Science.gov

Sample records for abel inversion technique

  1. Abel inversion method for cometary atmospheres.

    NASA Astrophysics Data System (ADS)

    Hubert, Benoit; Opitom, Cyrielle; Hutsemekers, Damien; Jehin, Emmanuel; Munhoven, Guy; Manfroid, Jean; Bisikalo, Dmitry V.; Shematovich, Valery I.

    2016-04-01

    Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight joining the observing instrument and the gas of the coma. This integration is the so-called Abel transform of the local emission rate. We develop a method specifically adapted to the inversion of the Abel transform of cometary emissions, that retrieves the radial profile of the emission rate of any unabsorbed emission, under the hypothesis of spherical symmetry of the coma. The method uses weighted least squares fitting and analytical results. A Tikhonov regularization technique is applied to reduce the possible effects of noise and ill-conditioning, and standard error propagation techniques are implemented. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness, and show that the method is only weakly dependent on any constant offset added to the data, which reduces the dependence of the retrieved emission rate on the background subtraction. We apply the method to observations of three different comets observed using the TRAPPIST instrument: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the emission rate derived from the observed flux of CN emission at 387 nm and from the C2 emission at 514.1 nm of comet Siding Spring both present an easily-identifiable shoulder that corresponds to the separation between pre- and post-outburst gas. As a general result, we show that diagnosing properties and features of the coma using the emission rate is easier than directly using the observed flux. We also determine the parameters of a Haser model fitting the inverted data and fitting the line-of-sight integrated observation, for which we provide the exact analytical expression of the line-of-sight integration

  2. Ionospheric electron density inversion for Global Navigation Satellite Systems radio occultation using aided Abel inversions

    NASA Astrophysics Data System (ADS)

    Chou, Min Yang; Lin, Charles C. H.; Tsai, Ho Fang; Lin, Chi Yen

    2017-01-01

    The Abel inversion of ionospheric electron density profiles with the assumption of spherical symmetry applied for radio occultation soundings could introduce a greater systematic error or sometimes artifacts if the occultation rays trespass regions with larger horizontal gradients in electron density. The aided Abel inversions have been proposed by considering the asymmetry ratio derived from ionospheric total electron content (TEC) or peak density (NmF2) of reconstructed observation maps since knowledge of the horizontal asymmetry in ambient ionospheric density could mitigate the inversion error. Here we propose a new aided Abel inversion using three-dimensional time-dependent electron density (Ne) based on the climatological maps constructed from previous observations, as it has an advantage of providing altitudinal information on the horizontal asymmetry. Improvement of proposed Ne-aided Abel inversion and comparisons with electron density profiles inverted from the NmF2- and TEC-aided inversions are studied using observation system simulation experiments. Comparison results show that all three aided Abel inversions improve the ionospheric profiling by mitigating the artificial plasma caves and negative electron density in the daytime E region. The equatorial ionization anomaly crests in the F region become more distinct. The statistical results show that the Ne-aided Abel inversion has less mean and RMS error of error percentage above 250 km altitudes, and the performances for all aided Abel inversions are similar below 250 km altitudes.

  3. Abel Inversion of Deflectometric Measurements in Dynamic Flows

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Albers, Burt W.; Griffin, DeVon W.

    1999-01-01

    We present an Abel-inversion algorithm to reconstruct mean and rms refractive-index profiles from spatially resolved statistical measurements of the beam-deflection angle in time-dependent, axisymmetric flows. An oscillating gas-jet diffusion flame was investigated as a test case for applying the algorithm. Experimental data were obtained across the whole field by a rainbow schlieren apparatus. Results show that simultaneous multipoint measurements are necessary to reconstruct the rms refractive index accurately.

  4. Improved Abel transform inversion: First application to COSMIC/FORMOSAT-3

    NASA Astrophysics Data System (ADS)

    Aragon-Angel, A.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.

    2007-05-01

    In this paper the first results of Ionospheric Tomographic inversion are presented, using the Improved Abel Transform on the COSMIC/FORMOSAT-3 constellation of 6 LEO satellites, carrying on-board GPS receivers.[- 4mm] The Abel transform inversion is a wide used technique which in the ionospheric context makes it possible to retrieve electron densities as a function of height based of STEC (Slant Total Electron Content) data gathered from GPS receivers on board of LEO (Low Earth Orbit) satellites. Within this precise use, the classical approach of the Abel inversion is based on the assumption of spherical symmetry of the electron density in the vicinity of an occultation, meaning that the electron content varies in height but not horizontally. In particular, one implication of this assumption is that the VTEC (Vertical Total Electron Content) is a constant value for the occultation region. This assumption may not always be valid since horizontal ionospheric gradients (a very frequent feature in some ionosphere problematic areas such as the Equatorial region) could significantly affect the electron profiles. [- 4mm] In order to overcome this limitation/problem of the classical Abel inversion, a studied improvement of this technique can be obtained by assuming separability in the electron density (see Hernández-Pajares et al. 2000). This means that the electron density can be expressed by the multiplication of VTEC data and a shape function which assumes all the height dependency in it while the VTEC data keeps the horizontal dependency. Actually, it is more realistic to assume that this shape fuction depends only on the height and to use VTEC information to take into account the horizontal variation rather than considering spherical symmetry in the electron density function as it has been carried out in the classical approach of the Abel inversion.[-4mm] Since the above mentioned improved Abel inversion technique has already been tested and proven to be a useful

  5. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    SciTech Connect

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; Mitchell, Stephen E.; Hock, Margaret C.

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.

  6. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  7. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    NASA Astrophysics Data System (ADS)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  8. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  9. An efficient and flexible Abel-inversion method for noisy data

    NASA Astrophysics Data System (ADS)

    Antokhin, Igor I.

    2016-12-01

    We propose an efficient and flexible method for solving the Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization in itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.

  10. Inverse Raman effect: applications and detection techniques

    SciTech Connect

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  11. Oil core microcapsules by inverse gelation technique.

    PubMed

    Martins, Evandro; Renard, Denis; Davy, Joëlle; Marquis, Mélanie; Poncelet, Denis

    2015-01-01

    A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 μm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.

  12. Smoothing Technique and Variance Propagation for Abel Inversion of Scattered Data

    DTIC Science & Technology

    1977-04-01

    data and determination of the coefficients and transformation matrix. The bulk of this work is accomplished in SUB- ROUTINE COVCAL. However, subsequent...I 11111 I I I i I I I I I H i i I i l I i l i l i i i i l l l t ! i l 72 AE DC-T Ro76-163 I CALL INPUT I 1 1 C) A.4.0 FLOW CHARTS...2.0515~ 1D -03 . . . . . . . L S k I I 4 ? O - U . . . 3 , 7 0 6 9 9 4 0 - 0 3 4 , 1 1 0 7 8 6 0 - 0 3 3 , 6 9 7 1 1 6 D - 0 3 • . 2 ,5221~4D

  13. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  14. Trimming and procrastination as inversion techniques

    NASA Astrophysics Data System (ADS)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  15. Extended mapping and characteristics techniques for inverse aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Qian, Y. J.

    1991-01-01

    Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves.

  16. Comment on Two-Wavelength Lidar Inversion Techniques

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary G.

    2001-04-01

    In a critique of two-wavelength lidar inversion techniques, Kunz [Appl. Opt. 38, 1015 (1999) presented mathematical] arguments that such techniques cannot yield unique solutions for extinction profiles. Ackermann [Appl. Opt. 38, 7414 (1999) presented an analytical solution for the extinction] profile from a two-wavelength lidar and also attempted to refute Kunz s mathematical arguments. However, the fundamental reasons why the authors of these two papers reached different conclusions were not fully uncovered. These previous papers are critically examined, and a new mathematical proof of uniqueness is provided. Further analyses are presented to explain how the technique works, along with comments on its limitations.

  17. Inverse boundary-layer technique for airfoil design

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    A description is presented of a technique for the optimization of airfoil pressure distributions using an interactive inverse boundary-layer program. This program allows the user to determine quickly a near-optimum subsonic pressure distribution which meets his requirements for lift, drag, and pitching moment at the desired flow conditions. The method employs an inverse turbulent boundary-layer scheme for definition of the turbulent recovery portion of the pressure distribution. Two levels of pressure-distribution architecture are used - a simple roof top for preliminary studies and a more complex four-region architecture for a more refined design. A technique is employed to avoid the specification of pressure distributions which result in unrealistic airfoils, that is, those with negative thickness. The program allows rapid evaluation of a designed pressure distribution off-design in Reynolds number, transition location, and angle of attack, and will compute an airfoil contour for the designed pressure distribution using linear theory.

  18. MASS SUBSTRUCTURE IN ABELL 3128

    SciTech Connect

    McCleary, J.; Dell’Antonio, I.; Huwe, P.

    2015-05-20

    We perform a detailed two-dimensional weak gravitational lensing analysis of the nearby (z = 0.058) galaxy cluster Abell 3128 using deep ugrz imaging from the Dark Energy Camera (DECam). We have designed a pipeline to remove instrumental artifacts from DECam images and stack multiple dithered observations without inducing a spurious ellipticity signal. We develop a new technique to characterize the spatial variation of the point-spread function that enables us to circularize the field to better than 0.5% and thereby extract the intrinsic galaxy ellipticities. By fitting photometric redshifts to sources in the observation, we are able to select a sample of background galaxies for weak-lensing analysis free from low-redshift contaminants. Photometric redshifts are also used to select a high-redshift galaxy subsample with which we successfully isolate the signal from an interloping z = 0.44 cluster. We estimate the total mass of Abell 3128 by fitting the tangential ellipticity of background galaxies with the weak-lensing shear profile of a Navarro–Frenk–White (NFW) halo and also perform NFW fits to substructures detected in the 2D mass maps of the cluster. This study yields one of the highest resolution mass maps of a low-z cluster to date and is the first step in a larger effort to characterize the redshift evolution of mass substructures in clusters.

  19. Developing seasonal ammonia emission estimates with an inverse modeling technique.

    PubMed

    Gilliland, A B; Dennis, R L; Roselle, S J; Pierce, T E; Bender, L E

    2001-11-21

    Significant uncertainty exists in magnitude and variability of ammonia (NH3) emissions, which are needed for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural nonpoint sources. We suspect a strong seasonal pattern in NH 3 emissions; however, current NH3 emission inventories lack intra-annual variability. Annually averaged NH 3 emissions could significantly affect model-predicted concentrations and wet and dry deposition of nitrogen-containing compounds. We apply a Kalman filter inverse modeling technique to deduce monthly NH3 emissions for the eastern U.S. Final products of this research will include monthly emissions estimates from each season. Results for January and June 1990 are currently available and are presented here. The U.S. Environmental Protection Agency (USEPA) Community Multiscale Air Quality (CMAQ) model and ammonium (NH4+) wet concentration data from the National Atmospheric Deposition Program (NADP) network are used. The inverse modeling technique estimates the emission adjustments that provide optimal modeled results with respect to wet NH4+ concentrations, observational data error, and emission uncertainty. Our results suggest that annual average NH 3 emissions estimates should be decreased by 64% for January 1990 and increased by 25% for June 1990. These results illustrate the strong differences that are anticipated for NH3 emissions.

  20. New Type Continuities via Abel Convergence

    PubMed Central

    Albayrak, Mehmet

    2014-01-01

    We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions. PMID:24883393

  1. Rapid Probabilistic Source Inversion Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Kaeufl, P.; Valentine, A. P.; Trampert, J.

    2013-12-01

    Determination of earthquake source parameters is an important task in seismology. For many applications, it is also valuable to understand the uncertainties associated with these determinations, and this is particularly true in the context of earthquake early warning and hazard mitigation. We present a framework for probabilistic centroid moment tensor point source inversions in near real-time, applicable to a wide variety of data-types. Our methodology allows us to find an approximation to p(m|d), the conditional probability of source parameters (m) given observations, (d). This approximation is obtained by smoothly interpolating a set of random prior samples, using a machine learning algorithm able to learn the mapping from d to m. The approximation obtained can be evaluated within milliseconds on a standard desktop computer for a new observation (d). This makes the method well suited for use in situations such as earthquake early warning, where inversions must be performed routinely, for a fixed station geometry, and where it is important that results are obtained rapidly. This is a major advantage over traditional sampling based techniques, such as Markov-Chain Monte-Carlo methods, where a re-sampling of the posterior is necessary every time a new observation is made. We demonstrated the method by applying it to a regional static GPS displacement data set for the 2010 MW 7.2 El Mayor Cucapah earthquake in Baja California and obtained estimates of logarithmic magnitude, centroid location and depth, and focal mechanism (Käufl et al., submitted). We will present an extension of this approach to the inversion of full waveforms and explore possibilities for jointly inverting seismic and geodetic data. (1) P. Käufl, A. P. Valentine, T.B. O'Toole, J. Trampert, submitted, Geophysical Journal International

  2. A comparison of techniques for inversion of radio-ray phase data in presence of ray bending

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.; Grossi, M. D.

    1972-01-01

    Derivations are presented of the straight-line Abel transform and the seismological Herglotz-Wiechert transform (which takes ray bending into account) that are used in the reconstruction of refractivity profiles from radio-wave phase data. Profile inversion utilizing these approaches, performed in computer-simulated experiments, are compared for cases of positive, zero, and negative ray bending. For thin atmospheres and ionospheres, such as the Martian atmosphere and ionosphere, radio wave signals are shown to be inverted accurately with both methods. For dense media, such as the solar corona or the lower Venus atmosphere, the refractive recovered by the seismological Herglotz-Wiechert transform provide a significant improvement compared with the straight-line Abel transform.

  3. Ultrafast inverse imaging techniques for fMRI.

    PubMed

    Lin, Fa-Hsuan; Tsai, Kevin W K; Chu, Ying-Hua; Witzel, Thomas; Nummenmaa, Aapo; Raij, Tommi; Ahveninen, Jyrki; Kuo, Wen-Jui; Belliveau, John W

    2012-08-15

    Inverse imaging (InI) supercharges the sampling rate of traditional functional MRI 10-100 fold at a cost of a moderate reduction in spatial resolution. The technique is inspired by similarities between multi-sensor magnetoencephalography (MEG) and highly parallel radio-frequency (RF) MRI detector arrays. Using presently available 32-channel head coils at 3T, InI can be sampled at 10 Hz and provides about 5-mm cortical spatial resolution with whole-brain coverage. Here we discuss the present applications of InI, as well as potential future challenges and opportunities in further improving its spatiotemporal resolution and sensitivity. InI may become a helpful tool for clinicians and neuroscientists for revealing the complex dynamics of brain functions during task-related and resting states.

  4. Tests and Comparisons of Velocity-Inversion Techniques

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; Abbett, W. P.; De Rosa, M. L.; Fisher, G. H.; Georgoulis, M. K.; Kusano, K.; Longcope, D. W.; Ravindra, B.; Schuck, P. W.

    2007-12-01

    Recently, several methods that measure the velocity of magnetized plasma from time series of photospheric vector magnetograms have been developed. Velocity fields derived using such techniques can be used both to determine the fluxes of magnetic energy and helicity into the corona, which have important consequences for understanding solar flares, coronal mass ejections, and the solar dynamo, and to drive time-dependent numerical models of coronal magnetic fields. To date, these methods have not been rigorously tested against realistic, simulated data sets, in which the magnetic field evolution and velocities are known. Here we present the results of such tests using several velocity-inversion techniques applied to synthetic magnetogram data sets, generated from anelastic MHD simulations of the upper convection zone with the ANMHD code, in which the velocity field is fully known. Broadly speaking, the MEF, DAVE, FLCT, IM, and ILCT algorithms performed comparably in many categories. While DAVE estimated the magnitude and direction of velocities slightly more accurately than the other methods, MEF's estimates of the fluxes of magnetic energy and helicity were far more accurate than any other method's. Overall, therefore, the MEF algorithm performed best in tests using the ANMHD data set. We note that ANMHD data simulate fully relaxed convection in a high-β plasma, and therefore do not realistically model photospheric evolution.

  5. Vicarious Adjustment of MERIS Reflectances Using an Inverse Technique

    NASA Astrophysics Data System (ADS)

    McCulloch, M. E.; Barker, K. L.; Zibordi, G..

    2010-12-01

    The method used for the vicarious adjustment of the SeaWiFS & MERIS ocean colour data relies on the assumptions that the water-leaving radiance is negligible in the Near Infra-Red (NIR) in oligotrophic waters, and the NIR band is perfectly calibrated. Here, a novel approach to vicarious adjustment is proposed that does not need these assumptions: a least-squares inverse technique is used to adjust the most uncertain parameters in the atmosphere model: the aerosol scattering (ρa) and the error in the ozone optical depth (dτoz) within their error bars to obtain a best fit between the satellite and buoy water reflectance. Examples are presented using match-ups of satellite and in situ observations from MERMAID (the MERis Match- up In-situ Database) for the MOBY, Gustav Dalen, BOUSSOLE and AAOT platforms. The new method predicts the lowest dτ for MOBY, the lowest ρ for the Gustav Dalen site, and the largest a values of both at AAOT. The method is simple to code, potentially more flexible than the present gain method, can weight observations for reliability and predicts poorly-known atmospheric properties. However, it requires accurate physics, a good initial guess, enough data for convergence and cannot correct biases. The method could be tested by running it in parallel with the existing method.

  6. Mathematical Inversion of Lightning Data: Techniques and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2003-01-01

    A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.

  7. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  8. Implementation of MASW and waveform inversion techniques for new seismic hazard estimation technique

    NASA Astrophysics Data System (ADS)

    el-aziz abd el-aal, abd; Kamal, heba

    2016-04-01

    In this contribution, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana Wind Farm site. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of waveform inversion method and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern Desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses new an extended stochastic technique to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers sites at Zafarana Wind Farm and its vicinity. The essential characteristics of the extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. Key words: MASW, waveform inversion, extended stochastic technique, Zafarana Wind Farm

  9. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks

    SciTech Connect

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-11-15

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  10. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    SciTech Connect

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  11. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES

    Pablant, N. A.; Bell, R. E.; Bitter, M.; ...

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  12. Nonlinear inversion for arbitrarily-oriented anisotropic models II: Inversion techniques

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.

    2011-12-01

    We present output models from inversion of a synthetic surface wave dataset. We implement new 3-D finite-frequency kernels, based on the Born approximation, to invert for upper mantle structure beneath western North America. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. Numerical tests were performed to achieve a robust inversion scheme. Four synthetic input models were created, to include: isotropic, constant strength anisotropic, variable strength anisotropic, and both anisotropic and isotropic together. The reference model was a simplified version of PREM (dubbed PREM LIGHT) in which the crust and 220 km discontinuity have been removed. Output models from inversions of calculated synthetic data are compared against these input models to test for accurate reproduction of input model features, and the resolution of those features. The object of this phase of the study was to determine appropriate nonlinear inversion schemes that adequately recover the input models. The synthetic dataset consists of collected seismic waveforms of 126 earthquake mechanisms, of magnitude 6-7 from Dec 2006 to Feb 2009, from the IRIS database. Events were selected to correlate with USArray deployments, and to have as complete an azimuthal coverage as possible. The events occurred within a circular region of radius 150o centered about 44o lat, -110o lon (an arbitrary location within USArray coverage). Synthetic data were calculated utilizing a spectral element code (SEM) coupled to a normal mode solution. The mesh consists of a 3-D heterogeneous outer shell, representing the upper mantle above 450 km depth, coupled to a spherically symmetric inner sphere. From the synthetic dataset, multi-taper fundamental mode surface wave phase delay measurements are taken. The orthogonal 2.5π -prolate spheroidal wave function eigentapers (Slepian tapers) reduce noise biasing, and can provide error estimates in phase delay measurements. This study is a

  13. Analytical Solution of the Two-Frequency Lidar Inversion Technique

    NASA Astrophysics Data System (ADS)

    Ackermann, Jrg

    1999-12-01

    A two-frequency lidar inversion on the assumptions of a range-independent relationship between the extinction coefficients of the two considered lidar wavelengths and of constant extinction-to-backscatter ratios was originally developed by Potter Appl. Opt. 26, 1250 (1987) . It is an iterative procedure to retrieve the boundary value for solution of the single-scatter lidar equation. This boundary value is expressed by the aerosol transmission along the evaluated lidar path. Recently, Kunz Appl. Opt. 38, 1015 (1999) stated that there is not enough information in the lidar signals of two wavelengths to obtain a unique solution for the boundary value and hence for the aerosol extinction profile. It is shown that a unique solution of the two-frequency lidar inversion exists, for which an analytical expression of the boundary value and, hence, the aerosol extinction profile, is given.

  14. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  15. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  16. Prostate clinical study of a full inversion unconstrained ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Reza; Sadeghi-Naini, Ali; Czarnota, Gregory J.; Samani, Abbas

    2014-03-01

    Prostate cancer detection at early stages is crucial for desirable treatment outcome. Among available imaging modalities, ultrasound (US) elastography is being developed as an effective clinical tool for prostate cancer diagnosis. Current clinical US elastography systems utilise strain imaging where tissue strain images are generated to approximate the tissue elastic modulus distribution. While strain images can be generated in real-time fashion, they lack the accuracy necessary for having desirable sensitivity and specificity. To improve strain imaging, full inversion based elastography techniques were proposed. Among these techniques, a constrained elastography technique was developed which showed promising results as long as the tumor and prostate geometry can be obtained accurately from the imaging modality used in conjunction with the elastography system. This requirement is not easy to fulfill, especially with US imaging. To address this issue, we present an unconstrained full inversion prostate elastography method in conjunction with US imaging where knowledge of tissue geometry is not necessary. One of the reasons that full inversion elastography techniques have not been routinely used in the clinic is lack of clinical validation studies. To our knowledge, no quasistatic full inversion based prostate US elastography technique has been applied in vivo before. In this work, the proposed method was applied to clinical prostate data and reconstructed elasticity images were compared to corresponding annotated histopathology images which is the first quasi-static full inversion based prostate US elastography technique applied successfully in vivo. Results demonstrated a good potential for clinical utility of the proposed method.

  17. Development and evaluation of an inverse solution technique for studying helicopter maneuverability and agility

    NASA Technical Reports Server (NTRS)

    Whalley, Matthew S.

    1991-01-01

    An inverse solution technique for determining the maximum maneuvering performance of a helicopter using smooth, pilotlike control inputs is presented. Also described is a pilot simulation experiment performed to investigate the accuracy of the solution resulting from this technique. The maneuverability and agility capability of the helicopter math model was varied by varying the pitch and roll damping, the maximum pitch and roll rate, and the maximum load-factor capability. Three maneuvers were investigated: a 180-deg turn, a longitudinal pop-up, and a lateral jink. The inverse solution technique yielded accurate predictions of pilot-in-the-loop maneuvering performance for two of the three maneuvers.

  18. Image deconvolution of extended objects - A comparison of the inverse Fourier and the Lucy techniques

    NASA Astrophysics Data System (ADS)

    Cunningham, C. C.; Anthony, D.

    1993-04-01

    Two methods of deconvolution, the inverse Fourier method and the Lucy iterative technique, are compared with respect to their applicability to restoration of Hubble Space Telescope images of Saturn. The two techniques are found to provide nearly identical results in the case of cloud morphologies and comparable results for fluxes from Saturn's bright disk.

  19. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An inverse-dispersion technique is used to calculate ammonia (NH3) gas emissions from a cattle feedlot. The technique relies on a simple backward Lagrangian stochastic (bLS) dispersion model to relate atmospheric NH3 concentration to the emission rate Qbls. Because the wind and the source configurat...

  20. Numerical inversion of the Perrin equations for rotational and translational diffusion constants by iterative techniques.

    PubMed Central

    Wright, A K; Baxter, J E

    1976-01-01

    An iterative numerical technique is presented which allows the semiaxes for prolate and oblate ellipsoids to be determined from the Perrin equations for rotational and translational diffusion constants. The use of this inversion technique is illustrated by application to the proteins: lysozyme, bovine serum albumin, human transferrin, and bovine rhodopsin solubilized in digitonin. PMID:938731

  1. A novel fast full inversion based breast ultrasound elastography technique.

    PubMed

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-07

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young's modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young's modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young's modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young's modulus values for both normal tissue and tumour as the maximum Young's modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  2. A novel fast full inversion based breast ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-01

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young’s modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young’s modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young’s modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young’s modulus values for both normal tissue and tumour as the maximum Young’s modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  3. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Alvarez, J. M.

    1981-01-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic CIO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations.

  4. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  5. A time-domain inverse technique for the localization and quantification of rotating sound sources

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2017-06-01

    A time-domain inverse technique based on the time-domain equivalent source method is proposed for the localization and quantification of rotating sound sources. In this technique, the actual rotating sound sources are modeled by a series of rotating equivalent sources distributed on the source surface. The strengths of these equivalent sources are solved based on the exact transfer relationship between the measured pressure at the receiver time and the desired equivalent source strengths at the source time. Compared to the known time-domain rotating beamforming that just owns the function of source localization, the proposed inverse technique not only can locate rotating sources accurately but also can predict sound fields quantitatively. Moreover, due to the use of retarded time approach, the proposed inverse technique avoids the interpolation of measured pressure that is needed in the time-domain rotating beamforming, thus providing the ability of real-time calculation of source strengths. Numerical simulations and experiments examine the validity of the proposed technique and demonstrate its advantages of locating sources more accurately and enabling to predict sound fields quantitatively by comparing with the time-domain rotating beamforming.

  6. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  7. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    A physically based sensor response model of a row crop was used as the mathematical framework from which several inversion strategies were tested for extracting row structure information and component temperatures using a series of sensor view angles. The technique was evaluated on ground-based radiometric thermal infrared data of a cotton row crop that covered 48 percent of the ground in the vertical projection. The results showed that the accuracies of the predicted row heights and widths, vegetation temperatures, and soil temperatures of the cotton row crop were on the order of 5 cm, 1 deg, and 2 deg C, respectively. The inversion techniques can be applied to directional sensor data from aircraft platforms and even space platforms if the effects of atmospheric absorption and emission can be corrected. In theory, such inversion techniques can be applied to a wide variety of vegetation types and thus can have significant implications for remote sensing research and applications in disciplines that deal with incomplete vegetation canopies.

  8. SPITZER OBSERVATIONS OF ABELL 1763. I. INFRARED AND OPTICAL PHOTOMETRY

    SciTech Connect

    Edwards, Louise O. V.; Fadda, Dario; Biviano, Andrea

    2010-02-15

    We present a photometric analysis of the galaxy cluster Abell 1763 at visible and infrared wavelengths. Included are fully reduced images in r', J, H, and K{sub s} obtained using the Palomar 200in telescope, as well as the IRAC and MIPS images from Spitzer. The cluster is covered out to approximately 3 virial radii with deep 24 {mu}m imaging (a 5{sigma} depth of 0.2 mJy). This same field of {approx}40' x 40' is covered in all four IRAC bands as well as the longer wavelength MIPS bands (70 and 160 {mu}m). The r' imaging covers {approx}0.8 deg{sup 2} down to 25.5 mag, and overlaps with most of the MIPS field of view. The J, H, and K{sub s} images cover the cluster core and roughly half of the filament galaxies, which extend toward the neighboring cluster, Abell 1770. This first, in a series of papers on Abell 1763, discusses the data reduction methods and source extraction techniques used for each data set. We present catalogs of infrared sources (with 24 and/or 70 {mu}m emission) and their corresponding emission in the optical (u', g', r', i', z'), and near- to far-IR (J, H, K{sub s} , IRAC, and MIPS 160 {mu}m). We provide the catalogs and reduced images to the community through the NASA/IPAC Infrared Science Archive.

  9. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    SciTech Connect

    Giantsoudi, D.; Baltas, D.; Karabis, A.; Mavroidis, P.; Zamboglou, N.; Tselis, N.; Shi, C.; Papanikolaou, N.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  10. The updated statistical inversion technique to the evaluation of Umkehr observations

    NASA Technical Reports Server (NTRS)

    Frolov, Alexander D.; Obrazcov, Sergey P.

    1994-01-01

    In the present study the standard retrieval Umkehr method to estimate the vertical distribution of ozone was updated using a statistical approach to the mathematical inversion scheme. The vertical ozone profile covariance matrix was used as a priori information for the inverse problem. A new method of the ozonesonde data organization according to air mass types helped to improve the covariance matrix quality. A retrieval method was developed using eigenvector technique. An optimal vertical ozone profile resolution was determined from the mathematical inversion scheme analysis based on the same technique. The sun radiation transfer was accounted for multiple scattering and atmospheric sphericity in this calculation. The retrievals using actual Umkehr Dobson spectrophotometer observations were also performed to provide the comparison of the standard and updated methods with concurrent ozone sound data at Boulder U.S. The comparison has revealed that the present method has some advantages in both resolution and accuracy, as compared to the standard one, especially for the atmospheric layers below ozone maximum.

  11. An inversion method for cometary atmospheres

    NASA Astrophysics Data System (ADS)

    Hubert, B.; Opitom, C.; Hutsemékers, D.; Jehin, E.; Munhoven, G.; Manfroid, J.; Bisikalo, D. V.; Shematovich, V. I.

    2016-10-01

    Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight. This integration is the so-called Abel transform of the local emission rate. The observation is generally interpreted under the hypothesis of spherical symmetry of the coma. Under that hypothesis, the Abel transform can be inverted. We derive a numerical inversion method adapted to cometary atmospheres using both analytical results and least squares fitting techniques. This method, derived under the usual hypothesis of spherical symmetry, allows us to retrieve the radial distribution of the emission rate of any unabsorbed emission, which is the fundamental, physically meaningful quantity governing the observation. A Tikhonov regularization technique is also applied to reduce the possibly deleterious effects of the noise present in the observation and to warrant that the problem remains well posed. Standard error propagation techniques are included in order to estimate the uncertainties affecting the retrieved emission rate. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness. In particular, we show that the Abel inversion of real data is only weakly sensitive to an offset applied to the input flux, which implies that the method, applied to the study of a cometary atmosphere, is only weakly dependent on uncertainties on the sky background which has to be subtracted from the raw observations of the coma. We apply the method to observations of three different comets observed using the TRAPPIST telescope: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding Spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the retrieved characteristic lengths can differ from those obtained from a direct least squares fitting over the observed flux of radiation, and

  12. Inversion Technique for Estimating Emissions of Volcanic Ash from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Pelley, Rachel; Cooke, Michael; Manning, Alistair; Thomson, David; Witham, Claire; Hort, Matthew

    2014-05-01

    When using dispersion models such as NAME (Numerical Atmospheric-dispersion Modelling Environment) to predict the dispersion of volcanic ash, a source term defining the mass release rate of ash is required. Inversion modelling using observations of the ash plume provides a method of estimating the source term for use in NAME. Our inversion technique makes use of satellite retrievals, calculated using data from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument on-board the MSG (Meteosat Second Generation) satellite, as the ash observations. InTEM (Inversion Technique for Emission Modelling) is the UK Met Office's inversion modelling system. Recently the capability to estimate time and height varying source terms has been implemented and applied to volcanic ash. InTEM uses a probabilistic approach to fit NAME model concentrations to satellite retrievals. This is achieved by applying Bayes Theorem to give a cost function for the source term. Source term profiles with lower costs generate model concentrations that better fit the satellite retrievals. InTEM uses the global optimisation technique, simulated annealing, to find the minimum of the cost function. The use of a probabilistic approach allows the uncertainty in the satellite retrievals to be incorporated into the inversion technique. InTEM makes use of satellite retrievals of both ash column loadings and of cloud free regions. We present a system that allows InTEM to be used during an eruption. The system is automated and can produce source term updates up to four times a day. To allow automation hourly satellite retrievals of ash are routinely produced using conservative detection limits. The conservative detection limits provide good detection of the ash plume while limiting the number of false alarms. Regions which are flagged as ash contaminated or free from cloud (both meteorological and ash) are used in the InTEM system. This approach is shown to improve the concentrations in the

  13. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  14. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  15. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse-Emulsion Technique.

    PubMed

    Chowdhuri, Sampreeti; Cole, Christian M; Devaraj, Neal K

    2016-05-17

    Liposomes form spontaneously by the assimilation of phospholipids, the primary component of cell membranes. Due to their unique ability to form selectively permeable bilayers in situ, they are widely used as nanocarriers for drug and small-molecule delivery. However, there is a lack of straightforward methodologies to encapsulate living microorganisms. Here we demonstrate the successful encapsulation of whole cells in phospholipid vesicles by using the inverse-emulsion technique of generating unilamellar vesicles. This method of liposome preparation allows for a facile encapsulation of large biomaterials that previously was not easily attainable. Using Escherichia coli as a model organism, we found that liposomes can protect the bacterium against external protease degradation and from harsh biological environments. Liposomes prepared by the inverse-emulsion method were also capable of encapsulating yeast and were found to be naturally susceptible to hydrolysis by enzymes such as phospholipases, thus highlighting their potential role as cell delivery carriers.

  16. Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer; Chambers, Don

    2013-07-01

    The low spatial resolution of GRACE causes leakage, where signals in one location spread out into nearby regions. Because of this leakage, using simple techniques such as basin averages may result in an incorrect estimate of the true mass change in a region. A fairly simple least squares inversion technique can be used to more specifically localize mass changes into a pre-determined set of basins of uniform internal mass distribution. However, the accuracy of these higher resolution basin mass amplitudes has not been determined, nor is it known how the distribution of the chosen basins affects the results. We use a simple `truth' model over Greenland as an example case, to estimate the uncertainties of this inversion method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We determine that an appropriate level of smoothing (300-400 km) and process noise (0.30 cm2 of water) gets the best results. The trends of the Greenland internal basins and Iceland can be reasonably estimated with this method, with average systematic errors of 3.5 cm yr-1 per basin. The largest mass losses found from GRACE RL04 occur in the coastal northwest (-19.9 and -33.0 cm yr-1) and southeast (-24.2 and -27.9 cm yr-1), with small mass gains (+1.4 to +7.7 cm yr-1) found across the northern interior. Acceleration of mass change is measurable at the 95 per cent confidence level in four northwestern basins, but not elsewhere in Greenland. Due to an insufficiently detailed distribution of basins across internal Canada, the trend estimates of Baffin and Ellesmere Islands are expected to be incorrect due to systematic errors caused by the inversion technique.

  17. [Research on high-frequency ultrasonic tissue harmonic information extraction based on phase inversion technique].

    PubMed

    Li, Yue-Jie; Tang, Si-Yuan; Wang, Li-Wei; Li, Song

    2008-11-01

    Based on the pulse-coded transmitting and wide-band receiving system, this paper describes A research of phase inversion technique to extract high-frequency ultrasonic tissue harmonic information by making use of wide-band ultrasonic transducer on frequency of 20 MHz, 35 MHz and 50 MHz. The results indicate that adopting the method in this paper is with better fundamental frequency inhibition and at the same time can increase the amplitude of second harmonic information effectively. This method is superior to that traditoncal one by using RF filter to extract tissue harmonic information.

  18. Inversion Techniques for Retrieving Detailed Aerosol Properties from Remote Sensing Observations: Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Dubovik, O.

    2010-12-01

    The ability of aerosol particles to interact strongly with electromagnetic radiation makes aerosol one of most climatically important atmospheric component. Remote sensing using the same ability for characterizing properties of atmospheric aerosol is probably the most adequate observational approach for accessing aerosol effect in climatic studies. Indeed, the satellite remote sensing is unique technique allowing monitoring of time variability of the aerosol at regional and global scales. Compare to in situ and laboratory measurements, remote methods do not use aerosol sampling and allow accessing the properties of unperturbed ambient aerosol in the atmospheres. However, interpretation of the remote sensing observations involves data inversion that, in practice, often appears to be a sophisticated procedure leading to rather ambiguous results. Numerous publications offer a wide diversity of approaches suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of retrieval algorithms on the personalized input and preferences of the developer. This presentation highlights a continues effort on developing a concept clarifying the differences between various methods and outlining unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting the data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, etc. The developed concept uses the principles of statistical estimation and suggests a generalized multi-term Least Square type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filter, Newton-Gauss and Levenberg-Marquardt iterations, optimal estimation, etc. The concept will be demonstrated by successful implementations in several challenging aerosol remote sensing

  19. VLP Source Inversion and Evaluation of Error Analysis Techniques at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Brill, K. A.; Waite, G. P.

    2015-12-01

    In January of 2012, our team occupied 10 sites around Fuego volcano with broadband seismometers, two of which were collocated with infrasound microphone arrays and tilt-meters (see Figure 1 for full deployment details). Our radial coverage around Fuego during the 2012 campaign satisfies conditions outlined by Dawson et al. [2011] for good network coverage. Very-long-period (VLP) events that accompany small-scale explosions were classified by waveform and eruption style. We located these VLP event families which have been persistent at Fuego since at least 2008 through inversion in the same manner employed by Lyons and Waite [2011] with improved radial coverage in our network. We compare results for source inversions performed with independent tilt data against inversions incorporating tilt data extracted from the broadband. The current best-practice method for choosing an optimum solution for inversion results is based on each solution's residual error, the relevance of free parameters used in the model, and the physical significance of the source mechanism. Error analysis was performed through a boot strapping in order to explore the source location uncertainty and significance of components of the moment tensor. The significance of the number of free parameters has mostly been evaluated by calculating Akaike's Information Criterion (AIC), but little has been done to evaluate the sensitivity of AIC or other criteria (i.e. Bayesian Information Criterion) to the number of model parameters. We compare solutions as chosen by these alternate methods with more standard techniques for our real data set as well through the use of synthetic data and make recommendations as to best practices. Figure 1: a) Map of 2012 station network: stations highlighted in red were collocated with infrasound arrays. b) Location of Fuego within Guatemala and view of the complex from the west with different eruptive centers labeled. c) Operational times for each of the stations and cameras.

  20. Generalization of Abel's mechanical problem: The extended isochronicity condition and the superposition principle

    SciTech Connect

    Kinugawa, Tohru

    2014-02-15

    This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing

  1. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  2. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    PubMed

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  3. A comparative assessment of information-exploitation techniques for GPR data inversion

    NASA Astrophysics Data System (ADS)

    Salucci, M.; Tenuti, L.; Poli, L.; Oliveri, G.; Massa, A.

    2015-11-01

    The inversion of Ground Penetrating Radar (GPR) data requires the development of suitable information-exploitation techniques that are able to extract as much as possible information on the unknown targets from the available measurements. An innovative singlefrequency (SF) inversion technique based on a deterministic conjugate-gradient (CG) minimization and the iterative multi-scaling approach (IMSA) is described. It is then shown how to improve the performances of the SF-IMSA-CG method by the introduction of an external frequency hopping (FH) iterative loop. On the one hand, the proposed FH-IMSA-CG method allows to exploit the intrinsic frequency diversity of wideband GPR measurements thanks to the FH strategy. On the other hand, the IMSA approach guarantees a significant reduction of the problem unknowns, providing an increased resolution within the identified regions of interest (RoIs). A numerical comparison shows the advantages of the FH-IMSA-CG over its single-frequency version. Moreover, the benefits of integrating the IMSA within the FH are verified by directly comparing the FH-IMSA-CG with its single-resolution (BARE) version (FH-BARE-CG).

  4. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL

    NASA Astrophysics Data System (ADS)

    Vohland, M.; Mader, S.; Dorigo, W.

    2010-04-01

    This study describes the retrieval of state variables (LAI, canopy chlorophyll, water and dry matter contents) for summer barley from airborne HyMap data by means of a canopy reflectance model (PROSPECT + SAIL). Three different inversion techniques were applied to explore the impact of the employed method on estimation accuracies: numerical optimization (downhill simplex method), a look-up table (LUT) and an artificial neural network (ANN) approach. By numerical optimization (Num Opt), reliable estimates were obtained for LAI and canopy chlorophyll contents (LAI × Cab) with r2 of 0.85 and 0.94 and RDP values of 1.81 and 2.65, respectively. Accuracies dropped for canopy water (LAI × Cw) and dry matter contents (LAI × Cm). Nevertheless, the range of leaf water contents ( Cw) was very narrow in the studied plant material. Prediction accuracies generally decreased in the order Num Opt > LUT > ANN. This decrease in accuracy mainly resulted from an increase in offset in the obtained values, as the retrievals from the different approaches were highly correlated. The same decreasing order in accuracy was found for the difference between the measured spectra and those reconstructed from the retrieved variable values. The parallel application of the different inversion techniques to one collective data set was helpful to identify modelling uncertainties, as shortcomings of the retrieval algorithms themselves could be separated from uncertainties in model structure and parameterisation schemes.

  5. Eversion-Inversion Labral Repair and Reconstruction Technique for Optimal Suction Seal

    PubMed Central

    Moreira, Brett; Pascual-Garrido, Cecilia; Chadayamurri, Vivek; Mei-Dan, Omer

    2015-01-01

    Labral tears are a significant cause of hip pain and are currently the most common indication for hip arthroscopy. Compared with labral debridement, labral repair has significantly better outcomes in terms of both daily activities and athletic pursuits in the setting of femoral acetabular impingement. The classic techniques described in the literature for labral repair all use loop or pass-through intrasubstance labral sutures to achieve a functional hip seal. This hip seal is important for hip stability and optimal joint biomechanics, as well as in the prevention of long-term osteoarthritis. We describe a novel eversion-inversion intrasubstance suturing technique for labral repair and reconstruction that can assist in restoration of the native labrum position by re-creating an optimal seal around the femoral head. PMID:26870648

  6. New machine-readable version of Abell catalog of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kalinkov, M.; Stavrev, K. Y.; Kuneva, I. F.

    An improved version of the magnetic-tape catalog of Abell and Zwicky clusters of galaxies (Kalinkov et al., 1976) is briefly characterized, with an emphasis on the distance-calibration and homogenization techniques employed in its compilation. The distance calibration is improved by performing regression analyses on clusters of known Bautz-Morgan type; parameter and standard-deviation values are presented in a table. Selection effects are investigated, and it is shown that the increase in absolute magnitude estimates with distance is less pronounced for the values based on the photored magnitude of the first-rank galaxy (Leir and van den Bergh, 1977) than for those determined by Abell (1958).

  7. Constraints on the structure of 16 Cygni A and 16 Cygni B using inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.

