell. The nebular spectra of the three PNe show a high excitation and also suggest a possible deficiency in heavy elements in DeHt 2 and RWT 152. The spectra of the central stars strongly suggest an sdO nature and their association with PNe points out that they have most probably evolved through the asymptotic giant branch. We analyse general properties of the few known sdOs associated with PNe and find that most of them are relatively or very evolved PNe, show complex morphologies, host binary central stars, and are located at relatively high Galactic latitudes.

  7. Analysis of the optical emission of the young precataclysmic variables HS 1857+5144 and ABELL 65

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Pozdnyakova, S. A.; Borisov, N. V.; Bikmaev, I. F.; Vlasyuk, V. V.; Spiridonova, O. I.; Galeev, A. I.; Mel'Nikov, S. S.

    2009-10-01

    We analyze the physical state and the properties of the close binary systems HS 1857+5144 and Abell 65. We took the spectra of both systems over a wide range of orbital phases with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and obtained their multicolor light curves with the RTT150 and Zeiss-1000 telescopes of the SAO RAS. We demonstrate that both Abell 65 and HS 1857+5144 are young precataclysmic variables (PV) with orbital periods of P orb = 1. d 003729 and P orb = 0. d 26633331, respectively. The observed brightness and spectral variations during the orbital period are due to the radiation of the cold component, which absorbs the short-wave radiation of the hot component and reemits it in the visual part of the spectrum. A joint analysis of the brightness and radial velocity curves allowed us to find the possible and optimum sets of their fundamental parameters. We found the luminosity excesses of the secondary components of HS 1857+5144 and Abell 65 with respect to the corresponding Main Sequence stars to be typical for such objects. The excess luminosities of the secondary components of all young PVs are indicative of their faster relaxation rate towards the quiescent state compared to the rates estimated in earlier studies.

  8. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    SciTech Connect

    Fowler, Michael James

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  9. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  10. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  11. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  12. SPECTRAL INDEX STUDIES OF THE DIFFUSE RADIO EMISSION IN ABELL 2256: IMPLICATIONS FOR MERGER ACTIVITY

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.i

    2010-08-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a {approx}1.2 Mpc{sup 2} extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S {proportional_to} {nu}{sup {alpha}}, {alpha} in the range -0.7 to -0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices ({alpha} in the range -1.0 to -2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08-0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last {approx}0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

  13. Stochastic inversion by ray continuation

    SciTech Connect

    Haas, A.; Viallix

    1989-05-01

    The conventional tomographic inversion consists in minimizing residuals between measured and modelled traveltimes. The process tends to be unstable and some additional constraints are required to stabilize it. The stochastic formulation generalizes the technique and sets it on firmer theoretical bases. The Stochastic Inversion by Ray Continuation (SIRC) is a probabilistic approach, which takes a priori geological information into account and uses probability distributions to characterize data correlations and errors. It makes it possible to tie uncertainties to the results. The estimated parameters are interval velocities and B-spline coefficients used to represent smoothed interfaces. Ray tracing is done by a continuation technique between source and receives. The ray coordinates are computed from one path to the next by solving a linear system derived from Fermat's principle. The main advantages are fast computations, accurate traveltimes and derivatives. The seismic traces are gathered in CMPs. For a particular CMP, several reflecting elements are characterized by their time gradient measured on the stacked section, and related to a mean emergence direction. The program capabilities are tested on a synthetic example as well as on a field example. The strategy consists in inverting the parameters for one layer, then for the next one down. An inversion step is divided in two parts. First the parameters for the layer concerned are inverted, while the parameters for the upper layers remain fixed. Then all the parameters are reinverted. The velocity-depth section computed by the program together with the corresponding errors can be used directly for the interpretation, as an initial model for depth migration or for the complete inversion program under development.

  14. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    SciTech Connect

    Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  15. Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.

    ERIC Educational Resources Information Center

    Jacquot, Raymond G.; And Others

    1985-01-01

    Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)

  16. A new strategy for helioseismic inversions

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; Perez Hernandez, F.

    1997-10-01

    Helioseismic inversion techniques have been revealed as powerful tools for inferring the internal structure and dynamics of the Sun. One of the most popular techniques is Regularized Least Squares. When it is used, it is necessary to define an inversion mesh and a penalty function, without an a priori knowledge of the behaviour of the solution. In addition, this penalty function is weighted by a trade-off parameter that must be fixed in order to obtain the solution. We present here a new technique, developed in order to find the optimal mesh and smoothing function by means of a deep analysis of the basis functions of the inversion problem. We have found that the method is suitable in particular for obtaining the sound speed and density profiles simultaneously, without any reference to the equation of state.

  17. A Cosmic Train Wreck: JVLA Radio Observations of the HST Frontier Fields Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Pearce, Connor; Van Weeren, Reinout J.; Jones, Christine; Forman, William R.; Ogrean, Georgiana A.; Andrade-Santos, Felipe; Kraft, Ralph P.; Dawson, William; Brüggen, Marcus; Roediger, Elke; Bulbul, Esra; Mroczkowski, Tony

    2016-01-01

    The galaxy cluster mergers observed in the HST Frontier Fields represent some of the most energetic events in the Universe. Major cluster mergers leave distinct signatures in the ICM in the form of shocks, turbulence, and diffuse cluster radio sources. These diffuse radio sources, so-called radio relics and halos, provide evidence for the acceleration of relativistic particles and the presence of large scale magnetic fields in the ICM. Observations of these halos and relics allow us to (i) study the physics of particle acceleration and its relation with shocks and turbulence in the ICM and (ii) constrain the dynamical evolution of the merger eventsWe present Jansky Very Large Array 1-4 GHz observations of the Frontier cluster Abell 2744. We confirm the presence of the known giant radio halo and radio relic via our deep radio images. Owing to the much greater sensitivity of the JVLA compared to previous observations, we are able to detect a previously unobserved long Mpc-size filament of synchrotron emission to the south west of the cluster core. We also present a radio spectral index image of the diffuse cluster emission to test the origin of the radio relic and halo, related to the underlying particle acceleration mechanism. Finally, we carry out a search for radio emission from the 'jellyfish' galaxies in A2744 to estimate their star formation rate. These highly disturbed galaxies are likely influenced by the cluster merger event, although the precise origin of these galaxies is still being debated.

  18. JVLA S- and X-band polarimetry of the merging cluster Abell 2256

    NASA Astrophysics Data System (ADS)

    Ozawa, Takeaki; Nakanishi, Hiroyuki; Akahori, Takuya; Anraku, Kenta; Takizawa, Motokazu; Takahashi, Ikumi; Onodera, Sachiko; Tsuda, Yuya; Sofue, Yoshiaki

    2015-12-01

    We report on polarimetry results of a merging cluster of galaxies, Abell 2256, with the Karl G. Jansky Very Large Array (JVLA). We performed new observations with JVLA at the S band (2051-3947 MHz) and X band (8051-9947 MHz) in the C array configuration, and detected significant polarized emissions from the radio relic, Source A, and Source B in this cluster. We calculated the total magnetic-field strengths toward the radio relic using revised equipartition formula, which is 1.8-5.0 μG. With dispersions of Faraday rotation measure, the magnetic-field strengths toward Sources A and B are estimated to be 0.63-1.26 μG and 0.11-0.21 μG, respectively. An extremely high degree of linear polarization, as high as ˜ 35%, about a half of the maximum polarization, was detected toward the radio relic, which indicates highly ordered magnetic lines of force over the beam sizes (˜ 52 kpc). The fractional polarization of the radio relic decreases from ˜ 35% to ˜ 20% at around 3 GHz as the frequency decreases, and is nearly constant between 1.37 and 3 GHz. Both analyses with depolarization models and Faraday tomography suggest multiple depolarization components toward the radio relic and imply the existence of turbulent magnetic fields.

  19. Systematic Uncertainties in Characterizing Cluster Outskirts: The Case of Abell 133

    NASA Astrophysics Data System (ADS)

    Paine, Jennie; Ogrean, Georgiana A.; Nulsen, Paul; Farrah, Duncan

    2016-01-01

    The outskirts of galaxy clusters have low surface brightness compared to the X-ray background, making accurate background subtraction particularly important for analyzing cluster spectra out to and beyond the virial radius. We analyze the thermodynamic properties of the intracluster medium (ICM) of Abell 133 and assess the extent to which uncertainties on background subtraction affect measured quantities. We implement two methods of analyzing the ICM spectra: one in which the blank-sky background is subtracted, and another in which the sky background is modeled. We find that the two methods are consistent within the 90% confidence ranges. We were able to measure the thermodynamic properties of the cluster up to R500. Even at R500, the systematic uncertainties associated with the sky background in the direction of A133 are small, despite the ICM signal constituting only ~25% of the total signal. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. GAO acknowledges support by NASA through a Hubble Fellowship grant HST-HF2-51345.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  20. Peculiar velocities of cD galaxies - MX spectroscopy of Abell 1795

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Hintzen, Paul; Oegerle, W. R.; Romanishin, W.; Lesser, M. P.; Eisenhamer, J. D.; Batuski, D. J.

    1988-09-01

    Spectroscopic observations of galaxies in the Abell 1795 field have been obtained using the MX multiple-object spectrograph on the Steward Observatory 2.3 m telescope. Redshifts are presented for 46 galaxies, including 41 cluster members. It is found that the A1795 cD galaxy is not at rest in the cluster gravitational potential well; it has a peculiar radial velocity, cz, of 365 km/s, and the hypothesis that the mean cluster velocity is as large as the cD's velocity can be rejected at the 99.5 percent confidence level. This conclusion is supported by spectroscopic data for the 'cooling flow' gas found in the central region of the cluster; this gas, except for the portion coincident with the cD nucleus, lies at the velocity derived for the cluster mean. It is suggested that current models of the formation of cD galaxies are unlikely to account for the large peculiar velocities of the cD galaxies in A1795 and A2670 unless substantial subclustering is still present. However, the available data show no evidence for velocity subclustering in either A1795 or A2670.

  1. X-Ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Tamura, T.; Kaastra, J. S.; Peterson, J. R.; Paerels, F.; Mittaz, J. P. D.; Trudolyubov, S. P.; Stewart, G.; Fabian, A. C.; Mushotzky, R. F.; Lumb, D. H.

    2000-01-01

    The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of - 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of approx. 4 keV. The volume emission measure of any cool component (less than 1 keV) is less than a few % of the hot component at the cluster center. A strong O VIII Lyman alpha line was detected with the RGS from the cluster core. The O abundance of the ICM is 0.2-0.5 times the solar value. The O to Fe ratio at the cluster center is 0.5 - 1.5 times the solar ratio.

  2. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  3. Peculiar radio structures in the central regions of galaxy cluster Abell 585

    NASA Astrophysics Data System (ADS)

    Jamrozy, M.; Stawarz, Ł.; Marchenko, V.; Kuźmicz, A.; Ostrowski, M.; Cheung, C. C.; Sikora, M.

    2014-06-01

    In this paper, we analyse the peculiar radio structure observed across the central region of the galaxy cluster Abell 585 (z = 0.12). In the low-resolution radio maps, this structure appears uniform and diffuse on angular scales of ˜3 arcmin, and is seemingly related to the distant (z = 2.5) radio quasar B3 0727+409 rather than to the cluster itself. However, after a careful investigation of the unpublished archival radio data with better angular resolution, we resolve the structure into two distinct arcmin-scale features, which resemble typical lobes of cluster radio galaxies with no obvious connection to the background quasar. We support this conclusion by examining the spectral and polarization properties of the features, demonstrating in addition that the analysed structure can hardly be associated with any sort of a radio mini-halo or relics of the cluster. Yet at the same time we are not able to identify host galaxies of the radio lobes in the available optical and infrared surveys. We consider some speculative explanations for our findings, including gravitational wave recoil kicks of supermassive black holes responsible for the lobes' formation in the process of merging massive ellipticals within the central parts of a rich cluster environment, but we do not reach any robust conclusions regarding the origin of the detected radio features.

  4. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the

  5. Analytic solutions of inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Al-Najem, N. M.

    A direct analytic approach is systematically developed for solving inverse heat conduction problems in multi-dimensional finite regions. The inverse problems involve the determination of the surface conditions from the knowledge of the time variation of the temperature at an interior point in the region. In the present approach, the unknown surface temperature is represented by a polynominal in time and a splitting-up procedure is employed to develop a rapidly converging inverse solution. The least square technique is then utilized to estimate the unknown parameters associated with the solution. The method is developed first for the analysis of one-dimensional cases, and then it is generalized to handle two- and three-dimensional situations. It provides an efficient, stable and systematic approach for inverse heat condition problems. The stability and accuracy of the current method of analysis are demonstrated by several numerical examples chosen to provide a very strict test.

  6. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  7. Solar inverse theory

    NASA Astrophysics Data System (ADS)

    Gough, D.

    1984-12-01

    Helioseismological inversion, as with the inversion of any other data, is divided into three phases. The first is the solution of the so-called forward problem: namely, the calculation of the eigenfrequencies of a theoretical equilibrium state. The second is an attempt to understand the results, either empirically by determining how those frequencies vary as chosen parameters defining the equilibrium model are varied, or analytically from asymptotic expansions in limiting cases of high order or degree. The third phase is to pose and solve an inverse problem, which seeks to find a plausible equilibrium model of the Sun whose eigenfrequencies are consistent with observation. The three phases are briefly discussed in this review, and the third, which is not yet widely used in helioseismology, is illustrated with some selected inversions of artificial solar data.

  8. Generalized emissivity inverse problem.

    PubMed

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.

  9. Direct and indirect inversions

    NASA Astrophysics Data System (ADS)

    Virieux, Jean; Brossier, Romain; Métivier, Ludovic; Operto, Stéphane; Ribodetti, Alessandra

    2016-06-01

    A bridge is highlighted between the direct inversion and the indirect inversion. They are based on fundamental different approaches: one is looking after a projection from the data space to the model space while the other one is reducing a misfit between observed data and synthetic data obtained from a given model. However, it is possible to obtain similar structures for model perturbation, and we shall focus on P-wave velocity reconstruction. This bridge is built up through the Born approximation linearizing the forward problem with respect to model perturbation and through asymptotic approximations of the Green functions of the wave propagation equation. We first describe the direct inversion and its ingredients and then we focus on a specific misfit function design leading to a indirect inversion. Finally, we shall compare this indirect inversion with more standard least-squares inversion as the FWI, enabling the focus on small weak velocity perturbations on one side and the speed-up of the velocity perturbation reconstruction on the other side. This bridge has been proposed by the group led by Raul Madariaga in the early nineties, emphasizing his leading role in efficient imaging workflows for seismic velocity reconstruction, a drastic requirement at that time.

  10. Inverse problem in hydrogeology

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    cas dans d'autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l'aquifère. Il est montré que les méthodes d'évaluation des paramètres actuels ne diffèrent pas si ce n'est dans les détails des calculs informatiques. Il est montré qu'il existe une large panoplie de techniques d'inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d'informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l'incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée. Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de enten dimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables alusuario, acomodamiento de variabilidad a través de geoestad

  11. Geoacoustic reflectivity inversion: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan

    Propagation and reverberation of acoustic fields in shallow water depend strongly on the spatial variability of seabed geoacoustic parameters; and lack of knowledge of seabed variability is often a limiting factor in acoustic modelling applications. However, direct sampling (e.g., coring) of vertical and lateral variability is expensive and laborious, and matched-field and other long-range inversion methods fail to provide sufficient resolution. This thesis develops a new joint time/frequency domain inversion for high-resolution single-bounce reflection data. The inversion approach has the potential to resolve fine-scale sediment profiles over small seafloor footprints (˜100 m). The approach utilises sequential Bayesian inversion of time- and frequency-domain reflectivity data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection coefficient inversion. Rigorous uncertainty estimation is of key importance to yield high quality inversion results. Quantitative geoacoustic uncertainties are provided by a nonlinear Gibbs sampling approach together with full data error covariance estimation (including non-stationary effects). The small footprint of the measurement technique combined with the rigorous inversion of both time and frequency domain data provides a powerful new tool to examine seabed structure on finer scales than heretofore possible. The Bayesian inversion is applied to two data sets collected on the Malta Plateau and the Strait of Sicily during the SCARAB98 experiment. The first application aims to recover multi-layered seabed structure and the second application recovers density and sound velocity gradient structure in the uppermost sediment layer. An interesting new method of deriving reflectivity data from ambient noise measurements is briefly considered in simulation to examine the resolving power and limits of the approach.

