Non-Abelian family symmetries as portals to dark matter
NASA Astrophysics Data System (ADS)
de Medeiros Varzielas, I.; Fischer, O.
2016-01-01
Non-Abelian family symmetries offer a very promising explanation for the flavour structure in the Standard Model and its extensions. We explore the possibility that dark matter consists in fermions that transform under a family symmetry, such that the visible and dark sector are linked by the familons - Standard Model gauge singlet scalars, responsible for spontaneously breaking the family symmetry. We study three representative models with non-Abelian family symmetries that have been shown capable to explain the masses and mixing of the Standard Model fermions.
Symmetries of abelian orbifolds
NASA Astrophysics Data System (ADS)
Hanany, Amihay; Seong, Rak-Kyeong
2011-01-01
Using the Polya Enumeration Theorem, we count with particular attention to {{{{mathbb{C}^3}}} left/ {Γ } right.} up to {{{{mathbb{C}^6}}} left/ {Γ } right.} , abelian orbifolds in various dimensions which are invariant under cycles of the permutation group S D . This produces a collection of multiplicative sequences, one for each cycle in the Cycle Index of the permutation group. A multiplicative sequence is controlled by its values on prime numbers and their pure powers. Therefore, we pay particular attention to orbifolds of the form {{{{mathbb{C}^D}}} left/ {Γ } right.} where the order of Γ is p α. We propose a generalization of these sequences for any D and any p.
Anomalous Abelian symmetry in the standard model
Ramond, P.
1995-12-31
The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.
Black holes and Abelian symmetry breaking
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo
2016-09-01
Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector–tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector–tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.
On discrete symmetries for a whole Abelian model
NASA Astrophysics Data System (ADS)
Chauca, J.; Doria, R.
2012-10-01
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {Dμ,Xiμ} and the physical basis {GμI}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {GμI} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
On discrete symmetries for a whole Abelian model
Chauca, J.; Doria, R.
2012-09-24
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Discrete Abelian gauge symmetries and axions
NASA Astrophysics Data System (ADS)
Honecker, Gabriele; Staessens, Wieland
2015-07-01
We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.
Non-Abelian discrete gauge symmetries in F-theory
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego
2016-02-01
The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.
Non-abelian symmetries in tensor networks: A quantum symmetry space approach
Weichselbaum, Andreas
2012-12-15
A general framework for non-abelian symmetries is presented for matrix-product and tensor-network states in the presence of well-defined orthonormal local as well as effective basis sets. The two crucial ingredients, the Clebsch-Gordan algebra for multiplet spaces as well as the Wigner-Eckart theorem for operators, are accounted for in a natural, well-organized, and computationally straightforward way. The unifying tensor-representation for quantum symmetry spaces, dubbed QSpace, is particularly suitable to deal with standard renormalization group algorithms such as the numerical renormalization group (NRG), the density matrix renormalization group (DMRG), or also more general tensor networks such as the multi-scale entanglement renormalization ansatz (MERA). In this paper, the focus is on the application of the non-abelian framework within the NRG. A detailed analysis is presented for a fully screened spin- 3/2 three-channel Anderson impurity model in the presence of conservation of total spin, particle-hole symmetry, and SU(3) channel symmetry. The same system is analyzed using several alternative symmetry scenarios based on combinations of U(1){sub charge}, SU(2){sub spin}, SU(2){sub charge}, SU(3){sub channel}, as well as the enveloping symplectic Sp(6) symmetry. These are compared in detail, including their respective dramatic gain in numerical efficiency. In the Appendix, finally, an extensive introduction to non-abelian symmetries is given for practical applications, together with simple self-contained numerical procedures to obtain Clebsch-Gordan coefficients and irreducible operators sets. The resulting QSpace tensors can deal with any set of abelian symmetries together with arbitrary non-abelian symmetries with compact, i.e. finite-dimensional, semi-simple Lie algebras. - Highlights: Black-Right-Pointing-Pointer We introduce a transparent framework for non-abelian symmetries in tensor networks. Black-Right-Pointing-Pointer The framework was successfully
Neutrino masses and non-abelian horizontal symmetries
NASA Astrophysics Data System (ADS)
Antonelli, V.; Caravaglios, F.; Ferrari, R.; Picariello, M.
2002-12-01
Recently neutrino experiments have made very significant progresses and our knowledge of neutrino masses and mixing has considerably improved. In a model-independent Monte Carlo approach, we have examined a very large class of textures, in the context of non-abelian horizontal symmetries; we have found that neutrino data select only those charged lepton matrices with left-right asymmetric texture. The large atmospheric mixing angle needs m23≃m33. This result, if combined with similar recent findings for the quark sector in the B oscillations, can be interpreted as a hint for SU(5) unification. In the neutrino sector strict neutrino anarchy is disfavored by data, and at least a factor 2 of suppression in the first row and column of the neutrino Majorana mass matrix is required.
NASA Astrophysics Data System (ADS)
Mross, David F.; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-01
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.
NASA Astrophysics Data System (ADS)
Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor
2014-03-01
We consider bosonic abelian Fractional Quantum Hall (FQH) and Fractional Quantum Spin Hall (FQSH) states with edge theories drawn from the ADE Kac Moody algebras at level 1 . This set of systems have `anyonic' symmetries that leave braiding and fusion invariant Remarkably, the group of anyonic symmetries for this class of models is isomorphic to the symmetries of the Dynkin diagrams of the particular ADE Lie Algebra under consideration. The triality symmetry of the Dynkin diagram of so(8) leads to the largest anyonic symmetry group S3 (the permutation group on 3 elements). Each element of the anyonic symmetry group corresponds to a distinct way of gapping out the edge (i.e., each element corresponds to a Lagrangian subgroup). Junctions between two distinct gapped edges host non abelian twist defects with quantum dimensions (> 1). In the case of so(8) we have more exotic twist defects with non-abelian fusion. We acknowledge support from the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02- 07ER46453 (MK, TLH) and the Simons Foundation (JT).
Enhancing Gauge Symmetries of Non-Abelian Supersymmetric Chern-Simons Model
NASA Astrophysics Data System (ADS)
Gharavi, Kh. Bahalke; Monemzadeh, M.; Nejad, S. Abarghouei
2016-07-01
In this article, we study gauge symmetries of the Non-Abelian Supersymmetric Chern-Simons model (SCS) of SU(2) group at (2+1)-dimensions in the framework of the formalism of constrained systems. Since, broken gauge symmetries in this physical system lead to the presence of nonphysical degrees of freedom, the Non-Abelian SCS model is strictly constrained to second-class constraints. Hence, by introducing some auxiliary fields and using finite order BFT method, we obtain a gauge symmetric model by converting second-class constraint to first-class ones. Ultimately, the partition function of the model is obtained in the extended phase space.
Breaking an Abelian gauge symmetry near a black hole horizon
Gubser, Steven S.
2008-09-15
I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.
NASA Astrophysics Data System (ADS)
Gupta, S.; Kumar, R.; Malik, R. P.
2010-11-01
We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the four (3+1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated ( B∧ F) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci-Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion which are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-)BRST symmetry transformations.
NASA Astrophysics Data System (ADS)
Ye, Peng; Gu, Zheng-Cheng
2016-05-01
Symmetry-protected topological phases (SPT) are short-range entangled gapped states protected by global symmetry. Nontrivial SPT phases cannot be adiabatically connected to the trivial disordered state (or atomic insulator) as long as certain global symmetry G is unbroken. At low energies, most of the two-dimensional SPTs with Abelian symmetry can be described by topological quantum field theory (TQFT) of the multicomponent Chern-Simons type. However, in contrast to the fractional quantum Hall effect where TQFT can give rise to interesting bulk anyons, TQFT for SPTs only supports trivial bulk excitations. The essential question in TQFT descriptions for SPTs is to understand how the global symmetry is implemented in the partition function. In this paper, we systematically study TQFT of three-dimensional SPTs with unitary Abelian symmetry (e.g., ZN1×ZN2×... ). In addition to the usual multicomponent B F topological term at level-1, we find that there are new topological terms with quantized coefficients (e.g., a1∧a2∧d a2 and a1∧a2∧a3∧a4 ) in TQFT actions, where a1,a2,... are 1-form U(1) gauge fields. These additional topological terms cannot be adiabatically turned off as long as G is unbroken. By investigating symmetry transformations for the TQFT partition function, we end up with the classification of SPTs that is consistent with the well-known group cohomology approach. We also discuss how to gauge the global symmetry and possible TQFT descriptions of Dijkgraaf-Witten gauge theory.
NASA Astrophysics Data System (ADS)
von Keyserlingk, C. W.; Sondhi, S. L.
2016-06-01
Recent work suggests that a sharp definition of "phase of matter" can be given for some quantum systems out of equilibrium, first for many-body localized systems with time-independent Hamiltonians and more recently for periodically driven or Floquet localized systems. In this work, we propose a classification of the finite Abelian symmetry-protected phases of interacting Floquet localized systems in one dimension. We find that the different Floquet phases correspond to elements of ClG×AG , where ClG is the undriven interacting classification, and AG is a set of (twisted) one-dimensional representations corresponding to symmetry group G . We will address symmetry-broken phases in a subsequent paper C. W. von Keyserlingk and S. L. Sondhi, following paper, Phys. Rev. B 93, 245146 (2016), 10.1103/PhysRevB.93.245146.
Dynamical breakdown of Abelian gauge chiral symmetry by strong Yukawa interactions
Benes, Petr; Brauner, Tomas; Hosek, Jiri
2007-03-01
We consider a model with anomaly-free Abelian gauge axial-vector symmetry, which is intended to mimic the standard electroweak gauge chiral SU(2){sub L}xU(1){sub Y} theory. Within this model we demonstrate: (1) Strong Yukawa interactions between massless fermion fields and a massive scalar field carrying the axial charge generate dynamically the fermion and boson proper self-energies, which are ultraviolet-finite and chirally noninvariant. (2) Solutions of the underlying Schwinger-Dyson equations found numerically exhibit a huge amplification of the fermion mass ratios as a response to mild changes of the ratios of the Yukawa couplings. (3) The 'would-be' Nambu-Goldstone boson is a composite of both the fermion and scalar fields, and it gives rise to the mass of the axial-vector gauge boson. (4) Spontaneous breakdown of the gauge symmetry further manifests by mass splitting of the complex scalar and by new symmetry-breaking vertices, generated at one loop. In particular, we work out in detail the cubic vertex of the Abelian gauge boson.
Abelian gauge symmetries and proton decay in global F-theory GUTs
Grimm, Thomas W.; Weigand, Timo
2010-10-15
The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on the global geometry of the internal Calabi-Yau four-fold and has important phenomenological consequences. We study conceptual and phenomenological aspects of such U(1) symmetries along the Coulomb and the Higgs branch. As one application we examine Abelian gauge factors arising after a certain global restriction of the Tate model that goes beyond a local spectral cover analysis. In SU(5) grand unified theory (GUT) models this mechanism enforces a global U(1){sub X} symmetry that prevents dimension-4 proton decay and allows for an identification of candidate right-handed neutrinos. We invoke a detailed account of the singularities of Calabi-Yau four-folds and their mirror duals starting from an underlying E{sub 8} and E{sub 7}xU(1) enhanced Tate model. The global resolutions and deformations of these singularities can be used as the appropriate framework to analyze F-theory GUT models.
A topological semimetal model with f-wave symmetry in a non-Abelian triangular optical lattice
NASA Astrophysics Data System (ADS)
Li, Ling; Bai, Zhiming; Hao, Ningning; Liu, Guocai
2016-08-01
We demonstrate that an chiral f-wave topological semimetal can be induced in a non-Abelian triangular optical lattice. We show that the f-wave symmetry topological semimetal is characterized by the topological invariant, i.e., the winding number W, with W=3 and is different from the semimetal with W=1 and 2 which have the p-wave and d-wave symmetry, respectively.
NASA Astrophysics Data System (ADS)
Escobar, C. A.; Urrutia, L. F.
2015-07-01
After imposing current conservation together with the Gauss law as initial conditions on the Abelian Nambu model, we prove that the resulting theory is equivalent to standard QED in the nonlinear gauge (AμAμ-n2M2) =0 , to all orders in perturbation theory. We show this by writing both models in terms of the same variables, which produce identical Feynman rules for the interactions and propagators. A crucial point is to verify that the Faddeev-Popov ghosts arising from the gauge fixing procedure in the QED sector decouple to all orders. We verify this decoupling by following a method like that employed in Yang-Mills theories when investigating the behavior of axial gauges. The equivalence between the two theories supports the idea that gauge particles can be envisaged as the Goldstone bosons originating from spontaneous Lorentz symmetry breaking.
Dynamical symmetry breaking, gauge fields, and stability in four-Fermi, non-abelian interactions
Portney, M.N.
1983-01-01
The Nambu model of dynamical breaking of global symmetry is extended to the case of non-abelian SU(N) models. The possible patterns of symmetry breaking are investigated, and the masses of the composite spinless particles are found. Corresponding to each broken generator, this composite is the massless Goldstone boson. When the global symmetries are made local by the addition of gauge fields, the composite pseudoscalar Goldstone bosons disappear and the axial gauge fields become massive. This is analogous to the Higgs mechanism, but without the introduction of fundamental scalar fields. The composite scalar Goldstone bosons remain in the theory, and the vector gauge fields are still massless. This is in agreement with the charge conjugation argument. The stability of the possible solutions is discussed using several criteria. It is concluded that in theories with zero bare mass, if a nontrivial solution exists, the completely symmetric massive solution is realized. If the bare mass is symmetric and non-zero, asymmetric solutions may be found, with corresponding scalar Goldstone composites. These violate the persistent mass condition of Preskill and Weinberg.
Origin of Abelian gauge symmetries in heterotic/F-theory duality
NASA Astrophysics Data System (ADS)
Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng
2016-04-01
We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U( m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU( m) × Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.
NASA Astrophysics Data System (ADS)
Gao, Ya-Jun
2006-01-01
The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein-Maxwell theory with p Abelian gauge fields (EM-p theory, for short). Two EHC structural Riemann-Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(hat p+1,1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme. This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.
NASA Astrophysics Data System (ADS)
Robertson, Christopher; Worth, Graham A.