    2016-01-01

    Context. Constraining additional mixing processes and chemical composition is a central problem in stellar physics as their impact on determining stellar age leads to biases in our studies of stellar evolution, galactic history and exoplanetary systems. In two previous papers, we have shown how seismic inversion techniques could be used to offer strong constraints on such processes by pointing out weaknesses in current theoretical models. The theoretical approach having been tested, we now wish to apply our technique to observations. In that sense, the solar analogues 16CygA and 16CygB, being amongst the best targets in the Kepler field, are probably currently the most well suited stars to test the diagnostic potential of seismic inversions. Aims: We wish to use seismic indicators obtained through inversion techniques to constrain additional mixing processes in the components of the binary system 16Cyg. The combination of various seismic indicators will help to point out the weaknesses of stellar models and thus obtain more constrained and accurate fundamendal parameters for these stars. Methods: First, we used the latest seismic, spectroscopic and interferometric observational constraints in the literature for this system to independently determine suitable reference models for both stars. We then carried out seismic inversions of the acoustic radius, the mean density and a core conditions indicator. These additional constraints will be used to improve the reference models for both stars. Results: The combination of seismic, interferometric and spectroscopic constraints allows us to obtain accurate reference models for both stars. However, we note that it is possible to achieve similar accuracy for a range of model parameters. Namely, changing the diffusion coefficient or the chemical composition within the observational values could lead to a 5% uncertainty in mass, a 3% uncertainty in radius and up to an 8% uncertainty in age. We used acoustic radius and mean

  8. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  9. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  10. Inverse transport problem solvers based on regularized and compressive sensing techniques

    SciTech Connect

    Cheng, Y.; Cao, L.; Wu, H.; Zhang, H.

    2012-07-01

    According to the direct exposure measurements from flash radiographic image, regularized-based method and compressive sensing (CS)-based method for inverse transport equation are presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. With a large number of measurements, least-square method is utilized to complete the reconstruction. Owing to the ill-posedness of the inverse problems, regularized algorithm is employed. Tikhonov method is applied with an appropriate posterior regularization parameter to get a meaningful solution. However, it's always very costly to obtain enough measurements. With limited measurements, CS sparse reconstruction technique Orthogonal Matching Pursuit (OMP) is applied to obtain the sparse coefficients by solving an optimization problem. This paper constructs and takes the forward projection matrix rather than Gauss matrix as measurement matrix. In the CS-based algorithm, Fourier expansion and wavelet expansion are adopted to convert an underdetermined system to a well-posed system. Simulations and numerical results of regularized method with appropriate regularization parameter and that of CS-based agree well with the reference value, furthermore, both methods avoid amplifying the noise. (authors)

  11. Hα photometry of Abell 2390

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Morris, Simon L.

    2000-11-01

    We present the results of a search for strong Hα emission line galaxies (rest frame equivalent widths greater than 50Å) in the z~0.23 cluster Abell 2390. The survey contains 1189galaxies over 270arcmin2, and is 50per cent complete at Mr~-17.5+5logh. The fraction of galaxies in which Hα is detected at the 2σ level rises from 0.0 in the central regions (excluding the cD galaxy) to 12.5+/-8per cent at R200. For 165 of the galaxies in our catalogue, we compare the Hα equivalent widths with their [Oii] λ3727 equivalent widths, from the Canadian Network for Observational Cosmology (CNOC1) spectra. The fraction of strong Hα emission line galaxies is consistent with the fraction of strong [Oii] emission galaxies in the CNOC1 sample: only 2+/-1per cent have no detectable [Oii] emission and yet significant (>2σ) Hα equivalent widths. Dust obscuration, non-thermal ionization, and aperture effects are all likely to contribute to this non-correspondence of emission lines. We identify six spectroscopically `secure' k+a galaxies [W0(Oii)<5Å and W0(Hδ)>~5Å] at least two of these show strong signs in Hα of star formation in regions that are covered by the slit from which the spectra were obtained. Thus, some fraction of galaxies classified as k+a based on spectra shortward of 6000Å are likely to be undergoing significant star formation. These results are consistent with a `strangulation' model for cluster galaxy evolution, in which star formation in cluster galaxies is gradually decreased, and is neither enhanced nor abruptly terminated by the cluster environment.

  12. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  13. SEMI-DEFINITE PROGRAMMING TECHNIQUES FOR STRUCTURED QUADRATIC INVERSE EIGENVALUE PROBLEMS

    PubMed Central

    LIN, MATTHEW M.; DONG, BO; CHU, MOODY T.

    2014-01-01

    In the past decade or so, semi-definite programming (SDP) has emerged as a powerful tool capable of handling a remarkably wide range of problems. This article describes an innovative application of SDP techniques to quadratic inverse eigenvalue problems (QIEPs). The notion of QIEPs is of fundamental importance because its ultimate goal of constructing or updating a vibration system from some observed or desirable dynamical behaviors while respecting some inherent feasibility constraints well suits many engineering applications. Thus far, however, QIEPs have remained challenging both theoretically and computationally due to the great variations of structural constraints that must be addressed. Of notable interest and significance are the uniformity and the simplicity in the SDP formulation that solves effectively many otherwise very difficult QIEPs. PMID:25392603

  14. An Alternative Scheme for 13C Chemical-Shift Imaging via Inverse Detection of Protons through an MILS (or Inverse SLIM) Technique

    PubMed

    Lee; Tzou; Chiou; Yeung

    1998-01-01

    An alternative scheme in acquiring 13C spectroscopic images using inverse detection via polarization transfer through protons was proposed and experimentally verified by a phantom using a heteronuclear multiple-quantum coherence technique. This scheme has some features that, in special circumstances, can be exploited to one's advantages. These features are: (1) signal enhancement, a feat realizable under favorable conditions; (2) spectroscopic encoding via constant time; and (3) improvement of the time efficiency of the constant-time method via optimization by singular-value decomposition analysis. Features (1) and (2) can, in some cases, yield better sensitivity than the conventional 3DFT technique without sacrificing the most important attribute of 13C, the enormity of the chemical shifts. Such is the case because spectroscopic images acquired by the technique proposed are based on the chemical shifts of carbon, in contrast to the other more prevalent inverse-detection schemes. Feature (2) can also offer higher spatial resolution by shifting the emphasis of signal encoding from a spectral-resolution-first viewpoint to one that favors spatial resolution. Feature (3) was adopted from a method previously known as MILS (metabolite imaging of lines in a spectrum), or the inverse of SLIM, an economical scheme originally proposed by Hu et al. (1988, Magn. Reson. Med. 8, 314) for obtaining a compartmentalized NMR spectrum. Copyright 1998 Academic Press. Copyright 1998 Academic Press

  15. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  16. LensPerfect Analysis of Abell 1689

    NASA Astrophysics Data System (ADS)

    Coe, Dan A.

    2007-12-01

    I present the first massmap to perfectly reproduce the position of every gravitationally-lensed multiply-imaged galaxy detected to date in ACS images of Abell 1689. This massmap was obtained using a powerful new technique made possible by a recent advance in the field of Mathematics. It is the highest resolution assumption-free Dark Matter massmap to date, with the resolution being limited only by the number of multiple images detected. We detect 8 new multiple image systems and identify multiple knots in individual galaxies to constrain a grand total of 168 knots within 135 multiple images of 42 galaxies. No assumptions are made about mass tracing light, and yet the brightest visible structures in A1689 are reproduced in our massmap, a few with intriguing positional offsets. Our massmap probes radii smaller than that resolvable in current Dark Matter simulations of galaxy clusters. And at these radii, we observe slight deviations from the NFW and Sersic profiles which describe simulated Dark Matter halos so well. While we have demonstrated that our method is able to recover a known input massmap (to limited resolution), further tests are necessary to determine the uncertainties of our mass profile and positions of massive subclumps. I compile the latest weak lensing data from ACS, Subaru, and CFHT, and attempt to fit a single profile, either NFW or Sersic, to both the observed weak and strong lensing. I confirm the finding of most previous authors, that no single profile fits extremely well to both simultaneously. Slight deviations are revealed, with the best fits slightly over-predicting the mass profile at both large and small radius. Our easy-to-use software, called LensPerfect, will be made available soon. This research was supported by the European Commission Marie Curie International Reintegration Grant 017288-BPZ and the PNAYA grant AYA2005-09413-C02.

  17. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  18. Revisiting the time domain induced polarization technique, from linearization to inversion

    NASA Astrophysics Data System (ADS)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  19. Data Inversion Techniques for SONNE: a Fast Neutron Spectrometer for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Mallik, Procheta; MacKinnon, A. L.; Ryan, J. M.; Woolf, R. S.; Bloser, P. F.; Bravar, U.; Legere, J. S.; McConnell, M. L.; Flueckiger, E. O.; Pirard, B.

    2010-05-01

    SONNE, the SOlar NeutroN Experiment proposed for Solar Probe Plus and developed at the University of New Hampshire (UNH), is designed to measure solar neutrons from 1-20 MeV and solar gammas from 0.5-10 MeV. SONNE is a double scatter instrument that employs imaging to maximise its signal-to-noise ratio by rejecting neutral particles from non-solar directions. It is intended for an inner heliosphere space mission to detect solar neutrons close enough to the Sun (0.2-0.4 AU), where these lower-energy neutrons exist in sufficient numbers. Using laboratory and simulated data, we produce an instrument response matrix for FNIT that we are then able to test. A crucial aspect for the inversion of data from such an instrument is identifying suitable regularisation techniques needed to deconvolve the data it produces. Here we shall present work done to test the FNIT response matrix by employing Tikhonov regularisation. Using simulated `fake' data, we show that zeroth-order Tikhonov regularisation produces the most encouraging reconstruction of the incident spectrum. First- and second-order Tikhonov regularisation produce unsatisfactory results because the choice of the smoothing parameter - essential for the deconvolution - cannot be determined automatically because the Picard condition is not met for the higher order regularisations. Hence zeroth-order Tikhonov regularisation seems to be the most suitable deconvolution technique for FNIT's needs.

  20. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  1. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  2. The clusters Abell 222 and Abell 223: a multi-wavelength view

    NASA Astrophysics Data System (ADS)

    Durret, F.; Laganá, T. F.; Adami, C.; Bertin, E.

    2010-07-01

    Context. The Abell 222 and 223 clusters are located at an average redshift z ~ 0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims: We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods: The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg2, or 12.3 × 12.3 Mpc2 at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images. Results: The GLFs of Abell 222 in the g' and r' bands are well fit by a Schechter function; the GLF is steeper in r' than in g'. For Abell 223, the GLFs in both bands require a second component at bright magnitudes, added to a Schechter function; they are similar in both bands. The Serna & Gerbal method allows to separate well the two clusters. No obvious filamentary structures are detected at very large scales around the clusters, but a third cluster at the same redshift, Abell 209, is located at a projected distance of 19.2 Mpc. X-ray temperature and metallicity maps reveal that the temperature and metallicity of the X-ray gas are quite homogeneous in Abell 222, while they are very perturbed in Abell 223. Conclusions: The Abell 222/Abell 223 system is complex. The two clusters that form this structure present very different dynamical states. Abell 222 is a smaller, less massive and almost isothermal cluster. On the other hand, Abell 223 is more massive and has most probably been crossed by a subcluster on its way to the northeast. As a consequence, the

  3. An innovations-based noise cancelling technique on inverse kepstrum whitening filter and adaptive FIR filter in beamforming structure.

    PubMed

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.

  4. A new co-operative inversion strategy via fuzzy clustering technique applied to seismic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Thong Kieu, Duy; Kepic, Anton

    2015-04-01

    Geophysical inversion produces very useful images of earth parameters; however, inversion results usually suffer from inherent non-uniqueness: many subsurface models with different structures and parameters can explain the measurements. To reduce the ambiguity, extra information about the earth's structure and physical properties is needed. This prior information can be extracted from geological principles, prior petrophysical information from well logs, and complementary information from other geophysical methods. Any technique used to constrain inversion should be able to integrate the prior information and to guide updating inversion process in terms of the geological model. In this research, we have adopted fuzzy c-means (FCM) clustering technique for this purpose. FCM is a clustering method that allows us to divide the model of physical parameters into a few clusters of representative values that also may relate to geological units based on the similarity of the geophysical properties. This exploits the fact that in many geological environments the earth is comprised of a few distinctive rock units with different physical properties. Therefore FCM can provide a platform to constrain geophysical inversion, and should tend to produce models that are geologically meaningful. FCM was incorporated in both separate and co-operative inversion processing of seismic and magnetotelluric (MT) data with petrophysical constraints. Using petrophysical information through FCM assists the inversion to build a reliable earth model. In this algorithm, FCM plays a role of guider; it uses the prior information to drive the model update process, and also forming an earth model filled with rocks units rather than smooth transitions when the boundary is in doubt. Where petrophysical information from well logs or core measurement is not locally available the cluster petrophysics may be solved for in inversion as well if some knowledge of how many distinctive geological exist. A

  5. Application of direct inverse analogy method (DIVA) and viscous design optimization techniques

    NASA Technical Reports Server (NTRS)

    Greff, E.; Forbrich, D.; Schwarten, H.

    1991-01-01

    A direct-inverse approach to the transonic design problem was presented in its initial state at the First International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-1). Further applications of the direct inverse analogy (DIVA) method to the design of airfoils and incremental wing improvements and experimental verification are reported. First results of a new viscous design code also from the residual correction type with semi-inverse boundary layer coupling are compared with DIVA which may enhance the accuracy of trailing edge design for highly loaded airfoils. Finally, the capabilities of an optimization routine coupled with the two viscous full potential solvers are investigated in comparison to the inverse method.

  6. A Numerical Inversion of the Perrin Equations for Rotational Diffusion Constants for Ellipsoids of Revolution by Iterative Techniques

    PubMed Central

    Wright, A. Kent; Duncan, Robert C.; Beekman, Karen A.

    1973-01-01

    The rotational diffusion coefficients R1 and R3 for ellipsoids of revolution are shown to represent another pair of hydrodynamic data to obtain size and shape with theories by Sadron and Scheraga-Mandelkern. An iterative numerical technique is presented which allows the semiaxes to be determined from the Perrin equations for rotational diffusion constants. The use of this inversion technique is illustrated by application to literature data from dielectric dispersion studies. PMID:4726879

  7. Recursive Ant Colony Global Optimization: a new technique for the inversion of geophysical data

    NASA Astrophysics Data System (ADS)

    Gupta, D. K.; Gupta, J. P.; Arora, Y.; Singh, U. K.

    2011-12-01

    We present a new method called Recursive Ant Colony Global Optimization (RACO) technique, a modified form of general ACO, which can be used to find the best solutions to inversion problems in geophysics. RACO simulates the social behaviour of ants to find the best path between the nest and the food source. A new term depth has been introduced, which controls the extent of recursion. A selective number of cities get qualified for the successive depth. The results of one depth are used to construct the models for the next depth and the range of values for each of the parameters is reduced without any change to the number of models. The three additional steps performed after each depth, are the pheromone tracking, pheromone updating and city selection. One of the advantages of RACO over ACO is that if a problem has multiple solutions, then pheromone accumulation will take place at more than one city thereby leading to formation of multiple nested ACO loops within the ACO loop of the previous depth. Also, while the convergence of ACO is almost linear, RACO shows exponential convergence and hence is faster than the ACO. RACO proves better over some other global optimization techniques, as it does not require any initial values to be assigned to the parameters function. The method has been tested on some mathematical functions, synthetic self-potential (SP) and synthetic gravity data. The obtained results reveal the efficiency and practicability of the method. The method is found to be efficient enough to solve the problems of SP and gravity anomalies due to a horizontal cylinder, a sphere, an inclined sheet and multiple idealized bodies buried inside the earth. These anomalies with and without noise were inverted using the RACO algorithm. The obtained results were compared with those obtained from the conventional methods and it was found that RACO results are more accurate. Finally this optimization technique was applied to real field data collected over the Surda

  8. An inverse light scattering technique for morphological characterization of irregular particles based on the Gaussian-random-sphere model.

    PubMed

    Hajihashemi, M Reza; Jiang, Huabei

    2012-06-01

    The Gaussian-random-sphere model is employed for morphological characterization of nonspherical, irregular particles using an inverse light scattering technique. The synthetic measurement data consist of reduced scattering spectra caused by an aggregate of irregular particles randomly oriented in turbid media and are generated using the discrete dipole approximation. The proposed method simultaneously retrieves the concentration and shape parameters of particles using the data collected at multiple wavelengths. The performance of the inverse algorithm is tested using noise-corrupted data, in which up to 50% noise may be added to the observed scattering spectra.

  9. The X-ray cluster Abell 744

    NASA Technical Reports Server (NTRS)

    Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.

    1985-01-01

    X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.

  10. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  11. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall

    1994-01-01

    We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  12. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Yue, X.; Schreiner, W. S.

    2015-10-01

    An improved method to retrieve electron density profiles from Global Positioning System (GPS) radio occultation (RO) data is presented and applied to Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations. The improved inversion uses a monthly grid of COSMIC F region peak densities (NmF2), which are obtained via the standard Abel inversion, to aid the Abel inversion by providing information on the horizontal gradients in the ionosphere. This lessens the impact of ionospheric gradients on the retrieval of GPS RO electron density profiles, reducing the dominant error source in the standard Abel inversion. Results are presented that demonstrate the NmF2 aided retrieval significantly improves the quality of the COSMIC electron density profiles. Improvements are most notable at E region altitudes, where the improved inversion reduces the artificial plasma cave that is generated by the Abel inversion spherical symmetry assumption at low latitudes during the daytime. Occurrence of unphysical negative electron densities at E region altitudes is also reduced. Furthermore, the NmF2 aided inversion has a positive impact at F region altitudes, where it results in a more distinct equatorial ionization anomaly. COSMIC electron density profiles inverted using our new approach are currently available through the University Corporation for Atmospheric Research COSMIC Data Analysis and Archive Center. Owing to the significant improvement in the results, COSMIC data users are encouraged to use electron density profiles based on the improved inversion rather than those inverted by the standard Abel inversion.

  13. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Biviano, A.; Mamon, G. A.

    2014-06-01

    Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.

  14. Comparison of four stable numerical methods for Abel's integral equation

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  15. ABEL description and implementation of cyber net system

    NASA Astrophysics Data System (ADS)

    Lu, Jiyuan; Jing, Liang

    2013-03-01

    Cyber net system is a subclass of Petri Nets. It has more powerful description capability and more complex properties compared with P/T system. Due to its nonlinear relation, it can't use analysis techniques of other net systems directly. This influences the research on cyber net system. In this paper, the author uses hardware description language to describe cyber net system. Simulation analysis is carried out through EDA software tools to disclose properties of the system. This method is introduced in detail through cyber net system model of computing Fibonacci series. ABEL source codes and simulation wave are also presented. The source codes are compiled, optimized, fit design and downloaded to the Programmable Logic Device. Thus ASIC of computing Fibonacci series is obtained. It will break a new path for the analysis and application study of cyber net system.

  16. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  17. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  18. Identifying Isotropic Events using an Improved Regional Moment Tensor Inversion Technique

    SciTech Connect

    Dreger, Douglas S.; Ford, Sean R.; Walter, William R.

    2016-12-08

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  19. The cluster of galaxies Abell 376

    NASA Astrophysics Data System (ADS)

    Proust, D.; Capelato, H. V.; Hickel, G.; Sodré, L., Jr.; Lima Neto, G. B.; Cuevas, H.

    2003-08-01

    We present a dynamical analysis of the galaxy cluster Abell 376 based on a set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence observatories and completed with data from the literature. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as well as some properties of the cluster. We obtained an improved mean redshift value z = 0.0478+0.005-0.006 and velocity dispersion sigma = 852+120-76 km s-1. Our analysis indicates that inside a radius of ~ 900 h70-1 kpc ( ~ 15 arcmin) the cluster is well relaxed without any remarkable features and the X-ray emission traces fairly well the galaxy distribution. A possible substructure is seen at 20 arcmin from the centre towards the Southwest direction, but is not confirmed by the velocity field. This SW clump is, however, kinematically bound to the main structure of Abell 376. A dense condensation of galaxies is detected at 46 arcmin (projected distance 2.6 h70-1 Mpc) from the centre towards the Northwest and analysis of the apparent luminosity distribution of its galaxies suggests that this clump is part of the large scale structure of Abell 376. X-ray spectroscopic analysis of ASCA data resulted in a temperature kT = 4.3 +/- 0.4 keV and metal abundance Z = 0.32 +/- 0.08 Zsun. The velocity dispersion corresponding to this temperature using the TX-sigma scaling relation is in agreement with the measured galaxies velocities. Based on observations made Haute-Provence and Pic du Midi Observatories (France). Table 1 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/31

  20. In-depth study of 16CygB using inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Salmon, S. J. A. J.; Reese, D. R.; Dupret, M. A.

    2016-12-01

    Context. The 16Cyg binary system hosts the solar-like Kepler targets with the most stringent observational constraints. Indeed, we benefit from very high quality oscillation spectra, as well as spectroscopic and interferometric observations. Moreover, this system is particularly interesting since both stars are very similar in mass but the A component is orbited by a red dwarf, whereas the B component is orbited by a Jovian planet and thus could have formed a more complex planetary system. In our previous study, we showed that seismic inversions of integrated quantities could be used to constrain microscopic diffusion in the A component. In this study, we analyse the B component in the light of a more regularised inversion. Aims: We wish to analyse independently the B component of the 16Cyg binary system using the inversion of an indicator dedicated to analyse core conditions, denoted tu. Using this independent determination, we wish to analyse any differences between both stars due to the potential influence of planetary formation on stellar structure and/or their respective evolution. Methods: First, we recall the observational constraints for 16CygB and the method we used to generate reference stellar models of this star. We then describe how we improved the inversion and how this approach could be used for future targets with a sufficient number of observed frequencies. The inversion results were then used to analyse the differences between the A and B components. Results: The inversion of the tu indicator for 16CygB shows a disagreement with models including microscopic diffusion and sharing the chemical composition previously derived for 16CygA. We show that small changes in chemical composition are insufficient to solve the problem but that extra mixing can account for the differences seen between both stars. We use a parametric approach to analyse the impact of extra mixing in the form of turbulent diffusion on the behaviour of the tu values. We conclude on

  1. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  2. Retrieval of the pixel component temperatures from multi-band thermal infrared image using Bayesian inversion technique

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Shao, Honglan; Liu, Zhihui; Liu, Chengyu; Zhang, Changxing; Yang, Gui; Wang, Jianyu; Cai, Nengbin

    2016-04-01

    Majority of pixels, in the nature, are non-isothermal in three dimensions, especially for the pixels in meter-scale, tens- meter-scale or hundreds-meter-scale which are paid extensive attention by the researchers in geoscience field. The three-dimensional non-isothermal phenomenon even exists in some pixels in centimeter-scale. For the geosciencific researches, it is significant to determine the component temperatures of a pixel precisely. The airborne WSIS (Wide Spectrum Imaging Spectrometer) data with VNIR (visible-near infrared), SWIR (short-wave infrared) and TIR (thermal infrared) bands were used in the study. First, the components of all the pixels in the image were determined by the linear mixing method. Second, each component emissivity of each pixel was calculated based on an emissivity priori knowledge base. Last, a temperature and emissivity separation algorithm was used to inverse the mean temperature of each pixel, regarded as initial value, the Planck function was linearized to construct a multi-band equation set, and the component temperatures of every pixel were inversed by the Bayesian retrieval technique. The results suggest that the inversion precision of the pixel component temperatures is improved effectively by the Bayesian retrieval technique with the assistance of the VNIR and SWIR hyperspectral remote sensing data.

  3. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  4. Search for post-starburst (E+A) galaxies in the cluster Abell 3266

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyu

    The objective of this work is to use spectroscopic techniques to further the understanding of the dynamical state of the galaxy cluster Abell 3266. This is a very rich cluster in the southern skies that has been extensively studied by many groups. The cluster shows evidence of a merger of substructure in its midst, but the geometry, dynamics, and age of this merger remain uncertain. Low resolution, fiber spectra of galaxies in Abell 3266 were analyzed and searched for “E+A” (post-starburst) galaxies, from which we selected two candidate “E+A” galaxies for follow-up high-resolution spectroscopy. The 2 candidate galaxies are confirmed as “E+A” galaxies with high-resolution, slit spectra. The ages of these “E+A” galaxies (i.e. time since their starburst occurred) are determined with the method developed by Leonardi & Rose (1996). We find that both galaxies had a major starburst in the past, but they occurred at significantly different epochs. If the starbursts are related to the recent merger history of Abell 3266, instead of being just isolated events, they would indicate that there may have been more than one merger in this cluster in the past 3 Gyr or so. This might explain the rather disparate conclusions that have been obtained in the past about the merger history of this cluster. To compare with other nearby clusters, “E+A” galaxies were also searched for among nearly 2400 galaxies in 26 clusters fields. Only 4 candidates are found. This result is consistent with the general observational fact that there are substantially fewer spectroscopically disturbed galaxies in nearby clusters than in distant clusters. The result is also in quantitative agreement with the findings in the larger, more homogeneous Las Campanas Redshift Survey, confirming the reliability of our identification in Abell 3266. The impact of these statistical analyses on the understanding of galaxy evolution in cluster environment is also discussed.

  5. The cluster Abell 780: an optical view

    NASA Astrophysics Data System (ADS)

    Durret, F.; Slezak, E.; Adami, C.

    2009-11-01

    Context: The Abell 780 cluster, better known as the Hydra A cluster, has been thouroughly analyzed in X-rays. However, little is known about its optical properties. Aims: We propose to derive the galaxy luminosity function (GLF) in this apparently relaxed cluster and to search for possible environmental effects by comparing the GLFs in various regions and by looking at the galaxy distribution at large scale around Abell 780. Methods: Our study is based on optical images obtained with the ESO 2.2m telescope and WFI camera in the B and R bands, covering a total region of 67.22 × 32.94 arcmin^2, or 4.235 × 2.075 Mpc2 for a cluster redshift of 0.0539. Results: In a region of 500 kpc radius around the cluster center, the GLF in the R band shows a double structure, with a broad and flat bright part and a flat faint end that can be fit by a power law with an index α ~ - 0.85 ± 0.12 in the 20.25 ≤ R ≤ 21.75 interval. If we divide this 500 kpc radius region in north+south or east+west halves, we find no clear difference between the GLFs in these smaller regions. No obvious large-scale structure is apparent within 5 Mpc from the cluster, based on galaxy redshifts and magnitudes collected from the NED database in a much larger region than that covered by our data, suggesting that there is no major infall of material in any preferential direction. However, the Serna-Gerbal method reveals a gravitationally bound structure of 27 galaxies, which includes the cD, and of a more strongly gravitationally bound structure of 14 galaxies. Conclusions: These optical results agree with the overall relaxed structure of Abell 780 previously derived from X-ray analyses. Based on observations obtained at the European Southern Observatory, program ESO 68.A-0084(A), P. I. E. Slezak. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics

  6. Inverse methods in electromagnetic imaging; Proceedings of the NATO Advanced Research Workshop, Bad Windsheim, West Germany, September 18-24, 1983. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Boerner, W. M.; Brand, H.; Cram, L. A.; Giessing, D. T.; Jordan, A. K.

    The present conference considers mathematical inverse methods and transient techniques, the topological approach to inverse scattering in remote sensing, the numerical resolution of inverse problems via functional derivatives, the application of almost periodic functions to inverse scattering theory, application of the Abel transform in remote sensing, the inverse diffraction problem, recent advances in the theory of inverse scattering with sparse data, direct and inverse halfspace scalar diffraction, approximation of input response, maximum entropy methods in electromagnetic/geophysical/ultrasonic imaging, time-dependent radar target signatures, the synthesis and detection of authenticity features, singularities in quasi-geometrical imaging, and polarization utilization in the electromagnetic vector inverse problem. Also discussed are polarization-dependence in angle tracking systems, polarization vector signal processing for radar clutter suppression, the radiative transfer approach in electromagnetic imaging, inverse methods in microwave target imaging, inversion in SAR imaging, fast mm-wave imaging, electromagnetic imaging of dielectric targets, tomographic imaging methods, diffraction tomography, phase-comparison monopulse side-scan radar, and far field-to-near field transforms in spherical coordinates.

  7. The Abell 85 BCG: A Nucleated, Coreless Galaxy

    NASA Astrophysics Data System (ADS)

    Madrid, Juan P.; Donzelli, Carlos J.

    2016-03-01

    New high-resolution r-band imaging of the brightest cluster galaxy (BCG) in Abell 85 (Holm 15A) was obtained using the Gemini Multi Object Spectrograph. These data were taken with the aim of deriving an accurate surface brightness profile of the BCG of Abell 85, in particular, its central region. The new Gemini data show clear evidence of a previously unreported nuclear emission that is evident as a distinct light excess in the central kiloparsec of the surface brightness profile. We find that the light profile is never flat nor does it present a downward trend toward the center of the galaxy. That is, the new Gemini data show a different physical reality from the featureless, “evacuated core” recently claimed for the Abell 85 BCG. After trying different models, we find that the surface brightness profile of the BCG of Abell 85 is best fit by a double Sérsic model.

  8. THE ABELL 85 BCG: A NUCLEATED, CORELESS GALAXY

    SciTech Connect

    Madrid, Juan P.

    2016-03-01

    New high-resolution r-band imaging of the brightest cluster galaxy (BCG) in Abell 85 (Holm 15A) was obtained using the Gemini Multi Object Spectrograph. These data were taken with the aim of deriving an accurate surface brightness profile of the BCG of Abell 85, in particular, its central region. The new Gemini data show clear evidence of a previously unreported nuclear emission that is evident as a distinct light excess in the central kiloparsec of the surface brightness profile. We find that the light profile is never flat nor does it present a downward trend toward the center of the galaxy. That is, the new Gemini data show a different physical reality from the featureless, “evacuated core” recently claimed for the Abell 85 BCG. After trying different models, we find that the surface brightness profile of the BCG of Abell 85 is best fit by a double Sérsic model.

  9. An Inversion Technique for Constraining the Interior Structure of Small Exoplanets

    NASA Astrophysics Data System (ADS)

    Dorn, Caroline; Khan, Amir; Heng, Kevin; Benz, Willy

    2014-05-01

    Characterizing the interior structure of exoplanets is key to understand planet formation and to evaluate the probability of the existence of habitable planets outside our solar system. Several studies have been dedicated to examine effects of composition and temperature on exoplanet mass and radius, while few have tried to solve this as an inverse problem. Here we proceed along these lines and adopt an inverse approach based on a stochastic sampling algorithm to invert for physico-chemical structure of the interior of the planets given observations of mass, radius, and stellar photospheric Fe/Si abundances. With the inversion method employed here we are able to determine model parameter uncertainties, i.e., ranges in composition and core radius that are compatible with the observations. For the inversions we make the following assumptions: (1) only rocky silicate exoplanets are considered, i.e., no oceans nor atmospheres; (2) bulk exoplanet composition is dictated by stellar photospheric abundance measurements (=CI-chondrites in the case of the Sun); (3) exoplanet cores are assumed to be made of pure iron. We apply a Markov chain Monte Carlo (McMC) algorithm to constrain model parameters: core radius, mantle Mg/Si, Fe/Si ratios and Si-content. In order to predict data, or equivalently, solve for planetary mass and bulk composition, we use thermodynamic modeling methods to compute stable mantle mineralogy and density as a function of the considered composition, temperature, and pressure profile. For the core we employ an equation-of-state approach for pure iron to compute the density profile. We applied our method to a series of planetary bodies of masses between 0.1 and 10 ME and radii between 0.4 and 2 RE, assuming both specific stellar and unconstrained bulk compositions. Overall, we find that core radius and mantle composition of rocky exoplanets can be constrained, although core radius appears to be better resolved because of increased sensitivity of data to

  10. Thermal characterization of ZnO-DMSO (dimethyl sulfoxide) colloidal dispersions using the inverse photopyroelectric technique.

    PubMed

    Marín, E; Calderón, A; Díaz, D

    2009-05-01

    Nanofluids, i.e., colloidal dispersions of nanoparticles in a base liquid (solvent), have received considerable attention in the last years due to their potential applications. One attractive feature of these systems is that their thermal conductivity can exceed the corresponding values of the base fluid and of the fluid with large particles of the same chemical composition. However, there is a lack of agreement between published results and the suggested mechanisms which explain the thermal conductivity enhancement. Here we show the possibilities of the inverse photopyroelectric method for the determination of the effective thermal effusivity of the system constituted by small ZnO nanoparticles dispersed in dimethyl sulfoxide, as a function of the nanoparticles volumetric fraction. Using a phenomenological model we estimated the thermal conductivity of these colloidal samples without observing any significant enhancement of this parameter above effective medium predictions.

  11. An inverse technique to deduce the elasticity of a large artery

    NASA Astrophysics Data System (ADS)

    Lagrée, P.-Y.

    2000-02-01

    Our purpose is to build an inverse method which best fits a model of artery flow and experimental measurements (we assume that we are able to measure the displacement of the artery as a function of time at three stations). Having no clinical data, we simulate these measurements with the numerical computations from a "boundary layer" code. First, we revisit the system of Ling and Atabek of boundary layer type for the transmission of a pressure pulse in the arterial system for the case of an elastic wall (but we solve it without any simplification in the upartial u/partial x term). Then, using a method analogous to the well known Von Kármán-Pohlhausen method from aeronautics but transposed here for a pulsatile flow, we build a system of three coupled non-linear partial differential equations depending only on time and axial co-ordinate. This system governs the dynamics of internal artery radius, centre velocity and a quantity related to the presence of viscous effects. These two methods give nearly the same numerical results. Second, we construct an inverse method: the aim is to find for the simple integral model, the physical parameters to put in the "boundary layer" code (simulating clinical data). This is done by varying in the integral model the viscosity and elasticity in order to fit best with the data. To achieve this in a rational way, we have to minimise a cost function, which involves the computation of the adjoint system of the integral method. The good set of parameters ({i.e.} viscosity, and two coefficients of a wall law) is effectively found again. It opens the perspective for application in real clinical cases of this new non-invasive method for evaluating the viscosity of the flow and elasticity of the wall.

  12. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  13. A low-computational-cost inverse heat transfer technique for convective heat transfer measurements in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Avallone, F.; Greco, C. S.; Schrijer, F. F. J.; Cardone, G.

    2015-04-01

    The measurement of the convective wall heat flux in hypersonic flows may be particularly challenging in the presence of high-temperature gradients and when using high-thermal-conductivity materials. In this case, the solution of multidimensional problems is necessary, but it considerably increases the computational cost. In this paper, a low-computational-cost inverse data reduction technique is presented. It uses a recursive least-squares approach in combination with the trust-region-reflective algorithm as optimization procedure. The computational cost is reduced by performing the discrete Fourier transform on the discrete convective heat flux function and by identifying the most relevant coefficients as objects of the optimization algorithm. In the paper, the technique is validated by means of both synthetic data, built in order to reproduce physical conditions, and experimental data, carried out in the Hypersonic Test Facility Delft at Mach 7.5 on two wind tunnel models having different thermal properties.

  14. The magnitude-redshift relation for 561 Abell clusters

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.

    1985-01-01

    The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.

  15. A comparison of direct and iterative finite element inversion techniques in dynamic elastography.

    PubMed

    Honarvar, M; Rohling, R; Salcudean, S E

    2016-04-21

    As part of tissue elasticity imaging or elastography, an inverse problem needs to be solved to find the elasticity distribution from the measured displacements. The finite element method (FEM) is a common method for solving the inverse problem in dynamic elastography. This problem has been solved with both direct and iterative FEM schemes. Each of these methods has its own advantages and disadvantages which are examined in this paper. Choosing the data resolution and the excitation frequency are critical for achieving the best estimation of the tissue elasticity in FEM methods. In this paper we investigate the performance of both direct and iterative FEMs for different ranges of excitation frequency. A new form of iterative method is suggested here which requires a lower mesh density compared to the original form. Also two forms of the direct method are compared in this paper: one using the exact fit for derivatives calculation and the other using the least squares fit. We also perform a study on the spatial resolution of these methods using simulations. The comparison is also validated using a phantom experiment. The results suggest that the direct method with least squares fit is more robust to noise compared to other methods but has slightly lower resolution results. For example, for the homogenous region with 20 dB noise added to the data, the RMS error for the direct method with least squares fit is approximately half of the iterative method. It was observed that the ratio of voxel size to the wavelength should be within a specific range for the results to be reliable. For example for the direct method with least squares fit, for the case of 20 dB noise level, this ratio should be between 0.1 to 0.2. On balance, considering the much higher computational cost of the iterative method, the dependency of the iterative method on the initial guess, and the greater robustness of the direct method to noise, we suggest using the direct method with least squares fit for

  16. A comparison of direct and iterative finite element inversion techniques in dynamic elastography

    NASA Astrophysics Data System (ADS)

    Honarvar, M.; Rohling, R.; Salcudean, S. E.

    2016-04-01

    As part of tissue elasticity imaging or elastography, an inverse problem needs to be solved to find the elasticity distribution from the measured displacements. The finite element method (FEM) is a common method for solving the inverse problem in dynamic elastography. This problem has been solved with both direct and iterative FEM schemes. Each of these methods has its own advantages and disadvantages which are examined in this paper. Choosing the data resolution and the excitation frequency are critical for achieving the best estimation of the tissue elasticity in FEM methods. In this paper we investigate the performance of both direct and iterative FEMs for different ranges of excitation frequency. A new form of iterative method is suggested here which requires a lower mesh density compared to the original form. Also two forms of the direct method are compared in this paper: one using the exact fit for derivatives calculation and the other using the least squares fit. We also perform a study on the spatial resolution of these methods using simulations. The comparison is also validated using a phantom experiment. The results suggest that the direct method with least squares fit is more robust to noise compared to other methods but has slightly lower resolution results. For example, for the homogenous region with 20 dB noise added to the data, the RMS error for the direct method with least squares fit is approximately half of the iterative method. It was observed that the ratio of voxel size to the wavelength should be within a specific range for the results to be reliable. For example for the direct method with least squares fit, for the case of 20 dB noise level, this ratio should be between 0.1 to 0.2. On balance, considering the much higher computational cost of the iterative method, the dependency of the iterative method on the initial guess, and the greater robustness of the direct method to noise, we suggest using the direct method with least squares fit for

  17. A comparison of solute-transport solution techniques based on inverse modelling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2000-01-01

    Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly

  18. Measuring gas emissions from animal waste lagoons with an inverse-dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques due to non-ideal conditions such as trees and crops surrounding the lagoons, and short fetch to establish equilibrated microclimate conditions within the water bo...

  19. Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion

    SciTech Connect

    Anastasia Dobroskok; Yevhen Holubnyak; James Sorensen

    2009-05-01

    Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.

  20. The merging cluster Abell 1758: an optical and dynamical view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  1. Velocity inversion in cross-hole seismic tomography bycounter-propagation neural network, genetic algorithmand evolutionary programming techniques

    NASA Astrophysics Data System (ADS)

    Nath, Sankar Kumar; Chakraborty, Subrata; Singh, Sanjiv Kumar; Ganguly, Nilanjan

    1999-07-01

    The disadvantages of conventional seismic tomographic ray tracing and inversion by calculus-based techniques include the assumption of a single ray path for each source-receiver pair, the non-inclusion of head waves, long computation times, and the difficulty in finding ray paths in a complicated velocity distribution. A ray-tracing algorithm is therefore developed using the reciprocity principle and dynamic programming approach. This robust forward calculation routine is subsequently used for the cross-hole seismic velocity inversion. Seismic transmission tomography can be considered to be a function approximation problem; that is, of mapping the traveltime vector to the velocity vector. This falls under the purview of pattern classification problems, so we propose a forward-only counter-propagation neural network (CPNN) technique for the tomographic imaging of the subsurface. The limitation of neural networks, however, lies in the requirement of exhaustive training for its use in routine interpretation. Since finding the optimal solution, sometimes from poor initial models, is the ultimate goal, global optimization and search techniques such as simulated evolution are also implemented in the cross-well traveltime tomography. Genetic algorithms (GA), evolution strategies and evolutionary programming (EP) are the main avenues of research in simulated evolution. Part of this investigation therefore deals with GA and EP schemes for tomographic applications. In the present work on simulated evolution, a new genetic operator called `region-growing mutation' is introduced to speed up the search process. The potential of the forward-only CPNN, GA and EP methods is demonstrated in three synthetic examples. Velocity tomograms of the first model present plausible images of a diagonally orientated velocity contrast bounding two constant-velocity areas by both the CPNN and GA schemes, but the EP scheme could not image the model completely. In the second case, while GA and EP

  2. Characterization of ferric ions diffusion in Fricke gel dosimeters by using inverse problem techniques

    NASA Astrophysics Data System (ADS)

    Vedelago, J.; Quiroga, A.; Valente, M.

    2014-10-01

    Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, such as Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, and constraining strongly the time between irradiation and analysis, implementing special dedicated protocols aimed at minimizing signal blurring due to diffusion effects. This work presents a novel analytic modeling and numerical calculation approach of diffusion coefficients in Fricke gel radiation sensitive materials. Samples are optically analyzed by means of visible light transmission measurements by capturing images with a charge-coupled device camera provided with a monochromatic filter corresponding to the XO-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered by assessing specific initial conditions further studied by periodical sample image acquisitions. Diffusion coefficient calculations were performed using a set of computational algorithms based on inverse problem formulation. Although 1D approaches to the diffusion equation might provide estimations of the diffusion coefficient, it should be calculated in the 2D framework due to the intrinsic bi-dimensional characteristics of Fricke gel layers here considered as radiation dosimeters. Thus a suitable 2D diffusion model capable of determining diffusion coefficients was developed by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons were performed by introducing an appropriate functional in order to analyze both experimental and numerical values. Solutions to the second-order diffusion equation are calculated in the framework of a dedicated method that incorporates finite element method. Moreover, optimized solutions can be attained by gradient-type minimization algorithms. Knowledge about diffusion coefficient for a Fricke gel radiation detector is helpful in accounting for

  3. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  4. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.

    PubMed

    Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis

    2012-01-01

    The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.

  5. Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation

    NASA Astrophysics Data System (ADS)

    Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina

    2011-04-01

    Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.

  6. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  7. Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Goldberg, V. Z.; Natowitz, J. B.; Zheng, H.; Giuliani, G.; Rapisarda, G. G.; Wuenschel, S.; Liu, X.