  12. Analysis of Temperature Distributions in Nighttime Inversions

    NASA Astrophysics Data System (ADS)

    Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as

  13. Globular Clusters, Ultracompact Dwarfs, and Dwarf Galaxies in Abell 2744 at a Redshift of 0.308

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-11-01

    We report a photometric study of globular clusters (GCs), ultracompact dwarfs (UCDs), and dwarf galaxies in the giant merging galaxy cluster Abell 2744 at z = 0.308. Color–magnitude diagrams of the point sources derived from deep F814W (rest frame r‧) and F105W (rest frame I) images of Abell 2744 in the Hubble Space Telescope Frontier Field show a rich population of point sources, which have colors that are similar to those of typical GCs. These sources are as bright as -14.9\\lt {M}r\\prime ≤slant -11.4 (26.0 < F814W(Vega) ≤ 29.5) mag, being mostly UCDs and bright GCs in Abell 2744. The luminosity function (LF) of these sources shows a break at {M}r\\prime ≈ -12.9 (F814W ≈ 28.0) mag, indicating a boundary between UCDs and bright GCs. The numbers of GCs and UCDs are estimated to be 1,711,640+589,760 ‑430,500 and 147 ± 26, respectively. The clustercentric radial number density profiles of the UCDs and bright GCs show similar slopes, but these profiles are much steeper than those of the dwarf galaxies and the mass density profile based on gravitational lensing analysis. We derive an LF of the red sequence galaxies for -22.9\\lt {M}r\\prime ≤slant -13.9 mag. The faint end of this LF is fit well by a flat power law with α =-1.14+/- 0.08, showing no faint upturn. These results support the galaxy-origin scenario for bright UCDs: they are the nuclei of dwarf galaxies that are stripped when they pass close to the center of massive galaxies or a galaxy cluster, while some of the faint UCDs are at the bright end of the GCs.

  14. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es

  15. The complex structure of Abell 2345: a galaxy cluster with non-symmetric radio relics

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Barrena, R.; Girardi, M.

    2010-10-01

    Context. The connection of cluster mergers with the presence of extended, diffuse radio sources in galaxy clusters is still debated. Aims: We aim to obtain new insights into the internal dynamics of the cluster Abell 2345. This cluster exhibits two non-symmetric radio relics well studied through recent, deep radio data. Methods: Our analysis is based on redshift data for 125 galaxies acquired at the Telescopio Nazionale Galileo and on new photometric data acquired at the Isaac Newton Telescope. We also use ROSAT/HRI archival X-ray data. We combine galaxy velocities and positions to select 98 cluster galaxies and analyze the internal dynamics of the cluster. Results: We estimate a mean redshift < z > = 0.1789 and a line-of-sight (LOS) velocity dispersion σV ~ 1070 km s-1. The two-dimensional galaxy distribution reveals the presence of three significant peaks within a region of ~1 h70-1 Mpc (the E, NW, and SW peaks). The spectroscopic catalog confirms the presence of these three clumps. The SW and NW clumps have similar mean velocities, while the E clump has a larger mean velocity (Δ Vrf ~ 800 km s-1); this structure causes the presence of the two peaks we find in the cluster velocity distribution. The difficulty in separating the galaxy clumps leads to a very uncertain mass estimate M ~ 2 × 1015 h70-1 M⊙. Moreover, the E clump well coincides with the main mass peak as recovered from the weak gravitational lensing analysis and is off-set to the east from the BCG by ~1.3´. The ROSAT X-ray data also show a very complex structure, mainly elongated in the E-W direction, with two (likely three) peaks in the surface brightness distribution, which, however, are off-set from the position of the peaks in the galaxy density. The observed phenomenology agrees with the hypothesis that we are looking at a complex cluster merger occurring along two directions: a major merger along the ~E-W direction (having a component along the LOS) and a minor merger in the western cluster

  16. Multi-Skip Tomographic Inversion

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Bloom, Joost; Lorenz, Maarten

    2011-06-01

    Inspection of corrosion at pipe support locations is difficult because of accessibility limitations. Recently a screening technique has been developed called Multi-Skip ultrasonics. The method utilizes a pitch-catch set-up. Shear waves are transmitted that reflect multiple times in the pipe wall, from which integral wall thickness information is obtained. The method turns out to be very sensitive in detecting the presence of wall loss, but it turns out to be difficult to determine the extent of the wall loss. If the extent is not known, only a conservative estimate of depth can be derived from the Multi-Skip signals, because of the accumulative nature of the change in arrival time due to wall loss. Multi-Skip tomography appears to be a promising method in addition to Multi-Skip screening as a follow-up inspection technique. It uses full wave field inversion to determine a wall thickness profile at a particular location of the pipe on the support. As with the Multi-Skip screening method, Multi-Skip tomography is applied with the transmitter and receiver on both sides of the pipe support location and waves traveling in the axial pipe direction. The wave field inversion consists of a forward modeling step that predicts the measured wave field after which an iterative comparison process with the actually measured wave field results in an estimate of the wall thickness profile under the support.

  17. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  18. Submillimetre observations of galaxy clusters with the BLAST: the star formation activity in Abell 3112

    NASA Astrophysics Data System (ADS)

    Braglia, Filiberto G.; Ade, Peter A. R.; Bock, James J.; Chapin, Edward L.; Devlin, Mark J.; Edge, Alastair; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B.; Ngo, Henry; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Pimbblet, Kevin A.; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Valiante, Elisabetta; Viero, Marco P.; Wiebe, Donald V.

    2011-04-01

    We present observations at 250, 350 and 500 μm of the nearby galaxy cluster Abell 3112 (z= 0.075) carried out with the Balloon-borne Large Aperture Submillimeter Telescope. Five cluster members are individually detected as bright submillimetre (submm) sources. Their far-infrared spectral energy distributions and optical colours identify them as normal star-forming galaxies of high mass, with globally evolved stellar populations. They all have (B-R) colours of 1.38 ± 0.08, transitional between the blue, active population and the red, evolved galaxies that dominate the cluster core. We stack to estimate the mean submm emission from all cluster members, which is determined to be 16.6 ± 2.5, 6.1 ± 1.9 and 1.5 ± 1.3 mJy at 250, 350 and 500 μm, respectively. Stacking analyses of the submm emission of cluster members reveal trends in the mean far-infrared luminosity with respect to clustercentric radius and KS-band magnitude. We find that a large fraction of submm emission comes from the boundary of the inner, virialized region of the cluster, at clustercentric distances around R500. Stacking also shows that the bulk of the submm emission arises in intermediate-mass galaxies with KS magnitude ˜1 mag fainter than the characteristic magnitude ?. The results and constraints obtained in this work will provide a useful reference for the forthcoming surveys to be conducted on galaxy clusters by Herschel.

  19. The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Werner, N.; Simionescu, A.; Allen, S. W.; Canning, R. E. A.; Ehlert, S.; Mernier, F.; Takahashi, T.

    2015-04-01

    We present the results of deep Chandra, XMM-Newton and Suzaku observations of the nearby galaxy cluster Abell 85, which is currently undergoing at least two mergers, and in addition shows evidence for gas sloshing which extends out to r ≈ 600 kpc. One of the two infalling subclusters, to the south of the main cluster centre, has a dense, X-ray bright cool core and a tail extending to the south-east. The northern edge of this tail is strikingly smooth and sharp (narrower than the Coulomb mean free path of the ambient gas) over a length of 200 kpc, while towards the south-west the boundary of the tail is blurred and bent, indicating a difference in the plasma transport properties between these two edges. The thermodynamic structure of the tail strongly supports an overall north-westward motion. We propose, that a sloshing-induced tangential, ambient, coherent gas flow is bending the tail eastwards. The brightest galaxy of this subcluster is at the leading edge of the dense core, and is trailed by the tail of stripped gas, suggesting that the cool core of the subcluster has been almost completely destroyed by the time it reached its current radius of r ≈ 500 kpc. The surface-brightness excess, likely associated with gas stripped from the infalling southern subcluster, extends towards the south-east out to at least r500 of the main cluster, indicating that the stripping of infalling subclusters may seed gas inhomogeneities. The second merging subcluster appears to be a diffuse non-cool-core system. Its merger is likely supersonic with a Mach number of ≈1.4.

  20. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  1. Abell 262 and RXJ0341: Two Brightest Cluster Galaxies with Line Emission Blanketing a Cool Core

    NASA Astrophysics Data System (ADS)

    Edwards, Louise O. V.; Heng, Renita

    2014-08-01

    Over the last decade, integral field (IFU) analysis of the brightest cluster galaxies (BCGs) in several cool core clusters has revealed the central regions of these massive old red galaxies to be far from dead. Bright line emission alongside extended X-ray emission links nearby galaxies, is superposed upon vast dust lanes and extends out in long thin filaments from the galaxy core. Yet, to date no unifying picture has come into focus, and the activity across systems is currently seen as a grab-bag of possibile emission line mechanisms. Our primary goal is to work toward a consistent picture for why the BCGs seem are undergoing a renewed level of activity. One problem is most of the current data remains focused on mapping the very core of the BCG, but neglects surrounding galaxies. We propose to discover the full extent of line emission in a complementary pair of BCGs. In Abell 262, an extensive dust patch screens large portions of an otherwise smooth central galaxy, whereas RXJ0341 appears to be a double-core dust free BCG. We will map the full extent of the line emission in order to deduce whether the line emission is a product of local interactions, or the large-scale cluster X-ray gas. The narrow band filter set and large FOV afforded by the the Mayall MOSAIC-1 (MOSA) imager allows us to concurrently conduct an emission line survey of both clusters, locating all line emitting members and beginning a search for the effect of the environment of the different regions (outskirts vs. cluster core) out to the virial radius. We will combine our results with publically available data from 2MASS to determine the upper limits on specific star formation in the BCG and other cluster galaxies within the cluster virial radius.

  2. Geoacoustic inversion with ships as sources.

    PubMed

    Koch, Robert A; Knobles, David P

    2005-02-01

    Estimation of geoacoustic parameters using acoustic data from a surface ship was performed for a shallow water region in the Gulf of Mexico. The data were recorded from hydrophones in a bottom mounted, horizontal line array (HLA). The techniques developed to produce the geoacoustic inversion are described, and an efficient method for geoacoustic inversion with broadband beam cross-spectral data is demonstrated. The performance of cost functions that involve coherent or incoherent sums over frequency and one or multiple time segments is discussed. Successful inversions for the first sediment layer sound speed and thickness and some of the parameters for the deeper layers were obtained with the surface ship at nominal ranges of 20, 30, or 50 water depths. The data for these inversions were beam cross-spectra from four subapertures of the HLA spanning a little more than two water depths. The subaperture beams included ten frequencies equally spaced in the 120-200 Hz band. The values of the geoacoustic parameters from the inversions are validated by comparisons with geophysical observations and with the parameter values from previous inversions by other invesigators, and by comparing transmission loss (TL) measured in the experiment with modeled TL based on the inverted geoacoustic parameters.

  3. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masahiro

    2003-06-01

    into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.

  4. [The presence of the corpse and semiotic effectiveness in Geoffrey Chaucer and Caïn in Mctatio Abel].

    PubMed

    Bolens, Guillemette

    2011-01-01

    This article grapples with the question of the corpse through two particular literary texts. Rather than an elucidation of the physiological principle of the human body by means of dissection, the play Mactatio Abel, written in England in the 15th century, stages the difficulty of the relation to the corpse, via an amplification of the biblical narrative of Abel's murder by Cain. As for Chaucer's work, The Book of the Duchess, it rewrites Ovid's and Machaut's texts featuring the figure of Morpheus in a way that distinguishes between an imitation of the living and its simulacrum in the sense Wolfgang Iser gives this concept. Chaucer's Morpheus, instead of promoting verisimilitude, forbids it. Indeed, he animates a corpse from within instead of simulating an apparition of the deceased. The simulacrum, rather than a mimetic copy of the real, blocks all representational illusion, in order to formulate absence. The readability of the corpse in both works is relational. Both literary texts express the corpse as being always already grounded in a relational and narratorial space.

  5. Numerical Simulations Challenged on the Prediction of Massive Subhalo Abundance in Galaxy Clusters: The Case of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Grillo, C.; De Lucia, G.; Biviano, A.; Annunziatella, M.; Borgani, S.; Lombardi, M.; Mercurio, A.; Rosati, P.

    2016-08-01

    In this Letter we compare the abundance of the member galaxies of a rich, nearby (z = 0.09) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by active galactic nuclei. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant (≳ 7 sigma confidence level) smaller amount of massive (circular velocity above 200 {km} {{{s}}}-1) subhalos, even before accounting for the possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 and suggest that the observed difference is already present at the level of dark matter (DM) subhalos and is not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of DM particles and the effect of baryons on the formation and evolution of cosmological structures.

  6. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  7. Inverse Modelling of the Kawerau Geothermal Reservoir, NZ

    SciTech Connect

    White, S.P.

    1995-01-01

    In this paper we describe an existing model of the Kawerau geothermal field and attempts to improve this model using inverse modeling techniques. A match of model results to natural state temperatures and pressures at three reference depths are presented. These are used to form and ''objective function'' to be minimized by inverse modeling.

  8. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  9. Vitamins and Violence: Can Micronutrients Make Students Behave, Schools Safer and Test Scores Better? The Abell Report. Volume 23, No.6

    ERIC Educational Resources Information Center

    Rodgers, Joann Ellison

    2010-01-01

    The notion that vitamins, minerals, and other "supplemental" nutrients profoundly change behavior, mood, and intellect has origins as old as recorded history. Research has indeed suggested connections between nutrient deficiencies and behavior problems, but correlations are not the same as causality. This "Abell Report" is an…

  10. Triaxiality, principal axis orientation and non-thermal pressure in Abell 383

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Limousin, Marceau

    2012-04-01

    While clusters of galaxies are regarded as one of the most important cosmological probes, the conventional spherical modelling of the intracluster medium and the dark matter (DM), and the assumption of strict hydrostatic equilibrium (i.e. the equilibrium gas pressure is provided entirely by thermal pressure) are very approximate at best. Extending our previous works, we developed further a method to reconstruct for the first time the full 3D structure (triaxial shape and principal-axis orientation) of both DM and intracluster (IC) gas, and the level of non-thermal pressure of the IC gas. We outline an application of our method to the galaxy cluster Abell 383, taken as part of the Cluster Lensing and Supernova Survey with Hubble (CLASH) multicycle treasury programme, presenting results of a joint analysis of X-ray and strong lensing measurements. We find that the intermediate-major and minor-major axis ratios of the DM are 0.71 ± 0.10 and 0.55 ± 0.06, respectively, and the major axis of the DM halo is inclined with respect to the line of sight of 21?1 ± 10?1. The level of non-thermal pressure has been evaluated to be about 10 per cent of the total energy budget. We discuss the implications of our method for the viability of the cold dark matter (CDM) scenario, focusing on the concentration parameter C and the inner slope of the DM, γ, since the cuspiness of DM density profiles in the central regions is one of the critical tests of the CDM paradigm for structure formation: we measure γ= 1.02 ± 0.06 on scales down to 25 Kpc, and C= 4.76 ± 0.51, values which are close to the predictions of the standard model, and providing further evidences that support the CDM scenario. Our method allows us to recover the 3D physical properties of clusters in a bias-free way, overcoming the limitations of the standard spherical modelling and enhancing the use of clusters as more precise cosmological probes.

  11. Disentangling the ICL with the CHEFs: Abell 2744 as a case study

    NASA Astrophysics Data System (ADS)

    Jimenez-Teja, Yolanda; Dupke, Renato a.

    2015-08-01

    The intracluster light (ICL) is important for understanding the metal enrichment of the intracluster gas and constraining cosmological parameters independently of the other methods. However, its measurement it is not trivial due to the necessity of disentangling the light of stars locked up in galaxies from the proper ICL. Currently, there is no standard method to efficiently measure the ICL (Rudick et al. 2011, ApJ, 732, 48), and different approaches relying on the binding energy of the cluster galaxies, the density of the material, or the surface brightness distribution, have been tried. Moreover, a suitable way to disentangle the limits of the brightest cluster galaxy (BCG) and the ICL still has not been developed.The CHEFs (from Chebyshev-Fourier bases, Jiménez-Teja & Benítez 2012, ApJ, 745, 150) are a mathematical tool especially designed to model the two-dimensional light distribution of galaxies. We use the CHEFs and tools from differential geometry to infer the light contribution of the ICL to the total brightness, without imposing any artificial thresholds and avoiding the ambiguity introduced by free parameters that are usually set in these studies (Rudick et al. 2011).We use the extremely deep optical images from Abell 2744, the Pandora cluster, a multi-cluster merger, observed by the Hubble Frontier Fields project to show the efficiency of this new method. The CHEFs can accurately fit and remove all the galaxies close to the cluster center, including the BCG. The limits of the BCG are marked out by determining the points where the surface curvature changes, thus disentangling the ICL from the BCG light in a completely natural way. Once we have the residual image just containing ICL and background, we extrapolate the value of this latter from images of individual pointings close to the main Pandora field. We finally estimate the ICL to be ~24% of the total light, which is very consistent with the predictions from numerical simulations (Montes

  12. Ultraviolet Imaging of the cD Galaxy in Abell 1795

    NASA Astrophysics Data System (ADS)

    Smith, Eric P.; Neff, Susan G.; Smith, Andrew M.; Stecher, Thedore P.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.