2015-10-01
The vibronic coupling Hamiltonian is a standard model used to describe the potential energy surfaces of systems in which non-adiabatic coupling is a key feature. This includes Jahn-Teller and Renner-Teller systems. The model approximates diabatic potential energy functions as polynomials expanded about a point of high symmetry. One must ensure the model Hamiltonian belongs to the totally symmetric irreducible representation of this point group. Here, a simple approach is presented to generate functions that form a basis for totally symmetric irreducible representations of non-Abelian groups and apply it to D∞h (2D) and O (3D). For the O group, the use of a well known basis-generating operator is also required. The functions generated for D∞h are then used to construct a ten state, four coordinate model of acetylene. The calculated absorption spectrum is compared to the experimental spectrum to serve as a validation of the approach.
Varieties of Abelian mirror symmetry on {R}{{P}}^2× {{S}}^1
NASA Astrophysics Data System (ADS)
Mori, Hironori; Tanaka, Akinori
2016-02-01
We study 3d mirror symmetry with loop operators, Wilson loop and Vortex loop, and multi-flavor mirror symmetry through utilizing the {R}{{P}}^2× {{S}}^1 index formula. The key identity which makes the above description work well is the mod 2 version of the Fourier analysis, and we study such structure, the S-operation in the context of a SL(2,{Z}) action on 3d SCFTs. We observed that two types of the parity conditions basically associated with gauge symmetries which we call {P} -type and {C}{P} -type are interchanged under mirror symmetry. We will also comment on the T-operation.
Quaternion family symmetry of quarks and leptons
Frigerio, Michele; Ma, Ernest; Kaneko, Satoru; Tanimoto, Morimitsu
2005-01-01
To a first approximation, the quark mixing matrix has {theta}{sub 13}{sup q}={theta}{sub 23}{sup q}=0, whereas the lepton mixing matrix has {theta}{sub 23}{sup l}={pi}/4. We show how this structure may be understood if the family symmetry is Q{sub 8}, the quaternion group of eight elements. We find three viable scenarios for the Majorana neutrino mass matrix, each depending on four parameters and predicting a specific mass spectrum. The phenomenology of the two Higgs doublets which generate the Yukawa sector is analyzed and testable predictions are derived. We discuss also the closely related model based on D{sub 4}, the symmetry group of the square.
Lepton Flavour Violation and electron EDM in SUSY with a non-abelian flavour symmetry
Calibbi, Lorenzo
2008-11-23
We present the lepton sector phenomenology of a supersymmetric flavour model based on a SU(3) horizontal symmetry. This model successfully reproduces the observed fermion masses and mixings, without introducing unacceptably large SUSY sources of flavour and CP violation. We show that the model, which is at present weakly constrained, predicts the electron EDM and {mu}{yields}e,y to be within the final sensitivity of the currently running experiments, at least for SUSY masses within the reach of the LHC.
Supersymmetric parameter space of family symmetries
Velasco-Sevilla, L.
2008-11-23
In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.
Leptonic mixing, family symmetries, and neutrino phenomenology
Medeiros Varzielas, I. de; Gonzalez Felipe, R.; Serodio, H.
2011-02-01
Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.
[Family constellations in theory and practice: on symmetry and complementarity].
Schmidt, H R
1992-11-01
The concepts of "symmetry" and "complementary" of social systems in Bateson and Toman are compared. Bateson describes self-reinforcing cycles of formation of equality and inequality of social systems, whereas Toman means compatibility and incompatibility of social systems according to sibling positions of individuals involved. His concept is important to an empirical family psychology, family diagnosis and family therapy. A family diagnostic case-study shows the practical application. PMID:1470602
Grand unified string theories with SU(3) gauge family symmetry
NASA Astrophysics Data System (ADS)
Maslikov, A. A.; Sergeev, S. M.; Volkov, G. G.
1994-06-01
In the framework of four dimensional heterotic superstring with free fermions we investigate the rank eight Grand Unified String Theories (GUST) which contain the SU(3) H-gauge family symmetry. We explicitly construct GUSTs with gauge symmetry G = SU(5) × U(1) × ( SU(3) × U(1)) H ⊂ SO(16) ⊂ E(8) in free complex fermion formulation. We solve the problem of the GUST symmetry breaking taking for the observable gauge symmetry the diagonal subgroup Gsym of rank 16 group G × G ⊂ SO(16) × SO(16) ⊂ E(8) × E(8). In this approach the observed electromagnetic charge Qem can be viewed as a sum of two Q1- and Q2-charges of each G-group. In this case the model spectrum does not contain particles with exotic fractional charges.
Neutrinos and SU(3) family gauge symmetry
Appelquist, Thomas; Bai Yang; Piai, Maurizio
2006-10-01
We include the standard model (SM) leptons in a recently proposed framework for the generation of quark mass ratios and Cabibbo-Kobayashi-Maskawa (CKM) mixing angles from a SU(3) family gauge interaction. The set of SM singlet scalar fields describing the spontaneous breaking is the same as employed for the quark sector. The imposition at tree level of the experimentally correct Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, in the form of a tri-bi maximal structure, fixes several of the otherwise free parameters and renders the model predictive. The normal hierarchy among the neutrino masses emerges from this scheme.
Supersymmetric musings on the predictivity of family symmetries
Kadota, Kenji; Kersten, Joern; Velasco-Sevilla, Liliana
2010-10-15
We discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. We show that unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. We find that there are specific choices of messenger fields which can improve the predictivity for the soft parameters.
Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2011-04-01
We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.
Quark mixing from Δ (6N2) family symmetry
NASA Astrophysics Data System (ADS)
Ishimori, Hajime; King, Stephen F.; Okada, Hiroshi; Tanimoto, Morimitsu
2015-04-01
We consider a direct approach to quark mixing based on the discrete family symmetry Δ (6N2) in which the Cabibbo angle is determined by a residual Z2 ×Z2 subgroup to be |Vus | = 0.222521, for N being a multiple of 7. We propose a particular model in which unequal smaller quark mixing angles and CP phases may occur without breaking the residual Z2 ×Z2 symmetry. We perform a numerical analysis of the model for N = 14, where small Z2 ×Z2 breaking effects of order 3% are allowed by model, allowing perfect agreement within the uncertainties of the experimentally determined best fit quark mixing values.
NASA Astrophysics Data System (ADS)
Louboutin, Stephane R.
2007-03-01
Let \\{K_m\\} be a parametrized family of simplest real cyclic cubic, quartic, quintic or sextic number fields of known regulators, e.g., the so-called simplest cubic and quartic fields associated with the polynomials P_m(x) Dx^3 -mx^2-(m+3)x+1 and P_m(x) Dx^4 -mx^3-6x^2+mx+1 . We give explicit formulas for powers of the Gaussian sums attached to the characters associated with these simplest number fields. We deduce a method for computing the exact values of these Gaussian sums. These values are then used to efficiently compute class numbers of simplest fields. Finally, such class number computations yield many examples of real cyclotomic fields Q(zeta_p)^+ of prime conductors pge 3 and class numbers h_p^+ greater than or equal to p . However, in accordance with Vandiver's conjecture, we found no example of p for which p divides h_p^+ .
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
Symmetries of Spectral Problems
NASA Astrophysics Data System (ADS)
Shabat, A.
Deriving abelian KdV and NLS hierarchies, we describe non-abelian symmetries and "pre-Lax" elementary approach to Lax pairs. Discrete symmetries of spectral problems are considered in Sect. 4.2. Here we prove Darboux classical theorem and discuss a modern theory of dressing chains.
Progressive gauge U(1) family symmetry for quarks and leptons
NASA Astrophysics Data System (ADS)
Ma, Ernest
2016-08-01
The pattern of quark and lepton mass matrices is unexplained in the standard model of particle interactions. I propose the novel idea of a progressive gauge U (1 ) symmetry where it is a reflection of the regressive electroweak symmetry breaking pattern, caused by an extended Higgs scalar sector. Phenomenological implications of this new hypothesis are discussed.
Köppl, Christoph; Werner, Hans-Joachim
2015-04-28
Electron correlation methods based on symmetry-adapted canonical Hartree-Fock orbitals can be speeded up significantly in the well known group theoretical manner, using the fact that integrals vanish unless the integrand is totally symmetric. In contrast to this, local electron correlation methods cannot benefit from such simplifications, since the localized molecular orbitals (LMOs) generally do not transform according to irreducible representations of the underlying point group symmetry. Instead, groups of LMOs become symmetry-equivalent and this can be exploited to accelerate local calculations. We describe an implementation of such a symmetry treatment for density-fitted local Møller-Plesset perturbation theory, using various types of virtual orbitals: Projected atomic orbitals, orbital specific virtuals, and pair natural orbitals. The savings by the symmetry treatment are demonstrated by calculations for several large molecules having different point group symmetries. Benchmarks for the parallel execution efficiency of our method are also presented.
Symmetries and color symmetries of a family of tilings with a singular point.
Evidente, Imogene F; Felix, Rene P; Loquias, Manuel Joseph C
2015-11-01
Tilings with a singular point are obtained by applying conformal maps on regular tilings of the Euclidean plane and their symmetries are determined. The resulting tilings are then symmetrically colored by applying the same conformal maps on colorings of regular tilings arising from sublattice colorings of the centers of the tiles. In addition, conditions are determined in order that the coloring of a tiling with singularity that is obtained in this manner is perfect. PMID:26522407
Multiflavor QCD* on R_3 * S_1: Studying Transition From Abelian to Non-Abelian Confinement
Shifman, M.; Unsal, M.; /SLAC /Stanford U., Phys. Dept.
2009-03-31
The center-stabilized multiflavor QCD* theories formulated on R{sub 3} x S{sub 1} exhibit both Abelian and non-Abelian confinement as a function of the S{sub 1} radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S{sub 1}), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking ({chi}SB). Unlike one-flavor theories where there is no phase transition in r(S{sub 1}), the multiflavor theories possess a single phase transition associated with breaking of the continuous {chi}S. We conjecture that the scale of the {chi}SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.
Generalised CP and trimaximal TM1 lepton mixing in S4 family symmetry
NASA Astrophysics Data System (ADS)
Li, Cai-Chang; Ding, Gui-Jun
2014-04-01
We construct two flavor models based on S4 family symmetry and generalised CP symmetry. In both models, the S4 family symmetry is broken down to the Z2SU subgroup in the neutrino sector, as a consequence, the trimaximal TM1 lepton mixing is produced. Depending on the free parameters in the flavon potential, the Dirac CP is predicted to be either conserved or maximally broken, and the Majorana CP phases are trivial. The two models differ in the neutrino sector. The flavon fields are involved in the Dirac mass terms at leading order in the first model, and the neutrino mass matrix contains three real parameters such that the absolute neutrino masses are fixed. Nevertheless, the flavon fields enter into the Majorana mass terms at leading order in the second model. The leading order lepton mixing is of the tri-bimaximal form which is broken down to TM1 by the next to leading order contributions.
Conservation laws of equation family with same Kac-Moody-Virasoro symmetry
NASA Astrophysics Data System (ADS)
Jia, Man; Gao, Yuan; Lou, S. Y.
2010-04-01
We construct conservation laws of the equation family which possesses the same infinite dimensional Kac-Moody-Virasoro symmetry algebra as the Kadomtsev-Petviashvili (KP) equation. The conservation laws are calculated up to second-order group invariants and described by two arbitrary functions of six variables and one arbitrary function with four variables.
Abelian 3-form gauge theory: Superfield approach
NASA Astrophysics Data System (ADS)
Malik, R. P.
2012-09-01
We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora-Tonin's superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our homage to Victor I. Ogievetsky (1928-1996), who was one of the inventors of Abelian 2-form (antisymmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian 3-form gauge theory within the framework of BRST formalism and establish that the existence of the (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is the hallmark of any arbitrary p-form gauge theory (discussed within the framework of BRST formalism).
Insights from Three Flavors to Three Families Based on Compositeness and Symmetry
NASA Astrophysics Data System (ADS)
Wu, Y.
The concepts of compositeness and symmetry on the microstructure of matter have had a significant influence on the quest for the origin of particles and the universe. The studies on the property and phenomenology of hadrons as composite particles have led many insights and discoveries in particle physics, such as flavor symmetry, chiral symmetry, PCAC, strong interaction, dynamical symmetry breaking, indirect and direct CP violations, quark model from three flavors to three families, chiral dynamical model, quantum chromodynamics, quark confinement. I briefly present some interesting progresses and insights made in our group based on compositeness and symmetry. It can be seen that both the indirect and direct CP symmetry violation in kaon decays as well as the isospin Delta I = 1/2 selection rule can simultaneously be explained in the standard model with the Kobayashi-Maskawa CP-violating phase and the chiral dynamic loop effect. We present a brief description on the symmetry-preserving loop regularization (LORE) method which is realized in four dimensional space-time. The LORE method introduces two energy scales and maintains the initial divergence behavior, which overcomes some shortages in other regularization schemes. A chiral dynamical model of QCD can be derived by using the LORE method to understand the spontaneous chiral symmetry breaking via the dynamically generated composite Higgs potential, which can provide a consistent prediction for the mass spectra of both the nonet scalar and pseudoscalar ground state mesons. By extending such a model to a chiral thermodynamic model with the closed-time-path Green function approach, it enables us to characterize the critical behavior of QCD and the restoration of chiral symmetry breaking.
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Dynamical non-Abelian two-form: BRST quantization
Lahiri, A.
1997-04-01
When an antisymmetric tensor potential is coupled to the field strength of a gauge field via a BANDF coupling and a kinetic term for B is included, the gauge field develops an effective mass. The theory can be made invariant under a non-Abelian vector gauge symmetry by introducing an auxiliary vector field. The covariant quantization of this theory requires ghosts for ghosts. The resultant theory including gauge fixing and ghost terms is BRST invariant by construction, and therefore unitary. The construction of the BRST-invariant action is given for both Abelian and non-Abelian models of mass generation. {copyright} {ital 1997} {ital The American Physical Society}
Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s(±) wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface "hot-spots" in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s(±) wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
Infrared Maximally Abelian Gauge
Mendes, Tereza; Cucchieri, Attilio; Mihara, Antonio
2007-02-27
The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.
Bell diagonal states with maximal Abelian symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2010-12-15
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a by-product, we generalize the well-known construction provided by Horodecki et al. [Phys. Rev. Lett. 82, 1056 (1999)] for d=3. It is hoped that these states with known separability and entanglement properties may be used to test various notions in entanglement theory.
Multiflavor QCD∗ on R3 ×S1: Studying transition from Abelian to non-Abelian confinement
NASA Astrophysics Data System (ADS)
Shifman, M.; Ünsal, M.