    2014-03-01

    We explored alpha clustering in 24Mg using the reaction 20Ne+α and the Thick Target Inverse Kinematics (TTIK) technique. 20Ne beams of energy 3.7 AMeV and 11 AMeV were delivered by the K150 cyclotron at Texas A&M University. The reaction chamber was filled with 4He gas at a pressure sufficient to stop the beam before the detectors. The energy of the light reaction products was measured by three silicon detector telescopes. The time relative to the cyclotron radiofrequency was also measured. For the first time the TTIK method was used to study both single and multiple α-particle decays. New results were obtained on elastic resonant α scattering, as well as on inelastic processes leading to high excitation energy systems decaying by multiple α-particle emission. Preliminary results will be shown on events with α-multiplicity one and two.

  8. Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique

    SciTech Connect

    Brioude, J.; Kim, S. W.; Angevine, Wayne M.; Frost, G. J.; Lee, S. H.; McKeen, S. A.; Trainer, Michael; Fehsenfeld, Fred C.; Holloway, J. S.; Ryerson, T. B.; Williams, E. J.; Petron, Gabrielle; Fast, Jerome D.

    2011-10-31

    The 2000 and 2006 Texas Air Quality Study (TexAQS 2000 and 2006) field campaigns took place in eastern Texas in August-October of 2000 and 2006. Several flights of the National Oceanic and Atmospheric Administration (NOAA) and National Center for Atmospheric Research (NCAR) research aircraft were dedicated to characterizing anthropogenic emissions over Houston. Houston is known for having serious problems with non-attainment of air quality standards. We present a method that uses three models and aircraft observations to assess and improve existing emission inventories using an inverse modeling technique. We used 3-dimensional and 4-dimensional variational (3D-VAR and 4D-VAR) inverse modeling techniques based on a least-squares method to improve the spatial and temporal distribution of CO, NOy (sum of all reactive nitrogen compounds), and SO2 emissions predicted by the 4-km-resolution U.S. Environmental Protection Agency (EPA) National Emission Inventory (NEI) for 2005. Differences between the prior and posterior inventories are discussed in detail. We found that in 2006 the prior daytime emissions in the urban area of Houston have to be reduced by 40% {+-} 12% for CO and 7% {+-} 13% for NOy. Over the Houston Ship Channel, where industrial emissions are predominant, the prior emissions have to be reduced by 41% {+-} 15% for CO and 51% {+-} 9% for NOy. Major ports around Houston have their NOy emissions reduced as well, probably due to uncertainties in near-shore ship emissions in the EPA NEI inventory. Using the measurements from the two field campaigns, we assessed the interannual emission variability between 2000 and 2006. Daytime CO emissions from the Houston urban area have been reduced by 8% {+-} 20%, while the NOy emissions have increased by 20% {+-} 12% from 2000 to 2006. In the Houston Ship Channel, the daytime NOy emissions have increased by 13% {+-} 17%. Our results show qualitative consistencies with known changes in Houston emissions sources.

  9. Inverse measurement of stiffness by the normalization technique for J-integral fracture toughness

    SciTech Connect

    Brown, Eric

    2012-06-07

    The single specimen normalization technique for J-integral fracture toughness has been successfully employed by several researchers to study the strongly non-linear fracture response of ductile semicrystalline polymers. As part of the normalization technique the load and the plastic component of displacement are normalized. The normalized data is then fit with a normalization function that approximates a power law for small displacements that are dominated by blunting and smoothly transitions to a linear relationship for large displacements that are dominated by stable crack extension. Particularly for very ductile polymers the compliance term used to determine the plastic displacement can dominate the solution and small errors in determining the elastic modulus can lead to large errors in the normalization or even make it ill-posed. This can be further complicated for polymers where the elastic modulus is strong strain rate dependent and simply using a 'quasistatic' modulus from a dogbone measurement may not equate to the dominant strain rate in the compact tension specimen. The current work proposes directly measuring the compliance of the compact tension specimen in the solution of J-integral fracture toughness and then solving for the elastic modulus. By comparison with a range of strain rate data the dominant strain rate can then be determined.

  10. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.

    PubMed

    Khanna, Jaya; Bandoro, Justin; Sica, R J; McElroy, C Thomas

    2012-11-20

    The conventional method of calculating atmospheric temperature profiles using Rayleigh-scattering lidar measurements has limitations that necessitate abandoning temperatures retrieved at the greatest heights, due to the assumption of a pressure value required to initialize the integration at the highest altitude. An inversion approach is used to develop an alternative way of retrieving nightly atmospheric temperature profiles from the lidar measurements. Measurements obtained by the Purple Crow lidar facility located near The University of Western Ontario are used to develop and test this new technique. Our results show temperatures can be reliably retrieved at all heights where measurements with adequate signal-to-noise ratio exist. A Monte Carlo technique was developed to provide accurate estimates of both the systematic and random uncertainties for the retrieved nightly average temperature profile. An advantage of this new method is the ability to seed the temperature integration from the lowest rather than the greatest height, where the variability of the pressure is smaller than in the mesosphere or lower thermosphere and may in practice be routinely measured by a radiosonde, rather than requiring a rocket or satellite-borne measurement. Thus, this new technique extends the altitude range of existing Rayleigh-scatter lidars 10-15 km, producing the equivalent of four times the power-aperture product.

  11. The Filtered Abel Transform and Its Application in Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang

    2003-01-01

    Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal

  12. A noise source identification technique using an inverse Helmholtz integral equation method

    NASA Technical Reports Server (NTRS)

    Gardner, B. K.; Bernhard, R. J.

    1988-01-01

    A technique is developed which utilizes numerical models and field pressure information to characterize acoustic fields and identify acoustic sources. The numerical models are based on boundary element numerical procedures. Either pressure, velocity, or passive boundary conditions, in the form of impedance boundary conditions, may be imposed on the numerical model. Alternatively, if no boundary information is known, a boundary condition can be left unspecified. Field pressure data may be specified to overdetermine the numerical problem. The problem is solved numerically for the complete sound field from which the acoustic sources may be determined. The model can then be used to idenfify acoustic intensity paths in the field. The solution can be modified and the model used to evaluate design alternatives. In this investigation the method is tested analytically and verified. In addition, the sensitivity of the method to random and bias error in the input data is demonstrated.

  13. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  14. Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.

  15. Cool Core Disruption in Abell 1763

    NASA Astrophysics Data System (ADS)

    Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad

    2017-01-01

    We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.

  16. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Kashcheyev, A.

    2017-01-01

    Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.

  17. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  18. The Dark Matter filament between Abell 222/223

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2016-10-01

    Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

  19. A 1400-MHz survey of 1478 Abell clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1982-01-01

    Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.

  20. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    SciTech Connect

    Jin, J; Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  1. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    NASA Astrophysics Data System (ADS)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  2. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  3. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  4. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique.

    PubMed

    Hrad, Marlies; Binner, Erwin; Piringer, Martin; Huber-Humer, Marion

    2014-12-01

    An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g. before, during and after turning and/or sieving events) were considered to reflect the plant-specific process efficiency. In addition, the tracer technique using acetylene (C2H2) was applied during the measurement campaigns as a comparison to the dispersion model. Plant-specific methane emissions varied between 1.7 and 14.3 gCH4/m(3)d (1.3-10.7 kg CH4/h) under real-life management assuming a rotting volume of 18,000 m(3). In addition, emission measurements indicated that the turning frequency of the open windrows appears to be a crucial factor controlling CH4 emissions when composting biowaste. The lowest CH4 emission was measured at a passive state of the windrows without any turning event ("standstill" and "sieving of matured compost"). Not surprisingly, higher CH4 emissions occurred during turning events, which can be mainly attributed to the instant release of trapped CH4. Besides the operation mode, the meteorological conditions (e.g. wind speed, atmospheric stability) may be further factors that likely affect the release of CH4 emissions at an open windrow system. However, the maximum daily CH4 emissions of 1m(3) rotting material of the composting plant are only 0.7-6.5% of the potential daily methane emissions released from 1m(3) of mechanically-biologically treated (MBT) waste being landfilled according to the required limit values given in the Austrian landfill ordinance.

  5. Aluminum could be transported via phloem in Camellia oleifera Abel.

    PubMed

    Zeng, Qi Long; Chen, Rong Fu; Zhao, Xue Qiang; Shen, Ren Fang; Noguchi, Akira; Shinmachi, Fumie; Hasegawa, Isao

    2013-01-01

    Aluminum (Al) accumulation and long-distance transport in oil tea (Camellia oleifera Abel.), known to be an Al accumulator, was investigated. The average Al concentration in the embryo of oil tea seeds was 389 mg Al kg(-1) dry weight, which was higher than seeds of other Al accumulators. By partially suppressing leaf transpiration in the field, Al accumulation in leaves was depressed, which clarified the importance of xylem transport to Al accumulation in leaves. However, the effects of xylem transport alone could not sufficiently explain the high Al accumulation in the seasons when the leaf transpiration is weak, which hints the necessity of phloem transport working. Aluminum content in phloem exudates of barks provides another evidence of phloem transport. Images from scanning electron microscopy and energy-dispersive analysis also showed that Al was present in the phloem of oil tea petioles. Aluminum in oil tea could also be redistributed: higher concentrations of Al were found in leaves when Al was supplied to a different leaf of the same plant. In addition, Al was present in newly emerging roots of oil tea seedlings in which all original roots were excised prior to treatment, and a positive correlation existed between Al content in the newly formed roots and that in the leaves. The results using the empty seed coat technique showed that Al unloading via the phloem occurred during seed development. In conclusion, the results demonstrated that Al could be redistributed between leaves, from seeds to leaves, leaves to roots and leaves to seeds, which indicates that Al can be transported via the phloem in oil tea.

  6. Retrieval Performance and Indexing Differences in ABELL and MLAIB

    ERIC Educational Resources Information Center

    Graziano, Vince

    2012-01-01

    Searches for 117 British authors are compared in the Annual Bibliography of English Language and Literature (ABELL) and the Modern Language Association International Bibliography (MLAIB). Authors are organized by period and genre within the early modern era. The number of records for each author was subdivided by format, language of publication,…

  7. Nondestructive imaging of small size voids at Akrotiri archaeological site, Thera Island, Greece, by seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Louis, Filippos I.; Clark, Roger A.; Louis, Ioannis F.; Makropoulos, Costas C.

    2005-07-01

    High-resolution travel time tomography was used to explore the volcanic basement rock at the Akrotiri archaeological site, Thera (Santorini) Island. The survey was carried out in the context of a large scale project, in which the protective roof cover of old monuments is being replaced by a new environmentally friendly structure, which will be supported by 95 pillars drilled into the volcanic basement rock. Man-made or natural cavities (empty or half-filled with stones), ceramics, and other materials of archaeological interest were unveiled during the excavation of foundation shafts. The objective of this geophysical investigation was the detection of such voids in the vicinity of the excavated shafts, so that the overhead structure can be better supported and protected in the case of an earthquake event. The cross-hole seismic tomography technique was adopted for this purpose. A number of synthetic examples and a calibration experiment at a shaft with a known natural cavity clearly indicated that the tomographic inversion is capable of providing high-resolution 2-D velocity models. High S/N ratios ensured field seismic records of high quality. A set of stability tests was run to check the consistency of the method. Travel time residuals verified the validity of the final velocity depth sections, while model complexity trends showed a consistency between models after a certain number of iterations. The reconstructed velocity fields were quite consistent with the expected velocity structures based on the geologic descriptions of formations encountered during the drilling of the shafts. Impressive low-velocity structures attributed to natural or man-made cavities were reported to the constructing group of engineers, and a remedial action plan was being undertaken to support and improve the ground behavior.

  8. Comparison of three IMRT inverse planning techniques that allow for partial esophagus sparing in patients receiving thoracic radiation therapy for lung cancer.

    PubMed

    Xiao, Ying; Werner-Wasik, Maria; Michalski, D; Houser, C; Bednarz, G; Curran, W; Galvin, James

    2004-01-01

    The purpose of this study is to compare 3 intensity-modulated radiation therapy (IMRT) inverse treatment planning techniques as applied to locally-advanced lung cancer. This study evaluates whether sufficient radiotherapy (RT) dose is given for durable control of tumors while sparing a portion of the esophagus, and whether large number of segments and monitor units are required. We selected 5 cases of locally-advanced lung cancer with large central tumor, abutting the esophagus. To ensure that no more than half of the esophagus circumference at any level received the specified dose limit, it was divided into disk-like sections and dose limits were imposed on each. Two sets of dose objectives were specified for tumor and other critical structures for standard dose RT and for dose escalation RT. Plans were generated using an aperture-based inverse planning (ABIP) technique with the Cimmino algorithm for optimization. Beamlet-based inverse treatment planning was carried out with a commercial simulated annealing package (CORVUS) and with an in-house system that used the Cimmino projection algorithm (CIMM). For 3 of the 5 cases, results met all of the constraints from the 3 techniques for the 2 sets of dose objectives. The CORVUS system without delivery efficiency consideration required the most segments and monitor units. The CIMM system reduced the number while the ABIP techniques showed a further reduction, although for one of the cases, a solution was not readily obtained using the ABIP technique for dose escalation objectives.

  9. X-Ray Imaging-Spectroscopy of Abell 1835

    NASA Technical Reports Server (NTRS)

    Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.

    2000-01-01

    We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (10(exp 46)ergs/s), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT(sub e) = 8.2 keV) outer envelope. We detect O VIII Ly(alpha) and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT(sub e) = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.

  10. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    NASA Astrophysics Data System (ADS)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through

  11. The GenABEL Project for statistical genomics

    PubMed Central

    Karssen, Lennart C.; van Duijn, Cornelia M.; Aulchenko, Yurii S.

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381

  12. Towards 3D multi-scale teleseismic and gravity data inversion using hybrid DSM/SPECFEM technique : application to the Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Komatitsch, Dimitri; Dufréchou, Grégory

    2015-04-01

    We describe here a method of inversion applied to seismic data sets constrained by gravity data at the regional scale. This will allow us to obtain robust models of P and S wave velocities but also of density, providing key constraints on the composition and thermal state of the lithosphere. Our approach relies on teleseimic waves, which illuminate the medium from below. We have developped a hybrid method in which a wave propagation method at the global scale (DSM/Direct solution method) is coupled with a spectral element method at the regional scale (Monteiller et al. 2013). With the spectral element method, we are able to model the 3D wave propagation effects in a computational domain of 400km long x 400km wide and 200 km deep, for an incident teleseismic wavefront introduced at the boundaries of this domain with periods as short as 2 s. The DSM global method allows to compute this incident field for a spherical Earth model. We use a multi-scale joint inversion of both gravity and seismic waveform data, accounting for the long wavelengths of the gravity field taken from a global model. In terms of inversion technique, we have validated an adjoint method for the inversion of seismic waveforms. An optimized BFGS inversion technique is used to minimize the difference between observed and computed full waveforms. The gradient of the misfit function gives the direction over which the model must be perturbed to minimize this difference. At each step of the inversion procedure we choose an optimal step length that accelerates the minimization. This is the crucial ingredient that allows us to build an efficient iterative full waveform inversion. We have extended this method by incorporating gravity data provided by the BGI/Bureau Gravimétrique International into the inversion. If the waveforms allow us to constrain the seismic velocities, they are less sensitive to the structure in density, which gives independent and crucial information to constrain the nature of rocks

  13. RADIO AND DEEP CHANDRA OBSERVATIONS OF THE DISTURBED COOL CORE CLUSTER ABELL 133

    SciTech Connect

    Randall, S. W.; Nulsen, P. E. J.; Forman, W. R.; Murray, S. S.; Clarke, T. E.; Owers, M. S.; Sarazin, C. L.

    2010-10-10

    We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features. The plume is capped with a filamentary radio structure that has been previously classified as a radio relic. X-ray spectral fits in the region of the relic indicate the presence of either high-temperature gas or non-thermal emission, although the measured photon index is flatter than would be expected if the non-thermal emission is from inverse Compton scattering of the cosmic microwave background by the radio-emitting particles. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, which we show is consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic, and has properties consistent with buoyantly lifted plumes seen in other systems (e.g., M87). Alternatively, the plume may be a gas sloshing spiral viewed edge-on. Results from spectral analysis of the wing-like features are inconsistent with the previous suggestion that the wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by displacement of X-ray gas by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their optical and UV counterparts, suggestive of a galaxy-galaxy merger event. On larger scales, there is evidence for cluster substructure in both optical observations and the X-ray temperature map. We suggest that the Abell 133 cluster has recently undergone a merger event with an interloping subgroup, initialing gas sloshing in the core. The torus of sloshed gas is seen close to edge-on, leading to the somewhat ragged appearance of the elliptical surface brightness edge. We show

  14. Tsunami Waveform Inversion Technique to Estimate the Initial Sea Surface Displacement - Application to the 2007 Niigataken Chuetsu-oki Earthquake Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Y.; Namegaya, Y.; Satake, K.

    2008-12-01

    Recent earthquake source studies using the tsunami waveform inversion technique generally estimate slip distributions of large earthquakes by assuming the fault geometries. However, if an earthquake source is complex or not obvious, it is better to estimate the initial sea surface displacement of the tsunami using the tsunami waveform inversion first. Then, that result can be used to estimate or discuss the source process of the large earthquake. In this study, in order to estimate the initial sea surface displacement due to an earthquake, a new inversion technique using observed tsunami waveforms is developed. The sea surface in the possible tsunami source region is divided into small cells. Tsunami waveforms, or Green"fs functions for the inversion, at tide gauge stations are numerically computed for each cell with a unit amount of uplift. The sea surface displacements for each cell are estimated by inversion of the observed tsunami waveforms at those tide gauges. We apply the above technique to estimate the initial sea surface displacement due to the 2007 Niigataken Chuetsu-oki earthquake (MJMA 6.8). The earthquake occurred off the coast of Niigata prefecture, the Japan Sea coast of the central Japan, at 10:13 a.m. (JST) on 16th July, 2007. Various source models of the earthquake were suggested using aftershock distribution data, seismological waveform data or geodetic data, but the fault plane of the earthquake is still controversial. The earthquake accompanied by tsunami, which was recorded at tide gauge stations along the Japan Sea coast. The maximum height of about 1 m was observed at a tide gauge station at Banjin, Kashiwazaki city, near the source region. Observed tsunami waveforms at ten tide gauge stations located around the source region are used for the inversion. The sea surface above the source region, or the aftershock area, is divided into 26 cells (4 km x 4 km) to estimate the initial sea surface displacement. The result shows that uplifts are

  15. Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108

    NASA Astrophysics Data System (ADS)

    Edwards, L. O. V.; Alpert, H. S.; Trierweiler, I. L.; Abraham, T.; Beizer, V. G.

    2016-09-01

    We present the first results from an integral field unit (IFU) spectroscopic survey of a ˜75 kpc region around three brightest cluster galaxies (BCGs), combining over 100 IFU fibres to study the intracluster light (ICL). We fit population synthesis models to estimate age and metallicity. For Abell 85 and Abell 2457, the ICL is best-fit with a fraction of old, metal-rich stars like in the BCG, but requires 30-50 per cent young and metal-poor stars, a component not found in the BCGs. This is consistent with the ICL having been formed by a combination of interactions with less massive, younger, more metal-poor cluster members in addition to stars that form the BCG. We find that the three galaxies are in different stages of evolution and may be the result of different formation mechanisms. The BCG in Abell 85 is near a relatively young, metal-poor galaxy, but the dynamical friction time-scale is long and the two are unlikely to be undergoing a merger. The outer regions of Abell 2457 show a higher relative fraction of metal-poor stars, and we find one companion, with a higher fraction of young, metal-poor stars than the BCG, which is likely to merge within a gigayear. Several luminous red galaxies are found at the centre of the cluster IIZw108, with short merger time-scales, suggesting that the system is about to embark on a series of major mergers to build up a dominant BCG. The young, metal-poor component found in the ICL is not found in the merging galaxies.

  16. Electromagnetic modelling, inversion and data-processing techniques for GPR: ongoing activities in Working Group 3 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Giannopoulos, Antonis; van der Kruk, Jan

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 3 (WG3) 'EM methods for near-field scattering problems by buried structures; data processing techniques' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. WG3 is structured in four Projects. Project 3.1 deals with 'Electromagnetic modelling for GPR applications.' Project 3.2 is concerned with 'Inversion and imaging techniques for GPR applications.' The topic of Project 3.3 is the 'Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion.' Project 3.4 focuses on 'Advanced GPR data-processing algorithms.' Electromagnetic modeling tools that are being developed and improved include the Finite-Difference Time-Domain (FDTD) technique and the spectral domain Cylindrical-Wave Approach (CWA). One of the well-known freeware and versatile FDTD simulators is GprMax that enables an improved realistic representation of the soil/material hosting the sought structures and of the GPR antennas. Here, input/output tools are being developed to ease the definition of scenarios and the visualisation of numerical results. The CWA expresses the field scattered by subsurface two-dimensional targets with arbitrary cross-section as a sum of cylindrical waves. In this way, the interaction is taken into account of multiple scattered fields within the medium hosting the sought targets. Recently, the method has been extended to deal with through-the-wall scenarios. One of the

  17. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse.

    PubMed

    Yamada, S; Tsuchiya, K; Bradley, W G; Law, M; Winkler, M L; Borzage, M T; Miyazaki, M; Kelly, E J; McComb, J G

    2015-04-01

    This article provides an overview of phase-contrast and time-spatial labeling inversion pulse MR imaging techniques to assess CSF movement in the CNS under normal and pathophysiologic situations. Phase-contrast can quantitatively measure stroke volume in selected regions, notably the aqueduct of Sylvius, synchronized to the heartbeat. Judicious fine-tuning of the technique is needed to achieve maximal temporal resolution, and it has limited visualization of CSF motion in many CNS regions. Phase-contrast is frequently used to evaluate those patients with suspected normal pressure hydrocephalus and a Chiari I malformation. Correlation with successful treatment outcome has been problematic. Time-spatial labeling inversion pulse, with a high signal-to-noise ratio, assesses linear and turbulent motion of CSF anywhere in the CNS. Time-spatial labeling inversion pulse can qualitatively visualize whether CSF flows between 2 compartments and determine whether there is flow through the aqueduct of Sylvius or a new surgically created stoma. Cine images reveal CSF linear and turbulent flow patterns.

  18. Interpretation of Magnetic Anomalies in Salihli (Turkey) Geothermal Area Using 3-D Inversion and Edge Detection Techniques

    NASA Astrophysics Data System (ADS)

    Timur, Emre

    2016-04-01

    There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.

  19. Basis set expansion for inverse problems in plasma diagnostic analysis

    SciTech Connect

    Jones, B.; Ruiz, C. L.

    2013-07-15

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  20. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  1. The Distribution of Dark and Luminous Matter in the Galaxy Cluster Merger Abell 2146

    NASA Astrophysics Data System (ADS)

    King, Lindsay; Clowe, Douglas; Coleman, Joseph E.; Russell, Helen; Santana, Rebecca; White, Jacob; Canning, Rebecca; Deering, Nicole; Fabian, Andrew C.; Lee, Brandyn; Li, Baojiu; McNamara, Brian R.

    2017-01-01

    Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger, presenting two large shock fronts on Chandra X-ray Observatory maps. These observations are consistent with a collision close to the plane of the sky, caught soon after first core passage. Here we outline the weak gravitational lensing analysis of the total mass in the system, using the distorted shapes of distant galaxies seen with Hubble Space Telescope. The highest peak in the mass reconstruction is centred on the brightest cluster galaxy in Abell 2146-A. The mass associated with Abell 2146-B is more extended. The best-fitting mass model with two components has a mass ratio of ~3:1 for the two clusters. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo will be discussed.

  2. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE PAGES

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; ...

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  3. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si-Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-01

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. We estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  4. Three new techniques for creation of a steerable sheath, a 4F snare, and bidirectional sheath inversion using existing endovascular materials.

    PubMed

    Mallios, Alexandros; Yankovic, Willy; Boura, Benoit; Combes, Myriam

    2012-09-01

    We present three novel techniques for creation of (1) a steerable sheath, (2) a 4F snare device, and (3) dual anterograde and retrograde double-wire percutaneous transluminal angioplasty access technique using a single femoral puncture. These techniques were conceived and bench-tested in our institution, allowing the utilization of inexpensive equipment for complicated endovascular procedures. They offer (1) controlled navigation, no-touch vessel cannulation and cannulation of angulated vessels, contralateral limb of stent grafts, fenestrations, and branches; (2) a low-profile (4F external diameter) modifiable snare with the ability to expand to the size of an entire aneurysm and the ability to undo the snare in case of blockage with other endovascular material; and (3) in situ sheath inversion for concomitant anterograde and retrograde percutaneous angioplasty with a single femoral puncture.

  5. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences.

    PubMed

    Abe, Kayoko; Ono, Yuko; Yoneyama, Hiroko; Nishina, Yu; Aihara, Yasuo; Okada, Yoshikazu; Sakai, Shuji

    2014-06-01

    CSF imaging using the time-spatial labeling inversion pulse (time-SLIP) technique at 3T magnetic resonance imaging (MRI) was performed to assess cerebrospinal fluid (CSF) dynamics. The study population comprised 15 healthy volunteers and five patients with MR findings showing expansive dilation of the third and lateral ventricles suggesting aqueductal stenosis (AS). Signal intensity changes were evaluated in the tag-labeled CSF, untagged brain parenchyma, and untagged CSF of healthy volunteers by changing of black-blood time-inversion pulse (BBTI). CSF flow from the aqueduct to the third ventricle, the aqueduct to the fourth ventricle, and the foramen of Monro to the lateral ventricle was clearly rendered in all healthy volunteers with suitable BBTI. The travel distance of CSF flow as demonstrated by the time-SLIP technique was compared with the distance between the aqueduct and the fourth ventricle. The distance between the foramen of Monro and the lateral ventricle was used to calculate the CSF flow/distance ratio (CD ratio). The CD ratio at each level was significantly reduced in patients suspected to have AS compared to healthy volunteers. CSF flow was not identified at the aqueductal level in most of the patients. Two patients underwent time-SLIP assessments before and after endoscopic third ventriculostomies (ETVs). CSF flow at the ETV site was confirmed in each patient. With the time-SLIP technique, CSF imaging is sensitive enough to detect kinetic changes in CSF flow due to AS and ETV.

  6. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.

    PubMed

    Jiang, Yi; Li, Guo-Yang; Qian, Lin-Xue; Hu, Xiang-Dong; Liu, Dong; Liang, Si; Cao, Yanping

    2015-02-01

    Dynamic elastography has become a new clinical tool in recent years to characterize the elastic properties of soft tissues in vivo, which are important for the disease diagnosis, e.g., the detection of breast and thyroid cancer and liver fibrosis. This paper investigates the supersonic shear imaging (SSI) method commercialized in recent years with the purpose to determine the nonlinear elastic properties based on this promising technique. Particularly, we explore the propagation of the shear wave induced by the acoustic radiation force in a stressed hyperelastic soft tissue described via the Demiray-Fung model. Based on the elastodynamics theory, an analytical solution correlating the wave speed with the hyperelastic parameters of soft tissues is first derived. Then an inverse approach is established to determine the hyperelastic parameters of biological soft tissues based on the measured wave speeds at different stretch ratios. The property of the inverse method, e.g., the existence, uniqueness and stability of the solution, has been investigated. Numerical experiments based on finite element simulations and the experiments conducted on the phantom and pig livers have been employed to validate the new method. Experiments performed on the human breast tissue and human heel fat pads have demonstrated the capability of the proposed method for measuring the in vivo nonlinear elastic properties of soft tissues. Generalization of the inverse analysis to other material models and the implication of the results reported here for clinical diagnosis have been discussed.

  7. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.

    PubMed

    Kappadath, S Cheenu; Shaw, Chris C

    2003-06-01

    Breast cancer may manifest as microcalcifications in x-ray mammography. Small microcalcifications, essential to the early detection of breast cancer, are often obscured by overlapping tissue structures. Dual-energy imaging, where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Transmission measurements at two different kVp values were made on breast-tissue-equivalent materials under narrow-beam geometry using an indirect flat-panel mammographic imager. The imaging scenario consisted of variable aluminum thickness (to simulate calcifications) and variable glandular ratio (defined as the ratio of the glandular-tissue thickness to the total tissue thickness) for a fixed total tissue thickness--the clinical situation of microcalcification imaging with varying tissue composition under breast compression. The coefficients of the inverse-mapping functions used to determine material composition from dual-energy measurements were calculated by a least-squares analysis. The linear function poorly modeled both the aluminum thickness and the glandular ratio. The inverse-mapping functions were found to vary as analytic functions of second (conic) or third (cubic) order. By comparing the model predictions with the calibration values, the root-mean-square residuals for both the cubic and the conic functions were approximately 50 microm for the aluminum thickness and approximately 0.05 for the glandular ratio.

  8. Tracing low-mass galaxy clusters using radio relics: the discovery of Abell 3527-bis

    NASA Astrophysics Data System (ADS)

    de Gasperin, F.; Intema, H. T.; Ridl, J.; Salvato, M.; van Weeren, R.; Bonafede, A.; Greiner, J.; Cassano, R.; Brüggen, M.

    2017-01-01

    Context. Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). Aims: In this paper we analyse the radio, optical and X-ray data from a candidate galaxy cluster that has been selected from the radio emission coming from a candidate radio relic detected in NRAO VLA Sky Survey (NVSS). Our aim is to clarify the nature of this source and prove that under certain conditions radio emission from radio relics can be used to trace relatively low-mass galaxy clusters. Methods: We observed the candidate galaxy cluster with the Giant Meterwave Radio Telescope (GMRT) at three different frequencies. These datasets have been analysed together with archival data from ROSAT in the X-ray and with archival data from the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) telescope in four different optical bands. Results: We confirm the presence of a 1 Mpc long radio relic located in the outskirts of a previously unknown galaxy cluster. We confirm the presence of the galaxy cluster through dedicated optical observations and using archival X-ray data. Due to its proximity and similar redshift to a known Abell cluster, we named it Abell 3527-bis. The galaxy cluster is amongst the least massive clusters known to host a radio relic. Conclusions: We showed that radio relics can be effectively used to trace a subset of relatively low-mass galaxy clusters that might have gone undetected in X-ray or Sunyaev-Zel'dovich (SZ) surveys. This technique might be used in future deep, low-frequency surveys such as those carried on by the Low Frequency Array (LOFAR), the Upgraded GMRT (uGMRT) and, ultimately, the Square Kilometre Array (SKA).

  9. The discovery of diffuse steep spectrum sources in Abell 2256

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Intema, H. T.; Oonk, J. B. R.; Röttgering, H. J. A.; Clarke, T. E.

    2009-12-01

    Context: Hierarchical galaxy formation models indicate that during their lifetime galaxy clusters undergo several mergers. An example of such a merging cluster is Abell 2256. Here we report on the discovery of three diffuse radio sources in the periphery of Abell 2256, using the Giant Metrewave Radio Telescope (GMRT). Aims: The aim of the observations was to search for diffuse ultra-steep spectrum radio sources within the galaxy cluster Abell 2256. Methods: We have carried out GMRT 325 MHz radio continuum observations of Abell 2256. V, R and I band images of the cluster were taken with the 4.2 m William Herschel Telescope (WHT). Results: We have discovered three diffuse elongated radio sources located about 1 Mpc from the cluster center. Two are located to the west of the cluster center, and one to the southeast. The sources have a measured physical extent of 170, 140 and 240 kpc, respectively. The two western sources are also visible in deep low-resolution 115-165 MHz Westerbork Synthesis Radio Telescope (WSRT) images, although they are blended into a single source. For the combined emission of the blended source we find an extreme spectral index (α) of -2.05 ± 0.14 between 140 and 351 MHz. The extremely steep spectral index suggests these two sources are most likely the result of adiabatic compression of fossil radio plasma due to merger shocks. For the source to the southeast, we find that {α < -1.45} between 1369 and 325 MHz. We did not find any clear optical counterparts to the radio sources in the WHT images. Conclusions: The discovery of the steep spectrum sources implies the existence of a population of faint diffuse radio sources in (merging) clusters with such steep spectra that they have gone unnoticed in higher frequency (⪆1 GHz) observations. Simply considering the timescales related to the AGN activity, synchrotron losses, and the presence of shocks, we find that most massive clusters should possess similar sources. An exciting possibility

  10. On Different Techniques for the Calculation of Bougher Gravity Anomalies for Joint Inversion of Geophysical Data in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Hussein, M. J.; Velasco, A. A.

    2012-12-01

    Density variations in the Earth result from different material properties, which reflect the tectonic processess attributed to a region. Density variations can be identified through measurable material properties, such as seismic velocities, gravity field, magnetic field, etc. Gravity anomaly inversions are particularly sensitive to density variations but suffer from significant non-uniqueness. However, using inverse models with gravity Bougher anomalies and other geophysical data, we can determine three dimensional structural and geological properties of the given area. We explore different techniques for the calculation of Bougher gravity anomalies for their use in joint inversion of multiple geophysical data sets. Various 2- and 3-Dimensional (3-D) gravity profile forward modeling programs have been developed as variations of existing algorithms; these variations have similarities, differences, and strengths and weaknesses. The purpose of this study is to determine the most effective gravity forward modeling method that can be used to combine the information provided by complementary datasets, such as gravity and seismic information, to improve the accuracy and resolution of Earth models obtained for the underlying structure of the Rio Grande Rift. In an effort to determine the most appropriate method to use in a joint inversion algorithm and a data fusion approach currently in development, we test each approach by using a model of the Rio Grande Rift obtained from seismic surface wave dispersion and receiver functions. We find that there are different uncertainties associated with each methodology that affect the accuracy achieved by including gravity profile forward modeling. Moreover, there exists a bigger margin of error associated to the 2-D methods due to the simplification of calculations that do not take into account the 3-D characteristics of the Earth's structure.

  11. On different techniques for the calculation of Bouguer gravity anomalies for joint inversion and model fusion of geophysical data in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Density variations in the Earth result from different material properties, which reflect the tectonic processes attributed to a region. Density variations can be identified through measurable material properties, such as seismic velocities, gravity field, magnetic field, etc. Gravity anomaly inversions are particularly sensitive to density variations but suffer from significant non-uniqueness. However, using inverse models with gravity Bouguer anomalies and other geophysical data, we can determine three dimensional structural and geological properties of the given area. We explore different techniques for the calculation of Bouguer gravity anomalies for their use in joint inversion of multiple geophysical data sets and a model fusion scheme to integrate complementary geophysical models. Various 2- and 3- dimensional gravity profile forward modeling programs have been developed as variations of existing algorithms in the last decades. The purpose of this study is to determine the most effective gravity forward modeling method that can be used to combine the information provided by complementary datasets, such as gravity and seismic information, to improve the accuracy and resolution of Earth models obtained for the underlying structure of the Rio Grande Rift. In an effort to determine the most appropriate method to use in a joint inversion algorithm and a model fusion approach currently in development, we test each approach by using a model of the Rio Grande Rift obtained from seismic surface wave dispersion and receiver functions. We find that there are different uncertainties associated with each methodology that affect the accuracy achieved by including gravity profile forward modeling. Moreover, there exists an important amount of assumptions about the regions under study that must be taken into account in order to obtain an accurate model of the gravitational acceleration caused by changes in the density of the material in the substructure of the Earth.

  12. Development of a Joint Inversion Technique using Gravimetric and Muon-radiographic Data for Resolving Three-dimensional Density Structure of a Gigantic Body

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Tanaka, H.; Tanaka, Y.; Okubo, S.; Oshima, H.; Maekawa, T.

    2012-04-01

    We have developed a method of analyzing gravimetric and muon-radiographic data for visualizing a three-dimensional density structure of a volcano. The method searches for a density structure that best explains the muon and gravity data simultaneously. For finding a solution, techniques in least-squares inversion were employed. According to the model simulation we have conducted, this new method was proved to have higher potential than previous gravimetric inversion and previous muon tomography [Taira,2010; Tanaka et al.,2010]. As a demonstration, we applied this method to Mt. Showa-Shinzan lava dome, Hokkaido, Japan. At this site, muon observation has already been performed with emulsion cloud chamber (ECC). The effective area of ECC was 1200 cm2, and the exposure time was 4 month.Tanaka et al.,[2007] calculated the amount of matter on the muon trajectories in the unit of gcm-2 (density times length). In addition to the muon data, we newly collected gravity data at 35 stations on / around the lava dome. The data was measured by using a LaCoste Romberg Gravimeter (G-875). Position of a gravity station was determined by GPS interferometry between a reference station and a moving station. Thereby, we conducted joint inversion of the muon and gravity data. The joint inversion yielded us the three-dimensional density profile of Mt.Showa-Shinzan. The density profile suggested the two features of the dome. Firstly, lava had intruded beneath the dome in a cylindrical shape whose diameter was 300 meter. This is inferred by the existence of high density(ρ > 2.4g/cc) region localized at an altitude of 220 ~ 260 meter. Secondly, we found a ultra high density region which was suspected to be a spine spreading vertically near the top of the dome.

  13. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  14. Hierarchical Velocity Structure in the Core of Abell 2597

    NASA Technical Reports Server (NTRS)

    Still, Martin; Mushotzky, Richard

    2004-01-01

    We present XMM-Newton RGS and EPIC data of the putative cooling flow cluster Abell 2597. Velocities of the low-ionization emission lines in the spectrum are blue shifted with respect to the high-ionization lines by 1320 (sup +660) (sub -210) kilometers per second, which is consistent with the difference in the two peaks of the galaxy velocity distribution and may be the signature of bulk turbulence, infall, rotation or damped oscillation in the cluster. A hierarchical velocity structure such as this could be the direct result of galaxy mergers in the cluster core, or the injection of power into the cluster gas from a central engine. The uniform X-ray morphology of the cluster, the absence of fine scale temperature structure and the random distribution of the the galaxy positions, independent of velocity, suggests that our line of sight is close to the direction of motion. These results have strong implications for cooling flow models of the cluster Abell 2597. They give impetus to those models which account for the observed temperature structure of some clusters using mergers instead of cooling flows.

  15. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  16. Inverse analysis of temperature-time data with grossly different time scales using Beck`s second method and the Frankel-Keyhani whole-domain technique

    SciTech Connect

    Park, J.E.; Frankel, J.I.; Keyhani, M.; Osborne, G.E.

    1998-11-01

    In general, inverse heat conduction analysis utilizes the measured temperature history at one or more internal locations to estimate unknown boundary conditions, energy generation rates, or thermophysical properties. Analysis of these data using conventional numerical heat transfer techniques yields numerically unstable solutions; that is, small perturbations in the input data can produce large variations and instabilities in the output. Previous attempts to overcome this inherent instability have involved the utilization of future information and Tikhonov regularization techniques (Beck et al, 1985). In the 1970`s and 80`s, Beck and coworkers developed a family of techniques that overcome this obstacle by relating the surface property at any time in the transient to temperatures measured after that time in the transient (Beck, 1970, Beck et al, 1982). That is, future information is used to determine present conditions. For many purposes, these techniques are the standard analysis tools. An alternative approach has been developed recently by Frankel and Keyhani (1997). This approach utilizes a whole domain form in which the entire space-time domain of interest is simultaneously resolved; the traditional instability occurs only near the final time endpoint and can be excluded from the resulting solution. Rapid convergence and accurate results have been demonstrated using this approach. Two sets of time-temperature data have been analyzed using both of these techniques.

  17. Assessing the impact of cloud slicing techniques on estimates of surface CO2 exchange using atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Kawa, S. R.; Crowell, S.; Browell, E. V.; Abshire, J. B.; Ramanathan, A. K.

    2015-12-01

    Typically more than half of the earth's surface is cloudy at any one point in time. Passive CO2 satellite instruments such as GOSAT and OCO-2 have historically filtered out these scenes, as being too difficult to interpret. However, with the advent of active sensing technologies coupled with ranging capabilities, many of these limitations are being lifted. While, the remote sensing community continues to grapple with the radiative-transfer aspects of the cloud-top CO2 retrieval problem, the carbon cycling community has begun to consider what parts of the carbon cycle might be constrained with this new stream of data. Using cloud data derived from CALIPSO, a simulated carbon cycle, and state of the art atmospheric inversion models, we will investigate the impact of "above cloud" partial-column retrievals of CO2 upon estimates of surface CO2 flux. In particular, we will investigate (1) the general constraint imposed upon surface CO2 fluxes, by retrievals over spatially and time coherent cloud structures around the globe as well as (2) the partitioning of gross primary production and respiration CO2 flux terms by differencing full-column and above-cloud partial column CO2 over scenes with optically thick low clouds.

  18. Terahertz Wide-Angle Imaging and Analysis on Plane-wave Criteria Based on Inverse Synthetic Aperture Techniques

    NASA Astrophysics Data System (ADS)

    Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang

    2016-04-01

    This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.

  19. Current methods of radio occultation data inversion

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.

    1972-01-01

    The methods of Abel integral transform and ray-tracing inversion have been applied to data received from radio occultation experiments as a means of obtaining refractive index profiles of the ionospheres and atmospheres of Mars and Venus. In the case of Mars, certain simplifications are introduced by the assumption of small refractive bending in the atmosphere. General inversion methods, independent of the thin atmosphere approximation, have been used to invert the data obtained from the radio occultation of Mariner 5 by Venus; similar methods will be used to analyze data obtained from Jupiter with Pioneers F and G, as well as from the other outer planets in the Outer Planet Grand Tour Missions.

  20. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  1. Electromagnetic models and inversion techniques for Titan’s Ontario Lacus depth estimation from Cassini RADAR data

    NASA Astrophysics Data System (ADS)

    Ventura, Bartolomeo; Notarnicola, Claudia; Casarano, Domenico; Posa, Francesco; Hayes, Alexander G.; Wye, Lauren

    2012-11-01

    Since 2004, Cassini RADAR, operating at 13.8 GHz as a radiometer, scatterometer, altimeter and synthetic aperture radar (SAR), provides a vast amount of data, suggesting new scenarios for Titan’s morphology and evolution. An important result was the detection of lakes constituted by liquid hydrocarbons, thus supporting the hypothesis of a methane and ethane cycle similar to water cycle on Earth. In 2007 Ontario Lacus, a 200 km × 70 km lake, was detected near the South pole. To date Ontario is the only large liquid area sensed by Cassini RADAR in the southern hemisphere of Titan. In this work, we analyze the SAR data using two different electromagnetic modeling approaches to retrieve the optical thickness parameter of the liquid hydrocarbon layer. A physically-based model, IEM combined with a gravity capillary wave spectra and integrated into a Bayesian statistical inversion is compared with a semi-empirical model also based on a double-layer description. We consider the impact of the dielectric constant of the surface constituents, as well as wind speed and wave motion scenarios, on the retrieved optical thickness, and by extension, the lake depth and volume estimation. Wind speed can be constrained below 0.7 m/s, in good agreement with the forecasts of Global Circulation Models on Titan. Lake depths estimates depend on the hypotheses on wind speed and loss tangent of the liquid. The average depth lake estimates obtained with the physically based approach range from 2.7 and 8.3 m, with the 95% of the lake area not exceeding 30 m depth. The semiempirical model results confirm this interval, also considering the hypothesis of a low reflectivity lake bed: this would imply lower depth, with a significant part of the lake area not liquid-filled at the present.