    1995-12-01

    We present an image of the Abell 1795 cD galaxy and its environment obtained with the Goddard Ultraviolet Imaging Telescope (UIT). Our ultraviolet (UV) image was obtained during the March 1995 Astro-2 Space Shuttle mission using a filter centered at ~ 1520 Angstroms/ (Delta lambda =354 Angstroms/). The ultraviolet image resulting from a 1310 second exposure has stellar images with ~ 5.0arcsec FWHM. We compare these data to published optical, radio (VLA) and archival HST observations. This richness class 2 cluster is known to contain a large cooling flow (dot {M} 300M_⊙ yr(-1) ) and its cD galaxy contains a relatively bright yet small radio source (4C26.42). Previous optical observations have shown the cD galaxy possesses a system of Hα filaments (van Breugel et al./ 1984, ApJ, 276, 79), whose surface brightness is consistent with models in which the emission--lines arise from radiatively regulated accretion (i.e. cooling X-ray gas). Broad-band optical investigations have revealed the presence of ``blue lobes'' near the cD galaxy center. These regions are posited to contain young stars formed via the interaction of a radio jet and the intercluster medium (McNamara & O'Connell 1993, AJ, 105, 417). The HST observations show the elliptical galaxy has an easily resolved dust lane structure near its center. The cD galaxy is very bright in the ultraviolet (m1520=15.1) and exhibits a strong radial color gradient with the center being bluer. Indeed, UV light is detected from the central 7.6arcsecx16 .1arcsec (8.4x17.7 kpc) which can be compared with the optical extents of 38arcsecx70 arcsec . We discuss the implications that our new UV data have for the high mass star formation rate, and examine how our photometry fits in with previous models for the unusual features present in the system. Most of the other cluster galaxies are not detected. We report photometry and predicted star formation rates for those that were seen along with upper limits for those galaxies not

  13. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method

    NASA Astrophysics Data System (ADS)

    Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid

    2016-09-01

    Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.

  14. AVO inversion based on inverse operator estimation in trust region

    NASA Astrophysics Data System (ADS)

    Yin, Xing-Yao; Deng, Wei; Zong, Zhao-Yun

    2016-04-01

    Amplitude variation with offset (AVO) inversion is widely utilized in exploration geophysics, especially for reservoir prediction and fluid identification. Inverse operator estimation in the trust region algorithm is applied for solving AVO inversion problems in which optimization and inversion directly are integrated. The L1 norm constraint is considered on the basis of reasonable initial model in order to improve effciency and stability during the AVO inversion process. In this study, high-order Zoeppritz approximation is utilized to establish the inversion objective function in which variation of {{v}\\text{p}}/{{v}\\text{s}} with time is taken into consideration. A model test indicates that the algorithm has a relatively higher stability and accuracy than the damp least-squares algorithm. Seismic data inversion is feasible and inversion values of three parameters ({{v}\\text{p}},{{v}\\text{s}},ρ ) maintain good consistency with logging curves.

  15. Inversion for seismic anisotropy using genetic algorithms

    SciTech Connect

    Horne, S. Univ. of Edinburgh . Dept. of Geology and Geophysics); MacBeth, C. . Dept. of Geology and Geophysics)

    1994-11-01

    A general inversion scheme based on a genetic algorithm is developed to invert seismic observations for anisotropic parameters. The technique is applied to the inversion of shear-wave observations from two azimuthal VSP data sets from the Conoco test site in Oklahoma. Horizontal polarizations and time-delays are inverted for hexagonal and orthorhombic symmetries. The model solutions are consistent with previous studies using trial and error matching of full waveform synthetics. The shear-wave splitting observations suggest the presence of a shear-wave line singularity and are consistent with a dipping fracture system which is known to exist at the test site. Application of the inversion scheme prior to full waveform modeling demonstrates that a considerable saving in time is possible while retaining the same degree of accuracy.

  16. Program manual for the Eppler airfoil inversion program

    NASA Technical Reports Server (NTRS)

    Thomson, W. G.

    1975-01-01

    A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.

  17. On the nonuniqueness of receiver function inversions

    SciTech Connect

    Ammon, C.J. ); Randall, G.E. ); Zandt, G. )

    1990-09-10

    To study the resolving power of teleseismic P waveforms for receiver structure, the authors model synthetic waveforms using a time domain waveform inversion scheme beginning with a range of initial models to estimate the range of acceptable velocity structures. To speed up the waveform inversions, they implement Randall's (1989) efficient algorithms for calculating differential seismograms and include a smoothness constraint on all the resulting velocity models utilizing the jumping inversion technique of Shaw and Orcutt (1985). They present the results of more than 235 waveform inversions for one-dimensional velocity structures that indicate that the primary sensitivity of a receiver function is to high wavenumber velocity changes, and a depth-velocity product, not simply velocity. The range of slownesses in a typical receiver function study does not appear to be broad enough to remove the depth-velocity ambiguity; the inclusion of a priori information is necessary. They also present inversion results for station RSCP, located in the Cumberland Plateau, Tennessee. The results are similar to those from a previous study by Owens et al. (1984) and demonstrate the uncertainties in the resulting velocity estimate more clearly.

  18. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  19. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  20. Inverse Functions and their Derivatives.

    ERIC Educational Resources Information Center

    Snapper, Ernst

    1990-01-01

    Presented is a method of interchanging the x-axis and y-axis for viewing the graph of the inverse function. Discussed are the inverse function and the usual proofs that are used for the function. (KR)

  1. An Hα survey of eight Abell clusters: the dependence of tidally induced star formation on cluster density

    NASA Astrophysics Data System (ADS)

    Moss, C.; Whittle, M.

    2000-09-01

    We have undertaken a survey of Hα emission in a substantially complete sample of CGCG galaxies of types Sa and later within 1.5 Abell radii of the centres of eight low-redshift Abell clusters (Abell 262, 347, 400, 426, 569, 779, 1367 and 1656). Some 320 galaxies were surveyed, of which 116 were detected in emission (39 per cent of spirals, 75 per cent of peculiars). Here we present previously unpublished data for 243 galaxies in seven clusters. Detected emission is classified as `compact' or `diffuse'. From an analysis of the full survey sample, we confirm our previous identification of compact and diffuse emission with circumnuclear starburst and disc emission respectively. The circumnuclear emission is associated either with the presence of a bar, or with a disturbed galaxy morphology indicative of ongoing tidal interactions (whether galaxy-galaxy, galaxy-group, or galaxy-cluster). The frequency of such tidally induced (circumnuclear) starburst emission in spirals increases from regions of lower to higher local galaxy surface density, and from clusters with lower to higher central galaxy space density. The percentages of spirals classed as disturbed and of galaxies classified as peculiar show a similar trend. These results suggest that tidal interactions for spirals are more frequent in regions of higher local density and for clusters with higher central galaxy density. The prevalence of such tidal interactions in clusters is expected from recent theoretical modelling of clusters with a non-static potential undergoing collapse and infall. Furthermore, in accord with this picture, we suggest that peculiar galaxies are predominantly ongoing mergers. We conclude that tidal interactions are likely to be the main mechanism for the transformation of spirals to S0s in clusters. This mechanism operates more efficiently in higher density environments, as is required by the morphological type-local surface density (T-Σ) relation for galaxies in clusters. For regions of

  2. Summability of trigonometric Fourier series at d-points and a generalization of the Abel-Poisson method

    NASA Astrophysics Data System (ADS)

    Trigub, R. M.

    2015-08-01

    We study the convergence of linear means of the Fourier series \\sumk=-∞+∞λk,\\varepsilon\\hat{f}_keikx of a function f\\in L1 \\lbrack -π,π \\rbrack to f(x) as \\varepsilon\\searrow0 at all points at which the derivative \\bigl(\\int_0^xf(t) dt\\bigr)' exists (i.e. at the d-points). Sufficient conditions for the convergence are stated in terms of the factors \\{λk,\\varepsilon\\} and, in the case of λk,\\varepsilon=\\varphi(\\varepsilon k), in terms of the condition that the functions \\varphi and x\\varphi'(x) belong to the Wiener algebra A( R). We also study a new problem concerning the convergence of means of the Abel-Poisson type, \\sumk=-∞^∞r\\psi(\\vert k\\vert)\\hat{f}_keikx, as r\

  3. A 2163: Merger events in the hottest Abell galaxy cluster. I. Dynamical analysis from optical data

    NASA Astrophysics Data System (ADS)

    Maurogordato, S.; Cappi, A.; Ferrari, C.; Benoist, C.; Mars, G.; Soucail, G.; Arnaud, M.; Pratt, G. W.; Bourdin, H.; Sauvageot, J.-L.

    2008-04-01

    Context: A 2163 is among the richest and most distant Abell clusters, presenting outstanding properties in different wavelength domains. X-ray observations have revealed a distorted gas morphology and strong features have been detected in the temperature map, suggesting that merging processes are important in this cluster. However, the merging scenario is not yet well-defined. Aims: We have undertaken a complementary optical analysis, aiming to understand the dynamics of the system, to constrain the merging scenario and to test its effect on the properties of galaxies. Methods: We present a detailed optical analysis of A 2163 based on new multicolor wide-field imaging and medium-to-high resolution spectroscopy of several hundred galaxies. Results: The projected galaxy density distribution shows strong subclustering with two dominant structures: a main central component (A), and a northern component (B), visible both in optical and in X-ray, with two other substructures detected at high significance in the optical. At magnitudes fainter than R=19, the galaxy distribution shows a clear elongation approximately with the east-west axis extending over 4~h70-1 Mpc, while a nearly perpendicular bridge of galaxies along the north-south axis appears to connect (B) to (A). The (A) component shows a bimodal morphology, and the positions of its two density peaks depend on galaxy luminosity: at magnitudes fainter than R = 19, the axis joining the peaks shows a counterclockwise rotation (from NE/SW to E-W) centered on the position of the X-ray maximum. Our final spectroscopic catalog of 512 objects includes 476 new galaxy redshifts. We have identified 361 galaxies as cluster members; among them, 326 have high precision redshift measurements, which allow us to perform a detailed dynamical analysis of unprecedented accuracy. The cluster mean redshift and velocity dispersion are respectively z= 0.2005 ± 0.0003 and 1434 ± 60 km s-1. We spectroscopically confirm that the northern

  4. The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Amorín, R.; Castellano, M.; Fontana, A.; Buitrago, F.; Dunlop, J. S.; Elbaz, D.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Ferguson, H. C.; Giallongo, E.; Grazian, A.; Lotz, J.; Michałowski, M. J.; Paris, D.; Pentericci, L.; Pilo, S.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodeep project, an EU collaboration aimed at developing methods and tools for extragalactic photometry and creating valuable public photometric catalogues. Aims: We produce multiwavelength photometric catalogues (from B to 4.5 μm) for the first two of the Frontier Fields, Abell-2744 and MACS-J0416 (plus their parallel fields). Methods: To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members, and the intra-cluster light. We perform the detection on the processed HST H160 image to obtain a pure H-selected sample, which is the primary catalogue that we publish. We also add a sample of sources which are undetected in the H160 image but appear on a stacked infrared image. Photometry on the other HST bands is obtained using SExtractor, again on processed images after the procedure for foreground light removal. Photometry on the Hawk-I and IRAC bands is obtained using our PSF-matching deconfusion code t-phot. A similar procedure, but without the need for the foreground light removal, is adopted for the Parallel fields. Results: The procedure of foreground light subtraction allows for the detection and the photometric measurements of ~2500 sources per field. We deliver and release complete photometric H-detected catalogues, with the addition of the complementary sample of infrared-detected sources. All objects have multiwavelength coverage including B to H HST bands, plus K

  5. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Angevine, W. M.; Ahmadov, R.; Kim, S.-W.; Evan, S.; McKeen, S. A.; Hsie, E.-Y.; Frost, G. J.; Neuman, J. A.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Holloway, J.; Brown, S. S.; Nowak, J. B.; Roberts, J. M.; Wofsy, S. C.; Santoni, G. W.; Trainer, M.

    2012-12-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr-1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in

  6. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, Jerome; Angevine, Wayne; Ahmadov, Ravan; Kim, Si Wan; Evan, Stephanie; McKeen, Stuart; Hsie, Eirh Yu; Frost, Greg; Neuman, Andy; Pollack, Ilana; Peischl, Jeff; Ryerson, Tom; Holloway, John; Brown, Steeve; Nowak, John; Roberts, Jim; Wofsy, Steeve; Santoni, Greg; Trainer, Michael

    2013-04-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr-1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in

  7. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Angevine, W. M.; Ahmadov, R.; Kim, S.-W.; Evan, S.; McKeen, S. A.; Hsie, E.-Y.; Frost, G. J.; Neuman, J. A.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Holloway, J.; Brown, S. S.; Nowak, J. B.; Roberts, J. M.; Wofsy, S. C.; Santoni, G. W.; Oda, T.; Trainer, M.

    2013-04-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% in LA County and by 37% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% in LA County and by 27% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 Tg yr-1 in SoCAB. A flight during ITCT (Intercontinental Transport and Chemical Transformation) in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% in LA County but decreased by 4% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, a gridded CARB inventory and the posterior

  8. MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. I. Data products and redshift identifications

    NASA Astrophysics Data System (ADS)

    Karman, W.; Caputi, K. I.; Grillo, C.; Balestra, I.; Rosati, P.; Vanzella, E.; Coe, D.; Christensen, L.; Koekemoer, A. M.; Krühler, T.; Lombardi, M.; Mercurio, A.; Nonino, M.; van der Wel, A.

    2015-02-01

    We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the science verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-α emitters at z> 3, and five multiply-lensed galaxies. We report the detection of a new z = 4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C iii], C iv, and He ii emission in a multiply lensed galaxy at z = 3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.

  9. Optical spectroscopy and the UV luminosity function of galaxies in the Abell 1367, Coma and Virgo clusters

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Gavazzi, G.; Iglesias-Paramo, J.; Boselli, A.; Carrasco, L.

    2003-04-01

    Optical spectroscopy of 93 galaxies, 60 projected in the direction of Abell 1367, 21 onto the Coma cluster and 12 on Virgo, is reported. The targets were selected because they were detected in previous Hα , UV or r' surveys. The present observations bring to 100% the redshift completeness of Hα selected galaxies in the Coma region and to 75% in Abell 1367. All observed galaxies except one show Hα emission and belong to the clusters. This confirms previous determinations of the Hα luminosity function of the two clusters that were based on the assumption that all Hα detected galaxies were cluster members. Using the newly obtained data we re-determine the UV luminosity function of Coma and we compute for the first time the UV luminosity function of A1367. Their faint end slopes remain uncertain (-2.00

  10. Stable Inversion for Nonlinear Nonminimum-Phase Time Varying Systems

    NASA Technical Reports Server (NTRS)

    Devasia, S.; Paden, B.

    1998-01-01

    In this paper, we extend stable inversion to nonlinear time-varying systems and study computational issues; the technique is applicable to minimum-phase as well as nonminimum-phase systems. The inversion technique is new, even in the linear time-varying case, and relies on partitioning (the dichotomic split of) the linearized system dynamics into time-varying, stable, and unstable, submanifolds. This dichotomic split is used to build time-varying filters which are, in turn, the basis of a contraction used to find a bounded inverse input-state trajectory. Finding the inverse input-state trajectory allows the development or exact-output tracking controllers. The method is local to the time-varying trajectory and requires that the internal dynamics vary slowly; however, the method represents a significant advance relative to presently available tracking controllers. Present techniques are restricted to time-invariant nonlinear systems and, in the general case, track only asymptotically.

  11. Two-dimensional charged particle image inversion using a polar basis function expansion

    SciTech Connect

    Garcia, Gustavo A.; Nahon, Laurent; Powis, Ivan

    2004-11-01

    We present an inversion method called pBasex aimed at reconstructing the original Newton sphere of expanding charged particles from its two-dimensional projection by fitting a set of basis functions with a known inverse Abel integral. The basis functions have been adapted to the polar symmetry of the photoionization process to optimize the energy and angular resolution while minimizing the CPU time and the response to the cartesian noise that could be given by the detection system. The method presented here only applies to systems with a unique axis of symmetry although it can be adapted to overcome this restriction. It has been tested on both simulated and experimental noisy images and compared to the Fourier-Hankel algorithm and the original Cartesian basis set used by [Dribinski et al.Rev. Sci. Instrum. 73, 2634 (2002)], and appears to give a better performance where odd Legendre polynomials are involved, while in the images where only even terms are present the method has been shown to be faster and simpler without compromising its accuracy.

  12. Multi-channel OLA Inversion for Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason; Birch, A.; Gizon, L.

    2009-05-01

    We present preliminary results of a three-dimensional inversion for local helioseismology, in particular utilizing the time-distance technique. This inversion is unique in that in combines a Fourier-space multi-channel deconvolution with the optimally localized averages (OLA) method. The result is a very computationally efficient procedure that is fully parallelizable and suited for large-scale inversions needed for future studies. A simple example of the inversion is shown using point-to-point Born approximation kernels for sound-speed perturbations and the travel-time noise covariance. A step-by-step comparison is shown with a recently developed real-space OLA inversion to demonstrate the benefits of a Fourier-space formulation.

  13. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  14. Quasi MT Inversion of Short-Offset Transient Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Chen, Wei-ying; Xue, Guo-qiang; Khan, Muhammad Younis

    2016-07-01

    The short-offset transient electromagnetic method (SOTEM) has been extensively used for mineral and hydrocarbon exploration and hydrogeological investigations due to its ease of use and capability to generate diagnostic subsurface information. At present, the data processing methods of SOTEM are mainly focused on one dimensional inversion. To apply the proven inversion methods of frequency domain electromagnetic methods to SOTEM data, this paper presents a new transformation relation from time to frequency based on the similarity between SOTEM all-time apparent resistivity and magnetotelluric (MT) apparent resistivity. Results show that the transformation coefficients depend on the variation trend of SOTEM all-time apparent resistivity curves. Bostick inversion and conjugate gradient inversion techniques were applied to transformed SOTEM data and the results were validated by some simulated calculations and field measured data. This study provides a novel method to SOTEM data processing and a useful aid to join inversion with MT data.