2009-11-01
The center-stabilized multiflavor QCD∗ theories formulated on R3 ×S1 exhibit both Abelian and non-Abelian confinement as a function of the S1 radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r (S1), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking (χSB). Unlike one-flavor theories where there is no phase transition in r (S1), the multiflavor theories possess a single phase transition associated with breaking of the continuous χS. We conjecture that the scale of the χSB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.
Discrete flavour symmetries from the Heisenberg group
NASA Astrophysics Data System (ADS)
Floratos, E. G.; Leontaris, G. K.
2016-04-01
Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.
SU (3)F gauge family model and new symmetry breaking scale from FCNC processes
NASA Astrophysics Data System (ADS)
Bao, Shou-Shan; Liu, Zhuo; Wu, Yue-Liang
2016-03-01
Based on the SU (3)F gauge family symmetry model which was proposed to explain the observed mass and mixing pattern of neutrinos, we investigate the symmetry breaking, the mixing pattern in quark and lepton sectors, and the contribution of the new gauge bosons to some flavour changing neutral currents (FCNC) processes at low energy. With the current data of the mass differences in the neutral pseudo-scalar P0-Pbar0 systems, we find that the SU (3)F symmetry breaking scale can be as low as 300 TeV and the mass of the lightest gauge boson be about 100 TeV. Other FCNC processes, such as the lepton flavour number violation process μ- →e-e+e- and the semi-leptonic rare decay K → π ν bar ν, contain contributions via the new gauge bosons exchanging. With the constrains obtained from P0-Pbar0 system, we estimate that the contribution of the new physics is around 10-16, far below the current experimental bounds.
An Exact Chiral Spin Liquid with Non-Abelian Anyons
Yao, Hong
2010-04-06
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number {+-}1) CSL obey non-Abelian statistics.
Flavor symmetry based MSSM: Theoretical models and phenomenological analysis
NASA Astrophysics Data System (ADS)
Babu, K. S.; Gogoladze, Ilia; Raza, Shabbar; Shafi, Qaisar
2014-09-01
We present a class of supersymmetric models in which symmetry considerations alone dictate the form of the soft SUSY breaking Lagrangian. We develop a class of minimal models, denoted as sMSSM—for flavor symmetry-based minimal supersymmetric standard model—that respect a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry H which suppresses SUSY-induced flavor violation. Explicit examples are constructed with the flavor symmetry being gauged SU(2)H and SO(3)H with the three families transforming as 2+1 and 3 representations, respectively. A simple solution is found in the case of SU(2)H for suppressing the flavor violating D-terms based on an exchange symmetry. Explicit models based on SO(3)H without the D-term problem are developed. In addition, models based on discrete non-Abelian flavor groups are presented which are automatically free from D-term issues. The permutation group S3 with a 2+1 family assignment, as well as the tetrahedral group A4 with a 3 assignment are studied. In all cases, a simple solution to the SUSY CP problem is found, based on spontaneous CP violation leading to a complex quark mixing matrix. We develop the phenomenology of the resulting sMSSM, which is controlled by seven soft SUSY breaking parameters for both the 2+1 assignment and the 3 assignment of fermion families. These models are special cases of the phenomenological MSSM (pMSSM), but with symmetry restrictions. We discuss the parameter space of sMSSM compatible with LHC searches, B-physics constraints and dark matter relic abundance. Fine-tuning in these models is relatively mild, since all SUSY particles can have masses below about 3 TeV.
Condensing Non-Abelian Quasiparticles
Hermanns, M.
2010-02-05
A most interesting feature of certain fractional quantum Hall states is that their quasiparticles obey non-Abelian fractional statistics. So far, candidate non-Abelian wave functions have been constructed from conformal blocks in cleverly chosen conformal field theories. In this work we present a hierarchy scheme by which we can construct daughter states by condensing non-Abelian quasiparticles (as opposed to quasiholes) in a parent state, and show that the daughters have a non-Abelian statistics that differs from the parent. In particular, we discuss the daughter of the bosonic, spin-polarized Moore-Read state at nu=4/3 as an explicit example.
On whole Abelian model dynamics
Chauca, J.; Doria, R.
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.
NASA Astrophysics Data System (ADS)
Bagderina, Yulia Yu
2016-04-01
Scalar second-order ordinary differential equations with cubic nonlinearity in the first-order derivative are considered. Lie symmetries admitted by an arbitrary equation are described in terms of the invariants of this family of equations. Constructing the first integrals is discussed. We study also the equations which have the first integral rational in the first-order derivative.
Abelian p-form (p = 1, 2, 3) gauge theories as the field theoretic models for the Hodge theory
NASA Astrophysics Data System (ADS)
Kumar, R.; Krishna, S.; Shukla, A.; Malik, R. P.
2014-09-01
Taking the simple examples of an Abelian 1-form gauge theory in two (1+1)-dimensions, a 2-form gauge theory in four (3+1)-dimensions and a 3-form gauge theory in six (5+1)-dimensions of space-time, we establish that such gauge theories respect, in addition to the gauge symmetry transformations that are generated by the first-class constraints of the theory, additional continuous symmetry transformations. We christen the latter symmetry transformations as the dual-gauge transformations. We generalize the above gauge and dual-gauge transformations to obtain the proper (anti-)BRST and (anti-)dual-BRST transformations for the Abelian 3-form gauge theory within the framework of BRST formalism. We concisely mention such symmetries for the 2D free Abelian 1-form and 4D free Abelian 2-form gauge theories and briefly discuss their topological aspects in our present endeavor. We conjecture that any arbitrary Abelian p-form gauge theory would respect the above cited additional symmetry in D = 2p(p = 1, 2, 3, …) dimensions of space-time. By exploiting the above inputs, we establish that the Abelian 3-form gauge theory, in six (5+1)-dimensions of space-time, is a perfect model for the Hodge theory whose discrete and continuous symmetry transformations provide the physical realizations of all aspects of the de Rham cohomological operators of differential geometry. As far as the physical utility of the above nilpotent symmetries is concerned, we demonstrate that the 2D Abelian 1-form gauge theory is a perfect model of a new class of topological theory and 4D Abelian 2-form as well as 6D Abelian 3-form gauge theories are the field theoretic models for the quasi-topological field theory.
Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence
NASA Astrophysics Data System (ADS)
Lopez-Arcos, Cristhiam; Murugan, Jeff; Nastase, Horatiu
2016-05-01
We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in [1], obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an N=2 Super-Schrödinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this (2 + 1)-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.
Origin of families and S O (18 ) grand unification
NASA Astrophysics Data System (ADS)
BenTov, Yoni; Zee, A.
2016-03-01
We exploit a recent advance in the study of interacting topological superconductors to propose a solution to the family puzzle of particle physics in the context of S O (18 ) [or more correctly, Spin(18 )] grand unification. We argue that Yukawa couplings of intermediate strength may allow the mirror matter and extra families to decouple at arbitrarily high energies. As was clear from the existing literature, we have to go beyond the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry breaking which results in the S U (5 ) grand unified theory with horizontal or family symmetry U S p (4 )=Spin(5 ) [or more loosely, S O (5 )] leaves exactly three light families of matter and seems particularly appealing. We comment briefly on an alternative scheme involving discrete non-Abelian family symmetries. In a few lengthy Appendices we review some of the pertinent condensed matter theory.
Theory of nodal s^{±}-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T_{c} superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
Linear resistivity from non-abelian black holes
NASA Astrophysics Data System (ADS)
Herzog, Christopher P.; Huang, Kuo-Wei; Vaz, Ricardo
2014-11-01
Starting with the holographic p-wave superconductor, we show how to obtain a finite DC conductivity through a non-abelian gauge transformation. The translational symmetry is preserved. We obtain phenomenological similarities with high temperature cuprate superconductors. Our results suggest that a lattice or impurities are not essential to produce a finite DC resistivity with a linear temperature dependence. An analogous field theory calculation for free fermions, presented in the appendix, indicates our results may be a special feature of strong interactions.
Family Triads in Conflict: The Case for Symmetry of Communication Styles.
ERIC Educational Resources Information Center
Parker, Rhonda G.; And Others
1996-01-01
Examines family members' use of conflict styles within family triads in the launching stage of the family life cycle. Compares use of conflict style across family members. Indicates that most families use symmetrically integrative conflict styles--use of distributive or passive-indirect styles saw less openness of communication. Suggests an…
Generalized C P and Δ (3 n2) family symmetry for semidirect predictions of the PMNS matrix
NASA Astrophysics Data System (ADS)
Ding, Gui-Jun; King, Stephen F.
2016-01-01
The generalized C P transformations can only be consistently defined in the context of Δ (3 n2) lepton symmetry if a certain subset of irreducible representations are present in a model. We perform a comprehensive analysis of the possible automorphisms and the corresponding C P transformations of the Δ (3 n2) group. It is sufficient to only consider three automorphisms if n is not divisible by 3 while an additional eight types of C P transformations could be imposed for the case of n divisible by 3. We study the lepton mixing patterns which can be derived from the Δ (3 n2) family symmetry and generalized C P in the semidirect approach. The PMNS matrix is determined to be the trimaximal pattern for all the possible C P transformations, and it can only take two distinct forms.
Coverings of topological semi-abelian algebras
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Demir, Serap
2016-08-01
In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.
Two-component Abelian sandpile models.
Alcaraz, F C; Pyatov, P; Rittenberg, V
2009-04-01
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches. PMID:19518280
Introducing Abelian Groups Using Bullseyes and Jenga
ERIC Educational Resources Information Center
Smith, Michael D.
2016-01-01
The purpose of this article is to share a new approach for introducing students to the definition and standard examples of Abelian groups. The definition of an Abelian group is revised to include six axioms. A bullseye provides a way to visualize elementary examples and non-examples of Abelian groups. An activity based on the game of Jenga is used…
Topologically Massive Non-Abelian Theory:. Superfield Approach
NASA Astrophysics Data System (ADS)
Krishna, S.; Shukla, A.; Malik, R. P.
We apply the well-established techniques of geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism in the context of four (3+1)-dimensional (4D) dynamical non-Abelian 2-form gauge theory by exploiting its inherent "scalar" and "vector" gauge symmetry transformations and derive the corresponding off-shell nilpotent and absolutely anticommuting BRST and anti-BRST symmetry transformations. Our approach leads to the derivation of three (anti-)BRST invariant Curci-Ferrari (CF)-type restrictions that are found to be responsible for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations. We derive the coupled Lagrangian densities that respect the (anti-)BRST symmetry transformations corresponding to the "vector" gauge transformations. We also capture the (anti-)BRST invariance of the CF-type restrictions and coupled Lagrangian densities within the framework of our superfield approach. We obtain, furthermore, the off-shell nilpotent (anti-)BRST symmetry transformations when the (anti-)BRST symmetry transformations corresponding to the "scalar" and "vector" gauge symmetries are merged together. These off-shell nilpotent "merged" (anti-)BRST symmetry transformations are, however, found to be non-anticommuting in nature.
Unified framework of topological phases with symmetry
NASA Astrophysics Data System (ADS)
Gu, Yuxiang; Hung, Ling-Yan; Wan, Yidun
2014-12-01
In topological phases in 2 +1 dimensions, anyons fall into representations of quantum group symmetries. As proposed in our work [Hung and Wan, Int. J. Mod. Phys. B 28, 1450172 (2014), 10.1142/S0217979214501720], the physics of a symmetry enriched phase can be extracted by the mathematics of (hidden) quantum group symmetry breaking of a "parent phase." This offers a unified framework and classification of the symmetry enriched (topological) phases, including symmetry protected trivial phases as well. In this paper, we extend our investigation to the case where the "parent" phases are non-Abelian topological phases. We show explicitly how one can obtain the topological data and symmetry transformations of the symmetry enriched phases from that of the "parent" non-Abelian phase. Two examples are computed: (1) the Ising×Ising¯ phase breaks into the Z2 toric code with Z2 global symmetry; (2) the SU (2) 8 phase breaks into the chiral Fibonacci × Fibonacci phase with a Z2 symmetry, a first non-Abelian example of symmetry enriched topological phase beyond the gauge-theory construction.
Inverse avalanches on Abelian sandpiles
Chau, H.F. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 )
1994-11-01
A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles, called the inverse particle addition operator, is presented. In addition, the method is shown to be optimal in the sense that it requires the minimum amount of computation among methods of the same kind. The method is also conceptually succinct because avalanche and inverse avalanche are placed in the same footing.
Dyonic String-Like Solution in a Non-Abelian Gauge Theory with Two Potentials
NASA Astrophysics Data System (ADS)
Tripathi, Buddhi Vallabh; Nandan, Hemwati; Purohit, K. D.
2016-04-01
Axially symmetric dyon solutions of a non-Abelian gauge theory model with two potentials are sought. While seeking axially symmetric (flux tube like solutions) for the model, we stumbled upon an exact solution which represents an infinite string-like dyonic configuration with cylindrical symmetry.
Gauge invariance for a whole Abelian model
Chauca, J.; Doria, R.; Soares, W.
2012-09-24
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.
Globally symmetric topological phase: from anyonic symmetry to twist defect.
Teo, Jeffrey C Y
2016-04-13
Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. PMID:26953520
Globally symmetric topological phase: from anyonic symmetry to twist defect
NASA Astrophysics Data System (ADS)
Teo, Jeffrey C. Y.
2016-04-01
Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases.
Non-Abelian gauge redundancy and entropic ambiguities
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.
2015-04-01
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 × 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.
Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.
2016-03-01
In this paper, I analyze numerically the behaviour of the solutions corresponding to an Abelian string in the framework of the Starobinsky model. The role played by the quadratic term in the Lagrangian density f(R)=R+η {R}2 of this model is emphasized and the results are compared with the corresponding ones obtained in the framework of Einstein’s theory of gravity. I have found that the angular deficit generated by the string is lowered as the η parameter increases, allowing a well-behaved spacetime for a large range of values of the symmetry-breaking scale.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
NASA Astrophysics Data System (ADS)
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-01
To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine-tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic C P violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-25
In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark andmore » lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.« less
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Ruostekoski, Janne
2016-05-01
We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.
Mixed symmetry tensors in the worldline formalism
NASA Astrophysics Data System (ADS)
Corradini, Olindo; Edwards, James P.
2016-05-01
We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U( F ) "flavour" symmetry on the world-line particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.
Family nonuniversal U(1){sup '} gauge symmetries and b{yields}s transitions
Barger, Vernon; Everett, Lisa; Jiang Jing; Langacker, Paul; Liu Tao; Wagner, Carlos E. M.