  2. Measurement technique of electric field using ultraviolet/visible spectroscopy in cylindrical plasmas

    SciTech Connect

    Kobayashi, T.; Yoshikawa, M.; Kubota, Y.; Saito, M.; Numada, M.; Ishii, K.; Cho, T.

    2004-10-01

    The rotation of impurity ion has been measured using ultraviolet (UV) visible spectroscopy in the cylindrical fusion plasma GAMMA 10 to investigate diamagnetic drift and ExB drift. The electric field is estimated with the plasma rotation and ExB drift analysis. Since the detected signal is the line integrated emission, the parametric Abel inversion technique has been developed. In the method, a density profile of impurity ion was assumed. Recently, we can obtain the density profile using collisional-radiative model (CRM) calculation. Then the electric field is obtained independently of that assumption. We present the measurement technique of the electric field using UV/visible spectroscopy and CRM calculation. The experimental result in GAMMA 10 is that consistent with the result of the neutral beam probe measurement.

  3. Brig. Gen. Richard F. Abel and Col. Natan J. Lindsay answering questions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Brigadier General Richard F. Abel, right, director of public affairs for the Air Force, and Colonel Nathan J. Lindsay of the USAF's space division, answer questions concerning STS-4 during a press conference at JSC on May 20, 1982.

  4. The development of online real-time multiple-source moment tensor inversion technique for moderate-to-large earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, T.; Lee, S.; Ma, K.

    2013-12-01

    The point-source parameters of earthquake with small-to-moderate size (Mw<6.5) had shown can be automatically determined by Real-time Moment Tensor monitoring system (RMT) in Taiwan using pre-calculated grid-based Green's functions database. To resolve the dominant attribute in rupture processes for events involving more complexities (multiple sub-events, variation in focal mechanism...etc), especially those with greater sizes (Mw>6.5), we propose a multiple-source moment tensor inversion technique. Frequency band used in this inversion procedure is magnitude adopted. The number of sub-events increases successively where source locations and time delays are optimized. We evaluate the statistical significance of misfit reduction due to every inclusion of extra sub-event by analyzing the residual of current model with respect to the previous model using less number of sub-events. Process stops when the misfit fails to be reduced significantly by including extra sub-events. We perform several synthetic tests to examine the resolvability and limitation of this approach. Results suggest that locations, time delays, and focal mechanisms can be well resolved even with limited station coverage. Four significant earthquakes, occurred in Taiwan are chosen as case studies, including the 20020331 Mw 7.1 Northeastern earthquake, the 20031210 Chengkung Mw 6.8 earthquake, the 20061226 Mw 7.1 Pingtung earthquake, and the 19990920 Mw 7.6 Chi-Chi earthquake. The multiple-source model yields simple and robust determination of complex seismic source features. Sub-events determined through the proposed technique are also compared with asperities derived in finite-fault models. By taking advantage of real-time determination in overall feature of seismic sources, this approach provides a better assessment in the following hazard mitigation. Alternatively, the space-time relations and focal mechanisms of sub-events can also provide additional constraints in determination of the ruptured

  5. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    SciTech Connect

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  6. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-03

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.

  7. Ram pressure induced star formation in Abell 3266

    NASA Astrophysics Data System (ADS)

    Bonsall, Brittany

    An X-ray observation of the merging galaxy cluster Abell 3266 was obtained via the ROSAT PSPC. This information, along with spectroscopic data from the WIde-field Nearby Galaxy-clusters Survey (i.e. WINGS), were used to investigate whether ram pressure is a mechanism that influences star formation. Galaxies exhibiting ongoing star formation are identified by the presence of strong Balmer lines (Hbeta), known to correspond to early type stars. Older galaxies where a rapid increase in star formation has recently ceased, known as E+A galaxies, are identified by strong Hbeta absorption coupled with little to no [OII] emission. The correlation between recent star formation and "high" ram pressure, as defined by Kapferer et al. (2009) as ≥ 5 x 10-11 dyn cm-2, was tested and lead to a contradiction of the previously held belief that ram pressure influences star formation on the global cluster scale.

  8. Shocking Tails in the Major Merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  9. The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146

    NASA Astrophysics Data System (ADS)

    King, Lindsay J.; Clowe, Douglas I.; Coleman, Joseph E.; Russell, Helen R.; Santana, Rebecca; White, Jacob A.; Canning, Rebecca E. A.; Deering, Nicole J.; Fabian, Andrew C.; Lee, Brandyn E.; Li, Baojiu; McNamara, Brian R.

    2016-06-01

    Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the Chandra X-ray Observatory, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on Hubble Space Telescope, is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields M200 = 1.1^{+0.3}_{-0.4} × 1015 and 3^{+1}_{-2} × 1014 M⊙ for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of c = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger.

  10. GHRS observations of mass-loaded flows in Abell 78

    NASA Technical Reports Server (NTRS)

    Harrington, J. Patrick; Borkowski, Kazimierz J.; Tsvetanov, Zlatan

    1995-01-01

    Spectroscopic observations of the central star of the planetary nebula Abell 78 were obtained with the Goddard High Resolution Spectrograph (GHRS) onboard the Hubble Space Telescope (HST) in the vicinity of the C IV lambda 1548.2, 1550.8 doublet. We find a series of narrow absorption features superposed on the broad, P Cygni stellar wind profile. These features are seen in both components of the doublet at heliocentric radial velocities of -18, -71, -131, and -192 km/s. At higher velocities, individual components are no longer distinct but, rather, merge into a continuous absorption extending to approximately -385 km/s. This is among the highest velocities ever detected for gas in a planetary nebula. The -18 km/s feature originates in an outer envelope of normal composition, while the -71 km/s feature is produced in the wind-swept shell encircling an irregular wind-blown bubble in the planetary nebula center. The hydrogen-poor ejecta of Abell 78, consisting of dense knots with wind-blown tails, are located in the bubble's interior, in the vicinity of the stellar wind termination shock. The high-velocity C IV lambda 154 absorption features can be explained as due to parcels of ejecta being accelerated to high velocities as they are swept up by the stellar wind during its interaction with dense condensations of H-poor ejecta. As the ablated material is accelerated, it will partially mix with the stellar wind, creating a mass-loaded flow. The abundance anomalies seen at the rim of the bubble attest to the transport of H-poor knot material by such a flow.

  11. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  12. Disentangling the ICL with the CHEFs: Abell 2744 as a Case Study

    NASA Astrophysics Data System (ADS)

    Jiménez-Teja, Y.; Dupke, R.

    2016-03-01

    Measurements of the intracluster light (ICL) are still prone to methodological ambiguities, and there are multiple techniques in the literature to address them, mostly based on the binding energy, the local density distribution, or the surface brightness. A common issue with these methods is the a priori assumption of a number of hypotheses on either the ICL morphology, its surface brightness level, or some properties of the brightest cluster galaxy (BCG). The discrepancy in the results is high, and numerical simulations just place a boundary on the ICL fraction in present-day galaxy clusters in the range 10%-50%. We developed a new algorithm based on the Chebyshev-Fourier functions to estimate the ICL fraction without relying on any a priori assumption about the physical or geometrical characteristics of the ICL. We are able to not only disentangle the ICL from the galactic luminosity but mark out the limits of the BCG from the ICL in a natural way. We test our technique with the recently released data of the cluster Abell 2744, observed by the Frontier Fields program. The complexity of this multiple merging cluster system and the formidable depth of these images make it a challenging test case to prove the efficiency of our algorithm. We found a final ICL fraction of 19.17 ± 2.87%, which is very consistent with numerical simulations.

  13. DISENTANGLING THE ICL WITH THE CHEFs: ABELL 2744 AS A CASE STUDY

    SciTech Connect

    Jiménez-Teja, Y.; Dupke, R.

    2016-03-20

    Measurements of the intracluster light (ICL) are still prone to methodological ambiguities, and there are multiple techniques in the literature to address them, mostly based on the binding energy, the local density distribution, or the surface brightness. A common issue with these methods is the a priori assumption of a number of hypotheses on either the ICL morphology, its surface brightness level, or some properties of the brightest cluster galaxy (BCG). The discrepancy in the results is high, and numerical simulations just place a boundary on the ICL fraction in present-day galaxy clusters in the range 10%–50%. We developed a new algorithm based on the Chebyshev–Fourier functions to estimate the ICL fraction without relying on any a priori assumption about the physical or geometrical characteristics of the ICL. We are able to not only disentangle the ICL from the galactic luminosity but mark out the limits of the BCG from the ICL in a natural way. We test our technique with the recently released data of the cluster Abell 2744, observed by the Frontier Fields program. The complexity of this multiple merging cluster system and the formidable depth of these images make it a challenging test case to prove the efficiency of our algorithm. We found a final ICL fraction of 19.17 ± 2.87%, which is very consistent with numerical simulations.

  14. [Uterine inversion].

    PubMed

    Dirken, J J; Vlaanderen, W

    1994-01-01

    Inversion of the uterus is a rare complication of childbirth. A primigravida aged 21 and a multigravida aged 32, hospitalized as emergency cases because of inversion of the uterus with major blood loss, were treated with infusion of liquids (to combat shock), repositioning of the uterus under anaesthesia and prevention of reinversion by uterine tonics. Inversion of the uterus should be part of the differential diagnosis in every case of fluxus post partum.

  15. The Use of Genetic Algorithms as an Inverse Technique to Guide the Design and Implementation of Research at a Test Site in Shelby County, Tennessee

    NASA Astrophysics Data System (ADS)

    Gentry, R. W.

    2002-12-01

    The Shelby Farms test site in Shelby County, Tennessee is being developed to better understand recharge hydraulics to the Memphis aquifer in areas where leakage through an overlying aquitard occurs. The site is unique in that it demonstrates many opportunities for interdisciplinary research regarding environmental tracers, anthropogenic impacts and inverse modeling. The objective of the research funding the development of the test site is to better understand the groundwater hydrology and hydraulics between a shallow alluvial aquifer and the Memphis aquifer given an area of leakage, defined as an aquitard window. The site is situated in an area on the boundary of a highly developed urban area and is currently being used by an agricultural research agency and a local recreational park authority. Also, an abandoned landfill is situated to the immediate south of the window location. Previous research by the USGS determined the location of the aquitard window subsequent to the landfill closure. Inverse modeling using a genetic algorithm approach has identified the likely extents of the area of the window given an interaquifer accretion rate. These results, coupled with additional fieldwork, have been used to guide the direction of the field studies and the overall design of the research project. This additional work has encompassed the drilling of additional monitoring wells in nested groups by rotasonic drilling methods. The core collected during the drilling will provide additional constraints to the physics of the problem that may provide additional help in redefining the conceptual model. The problem is non-unique with respect to the leakage area and accretion rate and further research is being performed to provide some idea of the advective flow paths using a combination of tritium and 3He analyses and geochemistry. The outcomes of the research will result in a set of benchmark data and physical infrastructure that can be used to evaluate other environmental

  16. Spatial analysis of time of flight-secondary ion mass spectrometric images by ordinary kriging and inverse distance weighted interpolation techniques.

    PubMed

    Milillo, Tammy M; Gardella, Joseph A

    2008-07-01

    Ordinary kriging and inverse distance weighted (IDW) are two interpolation methods for spatial analysis of data and are commonly used to analyze macroscopic spatial data in the fields of remote sensing, geography, and geology. In this study, these two interpolation techniques were compared and used to analyze microscopic chemical images created from time of flight-secondary ion mass spectrometry images from a patterned polymer sample of fluorocarbon (C(x)F(y)) and poly(aminopropyl siloxane) (APS, a.k.a. siloxane). Data was eliminated from the original high-resolution data set by successive random removal, and the image file was interpolated and reconstructed with a random subset of points using both methods. The statistical validity of the reconstructed image was determined by both standard geographic information system (GIS) validation statistics and evaluating the resolution across an image boundary using ASTM depth and image resolution methodology. The results show that both ordinary kriging and IDW techniques can be used to accurately reconstruct an image using substantially fewer sample points than the original data set. Ordinary kriging performed better than the IDW technique, resulting in fewer errors in predicted intensities and greater retention of original image features. The size of the data set required for the most accurate reconstruction of the original image is directly related to the autocorrelation present within the data set. When 10% of the original siloxane data set was used for an ordinary kriging interpolation, the resulting image still retained the characteristic gridlike pattern. The C(x)F(y) data set exhibited stronger spatial correlation, resulting in reconstruction of the image with only 1% of the original data set. The removal of data points does result in a loss of image resolution; however, the resolution loss is not directly related to the percentage of sample points removed.

  17. An optical view of the filament region of Abell 85

    NASA Astrophysics Data System (ADS)

    Boué, G.; Durret, F.; Adami, C.; Mamon, G. A.; Ilbert, O.; Cayatte, V.

    2008-10-01

    Aims: We present an optical investigation of the Abell 85 cluster filament (z = 0.055) previously interpreted in X-rays as groups falling on to the main cluster. We compare the distribution of galaxies with the X-ray filament, and investigate the galaxy luminosity functions in several bands and in several regions. We search for galaxies where star formation may have been triggered by interactions with intracluster gas or tidal pressure due to the cluster potential when entering the cluster. Methods: Our analysis is based on images covering the South tip of Abell 85 and its infalling filament, obtained with CFHT MegaPrime/MegaCam (1×1 deg2 field) in four bands (u^*, g', r', i') and ESO 2.2 m WFI (38×36 arcmin2 field) in a narrow band filter corresponding to the redshifted Hα line and in an RC broad band filter. The LFs are estimated by statistically subtracting a reference field. Background contamination is minimized by cutting out galaxies redder than the observed red sequence in the g'-i' versus i' colour-magnitude diagram. Results: The galaxy distribution shows a significantly flattened cluster, whose principal axis is slightly offset from the X-ray filament. The analysis of the broad band galaxy luminosity functions shows that the filament region is well populated. The filament is also independently detected as a gravitationally bound structure by the Serna & Gerbal (1996, A&A, 309, 65) hierarchical method. 101 galaxies are detected in the Hα filter, among which 23 have spectroscopic redshifts in the cluster, 2 have spectroscopic redshifts higher than the cluster and 58 have photometric redshifts that tend to indicate that they are background objects. One galaxy that is not detected in the Hα filter probably because of the filter low wavelength cut but shows Hα emission in its SDSS spectrum in the cluster redshift range has been added to our sample. The 24 galaxies with spectroscopic redshifts in the cluster are mostly concentrated in the South part of the

  18. The merging cluster of galaxies Abell 3376: an optical view

    NASA Astrophysics Data System (ADS)

    Durret, F.; Perrot, C.; Lima Neto, G. B.; Adami, C.; Bertin, E.; Bagchi, J.

    2013-12-01

    Context. The cluster Abell 3376 is a merging cluster of galaxies at redshift z = 0.046. It is famous mostly for its giant radio arcs, and shows an elongated and highly substructured X-ray emission, but has not been analysed in detail at optical wavelengths. Aims: To improve our understanding of the effects of the major cluster merger on the galaxy properties, we analyse the galaxy luminosity function (GLF) in the B band in several regions as well as the dynamical properties of the substructures. Methods: We have obtained wide field images of Abell 3376 in the B band and derive the GLF applying a statistical subtraction of the background in three regions: a circle of 0.29 deg radius (1.5 Mpc) encompassing the whole cluster, and two circles centred on each of the two brightest galaxies (BCG2, northeast, coinciding with the peak of X-ray emission, and BCG1, southwest) of radii 0.15 deg (0.775 Mpc). We also compute the GLF in the zone around BCG1, which is covered by the WINGS survey in the B and V bands, by selecting cluster members in the red sequence in a (B - V) versus V diagram. Finally, we discuss the dynamical characteristics of the cluster implied by an analysis based on the Serna & Gerbal (SG) method. Results: The GLFs are not well fit by a single Schechter function, but satisfactory fits are obtained by summing a Gaussian and a Schechter function. The GLF computed by selecting galaxies in the red sequence in the region surrounding BCG1 can also be fit by a Gaussian plus a Schechter function. An excess of galaxies in the brightest bins is detected in the BCG1 and BCG2 regions. The dynamical analysis based on the SG method shows the existence of a main structure of 82 galaxies that can be subdivided into two main substructures of 25 and six galaxies. A smaller structure of six galaxies is also detected. Conclusions: The B band GLFs of Abell 3376 are clearly perturbed, as already found in other merging clusters. The dynamical properties are consistent with the

  19. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil.

    PubMed

    Lee, Chia-Pu; Yen, Gow-Chin

    2006-02-08

    The oil of tea seed (Camellia oleifera Abel.) is used extensively in China as cooking oil. The objectives of this study were to investigate the antioxidant activity of tea seed oil and its active compounds. Of the five solvent extracts, methanol extract of tea seed oil exhibited the highest yield and the strongest antioxidant activity as determined by DPPH scavenging activity and Trolox equivalent antioxidant capacity (TEAC). Two peaks separated from the methanol extract by HPLC contributed the most significant antioxidant activity. These two peaks were further identified as sesamin and a novel compound: 2,5-bis-benzo[1,3]dioxol-5-yl-tetrahydro-furo [3,4-d][1,3]dioxine (named compound B) by UV absorption and characterized by MS, IR, 1H NMR, and 13C NMR techniques. Sesamin and compound B decreased H2O2-mediated formation of reactive oxygen species in red blood cells (RBCs), inhibited RBCs hemolysis induced by AAPH, and increased the lag time of conjugated dienes formation in human low-density lipoprotein. The results indicate that both compounds isolated from tea seed oil exhibit remarkable antioxidant activity. Apart from the traditional pharmacological effects of Camellia oleifera, the oil of tea seed may also act as a prophylactic agent to prevent free radical related diseases.

  20. Stress inversion of heterogeneous fault-slip data with unknown slip sense - an OFA clustering technique tested on artificial and real data

    NASA Astrophysics Data System (ADS)

    Hansen, J.-A.; Bergh, S. G.; Osmundsen, P. T.; Redfield, T.

    2012-04-01

    Mesozoic to early Cenozoic brittle fault zones are exposed in crystalline basement rocks in the Lofoten and Vesterålen area, North Norway. These fault zones contain abundant striated fracture planes, and may convey important information about the kinematic and dynamic evolution of adjacent fault-bounded rift basins offshore. However, determining slip sense is difficult as offset markers are rare and one has to rely on fault plane morphology. The fault-slip data does, in addition, show clear evidence of being heterogeneous. The linear part of Fry's σ-space inversion method do not depend on slip sense and may, in conjunction with the Objective Function Algorithm (OFA), be used to separate heterogeneous fault-slip data and calculate respective stress tensors. However, tests on artificial data show that the inversions corresponding with the lowest obtained value of the objective function give erroneous results when errors are introduced in the dataset. The method also fails in determining the number of superimposed tensors. We show that by contouring principal stress orientations from the OFA after e.g. 1000 runs, using all solutions with an objective function value below mean and different initial subdivisions, we get more reliable orientations for the principal stresses active during faulting. The method can also be used to evaluate the number of superimposed tensors in the heterogeneous dataset as an overestimation of tensors does not generate significant artificial clusters of principal stress orientations. We refer to this technique as OFA clustering. Initial results using OFA clustering on field data from the Lofoten and Vesterålen area give principal stress orientations in agreement with plate reconstructions and the orientations of the main boundary faults offshore. Since no pre-classification of the fault-slip data is needed, all data points are used with no filtering, and slip sense is not required, the OFA clustering technique is a robust method for

  1. Limb-brightening observations from the OSO-7 satellite. II - Comparison of Abel-inverted intensities of Fe XIV and Fe XIII EUV emission lines with predictions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Rothe, E. D.; Neupert, W. M.

    1976-01-01

    Intensities of Fe XIV and Fe XIII EUV emission lines obtained at coronal locations beyond the limb by the Goddard spectroheliograph on the OSO 7 satellite have been corrected for the wavelength dependence of the instrument's sensitivity and have been Abel-inverted to provide a valid comparison with theoretical predictions for each ion. Details of the Abel-inversion procedure are given, including explicit formulas for application of Bracewell's (1956) method. The intensity ratios of pairs of lines originating from a common level are compared with expected theoretical transition probability ratios over a range of heliocentric distance; deviations in some cases yield information about adjacent unclassified lines. Comparison of the observations with predictions for Fe XIV and Fe XIII shows generally good agreement, with a few interesting discrepancies that may imply a corresponding need for more accurate collisional excitation cross sections. The same comparison yields the variation of electron density with heliocentric radius for each ion separately; the two density functions are found to agree within a factor of three.

  2. The planetary nebula Abell 48 and its [WN] nucleus

    NASA Astrophysics Data System (ADS)

    Frew, David J.; Bojičić, I. S.; Parker, Q. A.; Stupar, M.; Wachter, S.; DePew, K.; Danehkar, A.; Fitzgerald, M. T.; Douchin, D.

    2014-05-01

    We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B - V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (˜0.3 M⊙) and electron density (700 cm-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best-fitting temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ˜5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium- and carbon-dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.

  3. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  4. Anatomy-Based Inverse Planning Simulated Annealing Optimization in High-Dose-Rate Prostate Brachytherapy: Significant Dosimetric Advantage Over Other Optimization Techniques

    SciTech Connect

    Jacob, Dayee Raben, Adam; Sarkar, Abhirup; Grimm, Jimm; Simpson, Larry

    2008-11-01

    Purpose: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk. Method and Materials: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Plato Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V{sub 75%}) for the rectum and bladder, volume receiving at least 125% of the dose (V{sub 125%}) for the urethra, and total volume receiving the reference dose (V{sub 100%}) and volume receiving 150% of the dose (V{sub 150%}) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared. Results: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization. Conclusions: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.

  5. The Sunyaev-Zeldovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.

    2000-01-01

    We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).

  6. ABELL 1201: A MINOR MERGER AT SECOND CORE PASSAGE

    SciTech Connect

    Ma Chengjiun; Nulsen, Paul E. J.; McNamara, Brian R.; Murray, Stephen S.; Owers, Matt; Couch, Warrick J.

    2012-06-20

    We present an analysis of the structures and dynamics of the merging cluster Abell 1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500 kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core, and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at {approx_equal} 1000 km s{sup -1}. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.

  7. A series of shocks and edges in Abell 2219

    NASA Astrophysics Data System (ADS)

    Canning, R. E. A.; Allen, S. W.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Mantz, A.; Million, E.; Morris, R. G.; Russell, H. R.

    2017-01-01

    We present deep, 170 ks, Chandra X-ray observations of Abell 2219 (z = 0.23), one of the hottest and most X-ray luminous clusters known, and which is experiencing a major merger event. We discover a `horseshoe' of high-temperature gas surrounding the ram-pressure-stripped, bright, hot, X-ray cores. We confirm an X-ray shock front located north-west of the X-ray centroid and along the projected merger axis. We also find a second shock front to the south-east of the X-ray centroid making this only the second cluster where both the shock and reverse shock are confirmed with X-ray temperature measurements. We also present evidence for a possible sloshing cold front in the `remnant tail' of one of the sub-cluster cores. The cold front and north-west shock front geometrically bound the radio halo and appear to be directly influencing the radio properties of the cluster.

  8. Chandra Observations of Point Sources in Abell 2255

    NASA Technical Reports Server (NTRS)

    Davis, David S.; Miller, Neal A.; Mushotzky, Richard F.

    2003-01-01

    In our search for "hidden" AGN we present results from a Chandra observation of the nearby cluster Abell 2255. Eight cluster galaxies are associated with point-like X-ray emission, and we classify these galaxies based on their X-ray, radio, and optical properties. At least three are associated with active galactic nuclei (AGN) with no optical signatures of nuclear activity, with a further two being potential AGN. Of the potential AGN, one corresponds to a galaxy with a post-starburst optical spectrum. The remaining three X-ray detected cluster galaxies consist of two starbursts and an elliptical with luminous hot gas. Of the eight cluster galaxies five are associated with luminous (massive) galaxies and the remaining three lie in much lower luminosity systems. We note that the use of X-ray to optical flux ratios for classification of X-ray sources is often misleading, and strengthen the claim that the fraction of cluster galaxies hosting an AGN based on optical data is significantly lower than the fraction based on X-ray and radio data.

  9. Detection of a radio bridge in Abell 3667

    NASA Astrophysics Data System (ADS)

    Carretti, E.; Brown, S.; Staveley-Smith, L.; Malarecki, J. M.; Bernardi, G.; Gaensler, B. M.; Haverkorn, M.; Kesteven, M. J.; Poppi, S.

    2013-04-01

    We have detected a radio bridge of unpolarized synchrotron emission connecting the NW relic of the galaxy cluster Abell 3667 to its central regions. We used data at 2.3 GHz from the S-band Polarization All Sky Survey and at 3.3 GHz from a follow-up observation, both conducted with the Parkes radio telescope. This emission is further aligned with a diffuse X-ray tail, and represents the most compelling evidence for an association between intracluster medium turbulence and diffuse synchrotron emission. This is the first clear detection of a bridge associated both with an outlying cluster relic and X-ray diffuse emission. All the indicators point towards the synchrotron bridge being related to the post-shock turbulent wake trailing the shock front generated by a major merger in a massive cluster. Although predicted by simulations, this is the first time such emission is detected with high significance and clearly associated with the path of a confirmed shock. Although the origin of the relativistic electrons is still unknown, the turbulent re-acceleration model provides a natural explanation for the large-scale emission. The equipartition magnetic field intensity of the bridge is Beq = 2.2 ± 0.3 μG. We further detect diffuse emission coincident with the central regions of the cluster for the first time.

  10. A shock at the radio relic position in Abell 115

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Gastaldello, F.; Brunetti, G.; Dallacasa, D.

    2016-07-01

    We analysed a deep Chandra observation (334 ks) of the galaxy cluster Abell 115 and detected a shock cospatial with the radio relic. The X-ray surface brightness profile across the shock region presents a discontinuity, corresponding to a density compression factor C=2.0± 0.1, leading to a Mach number M=1.7± 0.1 (M=1.4-2 including systematics). Temperatures measured in the upstream and downstream regions are consistent with what expected for such a shock: Tu=4.3+1.0-0.6 keV and Td=7.9+1.4-1.1 keV, respectively, implying a Mach number M=1.8+0.5-0.4. So far, only few other shocks discovered in galaxy clusters are consistently detected from both density and temperature jumps. The spatial coincidence between this discontinuity and the radio relic edge strongly supports the view that shocks play a crucial role in powering these synchrotron sources. We suggest that the relic is originated by shock re-acceleration of relativistic electrons rather than acceleration from the thermal pool. The position and curvature of the shock and the associated relic are consistent with an off-axis merger with unequal mass ratio where the shock is expected to bend around the core of the less massive cluster.

  11. Shedding light on the matter of Abell 781

    NASA Astrophysics Data System (ADS)

    Wittman, D.; Dawson, William; Benson, Bryant

    2014-02-01

    The galaxy cluster Abell 781 West has been viewed as a challenge to weak gravitational lensing mass calibration, as Cook & dell'Antonio found that the weak lensing signal-to-noise ratio in three independent sets of observations was consistently lower than expected from mass models based on X-ray and dynamical measurements. We correct some errors in statistical inference in Cook & dell'Antonio and show that their own results agree well with the dynamical mass and exhibit at most 2.2-2.9σ low compared to the X-ray mass, similar to the tension between the dynamical and X-ray masses. Replacing their simple magnitude cut with weights based on source photometric redshifts eliminates the tension between lensing and X-ray masses; in this case the weak lensing mass estimate is actually higher than, but still in agreement with, the dynamical estimate. A comparison of lensing analyses with and without photometric redshifts shows that a 1-2σ chance alignment of low-redshift sources lowers the signal-to-noise ratio observed by all previous studies which used magnitude cuts rather than photometric redshifts. The fluctuation is unexceptional, but appeared to be highly significant in Cook & dell'Antonio due to the errors in statistical interpretation.

  12. The Sunyaev-Zel'dovich Effect Spectrum of Abell 2163

    NASA Technical Reports Server (NTRS)

    LaRoque, S. J.; Carlstrom, J. E.; Reese, E. D.; Holder, G. P.; Holzapfel, W. L.; Joy, M.; Grego, L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present an interferometric measurement of the Sunyaev-Zel'dovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most complete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the Compton y-parameter (y(sub 0)) and the peculiar velocity (v(sub p)) for this cluster. Our results are y(sub 0) = 3.56((sup +0.41+0.27)(sub -0.41-0.19)) X 10(exp -4) and v(sub p) = 410((sup +1030+460) (sub -850-440)) km s(exp -1) where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.

  13. Narrow-angle tail radio sources and the distribution of galaxy orbits in Abell clusters

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Sarazin, Craig L.; Owen, Frazer N.

    1987-01-01

    The present data on the orientations of the tails with respect to the cluster centers of a sample of 70 narrow-angle-tail (NAT) radio sources in Abell clusters show the distribution of tail angles to be inconsistent with purely radial or circular orbits in all the samples, while being consistent with isotropic orbits in (1) the whole sample, (2) the sample of NATs far from the cluster center, and (3) the samples of morphologically regular Abell clusters. Evidence for very radial orbits is found, however, in the sample of NATs near the cluster center. If these results can be generalized to all cluster galaxies, then the presence of radial orbits near the center of Abell clusters suggests that violent relaxation may not have been fully effective even within the cores of the regular clusters.

  14. Bubbles and B-Flats: A Deep Observation of Abell 2052

    NASA Astrophysics Data System (ADS)

    Blanton, Elizabeth

    2004-09-01

    The cooling flow cluster Abell 2052 has, arguably, the morphology most similar to the Perseus cluster as seen with Chandra images. Two clear bubbles to the N and S of the center of Abell 2052 are filled with the radio lobes associated with 3C 317. An unsharp-masked image reveals faint ripple features similar to those seen in the Perseus cluster which may represent the propagation of sound waves into the cluster from the radio source. We propose to observe Abell 2052 much more deeply to study the ripple features, search for ghost bubbles, search for cooling gas in the bright shells around the radio source that may link the X-ray and H-alpha emission, detect hot gas within the X-ray holes, and directly compare the star formation and cooling rates in the cluster center.

  15. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  16. The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Eckert, D.; Ettori, S.; Pointecouteau, E.; Paltani, S.; Molendi, S.; Hurier, G.; Gastaldello, F.; Lau, E. T.; Nagai, D.; Roncarelli, M.; Rossetti, M.

    2016-10-01

    Context. Galaxy clusters are continuously growing through the accretion of matter in their outskirts. This process induces inhomogeneities in the gas density distribution (clumping) that need to be taken into account to recover the physical properties of the intracluster medium (ICM) at large radii. Aims: We studied the thermodynamic properties in the outskirts (R > R500) of the massive galaxy cluster Abell 2142 by combining the Sunyaev Zel'dovich (SZ) effect with the X-ray signal. Methods: We combined the SZ pressure profile measured by Planck with the XMM-Newton gas density profile to recover radial profiles of temperature, entropy, and hydrostatic mass out to 2 × R500. We used a method that is insensitive to clumping to recover the gas density, and we compared the results with traditional X-ray measurement techniques. Results: When taking clumping into account, our joint X-SZ entropy profile is consistent with the predictions from pure gravitational collapse, whereas a significant entropy flattening is found when the effect of clumping is neglected. The hydrostatic mass profile recovered using joint X-SZ data agrees with that obtained from spectroscopic X-ray measurements and with mass reconstructions obtained through weak lensing and galaxy kinematics. Conclusions: We found that clumping can explain the entropy flattening observed by Suzaku in the outskirts of several clusters. When using a method that is insensitive to clumping for the reconstruction of the gas density, the thermodynamic properties of Abell 2142 are compatible with the assumption that the thermal gas pressure sustains gravity and that the entropy is injected at accretion shocks, with no need to evoke more exotic physics. Our results highlight the need for X-ray observations with sufficient spatial resolution, and large collecting area, to understand the processes at work in cluster outer regions.

  17. Angular cross-relations of Abell clusters in different distance classes

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.; Hollosi, J.; Toth, G.

    1989-01-01

    The angular autocorrelation and cross-correlation functions of the D = 1 ... 4, D = 5, and D = 6 distance class Abell clusters are estimated. There is a strong anticorrelation between the most distant D = 6 and the closest D = 1 ... 4 subsamples. It is suggested that an artifact of the cluster identification process presumably due to the finite angular size of the cluster. This anticorrelation seems to contradict some recent estimations of projection contaminations in the Abell catalog. The angular proximity of a foreground cluster may have caused a background cluster not to be counted as it was thought to be a subcluster or it was erroneously assigned to a nearer distance class.

  18. The nearby Abell clusters. III - Luminosity functions for eight rich clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hoessel, John G.

    1989-01-01

    Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies.

  19. U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations

    SciTech Connect

    Zheltukhin, A. A.; Trzetrzelewski, M.

    2010-06-15

    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.

  20. The nearby Abell clusters. III. Luminosity functions for eight rich clusters

    SciTech Connect

    Oegerle, W.R.; Hoessel, J.G. Washburn Observatory, Madison, WI )

    1989-11-01

    Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies. 40 refs.

  1. New approach for the inverse boundary value problem of Laplace's equation on a rectangle: technique renovation for the Grad-Shafranov (GS) reconstruction

    NASA Astrophysics Data System (ADS)

    Li, H.; Feng, X. S.; Xiang, J.; Zuo, P.

    2014-12-01

    In Li et al. [2013, New approach for solving the inverse boundary value problem of Laplace's equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction, J. Geophys. Res. Space., 118, 2876-2881], a couple of Hilbert transform relations were applied to the study of the ill-posedness for the essential GS reconstructions. In this further study, a detailed derivation for these reciprocal relations are presented in case of the plane circular region, and then the reciprocal relations are extended to apply to the plane rectangular region after a conformal mapping procedure. While for the case of plane rectangular region, it is confronted by a traditional problem of the so-called corner singularities, which divided the extended reciprocal relations into four integrals with end-point singularities. With the help of the extended Euler-Maclaurin expansion, new quadrature schemes are developed for these singular integrals. Benchmark testing with the analytic solutions on a rectangle boundary has also show the efficiency and robustness of these extensions. The new solution approach is also developed with the introduced reciprocal relations, and an iterated Tikhonov regularization scheme is applied to deal with the ill-posed linear operators appearing in the discretization of the new approach. The special case on the rectangular boundary is benchmarked with the analytic solutions. Numerical experiments highlight the efficiency and robustness of the proposed method. A robust solution approach is expected to be developed based on these new results for the GS equation on any 2D region with partial-known boundary conditions.

  2. The Sunyaev-Zel'dovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.

    1999-01-01

    We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).

  3. THE GALAXY POPULATION OF LOW-REDSHIFT ABELL CLUSTERS

    SciTech Connect

    Barkhouse, Wayne A.; Yee, H. K. C.; Lopez-Cruz, Omar E-mail: hyee@astro.utoronto.c

    2009-10-01

    We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (f{sub b} ) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r {sub 200} to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (B {sub gc}), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The f{sub b} is found not to correlate with B {sub gc}; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy f{sub b} is approximately constant with clustercentric radius except for the inner-cluster core region where f{sub b} decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.

  4. Deep Westerbork observations of Abell 2256 at 350 MHz

    NASA Astrophysics Data System (ADS)

    Brentjens, M. A.

    2008-10-01

    Deep polarimetric Westerbork observations of the galaxy cluster Abell 2256 are presented, covering a frequency range of 325-377 MHz. The central halo source has a diameter of the order of 1.2 Mpc (18´), which is somewhat larger than at 1.4 GHz. With α = -1.61±0.04, the halo spectrum between 1.4 GHz and 22.25 MHz is less steep than previously thought. The centre of the ultra steep spectrum source in the eastern part of the cluster exhibits a spectral break near 400 MHz. It is estimated to be at least 51 million years old, but possibly older than 125 million years. A final measurement requires observations in the 10-150 MHz range. It remains uncertain whether the source is a radio tail of Fabricant galaxy 122, situated in the northeastern tip of the source. Faraday rotation measure synthesis revealed no polarized flux at all in the cluster. The polarization fraction of the brightest parts of the relic area is less than 1%. The RM-synthesis nevertheless revealed 9 polarized sources in the field enabling an accurate measurement of the Galactic Faraday rotation (-33±2 rad m-2 in front of the relic). Based on its depolarization on longer wavelengths, the line-of-sight magnetic field in relic filament G is estimated to be between 0.02 and 2 μG. A value of 0.2 μG appears most reasonable given the currently available data.

  5. Merger shocks in Abell 3667 and the Cygnus A cluster

    NASA Astrophysics Data System (ADS)

    Sarazin, C. L.; Finoguenov, A.; Wik, D. R.

    2013-04-01

    We present new XMM-Newton observations of the northwest (NW) radio relic region in the cluster Abell 3667. We detect a jump in the X-ray surface brightness and X-ray temperature at the sharp outer edge of the radio relic which indicate that this is the location of a merger shock with a Mach number of about 2. Comparing the radio emission to the shock properties implies that approximately 0.2% of the dissipated shock kinetic energy goes into accelerating relativistic electrons. This is an order of magnitude smaller than the efficiency of shock acceleration in many Galactic supernova remnants, which may be due to the lower Mach numbers of cluster merger shocks. The X-ray and radio properties indicate that the magnetic field strength in the radio relic is ⪆ 3 μG, which is a very large field at a projected distance of ˜ 2.2 Mpc from the center of a cluster. The radio spectrum is relatively flat at the shock, and steepens dramatically with distance behind the shock. This is consistent with radiative losses by the electrons and the post-shock speed determined from the X-ray properties. The Cygnus A radio source is located in a merging cluster of galaxies. This appears to be an early-stage merger. Our recent Suzaku observation confirm the presence of a hot region between the two subclusters which agrees with the predicted shocked region. The high spectral resolution of the CCDs on Suzaku allowed us to measure the radial component of the merger velocity, Δ v_r ≈ 2650 km s-1.

  6. Discovery of a Star Formation Region in Abell 2052

    NASA Astrophysics Data System (ADS)

    Martel, André R.; Sparks, William B.; Allen, Mark G.; Koekemoer, Anton M.; Baum, Stefi A.

    2002-03-01

    We report the discovery of an ultraviolet filament detected in a new Space Telescope Imaging Spectrograph (STIS) NUV-MAMA image of the cD galaxy UGC 9799, located in the cooling-flow cluster Abell 2052 and host to the radio source 3C 317. The filament is ~2 kpc in length and is located at a distance of ~4 kpc from the nucleus along a north-south axis. It consists of three knots embedded along the edges of a diffuse filamentary halo. The northern half of the filament is narrow (~100 pc) and straight while the southern half is bent and more diffuse. The blue color (NUV-V~-2.4) and morphology of the filament are most consistent with a recent episode of star formation (T~5 Myr). Only a few×104 Msolar of young stars or a star formation rate of ~10-3 Msolar yr-1 is required to produce the feature. A steep ultraviolet halo is detected around the unresolved nucleus, and it may be associated with an old stellar component. No ultraviolet features are identified at the location of the extended emission-line nebulae observed from the ground, indicating that OB stars are not the primary source of ionization in these regions. We consider cooling flows and a merger with a satellite galaxy the trigger for the starburst regions and conclude that the latter is the more consistent with the chaotic dust lanes spread throughout the host galaxy. The star formation observed is orders of magnitude less than the inferred cooling rate in the cooling flow scenario. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  7. Applying the Time-Domain Moment Tensor Inversion technique to Regional Earthquake Data in the Puerto Rico-Virgin Island Region

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, F. A.; Lopez, A. M.

    2015-12-01

    The quick determination of an earthquake's moment tensor, whose description relate to centroid depth, faulting geometry and size, is crucial for tsunami warning systems. Whether an event possesses the critical parameters to produce a devastating tsunami, tsunami warning centers must knowThis research project seeks to test, well-formulated time-domain moment tensor inversion code in order to obtain in quasi real-time faulting parameters of significant regional earthquakes in the Puerto Rico-Virgin Islands region. The inversion code has been developed by researchers at the Berkeley Seismological Laboratory, whose main attractive is to decrease the time it takes to have an estimate calculation of a moment tensor for any major earthquake using regional data, approximately less than 7 minutes of an earthquake's origin time. Four seismic events in the region have been used as testbed to the inversion code configured for this area. In order to compare our results, previously computed and published moment tensor inversions from the Global CMT and USGS for the same events were used to assess the deviations from results obtained in this study. Our results indicate the inversion method is capable of reproducing the regional and teleseismic solutions, and thus can be incorporated into daily earthquake location operations at the Puerto Rico Seismic Network (PRSN) for quick estimation of faulting mechanisms and tsunami warning purposes.

  8. Inversion layer MOS solar cells

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1986-01-01

    Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

  9. The mass distribution of the unusual merging cluster Abell 2146 from strong lensing

    NASA Astrophysics Data System (ADS)

    Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen R.; Canning, Rebecca E. A.; Leonard, Adrienne; Santana, Rebecca; White, Jacob A.; Baum, Stefi A.; Clowe, Douglas I.; Edge, Alastair; Fabian, Andrew C.; McNamara, Brian R.; O'Dea, Christopher P.

    2017-01-01

    Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky, and it is unique in showing two large shocks on Chandra X-ray Observatory images. With an early stage merger, shortly after first core passage, one would expect the cluster galaxies and the dark matter to be leading the X-ray emitting plasma. In this regard, the cluster Abell 2146-A is very unusual in that the X-ray cool core appears to lead, rather than lag, the brightest cluster galaxy (BCG) in their trajectories. Here we present a strong-lensing analysis of multiple-image systems identified on Hubble Space Telescope images. In particular, we focus on the distribution of mass in Abell 2146-A in order to determine the centroid of the dark matter halo. We use object colours and morphologies to identify multiple-image systems; very conservatively, four of these systems are used as constraints on a lens mass model. We find that the centroid of the dark matter halo, constrained using the strongly lensed features, is coincident with the BCG, with an offset of ≈2 kpc between the centres of the dark matter halo and the BCG. Thus from the strong-lensing model, the X-ray cool core also leads the centroid of the dark matter in Abell 2146-A, with an offset of ≈30 kpc.