  15. Stress inversion assumptions review

    NASA Astrophysics Data System (ADS)

    Lejri, Mostfa; Maerten, Frantz; Maerten, Laurent; Joonnenkindt, Jean Pierre; Soliva, Roger

    2014-05-01

    Wallace (1951) and Bott (1959) were the first to introduce the idea that the slip on each fault surface has the same direction and sense as the maximum shear stress resolved on that surface. This hypothesis are based on the assumptions that (i) faults are planar, (ii) blocks are rigid, (iii) neither stress perturbations nor block rotations along fault surfaces occur and (iv), the applied stress state is uniform. However, this simplified hypothesis is questionable since complex fault geometries, heterogeneous fault slip directions, evidences of stress perturbations in microstructures and block rotations along fault surfaces were reported in the literature. Earlier numerical geomechanical models confirmed that the striation lines (slip vectors) are not necessarily parallel to the maximum shear stress vector but is consistent with local stress perturbations. This leads us to ask as to what extent the Wallace and Bott simplifications are reliable as a basis hypothesis for stress inversion. In this presentation, a geomechanical multi-parametric study using 3D boundary element method (BEM), covering (i) fault geometries such as intersected faults or corrugated fault surfaces, (ii) the full range of Andersonian state of stress, (iii) fault friction, (iv) half space effect and (v), rock properties, is performed in order to understand the effect of each parameter on the angular misfit between geomechanical slip vectors and the resolved shear stresses. It is shown that significant angular misfits can be found under specific configurations and therefore we conclude that stress inversions based on the Wallace-Bott hypothesis might sometime give results that should be interpreted with care. Major observations are that (i) applying optimum tectonic stress conditions on complex fault geometries can increase the angular misfit, (ii) elastic material properties, combined to half-space effect, can enhance this effect, and (iii) an increase of the sliding friction leads to a

  16. Inverse magnetorheological fluids.

    PubMed

    Rodríguez-Arco, L; López-López, M T; Zubarev, A Y; Gdula, K; Durán, J D G

    2014-09-01

    We report a new kind of field-responsive fluid consisting of suspensions of diamagnetic (DM) and ferromagnetic (FM) microparticles in ferrofluids. We designate them as inverse magnetorheological (IMR) fluids for analogy with inverse ferrofluids (IFFs). Observations on the particle self-assembly in IMR fluids upon magnetic field application showed that DM and FM microparticles were assembled into alternating chains oriented along the field direction. We explain such assembly on the basis of the dipolar interaction energy between particles. We also present results on the rheological properties of IMR fluids and, for comparison, those of IFFs and bidispersed magnetorheological (MR) fluids. Interestingly, we found that upon magnetic field application, the rheological properties of IMR fluids were enhanced with respect to bidispersed MR fluids with the same FM particle concentration, by an amount greater than the sum of the isolated contribution of DM particles. Furthermore, the field-induced yield stress was moderately increased when up to 30% of the total FM particle content was replaced with DM particles. Beyond this point, the dependence of the yield stress on the DM content was non-monotonic, as expected for FM concentrations decreasing to zero. We explain these synergistic results by two separate phenomena: the formation of exclusion areas for FM particles due to the perturbation of the magnetic field by DM particles and the dipole-dipole interaction between DM and FM particles, which enhances the field-induced structures. Based on the second phenomenon, we present a theoretical model for the yield stress that semi-quantitatively predicts the experimental results. PMID:25022363

  17. Practical considerations for Abel inverting of photographic data with application to the analysis of a 15-kW wall-stabilized arc-light source

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1972-01-01

    Temperature profiles were measured for agron atmospheric pressure by using absolute line and continuum intensity and were compared with stark width and shift measurements. A detailed analysis of the engineering aspects of setting up for Abel inverting deta photographically is presented. The merits of using photographic detection and of using continuum radiation for temperature profile analysis are discussed. The importance of empirically determining the optical depth is emphasized by discrepancies between measured (two-path) and calculated estimates.

  18. Inverse problem for Bremsstrahlung radiation

    SciTech Connect

    Voss, K.E.; Fisch, N.J.

    1991-10-01

    For certain predominantly one-dimensional distribution functions, an analytic inversion has been found which yields the velocity distribution of superthermal electrons given their Bremsstrahlung radiation. 5 refs.

  19. XMM-Newton and Chandra Observations of the Remarkable Dynamics of the Intracluster Medium and Radio Sources in the Clusters Abell 2061 and 3667

    NASA Astrophysics Data System (ADS)

    Sarazin, C.; Hogge, T.; Chatzikos, M.; Wik, D.; Giacintucci, S.; Clarke, T.; Wong, K.; Gitti, M.; Finoguenov, A.

    2014-07-01

    XMM-Newton and Chandra observations of remarkable dynamic structures in the X-ray gas and connected radio sources in three clusters are presented. Abell 2061 is a highly irregular, merging cluster in the Corona Borealis supercluster. X-ray observations show that there is a plume of very cool gas (˜1 keV) to the NE of the cluster, and a hot (7.6 keV) shock region just NE of the center. There is a very bright radio relic to the far SW of the cluster, and a central radio halo/relic with an extension to the NE. Comparison to SLAM simulations show that this is an offset merger of a ˜5 × 10^{13} M⊙ subcluster with a ˜2.5 × 10^{14} M⊙ cluster seen after first core passage. The plume is the cool-core gas from the subcluster, which has been ``slingshot'' to the NE of the cluster. The plume gas is now falling back into the cluster center, and shocks when it hits the central gas. The model predicts a strong shock to the SW at the location of the bright radio relic, and another shock at the NE radio extension. Time permitting, the observations of Abell 2626 and Abell 3667 will also be presented.

  20. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  1. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-01-01

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960

  2. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    PubMed Central

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-01-01

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960

  3. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results. PMID:26926377

  4. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results.

  5. Geomechanical paleostress inversion using fracture data

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa; Gillespie, Paul

    2016-08-01

    We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.

  6. New techniques in dark matter mapping

    NASA Astrophysics Data System (ADS)

    Lorenz, Suzanne

    We have developed a new pipeline for mapping dark matter associated with clusters of galaxies via weak gravitational lensing. This method will be useful both with current datasets and future large optical survey telescopes, such as the Large Synoptic Survey Telescope (LSST). We use a novel source finding technique using a wavelet detection method. We then find known photometric and spectroscopic redshifts associated with our sources and measure the ellipticities of galaxies using a second moment technique. The ellipticity and photometric redshift distribution are then converted to a dark matter map. We have represented the dark matter as smoothed particles to invert the ellipticity map. This had yielded both 2D and 3D dark matter distributions when applied to our Subaru archive image of Abell 2218.

  7. Inverse Problem of Vortex Reconstruction

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Danaila, Ionut

    2014-11-01

    This study addresses the following question: given incomplete measurements of the velocity field induced by a vortex, can one determine the structure of the vortex? Assuming that the flow is incompressible, inviscid and stationary in the frame of reference moving with the vortex, the ``structure'' of the vortex is uniquely characterized by the functional relation between the streamfunction and vorticity. To focus attention, 3D axisymmetric vortex rings are considered. We show how this inverse problem can be framed as an optimization problem which can then be efficiently solved using variational techniques. More precisely, we use measurements of the tangential velocity on some contour to reconstruct the function defining the streamfunction-vorticity relation in a continuous setting. Two test cases are presented, involving Hill's and Norbury vortices, in which very good reconstructions are obtained. A key result of this study is the application of our approach to obtain an optimal inviscid vortex model in an actual viscous flow problem based on DNS data which leads to a number of nonintuitive findings.

  8. Inverse magnetic/shear catalysis

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  9. Package inspection using inverse diffraction

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2008-08-01

    More efficient cost-effective hand-held methods of inspecting packages without opening them are in demand for security. Recent new work in TeraHertz sources,1 millimeter waves, presents new possibilities. Millimeter waves pass through cardboard and styrofoam, common packing materials, and also pass through most materials except those with high conductivity like metals which block light and are easily spotted. Estimating refractive index along the path of the beam through the package from observations of the beam passing out of the package provides the necessary information to inspect the package and is a nonlinear problem. So we use a generalized linear inverse technique that we first developed for finding oil by reflection in geophysics.2 The computation assumes parallel slices in the packet of homogeneous material for which the refractive index is estimated. A beam is propagated through this model in a forward computation. The output is compared with the actual observations for the package and an update computed for the refractive indices. The loop is repeated until convergence. The approach can be modified for a reflection system or to include estimation of absorption.

  10. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  11. Search for the inverse fission of uranium

    NASA Astrophysics Data System (ADS)

    Loveland, W.; Yanez, R.; Beckerman, J.; Leonard, M.; Pettersson, G.; Gross, C. J.; Shapira, D.; Liang, J. F.; Kohley, Z.; Varner, R. L.

    2011-10-01

    A search for the ``inverse fission'' of uranium has been made. Two ``inverse fission'' reactions were studied, the reaction of 124Sn + 100Mo and the reaction of 132Sn + 100Mo. In the former case, evaporation residues were searched for using (a) in-beam α-spectroscopy, (b) post-irradiation α-spectroscopy and (c) in-beam detection of recoiling evaporation residues while in the latter case, the evaporation residue, 230U was searched for using post irradiation radio-analytical techniques. Data acquisition and analysis is on-going with expected upper limits or production cross sections of < 1 microbarn. The implications of these results for determining the fusion probability, PCN, in the collisions of massive nuclei are discussed. This work was supported in part by the USDOE Office of Nuclear Physics under Grant DE-FG06-97ER41026 and Contract No. DE-AC02-06CH11357.

  12. Regeneration of stochastic processes: an inverse method

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R.

    2005-10-01

    We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the early stages of the disease development.

  13. First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Röttgering, H. J. A.; Rafferty, D. A.; Pizzo, R.; Bonafede, A.; Brüggen, M.; Brunetti, G.; Ferrari, C.; Orrù, E.; Heald, G.; McKean, J. P.; Tasse, C.; de Gasperin, F.; Bîrzan, L.; van Zwieten, J. E.; van der Tol, S.; Shulevski, A.; Jackson, N.; Offringa, A. R.; Conway, J.; Intema, H. T.; Clarke, T. E.; van Bemmel, I.; Miley, G. K.; White, G. J.; Hoeft, M.; Cassano, R.; Macario, G.; Morganti, R.; Wise, M. W.; Horellou, C.; Valentijn, E. A.; Wucknitz, O.; Kuijken, K.; Enßlin, T. A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Boonstra, A.-J.; Brentjens, M.; van de Brink, R. H.; Broderick, J.; Brouw, W. N.; Butcher, H. R.; van Cappellen, W.; Ciardi, B.; Eislöffel, J.; Falcke, H.; Fender, R.; Garrett, M. A.; Gerbers, M.; Gunst, A.; van Haarlem, M. P.; Hamaker, J. P.; Hassall, T.; Hessels, J. W. T.; Koopmans, L. V. E.; Kuper, G.; van Leeuwen, J.; Maat, P.; Millenaar, R.; Munk, H.; Nijboer, R.; Noordam, J. E.; Pandey, V. N.; Pandey-Pommier, M.; Polatidis, A.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Sluman, J.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Vermeulen, R.; de Vos, M.; van Haarlem, M. P.

    2012-07-01

    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 ± 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 ± 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last ~0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.

  14. Modular theory of inverse systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.

  15. Inversion exercises inspired by mechanics

    NASA Astrophysics Data System (ADS)

    Groetsch, C. W.

    2016-02-01

    An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.

  16. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics.

    PubMed

    Mathiowetz, A M; Jain, A; Karasawa, N; Goddard, W A

    1994-11-01

    Two new methods developed for molecular dynamics simulations of very large proteins are applied to a series of proteins ranging up to the protein capsid of tomato bushy stunt virus (TBSV). For molecular dynamics of very large proteins and polymers, it is useful to carry out the dynamics using internal coordinates (say, torsions only) rather than Cartesian coordinates. This allows larger time steps, eliminates problems with the classical description of high energy modes, and focuses on the important degrees of freedom. The resulting equation of motion has the form. [formula: see text] where for T is the vector of generalized forces, M(theta) is the moments of inertia tensor, theta is the vector of torsions, and C is a vector containing Coriolis forces and nonbond forces. The problem is that to calculate the acceleration vector theta from M, C, and T requires inverting M(theta), an order N3 calculation. Since the number of degrees of freedom might be 300,000 for a million atom system, solving these equations every time step is impractical, restricting internal coordinate methods to small systems. The new method, Newton-Euler Inverse Mass Operator (NEIMO) dynamics, constructs the torsional accelerations vector theta = M-1 (T-C) directly by an order N process, allowing internal-coordinate dynamics to be solved for super larger (million atom) systems. The first use of the NEIMO method for molecular dynamics of proteins is presented here. A second serious difficulty for large proteins is calculation of the nonbond forces. We report here the first application to proteins of the new Cell Multipole Method (CMM) to evaluate the Coulomb and van der Waals interactions. The costs of CMM scales linearly with the number of particles while retaining an accuracy significantly better than standard nonbond methods (involving cutoffs). Results for NEIMO and CMM are given for simulations of a wide range of peptide and protein systems, including the protein capsid of TBSV with 488

  17. Inverse Problems of Thermoelectricity

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Luste, O. J.; Kuz, R. V.; Strutinsky, M. N.

    2011-05-01

    Classical thermoelectricity is based on the use of the Seebeck and Thomson effects that occur in the near-contact areas between n- and p-type materials. A conceptually different approach to thermoelectric power converter design that is based on the law of thermoelectric induction of currents is also known. The efficiency of this approach has already been demonstrated by its first applications. More than 10 basically new types of thermoelements were discovered with properties that cannot be achieved by thermocouple power converters. Therefore, further development of this concept is of practical interest. This paper provides a classification and theory for solving the inverse problems of thermoelectricity that form the basis for devising new thermoelement types. Computer methods for their solution for anisotropic and inhomogeneous media are elaborated. Regularities related to thermoelectric current excitation in anisotropic and inhomogeneous media are established. The possibility of obtaining eddy currents of a particular configuration through control of the temperature field and material parameters for the creation of new thermo- element types is demonstrated for three-dimensional (3D) models of anisotropic and inhomogeneous media.

  18. Polarization of inverse plasmon scattering

    NASA Technical Reports Server (NTRS)

    Windsor, R. A.; Kellogg, P. J.

    1974-01-01

    The scattering of electrostatic plasma waves by a flux of ultrarelativistic electrons passing through a plasma gives rise to a radiation spectrum which is similar to a synchrotron radiation spectrum. This mechanism, first considered by Gailitis and Tsytovich, is analagous to inverse Compton scattering, and we have named it inverse plasmon scattering. For a power-law electron flux, both inverse plasmon scattering and synchrotron radiation have the same spectral index. In an attempt to distinguish between these mechanisms, we have calculated the polarization level expected from inverse plasmon scattering. The polarization level found is similar to that obtained from a synchrotron radiation source. This means that the radiation produced by two mechanisms, synchrotron radiation and inverse plasmon scattering, is indistinguishable; and this attempt to differentiate between them by polarization effects has been unsuccessful.

  19. Stylolite stress inversion

    NASA Astrophysics Data System (ADS)

    Koehn, Daniel; Toussaint, Renaud; Ebner, Marcus; Gomez-Rivas, Enrique; Bons, Paul; Rood, Daisy

    2014-05-01

    Stylolites are localized dissolution seams that can be found in a variety of rocks, and can form due to sediment compaction or tectonic forces. Dissolution of the host-rock next to the stylolite is a function of the applied stress on the stylolite plane. Stylolite teeth indicate the direction of the main compressive stress. Recent advances have shown that the stylolite roughness also shows a stress scaling relation that can be used to calculate magnitudes of stress. Elastic and surface energies produce a different roughness, and the transition between the two is stress dependent and can be quantified. In order to measure the roughness a two or three-dimensional section of a stylolite plane is taken and transferred to a one-dimensional function. The cross-over in the roughness is then picked with the help of an FFT plot. Using this method the burial depth of sedimentary stylolites can be determined. Moreover, tectonic stylolites can be used to determine the full three-dimensional stress tensor if the paleodepth of the tectonic stylolite is known. Stylolites can also be used to find fault offsets and to understand when these faults were active and how the paleotopography looked like at the time the stylolites grew. However, uncertainties remain since Youngs Modulus, Poisson Ratio and surface energy may vary in rocks. In addition, the stylolites record only a snapshot in time, probably the moment when they closed and stopped dissolving. We show examples of the use of stress inversion for stylolite formation conditions in different tectonic settings, and discuss the potential of the method.

  20. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  1. Near-infrared photometry and stellar populations of first-ranked galaxies in a complete sample of nearby Abell clusters

    NASA Technical Reports Server (NTRS)

    Thuan, Trinx X.; Puschell, Jeffery J.

    1989-01-01

    Eighty-four brightest cluster members (BCMs) in the complete sample of high Galactic latitude nearby Abell clusters of Hoessel, Gunn, and Thuan (HGT) are investigated. The stellar populations in BCMs using near-infrared and optical-near-infrared colors are studied. Brighter BCMs have redder (J-K) and (V-K) colors, suggesting a metallicity increase in brighter galaxies. The larger dispersion of their colors implies that BCMs possess more heterogeneous stellar populations than their lower luminosity counterparts, the normal elliptical galaxies. Special attention is paid to BCMs associated with cooling flows. BCMs with larger accretion rates have bluer (V-K) colors due to ultraviolet excesses and are brighter in the visual wavelength region, but not in the infrared. It is suggested that part of the X-ray emitting cooling gas is converted into high- and intermediate-mass stars emitting in the blue and visible, but not in the infrared. The properties of BCMs as standard candles in the near-infrared are examined and compared with those in the optical.