2009-09-01
We present a correlated analysis for the {delta}B=1, 2 processes which occur via b{yields}s transitions within models with a family nonuniversal U(1){sup '}. We take a model-independent approach and only require family universal charges for the first and second generations and small fermion mixing angles. The results of our analysis show that within this class of models, the anomalies in B{sub s}-B{sub s} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d}{yields}({pi},{phi},{eta}{sup '},{rho},{omega},f{sub 0})K{sub S} decays can be accommodated.
Family non-universal U(1)' gauge symmetries and b {r_arrow} s transitions.
Barger, V.; Everett, L.; Jiang, J.; Langacker, P.; Liu, T.; Wagner, C .E. M.; High Energy Physics; Univ. of Chicago; Univ. of Wisconsin at Madison; Inst. for Advanced Study
2009-01-01
We present a correlated analysis for the {Delta}B = 1, 2 processes which occur via b {yields} s transitions within models with a family nonuniversal U(1){prime}. We take a model-independent approach and only require family universal charges for the first and second generations and small fermion mixing angles. The results of our analysis show that within this class of models, the anomalies in B{sub s}-B{sub s}{sup -} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d} {yields} ({pi},{psi},{eta}{prime},{rho},{omega},f{sub 0})K{sub S} decays can be accommodated.
Fun with the Abelian Higgs model
NASA Astrophysics Data System (ADS)
Malinský, Michal
2013-05-01
In calculations of the elementary scalar spectra of spontaneously broken gauge theories there are a number of subtleties which, though it is often unnecessary to deal with them in the order-of-magnitude type of calculations, have to be taken into account if fully consistent results are sought for. Within the "canonical" effective-potential approach these are, for instance: the need to handle infinite series of nested commutators of derivatives of field-dependent mass matrices, the need to cope with spurious IR divergences emerging in the consistent leading-order approximation and, in particular, the need to account for the fine interplay between the renormalization effects in the one- and two-point Green functions which, indeed, is essential for the proper stable vacuum identification and, thus, for the correct interpretation of the results. In this note we illustrate some of these issues in the realm of the minimal Abelian Higgs model and two of its simplest extensions including extra heavy scalars in the spectrum in attempt to exemplify the key aspects of the usual "hierarchy problem" lore in a very specific and simple setting. We emphasize that, regardless of the omnipresent polynomial cut-off dependence in the one-loop corrections to the scalar two-point function, the physical Higgs boson mass is always governed by the associated symmetry-breaking VEV and, as such, it is generally as UV-robust as all other VEV-driven masses in the theory.
Non-Abelian vortices and non-Abelian statistics
Lo, H.; Preskill, J. )
1993-11-15
We study the interactions of non-Abelian vortices in two spatial dimensions. These interactions have novel features, because the Aharonov-Bohm effect enables a pair of vortices to exchange quantum numbers. The cross section for vortex-vortex scattering is typically a multivalued function of the scattering angle. There can be an exchange contribution to the vortex-vortex scattering amplitude that adds coherently with the direct amplitude, even if the two vortices have distinct quantum numbers. Thus two vortices can be indistinguishable'' even though they are not the same.
Abelian and non-abelian D-brane effective actions
NASA Astrophysics Data System (ADS)
Koerber, P.
2004-09-01
In this Ph.D. thesis, accepted at the Vrije Universiteit Brussel, we review and elaborate on a method to find the D-brane effective action, based on BPS equations. Firstly, both for the Yang-Mills action and the Born-Infeld action it is shown that these configurations are indeed BPS, i.e. solutions to these equations saturate a Bogomolny bound and leave some supersymmetry unbroken. Next, we use the BPS equations as a tool to construct the D-brane effective action and require that (a deformation of) these equations should still imply the equations of motion in more general cases. In the abelian case we managed to calculate all order in four-derivative corrections to the effective action and the BPS equations while in the non-abelian case we obtained the effective action up to order 4. Furthermore, we discuss a check based on the spectrum of strings stretching between intersecting branes. Finally, this Ph.D. thesis also discusses the construction of a boundary superspace which would be the first step to use the method of Weyl invariance in N = 2 superspace in order to again construct the D-brane effective action. A more detailed summary of each section can be found in the introduction.
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
Symmetries and vanishing couplings in string-derived low energy effective field theory
Kobayashi, Tatsuo
2012-07-27
We study 4D low-energy effective field theory, derived from heterotic string theory on the orbifolds. In particular, we study Abelian and non-Abelian discrete symmetries and their anomalies. Furthermore, stringy computations also provide with stringy coupling selection rules.
NASA Astrophysics Data System (ADS)
Ortín, Tomás; Ramírez, Pedro F.
2016-09-01
We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.
NASA Astrophysics Data System (ADS)
Barker, J. A. T.; Singh, D.; Thamizhavel, A.; Hillier, A. D.; Lees, M. R.; Balakrishnan, G.; Paul, D. McK.; Singh, R. P.
2015-12-01
The superconductivity of the noncentrosymmetric compound La7 Ir3 is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature Tc=2.25 K —a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La7 Ir3 may be unconventional and paves the way for further studies of this family of materials.
A 3-3-1 model with right-handed neutrinos based on the Δ ( 27) family symmetry
NASA Astrophysics Data System (ADS)
Hernández, A. E. Cárcamo; Long, H. N.; Vien, V. V.
2016-05-01
We present the first multiscalar singlet extension of the original 3-3-1 model with right-handed neutrinos, based on the Δ ( 27) family symmetry, supplemented by the Z4⊗ Z8⊗ Z_{14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ ( 27) ⊗ Z4⊗ Z8⊗ Z_{14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m_{β β }= 22 meV, a leptonic Dirac CP violating phase of 34°, and a Jarlskog invariant of about 10^{-2} for the inverted neutrino mass spectrum.
Neutrino transitional magnetic moment and non-Abelian discrete symmetry
Chang, D. Fermi National Laboratory, P.O. Box 500, Batavia, IL ); Keung, W. Fermi National Laboratory, P.O. Box 500, Batavia, IL ); Senjanovic, G. Bartol Research Institute, University of Delaware, Newark, DE )
1990-09-01
We propose a mechanism which naturally will give rise to a small mass but a large transitional magnetic moment for the neutrino such that the solar-neutrino deficit problem can be explained. The idea is a discrete version of Voloshin's SU(2) mechanism. An example of such a mechanism using the quaternion group is illustrated.
Adler, S.L.
1999-01-01
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z{sub 6} chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S{sub 3} cyclic permutation symmetry the three-Higgs-doublet model gives a {open_quotes}democratic{close_quotes} mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates {ital CP}, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
Abelian link invariants and homology
Guadagnini, Enore; Mancarella, Francesco
2010-06-15
We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the Abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link--in a generic manifold M--is homologically trivial, the associated observables coincide with the observables of the sphere S{sup 3}. Finally, we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.
Symmetry fractionalization and twist defects
NASA Astrophysics Data System (ADS)
Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz
2016-03-01
Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.
Abelian and non-Abelian bosonization: The operator solution of the WZW. sigma. model
do Amaral, R.L.P.G. ); Stephany Ruiz, J.E. )
1991-03-15
The complete equivalence between the Abelian and the non-Abelian bosonization formalisms for the treatment of SU({ital N}) fermions in two dimensions is analyzed and the operator solution of the Wess-Zumino-Witten nonlinear {sigma} model, written in terms of the scalar fields of the non-Abelian construction, is obtained. The importance of the order and disorder operators is stressed. In particular, they are used to show that an adequate reinterpretation of Mandelstam's formula gives the fermion representation in the non-Abelian bosonization formalism.
Minimal non-Abelian model of atomic dark matter
NASA Astrophysics Data System (ADS)
Choquette, Jeremie; Cline, James M.
2015-12-01
A dark sector resembling the Standard Model, where the abundance of matter is explained by baryon and lepton asymmetries and stable constituents bind to form atoms, is a theoretically appealing possibility. We show that a minimal model with a hidden SU(2) gauge symmetry broken to U(1), with a Dirac fermion doublet, suffices to realize this scenario. Supplemented with a dark Higgs doublet that gets no vacuum expectation value, we readily achieve the dark matter asymmetry through leptogenesis. The model can simultaneously have three portals to the Standard Model, through the Higgs, non-Abelian kinetic mixing, and the heavy neutrino, with interesting phenomenology for direct and collider searches, as well as cosmologically relevant dark matter self-interactions. Exotic bound states consisting of two fermions and a doubly charged vector boson can exist in one phase of the theory.
Non-Abelian gauge field theory in scale relativity
NASA Astrophysics Data System (ADS)
Nottale, Laurent; Célérier, Marie-Noëlle; Lehner, Thierry
2006-03-01
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the "scale-space." We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.
Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P
2015-12-31
The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials. PMID:26765016
Dynamical flavor origin of ZN symmetries
NASA Astrophysics Data System (ADS)
Sierra, D. Aristizabal; Dhen, Mikaël; Fong, Chee Sheng; Vicente, Avelino
2015-05-01
Discrete Abelian symmetries (ZN ) are a common "artifact" of beyond the standard model physics models. They provide different avenues for constructing consistent scenarios for lepton and quark mixing patterns, radiative neutrino mass generation as well as dark matter stabilization. We argue that these symmetries can arise from the spontaneous breaking of the Abelian U (1 ) factors contained in the global flavor symmetry transformations of the gauge-invariant kinetic Lagrangian. This will be the case provided the ultraviolet completion responsible for the Yukawa structure involves scalar fields carrying nontrivial U (1 ) charges. Guided by minimality criteria, we demonstrate the viability of this approach with two examples: first, we derive the "scotogenic" model Lagrangian, and second, we construct a setup where the spontaneous symmetry-breaking pattern leads to a Z3 symmetry which enables dark matter stability as well as neutrino mass generation at the two-loop order. This generic approach can be used to derive many other models, with residual ZN or ZN1×⋯×ZNk symmetries, establishing an intriguing link between flavor symmetries, neutrino masses and dark matter.
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-01
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.
Non-Abelian Braiding of Light.
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-12
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965
ERIC Educational Resources Information Center
Forsythe, Susan K.
2015-01-01
This article describes a project using Design Based Research methodology to ascertain whether a pedagogical task based on a dynamic figure designed in a Dynamic Geometry Software (DGS) program could be instrumental in developing students' geometrical reasoning. A dragging strategy which I have named "Dragging Maintaining Symmetry" (DMS)…
Light supersymmetric axion in an anomalous Abelian extension of the standard model
Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone
2009-08-01
We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.
Non-Abelian topological spin liquids from arrays of quantum wires or spin chains
NASA Astrophysics Data System (ADS)
Huang, Po-Hao; Chen, Jyong-Hao; Gomes, Pedro R. S.; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
2016-05-01
We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the construction can use either quantum wires or quantum spin chains as building blocks, with the same end result. The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are described by conformal field theories (CFT) in (1 +1 ) -dimensional space and time. We consider both the cases where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models with central charges c <1 . These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian, nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold way classification of two-dimensional noninteracting topological insulators using the Majorana representation that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting the number of null singular values of a mass matrix, with gapless edge modes present when left and right null eigenvectors exist.
a Note on the - Invariant Lagrangian Densities for the Free Abelian 2-FORM Gauge Theory
NASA Astrophysics Data System (ADS)
Gupta, Saurabh; Malik, R. P.
We show that the previously known off-shell nilpotent (s(a)b2 = 0) and absolutely anticommuting (sb sab + sab sb = 0) Becchi-Rouet-Stora-Tyutin (BRST) transformations (sb) and anti-BRST transformations (sab) are the symmetry transformations of the appropriate Lagrangian densities of a four (3+1)-dimensional (4D) free Abelian 2-form gauge theory which do not explicitly incorporate a very specific constrained field condition through a Lagrange multiplier 4D vector field. The above condition, which is the analogue of the Curci-Ferrari restriction of the non-Abelian 1-form gauge theory, emerges from the Euler-Lagrange equations of motion of our present theory and ensures the absolute anticommutativity of the transformations s(a)b. Thus, the coupled Lagrangian densities, proposed in our present investigation, are aesthetically more appealing and more economical.
Static potential from spontaneous breaking of scale symmetry
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Guendelman, Eduardo; Spallucci, Euro
2007-05-01
We determine the static potential for a heavy quark-antiquark pair from the spontaneous symmetry breaking of scale invariance in a non-Abelian gauge theory. Our calculation is done within the framework of the gauge-invariant, path-dependent, variables formalism. The result satisfies the 't Hooft basic criterion for achieving confinement.
PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2016-05-01
We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being iA_{μ } rather than A_{μ } itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions is obtained. Through the use of torsion we obtain a metricated theory of electromagnetism that treats its electric and magnetic sectors symmetrically, with a conformal invariant theory of gravity being found to emerge. An extension to the non-Abelian case is provided.
Asymptotically free scaling solutions in non-Abelian Higgs models
NASA Astrophysics Data System (ADS)
Gies, Holger; Zambelli, Luca
2015-07-01
We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.
Maximal Abelian subalgebras of pseudoeuclidean real Lie algebras and their application in physics
NASA Astrophysics Data System (ADS)
Thomova, Zora
1998-12-01
We construct the conjugacy classes of maximal abelian subalgebras (MASAs) of the real pseudoeuclidean Lie algebras e(p, q) under the conjugation by the corresponding pseudoeuclidean Lie groups E(p, q). The algebra e( p, q) is a semi-direct sum of the pseudoorthogonal algebra o(p, q) and the abelian ideal of translations T(p + q). We use this particular structure to construct first the splitting MASAs, which are themselves direct sums of subalgebras of o(p, q) and T(p + q). Splitting MASAs give rise to the nonsplitting MASAs of e(p, q). The results for q = 0, 1 and 2 are entirely explicit. MASAs of e(p, 0) and e( p, 1) are used to construct conformally nonequivalent coordinate systems in which the wave equation and Hamilton-Jacobi equations allow the separation of variables. As an application of subgroup classification we perform symmetry reduction for two nonlinear partial differential equations. The method of symmetry reduction is used to obtain analytical solutions of the Landau-Lifshitz and a nonlinear diffusion equations. The symmetry group is found for both equations and all two-dimensional subgroups are classified. These are used to reduce both equations to ordinary differential equations, which are solved in terms of elliptic functions.
S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group
NASA Astrophysics Data System (ADS)
Schroers, B. J.; Bais, F. A.
1998-12-01
It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.