  10. A weak-lensing analysis of the Abell 383 cluster

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Radovich, M.; Grado, A.; Puddu, E.; Romano, A.; Limatola, L.; Fu, L.

    2011-05-01

    Aims: We use deep CFHT and SUBARU uBVRIz archival images of the Abell 383 cluster (z = 0.187) to estimate its mass by weak-lensing. Methods: To this end, we first use simulated images to check the accuracy provided by our Kaiser-Squires-Broadhurst (KSB) pipeline. These simulations include shear testing programme (STEP) 1 and 2 simulations, as well as more realistic simulations of the distortion of galaxy shapes by a cluster with a Navarro-Frenk-White (NFW) profile. From these simulations we estimate the effect of noise on shear measurement and derive the correction terms. The R-band image is used to derive the mass by fitting the observed tangential shear profile with an NFW mass profile. Photometric redshifts are computed from the uBVRIz catalogs. Different methods for the foreground/background galaxy selection are implemented, namely selection by magnitude, color, and photometric redshifts, and the results are compared. In particular, we developed a semi-automatic algorithm to select the foreground galaxies in the color-color diagram, based on the observed colors. Results: Using color selection or photometric redshifts improves the correction of dilution from foreground galaxies: this leads to higher signals in the inner parts of the cluster. We obtain a cluster mass Mvir = 7.5+2.7_{-1.9 × 1014} M⊙: this value is 20% higher than previous estimates and is more consistent the mass expected from X-ray data. The R-band luminosity function of the cluster is computed and gives a total luminosity Ltot = (2.14 ± 0.5) × 1012 L⊙ and a mass-to-luminosity ratio M/L 300 M⊙/L⊙. Based on: data collected with the Subaru Telescope (University of Tokyo) and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan; observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada

  11. MUSE observations of the lensing cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Bina, D.; Pelló, R.; Richard, J.; Lewis, J.; Patrício, V.; Cantalupo, S.; Herenz, E. C.; Soto, K.; Weilbacher, P. M.; Bacon, R.; Vernet, J. D. R.; Wisotzki, L.; Clément, B.; Cuby, J. G.; Lagattuta, D. J.; Soucail, G.; Verhamme, A.

    2016-05-01

    Context. This paper presents the results obtained with the Multi Unit Spectroscopic Explorer (MUSE) for the core of the lensing cluster Abell 1689, as part of MUSE's commissioning at the ESO Very Large Telescope. Aims: Integral-field observations with MUSE provide a unique view of the central 1 × 1 arcmin2 region at intermediate spectral resolution in the visible domain, allowing us to conduct a complete census of both cluster galaxies and lensed background sources. Methods: We performed a spectroscopic analysis of all sources found in the MUSE data cube. Two hundred and eighty-two objects were systematically extracted from the cube based on a guided-and-manual approach. We also tested three different tools for the automated detection and extraction of line emitters. Cluster galaxies and lensed sources were identified based on their spectral features. We investigated the multiple-image configuration for all known sources in the field. Results: Previous to our survey, 28 different lensed galaxies displaying 46 multiple images were known in the MUSE field of view, most of them were detected through photometric redshifts and lensing considerations. Of these, we spectroscopically confirm 12 images based on their emission lines, corresponding to 7 different lensed galaxies between z = 0.95 and 5.0. In addition, 14 new galaxies have been spectroscopically identified in this area thanks to MUSE data, with redshifts ranging between 0.8 and 6.2. All background sources detected within the MUSE field of view correspond to multiple-imaged systems lensed by A1689. Seventeen sources in total are found at z ≥ 3 based on their Lyman-α emission, with Lyman-α luminosities ranging between 40.5 ≲ log (Lyα) ≲ 42.5 after correction for magnification. This sample is particularly sensitive to the slope of the luminosity function toward the faintest end. The density of sources obtained in this survey is consistent with a steep value of α ≤ -1.5, although this result still

  12. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  13. Application of a XMM-Newton EPIC Monte Carlo to Analysis And Interpretation of Data for Abell 1689, RXJ0658-55 And the Centaurus Clusters of Galaxies

    SciTech Connect

    Andersson, Karl E.; Peterson, J.R.; Madejski, G.M.; /SLAC /KIPAC, Menlo Park

    2007-04-17

    We propose a new Monte Carlo method to study extended X-ray sources with the European Photon Imaging Camera (EPIC) aboard XMM Newton. The Smoothed Particle Inference (SPI) technique, described in a companion paper, is applied here to the EPIC data for the clusters of galaxies Abell 1689, Centaurus and RXJ 0658-55 (the ''bullet cluster''). We aim to show the advantages of this method of simultaneous spectral-spatial modeling over traditional X-ray spectral analysis. In Abell 1689 we confirm our earlier findings about structure in temperature distribution and produce a high resolution temperature map. We also confirm our findings about velocity structure within the gas. In the bullet cluster, RXJ 0658-55, we produce the highest resolution temperature map ever to be published of this cluster allowing us to trace what looks like the motion of the bullet in the cluster. We even detect a south to north temperature gradient within the bullet itself. In the Centaurus cluster we detect, by dividing up the luminosity of the cluster in bands of gas temperatures, a striking feature to the north-east of the cluster core. We hypothesize that this feature is caused by a subcluster left over from a substantial merger that slightly displaced the core. We conclude that our method is very powerful in determining the spatial distributions of plasma temperatures and very useful for systematic studies in cluster structure.

  14. The art in Abel Salazar's life (1889-1946)--a Portuguese Renaissance spirit of the twentieth century.

    PubMed

    Nabais, João-Maria

    2008-12-01

    Abel Salazar was a true renaissance spirit, scientist, doctor, humanist, artist and writer. His paintings combined realism with a very strong social sense. This article looks at his art and the influence that he had through it on his contemporaries.

  15. Detection of large-scale alignment of Lick counts around Abell clusters

    NASA Technical Reports Server (NTRS)

    Argyres, P. C.; Groth, E. J.; Peebles, P. J. E.; Struble, M. F.

    1986-01-01

    The possible tendency of galaxies to be distributed in an aligned fashion, on sheets or filaments, on scales greater than the Abell radius, has been tested by a variety of statistics. The subject remains controversial because the statistical tests have either not been sensitive to the alignment or capable of unambiguously signalling alignment in a general, clumpy distribution of galaxies. The present approach combines ideas of Bingelli (1982) and Fry and Peebles (1980) in an examination of the cross correlation of Lick counts relative to the preferred direction defined by the cluster. This can substantially reduce the noise, and it is suggested on this basis that alignment has been found on large scales for Lick galaxy counts and Abell cluster positions and their angles.

  16. Intersections, ideals, and inversion

    SciTech Connect

    Vasco, D.W.

    1998-10-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.

  17. Complete Measurement of S(1D2) Photofragment Alignment from Abel-Invertible Ion Images

    NASA Astrophysics Data System (ADS)

    Rakitzis, T. Peter; Samartzis, Peter C.; Kitsopoulos, Theofanis N.

    2001-09-01

    A novel method to measure directly the photofragment alignment from Abel-invertible two-dimensional ion images, as a function of photofragment recoil velocity, is demonstrated for S(1D2) atoms from the photodissociation of carbonyl sulfide at 223 nm. The results are analyzed in terms of coherent and incoherent contributions from two dissociative states, showing that the phase differences of the asymptotic wave functions of the fast and slow recoil-velocity channel are approximately π/2 and 0, respectively.

  18. The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Jauzac, M.; Eckert, D.; Schwinn, J.; Harvey, D.; Baugh, C. M.; Robertson, A.; Bose, S.; Massey, R.; Owers, M.; Ebeling, H.; Shan, H. Y.; Jullo, E.; Kneib, J.-P.; Richard, J.; Atek, H.; Clément, B.; Egami, E.; Israel, H.; Knowles, K.; Limousin, M.; Natarajan, P.; Rexroth, M.; Taylor, P.; Tchernin, C.

    2016-12-01

    We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z = 0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e. at R < 1 Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark matter haloes are detected with a significance of at least 5σ and feature masses ranging from 0.5 to 1.4 × 1014 M⊙ within R < 150 kpc. Merten et al. and Medezinski et al. substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al., we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the Millennium XXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to Λ cold dark matter, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the subhaloes finders. We discuss implications of Abell 2744 for the plausibility of different dark matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of σDM < 1.28 cm2 g-1 (68 per cent CL), in good agreement with previous results from Harvey et al.

  19. Spectroscopic observations of the distant cluster of galaxies Abell 370 - A catalogue of 84 spectra

    NASA Astrophysics Data System (ADS)

    Soucail, G.; Mellier, Y.; Fort, B.; Cailloux, M.

    1988-06-01

    Spectroscopic and photometric data are presented on 84 objects in the field of the distant cluster of galaxies Abell 370 (z = 0.374) obtained with the multiaperture spectroscopic systems PUMA developed at the Toulouse Observatory for the CFHT and ESO. The redshift and the spectral types as well as CCD photometry in the B and R bands are given with a discussion on the accuracy of the different data and measurements.

  20. X-ray cavities and temperature jumps in the environment of the strong cool core cluster Abell 2390

    NASA Astrophysics Data System (ADS)

    Sonkamble, S. S.; Vagshette, N. D.; Pawar, P. K.; Patil, M. K.

    2015-10-01

    We present results based on the systematic analysis of high resolution 95 ks Chandra observations of the strong cool core cluster Abell 2390 at the redshift of z = 0.228 that hosts an energetic radio AGN. This analysis has enabled us to investigate five X-ray deficient cavities in the atmosphere of Abell 2390 within central 30''. Presence of these cavities have been confirmed through a variety of image processing techniques like, the surface brightness profiles, unsharp masked image, as well as 2D elliptical model subtracted residual map. Temperature profile as well as 2D temperature map revealed structures in the distribution of ICM, in the sense that ICM in the NW direction is cooler than that on the SE direction. Temperature jump in all directions is evident near 25'' (90.5 kpc) corresponding to the average Mach number 1.44± 0.05, while another jump from 7.47 keV to 9.10 keV at 68'' (246 kpc) in the north-west direction, corresponding to Mach number 1.22± 0.06 and these jumps are associated with the cold fronts. Tricolour map as well as hardness ratio map detects cool gas clumps in the central 30 kpc region of temperature 4.45_{-0.10}^{+0.16} keV. The entropy profile derived from the X-ray analysis is found to fall systematically inward in a power-law fashion and exhibits a floor near 12.20± 2.54 keV cm2 in the central region. This flattening of the entropy profile in the core region confirms the intermittent heating at the centre by AGN. The diffuse radio emission map at 1.4 GHz using VLA L-band data exhibits highly asymmetric morphology with an edge in the north-west direction coinciding with the X-ray edge seen in the unsharp mask image. The mechanical power injected by the AGN in the form of X-ray cavities is found to be 5.94× 10^{45} erg s^{-1} and is roughly an order of magnitude higher than the energy lost by the ICM in the form of X-ray emission, confirming that AGN feedback is capable enough to quench the cooling flow in this cluster.

  1. Gas Sloshing in Abell 2204: Constraining the Properties of the Magnetized Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Chen, Huanqing; Jones, Christine; Andrade-Santos, Felipe; ZuHone, John A.; Li, Zhiyuan

    2017-03-01

    The rich galaxy cluster Abell 2204 exhibits edges in its X-ray surface brightness at ∼65 and 35 {kpc} west and east of its center, respectively. The presence of these edges, which were interpreted as sloshing cold fronts, implies that the intracluster medium (ICM) was recently disturbed. We analyze the properties of the ICM using multiple Chandra observations of Abell 2204. We find a density ratio of {n}{in}/{n}{out}=2.05+/- 0.05 and a temperature ratio of {T}{out}/{T}{in}=1.91+/- 0.27 (projected, or 1.87 ± 0.56 deprojected) across the western edge, and correspondingly {n}{in}/{n}{out}=1.96+/- 0.05 and {T}{out}/{T}{in}=1.45+/- 0.15 (projected, or 1.25 ± 0.26 deprojected) across the eastern edge. These values are typical of cold fronts in galaxy clusters. This, together with the spiral pattern observed in the cluster core, supports the sloshing scenario for Abell 2204. No Kelvin–Helmholtz eddies are observed along the cold front surfaces, indicating that they are effectively suppressed by some physical mechanism. We argue that the suppression is likely facilitated by the magnetic fields amplified in the sloshing motion and deduce from the measured gas properties that the magnetic field strength should be greater than 24 ± 6 μG and 32 ± 8 μG along the west and east cold fronts, respectively.

  2. On the Evolutionary Status of the Early-type Galaxy Population in Abell 2390

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Ziegler, Bodo L.; Bower, Richard G.; Smail, Ian; Davies, Roger L.

    2003-08-01

    Using a combination of Multi-Object-Spectroscopy (MOS) with MOSCA at the 3.5m telescope on Calar Alto Observatory, deep ground-based imaging with the 5.1m Hale telescope at Palomar Observatory and HST observations in the F555W (B) and F814W (I) filters, a large sample of N=51 early-type galaxies in the rich cluster Abell 2390 at a redshift z=0.23 is investigated. Our study spans both a broad range in luminosity (-19.3>=M_{B}>=-22.3) and a wide field-of-view (10' x 10'). Therefore, the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre as well as for different sub-populations. In this article we present the motivation for this investigation, give an overview of the sample selection and observations and present our findings for the Fundamental Plane of early-type galaxies for the intermediate redshift clusters Abell 2218 and Abell 2390 at z~0.2.

  3. Mass Distrubtion from Strong Gravitational Lensing of Merging Cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen

    2017-01-01

    The merging cluster Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky. In images from Chandra X-ray Observatory there are two distinct shock fronts in the intracluster medium. An unusual feature of one of the clusters is that the peak in the X-ray is leading the brightest cluster galaxy. The dark matter component is coincident with the brightest cluster galaxy (BCG). Shortly after first core passage one would typically expect the dark matter and BCG to lead the X-ray emitting plasma, however, that is not the case with Abell 2146. Strong lensing features were identified on images taken by the Hubble Space Telescope. These features were used as constraints on a lens model that maps the matter distribution of the system. We focus on the cluster Abell 2146-A to determine the dark matter centroid near BCG-A and the peak in the X-ray. The results from the strong lensing model indicate the X-ray cool core leads both the dark matter centroid and BCG-A. The dark matter centroid and BCG-A are separated by ≈ 2 kpc. The X-ray peak and dark matter centroid are separated by ≈ 30 kpc.

  4. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  5. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    SciTech Connect

    Su, Yuanyuan; Weeren, Reinout van; Buote, David A.; Gastaldello, Fabio

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  6. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  7. Probing single biomolecules in solution using the Anti-Brownian ELectrokinetic (ABEL) trap

    PubMed Central

    Wang, Quan; Goldsmith, Randall H.; Jiang, Yan; Bockenhauer, Samuel D.; Moerner, W.E.

    2012-01-01

    Conspectus Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately one millisecond in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, realtime feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the Anti-Brownian ELectrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP

  8. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap.

    PubMed

    Wang, Quan; Goldsmith, Randall H; Jiang, Yan; Bockenhauer, Samuel D; Moerner, W E

    2012-11-20

    Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately 1 ms in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, real-time feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the anti-Brownian electrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP using stepwise

  9. Inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Orlande, Helcio Rangel Barreto

    We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

  10. Chemical Shift Anisotropy Selective Inversion*

    PubMed Central

    Caporini, Marc. A.; Turner, Christopher. J.; Bielecki, Anthony; Griffin, Robert G.

    2009-01-01

    Magic Angle Spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of the radio frequency field through a multiple of the spinning frequency. The selectivity of this inversion mechanism is determined by the size of the CSA. We develop a theoretical framework to describe this process and demonstrate the CSA selective inversion with numerical simulations and experimental data. We combine this approach with cross polarization (CP) for potential applications in multi-dimensional MAS NMR. PMID:19648036

  11. Inversion of X-band nautical radar data for sea-state monitoring: a new technique to estimate the surface currents

    NASA Astrophysics Data System (ADS)

    Serafino, F.; Lugni, C.; Raffa, F.; Soldovieri, F.

    2009-04-01

    The inversion of X-band marine images sequences allows obtaining the sea state parameter estimation and the reconstruction of the wave height evolution [1-4]. This result is possible tanks to the fact that the backscattering from the sea is "visible", under some conditions, on the marine radar images. These radar signatures, that typically are suppressed because represent a noise (clutter) for the navigation, are the "useful signal" to be processed in order to achieve information about the sea state: peak wave length, period and direction, current speed and direction and the evolution of surface elevation. The backscattering phenomena is due to the Bragg resonance with ocean waves of wavelengths similar to those of the transmitted electromagnetic waves. In particular, the longer waves modulate the backscattering phenomenon and thus they become visible in the "radar" images. As a consequence, the radar image is not a direct representation of the sea state and thus a processing procedure is needed in order to reconstruct the sea state. After a Fourier Transform of the data, a spectral filter is used to erase all the undesired phenomenon via a dispersion relation. The use of the Modulation Transfer Function (MTF) allows the passage from the radar spectrum to sea spectrum; finally, the resulting spectrum is Fourier transformed to return to the space-time domain. A key step of the whole procedure is the generation of the spectral filter. To built the filter the surface currents have to be estimated, if they are not correctly determined the results of the overall inversion are quite poor. This drawback is further increased when the values of the surface current become high or the data are acquired by a moving vessel, since the problem of the determination of the current is quite complicated and particular attention needs the filtering procedure. This work presents an innovative procedure able to estimate the free-surface current values with high accuracy compared to the

  12. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  13. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.

    PubMed

    Vock, David M; Wolfson, Julian; Bandyopadhyay, Sunayan; Adomavicius, Gediminas; Johnson, Paul E; Vazquez-Benitez, Gabriela; O'Connor, Patrick J

    2016-06-01

    Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.

  14. The merging cluster Abell 1758 revisited: multi-wavelength observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Durret, F.; Laganá, T. F.; Haider, M.

    2011-05-01

    Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims: We here discuss the properties of the double cluster Abell 1758 at a redshift z ~ 0.279. These clusters show strong evidence for merging. Methods: We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 × 1.16 deg2, or 16.1 × 17.6 Mpc2. Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results: The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical

  15. The SAMI Pilot Survey: stellar kinematics of galaxies in Abell 85, 168 and 2399

    NASA Astrophysics Data System (ADS)

    Fogarty, L. M. R.; Scott, N.; Owers, M. S.; Croom, S. M.; Bekki, K.; Houghton, R. C. W.; van de Sande, J.; D'Eugenio, F.; Cecil, G. N.; Colless, M. M.; Bland-Hawthorn, J.; Brough, S.; Cortese, L.; Davies, R. L.; Jones, D. H.; Pracy, M.; Allen, J. T.; Bryant, J. J.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Richards, S.; Sharp, R. G.

    2015-12-01

    We present the SAMI Pilot Survey, consisting of integral field spectroscopy of 106 galaxies across three galaxy clusters, Abell 85, Abell 168 and Abell 2399. The galaxies were selected by absolute magnitude to have Mr < -20.25 mag. The survey, using the Sydney-AAO Multi-object Integral field spectrograph (SAMI), comprises observations of galaxies of all morphological types with 75 per cent of the sample being early-type galaxies (ETGs) and 25 per cent being late-type galaxies (LTGs). Stellar velocity and velocity dispersion maps are derived for all 106 galaxies in the sample. The λR parameter, a proxy for the specific stellar angular momentum, is calculated for each galaxy in the sample. We find a trend between λR and galaxy concentration such that LTGs are less concentrated higher angular momentum systems, with the fast-rotating ETGs (FRs) more concentrated and lower in angular momentum. This suggests that some dynamical processes are involved in transforming LTGs to FRs, though a significant overlap between the λR distributions of these classes of galaxies implies that this is just one piece of a more complicated picture. We measure the kinematic misalignment angle, Ψ, for the ETGs in the sample, to probe the intrinsic shapes of the galaxies. We find the majority of FRs (83 per cent) to be aligned, consistent with them being oblate spheroids (i.e. discs). The slow rotating ETGs (SRs), on the other hand, are significantly more likely to show kinematic misalignment (only 38 per cent are aligned). This confirms previous results that SRs are likely to be mildly triaxial systems.

  16. Embedded Spiral Patterns in the Cool Core of the Massive Cluster of Galaxies Abell 1835

    NASA Astrophysics Data System (ADS)

    Ueda, Shutaro; Kitayama, Tetsu; Dotani, Tadayasu

    2017-03-01

    We present the properties of an intracluster medium (ICM) in the cool core of the massive cluster of galaxies, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns with a radius of 70 kpc (or 18″) as a whole in the residual image of the X-ray surface brightness after the two-dimensional ellipse model of surface brightness is subtracted. The size is smaller by a factor of 2–4 than that of other clusters that are known to have a similar pattern. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their X-ray spectra show that the ICM temperatures in the positive- and negative-excess regions are {5.09}-0.13+0.12 keV and {6.52}-0.15+0.18 keV, respectively. In contrast, no significant difference is found in the abundance or pressure, the latter of which suggests that the ICM in the two regions of the spiral patterns is near or is in pressure equilibrium. The spatially resolved X-ray spectroscopy of the central region (r< 40\\prime\\prime ), divided into 92 sub-regions indicates that Abell 1835 is a typical cool core cluster. We also find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. The residual image reveals some lumpy substructures in the cool core. The line of sight component of the disturbance velocity that is responsible for the substructures is estimated to be lower than 600 km s‑1. Abell 1835 may now be experiencing an off-axis minor merger.

  17. Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site

    NASA Astrophysics Data System (ADS)

    Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli

    2014-09-01

    An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.

  18. Temperature and elemental abundances in the Abell cluster A 576 derived from X-ray observations

    NASA Technical Reports Server (NTRS)

    Rothenflug, R.; Vigroux, L.; Mushotzky, R. F.; Holt, S. S.

    1983-01-01

    Results of Einstein solid state spectrometer observations of the central region of Abell 576 combined with HEAO 1 spectra of the total cluster are given. Line emission was detected due to Fe, Si, and S from a hot plasma in the central region. The temperature of the total cluster spectrum may be in conflict with the central temperature. This difference can be explained either if cooling takes place in the center, or if part of the measured emission is due to individual galaxies. If the X-ray emission comes from the intergalactic gas only, there is some difficulty in producing all the silicon observed in the galaxies of A 576.

  19. Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.

    1982-01-01

    X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.

  20. CHAMP climate data based on the inversion of monthly average bending angles

    NASA Astrophysics Data System (ADS)

    Danzer, J.; Gleisner, H.; Healy, S. B.

    2014-12-01

    Global Navigation Satellite System Radio Occultation (GNSS-RO) refractivity climatologies for the stratosphere can be obtained from the Abel inversion of monthly average bending-angle profiles. The averaging of large numbers of profiles suppresses random noise and this, in combination with simple exponential extrapolation above an altitude of 80 km, circumvents the need for a "statistical optimization" step in the processing. Using data from the US-Taiwanese COSMIC mission, which provides ~1500-2000 occultations per day, it has been shown that this average-profile inversion (API) technique provides a robust method for generating stratospheric refractivity climatologies. Prior to the launch of COSMIC in mid-2006, the data records rely on data from the CHAMP (CHAllenging Mini-satellite Payload) mission. In order to exploit the full range of available RO data, the usage of CHAMP data is also required. CHAMP only provided ~200 profiles per day, and the measurements were noisier than COSMIC. As a consequence, the main research question in this study was to see if the average bending-angle approach is also applicable to CHAMP data. Different methods for the suppression of random noise - statistical and through data quality prescreening - were tested. The API retrievals were compared with the more conventional approach of averaging individual refractivity profiles, produced with the implementation of statistical optimization used in the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Radio Occultation Meteorology Satellite Application Facility (ROM SAF) operational processing. In this study it is demonstrated that the API retrieval technique works well for CHAMP data, enabling the generation of long-term stratospheric RO climate data records from August 2001 and onward. The resulting CHAMP refractivity climatologies are found to be practically identical to the standard retrieval at the DMI (Danish Meteorological Institute) below

  1. Multiphase inverse modeling: An Overview

    SciTech Connect

    Finsterle, S.

    1998-03-01

    Inverse modeling is a technique to derive model-related parameters from a variety of observations made on hydrogeologic systems, from small-scale laboratory experiments to field tests to long-term geothermal reservoir responses. If properly chosen, these observations contain information about the system behavior that is relevant to the performance of a geothermal field. Estimating model-related parameters and reducing their uncertainty is an important step in model development, because errors in the parameters constitute a major source of prediction errors. This paper contains an overview of inverse modeling applications using the ITOUGH2 code, demonstrating the possibilities and limitations of a formalized approach to the parameter estimation problem.

  2. Strain Transient Detection Techniques: A Comparison of Source Parameter Inversions of Signals Isolated through Principal Component Analysis (PCA), Non-Linear PCA, and Rotated PCA

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Funning, G. J.

    2009-12-01

    We compare several techniques for the analysis of geodetic time series with the ultimate aim to characterize the physical processes which are represented therein. We compare three methods for the analysis of these data: Principal Component Analysis (PCA), Non-Linear PCA (NLPCA), and Rotated PCA (RPCA). We evaluate each method by its ability to isolate signals which may be any combination of low amplitude (near noise level), temporally transient, unaccompanied by seismic emissions, and small scale with respect to the spatial domain. PCA is a powerful tool for extracting structure from large datasets which is traditionally realized through either the solution of an eigenvalue problem or through iterative methods. PCA is an transformation of the coordinate system of our data such that the new "principal" data axes retain maximal variance and minimal reconstruction error (Pearson, 1901; Hotelling, 1933). RPCA is achieved by an orthogonal transformation of the principal axes determined in PCA. In the analysis of meteorological data sets, RPCA has been seen to overcome domain shape dependencies, correct for sampling errors, and to determine principal axes which more closely represent physical processes (e.g., Richman, 1986). NLPCA generalizes PCA such that principal axes are replaced by principal curves (e.g., Hsieh 2004). We achieve NLPCA through an auto-associative feed-forward neural network (Scholz, 2005). We show the geophysical relevance of these techniques by application of each to a synthetic data set. Results are compared by inverting principal axes to determine deformation source parameters. Temporal variability in source parameters, estimated by each method, are also compared.

  3. Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623

    NASA Astrophysics Data System (ADS)

    Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund

    2017-01-01

    Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.

  4. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  5. MINOR MERGER-INDUCED COLD FRONTS IN ABELL 2142 AND RXJ1720.1+2638

    SciTech Connect

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.

    2011-11-10

    We present evidence for the existence of substructure in the 'relaxed appearing' cold front clusters Abell 2142 and RXJ1720.1+2638. The detection of these substructures was made possible by comprehensive multi-object optical spectroscopy obtained with the Hectospec and DEep Imaging Multi-Object Spectrograph instruments on the 6.5 m MMT and 10 m Keck II telescope, respectively. These observations produced 956 and 400 spectroscopically confirmed cluster members within a projected radius of 3 Mpc from the centers of A2142 and RXJ1720.1+2638, respectively. The substructure manifests itself as local peaks in the spatial distribution of member galaxies and also as regions of localized velocity substructure. For both Abell 2142 and RXJ1720.1+2638, we identify group-scale substructures which, when considering the morphology of the cold fronts and the time since pericentric passage of a perturber estimated from the cold front radii, could plausibly have perturbed the cluster cores and generated the cold fronts observed in Chandra images. The results presented here are consistent with cold fronts being the result of merger activity and with cold fronts in relaxed appearing clusters being due to minor merger activity.

  6. The Evolutionary Status of Early-type Galaxies in Abell 2390

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Ziegler, B. L.; Bower, R. G.; Smail, I.; Davies, R. L.

    We explore the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23. For this purpose, we have obtained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. As our investigation spans both a broad range in luminosity (-22.3<=MB<=-:19.3) and a wide field of view (10'×10'), the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster center. In this paper, we present first results on the Faber-Jackson relation and, for a subsample of 14 galaxies with morphological and structural parameters from HST, we also investigate the evolution of the Kormendy relation and the Fundamental Plane. We find a mild luminosity evolution of the early-type galaxies in Abell 2390: our objects are on average brighter by mB~0.4 mag.

  7. Revisiting Abell 2744: a powerful synergy of GLASS spectroscopy and HFF photometry

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang

    We present new emission line identifications and improve the lensing reconstruction of the mass distribution of galaxy cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) spectroscopy and the Hubble Frontier Fields (HFF) imaging. We performed blind and targeted searches for faint line emitters on all objects, including the arc sample, within the field of view (FoV) of GLASS prime pointings. We report 55 high quality spectroscopic redshifts, 5 of which are for arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric redshift estimates. In order to improve the lens model of Abell 2744, we develop a rigorous algorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 25 systems (corresponding to 72 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the Spitzer Frontier Fields data in order to study the relative distribution of stars and dark matter in the cluster.

  8. Redshift observations of Abell/ACO galaxy clusters in two candidate superclusters

    NASA Astrophysics Data System (ADS)

    Batuski, D. J.; Maurogordato, S.; Balkowski, C.; Olowin, R. P.

    1995-02-01

    The results of spectroscopic observations of five R greater than or equal to 1 clusters of galaxies from the Abell (1958) and Abell et al. (1989) (hereafter ACO) catalogs are presented. The observations were conducted at the ESO 3.6m telescope with the EFOSC spectrograph and PUMA hole-punch aperture plates. Two of the clusters (A2576 and A2628) had been identified as members of one candidate supercluster that appears particularly dense in projection, and the other three clusters (A3802, A3817, and A3834) were in another candidate supercluster, based on redshifts estimated from the magnitudes of tenth brightest galaxies. Our observations confirm very similar redshifts for A2576 and A2628 ( z = 0.1875 and z = 0.1858, respectively) and for A3802 and A3834 (z = 0.1579 and z = 0.1518). From the agreement in redshifts and the proximity on the sky, it is suggestive that both pairs are indeed components of superclusters, although redshifts of other nearby candidates must be measured to determine the significance of the structure present. The fifth cluster, A3817, has a mean redshift of z = 0.2115, and so appears to be background to any possible A3802/A3834 supercluster. We note that the complex of clusters around A2576 and A2628 is a region of high spatial density, even ignoring the many clusters with unmeasured redshift. The region is an exceptional opportunity for large-scale structure study.

  9. Inverse plasma equilibria

    SciTech Connect

    Hicks, H.R.; Dory, R.A.; Holmes, J.A.

    1983-01-01

    We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J/sub 0/(rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model.

  10. Asteroid lightcurve inversion

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.; Connelly, Robert

    1987-01-01

    One of the most fundamental physical properties of any asteroid is its shape. Lightcurves provide the only source of shape information for most asteroids. Unfortunately, the functional form of a lightcurve is determined by the viewing/illumination geometry and the asteroid's light scattering characteristics as well as its shape, and in general it is impossible to determine an asteroid's shape from lightcurves. A technique called convex-profile inversion (CPI) that obtains a convex profile, P, from any lightcurve is introduced. If certain ideal conditions are satisfied, then P is an estimator for the asteroid's mean cross section, C, a convex set defined as the average of all cross sections C(z) cut by planes a distance z above the asteroids's equatorial plane. C is therefore a 2-D average of the asteroid's 3-D shape.

  11. A Modal/WKB Inversion Method for Determining Sound Speed Profiles in the Ocean and Ocean Bottom

    DTIC Science & Technology

    1988-06-01

    0 and z = z0 with harmonic time dependence ezp(-iwt), satisfies the inhomogeneous Helmholtz equation : 1 [ (r) + -2 + k2(z)] p(r,z, zo) = -2 6(z- Zo...P(z) = 0. (5.2) Substituting v(z) = P(z)/V/ i gives the Schr ~ dinger type equation [36] d2 V(z) + (k(z) + pi(z) - k2) v(z) = 0 (5.3) where ) p/ 2(z...input data used in generating a profile dependent functional relationship for the phase integral. The Abel integral equation based inversion relations

  12. Locative Inversion in Cantonese.

    ERIC Educational Resources Information Center

    Mok, Sui-Sang

    This study investigates the phenomenon of "Locative Inversion" in Cantonese. The term "Locative Inversion" indicates that the locative phrase (LP) syntactic process in Cantonese and the appears at the sentence-initial position and its logical subject occurs postverbally. It is demonstrated that this Locative Inversion is a…

  13. A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68

    NASA Astrophysics Data System (ADS)

    Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève

    2007-06-01

    We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope

  14. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  15. An efficient and fast parallel method for Volterra integral equations of Abel type

    NASA Astrophysics Data System (ADS)

    Capobianco, Giovanni; Conte, Dajana

    2006-05-01

    In this paper we present an efficient and fast parallel waveform relaxation method for Volterra integral equations of Abel type, obtained by reformulating a nonstationary waveform relaxation method for systems of equations with linear coefficient constant kernel. To this aim we consider the Laplace transform of the equation and here we apply the recurrence relation given by the Chebyshev polynomial acceleration for algebraic linear systems. Back in the time domain, we obtain a three term recursion which requires, at each iteration, the evaluation of convolution integrals, where only the Laplace transform of the kernel is known. For this calculation we can use a fast convolution algorithm. Numerical experiments have been done also on problems where it is not possible to use the original nonstationary method, obtaining good results in terms of improvement of the rate of convergence with respect the stationary method.

  16. X-ray constraints on the shape of the dark matter in five Abell clusters

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1992-01-01

    X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.

  17. Television documentary, history and memory. An analysis of Sergio Zavoli's The Gardens of Abel

    PubMed Central

    Foot, John

    2014-01-01

    This article examines a celebrated documentary made for Italian state TV in 1968 and transmitted in 1969 to an audience of millions. The programme – The Gardens of Abel – looked at changes introduced by the radical psychiatrist Franco Basaglia in an asylum in the north-east of Italy (Gorizia). The article examines the content of this programme for the first time, questions some of the claims that have been made for it, and outlines the sources used by the director, Sergio Zavoli. The article argues that the film was as much an expression of Zavoli's vision and ideas as it was linked to those of Franco Basaglia himself. Finally, the article highlights the way that this programme has become part of historical discourse and popular memory. PMID:25937804

  18. Television documentary, history and memory. An analysis of Sergio Zavoli's The Gardens of Abel.

    PubMed

    Foot, John

    2014-10-20

    This article examines a celebrated documentary made for Italian state TV in 1968 and transmitted in 1969 to an audience of millions. The programme - The Gardens of Abel - looked at changes introduced by the radical psychiatrist Franco Basaglia in an asylum in the north-east of Italy (Gorizia). The article examines the content of this programme for the first time, questions some of the claims that have been made for it, and outlines the sources used by the director, Sergio Zavoli. The article argues that the film was as much an expression of Zavoli's vision and ideas as it was linked to those of Franco Basaglia himself. Finally, the article highlights the way that this programme has become part of historical discourse and popular memory.

  19. Early-type Galaxies in the Cluster Abell 2390 at z = 0.23

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Ziegler, B. L.; Bower, R. G.; Smail, I.; Davies, R. L.

    To examine the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z = 0.23 we have gained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. This investigation spans both a broad range in luminosity (-19.3 >˜MB >˜-22.3) and uses a wide field of view of 10'× 10', therefore the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre. Here we present results on the surface brightness modelling of galaxies where morphological and structural information is available in the F814W filter aboard the Hubble Space Telescope (HST) and investigate for this subsample the evolution of the Fundamental Plane.

  20. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    PubMed

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect.

  1. The Herschel Lensing Survey (HLS): A Bright Lensed Submillimeter Galaxy in the Field of Abell 773

    NASA Astrophysics Data System (ADS)

    Rawle, Tim; Egami, E.; Rex, M.; Combes, F.; Boone, F.; Smail, I.; Lensing Survey, Herschel

    2012-05-01

    The Herschel Lensing Survey (HLS; PI: Egami) is observing more than 50 massive galaxy clusters with deep PACS and SPIRE (100-500um) imaging, and a further 500 clusters in a SPIRE snapshot program ( 20 deg^2 of far-infrared cluster observations in total). Here, we present a discussion of an exceptionally bright ( 200mJy at 500um) source behind the cluster Abell 773, which is a strongly lensed submillimeter galaxy (SMG) at z=5.2. The source has an intrinsic infrared luminosity L_FIR 1e13 L_sun, with a total magnification factor of 11. We combine Herschel-SMA-IRAM observations of the dust continuum and gas excitation line emission, including multiple CO transitions, [CII] and [NII] (detected for the first time at high-z), to explore the morphology, star formation and ISM in this SMG.

  2. Narrow-angle tail radio sources and evidence for radial orbits in Abell clusters

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Owen, Frazer N.; Sarazin, Craig L.

    1986-01-01

    Published observational data on the tail orientations (TOs) of 60 narrow-angle-tail (NAT) radio sources in Abell clusters of galaxies are analyzed statistically using a maximum-likelihood approach. The results are presented in a table, and it is found that the observed TO distributions in the whole sample and in subsamples of morphologically regular NATs and NATs with pericentric distances d greater than 500 kpc are consistent with isotropic orbits, whereas the TOs for NATs with d less than 500 kpc are consistent with highly radial orbits. If radial orbits were observed near the centers of other types of cluster galaxies as well, it could be inferred that violent relaxation during cluster formation was incomplete, and that clusters form by spherical collapse and secondary infall, as proposed by Gunn (1977).

  3. Shocks, Ripples, and Bubbles: A Very Deep Observation of Abell 2052

    NASA Astrophysics Data System (ADS)

    Blanton, Elizabeth

    2008-09-01

    The cooling flow cluster A2052 has, arguably, the morphology most similar to the Perseus cluster as seen with Chandra. Two clear bubbles to the N and S of the center of A2052 are filled with the radio lobes associated with 3C 317. Surface brightness discontinuities consistent with shocks with Mach numbers of 1.8 and 1.2 are seen near the cluster center. These may be isothermal shocks. We propose to observe Abell 2052 much more deeply to study these shock features, ripple features due to sound waves that may be found at larger radii, possible ghost bubbles, cooling gas in the bright shells around the radio source that may link the X-ray and H-alpha emission, and possible hot gas within the X-ray holes. We will directly compare the star formation and cooling rates in the cluster center.

  4. Beneficial Effects of Camellia Oil (Camellia oleifera Abel.) on Hepatoprotective and Gastroprotective Activities.

    PubMed

    Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin

    2015-01-01

    Epidemiological studies have shown that increased dietary intake of natural antioxidants is beneficial for health because of their bioactivities, including antioxidant and anti-inflammation actions. Camellia oil made from tea seed (Camellia oleifera Abel.) is commonly used as an edible oil and a traditional medicine in Taiwan and China. Until now, the camellia oil has been widely considered as a dietary oil for heath. In this review, we summarize the protective effects of camellia oil with antioxidant activity against oxidative stress leading to hepatic damage and gastrointestinal ulcers. The information in this review leads to the conclusion that camellia oil is not only an edible oil but also a vegetable oil with a potential function for human health.

  5. ASCA detection of iron line emission from the distant galaxy cluster Abell 370

    NASA Technical Reports Server (NTRS)

    Bautz, Marshall W.; Mushotzky, Richard; Fabian, Andrew C.; Yamashita, Koujun; Gendreau, Keith C.; Arnaud, Keith A.; Crew, Geoffrey B.; Tawara, Yuzuru

    1994-01-01

    ASCA observations of the gravitational lens and Butcher-Oemler cluster Abell 370 (z = 0.37) give kT = 8.8 +/- 0.8 keV and A = 0.5 +/- 0.1 cosmic. If the gas were isothermal the implied cluster mass would be M(sub vir) = (1.5 +/- 0.4) x 10(exp 15) solar masses, a value consistent with the optically-determined virial mass. We detect iron K line emission with high confidence. This measurement increases, by a large factor, the lookback time at which the presence of iron in the intracluster medium has been established. The iron abundance is marginally higher than that of low-redshift clusters of similar temperature, so our results are consistent with models in which all enrichment occurs before the epoch corresponding to z = 0.37.

  6. Astrometry With the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, ABELL 31, and DeHt 5

    DTIC Science & Technology

    2009-12-01

    reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi

  7. The Distance and Mass of the Galaxy Cluster Abell 1995 Derived From Sunyaev-Zel'dovich Effect and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.

    2000-01-01

    We present multi-wavelength observations of the Abell 1995 galaxy cluster. From analysis of x-ray spectroscopy and imaging data we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the SZE toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster.

  8. On the merging cluster Abell 578 and its central radio galaxy 4C+67.13

    DOE PAGES

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; ...

    2015-05-26

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ~10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff–Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratiomore » $$\\sim {{10}^{-4}}$$ (for the estimated black hole masses of $$\\sim 3\\times {{10}^{8}}\\;{{M}_{\\odot }}$$ and $$\\sim {{10}^{9}}\\;{{M}_{\\odot }}$$). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (~60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ~1.4) and heated (from $$\\simeq 2.0$$ keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ~1.3) driven by the expanding jet cocoon. As a result, this would then require the jet kinetic power of the order of $$\\sim {{10}^{45}}$$ erg s–1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.« less

  9. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  10. Galaxy Luminosity Function of the Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    NASA Astrophysics Data System (ADS)

    Lee, Youngdae; Rey, Soo-Chang; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K.

    2016-05-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to {M}r˜ -14 mag based on deep images in the u, g, and r bands taken by using MOSAIC II CCD mounted on the Blanco 4 m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information and on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at r˜ 18.5 mag ({M}r˜ -17.8 mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the clustercentric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely associated with the surrounding, possible filamentary structure. The combined LF of the overdense regions exhibits a two-component function with a distinct dip, while the LF of the central region is well described by a single Schechter function. We suggest that, in the context of the hierarchical cluster formation scenario, the observed overdense regions are the relics of galaxy groups, retaining their two-component LFs with a dip, which acquired their shapes through a galaxy merging process in group environments, before they fall into a cluster.