  2. Two New Oleanane-Type Saponins with Anti-Proliferative Activity from Camellia oleifera Abel. Seed Cake.

    PubMed

    Zong, Jian-Fa; Peng, Yun-Ru; Bao, Guan-Hu; Hou, Ru-Yan; Wan, Xiao-Chun

    2016-01-01

    Two new oleanane-type saponins, named oleiferasaponins C₄ (1) and C₅ (2), were isolated from Camellia oleifera Abel. seed cake residue. Their respective structures were identified as 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxymethylene-olean-12-ene-3β-O-[β-d-galacto-pyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→2)-β-d-galactopyranosy-(1→3)]-β-d-glucopyranosid-uronic acid methyl ester (1) and 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxy-methylene-olean-12-ene-3β-O-[β-d-galactopyranosyl-(1→2)]-[β-d-galactopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (2) through 1D- and 2D-NMR, HR-ESI-MS, and GC-MS spectroscopic methods. The two compounds exhibited potent cytotoxic activities against five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB).

  3. A multiwavelength view of cooling versus AGN heating in the X-ray luminous cool-core of Abell 3581

    NASA Astrophysics Data System (ADS)

    Canning, R. E. A.; Sun, M.; Sanders, J. S.; Clarke, T. E.; Fabian, A. C.; Giacintucci, S.; Lal, D. V.; Werner, N.; Allen, S. W.; Donahue, M.; Edge, A. C.; Johnstone, R. M.; Nulsen, P. E. J.; Salomé, P.; Sarazin, C. L.

    2013-10-01

    We report the results of a multiwavelength study of the nearby galaxy group, Abell 3581 (z = 0.0218). This system hosts the most luminous cool core of any nearby group and exhibits active radio mode feedback from the supermassive black hole in its brightest group galaxy, IC 4374. The brightest galaxy has suffered multiple active galactic nucleus outbursts, blowing bubbles into the surrounding hot gas, which have resulted in the uplift of cool ionized gas into the surrounding hot intragroup medium. High velocities, indicative of an outflow, are observed close to the nucleus and coincident with the radio jet. Thin dusty filaments accompany the uplifted, ionized gas. No extended star formation is observed; however, a young cluster is detected just north of the nucleus. The direction of rise of the bubbles has changed between outbursts. This directional change is likely due to sloshing motions of the intragroup medium. These sloshing motions also appear to be actively stripping the X-ray cool core, as indicated by a spiralling cold front of high-metallicity, low-temperature, low entropy gas.

  4. Measuring the Hubble constant from Ryle Telescope and X-ray observations, with application to Abell 1413

    NASA Astrophysics Data System (ADS)

    Grainge, Keith; Jones, Michael E.; Pooley, Guy; Saunders, Richard; Edge, Alastair; Grainger, William F.; Kneissl, Rüdiger

    2002-06-01

    We describe our methods for measuring the Hubble constant from Ryle Telescope (RT) interferometric observations of the Sunyaev-Zel'dovich (SZ) effect from a galaxy cluster and observation of the cluster X-ray emission. We analyse the error budget in this method: as well as radio and X-ray random errors, we consider the effects of clumping and temperature differences in the cluster gas, of the kinetic SZ effect, of bremsstrahlung emission at radio wavelengths, of the gravitational lensing of background radio sources and of primary calibration error. Using RT, ASCA and ROSAT observations of the Abell 1413, we find that random errors dominate over systematic ones, and estimate H0=57- 16+23kms- 1Mpc- 1 for a an ΩM=1.0, ΩΛ=0.0 cosmology.

  5. Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1999-01-01

    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.

  6. Temperature inversion in China seas

    NASA Astrophysics Data System (ADS)

    Hao, Jiajia; Chen, Yongli; Wang, Fan

    2010-12-01

    Temperature inversion was reported as a common phenomenon in the areas near the southeastern Chinese coast (region A), west and south of the Korean Peninsula (region B), and north and east of the Shandong Peninsula (region C) during October-May in the present study, based on hydrographic data archived from 1930 through 2001 (319,029 profiles). The inversion was found to be remarkable with obvious temporal and spatial variabilities in both magnitude and coverage, with higher probabilities in region A (up to about 60%) and region C (40%-50%) than in region B (15%-20%). The analysis shows that seasonal variation of the net air-sea heat flux is closely related to the occurrence time of the inversion in the three areas, while the Yangtze and Yellow river freshwater plumes in the surface layer and ocean origin saline water in the subsurface layer maintain stable stratification. It seems that the evaporation/excessive precipitation flux makes little contribution to maintaining the stable inversion. Advection of surface fresh water by the wind-driven coastal currents results in the expansion of inversion in regions A and C. The inversion lasts for the longest period in region A (October-May) sustained by the Taiwan Warm Current carrying the subsurface saline water, while evolution of the inversion in region B is mainly controlled by the Yellow Sea Warm Current.

  7. Givental Graphs and Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, Petr; Shadrin, Sergey; Spitz, Loek

    2013-05-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  8. Inverse scattering code

    SciTech Connect

    Hale, A.; King, A.

    1997-09-01

    A methodology for the evaluation of complex electromagnetics problems is presented. The methodology reduces the computational requirements for the analysis of large scale computational electromagnetics problems by hybridizing the method of moments and physical optics techniques. The target model is based on triangular facets and the incident field source by its system response function. Data which can be obtained from the analysis are radar cross section, power spectral density, and range profiles.

  9. Source Inversion Validation: Quantifying Uncertainties in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Page, M. T.; Schorlemmer, D.

    2010-12-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Source inversion methods thus represent an important research tool in seismology to unravel the complexity of earthquake ruptures. Subsequently, source-inversion results are used to study earthquake mechanics, to develop spontaneous dynamic rupture models, to build models for generating rupture realizations for ground-motion simulations, and to perform Coulomb-stress modeling. In all these applications, the underlying finite-source rupture models are treated as “data” (input information), but the uncertainties in these data (i.e. source models obtained from solving an inherently ill-posed inverse problem) are hardly known, and almost always neglected. The Source Inversion Validation (SIV) project attempts to better understand the intra-event variability of earthquake rupture models. We plan to build a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion that also facilitates to develop robust approaches to quantify rupture-model uncertainties. Our contribution reviews the current status of the SIV project, recent forward-modeling tests for point and extended sources in layered media, and discusses the strategy of the SIV-project for the coming years.

  10. Tsunami waveform inversion by adjoint methods

    NASA Astrophysics Data System (ADS)

    Pires, Carlos; Miranda, Pedro M. A.

    2001-09-01

    An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.

  11. Towards a Full Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2015-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green's function between the two receivers. This assumption, however, is only met under specific conditions, for instance, wavefield diffusivity and equipartitioning, zero attenuation, etc., that are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations regarding Earth structure and noise generation. To overcome this limitation we attempt to develop a method that consistently accounts for noise distribution, 3D heterogeneous Earth structure and the full seismic wave propagation physics in order to improve the current resolution of tomographic images of the Earth. As an initial step towards a full waveform ambient noise inversion we develop a preliminary inversion scheme based on a 2D finite-difference code simulating correlation functions and on adjoint techniques. With respect to our final goal, a simultaneous inversion for noise distribution and Earth structure, we address the following two aspects: (1) the capabilities of different misfit functionals to image wave speed anomalies and source distribution and (2) possible source-structure trade-offs, especially to what extent unresolvable structure could be mapped into the inverted noise source distribution and vice versa.

  12. TOPICAL REVIEW: Inverse problems in elasticity

    NASA Astrophysics Data System (ADS)

    Bonnet, Marc; Constantinescu, Andrei

    2005-04-01

    This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.

  13. Inverse problems biomechanical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  14. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  15. Spatial operator approach to flexible manipulator inverse and forward dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1990-01-01

    This study extends to flexible multibody manipulators the recent results of the author on the use of spatially recursive filtering and smoothing techniques for robot arm dynamics. The configuration analyzed is that of a mechanical system of flexible bodies joined together by articulated joints. The inverse and forward dynamics problems are solved using the techniques of spatially recursive Kalman filtering and smoothing. The algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. The identities are easily derived using a spatial operator algebra developed by the author.

  16. Improved TV-CS Approaches for Inverse Scattering Problem

    PubMed Central

    Bevacqua, M. T.; Di Donato, L.

    2015-01-01

    Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420

  17. Inversion of imaging spectrometry data using singular value decomposition

    NASA Technical Reports Server (NTRS)

    Boardman, Joe W.

    1989-01-01

    The use of imaging spectrometers, which acquire data that are both spectrally contiguous images and spatially contiguous spectra, for quantitative remote sensing of the earth is addressed. Such data sets cannot be analyzed fully using either existing spectroscopic or image techniques. Singular value decomposition (SVD) is used here for spectral unmixing and determination of the spatial scales of mixing. It is shown that when it is used to invert the mixing endmember library, SVD allows more insight into library characteristics and more control of the inversion process than other commonly used matrix inversion techniques.

  18. Impacts of cost functions on inverse lithography patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen

    2010-10-25

    For advanced CMOS processes, inverse lithography promises better patterning fidelity than conventional mask correction techniques due to a more complete exploration of the solution space. However, the success of inverse lithography relies highly on customized cost functions whose design and know-how have rarely been discussed. In this paper, we investigate the impacts of various objective functions and their superposition for inverse lithography patterning using a generic gradient descent approach. We investigate the most commonly used objective functions, which are the resist and aerial images, and also present a derivation for the aerial image contrast. We then discuss the resulting pattern fidelity and final mask characteristics for simple layouts with a single isolated contact and two nested contacts. We show that a cost function composed of a dominant resist-image component and a minor aerial-image or image-contrast component can achieve a good mask correction and contour targets when using inverse lithography patterning.

  19. Joint three-dimensional inversion of magnetotelluric and magnetovariational data

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Dmitriev, V. I.; Gribenko, A. V.

    2010-08-01

    The problem of quantitative three-dimensional interpretation of the magnetotelluric (MT) data ranks among the most difficult problems in electromagnetic (EM) geophysics. Our paper presents a new rigorous numerical method for MT inversion, based on the integral equations technique. An important feature of the proposed method is the calculation of the Frechet derivative with the aid of a quasi-analytical approximation with an inhomogeneous background. This approach simplifies the algorithm of inversion and requires only a single forward modeling on each iteration. We have also developed a method for a joint inversion of MT and magnetovariational (MV) data. We show in the present paper that the joint inversion of MT impedances and the Wiese-Parkinson vectors can automatically allow for the static shift in the observed data, which is caused by the geoelectric inhomogeneities contained in the near-surface layer.

  20. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  1. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  2. Temperature Inversions Have Cold Bottoms.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Brown, Gail M.

    1982-01-01

    Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)

  3. Donor states in inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2014-09-01

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  4. Moebius inversion formula and inverting lattice sums

    NASA Astrophysics Data System (ADS)

    Millane, Rick P.

    2000-11-01

    The Mobius inversion formula is an interesting theorem from number theory that has application to a number inverse problems, particularly lattice problems. Specific inverse problems, however, often require related Mobius inversion formulae that can be derived from the fundamental formula. Derivation of such formulae is not easy for the non- specialist, however. Examples of the kinds of inversion formulae that can be derived and their application to inverse lattice problems are described.

  5. Inversion of tsunami waveforms and tsunami warning

    NASA Astrophysics Data System (ADS)

    An, Chao

    Ever since the 2004 Indian Ocean tsunami, the technique of inversion of tsunami data and the importance of tsunami warning have drawn the attention of many researchers. However, since tsunamis are rare and extreme events, developed inverse techniques lack validation, and open questions rise when they are applied to a real event. In this study, several of those open questions are investigated, i.e., the wave dispersion, bathymetry grid size and subfault division. First, tsunami records from three large tsunami events -- 2010 Maule, 2011 Tohoku and 2012 Haida Gwaii -- are analyzed to extract the main characteristics of the leading tsunami waves. Using the tool of wavelet transforming, the instant wave period can be obtained and thus the dispersive parameter mu2 can be calculated. mu2 is found to be smaller than 0.02 for all records, indicating that the wave dispersion is minor for the propagation of tsunami leading waves. Second, inversions of tsunami data are carried out for three tsunami events -- 2011 Tohoku, 2012 Haida Gwaii and 2014 Iquique. By varying the subfault size and the bathymetry grid size in the inversions, general rules are established for choosing those two parameters. It is found that the choice of bathymetry grid size depends on various parameters, such as the subfault size and the depth of subfaults. The global bathymetry data GEBCO with spatial resolution of 30 arcsec is generally good if the subfault size is larger than 40 km x 40 km; otherwise, bathymetry data with finer resolution is desirable. Detailed instructions of choosing the bathymetry size can be found in Chapter 2. By contrast, the choice of subfault size has much more freedom; our study shows that the subfault size can be very large without significant influence on the predicted tsunami waves. For earthquakes with magnitude of 8.0 ˜ 9.0, the subfault size can be 60 km ˜ 100 km. In our study, the maximum subfault size results in 9 ˜ 16 subfault patches on the ruptured fault surface

  6. Object-adapted inverse pattern projection: generation, evaluation, and applications

    NASA Astrophysics Data System (ADS)

    Bothe, Thorsten; Li, Wansong; von Kopylow, Christoph; Juptner, Werner P.

    2003-05-01

    Fast and robust 3D quality control as well as fast deformation measurement is of particular importance for industrial inspection. Additionally a direct response about measured properties is desired. Therefore, robust optical techniques are needed which use as few images as possible for measurement and visualize results in an efficient way. One promising technique for this aim is the inverse pattern projection which has the following advantages: The technique codes the information of a preceding measurement into the projected inverse pattern. Thus, it is possible to do differential measurements using only one camera frame for each state. Additionally, the results are optimized straight fringes for sampling which are independent of the object curvature. The ability to use any image for inverse projection enables the use for augmented reality, i.e. any properties can be visualized directly on the object's surface which makes inspections easier than with use of a separated indicating device. The hardware needs are low as just a programmable projector and a standard camera are necessary. The basic idea of inverse pattern projection, necessary algorithms ane found optimizations are demonstrated, roughly. Evaluation techniques were found to preserve a high quality phase measurement under imperfect conditions. The different application fields can be sorted out by the type of pattern used for inverse projection. We select two main topics for presentation. One is the incremental (one image per state) deformation measurement which is a promising technique for high speed deformation measurements. A video series of a wavering flag with projected inverse pattern was evaluated to show the complete deformation series. The other application is the optical feature marking (augmented reality) that allows to map any measured result directly onto the object under investigation. The general ability to straighten any kind of information on 3D surfaces is shown while preserving an exact

  7. Inverse boundary-layer theory and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1978-01-01

    Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.

  8. Multidimensional NMR inversion without Kronecker products: Multilinear inversion.

    PubMed

    Medellín, David; Ravi, Vivek R; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion. PMID:27209370

  9. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  10. Kinematics and stellar populations of low-luminosity early-type galaxies in the Abell 496 cluster

    NASA Astrophysics Data System (ADS)

    Chilingarian, I. V.; Cayatte, V.; Durret, F.; Adami, C.; Balkowski, C.; Chemin, L.; Laganá, T. F.; Prugniel, P.

    2008-07-01

    Context: The morphology and stellar populations of low-luminosity early-type galaxies in clusters have until now been limited to a few relatively nearby clusters such as Virgo or Fornax. Scenarii for the formation and evolution of dwarf galaxies in clusters are therefore not well constrained. Aims: We investigate here the morphology and stellar populations of low-luminosity galaxies in the relaxed richness class 1 cluster Abell 496 (z = 0.0330). Methods: Deep multiband imaging obtained with the CFHT Megacam allowed us to select a sample of faint galaxies, defined here as objects with magnitudes 18 < r' < 22 mag within a 1.2 arcsec fibre (-18.8 < MB < -15.1 mag). We observed 118 galaxies spectroscopically with the ESO VLT FLAMES/Giraffe spectrograph with a resolving power R = 6300. We present structural analysis and colour maps for the 48 galaxies belonging to the cluster. We fit the spectra of 46 objects with PEGASE.HR synthetic spectra to estimate the ages, metallicities, and velocity dispersions. We estimated possible biases by similarly analysing spectra of ~1200 early-type galaxies from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6). We computed values of α/Fe abundance ratios from the measurements of Lick indices. We briefly discuss effects of the fixed aperture size on the measurements. Results: For the first time, high-precision estimates of stellar population properties have been obtained for a large sample of faint galaxies in a cluster, allowing for the extension of relations between stellar populations and internal kinematics to the low-velocity dispersion regime. We have revealed a peculiar population of elliptical galaxies in the core of the cluster, resembling massive early-type galaxies by their stellar population properties and velocity dispersions, but having luminosities of about 2 mag fainter. Conclusions: External mechanisms of gas removal (ram pressure stripping and gravitational harassment) are more likely to have occurred than

  11. A CHANDRA X-RAY ANALYSIS OF ABELL 1664: COOLING, FEEDBACK, AND STAR FORMATION IN THE CENTRAL CLUSTER GALAXY

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Kazemzadeh, F.; Cavagnolo, K. W.; Rafferty, D. A.; BIrzan, L.; Nulsen, P. E. J.; Wise, M. W.; Gitti, M.