The Abelian Higgs model and a minimal length in an un-particle scenario
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Spallucci, Euro
2014-01-01
We consider both the Abelian Higgs model and the impact of a minimal length in the un-particle sector. It is shown that even if the Higgs field takes a non-vanishing vacuum expectation value (v.e.v.), gauge interaction keeps its long-range character leading to an effective gauge symmetry restoration. The effect of a quantum-gravity-induced minimal length on a physical observable is then estimated by using a physically based alternative to the usual Wilson loop approach. Interestingly, we obtain an ultraviolet finite interaction energy described by a confluent hypergeometric function, which shows a remarkable richness of behavior.
Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan
There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.
Heterotic non-Abelian string of a finite length
NASA Astrophysics Data System (ADS)
Monin, S.; Shifman, M.; Yung, A.
2016-06-01
We consider non-Abelian strings in N =2 supersymmetric quantum chromodynamics (QCD) with the U (N ) gauge group and Nf=N quark flavors deformed by a mass term for the adjoint matter. This deformation breaks N =2 supersymmetry down to N =1 . Dynamics of orientational zero modes on the string world sheet are described then by C P (N -1 ) model with N =(0 ,2 ) supersymmetry. We study the string of a finite length L assuming compactification on a cylinder (periodic boundary conditions). The world-sheet theory is solved in the large-N approximation. At N =∞ we find a rich phase structure in the (L ,u ) plane where u is a deformation parameter. At large L and intermediate u we find a phase with broken Z2 N symmetry, N vacua and a mass gap. At large values of L and u still larger we have the Z2 N-symmetric phase with a single vacuum and massless fermions. In both phases N =(0 ,2 ) supersymmetry is spontaneously broken. We also observe a phase with would-be broken SU (N ) symmetry at small L (it is broken only for N =∞ ). In the latter phase the mass gap vanishes and the vacuum energy is zero in the leading 1 /N approximation. We expect that at large but finite N corrections O (1 /N ) will break N =(0 ,2 ) supersymmetry. Simultaneously, the phase transitions will become rapid crossovers. Finally we discuss how the observed rich phase structure matches the N =(2 ,2 ) limit in which the world-sheet theory has a single phase with the mass gap independent of L .
Spontaneous symmetry breaking in 4-dimensional heterotic string
Maharana, J.
1989-07-01
The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs.
Fermion structure of non-Abelian vortices in high density QCD
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2010-05-15
We study the internal structure of a non-Abelian vortex in color superconductivity with respect to quark degrees of freedom. Stable non-Abelian vortices appear in the color-flavor-locked phase whose symmetry SU(3){sub c+L+R} is further broken to SU(2){sub c+L+R} x U(1){sub c+L+R} at the vortex cores. Microscopic structure of vortices at scales shorter than the coherence length can be analyzed by the Bogoliubov-de Gennes equation (rather than the Ginzburg-Landau equation). We obtain quark spectra from the Bogoliubov-de Gennes equation by treating the diquark gap having the vortex configuration as a background field. We find that there are massless modes (zero modes) well-localized around a vortex, in the triplet and singlet states of the unbroken symmetry SU(2){sub c+L+R} x U(1){sub c+L+R}. The velocities v{sub i} of the massless modes (i=t, s for triplet and singlet) change at finite chemical potential {mu}{ne}0, and decrease as {mu} becomes large. Therefore, low energy excitations in the vicinity of the vortices are effectively described by 1+1 dimensional massless fermions whose velocities are reduced v{sub i}<1.
Directed Abelian sandpile with multiple downward neighbors.
Dhar, D; Pruessner, G; Expert, P; Christensen, K; Zachariou, N
2016-04-01
We study the directed Abelian sandpile model on a square lattice, with K downward neighbors per site, K>2. The K=3 case is solved exactly, which extends the earlier known solution for the K=2 case. For K>2, the avalanche clusters can have holes and side branches and are thus qualitatively different from the K=2 case where avalanche clusters are compact. However, we find that the critical exponents for K>2 are identical with those for the K=2 case, and the large-scale structure of the avalanches for K>2 tends to the K=2 case. PMID:27176254
Directed Abelian sandpile with multiple downward neighbors
NASA Astrophysics Data System (ADS)
Dhar, D.; Pruessner, G.; Expert, P.; Christensen, K.; Zachariou, N.
2016-04-01
We study the directed Abelian sandpile model on a square lattice, with K downward neighbors per site, K >2 . The K =3 case is solved exactly, which extends the earlier known solution for the K =2 case. For K >2 , the avalanche clusters can have holes and side branches and are thus qualitatively different from the K =2 case where avalanche clusters are compact. However, we find that the critical exponents for K >2 are identical with those for the K =2 case, and the large-scale structure of the avalanches for K >2 tends to the K =2 case.
On abelian group actions and Galois quantizations
NASA Astrophysics Data System (ADS)
Huru, H. L.; Lychagin, V. V.
2013-08-01
Quantizations of actions of finite abelian groups G are explicitly described by elements in the tensor square of the group algebra of G. Over algebraically closed fields of characteristic 0 these are in one to one correspondence with the second cohomology group of the dual of G. With certain adjustments this result is applied to group actions over any field of characteristic 0. In particular we consider the quantizations of Galois extensions, which are quantized by "deforming" the multiplication. For the splitting fields of products of quadratic polynomials this produces quantized Galois extensions that all are Clifford type algebras.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, E.
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Abelian BF theory and Turaev-Viro invariant
NASA Astrophysics Data System (ADS)
Mathieu, P.; Thuillier, F.
2016-02-01
The U(1) BF quantum field theory is revisited in the light of Deligne-Beilinson cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant. Significant differences compared to the non-abelian case are highlighted.
Non-Abelian Anyons and Interferometry
NASA Astrophysics Data System (ADS)
Bonderson, Parsa Hassan
This thesis is primarily a study of the measurement theory of non-Abelian anyons through interference experiments. We give an introduction to the theory of anyon models, providing all the formalism necessary to apply standard quantum measurement theory to such systems. This formalism is then applied to give a detailed analysis of a Mach-Zehnder interferometer for arbitrary anyon models. In this treatment, we find that the collapse behavior exhibited by a target anyon in a superposition of states is determined by the monodromy of the probe anyons with the target. Such measurements may also be used to gain knowledge that would help to properly identify the anyon model describing an unknown system. The techniques used and results obtained from this model interferometer have general applicability, and we use them to also describe the interferometry measurements in a two point-contact interferometer proposed for non-Abelian fractional quantum Hall states. Additionally, we give the complete description of a number of important examples of anyon models, as well as their corresponding quantities that are relevant for interferometry. Finally, we give a partial classification of anyon models with small numbers of particle types.
Moubayidin, Laila; Østergaard, Lars
2015-09-01
985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction. PMID:26086581
Phenomenological analysis of heterotic strings: Non-abelian constructions and landscape studies
NASA Astrophysics Data System (ADS)
Wasnik, Vaibhav Hemant
String theory offers the unique promise of unifying all the known forces in nature. However, the internal consistency of the theory requires that spacetime have more than four dimensions. As a result, the extra dimensions must be compactified in some manner and how this compactification takes place is critical for determining the low-energy physical predictions of the theory. In this thesis we examine two distinct consequences of this fact. First, almost all of the prior research in string model-building has examined the consequences of compactifying on so-called "abelian" orbifolds. However, the most general class of compactifications, namely those on non-abelian orbifolds, remains almost completely unexplored. This thesis focuses on the low-energy phenomenological consequences of compactifying strings on non-abelian orbifolds. One of the main interests in pursuing these theories is that they can, in principle, naturally give rise to low-energy models which simultaneously have N=1 supersymmetry along with scalar particles transforming in the adjoint of the gauge group. These features, which are exceedingly difficult to achieve through abelian orbifolds, are exciting because they are the key ingredients in understanding how grand unification can emerge from string theory. Second, the need to compactify gives rise to a huge "landscape" of possible resulting low-energy phenomenologies. One of the goals of the landscape program in string theory is then to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent features of string theory that hold independently of a vacuum-selection principle. In this thesis, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze
NASA Astrophysics Data System (ADS)
Schröck, Mario; Vogt, Hannes
2016-01-01
On lattice gauge field configurations with 2 +1 dynamical quark flavors, we investigate the momentum space quark and gluon propagators in the combined maximally Abelian plus U (1 )3×U (1 )8 Landau gauge. We extract the gluon fields from the lattice link variables and study the diagonal and off-diagonal gluon propagators. We find that the infrared region of the transverse diagonal gluon propagator is strongly enhanced compared to the off-diagonal propagator. The Dirac operator from the Asqtad action is inverted on the diagonal and off-diagonal gluon backgrounds separately. In agreement with the hypothesis of infrared Abelian dominance, we find that the off-diagonal gluon background hardly gives rise to any nontrivial quark dynamics while the quark propagator from the diagonal gluon background closely resembles its Landau gauge counterpart.
Non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Feng, Weibo
A quantum computer is a proposed device which would be capable of initializing, coherently manipulating, and measuring quantum states with sufficient accuracy to carry out new kinds of computations. In the standard scenario, a quantum computer is built out of quantum bits, or qubits, two-level quantum systems which replace the ordinary classical bits of a classical computer. Quantum computation is then carried out by applying quantum gates, the quantum equivalent of Boolean logic gates, to these qubits. The most fundamental barrier to building a quantum computer is the inevitable errors which occur when carrying out quantum gates and the loss of quantum coherence of the qubits due to their coupling to the environment (decoherence). Remarkably, it has been shown that in a quantum computer such errors and decoherence can be actively fought using what is known as quantum error correction. A closely related proposal for fighting errors and decoherence in a quantum computer is to build the computer out of so-called topologically ordered states of matter. These are states of matter which allow for the storage and manipulation of quantum states with a built in protection from error and decoherence. The excitations of these states are non-Abelian anyons, particle-like excitations which satisfy non-Abelian statistics, meaning that when two excitations are interchanged the result is not the usual +1 and -1 associated with identical Bosons or Fermions, but rather a unitary operation which acts on a multidimensional Hilbert space. It is therefore possible to envision computing with these anyons by braiding their world-lines in 2+1-dimensional spacetime. In this Dissertation we present explicit procedures for a scheme which lives at the intersection of these two approaches. In this scheme we envision a functioning ``conventional" quantum computer consisting of an array of qubits and the ability to carry out quantum gates on these qubits. We then give explicit quantum circuits
Topological invariants measured for Abelian and non-Abelian monopole fields
NASA Astrophysics Data System (ADS)
Sugawa, Seiji; Salces Carcoba, Francisco; Perry, Abigail; Yue, Yuchen; Putra, Andika; Spielman, Ian
2016-05-01
Understanding the topological nature of physical systems is an important topic in contemporary physics, ranging from condensed matter to high energy. In this talk, I will present experiments measuring the 1st and 2nd Chern number in a four-level quantum system both with degenerate and non-degenerate energies. We engineered the system's Hamiltonian by coupling hyperfine ground states of rubidium-87 Bose-Einstein condensates with rf and microwave fields. We non-adiabatically drove the system and measured the linear response to obtain the local (non-Abelian) Berry curvatures. Then, the Chern numbers were evaluated on (hyper-)spherical manifolds in parameter space. We obtain Chern numbers close to unity for both the 1st and the 2nd Chern numbers. The non-zero Chern number can be interpreted as monopole residing inside the manifold. For our system, the monopoles correspond to a Dirac monopole for non-degenerate spectra and a Yang monopole for our degenerate case. We also show how the dynamical evolution under non-Abelian gauge field emerged in degenerate quantum system is different from non-degenerate case by showing path-dependent acquisition of non-Abelian geometric phase and Wilson loops.
Nematic phases and the breaking of double symmetries
Mathy, C.J.M. . E-mail: cmathy@princeton.edu; Bais, F.A. . E-mail: bais@science.uva.nl
2007-03-15
In this paper, we present a phase classification of (effectively) two-dimensional non-Abelian nematics, obtained using the Hopf symmetry breaking formalism. In this formalism, one exploits the underlying double symmetry which treats both ordinary and topological modes on equal footing, i.e., as representations of a single (non-Abelian) Hopf symmetry. The method introduced in the literature [F.A. Bais, B.J. Schroers, J.K. Slingerland, Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 (2002) 181601; F.A. Bais, B.J. Schroers, J.K. Slingerland, Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, JHEP 05 (2003) 068.] and further developed in a paper published in parallel [F.A. Bais, C.J.M. Mathy, The breaking of quantum double symmetries by defect condensation, 2006, arXiv:cond-mat/0602115.] allows for a full classification of defect mediated as well as ordinary symmetry breaking patterns and a description of the resulting confinement and/or liberation phenomena. After a summary of the formalism, we determine the double symmetries for tetrahedral, octahedral, and icosahedral nematics and their representations. Subsequently the breaking patterns which follow from the formation of admissible defect condensates are analyzed systematically. This leads to a host of new (quantum and classical) nematic phases. Our result consists of a listing of condensates, with the corresponding intermediate residual symmetry algebra T{sub r} and the symmetry algebra U characterizing the effective 'low energy' theory of surviving unconfined and liberated degrees of freedom in the broken phase. The results suggest that the formalism is applicable to a wide variety of two-dimensional quantum fluids, crystals and liquid crystals.
Nematic phases and the breaking of double symmetries
NASA Astrophysics Data System (ADS)
Mathy, C. J. M.; Bais, F. A.
2007-03-01
In this paper, we present a phase classification of (effectively) two-dimensional non-Abelian nematics, obtained using the Hopf symmetry breaking formalism. In this formalism, one exploits the underlying double symmetry which treats both ordinary and topological modes on equal footing, i.e., as representations of a single (non-Abelian) Hopf symmetry. The method introduced in the literature [F.A. Bais, B.J. Schroers, J.K. Slingerland, Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 (2002) 181601; F.A. Bais, B.J. Schroers, J.K. Slingerland, Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, JHEP 05 (2003) 068.] and further developed in a paper published in parallel [F.A. Bais, C.J.M. Mathy, The breaking of quantum double symmetries by defect condensation, 2006, arXiv:cond-mat/0602115.] allows for a full classification of defect mediated as well as ordinary symmetry breaking patterns and a description of the resulting confinement and/or liberation phenomena. After a summary of the formalism, we determine the double symmetries for tetrahedral, octahedral, and icosahedral nematics and their representations. Subsequently the breaking patterns which follow from the formation of admissible defect condensates are analyzed systematically. This leads to a host of new (quantum and classical) nematic phases. Our result consists of a listing of condensates, with the corresponding intermediate residual symmetry algebra Tr and the symmetry algebra U characterizing the effective "low energy" theory of surviving unconfined and liberated degrees of freedom in the broken phase. The results suggest that the formalism is applicable to a wide variety of two-dimensional quantum fluids, crystals and liquid crystals.