  11. A Multiply-Imaged z ˜ 6.3 Lyman Alpha Emitter candidate behind Abell 2261

    NASA Astrophysics Data System (ADS)

    Rydberg, Claes-Erik; Zitrin, Adi; Zackrisson, Erik; Melinder, Jens; Whalen, Daniel J.; Klessen, Ralf S.; Gonzalez, Juan; Östlin, Göran; Carollo, Daniela

    2017-01-01

    While the Lyman-α (Lyα) emission line serves as an important tool in the study of galaxies at z ≲ 6, finding Lyα emitters (LAE) at significantly higher redshifts has been more challenging, probably because of the increasing neutrality of the intergalactic medium above z ˜ 6. Galaxies with extremely high rest-frame Lyα equivalent widths, EW(Lyα) ≳ 150 Å, at z > 6 are good candidates for Lyα follow-up observations, and can stand out in multiband imaging surveys because of their unusual colors. We have conducted a photometric search for such objects in the Cluster Lensing And Supernova survey with Hubble (CLASH), and report here the identification of three likely gravitationally-lensed images of a single LAE candidate at z ˜ 6.3, behind the galaxy cluster Abell 2261 (z = 0.225). In the process, we also measured with Keck/MOSFIRE the first spectroscopic redshift of a multiply-imaged galaxy behind Abell 2261, at z = 3.337. This allows us to calibrate the lensing model, which in turn is used to study the properties of the candidate LAE. Population III galaxy spectral energy distribution (SED) model fits to the CLASH broadband photometry of the possible LAE provide a slightly better fit than Population I/II models. The best fitted model suggests intrinsic EW(Lyα) ≈160 Å after absorption in the interstellar and intergalactic medium. Future spectroscopic observations will examine this prediction as well as shed more light on the morphology of this object, which indicates it may be a merger of two smaller galaxies.

  12. Deep spectroscopy of nearby galaxy clusters - I. Spectroscopic luminosity function of Abell 85

    NASA Astrophysics Data System (ADS)

    Agulli, I.; Aguerri, J. A. L.; Sánchez-Janssen, R.; Dalla Vecchia, C.; Diaferio, A.; Barrena, R.; Dominguez Palmero, L.; Yu, H.

    2016-05-01

    We present a new deep spectroscopic catalogue for Abell 85, within 3.0 × 2.6 Mpc2 and down to Mr ˜ Mr^{ast } +6. Using the Visible Multi-Object Spectrograph at the Very Large Telescope and the AutoFiber 2 at the William Herschel Telescope, we obtained almost 1430 new redshifts for galaxies with mr ≤ 21 mag and <μe,r> ≤ 24 mag arcsec-2. These redshifts, together with Sloan Digital Sky Survey Data Release 6 and NASA/IPAC Extragaalctic Database spectroscopic information, result in 460 confirmed cluster members. This data set allows the study of the luminosity function (LF) of the cluster galaxies covering three orders of magnitudes in luminosities. The total and radial LFs are best modelled by a double Schechter function. The normalized LFs show that their bright (Mr ≤ -21.5) and faint (Mr ≥ -18.0) ends are independent of clustercentric distance and similar to the field LFs unlike the intermediate luminosity range (-21.5 ≤ Mr ≤ -18.0). Similar results are found for the LFs of the dominant types of galaxies: red, passive, virialized and early-infall members. On the contrary, the LFs of blue, star forming, non-virialized and recent-infall galaxies are well described by a single Schechter function. These populations contribute to a small fraction of the galaxy density in the innermost cluster region. However, in the outskirts of the cluster, they have similar densities to red, passive, virialized and early-infall members at the LF faint end. These results confirm a clear dependence of the colour and star formation of Abell 85 members in the cluster centric distance.

  13. A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Luckin, J.; Brüggen, M.; Brunetti, G.; Intema, H. T.; Owers, M. S.; Röttgering, H. J. A.; Stroe, A.; van Weeren, R. J.; Williams, W. L.; Cassano, R.; de Gasperin, F.; Heald, G. H.; Hoang, D. N.; Hardcastle, M. J.; Sridhar, S. S.; Sabater, J.; Best, P. N.; Bonafede, A.; Chyży, K. T.; Enßlin, T. A.; Ferrari, C.; Haverkorn, M.; Hoeft, M.; Horellou, C.; McKean, J. P.; Morabito, L. K.; Orrù, E.; Pizzo, R.; Retana-Montenegro, E.; White, G. J.

    2016-06-01

    With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intracluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5 Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.

  14. On the merging cluster Abell 578 and its central radio galaxy 4C+67.13

    SciTech Connect

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-05-26

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ~10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff–Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio $\\sim {{10}^{-4}}$ (for the estimated black hole masses of $\\sim 3\\times {{10}^{8}}\\;{{M}_{\\odot }}$ and $\\sim {{10}^{9}}\\;{{M}_{\\odot }}$). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (~60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ~1.4) and heated (from $\\simeq 2.0$ keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ~1.3) driven by the expanding jet cocoon. As a result, this would then require the jet kinetic power of the order of $\\sim {{10}^{45}}$ erg s–1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.

  15. Revisiting Abell 2744: a powerful synergy of the GLASS spectroscopy and the HFF photometry.

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Borello Schmidt, Kasper; Treu, Tommaso

    2015-08-01

    We present new emission line identifications and improve the strong lensing reconstruction of the massive cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) observations and the full depth of the Hubble Frontier Fields (HFF) imaging. We performed a blind and targeted search for emission lines in objects within the full field of view (FoV) of the GLASS prime pointings, including all the previously known multiple arc images. We report over 50 high quality spectroscopic redshifts, 4 of which are for the arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric results of the same ensemble of sources. In order to improve the lens model of Abell 2744, we develop a rigorous alogorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 21 systems (corresponding to 59 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data in a fashion very similar to the reduction of the Spitzer UltRa Faint SUrvey Program (SURFS UP) clusters, in order to study the relative distribution of stars and dark matter in the cluster. The maps of convergence, shear, and magnification are made publicly available in the standard HFF format.

  16. Search for a non-equilibrium plasma in the merging galaxy cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2016-06-01

    Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly α/Fe He α line ratio to search for possible deviation from ionization equilibrium. Fitting with a single-temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (net > 1013 s cm-3) except for the specific region with the highest temperature (kT=13.3_{-1.1}^{+1.4}keV) where n_et=10^{11.6_{-1.7}^{+0.6}}s cm-3. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This timescale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. However, we note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5}keV and very high kT >19.3 keV. The very high temperature component is alternatively fitted with a power-law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of the non-equilibrium ionization plasma.

  17. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  18. Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.

    ERIC Educational Resources Information Center

    Bohn, C. L.; Flynn, R. W.

    1978-01-01

    Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)

  19. INVERSE STABLE SUBORDINATORS

    PubMed Central

    MEERSCHAERT, MARK M.; STRAKA, PETER

    2013-01-01

    The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216

  20. AVO migration and inversion: Are they commutable?

    SciTech Connect

    Beydoun, W.B.; Jin, S.; Hanitzsch, C.

    1994-12-31

    With the increasing ambition of characterizing hydrocarbon traps in more subtle or complex reservoirs, Amplitude Variation with Offset (AVO) techniques are becoming a valuable seismic tool for quantitative seismic discrimination of lithologies and fluids. One of the biggest remaining challenges is to acquire and process the data in an amplitude preserved fashion and in multi-dimensional geology. This study is a component of this puzzle, and attempts to address the following processing question: what are the benefits of prestack migration before AVO inversion (process 1) versus performing an AVO inversion followed by a poststack migration (process 2)? The comparison is done on a 2-D synthetic model which is valid for process 2. The technique used for process 1 is the prestack depth AVO migration/inversion described in the text which estimates reflectivities and incidence angles in multi-dimensions from the data prior to AVO inversion. Process 2 results are derived using a commercial seismic processing software package.

  1. Prestack seismic inversion and reservoir property prediction

    NASA Astrophysics Data System (ADS)

    Chi, Xingang

    In this dissertation, I have applied the method of prestack seismic inversion with uncertainty analysis. Also, I have developed the methods of the rock physics template analysis, the fluid modulus inversion and the reservoir property inversion from AVO attributes with and without constraint to improve the technique of reservoir characterization. I use the prestack seismic inversion to invert the elastic properties and use the statistical method to derive the posterior probability of the inverted elastic properties for the uncertainty analysis. I use the rock physics template drawn in the cross-plot of the inverted elastic properties to analyze the lithology and fluid property in the target reservoir. I develop the fluid modulus inversion method based on the simplified Gassmann's equation and the empirical rock physics relationship. Using the inverted fluid modulus, I estimate the gas saturation of the target reservoir before drilling. The reservoir property inversion is to predict the porosity, shale volume and water saturation of the reservoir from AVO attributes to enhance the reservoir interpretation and characterization. I apply this method with the statistical analysis together to execute the uncertainty analysis for the inversion results. Two methods of reservoir property inversion from AVO attributes are attempted in this dissertation: one is performed without constraint and the other is performed with the constrained relationship of the porosity and shale volume.

  2. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    SciTech Connect

    Fowler, Michael James

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  3. Anti-Brownian ELectrokinetic (ABEL) trapping of single β2-adrenergic receptors in the absence and presence of agonist

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Fuerstenberg, Alexandre; Yao, Xiao Jie; Kobilka, Brian K.; Moerner, W. E.

    2012-02-01

    The ABEL trap allows trapping of single biomolecules in solution for extended observation without immobilization. The essential idea combines fluorescence-based position estimation with fast electrokinetic feedback in a microfluidic geometry to counter the Brownian motion of a single nanoscale object, hence maintaining its position in the field of view for hundreds of milliseconds to seconds. Such prolonged observation of single proteins allows access to slow dynamics, as probed by any available photophysical observables. We have used the ABEL trap to study conformational dynamics of the β2-adrenergic receptor, a key G-protein coupled receptor and drug target, in the absence and presence of agonist. A single environment-sensitive dye reports on the receptor microenvironment, providing a real-time readout of conformational change for each trapped receptor. The focus of this paper will be a quantitative comparison of the ligandfree and agonist-bound receptor data from our ABEL trap experiments. We observe a small but clearly detectable shift in conformational equilibria and a lengthening of fluctuation timescales upon binding of agonist. In order to quantify the shift in state distributions and timescales, we apply nonparametric statistical tests to place error bounds on the resulting single-molecule distributions.

  4. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  5. Teaching about Inverse Functions

    ERIC Educational Resources Information Center

    Esty, Warren

    2005-01-01

    In their sections on inverses most precalculus texts emphasize an algorithm for finding f [superscript -1] given f. However, inspection of precalculus and calculus texts shows that students will never again use the algorithm, which suggests the textbook emphasis may be misplaced. Inverses appear primarily when equations need to be solved, which…

  6. Dewpoint temperature inversions analyzed

    NASA Technical Reports Server (NTRS)

    Ashby, W. C.; Bogner, M. A.; Moses, H.

    1969-01-01

    Dewpoint temperature inversion, with regard to other simultaneous meteorological conditions, was examined to establish the influence of meteorological variables on the variation of dewpoint temperature with height. This report covers instrumentation and available data, all the climatological features of dewpoint inversions, and specific special cases.

  7. Solutions of inverse problems for biodegradation of xenobiotic polymers

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaji; Kawai, Fusako

    2016-02-01

    Mathematical techniques are applied to a microbial depolymerization process. A mathematical model for the transition of the weight distribution and the microbial population is described. Inverse problems for a molecular factor and a time factor of a degradation rate are derived. Numerical techniques to solve the inverse problems are illustrated, and numerical results are presented.

  8. Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.

    ERIC Educational Resources Information Center

    Jacquot, Raymond G.; And Others

    1985-01-01

    Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)

  9. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    SciTech Connect

    Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  10. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    NASA Astrophysics Data System (ADS)

    Ha, Taeyoung; Shin, Changsoo

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nédélec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  11. Structure of Abell 1995 from optical and X-ray data: a galaxy cluster with an elongated radio halo

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Girardi, M.; Barrena, R.

    2012-11-01

    Context. Abell 1995 is a puzzling galaxy cluster hosting a powerful radio halo, but it has not yet been recognized as a obvious cluster merger, as usually expected for clusters with diffuse radio emission. Aims: We aim at an exhaustive analysis of the internal structure of Abell 1995 to verify that this cluster is really dynamically relaxed, as reported in previous studies. Methods: We base our analysis on new and archival spectroscopic and photometric data for 126 galaxies in the field of Abell 1995. The study of the hot intracluster medium was performed on X-ray archival data. Results: Based on 87 fiducial cluster members, we have computed the average cluster redshift ⟨z⟩ = 0.322 and the global radial velocity dispersion σV ~ 1300 km s-1. We detect two main optical subclusters separated by 1.5'that cause the known NE-SW elongation of the galaxy distribution and a significant velocity gradient in the same direction. As for the X-ray analysis, we confirm that the intracluster medium is mildly elongated, but we also detect three X-ray peaks. Two X-ray peaks are offset with respect to the two galaxy peaks and lie between them, thus suggesting a bimodal merger caught in a phase of post core-core passage. The third X-ray peak lies between the NE galaxy peak and a third, minor galaxy peak suggesting a more complex merger. The difficulty of separating the two main systems leads to a large uncertainty on the line-of-sight (LOS) velocity separation and the system mass: ΔVrf,LOS = 600-2000 km s-1and Msys = 2-5×1015 h70-1 M⊙, respectively. Simple analytical arguments suggest a merging scenario for Abell 1995, where two main subsystems are seen just after the collision with an intermediate projection angle. Conclusions: The high mass of Abell 1995 and the evidence of merging suggest it is not atypical among clusters with known radio halos. Interestingly, our findings reinforce the previous evidence for the peculiar dichotomy between the dark matter and galaxy

  12. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  13. SPECTRAL INDEX STUDIES OF THE DIFFUSE RADIO EMISSION IN ABELL 2256: IMPLICATIONS FOR MERGER ACTIVITY

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.i

    2010-08-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a {approx}1.2 Mpc{sup 2} extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S {proportional_to} {nu}{sup {alpha}}, {alpha} in the range -0.7 to -0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices ({alpha} in the range -1.0 to -2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08-0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last {approx}0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

  14. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  15. Suzaku observations of the merging galaxy cluster Abell 2255: The northeast radio relic

    NASA Astrophysics Data System (ADS)

    Akamatsu, H.; Mizuno, M.; Ota, N.; Zhang, Y.-Y.; van Weeren, R. J.; Kawahara, H.; Fukazawa, Y.; Kaastra, J. S.; Kawaharada, M.; Nakazawa, K.; Ohashi, T.; Röttgering, H. J. A.; Takizawa, M.; Vink, J.; Zandanel, F.

    2017-04-01

    We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell 2255. The temperature structure of Abell 2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous work. Additionally, on a larger-scale, we confirm that the temperature drops from 6 keV around the cluster center to 3 keV at the outskirts, with two discontinuities at r 5' (450 kpc) and 12' (1100 kpc) from the cluster center. Their locations coincide with surface brightness discontinuities marginally detected in the XMM-Newton image, which indicates the presence of shock structures. From the temperature drop, we estimate the Mach numbers to be ℳinner 1.2 and, ℳouter 1.4. The first structure is most likely related to the large cluster core region ( 350-430 kpc), and its Mach number is consistent with the XMM-Newton observation (ℳ 1.24: Sakelliou & Ponman 2006, MNRAS, 367, 1409). Our detection of the second temperature jump, based on the Suzaku key project observation, shows the presence of a shock structure across the NE radio relic. This indicates a connection between the shock structure and the relativistic electrons that generate radio emission. Across the NE radio relic, however, we find a significantly lower temperature ratio (T1/T2 1.44 ± 0.16 corresponds to ℳX-ray 1.4) than the value expected from radio wavelengths, based on the standard diffusive shock acceleration mechanism (T1/T2> 3.2 or ℳRadio> 2.8). This may suggest that under some conditions, in particular the NE relic of A2255 case, the simple diffusive shock acceleration mechanism is unlikely to be valid, and therefore, more a sophisticated mechanism is required.

  16. Magnetotelluric inversion based on mutual information

    NASA Astrophysics Data System (ADS)

    Mandolesi, Eric; Jones, Alan G.

    2014-10-01

    Joint inversion of different geophysical data sets is becoming a more popular and powerful tool, and it has been performed on data sensitive both to the same physical parameter and to different physical parameters. Joint inversion is undertaken to reduce acceptable model space and to increase sensitivity to model parameters that one method alone is unable to resolve adequately. We examine and implement a novel hybrid joint inversion approach. In our inversion scheme a model-the reference model-is fixed, and the information shared with the subsurface structure obtained from another method will be maximized; in our case conductivity structures from magnetotelluric (MT) inversion. During inversion, the joint probability distribution of the MT and the specified reference model is estimated and its entropy minimized in order to guide the inversion result towards a solution that is statistically compatible with the reference model. The powerful feature of this technique is that no explicit relationships between estimated model parameters and reference model ones are presumed: if a link exists in data then it is highlighted in the estimation of the joint probability distribution, if no link is required, then none is enforced. Tests performed verify the robustness of this method and the advantages of it in a 1-D anisotropic scenario are demonstrated. A case study was performed with data from Central Germany, effectively fitting an MT data set from a single station within as minimal an amount of anisotropy as required.

  17. X-Ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Tamura, T.; Kaastra, J. S.; Peterson, J. R.; Paerels, F.; Mittaz, J. P. D.; Trudolyubov, S. P.; Stewart, G.; Fabian, A. C.; Mushotzky, R. F.; Lumb, D. H.

    2000-01-01

    The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of - 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of approx. 4 keV. The volume emission measure of any cool component (less than 1 keV) is less than a few % of the hot component at the cluster center. A strong O VIII Lyman alpha line was detected with the RGS from the cluster core. The O abundance of the ICM is 0.2-0.5 times the solar value. The O to Fe ratio at the cluster center is 0.5 - 1.5 times the solar ratio.

  18. Separating galaxies from the cluster dark matter halo in Abell 611

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Geller, M. J.; Zitrin, A.; Mercurio, A.; Suyu, S. H.; Postman, M.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2017-03-01

    We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of ∼1.5, or, equivalently, we would underestimate the mass of the cluster dark halo by ∼5 per cent. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the five galaxies close to the arc by a factor up to ∼10. The resulting parameters are in good agreement with the σ-rtr scaling relation derived in the pointlike analysis. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1σ confidence level with the spectroscopic measurements. In contrast, the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.

  19. Uniform Contribution of Supernova Explosions to the Chemical Enrichment of Abell 3112 out to R 200

    NASA Astrophysics Data System (ADS)

    Ezer, Cemile; Bulbul, Esra; Nihal Ercan, E.; Smith, Randall K.; Bautz, Mark W.; Loewenstein, Mike; McDonald, Mike; Miller, Eric D.

    2017-02-01

    The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster’s nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (∼1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster’s virial radius. The observed fraction of type Ia supernova explosions is in agreement with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.

  20. Star formation quenching and stellar mass in the cluster Abell 85

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Habas, Rebecca; Marleau, Francine; Biviano, Andrea; Durret, Florence

    2017-01-01

    We report the discovery of a group of galaxies falling into the cluster Abell 85 showing a decrease in star formation limited to its dwarf galaxy population. We covered the cluster and its surroundings with a multi-wavelength survey from the UV to the far-IR using ground and space telescopes (including GALEX, Spitzer, and Herschel) and followed-up these observations with spectroscopic surveys with the WIYN/Hydra and VLT/VIMOS instruments. We were able to obtain spectra for 522 members down to r'=20, 30% of them showing H-alpha emission. We estimated the variation in star formation rate by using two different estimators based on continuum (UV) and line (H-alpha) emission. While massive infalling galaxies continue to produce stars during the infall, the star formation in dwarf galaxies appear to be quenched by the cluster environment. Considering the different time-scales of the two estimators, we can estimate that the quenching happens in a period of approximately 10 Myr.

  1. Systematic Uncertainties in Characterizing Cluster Outskirts: The Case of Abell 133

    NASA Astrophysics Data System (ADS)

    Paine, Jennie; Ogrean, Georgiana A.; Nulsen, Paul; Farrah, Duncan

    2016-01-01

    The outskirts of galaxy clusters have low surface brightness compared to the X-ray background, making accurate background subtraction particularly important for analyzing cluster spectra out to and beyond the virial radius. We analyze the thermodynamic properties of the intracluster medium (ICM) of Abell 133 and assess the extent to which uncertainties on background subtraction affect measured quantities. We implement two methods of analyzing the ICM spectra: one in which the blank-sky background is subtracted, and another in which the sky background is modeled. We find that the two methods are consistent within the 90% confidence ranges. We were able to measure the thermodynamic properties of the cluster up to R500. Even at R500, the systematic uncertainties associated with the sky background in the direction of A133 are small, despite the ICM signal constituting only ~25% of the total signal. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. GAO acknowledges support by NASA through a Hubble Fellowship grant HST-HF2-51345.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  2. The SAMI Galaxy Survey: Galaxy Interactions and Kinematic Anomalies in Abell 119

    NASA Astrophysics Data System (ADS)

    Oh, Sree; Yi, Sukyoung K.; Cortese, Luca; van de Sande, Jesse; Mahajan, Smriti; Jeong, Hyunjin; Sheen, Yun-Kyeong; Allen, James T.; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Croom, Scott M.; Fogarty, L. M. R.; Goodwin, Michael; Green, Andy; Konstantopoulos, Iraklis S.; Lawrence, Jon; López-Sánchez, Á. R.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel; Scott, Nicholas; Sharp, Rob; Sweet, Sarah M.

    2016-11-01

    Galaxy mergers are important events that can determine the fate of a galaxy by changing its morphology, star formation activity and mass growth. Merger systems have commonly been identified from their disturbed morphologies, and we now can employ integral field spectroscopy to detect and analyze the impact of mergers on stellar kinematics as well. We visually classified galaxy morphology using deep images ({μ }{{r}}=28 {mag} {{arcsec}}-2) taken by the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory. In this paper we investigate 63 bright ({M}{{r}}\\lt -19.3) spectroscopically selected galaxies in Abell 119, of which 53 are early type and 20 show a disturbed morphology by visual inspection. A misalignment between the major axes in the photometric image and the kinematic map is conspicuous in morphologically disturbed galaxies. Our sample is dominated by early-type galaxies, yet it shows a surprisingly tight Tully-Fisher relation except for the morphologically disturbed galaxies which show large deviations. Three out of the eight slow rotators in our sample are morphologically disturbed. The morphologically disturbed galaxies are generally more asymmetric, visually as well as kinematically. Our findings suggest that galaxy interactions, including mergers and perhaps fly-bys, play an important role in determining the orientation and magnitude of a galaxy’s angular momentum.

  3. The Velocity Dispersion Function of Very Massive Galaxy Clusters: Abell 2029 and Coma

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Geller, Margaret J.; Zahid, H. Jabran; Fabricant, Daniel G.; Diaferio, Antonaldo; Rines, Kenneth J.

    2017-04-01

    Based on an extensive redshift survey for galaxy clusters Abell 2029 and Coma, we measure the luminosity functions (LFs) and stellar mass functions (SMFs) for the entire cluster member galaxies. Most importantly, we measure the velocity dispersion functions (VDFs) for quiescent members. The MMT/Hectospec redshift survey for galaxies in A2029 identifies 982 spectroscopic members; for 838 members, we derive the central velocity dispersion from the spectroscopy. Coma is the only other cluster surveyed as densely. The LFs, SMFs, and VDFs for A2029 and Coma are essentially identical. The SMFs of the clusters are consistent with simulations. The A2029 and Coma VDFs for quiescent galaxies have a significantly steeper slope than those of field galaxies for velocity dispersion ≲ 100 {km} {{{s}}}-1. The cluster VDFs also exceed the field at velocity dispersion ≳ 250 {km} {{{s}}}-1. The differences between cluster and field VDFs are potentially important tests of simulations and of the formation of structure in the universe.

  4. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  5. Canibalismo Extremo y Lente Gravitacional Intensa en el Cúmulo de Galaxias Abell 3827

    NASA Astrophysics Data System (ADS)

    Díaz, R. J.; West, M.; Bergmann, M.; Carrasco, E. R.; Gomez, P.; Lee, H.; Miller, B.; Turner, J.

    Abell 3827 is one of the most massive known clusters and at its center we observe an extreme example of galactic canibalism: a super giant elliptical galaxy in its formation process, devoring five massive galaxies at the same time. Using high spatial resolution Gemini+GMOS imagery and multi-object spectroscopy, we derived the redshift (z=0.099) and the radial velocity dispersion of the 55 brightest galaxies in the cluster central region (1134 +- 125 km/s). The estimated virial mass is ~ 1E14 M(sun) inside a radius of 300 kpc of the cluster center. We have also found features corresponding to a strong gravitational lense, four anular features arranged in an Einstein Ring from a galaxy (z=0.2) at double redshift than the cluster, and a fifth arclet feature corresponding to the lensed light of a farther galaxy (z=0.4). The possible Einstein Ring is of small angular size and the gravitational lense morphology would confirm that the cluster is indeed very massive and dense. FULL TEXT IN SPANISH.

  6. A Cosmic Train Wreck: JVLA Radio Observations of the HST Frontier Fields Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Pearce, Connor; Van Weeren, Reinout J.; Jones, Christine; Forman, William R.; Ogrean, Georgiana A.; Andrade-Santos, Felipe; Kraft, Ralph P.; Dawson, William; Brüggen, Marcus; Roediger, Elke; Bulbul, Esra; Mroczkowski, Tony

    2016-01-01

    The galaxy cluster mergers observed in the HST Frontier Fields represent some of the most energetic events in the Universe. Major cluster mergers leave distinct signatures in the ICM in the form of shocks, turbulence, and diffuse cluster radio sources. These diffuse radio sources, so-called radio relics and halos, provide evidence for the acceleration of relativistic particles and the presence of large scale magnetic fields in the ICM. Observations of these halos and relics allow us to (i) study the physics of particle acceleration and its relation with shocks and turbulence in the ICM and (ii) constrain the dynamical evolution of the merger eventsWe present Jansky Very Large Array 1-4 GHz observations of the Frontier cluster Abell 2744. We confirm the presence of the known giant radio halo and radio relic via our deep radio images. Owing to the much greater sensitivity of the JVLA compared to previous observations, we are able to detect a previously unobserved long Mpc-size filament of synchrotron emission to the south west of the cluster core. We also present a radio spectral index image of the diffuse cluster emission to test the origin of the radio relic and halo, related to the underlying particle acceleration mechanism. Finally, we carry out a search for radio emission from the 'jellyfish' galaxies in A2744 to estimate their star formation rate. These highly disturbed galaxies are likely influenced by the cluster merger event, although the precise origin of these galaxies is still being debated.

  7. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  8. Robust dynamic inversion control laws for aircraft control

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.; Garrard, William L.; Reiner, Jakob

    1992-01-01

    Dynamic inversion is a technique for control law design in which feedback is used to simultaneously cancel system dynamics and achieve desired dynamic response characteristics. However, dynamic inversion control laws lack robustness to modeling errors if improperly designed. This paper examines a simple linear example, control of roll rate about the body axis of high performance aircraft, to illustrate some robustness problems which may occur with a simple dynamic inversion control law. The paper demonstrates how structured singular value synthesis techniques can be used to enhance the robustness properties of the dynamic inversion controller.

  9. Inverse Methods. Interdisciplinary Elements of Methodology, Computation, and Applications

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bo Holm; Mosegaard, Klaus; Sibani, Paolo

    Over the last few decades inversion concepts have become an integral part of experimental data interpretation in several branches of science. In numerous cases similar inversion-like techniques were developed independently in separate disciplines, sometimes based on different lines of reasoning, but not always to the same level of sophistication. This book is based on the Interdisciplinary Inversion Conference held at the University of Aarhus, Denmark. For scientists and graduate students in geophysics, astronomy, oceanography, petroleum geology, and geodesy, the book offers a wide variety of examples and theoretical background in the field of inversion techniques.

  10. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the

  11. Inverse problem in hydrogeology

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    cas dans d'autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l'aquifère. Il est montré que les méthodes d'évaluation des paramètres actuels ne diffèrent pas si ce n'est dans les détails des calculs informatiques. Il est montré qu'il existe une large panoplie de techniques d'inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d'informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l'incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée. Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de enten dimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables alusuario, acomodamiento de variabilidad a través de geoestad

  12. Analysis of Temperature Distributions in Nighttime Inversions

    NASA Astrophysics Data System (ADS)

    Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as

  13. Globular Clusters, Ultracompact Dwarfs, and Dwarf Galaxies in Abell 2744 at a Redshift of 0.308

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-11-01

    We report a photometric study of globular clusters (GCs), ultracompact dwarfs (UCDs), and dwarf galaxies in the giant merging galaxy cluster Abell 2744 at z = 0.308. Color-magnitude diagrams of the point sources derived from deep F814W (rest frame r‧) and F105W (rest frame I) images of Abell 2744 in the Hubble Space Telescope Frontier Field show a rich population of point sources, which have colors that are similar to those of typical GCs. These sources are as bright as -14.9\\lt {M}r\\prime ≤slant -11.4 (26.0 < F814W(Vega) ≤ 29.5) mag, being mostly UCDs and bright GCs in Abell 2744. The luminosity function (LF) of these sources shows a break at {M}r\\prime ≈ -12.9 (F814W ≈ 28.0) mag, indicating a boundary between UCDs and bright GCs. The numbers of GCs and UCDs are estimated to be 1,711,640+589,760 -430,500 and 147 ± 26, respectively. The clustercentric radial number density profiles of the UCDs and bright GCs show similar slopes, but these profiles are much steeper than those of the dwarf galaxies and the mass density profile based on gravitational lensing analysis. We derive an LF of the red sequence galaxies for -22.9\\lt {M}r\\prime ≤slant -13.9 mag. The faint end of this LF is fit well by a flat power law with α =-1.14+/- 0.08, showing no faint upturn. These results support the galaxy-origin scenario for bright UCDs: they are the nuclei of dwarf galaxies that are stripped when they pass close to the center of massive galaxies or a galaxy cluster, while some of the faint UCDs are at the bright end of the GCs.

  14. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es

  15. Inverse heat mimicking of given objects

    NASA Astrophysics Data System (ADS)

    Alwakil, Ahmed; Zerrad, Myriam; Bellieud, Michel; Amra, Claude

    2017-03-01

    We address a general inverse mimicking problem in heat conduction. The objects to cloak and mimic are chosen beforehand; these objects identify a specific set of space transformations. The shapes that can be mimicked are derived from the conductivity matrices. Numerical calculation confirms all of the analytical predictions. The technique provides key advantages for applications and can be extended to the field of waves.

  16. Detection of a pair of prominent X-ray cavities in Abell 3847

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Naik, Sachindra; Patil, Madhav. K.; Sonkamble, Satish S.

    2017-04-01

    We present the results obtained from a detailed analysis of a deep Chandra observation of the bright FRII radio galaxy 3C 444 in Abell 3847 cluster. A pair of huge X-ray cavities are detected along the north and south directions from the centre of 3C 444. X-ray and radio images of the cluster reveal peculiar positioning of the cavities and radio bubbles. The radio lobes and X-ray cavities are apparently not spatially coincident and exhibit offsets by ∼61 and 77 kpc from each other along the north and south directions, respectively. Radial temperature and density profiles reveal the presence of a cool core in the cluster. Imaging and spectral studies showed the removal of substantial amount of matter from the core of the cluster by the radio jets. A detailed analysis of the temperature and density profiles showed the presence of a rarely detected elliptical shock in the cluster. Detection of inflating cavities at an average distance of ∼55 kpc from the centre implies that the central engine feeds a remarkable amount of radio power (∼6.3 × 1044 erg s-1) into the intra-cluster medium over ∼108 yr, the estimated age of cavity. The cooling luminosity of the cluster was estimated to be ∼8.30 × 1043 erg s-1 , which confirms that the AGN power is sufficient to quench the cooling. Ratios of mass accretion rate to Eddington and Bondi rates were estimated to be ∼0.08 and 3.5 × 104, respectively. This indicates that the black hole in the core of the cluster accretes matter through chaotic cold accretion.

  17. The merger history of the complex cluster Abell 1758: a combined weak lensing and spectroscopic view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, R.; Cypriano, E. S.; Machado, R. E. G.; Lima Neto, G. B.; Ribeiro, A. L. B.; Sodré, L.; Dupke, R.

    2017-04-01

    We present a weak-lensing and dynamical study of the complex cluster Abell 1758 (A1758, bar{z} = 0.278) supported by hydrodynamical simulations. This cluster is composed of two main structures called A1758N and A1758S. The northern structure is composed of A1758NW and A1758NE, with lensing determined masses of 7.90_{-1.55}^{+1.89} × 1014 M⊙ and 5.49_{-1.33}^{+1.67} × 1014 M⊙, respectively. They show a remarkable feature: while in A1758NW, there is a spatial agreement among weak-lensing mass distribution, intracluster medium and its brightest cluster galaxy (BCG), in A1758NE, the X-ray peak is located 96_{-15}^{+14} arcsec away from the mass peak and BCG positions. Given the detachment between gas and mass, we could use the local surface mass density to estimate an upper limit for the dark matter self-interaction cross-section: σ/m < 5.83 cm2 g-1. Combining our velocity data with hydrodynamical simulations, we have shown that A1758 NW and NE had their closest approach 0.27 Gyr ago and their merger axis is 21° ± 12° from the plane of the sky. In the A1758S system, we have measured a total mass of 4.96_{-1.19}^{+1.08} × 10^{14} M⊙ and, using radial velocity data, we found that the main merger axis is located at 70° ± 4° from the plane of the sky, therefore closest to the line of sight.

  18. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  19. The Merger in Abell 576: A Line-of-Sight Bullet Cluster?

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Mirabal, Nestor; Bregman, Joel N.; Evrard, August E.

    2007-10-01

    Using a combination of Chandra and XMM-Newton observations, we confirmed the presence of a significant velocity gradient along the northeast-southwest direction in the intracluster gas of the cluster Abell 576. The results are consistent with a previous ASCA SIS analysis of this cluster. The error-weighted average over the ACIS-S3 and EPIC MOS1 and MOS2 spectrometers for the maximum velocity difference is >3.3×103 km s-1 at the 90% confidence level, similar to the velocity limits estimated indirectly for the Bullet Cluster (1E 0657-56). The probability that the velocity gradient is generated by standard random gain fluctuations with Chandra and XMM-Newton is <0.1%. The regions of maximum velocity gradient are in CCD zones that have the lowest temporal gain variations. It is unlikely that the velocity gradient is due to Hubble distance differences between projected clusters (probability <~0.01%). We mapped the distribution of elemental abundance ratios across the cluster and detected a strong chemical discontinuity using the abundance ratio of silicon to iron, equivalent to a variation from 100% SN Ia iron mass fraction in the west-northwest regions to 32% in the eastern region. The ``center'' of the cluster is located at the chemical discontinuity boundary, which is inconsistent with the radially symmetric chemical gradient found in some regular clusters, but consistent with a cluster merging scenario. We predict that the velocity gradient as measured will produce a variation of the cosmic microwave background (CMB) temperature toward the east of the core of the cluster that will be detectable by current and near-future bolometers. The measured velocity gradient opens up the possibility that this cluster is passing through a near line-of-sight merger stage where the cores have recently crossed.

  20. Can standard cosmological models explain the observed Abell cluster bulk flow?

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc

    1995-01-01

    Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.

  1. The dust in the hydrogen-poor ejecta of Abell 30

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Harrington, J. Patrick; Blair, William P.; Bregman, Jesse D.

    1994-01-01

    We present new optical and near-infrared images of the hydrogen-poor planetary nebula Abell 30 and produce detailed models that account for the major observed morphological and IR properties. By imaging the nebula in the K band, we confirm the presence of hot dust in an expanding equatorial ring of H-poor gas. No emission was detected from the H-poor polar knots, suggesting a dust deficiency htere relative to the equatorial ring. The near-IR emission is attributed to small carbonaceous dust grains which are stochastically heated by stellar ultraviolet photons. Using an adaptive version of a matrix method devised by Guhathakurta & Draine (1989) to model stochastic heating, we find that the near-IR spectrum observed by Dinerstein & Lester (1984) requires the presence of dust grains down to approximately 0.0007 microns in radius. This minimum grain radius is in excellent agreement with our calculations of the grain destruction by energetic stellar UV photons: we find that carbon clusters with less than approximately 140 atoms (0.0007 microns in radius) are destroyed by stellar UV photons in approximately 1000 yr, the kinematic age of H-poor ejecta. Modeling of the far-IR dust emission implies that the bulk of the dust mass in A30 must reside at distances several times greater than the distance of the equatorial ring from the central star. This spatial dust distribution is attributed to the interaction of the stellar wind with the inhomogeneous H-poor ejecta. Most of the H-poor gas and dust has been apparently carried outward by the stellar wind, leaving behing dense, H-poor knots with prominent wind-blown tails in the equatorial ring and in the polar knots. This picture is supported by the presence of a stellar wind-blown bubble within the H-rich envelope in our optical images.

  2. Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Lovisari, L.; Pinto, C.; Zhang, Y.-Y.; Kaastra, J. S.; Werner, N.; Simionescu, A.

    2015-03-01

    Using the EPIC and RGS data from a deep (200 ks) XMM-Newton observation, we investigate the temperature structure (kT and σT) and the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) of the intra-cluster medium (ICM) in the nearby (z = 0.046) cool-core galaxy cluster Abell 4059. Next to a deep analysis of the cluster core, a careful modelling of the EPIC background allows us to build radial profiles up to 12' (~650 kpc) from the core. Probably because of projection effects, the temperature ICM is not found to be in single phase, even in the outer parts of the cluster. The abundances of Ne, Si, S, Ar, Ca, and Fe, but also O are peaked towards the core. The elements Fe and O are still significantly detected in the outermost annuli, which suggests that the enrichment by both type Ia and core-collapse SNe started in the early stages of the cluster formation. However, the particularly high Ca/Fe ratio that we find in the core is not well reproduced by the standard SNe yield models. Finally, 2D maps of temperature and Fe abundance are presented and confirm the existence of a denser, colder, and Fe-rich ridge south-west of the core, previously observed by Chandra. The origin of this asymmetry in the hot gas of the cluster core is still unclear, but it might be explained by a past intense ram-pressure stripping event near the central cD galaxy. Appendices are available in electronic form at http://www.aanda.org

  3. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  4. Constrained inversion of seismo-volcanic events

    NASA Astrophysics Data System (ADS)

    Nocerino, Luciano; D'Auria, Luca; Giudicepietro, Flora; Martini, Marcello

    2014-05-01

    The inversion of seismo-volcanic events is performed to retrieve the source geometry and to determine volumetric budgets of the source. Such observations have shown to be an important tool for the seismological monitoring of volcanoes. We developed a novel technique for the non-linear constrained inversion of low frequency seismo-volcanic events. Unconstrained linear inversion methods work well when a dense network of broadband seismometers is available. We propose a new constrained inversion technique, which has shown to be efficient also in a reduced network configuration and a low signal-noise ratio. The waveform inversion is performed in the frequency domain, constraining the source mechanism during the event to vary only in its magnitude. The eigenvectors orientation and the eigenvalue ratio are kept constant. This significantly reduces the number of parameters to invert, making the procedure more stable. The method has been tested over a synthetic dataset, reproducing realistic very-long-period (VLP) signals Stromboli volcano. We have applied the method to a VLP dataset recorded on Stromboli volcano and to low-frequency earthquakes recorded on Mt.Vesuvius.

  5. Recursive Inversion Of Externally Defined Linear Systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1992-01-01

    Technical memorandum discusses mathematical technique described in "Recursive Inversion by Finite-Impulse-Response Filters" (ARC-12247). Technique is recursive algorithm yielding finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Useful in such diverse applications as medical diagnoses, identification of military targets, geophysical exploration, and nondestructive testing.

  6. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masahiro

    2003-06-01

    into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.

  7. Inverse Modelling of the Kawerau Geothermal Reservoir, NZ

    SciTech Connect

    White, S.P.

    1995-01-01

    In this paper we describe an existing model of the Kawerau geothermal field and attempts to improve this model using inverse modeling techniques. A match of model results to natural state temperatures and pressures at three reference depths are presented. These are used to form and ''objective function'' to be minimized by inverse modeling.

  8. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  9. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  10. Reverberation Inversion Enhancements Using BASE 04 Data

    DTIC Science & Technology

    2006-10-01

    d’exploitation de modèle de RDDC Atlantique (DMOS) est une évolution de l’ensemble de programmes SWAMI (Initiative de modélisation de sonar actif en eau peu...du signal et la probabilité de détection pour un sonar actif . Un module d’inversion de réverbération, BREVER, est utilisé pour ces travaux. Le...d’inversion permet d’effectuer des études sur l’utilité des techniques de sondage au moyen de capteurs en tant qu’aides aux décisions tactiques

  11. The Origin of Dwarf Galaxies in Clusters: The Faint-End Slope of Abell 85 Galaxy Luminosity Function

    NASA Astrophysics Data System (ADS)

    Agulli, I.; Aguerri, J. A. L.; Barrena, R.; Diaferio, A.; Sánchez-Janssen, R.

    2016-10-01

    Dwarf galaxies (Mb>-18) are important because of their cosmological interest as tests of hierarchical theories. The formation of these galaxies is still an open question but red dwarf galaxies are preferentially located in high density environments, indicating that they are end-products of galaxy transformations in clusters. Deep spectroscopic studies of galaxy clusters are needed to put some constraints on dwarf galaxy formation and evolution. We have observed and analyzed Abell 85, a nearby (z = 0.055) and massive cluster down to M*+6, using the MOS instruments VIMOS@VLT and AF2@WHT. The first and powerful tool to study the characteristics of galaxies and compare with different density environments is the galaxy luminosity function. The comparison of the results for Abell 85 with literature outcomes for clusters and field, allows us to conclude that, at least for this cluster, the environment plays a major role in the nature of the faint-end galaxies, transforming blue dwarfs in the field into red ones in the cluster, but not in the formation of the luminosity function slope.

  12. Illuminating a Dark Lens : A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi

    2015-09-01

    SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.

  13. [The presence of the corpse and semiotic effectiveness in Geoffrey Chaucer and Caïn in Mctatio Abel].