    2009-05-20

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of {approx} 23 M {sub sun} yr{sup -1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 10{sup 8} yr and entropy of 10.4 keV cm{sup 2} are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, 'barlike' X-ray structure whose mass is comparable to the mass of molecular hydrogen, {approx}10{sup 10} M {sub sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of BIrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  12. Direct measurement of lensing amplification in Abell S1063 using a strongly lensed high redshift HII galaxy

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Melnick, Jorge; Terlevich, Elena; Chávez, Ricardo; Telles, Eduardo; Bresolin, Fabio; Plionis, Manolis; Basilakos, Spyros; Fernández Arenas, David; González Morán, Ana Luisa; Díaz, Ángeles I.; Aretxaga, Itziar

    2016-08-01

    ID11 is an actively star-forming, extremely compact galaxy and Lyα emitter at z = 3.117 that is gravitationally magnified by a factor of ~17 by the cluster of galaxies Hubble Frontier Fields AS1063. The observed properties of this galaxy resemble those of low luminosity HII galaxies or giant HII regions such as 30 Doradus in the Large Magellanic Cloud. Using the tight correlation correlation between the Balmer-line luminosities and the width of the emission lines (typically L(Hβ) - σ(Hβ)), which are valid for HII galaxies and giant HII regions to estimate their total luminosity, we are able to measure the lensing amplification of ID11. We obtain an amplification of 23 ± 11 that is similar within errors to the value of ~17 estimated or predicted by the best lensing models of the massive cluster Abell S1063. We also compiled, from the literature, luminosities and velocity dispersions for a set of lensed compact star-forming regions. There is more scatter in the L-σ correlation for these lensed systems, but on the whole the results tend to support the lensing model estimates of the magnification. Our result indicates that the amplification can be independently measured using the L - σ relation in lensed giant HII regions or HII galaxies. It also supports the suggestion, even if lensing is model dependent, that the L - σ relation is valid for low luminosity high-z objects. Ad hoc observations of lensed star-forming systems are required to determine the lensing amplification accurately.

  13. Global inversion for anisotropy during full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Debens, H. A.; Warner, M.; Umpleby, A.

    2015-12-01

    Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.

  14. A numerical inversion of a the Laplace transform solution to radial dispersion in a porous medium.

    USGS Publications Warehouse

    Moench, A.F.; Ogata, A.

    1981-01-01

    A special form of the numerical inversion of the Laplace transform described by Stehfest (1970) is applied to the transformed solution of dispersion in a radial flow system in a porous medium. The inversion is extremely simple to use because the weighting coefficients depend only on the number of terms used in the computation and not upon the transform solution as required by most numerical inversion techniques.-from Authors

  15. New Y-function based MOSFET parameter extraction method from weak to strong inversion range

    NASA Astrophysics Data System (ADS)

    Henry, J. B.; Rafhay, Q.; Cros, A.; Ghibaudo, G.

    2016-09-01

    A new Y-function based MOSFET parameter extraction method is proposed. This method relies on explicit expressions of inversion charge and drain current versus Yc(=Qi√Cgc)-function and Y(=Id/√gm)-function, respectively, applicable from weak to strong inversion range. It enables a robust MOSFET parameter extraction even for low gate voltage overdrive, whereas conventional extraction techniques relying on strong inversion approximation fail.

  16. Inversion strategies for visco-acoustic waveform inversion

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Pratt, R. G.

    2013-08-01

    Visco-acoustic waveform inversion can potentially yield quantitative images of the distribution of both velocity and the attenuation parameters from seismic data. Intrinsic P-wave attenuation has been of particular interest, but has also proven challenging. Frequency-domain inversion allows attenuation and velocity relations to be easily incorporated, and allows a natural multiscale approach. The Laplace-Fourier approach extends this to allow the natural damping of waveforms to enhance early arrivals. Nevertheless, simultaneous inversion of velocity and attenuation leads to significant `cross-talk' between the resulting images, reflecting a lack of parameter resolution and indicating the need for pre-conditioning and regularization of the inverse problem. We analyse the cross-talk issue by partitioning the inversion parameters into two classes; the velocity parameter class, and the attenuation parameter class. Both parameters are defined at a reference frequency, and a dispersion relation is assumed that describes these parameters at any other frequency. We formulate the model gradients at a forward modelling frequency, and convert them to the reference frequency by employing the Jacobian of the coordinate change represented by the dispersion relation. We show that at a given modelling frequency, the Fréchet derivatives corresponding to these two parameter classes differ only by a 90° phase shift, meaning that the magnitudes of resulting model updates will be unscaled, and will not reflect the expected magnitudes in realistic (Q-1 ≪ 1) media. Due to the lack of scaling, cross-talk will be enhanced by poor subsurface illumination, by errors in kinematics, and by data noise. To solve these issues, we introduce an attenuation scaling term (the inverse of a penalty term) that is used to pre-condition the gradient by controlling the magnitudes of the updates to the attenuation parameters. Initial results from a suite of synthetic cross-hole tests using a three

  17. Fast Gibbs sampling for high-dimensional Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Lucka, Felix

    2016-11-01

    Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures can be a significant advantage. Alongside theoretical progress, various new computational techniques allow us to sample very high dimensional posterior distributions: in (Lucka 2012 Inverse Problems 28 125012), and a Markov chain Monte Carlo posterior sampler was developed for linear inverse problems with {{\\ell }}1-type priors. In this article, we extend this single component (SC) Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general {{\\ell }}pq priors with additional hard constraints. In addition, a fast computation of the conditional, SC densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can utilize their specific structure for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples. These new samplers allow us to perform sample-based Bayesian inference in high-dimensional scenarios with certain priors for the first time, including the inversion of computed tomography data with the popular isotropic total variation prior.

  18. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  19. Inversion of Chelyabinsk Meteorite Micromagnetic Maps - Implication for Inversions of Mars Magnetic Maps

    NASA Astrophysics Data System (ADS)

    Mazanec, M.; Kletetschka, G.

    2014-12-01

    The largest fragment of Chelyabinsk meteorite fell into the Russian lake Chebarkul on February 15, 2013. We used magnetic scanner constructed by Youngwood Science and Engineering (YSE, see Kletetschka et al 2013) to obtain micromagnetic maps of one of the Chelyabinsk's meteorite fragment. Our instrument has a Hall effect magnetic sensor and maps vertical component of the magnetic field approximately 0.3 mm above the planar surface of meteorite sample. Advantage of this instrument is a constant background field due to static position of the sensor. We applied fast Fourier transform inversion technique developed by Lima et al (2013). This technique is tailored for scanning magnetic microscopy (SMM), but may be also modified for aeromagnetic or satellite survey. It retrieves planar unidirectional magnetization distribution from micromagnetic field map. With this technique we achieved verifiable information about the source of the magnetic anomalies in our meteorite sample. Specific areas of detected magnetization were used for compositional analyses by scanning electron microscopy (SEM). This way we obtain the ground truth for the source of magnetic anomalies of our meteorite thin section. Measurement of chemical composition of magnetic grains can be directly linked to the amount of magnetization for the specific magnetic mineralogy. The inversion technique was extended for interpretation of real magnetic anomalies on Mars. Lima, E. A., B. P. Weiss, L. Baratchart,D. P.Hardin, and E. B. Saff (2013), Fast inversion ofmagnetic field maps of unidirectional planar geological magnetization, J. Geophys. Res. Solid Earth, 118, 2723-2752, doi:10.1002/jgrb.50229.Kletetschka, G., Schnabl, P., Sifnerova, K., Tasaryova, Z., Manda, S., and Pruner, P., 2013, Magnetic scanning and interpretation of paleomagnetic data from Prague Synform's volcanics: Studia Geophysica Et Geodaetica, v. 57, no. 1, p. 103-117.

  20. Galaxy clusters with multiple components. I - The dynamics of Abell 98

    NASA Technical Reports Server (NTRS)

    Beers, T. C.; Geller, M. J.; Huchra, J. P.

    1982-01-01

    The nature and evolution of rich galaxy clusters containing multiple condensations is studied. Velocities for 13 members of A98 are presented and the determination of dynamical properties of the individual subclusters is substantially improved. The application of techniques for quantifying gravitational scale lengths are stressed without invocation of the symmetry arguments demanded by the usual parameter fitting procedures. The entire A98 cluster is modeled as a two-body system. The probability that A98 is bound is found to be 98 percent. From this model and the results of previous N-body simulations, it is shown that the most likely description of the system is that it reached maximum expansion about 3.5 billion years ago and is presently in a state of collapse. The subclusters will merge in another three billion years.

  1. Thermoelectric properties of inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.; Poilvert, N.; Crespi, V. H.

    2016-02-01

    Rayleigh's method [Philos. Mag. Ser. 5 34, 481 (1892)] is used to solve for the classical thermoelectric equations in inverse opals. His theory predicts that in an inverse opal, with periodic holes, the Seebeck coefficient and the figure of merit are identical to that of the bulk material. We also provide a major revision to Rayleigh's method, in using the electrochemical potential as an important variable, instead of the electrostatic potential. We also show that in some cases, the thermal boundary resistance is important in the effective thermal conductivity.

  2. Darwin's "strange inversion of reasoning".

    PubMed

    Dennett, Daniel

    2009-06-16

    Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive "inversion of reasoning" (according to a 19th century critic): "to make a perfect and beautiful machine, it is not requisite to know how to make it" [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own.

  3. Population inversion by chirped pulses

    SciTech Connect

    Lu Tianshi

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  4. DEVELOPING SEASONAL AMMONIA EMISSION ESTIMATES WITH AN INVERSE MODELING TECHNIQUE

    EPA Science Inventory

    Significant uncertainty exists in magnitude and variability of ammonia (NH3) emissions, which are needed for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural non-point sources. We sus...

  5. Tensor Inversion of Intrinsic Permeabilities for Heterogeneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Zhang, Y.

    2013-12-01

    An inverse method has been developed using hybrid formulations and coordinate transform techniques to simultaneously estimate multiple intrinsic permeability tensors (k), flow field, and boundary conditions for a heterogeneous reservoir under non-pumping or pumping conditions [Jiao & Zhang, 2013]. Unlike the objective-function-based approaches, the inverse method does not require forward flow simulations to assess the data-model misfits; thus the knowledge of reservoir boundary conditions is not needed. The method directly incorporates noisy observed data (i.e., fluid heads, Darcy fluxes, or well rates) at the measurement locations, without solving a boundary value problem. Given sufficient measurement data, it yields well-posed systems of equations that can be solved efficiently with coarse inverse grids and nonlinear optimization. When pumping and injection are active, the well rates can be used as measurements and subsurface flux sampling is not needed. Also, local grid refinement at the well locations is not needed for the inversion to succeed. The method is successfully tested for reservoir problems with regular and irregular geometries, different petrofacies patterns, and permeability anisotropy ratios. All problems yield stable solutions under increasing measurement errors. For a given set of the observation data, inversion accuracy is most affected by the permeability anisotropy ratio. Accuracy in estimating k is also affected by the flow pattern: within a given petrofacies, when the Darcy flux component is extremely small, the corresponding directional permeability perpendicular to streamlines becomes less identifiable. Finally, inversion is successful even if the location of the reservoir boundaries is unknown. In this case, the problem domain for inversion is defined by the location of the measurement data. Select problems are presented below in a set of figures and a table (the relevant quantities have a consistent set of units and are thus not labeled

  6. Internal dynamics of the galaxy cluster Abell 545. The ideal case where to study the simultaneous formation of a galaxy system and its brightest galaxy

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Eckert, D.; Rossetti, M.

    2011-05-01

    Context. The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. Aims: We seek to explore the internal dynamics of the cluster Abell 545, which has been shown to host a radio halo. Abell 545 is also peculiar for hosting in its center a very bright, red, diffuse intracluster light due to an old, presumably metal-rich stellar population, so bright to be named as "star pile". Methods: Our analysis is mainly based on redshift data for 110 galaxies acquired at the Telescopio Nazionale Galileo. We identify 95 cluster members and analyze the cluster internal dynamics by combining galaxy velocities and positions. We also use both multiband photometric data acquired at the Isaac Newton Telescope and X-ray data from the XMM-Newton Science Archive. Results: We estimate the cluster redshift, ⟨ z ⟩ = 0.1580, a large line-of-sight (LOS) velocity dispersion σV ~ 1200 km s-1, and ICM temperature kTX ~ 8 keV. Our optical and X-ray analyses detect substructures. Optical data reveal three main galaxy clumps (one at the center hosting the peak of X-ray emission; one at NNW, and one at NE); and possibly a fourth clump at South. There is not a dominant galaxy and the four brightest galaxies avoid the cluster core - ≳ 0.4 h70-1 Mpcdistant from the cluster center - and are ≳ 1500 km s-1far from the mean cluster velocity. Two of these brightest galaxies are located in the NNW and NE clumps. The analysis of the X-ray surface brightness distribution provides us evidence of a disturbed dynamical phase: the strong NNW-SSE elongation, a western excess, and a sharp discontinuity in the northern region which is the likely signature of a shock. Located in the star pile region there is the brightest galaxy of the cluster core (CBCG) and a very compact elliptical galaxy, likely a M32-like dwarf. We show that the star pile, which has a previously determined redshift, has a similar redshift to that of

  7. Inversions. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Bakel'man, I. Ya

    Inversions are transformations of geometric figures, under which straight lines may be mapped to circles, and conversely. The use of such mapping allows development of a unified method of solution for many of the problems of elementary geometry, especially those concerning constructions and "pencils" of curves. This book discusses the inversion…

  8. Action Understanding as Inverse Planning

    ERIC Educational Resources Information Center

    Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.

    2009-01-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…

  9. Inversion of canopy reflectance models for estimation of vegetation parameters

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.

    1987-01-01

    One of the keys to successful remote sensing of vegetation is to be able to estimate important agronomic parameters like leaf area index (LAI) and biomass (BM) from the bidirectional canopy reflectance (CR) data obtained by a space-shuttle or satellite borne sensor. One approach for such an estimation is through inversion of CR models which relate these parameters to CR. The feasibility of this approach was shown. The overall objective of the research carried out was to address heretofore uninvestigated but important fundamental issues, develop the inversion technique further, and delineate its strengths and limitations.

  10. Estimating stellar mean density through seismic inversions

    NASA Astrophysics Data System (ADS)

    Reese, D. R.; Marques, J. P.; Goupil, M. J.; Thompson, M. J.; Deheuvels, S.

    2012-03-01

    Context. Determining the mass of stars is crucial both for improving stellar evolution theory and for characterising exoplanetary systems. Asteroseismology offers a promising way for estimating the stellar mean density. When combined with accurate radii determinations, such as are expected from Gaia, this yields accurate stellar masses. The main difficulty is finding the best way to extract the mean density of a star from a set of observed frequencies. Aims: We seek to establish a new method for estimating the stellar mean density, which combines the simplicity of a scaling law while providing the accuracy of an inversion technique. Methods: We provide a framework in which to construct and evaluate kernel-based linear inversions that directly yield the mean density of a star. We then describe three different inversion techniques (SOLA and two scaling laws) and apply them to the Sun, several test cases and three stars, α Cen B, HD 49933 and HD 49385, two of which are observed by CoRoT. Results: The SOLA (subtractive optimally localised averages) approach and the scaling law based on the surface correcting technique described by Kjeldsen et al. (2008, ApJ, 683, L175) yield comparable results that can reach an accuracy of 0.5% and are better than scaling the large frequency separation. The reason for this is that the averaging kernels from the two first methods are comparable in quality and are better than what is obtained with the large frequency separation. It is also shown that scaling the large frequency separation is more sensitive to near-surface effects, but is much less affected by an incorrect mode identification. As a result, one can identify pulsation modes by looking for an ℓ and n assignment which provides the best agreement between the results from the large frequency separation and those from one of the two other methods. Non-linear effects are also discussed, as is the effects of mixed modes. In particular, we show that mixed modes bring little

  11. THE RICH GLOBULAR CLUSTER SYSTEM OF ABELL 1689 AND THE RADIAL DEPENDENCE OF THE GLOBULAR CLUSTER FORMATION EFFICIENCY

    SciTech Connect

    Alamo-Martínez, K. A.; González-Lópezlira, R. A.; Blakeslee, J. P.; Côté, P.; Ferrarese, L.; Jee, M. J.; Jordán, A.; Meurer, G. R.; Peng, E. W.; West, M. J.

    2013-09-20

    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z = 0.18), one of the most powerful gravitational lenses known. With 28 Hubble Space Telescope/Advanced Camera for Surveys orbits in the F814W bandpass, we reach a magnitude I{sub 814} = 29 with ∼>90% completeness and sample the brightest ∼5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N{sup total}{sub GC}= 162,850{sup +75,450}{sub -51,310} GCs within a projected radius of 400 kpc. As many as half of the GCs may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this system is by far the largest GC population studied to date. The specific frequency S{sub N} is high, but not uncommon for central galaxies in massive clusters, rising from S{sub N} ≈ 5 near the center to ∼12 at large radii. Passive galaxy fading would increase S{sub N} by ∼20% at z = 0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M{sub GC}{sup total} = 3.9 × 10{sup 10} M{sub ☉}, is comparable to ∼80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.