Topological quantum liquids with quaternion non-Abelian statistics.
Xu, Cenke; Ludwig, Andreas W W
2012-01-27
Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8). PMID:22400884
Engineering complex topological memories from simple Abelian models
NASA Astrophysics Data System (ADS)
Wootton, James R.; Lahtinen, Ville; Doucot, Benoit; Pachos, Jiannis K.
2011-09-01
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviors. An exciting proposal for quantum computation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. The so-called non-Abelian anyons are most promising for quantum computation, but their physical realization may prove to be complex. Abelian anyons, however, are easier to understand theoretically and realize experimentally. Here we show that complex topological memories inspired by non-Abelian anyons can be engineered in Abelian models. We explicitly demonstrate the control procedures for the encoding and manipulation of quantum information in specific lattice models that can be implemented in the laboratory. This bridges the gap between requirements for anyonic quantum computation and the potential of state-of-the-art technology.
The non-abelian tensor multiplet in loop space
NASA Astrophysics Data System (ADS)
Gustavsson, Andreas
2006-01-01
We introduce a non-abelian tensor multiplet directly in the loop space associated with flat six-dimensional Miskowski space-time, and derive the supersymmetry variations for on-shell Script N = (2,0) supersymmetry.
NASA Astrophysics Data System (ADS)
Adler, Stephen L.
2015-03-01
Working with explicit examples given by the 56 representation in SU (8), and the 10 representation in SU (5), we show that symmetry breaking of a group G ⊃G1 ×G2 by a scalar in a rank three or two antisymmetric tensor representation leads to a number of distinct modular ground states. For these broken symmetry phases, the ground state is periodic in an integer divisor p of N, where N > 0 is the absolute value of the nonzero U (1) generator of the scalar component Φ that is a singlet under the simple subgroups G1 and G2. Ground state expectations of fractional powers Φ p / N provide order parameters that distinguish the different phases. For the case of period p = 1, this reduces to the usual Higgs mechanism, but for divisors N ≥ p > 1 of N it leads to a modular ground state with periodicity p, implementing a discrete Abelian symmetry group U (1) /Zp. This observation may allow new approaches to grand unification and family unification.
Universal Reconnection of Non-Abelian Cosmic Strings
Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2007-03-02
We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings.
Universal reconnection of non-Abelian cosmic strings.
Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2007-03-01
We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings. PMID:17359147
Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
NASA Astrophysics Data System (ADS)
England, Matthew
2010-03-01
We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inversion problem, sets of relations between the Abelian function, links to the Boussinesq equation and a new addition formula.
A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space
Le, Van-Hoang; Nguyen, Thanh-Son
2011-03-15
We establish an explicit form of a non-Abelian SO(8) monopole in a 9-dimensional space and show that it is indeed a direct generalization of Dirac and Yang monopoles. Using the generalized Hurwitz transformation, we have found a connection between a 16-dimensional harmonic oscillator and a 9-dimensional hydrogenlike atom in the field of the SO(8) monopole (MICZ-Kepler problem). Using the built connection the group of dynamical symmetry of the 9-dimensional MICZ-Kepler problem is found as SO(10, 2).
Lie Symmetry Analysis of AN Unsteady Heat Conduction Problem
NASA Astrophysics Data System (ADS)
di Stefano, O.; Sammarco, S.; Spinelli, C.
2010-04-01
We consider an unsteady thermal storage problem in a body whose surface is subjected to heat transfer by convection to an external environment (with a time varying heat transfer coefficient) within the context of Lie group analysis. We determine an optimal system of two-dimensional Abelian Lie subalgebras of the admitted Lie algebra of point symmetries, and show an example of reduction to autonomous form. Also, by adding a small term to the equation, rendering it hyperbolic, we determine the first order approximate Lie symmetries, and solve a boundary value problem. The solution is compared with that of the parabolic equation.
Probing the QCD vacuum with an Abelian chromomagnetic field: A study within an effective model
Campanelli, L.; Ruggieri, M.
2009-08-01
We study the response of the QCD vacuum to an external Abelian chromomagnetic field in the framework of a nonlocal Nambu-Jona-Lasinio model with the Polyakov loop. We use the lattice results on the deconfinement temperature of the pure gauge theory to compute the same quantity in the presence of dynamical quarks. We find a linear relationship between the deconfinement temperature with quarks and the squared root of the applied field strength, gH, in qualitative (and to some extent also quantitative) agreement with existing lattice calculations. On the other hand, we find a discrepancy on the approximate chiral symmetry restoration: while lattice results suggest the deconfinement and the chiral restoration remain linked even at a nonzero value of gH, our results are consistent with a scenario in which the two transitions are separated as gH is increased.
ERIC Educational Resources Information Center
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
Lima, Gabriel Di Lemos Santiago
2014-02-15
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.
Non-Abelian vortices at weak and strong coupling in mass deformed ABJM theory
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Kumar, S. Prem
2009-10-01
We find half-BPS vortex solitons, at both weak and strong coupling, in the Script N = 6 supersymmetric mass deformation of ABJM theory with U(N) × U(N) gauge symmetry and Chern-Simons level k. The strong coupling gravity dual is obtained by performing a Bbb Zk quotient of the Script N = 8 supersymmetric eleven dimensional supergravity background of Lin, Lunin and Maldacena corresponding to the mass deformed M2-brane theory. At weak coupling, the BPS vortices preserving six supersymmetries are found in the Higgs vacuum of the theory where the gauge symmetry is broken to U(1) × U(1). The classical vortex solitons break a colour-flavour locked global symmetry resulting in non-Abelian internal orientational moduli and a CP1 moduli space of solutions. At strong coupling and large k, upon reduction to type IIA strings, the vortex moduli space and its action are computed by a probe D0-brane in the dual geometry. The mass of the D0-brane matches the classical vortex mass. However, the gravity picture exhibits a six dimensional moduli space of solutions, a section of which can be identified as the CP1 we find classically, along with a Dirac monopole connection of strength k. It is likely that the extra four dimensions in the moduli space are an artifact of the strong coupling limit and of the supergravity approximation.
Gravitationally coupled magnetic monopole and conformal symmetry breaking
NASA Astrophysics Data System (ADS)
Edery, Ariel; Fabbri, Luca; Paranjape, M. B.
We consider a Georgi-Glashow model conformally coupled to gravity. The conformally invariant action includes a triplet of scalar fields and SO(3) non-Abelian gauge fields. However, the usual mass term $\\mu^2 \\phi^2$ is forbidden by the symmetry and this role is now played by the conformal coupling of the Ricci scalar to the scalar fields. Spontaneous symmetry breaking occurs via gravitation. The spherically symmetric solutions correspond to localized solitons (magnetic monopoles) in asymptotically anti-de-Sitter (AdS) space-time and the metric outside the core of the monopole is found to be Schwarzschild-AdS. Though conformal symmetry excludes the Einstein-Hilbert term in the original action, it emerges in the effective action after spontaneous symmetry breaking and dominates the low-energy/long-distance regime outside the core of the monopole.
Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation
Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.
2009-02-15
Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.
Noether gauge symmetry approach in quintom cosmology
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Jamil, Mubasher; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad
2013-12-01
In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.
NASA Astrophysics Data System (ADS)
Pogrebkov, A. K.
2016-06-01
We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.
Non-Abelian bosonic currents in cosmic strings
Lilley, Marc; Di Marco, Fabrizio; Martin, Jerome; Peter, Patrick
2010-07-15
A non-Abelian generalization of the neutral Witten current-carrying string model is discussed in which the bosonic current carrier belongs to a two-dimensional representation of SU(2). We find that the current-carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which case one is left with an Abelian current-carrying string, or the three currents are all lightlike, traveling in the same direction (only left or right movers). The third, genuinely non-Abelian situation, cannot be handled within a cylindrically symmetric framework, but can be shown to depend on all possible string Lorentz invariant quantities that can be constructed out of the phase gradients.
Non-Abelian quantum holonomy of hydrogenlike atoms
Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik
2011-09-15
We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.
The Hilbert scheme of points for supersingular abelian surfaces
NASA Astrophysics Data System (ADS)
Schröer, Stefan
2009-04-01
We study the geometry of Hilbert schemes of points on abelian surfaces and Beauville’s generalized Kummer varieties in positive characteristics. The main result is that, in characteristic two, the addition map from the Hilbert scheme of two points to the abelian surface is a quasifibration such that all fibers are nonsmooth. In particular, the corresponding generalized Kummer surface is nonsmooth, and minimally elliptic singularities occur in the supersingular case. We unravel the structure of the singularities in dependence of p-rank and a-number of the abelian surface. To do so, we establish a McKay Correspondence for Artin’s wild involutions on surfaces. Along the line, we find examples of canonical singularities that are not rational singularities.
Correlation-induced non-Abelian quantum holonomies
NASA Astrophysics Data System (ADS)
Johansson, Markus; Ericsson, Marie; Singh, Kuldip; Sjöqvist, Erik; Williamson, Mark S.
2011-04-01
In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the Lévay geometric phase (2004 J. Phys. A: Math. Gen. 37 1821) in the case of two-qubit systems undergoing local SU(2) evolutions.
Ward-Takahashi identities for Abelian chiral gauge theories
NASA Astrophysics Data System (ADS)
de Lima, Ana Paula Cardoso Rodrigues; Dias, Sebastião Alves
2016-04-01
By considering a general Abelian chiral gauge theory, we investigate the behavior of anomalous Ward-Takahashi (WT) identities concerning their prediction for the usual relationship between the vertex and two-point fermion functions. Using gauge anomaly vanishing results, we show that the usual (in the nonanomalous case) WT identity connecting the vertex and two-point fermion 1PI functions is modified for Abelian chiral gauge theories. The modification, however, implies a relation between fermion and charge renormalization constants that can be important in a future study of renormalization of such theories.
Bulk-Boundary Correspondence for Three-Dimensional Symmetry-Protected Topological Phases
NASA Astrophysics Data System (ADS)
Wang, Chenjie; Lin, Chien-Hung; Levin, Michael
2016-04-01
We derive a bulk-boundary correspondence for three-dimensional (3D) symmetry-protected topological phases with unitary symmetries. The correspondence consists of three equations that relate bulk properties of these phases to properties of their gapped, symmetry-preserving surfaces. Both the bulk and surface data appearing in our correspondence are defined via a procedure in which we gauge the symmetries of the system of interest and then study the braiding statistics of excitations of the resulting gauge theory. The bulk data are defined in terms of the statistics of bulk excitations, while the surface data are defined in terms of the statistics of surface excitations. An appealing property of these data is that it is plausibly complete in the sense that the bulk data uniquely distinguish each 3D symmetry-protected topological phase, while the surface data uniquely distinguish each gapped, symmetric surface. Our correspondence applies to any 3D bosonic symmetry-protected topological phase with finite Abelian unitary symmetry group. It applies to any surface that (1) supports only Abelian anyons and (2) has the property that the anyons are not permuted by the symmetries.
None
2011-10-06
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ?renormalizable?. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged ?vector? particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of ?massless? modes
Trace formula for broken symmetry
Creagh, S.C.
1996-05-01
We derive a trace formula for systems that exhibit an approximate continuous symmetry. It interpolates between the sum over continuous families of periodic orbits that holds in the case of exact continuous symmetry, and the discrete sum over isolated orbits that holds when the symmetry is completely broken. It is based on a simple perturbation expansion of the classical dynamics, centered around the case of exact symmetry, and gives an approximation to the usual Gutzwiller formula when the perturbation is large. We illustrate the computation with some 2-dimensional examples: the deformation of the circular billiard into an ellipse, and anisotropic and anharmonic perturbations of a harmonic oscillator. Copyright {copyright} 1996 Academic Press, Inc.
Augmented Superfield Approach to Non-Yang Symmetries of Jackiw-Pi Model: Novel Observations
NASA Astrophysics Data System (ADS)
Gupta, Saurabh; Kumar, R.
2013-02-01
We derive the off-shell nilpotent and absolutely anti-commuting Becchi-Rouet-Stora-Tyutin (BRST) as well as anti-BRST symmetry transformations corresponding to the non-Yang-Mills (NYM) symmetry transformations of (2+1)-dimensional Jackiw-Pi (JP) model within the framework of "augmented" superfield formalism. The Curci-Ferrari (CF) restriction, which is a hallmark of non-Abelian one-form gauge theories, does not appear in this case. One of the novel features of our present investigation is the derivation of proper (anti-)BRST symmetry transformations corresponding to the auxiliary field ρ that cannot be derived by any conventional means.
Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider
Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi
2011-04-01
More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.
Lectures on Non-Abelian Bosonization
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.
The following sections are included: * Introduction * Kac-Moody algebra * Conformal embedding. Sugawara Hamiltonian * SU(N)×SU(M) model * From the fermionic to WZNW model * The perturbed SUk(2) WZNW model * Correlation functions and Quasi Long Range order * Generalization from SU(2) to SU(N) * A model with Sp(2N) symmetry * Solution for the special case gcdw = gsc * Attraction in the orbital channel. Competing orders. Emergent integrability. ZN parafermions. * Parafermion zero modes * Conclusions and Acknowledgements * Appendix A. TBA equations for the Sp1(2N) model * Appendix B. Bosonization of of Z4 parafermions * References
Index theorem and Majorana zero modes along a non-Abelian vortex in a color superconductor
Fujiwara, Takanori; Fukui, Takahiro; Nitta, Muneto; Yasui, Shigehiro
2011-10-01
Color superconductivity in high-density QCD exhibits the color-flavor-locked phase. To explore zero modes in the color-flavor-locked phase in the presence of a non-Abelian vortex with an SU(2) symmetry in the vortex core, we apply the index theorem to the Bogoliubov-de Gennes (BdG) Hamiltonian. From the calculation of the topological index, we find that triplet, doublet and singlet sectors of SU(2) have certain number of chiral Majorana zero modes in the limit of vanishing chemical potential. We also solve the BdG equation by the use of the series expansion to show that the number of zero modes and their chirality match the result of the index theorem. From particle-hole symmetry of the BdG Hamiltonian, we conclude that if and only if the index of a given sector is odd, one zero mode survives generically for a finite chemical potential. We argue that this result should hold nonperturbatively even in the high-density limit.