    PubMed

    Bolens, Guillemette

    2011-01-01

    This article grapples with the question of the corpse through two particular literary texts. Rather than an elucidation of the physiological principle of the human body by means of dissection, the play Mactatio Abel, written in England in the 15th century, stages the difficulty of the relation to the corpse, via an amplification of the biblical narrative of Abel's murder by Cain. As for Chaucer's work, The Book of the Duchess, it rewrites Ovid's and Machaut's texts featuring the figure of Morpheus in a way that distinguishes between an imitation of the living and its simulacrum in the sense Wolfgang Iser gives this concept. Chaucer's Morpheus, instead of promoting verisimilitude, forbids it. Indeed, he animates a corpse from within instead of simulating an apparition of the deceased. The simulacrum, rather than a mimetic copy of the real, blocks all representational illusion, in order to formulate absence. The readability of the corpse in both works is relational. Both literary texts express the corpse as being always already grounded in a relational and narratorial space.

  14. Numerical Simulations Challenged on the Prediction of Massive Subhalo Abundance in Galaxy Clusters: The Case of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Grillo, C.; De Lucia, G.; Biviano, A.; Annunziatella, M.; Borgani, S.; Lombardi, M.; Mercurio, A.; Rosati, P.

    2016-08-01

    In this Letter we compare the abundance of the member galaxies of a rich, nearby (z = 0.09) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by active galactic nuclei. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant (≳ 7 sigma confidence level) smaller amount of massive (circular velocity above 200 {km} {{{s}}}-1) subhalos, even before accounting for the possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 and suggest that the observed difference is already present at the level of dark matter (DM) subhalos and is not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of DM particles and the effect of baryons on the formation and evolution of cosmological structures.

  15. The close binary central star of the planetary nebula Abell 41 - A helium-rich subdwarf primary

    NASA Astrophysics Data System (ADS)

    Green, R. F.; Liebert, J.; Wesemael, F.

    1984-05-01

    He II, He I, and H absorption features were detected in spectroscopy with 2 A resolution of the Abell 41 planetary nebula central star, which was recently reported by Grauer and Bond to be a close binary with a 2 hour 43 minute period. This subdwarf O spectrum has been analyzed with a grid of hot, high-gravity, LTE atmosphere models. T(eff) = 50,000 + or 5000 K, log g = 6 + or - 1, n(He)/n(H) = 10 exp -1.0 + or - 1. This temperature is a factor of 1.4-2.9 lower than the range used by Grauer and Bond, and the required secondary star heating is considerably reduced. Nevertheless, close agreement is found with their estimates for the distance, reddening, and the systemic parameters for the binary star. Their interpretation of Abell 41 as a precataclysmic variable object remains valid for a cool main-sequence or hotter evolved secondary star. The object should be a promising target for high-resolution (coude/echelle) follow-up spectroscopy.

  16. Vitamins and Violence: Can Micronutrients Make Students Behave, Schools Safer and Test Scores Better? The Abell Report. Volume 23, No.6

    ERIC Educational Resources Information Center

    Rodgers, Joann Ellison

    2010-01-01

    The notion that vitamins, minerals, and other "supplemental" nutrients profoundly change behavior, mood, and intellect has origins as old as recorded history. Research has indeed suggested connections between nutrient deficiencies and behavior problems, but correlations are not the same as causality. This "Abell Report" is an…

  17. 75 FR 62424 - EDS, an HP Company (Re-Branded as HP-Enterprise Services) Including On-Site Workers From: Abel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ...., Advantage Tech Inc., Aerotek, Allied Network Solutions Inc., Analysts International Corp., AppleOne, Assist... International Corp, Tech Providers Inc., Technology Solutions Provider Inc., Teksystems, The Experts Inc., TM... leased workers from Abel Personnel Inc., Advantage Tech Inc., Aerotek, Allied Network Solutions...

  18. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method

    NASA Astrophysics Data System (ADS)

    Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid

    2017-01-01

    Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.

  19. Program manual for the Eppler airfoil inversion program

    NASA Technical Reports Server (NTRS)

    Thomson, W. G.

    1975-01-01

    A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.

  20. Disentangling the ICL with the CHEFs: Abell 2744 as a case study

    NASA Astrophysics Data System (ADS)

    Jimenez-Teja, Yolanda; Dupke, Renato a.

    2015-08-01

    The intracluster light (ICL) is important for understanding the metal enrichment of the intracluster gas and constraining cosmological parameters independently of the other methods. However, its measurement it is not trivial due to the necessity of disentangling the light of stars locked up in galaxies from the proper ICL. Currently, there is no standard method to efficiently measure the ICL (Rudick et al. 2011, ApJ, 732, 48), and different approaches relying on the binding energy of the cluster galaxies, the density of the material, or the surface brightness distribution, have been tried. Moreover, a suitable way to disentangle the limits of the brightest cluster galaxy (BCG) and the ICL still has not been developed.The CHEFs (from Chebyshev-Fourier bases, Jiménez-Teja & Benítez 2012, ApJ, 745, 150) are a mathematical tool especially designed to model the two-dimensional light distribution of galaxies. We use the CHEFs and tools from differential geometry to infer the light contribution of the ICL to the total brightness, without imposing any artificial thresholds and avoiding the ambiguity introduced by free parameters that are usually set in these studies (Rudick et al. 2011).We use the extremely deep optical images from Abell 2744, the Pandora cluster, a multi-cluster merger, observed by the Hubble Frontier Fields project to show the efficiency of this new method. The CHEFs can accurately fit and remove all the galaxies close to the cluster center, including the BCG. The limits of the BCG are marked out by determining the points where the surface curvature changes, thus disentangling the ICL from the BCG light in a completely natural way. Once we have the residual image just containing ICL and background, we extrapolate the value of this latter from images of individual pointings close to the main Pandora field. We finally estimate the ICL to be ~24% of the total light, which is very consistent with the predictions from numerical simulations (Montes

  1. One dimensional acoustic direct nonlinear inversion using the Volterra inverse scattering series

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Lesage, Anne-Cécile; Bodmann, Bernhard G.; Hussain, Fazle; Kouri, Donald J.

    2014-06-01

    Direct inversion of acoustic scattering problems is nonlinear. One way to treat the inverse scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach is the radius of convergence of the Born-Neumann series for the forward problem. However, this issue can be tackled by employing a renormalization technique to transform the Lippmann-Schwinger equation from a Fredholm to a Volterra integral form. The Born series of a Volterra integral equation converges absolutely and uniformly in the entire complex plane. We present a further study of this new mathematical framework. A Volterra inverse scattering series (VISS) using both reflection and transmission data is derived and tested for several acoustic velocity models. For large velocity contrast, series summation techniques (e.g., Cesàro summation, Euler transform, etc) are employed to improve the rate of convergence of VISS. It is shown that the VISS method with summation techniques can provide a relatively good estimation of the velocity profile. The method is fully data-driven in the respect that no prior information of the model is required. Besides, no internal multiple removal is needed. This one dimensional VISS approach is useful for inverse scattering and serves as an important step for studying more complicated and realistic inversions.

  2. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  3. Inverse Functions and their Derivatives.

    ERIC Educational Resources Information Center

    Snapper, Ernst

    1990-01-01

    Presented is a method of interchanging the x-axis and y-axis for viewing the graph of the inverse function. Discussed are the inverse function and the usual proofs that are used for the function. (KR)

  4. Stable Inversion for Nonlinear Nonminimum-Phase Time Varying Systems

    NASA Technical Reports Server (NTRS)

    Devasia, S.; Paden, B.

    1998-01-01

    In this paper, we extend stable inversion to nonlinear time-varying systems and study computational issues; the technique is applicable to minimum-phase as well as nonminimum-phase systems. The inversion technique is new, even in the linear time-varying case, and relies on partitioning (the dichotomic split of) the linearized system dynamics into time-varying, stable, and unstable, submanifolds. This dichotomic split is used to build time-varying filters which are, in turn, the basis of a contraction used to find a bounded inverse input-state trajectory. Finding the inverse input-state trajectory allows the development or exact-output tracking controllers. The method is local to the time-varying trajectory and requires that the internal dynamics vary slowly; however, the method represents a significant advance relative to presently available tracking controllers. Present techniques are restricted to time-invariant nonlinear systems and, in the general case, track only asymptotically.

  5. Estimating the trace of the matrix inverse by interpolating from the diagonal of an approximate inverse

    NASA Astrophysics Data System (ADS)

    Wu, Lingfei; Laeuchli, Jesse; Kalantzis, Vassilis; Stathopoulos, Andreas; Gallopoulos, Efstratios

    2016-12-01

    A number of applications require the computation of the trace of a matrix that is implicitly available through a function. A common example of a function is the inverse of a large, sparse matrix, which is the focus of this paper. When the evaluation of the function is expensive, the task is computationally challenging because the standard approach is based on a Monte Carlo method which converges slowly. We present a different approach that exploits the pattern correlation, if present, between the diagonal of the inverse of the matrix and the diagonal of some approximate inverse that can be computed inexpensively. We leverage various sampling and fitting techniques to fit the diagonal of the approximation to the diagonal of the inverse. Depending on the quality of the approximate inverse, our method may serve as a standalone kernel for providing a fast trace estimate with a small number of samples. Furthermore, the method can be used as a variance reduction method for Monte Carlo in some cases. This is decided dynamically by our algorithm. An extensive set of experiments with various technique combinations on several matrices from some real applications demonstrate the potential of our method.

  6. Summability of trigonometric Fourier series at d-points and a generalization of the Abel-Poisson method

    NASA Astrophysics Data System (ADS)

    Trigub, R. M.

    2015-08-01

    We study the convergence of linear means of the Fourier series \\sumk=-∞+∞λk,\\varepsilon\\hat{f}_keikx of a function f\\in L1 \\lbrack -π,π \\rbrack to f(x) as \\varepsilon\\searrow0 at all points at which the derivative \\bigl(\\int_0^xf(t) dt\\bigr)' exists (i.e. at the d-points). Sufficient conditions for the convergence are stated in terms of the factors \\{λk,\\varepsilon\\} and, in the case of λk,\\varepsilon=\\varphi(\\varepsilon k), in terms of the condition that the functions \\varphi and x\\varphi'(x) belong to the Wiener algebra A( R). We also study a new problem concerning the convergence of means of the Abel-Poisson type, \\sumk=-∞^∞r\\psi(\\vert k\\vert)\\hat{f}_keikx, as r\

  7. The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Amorín, R.; Castellano, M.; Fontana, A.; Buitrago, F.; Dunlop, J. S.; Elbaz, D.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Ferguson, H. C.; Giallongo, E.; Grazian, A.; Lotz, J.; Michałowski, M. J.; Paris, D.; Pentericci, L.; Pilo, S.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodeep project, an EU collaboration aimed at developing methods and tools for extragalactic photometry and creating valuable public photometric catalogues. Aims: We produce multiwavelength photometric catalogues (from B to 4.5 μm) for the first two of the Frontier Fields, Abell-2744 and MACS-J0416 (plus their parallel fields). Methods: To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members, and the intra-cluster light. We perform the detection on the processed HST H160 image to obtain a pure H-selected sample, which is the primary catalogue that we publish. We also add a sample of sources which are undetected in the H160 image but appear on a stacked infrared image. Photometry on the other HST bands is obtained using SExtractor, again on processed images after the procedure for foreground light removal. Photometry on the Hawk-I and IRAC bands is obtained using our PSF-matching deconfusion code t-phot. A similar procedure, but without the need for the foreground light removal, is adopted for the Parallel fields. Results: The procedure of foreground light subtraction allows for the detection and the photometric measurements of ~2500 sources per field. We deliver and release complete photometric H-detected catalogues, with the addition of the complementary sample of infrared-detected sources. All objects have multiwavelength coverage including B to H HST bands, plus K

  8. GALAXY AND MASS ASSEMBLY (GAMA): WITNESSING THE ASSEMBLY OF THE CLUSTER ABELL 1882

    SciTech Connect

    Owers, M. S.; Bauer, A. E.; Cluver, M. E.; Hopkins, A. M.; Lara-Lopez, M. A.; Baldry, I. K.; Bland-Hawthorn, J.; Pimbblet, K. A.; Brown, M. J. I.; Colless, M.; Robotham, A. S. G.; Driver, S. P.; Edge, A. C.; Van Kampen, E.; Liske, J.; Loveday, J.; Ponman, T.

    2013-08-01

    We present a combined optical and X-ray analysis of the rich cluster ABELL 1882 (A1882) with the aim of identifying merging substructure and understanding the recent assembly history of this system. Our optical data consist of spectra drawn from the Galaxy and Mass Assembly survey, which lends itself to this kind of detailed study thanks to its depth and high spectroscopic completeness. We use 283 spectroscopically confirmed cluster members to detect and characterize substructure. We complement the optical data with X-ray data taken with both Chandra and XMM. Our analysis reveals that A1882 harbors two main components, A1882A and A1882B, which have a projected separation of {approx}2 Mpc and a line of sight velocity difference of v{sub los}{approx}-428{sup +187}{sub -139} km s{sup -1}. The primary system, A1882A, has velocity dispersion {sigma}{sub v}=500{sub -26}{sup +23} km s{sup -1} and Chandra (XMM) temperature kT = 3.57 {+-} 0.17 keV (3.31{sup +0.28}{sub -0.27} keV) while the secondary, A1882B, has {sigma}{sub v}=457{sup +108}{sub -101} km s{sup -1} and Chandra (XMM) temperature kT = 2.39 {+-} 0.28 keV (2.12 {+-} 0.20 keV). The optical and X-ray estimates for the masses of the two systems are consistent within the uncertainties and indicate that there is twice as much mass in A1882A (M{sub 500} = 1.5-1.9 Multiplication-Sign 10{sup 14} M{sub Sun }) when compared with A1882B (M{sub 500} = 0.8-1.0 Multiplication-Sign 10{sup 14} M{sub Sun }). We interpret the A1882A/A1882B system as being observed prior to a core passage. Supporting this interpretation is the large projected separation of A1882A and A1882B and the dearth of evidence for a recent (<2 Gyr) major interaction in the X-ray data. Two-body analyses indicate that A1882A and A1882B form a bound system with bound incoming solutions strongly favored. We compute blue fractions of f{sub b} = 0.28 {+-} 0.09 and 0.18 {+-} 0.07 for the spectroscopically confirmed member galaxies within r{sub 500} of the centers

  9. Inverse heat mimicking of given objects

    PubMed Central

    Alwakil, Ahmed; Zerrad, Myriam; Bellieud, Michel; Amra, Claude

    2017-01-01

    We address a general inverse mimicking problem in heat conduction. The objects to cloak and mimic are chosen beforehand; these objects identify a specific set of space transformations. The shapes that can be mimicked are derived from the conductivity matrices. Numerical calculation confirms all of the analytical predictions. The technique provides key advantages for applications and can be extended to the field of waves. PMID:28252031

  10. Research on the Inverse Problem of Scattering

    DTIC Science & Technology

    1981-10-01

    Levitan equation for the r)ne- dimensional and radial Schroedinger equations., ( b ) provided a vuiri•jtiona1 prine.l pie, and (c) extended inverse techniques...Variational Principle for the Gelfand- Levitan Equation and the Korteweg-deVries Equation (with M . Kanal), J. Math. Phys., 18, 2445 (1977). 3. A...Operators are Identical (with P. B . Abraham and B . DeFaclo), Studies in App. Math. (in press). 9. The Ceifand- Levitan Equation can Give Simple Examples of

  11. Probabilistic regularization in inverse optical imaging.

    PubMed

    De Micheli, E; Viano, G A

    2000-11-01

    The problem of object restoration in the case of spatially incoherent illumination is considered. A regularized solution to the inverse problem is obtained through a probabilistic approach, and a numerical algorithm based on the statistical analysis of the noisy data is presented. Particular emphasis is placed on the question of the positivity constraint, which is incorporated into the probabilistically regularized solution by means of a quadratic programming technique. Numerical examples illustrating the main steps of the algorithm are also given.

  12. The near-infrared Tully-Fisher relation - A preliminary study of the Coma and Abell 400 clusters

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Bernstein, Gary; Raychaudhury, Somak; Haynes, Martha; Giovanelli, Riccardo; Herter, Terry; Vogt, Nicole

    1993-01-01

    We have started a large project to study the NIR Tully-Fisher (TF) relation using H- and I-band surface photometry of spiral galaxies. A preliminary study of 20 spirals in the Coma and Abell 400 clusters is presented. The NIR images have been used to derive accurate inclinations and total magnitudes, and rotational linewidths are measured from high-quality 21-cm Arecibo data. The scatter in the Coma TF plot is found to be 0.19 mag in the H band and 0.20 mag in the I band for a set of 13 galaxies, if we assume that they are all at the same distance. The deviation of the Coma galaxies from the best-fit Tully-Fisher relation is correlated with their redshift, indicating that some of the galaxies are not bound to the cluster. Indeed, if we treat all the galaxies in the Coma sample as undergoing free Hubble expansion, the TF scatter drops to 0.12 and 0.13 mag for the H- and I-band datasets, respectively. The Abell 400 sample is best fit by a common distance model, yielding a scatter of 0.12 mag for seven galaxies in H using a fixed TF slope. We are in the process of studying cluster and field spirals out to about 10,000 km/s in order to calibrate the NIR TF relation and will apply it to more nearby galaxies to measure the peculiar velocity field in the local universe.

  13. Optical spectroscopy and the UV luminosity function of galaxies in the Abell 1367, Coma and Virgo clusters

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Gavazzi, G.; Iglesias-Paramo, J.; Boselli, A.; Carrasco, L.

    2003-04-01

    Optical spectroscopy of 93 galaxies, 60 projected in the direction of Abell 1367, 21 onto the Coma cluster and 12 on Virgo, is reported. The targets were selected because they were detected in previous Hα , UV or r' surveys. The present observations bring to 100% the redshift completeness of Hα selected galaxies in the Coma region and to 75% in Abell 1367. All observed galaxies except one show Hα emission and belong to the clusters. This confirms previous determinations of the Hα luminosity function of the two clusters that were based on the assumption that all Hα detected galaxies were cluster members. Using the newly obtained data we re-determine the UV luminosity function of Coma and we compute for the first time the UV luminosity function of A1367. Their faint end slopes remain uncertain (-2.00

  14. A Reassessment of the Groundwater Inverse Problem

    NASA Astrophysics Data System (ADS)

    McLaughlin, Dennis; Townley, Lloyd R.

    1996-05-01

    This paper presents a functional formulation of the groundwater flow inverse problem that is sufficiently general to accommodate most commonly used inverse algorithms. Unknown hydrogeological properties are assumed to be spatial functions that can be represented in terms of a (possibly infinite) basis function expansion with random coefficients. The unknown parameter function is related to the measurements used for estimation by a "forward operator" which describes the measurement process. In the particular case considered here, the parameter of interest is the large-scale log hydraulic conductivity, the measurements are point values of log conductivity and piezometric head, and the forward operator is derived from an upscaled groundwater flow equation. The inverse algorithm seeks the "most probable" or maximum a posteriori estimate of the unknown parameter function. When the measurement errors and parameter function are Gaussian and independent, the maximum a posteriori estimate may be obtained by minimizing a least squares performance index which can be partitioned into goodness-of-fit and prior terms. When the parameter is a stationary random function the prior portion of the performance index is equivalent to a regularization term which imposes a smoothness constraint on the estimate. This constraint tends to make the problem well-posed by limiting the range of admissible solutions. The Gaussian maximum a posteriori problem may be solved with variational methods, using functional generalizations of Gauss-Newton or gradient-based search techniques. Several popular groundwater inverse algorithms are either special cases of, or variants on, the functional maximum a posteriori algorithm. These algorithms differ primarily with respect to the way they describe spatial variability and the type of search technique they use (linear versus nonlinear). The accuracy of estimates produced by both linear and nonlinear inverse algorithms may be measured in terms of a Bayesian

  15. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  16. Hard X-Ray Properties of the Merging Cluster Abell 3667 as Observed with Suzaku

    DTIC Science & Technology

    2008-08-01

    highest sensitivity at around 100 keV using the novel narrow-field-of-view Compton camera concept. It will open a new window to the widely distributed non...GeV energy are under- going cooling due to synchrotron and inverse Compton (IC) emissions. In every case, the radio halos/relics are found in...center and the north-west relic, with the highest sensitivity in the 10–40 keV band. In addition, the X-ray CCD cameras (XISs: Koyama et al. 2007

  17. Impedance inversion: A valuable tool in geological interpretation

    SciTech Connect

    Buck, P.J. )

    1990-05-01

    Impedance inversion is a newly evolving geophysical technique that offers the explorationist an additional method for understanding and predicting lateral and vertical lithological changes in the subsurface. Its true significance to the interpretation of complex geology and to reservoir delineation is now being realized and the technique is likely to become a vital exploration tool in the 1990s. Using the case study of an oil prospect in the Bredasdorp basin, offshore South Africa, computer-generated high-resolution color impedance inversion plots show lateral lithological changes across an intricate channel complex and reservoir zone. Borehole information from two wells drilled through the reservoir zone are correlated with the impedance inversion data. These combination displays illustrate the importance of conducting impedance inversion programs on prospective targets. The display further illustrates their usefulness when calculating stepout wells or primary well-site positions, especially in wildcat areas where little or no borehole data is available.

  18. A compilation of redshifts and velocity dispersions for Abell clusters (Struble and Rood 1987): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1989-01-01

    The machine readable version of the compilation, as it is currently being distributed from the Astronomical Data Center, is described. The catalog contains redshifts and velocity dispersions for all Abell clusters for which these data had been published up to 1986 July. Also included are 1950 equatorial coordinates for the centers of the listed clusters, numbers of observations used to determine the redshifts, and bibliographical references citing the data sources.

  19. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  20. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results.

  1. Geomechanical paleostress inversion using fracture data

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa; Gillespie, Paul

    2016-08-01

    We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.

  2. Structural and aerodynamic data transformation using inverse isoparametric mapping

    NASA Astrophysics Data System (ADS)

    Pidaparti, R. M. V.

    1992-06-01

    The inverse isoparametric mapping is presently used to transform such state variables as displacement, load, stress, pressure, temperature, etc., from structural grid points to aerodynamic grid points. The wing plane's form can be represented by either four-node or eight-node isoparametric finite elements. Extrapolation to the case of control surfaces becomes possible via combination of well-known extrapolation techniques and the inverse-mapping procedure.

  3. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  4. Inverse magnetic/shear catalysis

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ;inverse magnetic catalysis;, signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  5. Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter

    DTIC Science & Technology

    2014-10-05

    Inverse Control technique using an Artificial Neural Network to learn and then cancel out the Hover dynamics of the quadrotor UAV... Inverse Control , Neural Network , Flight Control , and UAV helicopter REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Helicopter. The goal of the project is to investigate the effectiveness of the Direct Inverse Control technique using an Artificial Neural Network to

  6. Regeneration of stochastic processes: an inverse method

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R.

    2005-10-01

    We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the early stages of the disease development.

  7. Inversion of the radiative transfer equation for polarized light

    NASA Astrophysics Data System (ADS)

    del Toro Iniesta, Jose Carlos; Ruiz Cobo, Basilio

    2016-12-01

    Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. Inversions have been proposed in the literature with a sequential increase in model complexity: astrophysical inferences depend not only on measurements but also on the physics assumed to prevail both on the formation of the spectral line Stokes profiles and on their detection with the instrument. Such an intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem. The foundations of inversion techniques are critically revisited with an emphasis on making explicit the many assumptions underlying each of them.

  8. Acoustic source inversion to estimate volume flux from volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Fee, David; Yokoo, Akihiko; Lees, Jonathan M.

    2015-07-01

    We present an acoustic waveform inversion technique for infrasound data to estimate volume fluxes from volcanic eruptions. Previous inversion techniques have been limited by the use of a 1-D Green's function in a free space or half space, which depends only on the source-receiver distance and neglects volcanic topography. Our method exploits full 3-D Green's functions computed by a numerical method that takes into account realistic topographic scattering. We apply this method to vulcanian eruptions at Sakurajima Volcano, Japan. Our inversion results produce excellent waveform fits to field observations and demonstrate that full 3-D Green's functions are necessary for accurate volume flux inversion. Conventional inversions without consideration of topographic propagation effects may lead to large errors in the source parameter estimate. The presented inversion technique will substantially improve the accuracy of eruption source parameter estimation (cf. mass eruption rate) during volcanic eruptions and provide critical constraints for volcanic eruption dynamics and ash dispersal forecasting for aviation safety. Application of this approach to chemical and nuclear explosions will also provide valuable source information (e.g., the amount of energy released) previously unavailable.

  9. Optical properties of silicon inverse opals

    NASA Astrophysics Data System (ADS)

    Wei, Hong

    Silicon inverse opals are artificial structures in which nearly monodisperse, close-packed air bubbles are embedded in a silicon matrix. If properly tailored, this structure can exhibit a photonic band gap (PBG) in the near infrared spectral region. The PBG can block light propagation in any direction, allowing the control of light flow in the material. Silicon inverse opals can be fabricated by infiltrating amorphous silicon into silica colloidal crystals and then etching away the silica. In this thesis, the structural defects of silica colloidal crystals and the optical properties of silicon inverse opals are studied. First, by using laser-scanning confocal microscopy, the concentration and distribution of stacking faults and vacancies were quantified in silica colloidal crystals. It's shown that silica colloidal crystals show strong tendency toward face-center-cubic structure with the vacancy density as small as 5 x 10-4. Second, by combining optical microscopy and Fourier Transform Infrared (FTIR) spectroscopy, the transmission and reflection spectra of silicon inverse opals along the [111] direction were measured. Combined with the calculation of transmission and reflection spectra by Transfer Matrix Methods, it is concluded that the strong light attenuation in silicon inverse opals is due to the enhanced absorption (>600%) in silicon materials. Third, by using optical pump-probe techniques, the photo-induced ultra-fast reflection changes in silicon inverse opals were examined. The pump-generated free carriers cause the reflection in the band gap region to change after ˜0.5 ps. For the first few ps, the main effect is a decrease in reflectivity due to nonlinear absorption. After ˜5 ps, this effect disappears and an unexpected blue spectral shift is seen in the photonic band gap. The refractive index decreases due to optically-induced strain born the thermal expansion mismatch between silicon and its native oxide. Finally, by infiltrating silicon inverse

  10. Modular theory of inverse systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.

  11. Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1999-01-01

    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.

  12. A Generalization of the Spherical Inversion

    ERIC Educational Resources Information Center

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  13. Analysis of jamming on inverse synthetic aperture radar (ISAR)

    NASA Astrophysics Data System (ADS)

    Han, Zhou-an; Pi, Yi-ming; Yang, Jian-yu

    2005-05-01

    Inverse synthetic aperture radar (ISAR) is a powerful means in target identifying, especially the target in the air, which can image the moving target. There is little study on modeling and resistance technique according to ISAR in China. This paper establishes a model of ISAR system, and then studies on some valid jamming technique. This will provide us the valid technique support on ISAR resistance equipment later.

  14. Inverse problems in mathematical physics

    NASA Astrophysics Data System (ADS)

    Glasko, V. B.

    Procedures for the correct formulation and solution of inverse problems, which usually belong to the class of ill-posed problems, are discussed. Attention is given to the concept of the conditionally correct statement of a problem, the concept of quasi-solution, and the fundamentals of regularization theory. The discussion also covers the uniqueness of solutions to inverse problems in mathematical physics, with consideration given to problems involving layered media, impedance problems, gravimetric problems, and inverse problems of heat conduction. The problem of stability and regularizing operators are also discussed.

  15. Inverse scattering code

    SciTech Connect

    Hale, A.; King, A.

    1997-09-01

    A methodology for the evaluation of complex electromagnetics problems is presented. The methodology reduces the computational requirements for the analysis of large scale computational electromagnetics problems by hybridizing the method of moments and physical optics techniques. The target model is based on triangular facets and the incident field source by its system response function. Data which can be obtained from the analysis are radar cross section, power spectral density, and range profiles.

  16. DISCOVERY OF ULTRA-STEEP SPECTRUM GIANT RADIO GALAXY WITH RECURRENT RADIO JET ACTIVITY IN ABELL 449

    SciTech Connect

    Hunik, Dominika; Jamrozy, Marek

    2016-01-20

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed.

  17. An Abel transform for deriving line-of-sight wind profiles from LEO-LEO infrared laser occultation measurements

    NASA Astrophysics Data System (ADS)

    Syndergaard, S.; Kirchengast, G.

    2016-03-01

    We have developed a formula for the retrieval of the line-of-sight (l.o.s.) wind speed from future low Earth orbit (LEO) satellite-to-satellite infrared laser occultation measurements. The formula involves an Abelian integral transform akin to the Abel transform widely used for deriving refractive index from bending angle in Global Navigation Satellite System radio occultation measurements. Besides the Abelian integral transform, the formula is derived from a truncated series expansion of the volume absorption coefficient as a function of frequency and includes a simple absorption-line-asymmetry correction term. A first-order formulation (referred to as the standard formula) is complemented by higher-order terms that can be used for high-accuracy computations. Under the assumptions of spherical symmetry and perfect knowledge of spectroscopy, the residual l.o.s. wind error from using the standard formula rather than the high-accuracy formula is assessed to be small compared to that anticipated from measurement errors in a real experiment. Applying the new formula just in standard form to future infrared laser transmission profiles would therefore enable the retrieval of l.o.s. stratospheric wind profiles with an accuracy limited mainly by measurement errors, residual spectroscopic errors, and deviations from spherical symmetry.

  18. The nearby Abell clusters. II - Luminosity and spatial distribution of galaxies in A2175, A2256, and A2384

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Jewison, Michael S.; Hoessel, John G.

    1987-01-01

    The luminosity and spatial distributions of galaxies in the nearby Abell clusters A2175, A2256, and A2384 have been studied using an automated object detection, classification, and photometry system. Schecter functions have been fit to the observed luminosity functions of these clusters. Values of the characteristic magnitude Mr(asterisk) at the 'break' in the luminosity function (LF) are found that are within about 0.25 mag of the so-called 'universal' value of Mr(asterisk) for A2256 and A2384. The faint ends of the LFs of these two clusters are fairly flat, with a value of -1.6 that is steeper than the universal value of -1.25. The spatial distributions of galaxies in all three clusters seem to be described fairly well by power laws, with no evidence for constant-density cores, when the cluster center is assumed to be the central D or cD galaxy. These results indicate a strong correlation between the density distribution of galaxies and the presence of a dominant D or cD galaxy in the cluster.

  19. The joint far-infrared-optical luminosity function for spiral galaxies and data for the Abell 400 and Cancer clusters

    NASA Technical Reports Server (NTRS)

    Corbelli, Edvige; Salpeter, Edwin E.; Dickey, John M.

    1991-01-01

    Visual and IRAS data for an optically selected sample of 183 late-type galaxies are compiled in tables and graphs and analyzed in detail to determine the joint FIR-optical luminosity function Psi from the FIR/blue luminosity ratio, r = L(FIR)/L(B). It is found that Psi can be approximated by a function of a single variable psi(r-prime), where r-prime is defined as r times L(B)/L(asterisk) exp -delta, with L(asterisk) a constant and delta = about 0.08. A lognormal curve peaking at r-prime = 0.35 and with dispersion of 0.28 is shown to give a good fit to psi(r-prime). From a lack of galaxies with very low r-prime in the present sample it is inferred that there are few spiral galaxies with low interstellar-dust abundances. Also included are data on the distribution function of r-prime for the more distant clusters Abell 400 and Cancer.

  20. Novel triterpenoid saponins from residual seed cake of Camellia oleifera Abel. show anti-proliferative activity against tumor cells.

    PubMed

    Zong, Jianfa; Wang, Ruilong; Bao, Guanhu; Ling, Tiejun; Zhang, Liang; Zhang, Xinfu; Hou, Ruyan

    2015-07-01

    Four oleanane-type triterpenoid saponins were isolated from the seed cake of Camellia oleifera Abel.: camelliasaponin B1 and three new saponins, oleiferasaponin C1-C3 (1-3). Their structures were identified as 22-O-angeloyl-camelliagenin B 3-O-[β-d-galactopyranosyl-(1→2)]-[β-d-galactopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (1); 22-O-angeloyl-camelliagenin A 3-O-[β-d-galactopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→2)-β-d-galactopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (2); and 28-O-cinnamoyl-camelliagenin B 3-O-[β-d-galactopyranosylz-(1→2)] [β-d-galactopyranosyl(1→2)-α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (3) through 1D and 2D NMR, HR-ESI-MS, as well as GC-MS spectroscopic methods. The anti-proliferative activities of these four compounds were investigated on five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB). Compounds 1 and 2 and camelliasaponin B1 showed significant cytotoxic activities.

  1. Two New Oleanane-Type Saponins with Anti-Proliferative Activity from Camellia oleifera Abel. Seed Cake.

    PubMed

    Zong, Jian-Fa; Peng, Yun-Ru; Bao, Guan-Hu; Hou, Ru-Yan; Wan, Xiao-Chun

    2016-02-04

    Two new oleanane-type saponins, named oleiferasaponins C₄ (1) and C₅ (2), were isolated from Camellia oleifera Abel. seed cake residue. Their respective structures were identified as 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxymethylene-olean-12-ene-3β-O-[β-d-galacto-pyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→2)-β-d-galactopyranosy-(1→3)]-β-d-glucopyranosid-uronic acid methyl ester (1) and 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxy-methylene-olean-12-ene-3β-O-[β-d-galactopyranosyl-(1→2)]-[β-d-galactopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (2) through 1D- and 2D-NMR, HR-ESI-MS, and GC-MS spectroscopic methods. The two compounds exhibited potent cytotoxic activities against five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB).

  2. A Bayesian Level-Set Inversion Protocol for Structural Zonation

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Kitanidis, P.

    2008-12-01

    Mapping the variability of subsurface properties via indirect methods is of great importance for problems in contaminant remediation and resource evaluation. In general, methods for inverse modeling commonly assume smooth and/or geostatistical distributions of the parameters being estimated. However, especially for field- and catchment-scale inverse problems, the existence of distinct, separate geologic facies is not consistent with the assumptions of these inversion techniques. Because of this drawback, it is important that we develop inversion methods that are built for imaging so-called "structural" parameter fields accurately. In our presentation, we discuss the use of a facies-based level set method for imaging geologic parameter fields. The level set framework is applicable when subsurface heterogeneity can be adequately represented as a set of relatively homogeneous geologic facies separated by sharp boundaries. During the inversion optimization, the shape of boundaries between facies are optimized in order to improve data fit. Our method can represent boundaries between arbitrary numbers of facies, and extensions to joint inversion can be handled without relying on petrophysical relations. As examples, we present several synthetic inverse problems that cover realistic estimation problems using nonlinear models with multiple datasets. Throughout our work, we adopt a Bayesian perspective which allows integration of prior information as well as linearized estimation of uncertainty in the boundary locations.

  3. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  4. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  5. Generalized multi-point inverse airfoil design

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Maughmer, Mark D.

    1991-01-01

    In a rather general sense, inverse airfoil design can be taken to mean the problem of specifying a desired set of airfoil characteristics, such as the airfoil maximum thickness ratio, pitching moment, part of the velocity distribution or boundary-layer development, etc., then from this information determine the corresponding airfoil shape. This paper presents a method which approaches the design problem from this perspective. In particular, the airfoil is divided into segments along which, together with the design conditions, either the velocity distribution or boundary-layer development may be prescribed. In addition to these local desired distributions, single parameters like the airfoil thickness can be specified. The problem of finding the airfoil shape is determined by coupling an incompressible, inviscid, inverse airfoil design method with a direct integral boundary-layer analysis method and solving the resulting nonlinear equations via a multidimensional Newton iteration technique. The approach is fast and easily allows for interactive design. It is also flexible and could be adapted to solving compressible, inverse airfoil design problems.

  6. Tsunami waveform inversion by adjoint methods

    NASA Astrophysics Data System (ADS)

    Pires, Carlos; Miranda, Pedro M. A.

    2001-09-01

    An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.

  7. Geoacoustic model inversion using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Benson, Jeremy; Chapman, N. Ross; Antoniou, Andreas

    2000-12-01

    An inversion technique using artificial neural networks (ANNs) is described for estimating geoacoustic model parameters of the ocean bottom and information about the sound source from acoustic field data. The method is applied to transmission loss data from the TRIAL SABLE experiment that was carried out in shallow water off Nova Scotia. The inversion is designed to incorporate the a priori information available for the site in order to improve the estimation accuracy. The inversion scheme involves training feedforward ANNs to estimate the geoacoustic and geometric parameters using simulated input/output training pairs generated with a forward acoustic propagation model. The inputs to the ANNs are the spectral components of the transmission loss at each sensor of a vertical hydrophone array for the two lowest frequencies that were transmitted in the experiment, 35 and 55 Hz. The output is the set of environmental model parameters, both geometric and geoacoustic, corresponding to the received field. In order to decrease the training time, a separate network was trained for each parameter. The errors for the parallel estimation are 10% lower than for those obtained using a single network to estimate all the parameters simultaneously, and the training time is decreased by a factor of six. When the experimental data are presented to the ANNs the geometric parameters, such as source range and depth, are estimated with a high accuracy. Geoacoustic parameters, such as the compressional speed in the sediment and the sediment thickness, are found with a moderate accuracy.

  8. Inverse problems biomechanical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  9. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  10. Solving inversion problems with neural networks

    NASA Technical Reports Server (NTRS)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  11. Gravity inversion in spherical coordinates using tesseroids

    NASA Astrophysics Data System (ADS)

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2014-05-01

    Satellite observations of the gravity field have provided geophysicists with exceptionally dense and uniform coverage of data over vast areas. This enables regional or global scale high resolution geophysical investigations. Techniques like forward modeling and inversion of gravity anomalies are routinely used to investigate large geologic structures, such as large igneous provinces, suture zones, intracratonic basins, and the Moho. Accurately modeling such large structures requires taking the sphericity of the Earth into account. A reasonable approximation is to assume a spherical Earth and use spherical coordinates. In recent years, efforts have been made to advance forward modeling in spherical coordinates using tesseroids, particularly with respect to speed and accuracy. Conversely, traditional space domain inverse modeling methods have not yet been adapted to use spherical coordinates and tesseroids. In the literature there are a range of inversion methods that have been developed for Cartesian coordinates and right rectangular prisms. These include methods for estimating the relief of an interface, like the Moho or the basement of a sedimentary basin. Another category includes methods to estimate the density distribution in a medium. The latter apply many algorithms to solve the inverse problem, ranging from analytic solutions to random search methods as well as systematic search methods. We present an adaptation for tesseroids of the systematic search method of "planting anomalous densities". This method can be used to estimate the geometry of geologic structures. As prior information, it requires knowledge of the approximate densities and positions of the structures. The main advantage of this method is its computational efficiency, requiring little computer memory and processing time. We demonstrate the shortcomings and capabilities of this approach using applications to synthetic and field data. Performing the inversion of gravity and gravity gradient

  12. Inversion of imaging spectrometry data using singular value decomposition

    NASA Technical Reports Server (NTRS)

    Boardman, Joe W.

    1989-01-01

    The use of imaging spectrometers, which acquire data that are both spectrally contiguous images and spatially contiguous spectra, for quantitative remote sensing of the earth is addressed. Such data sets cannot be analyzed fully using either existing spectroscopic or image techniques. Singular value decomposition (SVD) is used here for spectral unmixing and determination of the spatial scales of mixing. It is shown that when it is used to invert the mixing endmember library, SVD allows more insight into library characteristics and more control of the inversion process than other commonly used matrix inversion techniques.

  13. Improved TV-CS Approaches for Inverse Scattering Problem

    PubMed Central

    Bevacqua, M. T.; Di Donato, L.

    2015-01-01

    Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420

  14. Towards an optimal inversion method for remote atmospheric sensing

    NASA Technical Reports Server (NTRS)

    King, J. I. F.

    1969-01-01

    The inference of atmospheric structure from satellite radiometric observations requires an inversion algorithm. A variety of techniques was spawned to meet these demands. One class, the nonlinear inversion methods, copes with the problem of data noise. Unlike linear techniques which require a priori data smoothing, the nonlinear method can be applied directly to raw data. The algorithm discriminates the noise input by resolving the inferences into two types of solution, associating the real roots with atmospheric structure while ascribing the imaginary roots to noise.

  15. Recursive partitioned inversion of large (1500 x 1500) symmetric matrices

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Brownd, J. E.; Gomez, R. A.

    1976-01-01

    A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.

  16. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  17. Donor states in inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2014-09-01

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  18. Testing Earthquake Source Inversion Methodologies

    NASA Astrophysics Data System (ADS)

    Page, Morgan; Mai, P. Martin; Schorlemmer, Danijel

    2011-03-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquake-related computations, such as ground motion simulations and static stress change calculations.

  19. Temperature Inversions Have Cold Bottoms.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Brown, Gail M.

    1982-01-01

    Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)

  20. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  1. Inversion-symmetric topological insulators

    NASA Astrophysics Data System (ADS)

    Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei

    2011-06-01

    We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion

  2. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  3. Inversion Algorithms for Geophysical Problems

    DTIC Science & Technology

    1987-12-16

    ktdud* Sccumy Oass/Kjoon) Inversion Algorithms for Geophysical Problems (U) 12. PERSONAL AUTHOR(S) Lanzano, Paolo 13 «. TYPE OF REPORT Final 13b...spectral density. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 13 UNCLASSIFIED/UNLIMITED D SAME AS RPT n OTIC USERS 22a. NAME OF RESPONSIBLE...Research Laboratory ’^^ SSZ ’.Washington. DC 20375-5000 NRLrMemorandum Report-6138 Inversion Algorithms for Geophysical Problems p. LANZANO Space

  4. Inversion of tsunami waveforms and tsunami warning

    NASA Astrophysics Data System (ADS)

    An, Chao

    Ever since the 2004 Indian Ocean tsunami, the technique of inversion of tsunami data and the importance of tsunami warning have drawn the attention of many researchers. However, since tsunamis are rare and extreme events, developed inverse techniques lack validation, and open questions rise when they are applied to a real event. In this study, several of those open questions are investigated, i.e., the wave dispersion, bathymetry grid size and subfault division. First, tsunami records from three large tsunami events -- 2010 Maule, 2011 Tohoku and 2012 Haida Gwaii -- are analyzed to extract the main characteristics of the leading tsunami waves. Using the tool of wavelet transforming, the instant wave period can be obtained and thus the dispersive parameter mu2 can be calculated. mu2 is found to be smaller than 0.02 for all records, indicating that the wave dispersion is minor for the propagation of tsunami leading waves. Second, inversions of tsunami data are carried out for three tsunami events -- 2011 Tohoku, 2012 Haida Gwaii and 2014 Iquique. By varying the subfault size and the bathymetry grid size in the inversions, general rules are established for choosing those two parameters. It is found that the choice of bathymetry grid size depends on various parameters, such as the subfault size and the depth of subfaults. The global bathymetry data GEBCO with spatial resolution of 30 arcsec is generally good if the subfault size is larger than 40 km x 40 km; otherwise, bathymetry data with finer resolution is desirable. Detailed instructions of choosing the bathymetry size can be found in Chapter 2. By contrast, the choice of subfault size has much more freedom; our study shows that the subfault size can be very large without significant influence on the predicted tsunami waves. For earthquakes with magnitude of 8.0 ˜ 9.0, the subfault size can be 60 km ˜ 100 km. In our study, the maximum subfault size results in 9 ˜ 16 subfault patches on the ruptured fault surface

  5. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  6. Global inversion for anisotropy during full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Debens, H. A.; Warner, M.; Umpleby, A.