  12. The ASTRODEEP Frontier Fields catalogues. II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The

  13. PHYSICAL PROPERTIES AND MORPHOLOGY OF A NEWLY IDENTIFIED COMPACT z = 4.04 LENSED SUBMILLIMETER GALAXY IN ABELL 2218

    SciTech Connect

    Knudsen, Kirsten K.; Kneib, Jean-Paul; Richard, Johan; Petitpas, Glen; Egami, Eiichi

    2010-01-20

    We present the identification of a bright submillimeter (submm) source, SMM J163555.5+661300, detected in the lensing cluster Abell 2218, for which we have accurately determined the position using observations from the Submillimeter Array (SMA). The identified optical counterpart has a spectroscopic redshift of z = 4.044 +- 0.001 if we attribute the single emission line detected at lambda = 6140 A to Lyalpha. This redshift identification is in good agreement with the optical/near-infrared photometric redshift as well as the submm flux ratio S{sub 450}/S{sub 850}approx 1.6, the radio-submm flux ratio S{sub 1.4}/S{sub 850} < 0.004, and the 24 mum to 850 mum flux ratio S{sub 24}/S{sub 850} < 0.005. Correcting for the gravitational lensing amplification of approx5.5, we find that the source has a far-infrared luminosity of 1.3 x 10{sup 12} L{sub sun}, which implies a star formation rate (SFR) of 230 M{sub sun} yr{sup -1}. This makes it the lowest-luminosity submillimeter galaxy (SMG) known at z>4 to date. Previous CO(4-3) emission line observations yielded a non-detection, for which we derived an upper limit of the CO line luminosity of L{sub CO}{sup '}= 0.3x10{sup 10} K km s{sup -1} pc{sup -2}, which is not inconsistent with the L{sup '}{sub CO}-L{sub FIR} relation for starburst galaxies. The best-fit model to the optical and near-infrared photometry give a stellar population with an age of 1.4 Gyr and a stellar mass of 1.6 x 10{sup 10} M{sub sun}. The optical morphology is compact and in the source plane the galaxy has an extent of approx6 x 3 kpc with individual star-forming knots of <500 pc in size. J163556 is not resolved in the SMA data, and we place a strict upper limit on the size of the starburst region of 8 kpc x 3 kpc, which implies a lower limit on the SFR surface density of 12 M{sub sun} yr{sup -1} kpc{sup 2}. The redshift of J163556 extends the redshift distribution of faint, lensed SMGs, and we find no evidence that these have a different redshift

  14. TOPICAL REVIEW: Inverse problems in systems biology

    NASA Astrophysics Data System (ADS)

    Engl, Heinz W.; Flamm, Christoph; Kügler, Philipp; Lu, James; Müller, Stefan; Schuster, Peter

    2009-12-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior.

  15. Inverse statistical mechanics, lattice packings, and glasses

    NASA Astrophysics Data System (ADS)

    Marcotte, Etienne

    Computer simulation methods enable the investigation of systems and properties that are intractable by purely analytical or experimental approaches. Each chapter of this dissertation contains an application of simulation methods to solve complex physical problems consisting of interacting many-particle or many-spin systems. The problems studied in this dissertation can be divided up into the following two broad categories: inverse and forward problems. The inverse problems considered are those in which we construct an interaction potential such that the corresponding ground state is a targeted configuration. In Chapters 2 and 3, we devise convex pair-potential functions that result in low-coordinated ground states. Chapter 2 describes targeted ground states that are the square and honeycomb crystals, while in Chapter 3 the targeted ground state is the diamond crystal. Chapter 4 applies similar techniques to explicitly enumerate all unique ground states up to a given system size, for spin configurations that interact according to generalized isotropic Ising potentials with finite range. We also consider forward statistical-mechanical problems. In Chapter 5, we adapt a linear programming algorithm to find the densest lattice packings across Euclidean space dimensions. In Chapter 6, we demonstrate that for two different glass models a signature of the glass transition is apparent well before the transition temperature is reached. In both models, this signature appears as nonequilibrium length scales that grow upon supercooling.

  16. Two and three dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Booker, J. R.

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  17. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  18. BD-22°3467, a DAO-type star exciting the nebula Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Köppen, J.; Kruk, J. W.

    2012-12-01

    Context. Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (Teff), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims: Previous spectral analyses of the exciting star of the nebula A 35, BD-22°3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22°3467 and to determine the abundances of the respective species precisely. Methods: For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results: The best agreement with the UV observation of BD-22°3467 is achieved at Teff = 80 ± 10 kK and log g = 7.2 ± 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M ≈ 0.48 M⊙. Conclusions.BD-22°3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf

  19. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  20. 3D stochastic inversion and joint inversion of potential fields for multi scale parameters

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman

    In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel

  1. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  2. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  3. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  4. Joint inversion of fundamental and higher mode Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.

    2008-01-01

    In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.

  5. A scatterometry inverse problem in optical mask metrology

    NASA Astrophysics Data System (ADS)

    Model, R.; Rathsfeld, A.; Gross, H.; Wurm, M.; Bodermann, B.

    2008-11-01

    We discuss the solution of the inverse problem in scatterometry i.e. the determination of periodic surface structures from light diffraction patterns. With decreasing details of lithography masks, increasing demands on metrology techniques arise. By scatterometry as a non-imaging indirect optical method critical dimensions (CD) like side-wall angles, heights, top and bottom widths are determined. The numerical simulation of diffraction is based on the finite element solution of the Helmholtz equation. The inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. The inverse operator maps efficiencies of diffracted plane wave modes to the grating parameters. We employ a Newton type iterative method to solve the resulting minimum problem. The reconstruction quality surely depends on the angles of incidence, on the wave lengths and/or the number of propagating scattered wave modes and will be discussed by numerical examples.

  6. An inverse problem by boundary element method

    SciTech Connect

    Tran-Cong, T.; Nguyen-Thien, T.; Graham, A.L.

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  7. Full waveform inversion of solar interior flows

    SciTech Connect

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  8. Ultrahigh-intensity inverse bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Rax, J.-M.

    1999-01-01

    We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh intensity absorption (emission) coefficient is derived for an arbitrary scattering potential and small-angle scattering. We find that in the Coulomb field case this absorption (emission) coefficient can be calculated as a function of the quiver energy, drift momentum, and impact parameter in two complementary regimes: (i) for remote collisions when the impact parameter is larger than the amplitude of the quiver motion, and (ii) for instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual photon of the ion Coulomb field. The relativistic modification of Marcuse's effect [Bell Syst. Tech. J. 41, 1557 (1962)] are also discussed, and relations with previous nonrelativistic results are elucidated.

  9. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  10. Momentum resolution in inverse photoemission.

    PubMed

    Zumbülte, A; Schmidt, A B; Donath, M

    2015-01-01

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  11. Simplified, inverse, ejector design tool

    NASA Technical Reports Server (NTRS)

    Dechant, Lawrence J.

    1993-01-01

    A simple lumped parameter based inverse design tool has been developed which provides flow path geometry and entrainment estimates subject to operational, acoustic, and design constraints. These constraints are manifested through specification of primary mass flow rate or ejector thrust, fully-mixed exit velocity, and static pressure matching. Fundamentally, integral forms of the conservation equations coupled with the specified design constraints are combined to yield an easily invertible linear system in terms of the flow path cross-sectional areas. Entrainment is computed by back substitution. Initial comparison with experimental and analogous one-dimensional methods show good agreement. Thus, this simple inverse design code provides an analytically based, preliminary design tool with direct application to High Speed Civil Transport (HSCT) design studies.

  12. Inverse psoriasis treated with ustekinumab.

    PubMed

    Campos, Manuel António; Varela, Paulo; Baptista, Armando; Moreira, Ana Isabel

    2016-01-01

    Inverse psoriasis is characterised by the involvement of flexural skin folds. This form of psoriasis has distinct clinical and therapeutic features. This report refers to the case of a 48-year-old Caucasian man who was observed in our department, with a clinically and biopsy proven diagnosis of inverse psoriasis. For 2 years, the patient was treated with different combinations of corticosteroids, vitamin D analogues and methotrexate, with no satisfactory response. Given the lack of a clinical response and comorbidities, latent tuberculosis was excluded, and we started treatment with ustekinumab. We chose this biological agent because the patient was a long-distance truck driver and refused the possibility of autoinjections. The patient underwent three ustekinumab injections, which resulted in significant improvement of pruritus, erythaematous lesions and quality of life. PMID:27222277

  13. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  14. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  15. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  16. Phenomenological description of phase inversion.

    PubMed

    Piela, K; Ooms, G; Sengers, J V

    2009-02-01

    We propose an extended Ginzburg-Landau model for a description of the ambivalence region associated with the phenomenon of phase inversion observed in dispersed water-oil flow through a pipe. In analogy to the classical mean-field theory of phase transitions, it is shown that a good quantitative representation of the ambivalence region is obtained by using the injected phase volume fraction and a friction factor as the appropriate physical parameters.

  17. On the Magic Square and Inverse

    ERIC Educational Resources Information Center

    Elzaidi, S. M.

    2005-01-01

    In this note, we give a method for finding the inverse of a three by three magic square matrix without using the usual methods for finding the inverse of a matrix. Also we give a method for finding the inverse of a three by three magic square matrix whose entries are also matrices. By using these ideas, we can construct large matrices whose…

  18. Recombination rate predicts inversion size in Diptera.

    PubMed

    Cáceres, M; Barbadilla, A; Ruiz, A

    1999-09-01

    Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination.

  19. Recombination rate predicts inversion size in Diptera.

    PubMed Central

    Cáceres, M; Barbadilla, A; Ruiz, A

    1999-01-01

    Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710

  20. Inverse modeling analysis of soil dust sources over East Asia

    NASA Astrophysics Data System (ADS)

    Ku, Bonyang; Park, Rokjin J.

    2011-10-01

    Soil dust is the dominant aerosol by mass concentration in the troposphere and has considerable effects on air quality and climate. Parts of East Asia, including southern Mongolia, northern China, and the Taklamakan Desert, are important dust source regions. Accurate simulations of dust storm events are crucial for protecting human health and assessing the climatic impacts of dust events. However, even state-of-the-art aerosol models still contain large uncertainties in soil dust simulations, particularly for the dust emissions over East Asia. In this study, we attempted to reduce these uncertainties by using an inverse modeling technique to simulate dust emissions. We used the measured mass concentration of particles less than 10 μm in aerodynamic diameter (PM10) in the surface air over East Asia, in combination with an inverse model, to understand the dust sources. The global three-dimensional GEOS-Chem chemical transport model (CTM) was used as a forward model. The inverse model analysis yielded a 76% decrease in dust emissions from the southern region of the Gobi Desert, relative to the a priori result. The a posteriori dust emissions from the Taklamakan Desert and deserts in eastern and Inner Mongolia were two to three fold higher than the a priori dust emissions. The simulation results with the a posteriori dust sources showed much better agreement with these observations, indicating that the inverse modeling technique can be useful for estimation of the optimized dust emissions from individually sourced regions.

  1. Frontier Field Abell 370

    NASA Astrophysics Data System (ADS)

    Soifer, Tom; Capak, Peter

    2014-08-01

    After considering valuable advice from the astronomical community and broad range of open questions in galaxy evolution an advisory committee unanimously recommended HST undertake a program of six deep fields centered on strong lensing galaxy clusters in p arallel with six deep blank fields". The key science goals of these twelve new frontier fields are: 1) to reveal hitherto inaccessible populations of z = 5 - 10 galaxies thatare 10 - 50 times fainter intrinsically than any presently known. 2) to solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times 3) to provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5 4) to find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up. Spitzer data are essential to meeting these goals because it enables mass and physical parameter estimates for the high redshift sources and differentiates between low and high redshift galaxies. As a result Spitzer has committed to observing these fields as a major DDT program. The first 4 galaxies clusters and the first 4 deep "blank fields" will be observed by Spitzer over cycles 9 and 10.

  2. Ensemble inversions of geophysical data in alpine permafrost

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Hauck, Christian

    2010-05-01

    In many disciplines of engineering and geosciences, the accurate determination of the state variables in the near subsurface on different spatial and temporal scales by geophysical methods plays a major role in the quantitative assessment of physical processes. Especially subsurface monitoring problems in the context of climate change, such as thawing permafrost soils or rock formations, require reliable, cost-effective and accurate data acquisition and processing techniques. In order to quantify and monitor the different phase contents in frozen ground different tomographic geophysical measuring methods can be applied in combination. However, due to geometric constraints and underdetermined parts of the inverse problem, frequently the tomographic methods cannot reliably identify structures or processes and quantify the state variables involved with an adequate resolution and accuracy on the given scale. This is because the inversion process and the choice of inversion parameters, i.e. the regularisation parameters, determine how well the inverted model will reproduce the real distribution of the physical property. Choice of regularisation parameters is not absolute and cannot be reliably based upon observation, but must be fitted or depend on experience. To assess the inherent uncertainty range in non-unique geophysical inversions, Rings & Hauck (2009) proposed a so-called ensemble approach for Electrical Resistivity Tomography (ERT) data, where ensembles of 50 different inversion models are created for one set of measurements by randomly varying the parameters for a regularisation based inversion routine. The ensemble members are sorted into clusters of similar models and the mean model for each cluster is computed to analyse the range of possible inversion results (similar to the well-known equivalence models for Vertical Electrical Soundings). By distinguishing persisting features in the mean models from singular artefacts in individual tomograms the

  3. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  4. Unlocking the spatial inversion of large scanning magnetic microscopy datasets

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Lascu, I.; Andrade Lima, E.; Feinberg, J. M.; Saar, M. O.; Weiss, B. P.

    2013-12-01

    Modern scanning magnetic microscopy provides the ability to perform high-resolution, ultra-high sensitivity moment magnetometry, with spatial resolutions better than 10^-4 m and magnetic moments as weak as 10^-16 Am^2. These microscopy capabilities have enhanced numerous magnetic studies, including investigations of the paleointensity of the Earth's magnetic field, shock magnetization and demagnetization of impacts, magnetostratigraphy, the magnetic record in speleothems, and the records of ancient core dynamos of planetary bodies. A common component among many studies utilizing scanning magnetic microscopy is solving an inverse problem to determine the non-negative magnitude of the magnetic moments that produce the measured component of the magnetic field. The two most frequently used methods to solve this inverse problem are classic fast Fourier techniques in the frequency domain and non-negative least squares (NNLS) methods in the spatial domain. Although Fourier techniques are extremely fast, they typically violate non-negativity and it is difficult to implement constraints associated with the space domain. NNLS methods do not violate non-negativity, but have typically been computation time prohibitive for samples of practical size or resolution. Existing NNLS methods use multiple techniques to attain tractable computation. To reduce computation time in the past, typically sample size or scan resolution would have to be reduced. Similarly, multiple inversions of smaller sample subdivisions can be performed, although this frequently results in undesirable artifacts at subdivision boundaries. Dipole interactions can also be filtered to only compute interactions above a threshold which enables the use of sparse methods through artificial sparsity. To improve upon existing spatial domain techniques, we present the application of the TNT algorithm, named TNT as it is a "dynamite" non-negative least squares algorithm which enhances the performance and accuracy of

  5. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  6. A survey of microwave inverse FEL and inverse cerenkov accelerators

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Zhang, T. B.

    1997-02-01

    A Microwave Inverse FEL Accelerator (MIFELA) and a Microwave Inverse Cerenkov Accelerator (MICA) are currently under construction at the Yale Beam Physics Laboratory. MIFELA and MICA will share the same injector, a thermionic cathode rf gun that should furnish 5 psec, 6 MeV, 0.2 nC electron pulses spaced by 350 psec, using microwave power of many MW provided from a 2.85 GHz klystron. MIFELA is to operate with ˜4 Mw of 11.4 GHz microwave power in the TE11 mode, with beam injection into each fourth rf cycle; a variable pitch and field undulator together with a guide magnetic field are present as well. MICA will operate at 2.85 GHz using an alumina-lined waveguide driven in the TM01 mode; the phase velocity is just below c, with no guide field. MIFELA produces a beam of spiralling electrons, while MICA makes an axially-directed beam. This is a survey of the operating principles of these smooth-bore "tabletop" accelerators (˜15 MeV) as they are understood prior to operation.

  7. Topological inversion for solution of geodesy-constrained geophysical problems

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Stiros, Stathis

    2015-04-01

    Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a

  8. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  9. Motion artifacts of pulse inversion-based tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Li, Pai-Chi

    2002-09-01

    Motion artifacts of the pulse inversion technique were studied for finite amplitude distortion-based harmonic imaging. Motion in both the axial and the lateral directions was considered. Two performance issues were investigated. One is the harmonic signal intensity relative to the fundamental intensity and the other is the potential image quality degradation resulting from spectral leakage. A one-dimensional (1-D) correlation-based correction scheme also was used to compensate for motion artifacts. Results indicated that the tissue harmonic signal is significantly affected by tissue motion. For axial motion, the tissue harmonic intensity decreases much more rapidly than with lateral motion. The fundamental signal increases for both axial and lateral motion. Thus, filtering is still required to remove the fundamental signal, even if the pulse inversion technique is applied. The motion also potentially decreases contrast resolution because of the uncancelled spectral leakage. Also, it was indicated that 1-D motion correction is not adequate if nonaxial motion is present.

  10. Inverse transport calculations in optical imaging with subspace optimization algorithms

    SciTech Connect

    Ding, Tian Ren, Kui

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analytically recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.