    2015-12-01

    Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.

  7. A measurement of the value of the Hubble constant from the X-ray properties and the Sunyaev-Zel'dovich effect of Abell 665

    NASA Technical Reports Server (NTRS)

    Birkinshaw, M.; Hughes, J. P.; Arnaud, K. A.

    1991-01-01

    A comparison of the X-ray properties and the Sunyaev-Zel'dovich (SZ) effect for a cluster of galaxies can be used to measure the distance of the cluster and hence the Hubble constant. This method was applied to the rich cluster Abell 665. The relative normalization of X-ray and SZ-effect data leads to an estimated Hubble constant of H sub 0 = 40 + or - 9 km/s Mpc if only the random errors are included. When the possible systematic errors are added in quadrature, the range of possible values of the Hubble constants expands to (40 to 50) + or - 12 km/s Mpc.

  8. A CHANDRA X-RAY ANALYSIS OF ABELL 1664: COOLING, FEEDBACK, AND STAR FORMATION IN THE CENTRAL CLUSTER GALAXY

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Kazemzadeh, F.; Cavagnolo, K. W.; Rafferty, D. A.; BIrzan, L.; Nulsen, P. E. J.; Wise, M. W.; Gitti, M.

    2009-05-20

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of {approx} 23 M {sub sun} yr{sup -1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 10{sup 8} yr and entropy of 10.4 keV cm{sup 2} are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, 'barlike' X-ray structure whose mass is comparable to the mass of molecular hydrogen, {approx}10{sup 10} M {sub sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of BIrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  9. An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations

    NASA Astrophysics Data System (ADS)

    George, L. T.; Dwarakanath, K. S.; Johnston-Hollitt, M.; Hurley-Walker, N.; Hindson, L.; Kapińska, A. D.; Tingay, S. J.; Bell, M.; Callingham, J. R.; For, Bi-Qing; Hancock, P. J.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, Chen; Zheng, Q.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-08-01

    We have carried out multiwavelength observations of the nearby (z = 0.046) rich, merging galaxy cluster Abell 3376 with the Murchison Widefield Array (MWA). As a part of the GaLactic and Extragalactic All-sky MWA Survey, this cluster was observed at 88, 118, 154, 188, and 215 MHz. The known radio relics, towards the eastern and western peripheries of the cluster, were detected at all the frequencies. The relics, with a linear extent of ˜1 Mpc each, are separated by ˜2 Mpc. Combining the current observations with those in the literature, we have obtained the spectra of these relics over the frequency range 80-1400 MHz. The spectra follow power laws, with α = -1.17 ± 0.06 and -1.37 ± 0.08 for the west and east relics, respectively (S∝να). Assuming the break frequency to be near the lower end of the spectrum we estimate the age of the relics to be ˜0.4 Gyr. No diffuse radio emission from the central regions of the cluster (halo) was detected. The upper limit on the radio power of any possible halo that might be present in the cluster is a factor of 35 lower than that expected from the radio power and X-ray luminosity correlation for cluster haloes. From this we conclude that the cluster halo is very extended (>500 kpc) and/or most of the radio emission from the halo has decayed. The current limit on the halo radio power is a factor of 10 lower than the existing upper limits with possible implications for models of halo formation.

  10. Direct measurement of lensing amplification in Abell S1063 using a strongly lensed high redshift HII galaxy

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Melnick, Jorge; Terlevich, Elena; Chávez, Ricardo; Telles, Eduardo; Bresolin, Fabio; Plionis, Manolis; Basilakos, Spyros; Fernández Arenas, David; González Morán, Ana Luisa; Díaz, Ángeles I.; Aretxaga, Itziar

    2016-08-01

    ID11 is an actively star-forming, extremely compact galaxy and Lyα emitter at z = 3.117 that is gravitationally magnified by a factor of ~17 by the cluster of galaxies Hubble Frontier Fields AS1063. The observed properties of this galaxy resemble those of low luminosity HII galaxies or giant HII regions such as 30 Doradus in the Large Magellanic Cloud. Using the tight correlation correlation between the Balmer-line luminosities and the width of the emission lines (typically L(Hβ) - σ(Hβ)), which are valid for HII galaxies and giant HII regions to estimate their total luminosity, we are able to measure the lensing amplification of ID11. We obtain an amplification of 23 ± 11 that is similar within errors to the value of ~17 estimated or predicted by the best lensing models of the massive cluster Abell S1063. We also compiled, from the literature, luminosities and velocity dispersions for a set of lensed compact star-forming regions. There is more scatter in the L-σ correlation for these lensed systems, but on the whole the results tend to support the lensing model estimates of the magnification. Our result indicates that the amplification can be independently measured using the L - σ relation in lensed giant HII regions or HII galaxies. It also supports the suggestion, even if lensing is model dependent, that the L - σ relation is valid for low luminosity high-z objects. Ad hoc observations of lensed star-forming systems are required to determine the lensing amplification accurately.

  11. A numerical inversion of a the Laplace transform solution to radial dispersion in a porous medium.

    USGS Publications Warehouse

    Moench, A.F.; Ogata, A.

    1981-01-01

    A special form of the numerical inversion of the Laplace transform described by Stehfest (1970) is applied to the transformed solution of dispersion in a radial flow system in a porous medium. The inversion is extremely simple to use because the weighting coefficients depend only on the number of terms used in the computation and not upon the transform solution as required by most numerical inversion techniques.-from Authors

  12. Inversion strategies for visco-acoustic waveform inversion

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Pratt, R. G.

    2013-08-01

    Visco-acoustic waveform inversion can potentially yield quantitative images of the distribution of both velocity and the attenuation parameters from seismic data. Intrinsic P-wave attenuation has been of particular interest, but has also proven challenging. Frequency-domain inversion allows attenuation and velocity relations to be easily incorporated, and allows a natural multiscale approach. The Laplace-Fourier approach extends this to allow the natural damping of waveforms to enhance early arrivals. Nevertheless, simultaneous inversion of velocity and attenuation leads to significant `cross-talk' between the resulting images, reflecting a lack of parameter resolution and indicating the need for pre-conditioning and regularization of the inverse problem. We analyse the cross-talk issue by partitioning the inversion parameters into two classes; the velocity parameter class, and the attenuation parameter class. Both parameters are defined at a reference frequency, and a dispersion relation is assumed that describes these parameters at any other frequency. We formulate the model gradients at a forward modelling frequency, and convert them to the reference frequency by employing the Jacobian of the coordinate change represented by the dispersion relation. We show that at a given modelling frequency, the Fréchet derivatives corresponding to these two parameter classes differ only by a 90° phase shift, meaning that the magnitudes of resulting model updates will be unscaled, and will not reflect the expected magnitudes in realistic (Q-1 ≪ 1) media. Due to the lack of scaling, cross-talk will be enhanced by poor subsurface illumination, by errors in kinematics, and by data noise. To solve these issues, we introduce an attenuation scaling term (the inverse of a penalty term) that is used to pre-condition the gradient by controlling the magnitudes of the updates to the attenuation parameters. Initial results from a suite of synthetic cross-hole tests using a three

  13. Wave Propagation and Inversion in Shallow Water and Poroelastic Sediment

    DTIC Science & Technology

    1998-01-01

    acoustical properties of rigid frame porous media with pore size distributions. K.V. Horoshenkov, K. Attenborough and S.N. Chandler-Wilde, J. Accoust. Soc...for imaging using inverse scattering techniques and Wave-field Energy", Inventors: Steven A. Johnson, James W. Wiskin, David T. Borup, F. Natterer, F

  14. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  15. Fast Gibbs sampling for high-dimensional Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Lucka, Felix

    2016-11-01

    Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures can be a significant advantage. Alongside theoretical progress, various new computational techniques allow us to sample very high dimensional posterior distributions: in (Lucka 2012 Inverse Problems 28 125012), and a Markov chain Monte Carlo posterior sampler was developed for linear inverse problems with {{\\ell }}1-type priors. In this article, we extend this single component (SC) Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general {{\\ell }}pq priors with additional hard constraints. In addition, a fast computation of the conditional, SC densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can utilize their specific structure for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples. These new samplers allow us to perform sample-based Bayesian inference in high-dimensional scenarios with certain priors for the first time, including the inversion of computed tomography data with the popular isotropic total variation prior.

  16. Inversion of Chelyabinsk Meteorite Micromagnetic Maps - Implication for Inversions of Mars Magnetic Maps

    NASA Astrophysics Data System (ADS)

    Mazanec, M.; Kletetschka, G.

    2014-12-01

    The largest fragment of Chelyabinsk meteorite fell into the Russian lake Chebarkul on February 15, 2013. We used magnetic scanner constructed by Youngwood Science and Engineering (YSE, see Kletetschka et al 2013) to obtain micromagnetic maps of one of the Chelyabinsk's meteorite fragment. Our instrument has a Hall effect magnetic sensor and maps vertical component of the magnetic field approximately 0.3 mm above the planar surface of meteorite sample. Advantage of this instrument is a constant background field due to static position of the sensor. We applied fast Fourier transform inversion technique developed by Lima et al (2013). This technique is tailored for scanning magnetic microscopy (SMM), but may be also modified for aeromagnetic or satellite survey. It retrieves planar unidirectional magnetization distribution from micromagnetic field map. With this technique we achieved verifiable information about the source of the magnetic anomalies in our meteorite sample. Specific areas of detected magnetization were used for compositional analyses by scanning electron microscopy (SEM). This way we obtain the ground truth for the source of magnetic anomalies of our meteorite thin section. Measurement of chemical composition of magnetic grains can be directly linked to the amount of magnetization for the specific magnetic mineralogy. The inversion technique was extended for interpretation of real magnetic anomalies on Mars. Lima, E. A., B. P. Weiss, L. Baratchart,D. P.Hardin, and E. B. Saff (2013), Fast inversion ofmagnetic field maps of unidirectional planar geological magnetization, J. Geophys. Res. Solid Earth, 118, 2723-2752, doi:10.1002/jgrb.50229.Kletetschka, G., Schnabl, P., Sifnerova, K., Tasaryova, Z., Manda, S., and Pruner, P., 2013, Magnetic scanning and interpretation of paleomagnetic data from Prague Synform's volcanics: Studia Geophysica Et Geodaetica, v. 57, no. 1, p. 103-117.

  17. Optimization and geophysical inverse problems

    SciTech Connect

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  18. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  19. Probabilistic inversion: a preliminary discussion

    NASA Astrophysics Data System (ADS)

    Battista Rossi, Giovanni; Crenna, Francesco

    2015-02-01

    We continue the discussion on the possibility of interpreting probability as a logic, that we have started in the previous IMEKO TC1-TC7-TC13 Symposium. We show here how a probabilistic logic can be extended up to including direct and inverse functions. We also discuss the relationship between this framework and the Bayes-Laplace rule, showing how the latter can be formally interpreted as a probabilistic inversion device. We suggest that these findings open a new perspective in the evaluation of measurement uncertainty.

  20. Thermoelectric properties of inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.; Poilvert, N.; Crespi, V. H.

    2016-02-01

    Rayleigh's method [Philos. Mag. Ser. 5 34, 481 (1892)] is used to solve for the classical thermoelectric equations in inverse opals. His theory predicts that in an inverse opal, with periodic holes, the Seebeck coefficient and the figure of merit are identical to that of the bulk material. We also provide a major revision to Rayleigh's method, in using the electrochemical potential as an important variable, instead of the electrostatic potential. We also show that in some cases, the thermal boundary resistance is important in the effective thermal conductivity.

  1. Statistical inference for inverse problems

    NASA Astrophysics Data System (ADS)

    Bissantz, Nicolai; Holzmann, Hajo

    2008-06-01

    In this paper we study statistical inference for certain inverse problems. We go beyond mere estimation purposes and review and develop the construction of confidence intervals and confidence bands in some inverse problems, including deconvolution and the backward heat equation. Further, we discuss the construction of certain hypothesis tests, in particular concerning the number of local maxima of the unknown function. The methods are illustrated in a case study, where we analyze the distribution of heliocentric escape velocities of galaxies in the Centaurus galaxy cluster, and provide statistical evidence for its bimodality.

  2. Population inversion by chirped pulses

    SciTech Connect

    Lu Tianshi

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  3. DEVELOPING SEASONAL AMMONIA EMISSION ESTIMATES WITH AN INVERSE MODELING TECHNIQUE

    EPA Science Inventory

    Significant uncertainty exists in magnitude and variability of ammonia (NH3) emissions, which are needed for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural non-point sources. We sus...

  4. Constrained optimization schemes for geophysical inversion of seismic data

    NASA Astrophysics Data System (ADS)

    Sosa Aguirre, Uram Anibal

    Many experimental techniques in geophysics advance the understanding of Earth processes by estimating and interpreting Earth structure (e.g., velocity and/or density structure). These techniques use different types of geophysical data which can be collected and analyzed separately, sometimes resulting in inconsistent models of the Earth depending on data quality, methods and assumptions made. This dissertation presents two approaches for geophysical inversion of seismic data based on constrained optimization. In one approach we expand a one dimensional (1-D) joint inversion least-squares (LSQ) algorithm by introducing a constrained optimization methodology. Then we use the 1-D inversion results to produce 3-D Earth velocity structure models. In the second approach, we provide a unified constrained optimization framework for solving a 1-D inverse wave propagation problem. In Chapter 2 we present a constrained optimization framework for joint inversion. This framework characterizes 1-D Earth's structure by using seismic shear wave velocities as a model parameter. We create two geophysical synthetic data sets sensitive to shear velocities, namely receiver function and surface wave dispersion. We validate our approach by comparing our numerical results with a traditional unconstrained method, and also we test our approach robustness in the presence of noise. Chapter 3 extends this framework to include an interpolation technique for creating 3-D Earth velocity structure models of the Rio Grande Rift region. Chapter 5 introduces the joint inversion of multiple data sets by adding delay travel times information in a synthetic setup, and leave the posibility to include more data sets. Finally, in Chapter 4 we pose a 1-D inverse full-waveform propagation problem as a PDE-constrained optimization program, where we invert for the material properties in terms of shear wave velocities throughout the physical domain. We facilitate the implementation and comparison of different

  5. Tensor Inversion of Intrinsic Permeabilities for Heterogeneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Zhang, Y.

    2013-12-01

    An inverse method has been developed using hybrid formulations and coordinate transform techniques to simultaneously estimate multiple intrinsic permeability tensors (k), flow field, and boundary conditions for a heterogeneous reservoir under non-pumping or pumping conditions [Jiao & Zhang, 2013]. Unlike the objective-function-based approaches, the inverse method does not require forward flow simulations to assess the data-model misfits; thus the knowledge of reservoir boundary conditions is not needed. The method directly incorporates noisy observed data (i.e., fluid heads, Darcy fluxes, or well rates) at the measurement locations, without solving a boundary value problem. Given sufficient measurement data, it yields well-posed systems of equations that can be solved efficiently with coarse inverse grids and nonlinear optimization. When pumping and injection are active, the well rates can be used as measurements and subsurface flux sampling is not needed. Also, local grid refinement at the well locations is not needed for the inversion to succeed. The method is successfully tested for reservoir problems with regular and irregular geometries, different petrofacies patterns, and permeability anisotropy ratios. All problems yield stable solutions under increasing measurement errors. For a given set of the observation data, inversion accuracy is most affected by the permeability anisotropy ratio. Accuracy in estimating k is also affected by the flow pattern: within a given petrofacies, when the Darcy flux component is extremely small, the corresponding directional permeability perpendicular to streamlines becomes less identifiable. Finally, inversion is successful even if the location of the reservoir boundaries is unknown. In this case, the problem domain for inversion is defined by the location of the measurement data. Select problems are presented below in a set of figures and a table (the relevant quantities have a consistent set of units and are thus not labeled

  6. Action Understanding as Inverse Planning

    ERIC Educational Resources Information Center

    Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.

    2009-01-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…

  7. Inversions. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Bakel'man, I. Ya

    Inversions are transformations of geometric figures, under which straight lines may be mapped to circles, and conversely. The use of such mapping allows development of a unified method of solution for many of the problems of elementary geometry, especially those concerning constructions and "pencils" of curves. This book discusses the inversion…

  8. Wave-equation dispersion inversion

    NASA Astrophysics Data System (ADS)

    Li, Jing; Feng, Zongcai; Schuster, Gerard

    2017-03-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  9. Inversion of canopy reflectance models for estimation of vegetation parameters

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.

    1987-01-01

    One of the keys to successful remote sensing of vegetation is to be able to estimate important agronomic parameters like leaf area index (LAI) and biomass (BM) from the bidirectional canopy reflectance (CR) data obtained by a space-shuttle or satellite borne sensor. One approach for such an estimation is through inversion of CR models which relate these parameters to CR. The feasibility of this approach was shown. The overall objective of the research carried out was to address heretofore uninvestigated but important fundamental issues, develop the inversion technique further, and delineate its strengths and limitations.

  10. Gravity inversion of a fault by Particle swarm optimization (PSO).

    PubMed

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  11. A Simplified Scheme for Kinematic Source Inversion

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Castro-Artola, O.; Singh, S.; Hjorleifsdottir, V.; Legrand, D.

    2013-05-01

    It is well known that different kinematic source inversion schemes lead to non-unique solutions. For this reason, a simplified scheme, which yields the main characteristics of the rupture process, rather than the details, may be desirable. In this work we propose a modification of the frequency-domain inversion scheme of Cotton & Campillo (1995) to extract kinematic parameters using simplified geometries (ellipses). The forward problem is re-parameterized by including one or two ellipses in which the displacement is smoothly distributed. For the ellipses we invert for the position of the centers within the fault plane, the major and minor semi-axes, the maximum displacements, the angles of rotation and a parameter that controls the distribution of slip. A simulated annealing scheme is used to invert near-source displacements. We first test the method on synthetic displacement records corresponding to the Guerrero-Oaxaca earthquake (20/03/2012, Mw=7.5) by comparing the results obtained from the modified technique with the original method. In the next step, we use displacements obtained by double numerical integration of recorded accelerograms. We find that, in spite of the simple geometry, the modified method leads to a good fit between observed and synthetic displacements and recovers the main rupture characteristics.

  12. Inverse statistical mechanics, lattice packings, and glasses

    NASA Astrophysics Data System (ADS)

    Marcotte, Etienne

    Computer simulation methods enable the investigation of systems and properties that are intractable by purely analytical or experimental approaches. Each chapter of this dissertation contains an application of simulation methods to solve complex physical problems consisting of interacting many-particle or many-spin systems. The problems studied in this dissertation can be divided up into the following two broad categories: inverse and forward problems. The inverse problems considered are those in which we construct an interaction potential such that the corresponding ground state is a targeted configuration. In Chapters 2 and 3, we devise convex pair-potential functions that result in low-coordinated ground states. Chapter 2 describes targeted ground states that are the square and honeycomb crystals, while in Chapter 3 the targeted ground state is the diamond crystal. Chapter 4 applies similar techniques to explicitly enumerate all unique ground states up to a given system size, for spin configurations that interact according to generalized isotropic Ising potentials with finite range. We also consider forward statistical-mechanical problems. In Chapter 5, we adapt a linear programming algorithm to find the densest lattice packings across Euclidean space dimensions. In Chapter 6, we demonstrate that for two different glass models a signature of the glass transition is apparent well before the transition temperature is reached. In both models, this signature appears as nonequilibrium length scales that grow upon supercooling.

  13. THE RICH GLOBULAR CLUSTER SYSTEM OF ABELL 1689 AND THE RADIAL DEPENDENCE OF THE GLOBULAR CLUSTER FORMATION EFFICIENCY

    SciTech Connect

    Alamo-Martínez, K. A.; González-Lópezlira, R. A.; Blakeslee, J. P.; Côté, P.; Ferrarese, L.; Jee, M. J.; Jordán, A.; Meurer, G. R.; Peng, E. W.; West, M. J.

    2013-09-20

    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z = 0.18), one of the most powerful gravitational lenses known. With 28 Hubble Space Telescope/Advanced Camera for Surveys orbits in the F814W bandpass, we reach a magnitude I{sub 814} = 29 with ∼>90% completeness and sample the brightest ∼5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N{sup total}{sub GC}= 162,850{sup +75,450}{sub -51,310} GCs within a projected radius of 400 kpc. As many as half of the GCs may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this system is by far the largest GC population studied to date. The specific frequency S{sub N} is high, but not uncommon for central galaxies in massive clusters, rising from S{sub N} ≈ 5 near the center to ∼12 at large radii. Passive galaxy fading would increase S{sub N} by ∼20% at z = 0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M{sub GC}{sup total} = 3.9 × 10{sup 10} M{sub ☉}, is comparable to ∼80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.

  14. The ASTRODEEP Frontier Fields catalogues. II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The

  15. Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101

    NASA Astrophysics Data System (ADS)

    Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias

    2017-01-01

    Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (i) the velocity dispersion (Mvir), (ii) the caustic mass computation (Mcaustic), and (iii) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift

  16. A bright z = 5.2 lensed submillimeter galaxy in the field of Abell 773. HLSJ091828.6+514223

    NASA Astrophysics Data System (ADS)

    Combes, F.; Rex, M.; Rawle, T. D.; Egami, E.; Boone, F.; Smail, I.; Richard, J.; Ivison, R. J.; Gurwell, M.; Casey, C. M.; Omont, A.; Berciano Alba, A.; Dessauges-Zavadsky, M.; Edge, A. C.; Fazio, G. G.; Kneib, J.-P.; Okabe, N.; Pelló, R.; Pérez-González, P. G.; Schaerer, D.; Smith, G. P.; Swinbank, A. M.; van der Werf, P.

    2012-02-01

    During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (~200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of LFIR = 1.1 × 1014/μ L⊙, where μ is the magnification factor, likely ~11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7-6), CO(6-5), CO(5-4) detected at IRAM and the CO(2-1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s-1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H2 conversion ratio, the H2 mass is 5.8 × 1011/μ M⊙, of which one third is in a cool component. From the C I(3P2-3P1) line we derive a C I/H2 number abundance of 6 × 10-5 similar to that in other ULIRGs. The H2Op(2,0,2-1,1,1) line is strong only in the red velocity component, with an intensity ratio I(H2O)/I(CO) ~ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.

  17. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  18. Joint inversion of fundamental and higher mode Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.

    2008-01-01

    In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.

  19. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  20. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  1. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  2. An inverse problem by boundary element method

    SciTech Connect

    Tran-Cong, T.; Nguyen-Thien, T.; Graham, A.L.

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  3. Full waveform inversion of solar interior flows

    SciTech Connect

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  4. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  5. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  6. Analysis of RAE-1 inversion

    NASA Technical Reports Server (NTRS)

    Hedland, D. A.; Degonia, P. K.

    1974-01-01

    The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.

  7. Broadband synthetic aperture geoacoustic inversion.

    PubMed

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.

  8. Inverse statistics and information content

    NASA Astrophysics Data System (ADS)

    Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.

    2010-12-01

    Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.

  9. Inverse Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Gershanov, V. Yu.; Garmashov, S. I.

    2015-01-01

    We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.

  10. Viscoacoustic anisotropic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli

    2017-01-01

    A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.

  11. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  12. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  13. Sequential Geoacoustic Filtering and Geoacoustic Inversion

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sequential Geoacoustic Filtering and Geoacoustic Inversion ...geoacoustic inversion methods, their use in the analysis of shallow water experimental data, and evaluation of geoacoustic model and parameter...uncertainties including the mapping of these uncertainties through to system performance uncertainties. OBJECTIVES Analysis of geoacoustic inversion

  14. On the Magic Square and Inverse

    ERIC Educational Resources Information Center

    Elzaidi, S. M.

    2005-01-01

    In this note, we give a method for finding the inverse of a three by three magic square matrix without using the usual methods for finding the inverse of a matrix. Also we give a method for finding the inverse of a three by three magic square matrix whose entries are also matrices. By using these ideas, we can construct large matrices whose…

  15. Inversion: A Most Useful Kind of Transformation.

    ERIC Educational Resources Information Center

    Dubrovsky, Vladimir

    1992-01-01

    The transformation assigning to every point its inverse with respect to a circle with given radius and center is called an inversion. Discusses inversion with respect to points, circles, angles, distances, space, and the parallel postulate. Exercises related to these topics are included. (MDH)

  16. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  17. Topological inversion for solution of geodesy-constrained geophysical problems

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Stiros, Stathis

    2015-04-01

    Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a

  18. Inverting geodetic time series with a principal component analysis-based inversion method

    NASA Astrophysics Data System (ADS)

    Kositsky, A. P.; Avouac, J.-P.

    2010-03-01

    The Global Positioning System (GPS) system now makes it possible to monitor deformation of the Earth's surface along plate boundaries with unprecedented accuracy. In theory, the spatiotemporal evolution of slip on the plate boundary at depth, associated with either seismic or aseismic slip, can be inferred from these measurements through some inversion procedure based on the theory of dislocations in an elastic half-space. We describe and test a principal component analysis-based inversion method (PCAIM), an inversion strategy that relies on principal component analysis of the surface displacement time series. We prove that the fault slip history can be recovered from the inversion of each principal component. Because PCAIM does not require externally imposed temporal filtering, it can deal with any kind of time variation of fault slip. We test the approach by applying the technique to synthetic geodetic time series to show that a complicated slip history combining coseismic, postseismic, and nonstationary interseismic slip can be retrieved from this approach. PCAIM produces slip models comparable to those obtained from standard inversion techniques with less computational complexity. We also compare an afterslip model derived from the PCAIM inversion of postseismic displacements following the 2005 8.6 Nias earthquake with another solution obtained from the extended network inversion filter (ENIF). We introduce several extensions of the algorithm to allow statistically rigorous integration of multiple data sources (e.g., both GPS and interferometric synthetic aperture radar time series) over multiple timescales. PCAIM can be generalized to any linear inversion algorithm.

  19. Inverse design and implementation of a wavelength demultiplexing grating coupler

    PubMed Central

    Piggott, Alexander Y.; Lu, Jesse; Babinec, Thomas M.; Lagoudakis, Konstantinos G.; Petykiewicz, Jan; Vučković, Jelena

    2014-01-01

    Nanophotonics has emerged as a powerful tool for manipulating light on chips. Almost all of today's devices, however, have been designed using slow and ineffective brute-force search methods, leading in many cases to limited device performance. In this article, we provide a complete demonstration of our recently proposed inverse design technique, wherein the user specifies design constraints in the form of target fields rather than a dielectric constant profile, and in particular we use this method to demonstrate a new demultiplexing grating. The novel grating, which has not been developed using conventional techniques, accepts a vertical-incident Gaussian beam from a free-space and separates O-band (1300 nm) and C-band (1550 nm) light into separate waveguides. This inverse design concept is simple and extendable to a broad class of highly compact devices including frequency filters, mode converters, and spatial mode multiplexers. PMID:25428549

  20. Inverse transport calculations in optical imaging with subspace optimization algorithms

    NASA Astrophysics Data System (ADS)

    Ding, Tian; Ren, Kui

    2014-09-01

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analytically recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.

  1. Motion artifacts of pulse inversion-based tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Li, Pai-Chi

    2002-09-01

    Motion artifacts of the pulse inversion technique were studied for finite amplitude distortion-based harmonic imaging. Motion in both the axial and the lateral directions was considered. Two performance issues were investigated. One is the harmonic signal intensity relative to the fundamental intensity and the other is the potential image quality degradation resulting from spectral leakage. A one-dimensional (1-D) correlation-based correction scheme also was used to compensate for motion artifacts. Results indicated that the tissue harmonic signal is significantly affected by tissue motion. For axial motion, the tissue harmonic intensity decreases much more rapidly than with lateral motion. The fundamental signal increases for both axial and lateral motion. Thus, filtering is still required to remove the fundamental signal, even if the pulse inversion technique is applied. The motion also potentially decreases contrast resolution because of the uncancelled spectral leakage. Also, it was indicated that 1-D motion correction is not adequate if nonaxial motion is present.

  2. Waveform inversion of acoustic waves for explosion yield estimation

    SciTech Connect

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  3. Identification of elastic basin properties by large-scale inverse earthquake wave propagation

    NASA Astrophysics Data System (ADS)

    Epanomeritakis, Ioannis K.

    The importance of the study of earthquake response, from a social and economical standpoint, is a major motivation for the current study. The severe uncertainties involved in the analysis of elastic wave propagation in the interior of the earth increase the difficulty in estimating earthquake impact in seismically active areas. The need for recovery of information about the geological and mechanical properties of underlying soils motivates the attempt to apply inverse analysis on earthquake wave propagation problems. Inversion for elastic properties of soils is formulated as an constrained optimization problem. A series of trial mechanical soil models is tested against a limited-size set of dynamic response measurements, given partial knowledge of the target model and complete information on source characteristics, both temporal and geometric. This inverse analysis gives rise to a powerful method for recovery of a material model that produces the given response. The goal of the current study is the development of a robust and efficient computational inversion methodology for material model identification. Solution methods for gradient-based local optimization combine with robustification and globalization techniques to build an effective inversion framework. A Newton-based approach deals with the complications of the highly nonlinear systems generated in the inversion solution process. Moreover, a key addition to the inversion methodology is the application of regularization techniques for obtaining admissible soil models. Most importantly, the development and use of a multiscale strategy offers globalizing and robustifying advantages to the inversion process. In this study, a collection of results of inversion for different three-dimensional Lame moduli models is presented. The results demonstrate the effectiveness of the inversion methodology proposed and provide evidence for its capabilities. They also show the path for further study of elastic property

  4. A counter-image to the gravitational arc in Abell 1201:Evidence for IMF variations, or a 1010 M⊙ black hole?

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.; Lucey, John R.; Edge, Alastair C.

    2017-01-01

    Abell 1201 is a massive galaxy cluster at z=0.169 with a brightest cluster galaxy (BCG) that acts as a gravitational lens to a background source at z=0.451. The lensing configuration is unusual, with a single bright arc formed at small radius (˜2 arcsec), where stars and dark matter are both expected to contribute substantially to the total lensing mass. Here, we present deep spectroscopic observations of the Abell 1201 BCG with MUSE, which reveal emission lines from a faint counter-image, opposite to the main arc, at a radius of 0.6 arcsec. We explore models in which the lensing mass is described by a combination of stellar mass and a standard dark-matter halo. The counter-image is not predicted in such models, unless the dark-matter component is negligible, which would imply an extremely heavy stellar initial mass function (IMF) in this galaxy. We consider two modifications to the model which can produce the observed configuration without resorting to extreme IMFs. Imposing a radial gradient in the stellar mass-to-light ratio, Υ, can generate a counter-image close to the observed position if Υ increases by ≳60 per cent within the inner ˜1 arcsec (e.g. variation from a Milky-Way-like to a Salpeter-like IMF). Alternatively, the counter-image can be produced by introducing a central super-massive black hole. The required mass is MBH = (1.3±0.6)× 1010 M⊙, which is comparable to the largest black holes known to date, several of which are also hosted by BCGs. We comment on future observations which promise to distinguish between these alternatives.

  5. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  6. Tiling spaces are inverse limits

    NASA Astrophysics Data System (ADS)

    Sadun, Lorenzo

    2003-11-01

    Let M be an arbitrary Riemannian homogeneous space, and let Ω be a space of tilings of M, with finite local complexity (relative to some symmetry group Γ) and closed in the natural topology. Then Ω is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Γ. This result extends previous results of Anderson and Putnam, of Ormes, Radin, and Sadun, of Bellissard, Benedetti, and Gambaudo, and of Gähler. In particular, the construction in this paper is a natural generalization of Gähler's.

  7. The Inverse of Banded Matrices

    DTIC Science & Technology

    2013-01-01

    of Br,n. For these sequences to be well-defined, we assume that none of the denominators kis are zero (which is equivalent to the below-defined U...numbers of summed or subtracted terms in computing the inverse of a term of an upper (lower) triangular matrix are the generalized order-k Fibonacci ... Fibonacci numbers are the usual Fibonacci numbers, that is, f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3

  8. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  9. Production of radioactive nuclides in inverse reaction kinematics

    NASA Astrophysics Data System (ADS)

    Traykov, E.; Rogachevskiy, A.; Bosswell, M.; Dammalapati, U.; Dendooven, P.; Dermois, O. C.; Jungmann, K.; Onderwater, C. J. G.; Sohani, M.; Willmann, L.; Wilschut, H. W.; Young, A. R.

    2007-03-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly relevant when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.

  10. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2005-11-01

    hypothetical phantom case and a prostate case. Compared with the conventional inverse planning technique, we found that, for the same target dose coverage...reduces the dosimetric inconsistency between the CBCT-based and CT-based dose calculation down to less than 1% in both phantom and patient studies. Our...calculation down to less than 1% in both phantom and patient studies. While the true solution to the hurdle lies in the effective removal of motion

  11. Real-time inverse planning for Gamma Knife radiosurgery.

    PubMed

    Wu, Q Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W; Einstein, Douglas B; Mathayomchan, Boonyanit; Kinsella, Timothy J

    2003-11-01

    The challenges of real-time Gamma Knife inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality.

  12. The inverse gravimetric problem in gravity modelling

    NASA Technical Reports Server (NTRS)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  13. Adapting a truly nonlinear filter to the ocean acoustic inverse problem

    NASA Astrophysics Data System (ADS)

    Ganse, Andrew A.; Odom, Robert I.

    2005-04-01

    Nonlinear inverse problems including the ocean acoustic problem have been solved by Monte Carlo, locally-linear, and filter based techniques such as the Extended Kalman Filter (EKF). While these techniques do provide statistical information about the solution (e.g., mean and variance), each suffers from inherent limitations in their approach to nonlinear problems. Monte Carlo techniques are expensive to compute and do not contribute to intuitive interpretation of a problem, and locally-linear techniques (including the EKF) are limited by the multimodal objective landscape of nonlinear problems. A truly nonlinear filter, based on recent work in nonlinear tracking, estimates state information for a nonlinear problem in continual measurement updates and is adapted to solving nonlinear inverse problems. Additional terms derived from the system's state PDF are added to the mean and covariance of the solution to address the nonlinearities of the problem, and overall the technique offers improved performance in nonlinear inversion. [Work supported by ONR.

  14. Anisotropic seismic inversion using a multigrid Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Mewes, Armin; Kulessa, Bernd; McKinley, John D.; Binley, Andrew M.

    2010-10-01

    We propose a new approach for the inversion of anisotropic P-wave data based on Monte Carlo methods combined with a multigrid approach. Simulated annealing facilitates objective minimization of the functional characterizing the misfit between observed and predicted traveltimes, as controlled by the Thomsen anisotropy parameters (ɛ, δ). Cycling between finer and coarser grids enhances the computational efficiency of the inversion process, thus accelerating the convergence of the solution while acting as a regularization technique of the inverse problem. Multigrid perturbation samples the probability density function without the requirements for the user to adjust tuning parameters. This increases the probability that the preferred global, rather than a poor local, minimum is attained. Undertaking multigrid refinement and Monte Carlo search in parallel produces more robust convergence than does the initially more intuitive approach of completing them sequentially. We demonstrate the usefulness of the new multigrid Monte Carlo (MGMC) scheme by applying it to (a) synthetic, noise-contaminated data reflecting an isotropic subsurface of constant slowness, horizontally layered geologic media and discrete subsurface anomalies; and (b) a crosshole seismic data set acquired by previous authors at the Reskajeage test site in Cornwall, UK. Inverted distributions of slowness (s) and the Thomson anisotropy parameters (ɛ, δ) compare favourably with those obtained previously using a popular matrix-based method. Reconstruction of the Thomsen ɛ parameter is particularly robust compared to that of slowness and the Thomsen δ parameter, even in the face of complex subsurface anomalies. The Thomsen ɛ and δ parameters have enhanced sensitivities to bulk-fabric and fracture-based anisotropies in the TI medium at Reskajeage. Because reconstruction of slowness (s) is intimately linked to that ɛ and δ in the MGMC scheme, inverted images of phase velocity reflect the integrated

  15. Does gravity help to improve seismic inversion for density?

    NASA Astrophysics Data System (ADS)

    Blom, Nienke; Böhm, Christian; Fichtner, Andreas

    2016-04-01

    Density is one of the most important material properties that influence the dynamics of our planet's interior, and knowledge of it alongside with knowledge of seismic velocities will help constrain composition more directly. However, the variation of density inside the Earth is poorly known. The travel times of seismic waves, the classical tool to probe the Earth's interior, are barely sensitive to density (with large tradeoffs) and gravity is so extremely non-unique that very little information can be extracted from it without placing very strong prior constraints. As a result, density has, up until now, usually only been regarded as a derived quantity, which may lead to erroneous interpretations. Here, we aim to determine to what extent it is possible to image density as an independent parameter using modern geophysical techniques. The main technique is seismic (full) waveform inversion, which is more sensitive to density than travel-times alone, for the simple reason that more information of the seismogram is being used: basically the amplitude and phase of every wiggle. We construct synthetic tests in 2-D where density is a completely independent parameter from S-wave velocity and P-wave velocity - this setup (albeit physically unrealistic) has the advantage that our ability to image density independently is assessed in an unbiased way. We find that it is indeed possible to image density using waveform inversion. If prior information, such as constraints on S- and P-velocity structure, is included in the inversion, the results for density are markedly improved. The use of gravity data as an additional observable, however, deteriorates the inversion results. This is because of the significant non-uniqueness of potential field measurements, so that an unconstrained update based on gravity will only almost definitely work to push the inversion in the wrong direction.

  16. Regularization of inverse planning for intensity-modulated radiotherapy.

    PubMed

    Chvetsov, Alexei V; Calvetti, Daniela; Sohn, Jason W; Kinsella, Timothy J

    2005-02-01

    The performance of a variational regularization technique to improve robustness of inverse treatment planning for intensity modulated radiotherapy is analyzed and tested. Inverse treatment planning is based on the numerical solutions to the Fredholm integral equation of the first kind which is ill-posed. Therefore, a fundamental problem with inverse treatment planning is that it may exhibit instabilities manifested in nonphysical oscillations in the beam intensity functions. To control the instabilities, we consider a variational regularization technique which can be applied for the methods which minimize a quadratic objective function. In this technique, the quadratic objective function is modified by adding of a stabilizing functional that allows for arbitrary order regularization. An optimal form of stabilizing functional is selected which allows for both regularization and good approximation of beam intensity functions. The regularized optimization algorithm is shown, by comparison for a typical case of a head-and-neck cancer treatment, to be significantly more accurate and robust than the standard approach, particularly for the smaller beamlet sizes.

  17. Rotation and inversion in nitrosamines

    NASA Astrophysics Data System (ADS)

    Kirste, Karl; Rademacher, Paul

    1981-04-01

    Geometry optimizations of the ground states as well as of the transition states for internal rotation and inversion have been performed by the semiempirical MNDO method for dimethyl nitrosamine (1), perfluordimethyl nitrosamine (2), N-nitroso aziridine (3), and N-nitroso azetidine (4). It was found that the potential barrier to internal rotation about the N-N bond is always of lower energy than that to inversion on the nitroso nitrogen. While the ground states tend to adopt structures which enable mesomerism, the lowest transition state is characterized by a pyramidal sp3-hybridized amino nitrogen. In accordance with experimental results the low barriers to rotation of 2 (7.96 kcal mol -1), 3 (3.38 kcal mol -1) and 4 (9.97 kcal mol -1) in comparison with 1 (12.54 kcal mol -1) indicate that in donor-acceptor molecules the transfer of charge can be limited by electronic and stereochemical effects. In particular, the equivalence of the α-methylene hydrogens which was observed in the NMR-spectrum of 3 is due to unhindered rotation and ring inveirsion.

  18. Feasibility of a fast inverse dose optimization algorithm for IMRT via matrix inversion without negative beamlet intensities

    SciTech Connect

    Goldman, S.P.; Chen, J.Z.; Battista, J.J.

    2005-09-15

    A fast optimization algorithm is very important for inverse planning of intensity modulated radiation therapy (IMRT), and for adaptive radiotherapy of the future. Conventional numerical search algorithms such as the conjugate gradient search, with positive beam weight constraints, generally require numerous iterations and may produce suboptimal dose results due to trapping in local minima. A direct solution of the inverse problem using conventional quadratic objective functions without positive beam constraints is more efficient but will result in unrealistic negative beam weights. We present here a direct solution of the inverse problem that does not yield unphysical negative beam weights. The objective function for the optimization of a large number of beamlets is reformulated such that the optimization problem is reduced to a linear set of equations. The optimal set of intensities is found through a matrix inversion, and negative beamlet intensities are avoided without the need for externally imposed ad-hoc constraints. The method has been demonstrated with a test phantom and a few clinical radiotherapy cases, using primary dose calculations. We achieve highly conformal primary dose distributions with very rapid optimization times. Typical optimization times for a single anatomical slice (two dimensional) (head and neck) using a LAPACK matrix inversion routine in a single processor desktop computer, are: 0.03 s for 500 beamlets; 0.28 s for 1000 beamlets; 3.1 s for 2000 beamlets; and 12 s for 3000 beamlets. Clinical implementation will require the additional time of a one-time precomputation of scattered radiation for all beamlets, but will not impact the optimization speed. In conclusion, the new method provides a fast and robust technique to find a global minimum that yields excellent results for the inverse planning of IMRT.

  19. Feasibility of a fast inverse dose optimization algorithm for IMRT via matrix inversion without negative beamlet intensities.

    PubMed

    Goldman, S P; Chen, J Z; Battista, J J

    2005-09-01

    A fast optimization algorithm is very important for inverse planning of intensity modulated radiation therapy (IMRT),