  11. Waveform inversion of acoustic waves for explosion yield estimation

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<˜30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  12. Inverse design and implementation of a wavelength demultiplexing grating coupler

    PubMed Central

    Piggott, Alexander Y.; Lu, Jesse; Babinec, Thomas M.; Lagoudakis, Konstantinos G.; Petykiewicz, Jan; Vučković, Jelena

    2014-01-01

    Nanophotonics has emerged as a powerful tool for manipulating light on chips. Almost all of today's devices, however, have been designed using slow and ineffective brute-force search methods, leading in many cases to limited device performance. In this article, we provide a complete demonstration of our recently proposed inverse design technique, wherein the user specifies design constraints in the form of target fields rather than a dielectric constant profile, and in particular we use this method to demonstrate a new demultiplexing grating. The novel grating, which has not been developed using conventional techniques, accepts a vertical-incident Gaussian beam from a free-space and separates O-band (1300 nm) and C-band (1550 nm) light into separate waveguides. This inverse design concept is simple and extendable to a broad class of highly compact devices including frequency filters, mode converters, and spatial mode multiplexers. PMID:25428549

  13. Lightcurve Inversion for 65 Cybele

    NASA Astrophysics Data System (ADS)

    Franco, Lorenzo; Pilcher, Frederick

    2015-07-01

    We present a shape and spin axis model for main-belt asteroid 65 Cybele. The model was obtained with lightcurve inversion process, using combined dense photometric data obtained during fifteen apparitions from 1977 to 2014 and sparse data from USNO Flagstaff. Analysis of the resulting data found a sidereal period P = 6.081434 ± 0.000005 hours and two possible pole solutions: (l = 208°, b = -7°) and (l = 27°, b = -14°) with an error of ±15 degrees.

  14. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  15. Does gravity help to improve seismic inversion for density?

    NASA Astrophysics Data System (ADS)

    Blom, Nienke; Böhm, Christian; Fichtner, Andreas

    2016-04-01

    Density is one of the most important material properties that influence the dynamics of our planet's interior, and knowledge of it alongside with knowledge of seismic velocities will help constrain composition more directly. However, the variation of density inside the Earth is poorly known. The travel times of seismic waves, the classical tool to probe the Earth's interior, are barely sensitive to density (with large tradeoffs) and gravity is so extremely non-unique that very little information can be extracted from it without placing very strong prior constraints. As a result, density has, up until now, usually only been regarded as a derived quantity, which may lead to erroneous interpretations. Here, we aim to determine to what extent it is possible to image density as an independent parameter using modern geophysical techniques. The main technique is seismic (full) waveform inversion, which is more sensitive to density than travel-times alone, for the simple reason that more information of the seismogram is being used: basically the amplitude and phase of every wiggle. We construct synthetic tests in 2-D where density is a completely independent parameter from S-wave velocity and P-wave velocity - this setup (albeit physically unrealistic) has the advantage that our ability to image density independently is assessed in an unbiased way. We find that it is indeed possible to image density using waveform inversion. If prior information, such as constraints on S- and P-velocity structure, is included in the inversion, the results for density are markedly improved. The use of gravity data as an additional observable, however, deteriorates the inversion results. This is because of the significant non-uniqueness of potential field measurements, so that an unconstrained update based on gravity will only almost definitely work to push the inversion in the wrong direction.

  16. Geophysical Inversion through Hierarchical Genetic Algorithm Scheme

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Huisman, Johan A.

    2010-05-01

    Geophysical investigation is a powerful tool that allows non-invasive and non-destructive mapping of subsurface states and properties. However, non-uniqueness associated with the inversion process halts these methods from becoming of more quantitative use. One major direction researchers are going is constraining the inverse problem by hydrological observations and models. An alternative to the commonly used direct inversion methods are global optimization schemes (such as genetic algorithms and Monte Carlo Markov Chain methods). However, the major limitation here is the desired high resolution of the tomographic image, which leads to a large number of parameters and an unreasonably high computational effort when using global optimization schemes. One way to overcome these problems is to combine the advantages of both direct and global inversion methods through hierarchical inversion. That is, starting the inversion with relatively coarse resolution of parameters, achieving good inversion using one of the two inversion schemes (global or direct), and then refining the resolution and applying a combination of global and direct inversion schemes for the whole domain or locally. In this work we explore through synthetic case studies the option of using a global optimization scheme for inversion of electrical resistivity tomography data through hierarchical refinement of the model resolution.

  17. Geostatistical joint inversion of seismic and potential field methods

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman; Chouteau, Michel; Giroux, Bernard

    2016-04-01

    Interpretation of geophysical data needs to integrate different types of information to make the proposed model geologically realistic. Multiple data sets can reduce uncertainty and non-uniqueness present in separate geophysical data inversions. Seismic data can play an important role in mineral exploration, however processing and interpretation of seismic data is difficult due to complexity of hard-rock geology. On the other hand, the recovered model from potential field methods is affected by inherent non uniqueness caused by the nature of the physics and by underdetermination of the problem. Joint inversion of seismic and potential field data can mitigate weakness of separate inversion of these methods. A stochastic joint inversion method based on geostatistical techniques is applied to estimate density and velocity distributions from gravity and travel time data. The method fully integrates the physical relations between density-gravity, on one hand, and slowness-travel time, on the other hand. As a consequence, when the data are considered noise-free, the responses from the inverted slowness and density data exactly reproduce the observed data. The required density and velocity auto- and cross-covariance are assumed to follow a linear model of coregionalization (LCM). The recent development of nonlinear model of coregionalization could also be applied if needed. The kernel function for the gravity method is obtained by the closed form formulation. For ray tracing, we use the shortest-path methods (SPM) to calculate the operation matrix. The jointed inversion is performed on structured grid; however, it is possible to extend it to use unstructured grid. The method is tested on two synthetic models: a model consisting of two objects buried in a homogeneous background and a model with stochastic distribution of parameters. The results illustrate the capability of the method to improve the inverted model compared to the separate inverted models with either gravity

  18. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    SciTech Connect

    Kılıç, Emre Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  19. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  20. Application of inverse heat conduction problem on temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.

    2013-09-01

    For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.

  1. Inverse estimation of parameters for an estuarine eutrophication model

    SciTech Connect

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulations with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.

  2. Applications of matrix inversion tomosynthesis

    NASA Astrophysics Data System (ADS)

    Warp, Richard J.; Godfrey, Devon J.; Dobbins, James T., III

    2000-04-01

    The improved image quality and characteristics of new flat- panel x-ray detectors have renewed interest in advanced algorithms such as tomosynthesis. Digital tomosynthesis is a method of acquiring and reconstructing a three-dimensional data set with limited-angle tube movement. Historically, conventional tomosynthesis reconstruction has suffered contamination of the planes of interest by blurred out-of- plane structures. This paper focuses on a Matrix Inversion Tomosynthesis (MITS) algorithm to remove unwanted blur from adjacent planes. The algorithm uses a set of coupled equations to solve for the blurring function in each reconstructed plane. This paper demonstrates the use of the MITS algorithm in three imaging applications: small animal microscopy, chest radiography, and orthopedics. The results of the MITS reconstruction process demonstrate an improved reduction of blur from out-of-plane structures when compared to conventional tomosynthesis. We conclude that the MITS algorithm holds potential in a variety of applications to improve three-dimensional image reconstruction.

  3. Action understanding as inverse planning.

    PubMed

    Baker, Chris L; Saxe, Rebecca; Tenenbaum, Joshua B

    2009-12-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent's behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an "intentional stance" [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a "teleological stance" [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.

  4. Anisotropic magnetotelluric inversion using a mutual information constraint

    NASA Astrophysics Data System (ADS)

    Mandolesi, E.; Jones, A. G.

    2012-12-01

    In recent years, several authors pointed that the electrical conductivity of many subsurface structures cannot be described properly by a scalar field. With the development of field devices and techniques, data quality improved to the point that the anisotropy in conductivity of rocks (microscopic anisotropy) and tectonic structures (macroscopic anisotropy) cannot be neglected. Therefore a correct use of high quality data has to include electrical anisotropy and a correct interpretation of anisotropic data characterizes directly a non-negligible part of the subsurface. In this work we test an inversion routine that takes advantage of the classic Levenberg-Marquardt (LM) algorithm to invert magnetotelluric (MT) data generated from a bi-dimensional (2D) anisotropic domain. The LM method is routinely used in inverse problems due its performance and robustness. In non-linear inverse problems -such the MT problem- the LM method provides a spectacular compromise betwee quick and secure convergence at the price of the explicit computation and storage of the sensitivity matrix. Regularization in inverse MT problems has been used extensively, due to the necessity to constrain model space and to reduce the ill-posedness of the anisotropic MT problem, which makes MT inversions extremely challenging. In order to reduce non-uniqueness of the MT problem and to reach a model compatible with other different tomographic results from the same target region, we used a mutual information (MI) based constraint. MI is a basic quantity in information theory that can be used to define a metric between images, and it is routinely used in fields as computer vision, image registration and medical tomography, to cite some applications. We -thus- inverted for the model that best fits the anisotropic data and that is the closest -in a MI sense- to a tomographic model of the target area. The advantage of this technique is that the tomographic model of the studied region may be produced by any

  5. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  6. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  7. Constrained resistivity inversion using seismic data

    NASA Astrophysics Data System (ADS)

    Saunders, J. H.; Herwanger, J. V.; Pain, C. C.; Worthington, M. H.; de Oliveira, C. R. E.

    2005-03-01

    In this paper we describe and apply a method for constraining structure in anisotropic electrical resistivity inversion. Structural constraints are routinely used to achieve improved model inversion. Here, a second-order (curvature-based) regularization tensor (model covariance) is used to build structure in the model. This structure could be obtained from other imaging methods such as seismic tomography, core samples or otherwise known structure in the model. Our method allows the incorporation of existing geophysical data into the inversion, in a general form that does not rely on any one-to-one correlation between data sets or material properties. Ambiguities in the resistivity distribution from electrical inversion, and in particular anisotropic inversion, may be reduced with this approach. To demonstrate the approach we invert a synthetic data set, showing the regularization tensor explicitly in different locations. We then apply the method to field data where we have some knowledge of the subsurface from seismic imaging. Our results show that it is possible to achieve a high level of convergence while using spatially varying structural constraints. Common problems associated with resistivity inversion such as source/receiver effects and false imaging of strongly resistive or conductive zones may also be reduced. As part of the inversion method we show how the magnitude of the constraints in the form of penalty parameters appropriate to an inversion may be estimated, reducing the computational expense of resistivity inversion.

  8. Human inversions and their functional consequences

    PubMed Central

    Puig, Marta; Casillas, Sònia; Villatoro, Sergi

    2015-01-01

    Polymorphic inversions are a type of structural variants that are difficult to analyze owing to their balanced nature and the location of breakpoints within complex repeated regions. So far, only a handful of inversions have been studied in detail in humans and current knowledge about their possible functional effects is still limited. However, inversions have been related to phenotypic changes and adaptation in multiple species. In this review, we summarize the evidences of the functional impact of inversions in the human genome. First, given that inversions have been shown to inhibit recombination in heterokaryotes, chromosomes displaying different orientation are expected to evolve independently and this may lead to distinct gene-expression patterns. Second, inversions have a role as disease-causing mutations both by directly affecting gene structure or regulation in different ways, and by predisposing to other secondary arrangements in the offspring of inversion carriers. Finally, several inversions show signals of being selected during human evolution. These findings illustrate the potential of inversions to have phenotypic consequences also in humans and emphasize the importance of their inclusion in genome-wide association studies. PMID:25998059

  9. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a

  10. Wave-Propagation Modeling and Inversion Using Frequency-Domain Integral Equation Methods

    NASA Astrophysics Data System (ADS)

    Strickland, Christopher E.

    Full waveform inverse methods describe the full physics of wave propagation and can potentially overcome the limitations of ray theoretic methods. This work explores the use of integral equation based methods for simulation and inversion and illustrates their potential for computationally demanding problems. A frequency-domain integral equation approach to simulate wave-propagation in heterogeneous media and solve the inverse wave-scattering problem will be presented for elastic, acoustic, and electromagnetic systems. The method will be illustrated for georadar (ground- or ice-penetrating radar) applications and compared to results obtained using ray theoretic methods. In order to tackle the non-linearity of the problem, the inversion incorporates a broad range of frequencies to stabilize the solution. As with most non-linear inversion methods, a starting model that reasonably approximates the true model is critical to convergence of the algorithm. To improve the starting model, a variable reference inversion technique is developed that allows the background reference medium to vary for each source-receiver data pair and is less restrictive than using a single reference medium for the entire dataset. The reference medium can be assumed homogeneous (although different for each data point) to provide a computationally efficient, single-step, frequency-domain inversion approach that incorporates finite frequency effects not captured by ray based methods. The inversion can then be iterated on to further refine the solution.

  11. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Mohd. Nor, Mohd. Jailani; Kamal Ariffin, Ahmad; Abdullah, Shahrir

    2009-11-01

    Exposure to vibration has various physiological effects on vehicle passengers. Engine is one of the main sources of vehicle vibration. The major causes of engine vibration are combustion forces transmitted through the pistons and connection rods. Evaluation of sources is the first step to attenuate this vibration. Assessment of these sources is not an easy task because internal parts of machinery are not accessible. Often, instrumentation for such systems is costly, time consuming and some modifications would be necessary. Aim of the first part of this paper was to validate an inverse technique and carry out mobility analysis on a vehicle crankshaft to achieve matrix of Frequency Response Functions (FRFs). Outcomes were implemented to reconstruct the applied force for single and multiple-input systems. In the second part, the validated inverse technique and FRFs were used to estimate piston forces of an operating engine. Bearings of crankshaft were chosen as nearest accessible parts to piston connecting rods. Accelerometers were connected to the bearings for response measurement during an ideal engine operation. These responses together with FRFs, which were estimated in the previous part, were utilised in the inverse technique. Tikhonov regularization was used to solve the ill-conditioned inverse system. Two methods, namely L-curve criterion and Generalized Cross Validation (GCV), were employed to find the regularization parameter for the Tikhonov method. The inverse problem was solved and piston forces applied to crankpins were estimated. Results were validated by pressure measurement inside a cylinder and estimating the corresponding combustion force. This validation showed that inverse technique and measurement outcomes were roughly in agreement. In presence of various noise, L-curve criterion conduces to more robust results compared to the GCV method. But in the absence of high correlation between sources ( f>600 HzHz), the GCV technique leads to more accurate

  12. Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion.

    PubMed

    Huang, Chen-Fen; Gerstoft, Peter; Hodgkiss, William S

    2008-06-01

    The effect of ocean sound speed uncertainty on matched-field geoacoustic inversion is investigated using data from the SW06 experiment along a nearly range-independent bathymetric track. Significant sound speed differences were observed at the source and receiving array and several environmental parameterizations were investigated for the inversion including representing the ocean sound speed at both source and receivers with empirical orthogonal function (EOF) coefficients. A genetic algorithm-based global optimization method was applied to the candidate environmental models. Then, a Bayesian inversion technique was used to quantify uncertainty in the environmental parameters for the best environmental model, which included an EOF description of the ocean sound speed.

  13. Discrete-time neural inverse optimal control for nonlinear systems via passivation.

    PubMed

    Ornelas-Tellez, Fernando; Sanchez, Edgar N; Loukianov, Alexander G

    2012-08-01

    This paper presents a discrete-time inverse optimal neural controller, which is constituted by combination of two techniques: 1) inverse optimal control to avoid solving the Hamilton-Jacobi-Bellman equation associated with nonlinear system optimal control and 2) on-line neural identification, using a recurrent neural network trained with an extended Kalman filter, in order to build a model of the assumed unknown nonlinear system. The inverse optimal controller is based on passivity theory. The applicability of the proposed approach is illustrated via simulations for an unstable nonlinear system and a planar robot. PMID:24807528

  14. A GPU-COMPUTING APPROACH TO SOLAR STOKES PROFILE INVERSION

    SciTech Connect

    Harker, Brian J.; Mighell, Kenneth J. E-mail: mighell@noao.edu

    2012-09-20

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  15. A GPU-computing Approach to Solar Stokes Profile Inversion

    NASA Astrophysics Data System (ADS)

    Harker, Brian J.; Mighell, Kenneth J.

    2012-09-01

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  16. An inverse dynamics approach to trajectory optimization for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.

  17. EDDY CURRENT INVERSION AND ESTIMATION METRICS FOR EVALUATING THERMAL BARRIER COATINGS

    SciTech Connect

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Knopp, Jeremy S.; Aldrin, John C.; Nyenhuis, John

    2010-02-22

    In this paper, sophisticated eddy-current techniques incorporating model-based inverse methods were successfully demonstrated to measure the thickness and remaining-life of high-temperature coatings. To further assure the performance of these inverse methods, several estimation metrics including Fisher Information, Cramer-Rao Lower Bound (CRLB), covariance, and singular value decomposition (SVD) are introduced. The connections and utility of these metrics are illustrated in the design of eddy current methods for estimating layer thickness, conductivity and probe liftoff.

  18. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  19. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  20. Towards inverse modeling of intratumor heterogeneity

    NASA Astrophysics Data System (ADS)

    Brutovsky, Branislav; Horvath, Denis

    2015-08-01

    Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells' fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.