Fibonacci anyons from Abelian bilayer quantum Hall states.
Vaezi, Abolhassan; Barkeshli, Maissam
2014-12-01
The possibility of realizing non-Abelian statistics and utilizing it for topological quantum computation (TQC) has generated widespread interest. However, the non-Abelian statistics that can be realized in most accessible proposals is not powerful enough for universal TQC. In this Letter, we consider a simple bilayer fractional quantum Hall system with the 1/3 Laughlin state in each layer. We show that interlayer tunneling can drive a transition to an exotic non-Abelian state that contains the famous "Fibonacci" anyon, whose non-Abelian statistics is powerful enough for universal TQC. Our analysis rests on startling agreements from a variety of distinct methods, including thin torus limits, effective field theories, and coupled wire constructions. We provide evidence that the transition can be continuous, at which point the charge gap remains open while the neutral gap closes. This raises the question of whether these exotic phases may have already been realized at ν=2/3 in bilayers, as past experiments may not have definitively ruled them out. PMID:25526149
Deligne-Beilinson cohomology and Abelian link invariants: Torsion case
Thuillier, F.
2009-12-15
For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and present an explicit path-integral nonperturbative computation of the Chern-Simons link invariants in SO(3){approx_equal}RP{sup 3}, a toy example of a 3-manifold with torsion.
Geometry and energy of non-Abelian vortices
Manton, Nicholas S.; Rink, Norman A.
2011-04-15
We study pure Yang-Mills theory on {Sigma}xS{sup 2}, where {Sigma} is a compact Riemann surface, and invariance is assumed under rotations of S{sup 2}. It is well known that the self-duality equations in this setup reduce to vortex equations on {Sigma}. If the Yang-Mills gauge group is SU(2), the Bogomolny vortex equations of the Abelian Higgs model are obtained. For larger gauge groups, one generally finds vortex equations involving several matrix-valued Higgs fields. Here we focus on Yang-Mills theory with gauge group SU(N)/Z{sub N} and a special reduction which yields only one non-Abelian Higgs field. One of the new features of this reduction is the fact that while the instanton number of the theory in four dimensions is generally fractional with denominator N, we still obtain an integral vortex number in the reduced theory. We clarify the relation between these two topological charges at a bundle geometric level. Another striking feature is the emergence of nontrivial lower and upper bounds for the energy of the reduced theory on {Sigma}. These bounds are proportional to the area of {Sigma}. We give special solutions of the theory on {Sigma} by embedding solutions of the Abelian Higgs model into the non-Abelian theory, and we relate our work to the language of quiver bundles, which has recently proved fruitful in the study of dimensional reduction of Yang-Mills theory.
Non-Abelian strings in supersymmetric Yang-Mills
Shifman, M.
2012-09-26
I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.
Quantization of higher abelian gauge theory in generalized differential cohomology
NASA Astrophysics Data System (ADS)
Szabo, R.
We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.
Probing Non-Abelian Statistics with Quasiparticle Interferometry
Bonderson, Parsa; Shtengel, Kirill; Slingerland, J.K.
2006-07-07
We examine interferometric experiments in systems that exhibit non-Abelian braiding statistics, expressing outcomes in terms of the modular S-matrix. In particular, this result applies to fractional quantum Hall interferometry, and we give a detailed treatment of the Read-Rezayi states, providing explicit predictions for the recently observed {nu}=12/5 plateau.
BCS-BEC crossover induced by a synthetic non-Abelian gauge field
NASA Astrophysics Data System (ADS)
Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.
2011-07-01
We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
BCS-BEC crossover induced by a synthetic non-Abelian gauge field
Vyasanakere, Jayantha P.; Shenoy, Vijay B.; Zhang Shizhong
2011-07-01
We investigate the ground state of interacting spin-(1/2) fermions in three dimensions at a finite density ({rho}{approx}k{sub F}{sup 3}) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector {lambda}{identical_to}({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}), whose magnitude {lambda} determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k{sub F}|a{sub s}| < or approx. 1), the ground state in the absence of the gauge field ({lambda}=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum ({lambda}=0). For large gauge couplings ({lambda}/k{sub F}>>1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)--we call these bosons ''rashbons.'' In the absence of interactions (a{sub s}=0{sup -}), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling {lambda}{sub T}. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of {lambda} near {lambda}{sub T}. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
Non-Abelian clouds around Reissner-Nordström black holes: The existence line
NASA Astrophysics Data System (ADS)
Radu, Eugen; Tchrakian, D. H.; Yang, Yisong
2016-06-01
A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.
Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles
Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru
2009-09-01
The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.
Competing Abelian and non-Abelian topological orders in ν =1 /3 +1 /3 quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Geraedts, Scott; Zaletel, Michael P.; Papić, Zlatko; Mong, Roger S. K.
2015-05-01
Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two subbands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the problem of quantum Hall bilayers at filling ν =1 /3 +1 /3 . We first consider the Coulomb interaction at bilayer separation d , bilayer tunneling energy ΔSAS, and individual layer width w , where we find a phase diagram which includes three competing Abelian phases: a bilayer Laughlin phase (two nearly decoupled ν =1 /3 layers), a bilayer spin-singlet phase, and a bilayer symmetric phase. We also study the order of the transitions between these phases. A variety of non-Abelian phases has also been proposed for these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we find a robust non-Abelian phase which we identify as the "interlayer-Pfaffian" phase. In addition to non-Abelian statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results suggest that ν =1 /3 +1 /3 systems merit further experimental study.
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I. Pascu, Gabriel
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Dark Matter from Binary Tetrahedral Flavor Symmetry
NASA Astrophysics Data System (ADS)
Eby, David; Frampton, Paul
2012-03-01
Binary Tetrahedral Flavor Symmetry, originally developed as a quark family symmetry and later adapted to leptons, has proved both resilient and versatile over the past decade. In 2008 a minimal T' model was developed to accommodate quark and lepton masses and mixings using a family symmetry of (T'xZ2). We examine an expansion of this earlier model using an additional Z2 group that facilitates predictions of WIMP dark matter, the Cabibbo angle, and deviations from Tribimaximal Mixing, while giving hints at the nature of leptogenesis.
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
On the Uniqueness of Higher-Spin Symmetries in ADS and Cft
NASA Astrophysics Data System (ADS)
Boulanger, N.; Ponomarev, D.; Skvortsov, E.; Taronna, M.
2013-12-01
We study the uniqueness of higher-spin algebras which are at the core of higher-spin theories in AdS and of CFTs with exact higher-spin symmetry, i.e. conserved tensors of rank greater than two. The Jacobi identity for the gauge algebra is the simplest consistency test that appears at the quartic order for a gauge theory. Similarly, the algebra of charges in a CFT must also obey the Jacobi identity. These algebras are essentially the same. Solving the Jacobi identity under some simplifying assumptions listed out, we obtain that the Eastwood-Vasiliev algebra is the unique solution for d = 4 and d≥7. In 5d, there is a one-parameter family of algebras that was known before. In particular, we show that the introduction of a single higher-spin gauge field/current automatically requires the infinite tower of higher-spin gauge fields/currents. The result implies that from all the admissible non-Abelian cubic vertices in AdSd, that have been recently classified for totally symmetric higher-spin gauge fields, only one vertex can pass the Jacobi consistency test. This cubic vertex is associated with a gauge deformation that is the germ of the Eastwood-Vasiliev's higher-spin algebra.
Chiral symmetry breaking revisited: the gap equation with lattice ingredients
Aguilar, Arlene C.
2011-05-23
We study chiral symmetry breaking in QCD, using as ingredients in the quark gap equation recent lattice results for the gluon and ghost propagators. The Ansatz employed for the quark-gluon vertex is purely non-Abelian, introducing a crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. The numerical impact of these quantities is considerable: the need to invoke confinement explicitly is avoided, and the dynamical quark masses generated are of the order of 300 MeV. In addition, the pion decay constant and the quark condensate are computed, and are found to be in good agreement with phenomenology.
Bound states of two spin-(1/2) fermions in a synthetic non-Abelian gauge field
Vyasanakere, Jayantha P.; Shenoy, Vijay B.
2011-03-01
We study the bound states of two spin-(1/2) fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters ({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ''BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., {lambda}{sub x}={lambda}{sub y}={lambda}{sub z}) for which there is a two-body bound state for anyscattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid {sup 3}He. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
Non-Abelian Effects on D-Branes
Russo, Jorge G.
2008-07-28
We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.
Braiding non-Abelian quasiholes in fractional quantum Hall states.
Wu, Yang-Le; Estienne, B; Regnault, N; Bernevig, B Andrei
2014-09-12
Quasiholes in certain fractional quantum Hall states are promising candidates for the experimental realization of non-Abelian anyons. They are assumed to be localized excitations, and to display non-Abelian statistics when sufficiently separated, but these properties have not been explicitly demonstrated except for the Moore-Read state. In this work, we apply the newly developed matrix product state technique to examine these exotic excitations. For the Moore-Read and the Z_{3} Read-Rezayi states, we estimate the quasihole radii, and determine the correlation lengths associated with the exponential convergence of the braiding statistics. We provide the first microscopic verification for the Fibonacci nature of the Z_{3} Read-Rezayi quasiholes. We also present evidence for the failure of plasma screening in the nonunitary Gaffnian wave function. PMID:25259996
Identifying non-Abelian topological order through minimal entangled states.
Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N
2014-03-01
The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions. PMID:24655269
Maximal Abelian gauge and a generalized BRST transformation
NASA Astrophysics Data System (ADS)
Deguchi, Shinichi; Pandey, Vipul Kumar; Mandal, Bhabani Prasad
2016-05-01
We apply a generalized Becchi-Rouet-Stora-Tyutin (BRST) formulation to establish a connection between the gauge-fixed SU (2) Yang-Mills (YM) theories formulated in the Lorenz gauge and in the Maximal Abelian (MA) gauge. It is shown that the generating functional corresponding to the Faddeev-Popov (FP) effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST) transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.
Non-Abelian anomalies on a curved space with torsion
Cognola, G.; Giacconi, P.
1989-05-15
Using path-integral methods and /zeta/-function regularization a nonperturbative derivation of non-Abelian-covariant and consistent anomalies on a curved space with torsion is given. All terms depending on torsion, that one has in the expression of the consistent anomaly, can be eliminated by adding suitable counterterms to the Lagrangian density. In this way, the well-known result of Bardeen is recovered. The so-called ''covariant anomaly'' will be discussed too.
Sharma, Sandeep
2015-01-14
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.
Designer non-Abelian anyon platforms: from Majorana to Fibonacci
NASA Astrophysics Data System (ADS)
Alicea, Jason; Stern, Ady
2015-12-01
The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.
Universal attractor in a highly occupied non-Abelian plasma
NASA Astrophysics Data System (ADS)
Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.
2014-06-01
We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.
Detecting 3d Non-Abelian Anyons via Adiabatic Cooling
NASA Astrophysics Data System (ADS)
Yamamoto, Seiji; Freedman, Michael; Yang, Kun
2011-03-01
Majorana fermions lie at the heart of a number of recent developments in condensed matter physics. One important application is the realization of non-abelian statistics and consequently a foundation for topological quantum computation. Theoretical propositions for Majorana systems abound, but experimental detection has proven challenging. Most attempts involve interferometry, but the degeneracy of the anyon state can be leveraged to produce a cooling effect, as previously shown in 2d. We apply this method of anyon detection to the 3d anyon model of Teo and Kane. Like the Fu-Kane model, this involves a hybrid system of topological insulator (TI) and superconductor (SC). The Majorana modes are localized to anisotropic hedgehogs in the order parameter which appear at the TI-SC interface. The effective model bears some resemblance to the non-Abelian Higgs model with scalar coupling as studied, for example, by Jackiw and Rebbi. In order to make concrete estimates relevant to experiments, we use parameters appropriate to Ca doped Bi 2 Se 3 as the topological insulator and Cu doped Bi 2 Se 3 as the superconductor. We find a temperature window in the milli-Kelvin regime where the presence of 3d non-abelian anyons will lead to an observable cooling effect.
Escalante, Alberto Manuel-Cabrera, J.
2015-10-15
A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.
Ko, P.; Tang, Yong
2015-01-16
We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs ϕ and/or dark photon Z′ pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)
Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr
2015-01-01
We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs φ and/or dark photon Z' pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)
Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields
NASA Astrophysics Data System (ADS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz
2016-04-01
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
Gauge-invariant implementation of the Abelian-Higgs model on optical lattices
NASA Astrophysics Data System (ADS)
Bazavov, A.; Meurice, Y.; Tsai, S.-W.; Unmuth-Yockey, J.; Zhang, Jin
2015-10-01
We present a gauge-invariant effective action for the Abelian-Higgs model (scalar electrodynamics) with a chemical potential μ on a (1 +1 )-dimensional lattice. This formulation provides an expansion in the hopping parameter κ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling βp l=1 /g2 and small values of the scalar self-coupling λ . In the opposite limit of infinitely large λ , the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Gauss's law is automatically satisfied and the introduction of μ has consequences only if we have an external electric field, g2=0 or an explicit gauge symmetry breaking. The time-continuum limit of the blocked transfer matrix can be obtained numerically and, for g2=0 and a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large on-site repulsion. We extend this procedure for finite βp l and derive a spin-1 approximation of the Hamiltonian. It involves new terms corresponding to transitions among the two species in the Bose-Hubbard model. We propose an optical lattice implementation involving a ladder structure.
Phase transitions at strong coupling in the 2+1-d abelian Higgs model
NASA Astrophysics Data System (ADS)
MacKenzie, R. B.; Nebia-Rahal, Faïza; Paranjape, M. B.
2013-12-01
We study, using numerical Monte-Carlo simulations, an effective description of the 2+1 dimensional Abelian Higgs model which is valid at strong coupling, in the broken symmetry sector. In this limit, the massive gauge boson and the massive neutral Higgs decouple leaving only the massive vortices. The vortices have no long range interactions. We find a phase transition as the mass of the vortices is made lighter and lighter. At the transition, the contributions to the functional integral come from a so-called infinite vortex anti-vortex loop. Adding the Chern-Simons term simply counts the linking number between the vortices. We find that the Wilson loop exhibits perimeter law behaviour in both phases, although the polarization cloud increases by an order of magnitude at the transition. We also study the 't Hooft loop. We find the 't Hooft loop exhibits perimeter law behaviour in the presence of the Chern-Simons term but is trivial in its absence. Thus we have a theory with perimeter law for both the Wilson loop and the 't Hooft loop, but contains no massless particles.
Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.
Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E
2015-02-01
We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism. PMID:25768621
Strong-weak coupling duality in non-abelian gauge theories
NASA Astrophysics Data System (ADS)
Ferrari, Frank
1997-05-01
This is a general introduction to electric-magnetic duality in non-abelian gauge theories. In chapter I, I review the general ideas which led in the late 70s to the idea of electric/magnetic duality in quantum field theory. In chapters II and III, I focus mainly on N=2 supersymmetric theories. I present the lagrangians and explain in more or less detail the non-renormalization theorems, rigid special geometry, supersymmetric instanton calculus, charge fractionization, the semiclassical theory of monopoles, duality in Maxwell theory and the famous Seiberg-Witten solution. I discuss various physical applications, as electric charge confinement, chiral symmetry breaking or non-trivial superconformal theories in four dimensions. In Section II.3 new material is presented, related to the computation of the eta invariant of certain Dirac operators coupled minimally to non-trivial monopole field configurations. I explain how these invariants can be obtained exactly by a one-loop calculation in a suitable N=2 supersymmetric gauge theory. This is an unexpected application of the holomorphy properties of N=2 supersymmetry, and constitutes a tremendous simplification of the usual computation. An expanded version of these new results will be published soon.
Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions
Popov, Alexander D.; Szabo, Richard J.
2006-01-15
We construct explicit Bogomolnyi, Prasad, Sommerfeld (BPS) and non-BPS solutions of the Yang-Mills equations on the noncommutative space R{sub {theta}}{sup 2n}xS{sup 2} which have manifest spherical symmetry. Using SU(2)-equivariant dimensional reduction techniques, we show that the solutions imply an equivalence between instantons on R{sub {theta}}{sup 2n}xS{sup 2} and non-Abelian vortices on R{sub {theta}}{sup 2n}, which can be interpreted as a blowing-up of a chain of D0-branes on R{sub {theta}}{sup 2n} into a chain of spherical D2-branes on R{sub {theta}}{sup 2n}xS{sup 2}. The low-energy dynamics of these configurations is described by a quiver gauge theory which can be formulated in terms of new geometrical objects generalizing superconnections. This formalism enables the explicit assignment of D0-brane charges in equivariant K-theory to the instanton solutions.
Non-Abelian Gauge Groups for Real and Complex Amended Maxwell's Equations
NASA Astrophysics Data System (ADS)
Rauscher, E. A.
2002-04-01
We have developed an eight dimensional complex Minkowski space M4, compiled of four real dimensions and four imaginary dimensions, which is constant with Lorentz invariance and analytic continuation in the complex plane(1). Complexification, of Maxwell's equations requires a non-Abelian gauge group, which amends the usual theory which utilizes the usual unimodular Weyl U1 group. We have examined the modification of gauge conditions using higher symmetry groups such as SU2, SUn and other groups such as the SL(2,c) double cover group of the rotational group SO(3,1). The mappability of the twistor algebra and the spinor calculus is analyzed in the context of the electromagnetic theory. Thus we are led to new and interesting physics involving extended metrical space constraints, the usual transverse and also longitudinal, non Hertzian electric and magnetic field solutions to Maxwell's equations, possibly leading to new communications systems and antennae theory, non-zero solutions to Ñ·B, and a possible finite but small rest mass of the photon. Comparison of our theoretical approach is made to the work of T.W. Barrett and H.F. Hermuth?s work on amended Maxwell's theories. (1) C. Ramon and E. A. Rauscher, Found. of Phys. 10, 661 (1980)
The near-symmetry of proteins.
Bonjack-Shterengartz, Maayan; Avnir, David
2015-04-01
The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook. PMID:25354765
Planar Limit of Orientifold Field Theories and Emergent Center Symmetry
Armoni, Adi; Shifman, Mikhail; Unsal, Mithat
2007-12-05
We consider orientifold field theories (i.e. SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations) on R{sub 3} x S{sub 1} where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills. The latter has Z{sub N} center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z{sub N} symmetric to Z{sub N} broken phase applies. At the Lagrangian level the orientifold theories have at most a Z{sub 2} center. We discuss how the full Z{sub N} center symmetry dynamically emerges in the orientifold theories in the limit N {yields} {infinity}. In the confining phase the manifestation of this enhancement is the existence of stable k-strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.
Entanglement entropy and nonabelian gauge symmetry
NASA Astrophysics Data System (ADS)
Donnelly, William
2014-11-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.
Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach
Cicogna, G.; Pegoraro, F.
2015-02-15
We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2003-12-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Holographic Symmetries and Generalized Order Parameters for Topological Matter
NASA Astrophysics Data System (ADS)
Cobanera, Emilio; Ortiz, Gerardo; Nussinov, Zohar
2013-03-01
We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in a wide variety of non-Landau systems, including topologically ordered matter. To this end we introduce the key notion of holographic symmetry. It reflects situations in which global symmetries become exact boundary symmetries under a duality mapping. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by presenting a systematic derivation of generalized order parameters for pure and matter-coupled Abelian gauge theories and (extended) toric codes. Also we introduce a many-body extension of the Kitaev wire, the gauged Kitaev wire, and exploit holographic symmetries and dualities to describe its phase diagram, generalized order parameter, and edge states. [arXiv:1211.0564] This work was supported by the Dutch Science Foundation NWO/FOM and an ERC Advanced Investigator grant, and, in part, under grants No. NSF PHY11-25915 and CMMT 1106293.
Veneziano amplitudes, spin chains and Abelian reduction of QCD
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady
2009-05-01
Although QCD can be treated perturbatively in the high energy limit, lower energies require uses of nonperturbative methods such as ADS/CFT and/or Abelian reduction. These methods are not equivalent. While the first is restricted to supersymmetric Yang-Mills model with number of colors going to infinity, the second is not restricted by requirements of supersymmetry and is designed to work in the physically realistic limit of a finite number of colors. In this paper we provide arguments in favor of the Abelian reduction methods. This is achieved by further developing results of our recent works re-analyzing Veneziano and Veneziano-like amplitudes and the models associated with these amplitudes. It is shown, that the obtained new partition function for these amplitudes can be mapped exactly into that for the Polychronakos-Frahm (P-F) spin chain model recoverable from the Richardon-Gaudin (R-G) XXX spin chain model originally designed for treatments of the BCS-type superconductivity. Because of this, it is demonstrated that the obtained mapping is compatible with the method of Abelian reduction. The R-G model is recovered from the asymptotic (WKB-type) solutions of the rational Knizhnik-Zamolodchikov (K-Z) equation. Linear independence of these solutions is controlled by determinants whose explicit form (up to a constant) coincides with Veneziano (or Veneziano-like) amplitudes. In the simplest case, the determinantal conditions coincide with those discovered by Kummer in the 19th century. Kummer's results admit physical interpretation by relating determinantal formula(s) to Veneziano-like amplitudes. Furthermore, these amplitudes can be interpreted as Poisson-Dirichlet distributions playing a central role in the stochastic theory of random coagulation-fragmentation processes. Such an interpretation is complementary to that known for the Lund model widely used for the description of coagulation-fragmentation processes in QCD.
Effective action for the Abelian Higgs model in FLRW
George, Damien P.; Mooij, Sander; Postma, Marieke E-mail: smooij@nikhef.nl
2012-11-01
We compute the divergent contributions to the one-loop action of the U(1) Abelian Higgs model. The calculation allows for a Friedmann-Lemaitre-Robertson-Walker space-time and a time-dependent expectation value for the scalar field. Treating the time-dependent masses as two-point interactions, we use the in-in formalism to compute the first, second and third order graphs that contribute quadratic and logarithmic divergences to the effective scalar action. Working in R{sub ξ} gauge we show that the result is gauge invariant upon using the equations of motion.
Abelian tensor hierarchy in 4D, N = 1 superspace
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Linch, William D.; Robbins, Daniel
2016-03-01
With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N =1superspaceandconstructitsChern-Simons-likeinvariants. Whenspecializedtothe case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N = 1 superfields.
On spectral synthesis on zero-dimensional Abelian groups
Platonov, S S
2013-09-30
Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace H⊆C(G) is said to be an invariant subspace if it is invariant with respect to the translations τ{sub y}:f(x)↦f(x+y), y∈G. In the paper, it is proved that any invariant subspace H admits spectral synthesis, that is, H coincides with the closed linear span of the characters of G belonging to H. Bibliography: 25 titles.
The non-Abelian gauge theory of matrix big bangs
NASA Astrophysics Data System (ADS)
O'Loughlin, Martin; Seri, Lorenzo
2010-07-01
We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.
Non-Abelian gauge invariance and the infrared approximation
Cho, H.h.; Fried, H.M.; Grandou, T.
1988-02-15
Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter
The Abelian Sandpile Model on a Random Binary Tree
NASA Astrophysics Data System (ADS)
Redig, F.; Ruszel, W. M.; Saada, E.
2012-06-01
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.
Non-Abelian monopole in the parameter space of point-like interactions
NASA Astrophysics Data System (ADS)
Ohya, Satoshi
2014-12-01
We study non-Abelian geometric phase in N = 2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry's connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule.
Geometric intrinsic symmetries
Gozdz, A. Szulerecka, A.; Pedrak, A.
2013-08-15
The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Non-Abelian dynamics in the resonant decay of the Higgs after inflation
Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav E-mail: sami.nurmi@helsinki.fi
2014-10-01
We study the resonant decay of the Higgs condensate into weak gauge bosons after inflation and estimate the corrections arising from the non-Abelian self-interactions of the gauge fields. We find that non-Abelian interaction terms induce an effective mass which tends to shut down the resonance. For the broad resonance relevant for the Standard Model Higgs the produced gauge particles backreact on the dynamics of the Higgs condensate before the non-Abelian terms grow large. The non-Abelian terms can however significantly affect the final stages of the resonance after the backreaction. In the narrow resonance regime, which may be important for extensions of the Standard Model, the non-Abelian terms affect already the linear stage and terminate the resonance before the Higgs condensate is affected by the backreaction of decay products.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
On spectral synthesis on element-wise compact Abelian groups
NASA Astrophysics Data System (ADS)
Platonov, S. S.
2015-08-01
Let G be an arbitrary locally compact Abelian group and let C(G) be the space of all continuous complex-valued functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is referred to as an invariant subspace if it is invariant with respect to the shifts τ_y\\colon f(x)\\mapsto f(xy), y\\in G. By definition, an invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis if \\mathscr H coincides with the closure in C(G) of the linear span of all characters of G belonging to \\mathscr H. We say that strict spectral synthesis holds in the space C(G) on G if every invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis. An element x of a topological group G is said to be compact if x is contained in some compact subgroup of G. A group G is said to be element-wise compact if all elements of G are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in C(G) for a locally compact Abelian group G if and only if G is element-wise compact. Bibliography: 14 titles.
Matrix product states and the non-Abelian rotor model
NASA Astrophysics Data System (ADS)
Milsted, Ashley
2016-04-01
We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.
Interparental Aggression and Parent-Adolescent Salivary Alpha Amylase Symmetry
Gordis, Elana B.; Margolin, Gayla; Spies, Lauren; Susman, Elizabeth J.; Granger, Douglas A.
2010-01-01
The present study examined salivary alpha-amylase (sAA), a putative marker of adrenergic activity, in family members engaging in family conflict discussions. We examined symmetry among family members' sAA levels at baseline and in response to a conflict discussion. The relation between a history of interparental aggression on parent-adolescent sAA symmetry also was examined. Participants were 62 families with a mother, father, and biological child age 13-18 (n = 29 girls). After engaging in a relaxation procedure, families participated in a 15-minute triadic family conflict discussion. Participants provided saliva samples at post-relaxation/pre-discussion, immediately post-discussion, and at 10 and 20 min post-discussion. Participants also reported on interparental physical aggression during the previous year. Across the sample we found evidence of symmetry between mothers' and adolescents' sAA levels at baseline and around the discussion. Interparental aggression was associated with lower sAA levels among fathers. Interparental aggression also affected patterns of parent-child sAA response symmetry such that families reporting interparental aggression exhibited greater father-adolescent sAA symmetry than did those with no reports of interparental aggression. Among families with no interparental aggression history, we found consistent mother-adolescent symmetry. These differences suggest different patterns of parent-adolescent physiological attunement among families with interparental aggression. PMID:20096715
CP symmetry in optical systems
NASA Astrophysics Data System (ADS)
Dana, Brenda; Bahabad, Alon; Malomed, Boris A.
2015-04-01
We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity dispersion in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity symmetry, while the addition of the intracore cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.
Tracing symmetries and their breakdown through phases of heterotic (2,2) compactifications
NASA Astrophysics Data System (ADS)
Blaszczyk, Michael; Oehlmann, Paul-Konstantin
2016-04-01
We are considering the class of heterotic N=(2,2) Landau-Ginzburg orbifolds with 9 fields corresponding to A 1 9 Gepner models. We classify all of its Abelian discrete quotients and obtain 152 inequivalent models closed under mirror symmetry with N=1 , 2 and 4 supersymmetry in 4D. We compute the full massless matter spectrum at the Fermat locus and find a universal relation satisfied by all models. In addition we give prescriptions of how to compute all quantum numbers of the 4D states including their discrete R-symmetries. Using mirror symmetry of rigid geometries we describe orbifold and smooth Calabi-Yau phases as deformations away from the Landau-Ginzburg Fermat locus in two explicit examples. We match the non-Fermat deformations to the 4D Higgs mechanism and study the conservation of R-symmetries. The first example is a Z_3 orbifold on an E6 lattice where the R-symmetry is preserved. Due to a permutation symmetry of blow-up and torus Kähler parameters the R-symmetry stays conserved also in the smooth Calabi-Yau phase. In the second example the R-symmetry gets broken once we deform to the geometric Z_3× Z_{3,free} orbifold regime.
S{sub 4}xZ{sub 2} flavor symmetry in supersymmetric extra U(1) model
Daikoku, Y.; Okada, H.
2010-08-01
We propose a E{sub 6} inspired supersymmetric model with a non-Abelian discrete flavor symmetry (S{sub 4} group); that is, SU(3){sub c}xSU(2){sub W}xU(1){sub Y}xU(1){sub X}xS{sub 4}xZ{sub 2}. In our scenario, the additional Abelian gauge symmetry, U(1){sub X}, not only solves the {mu} problem in the minimal supersymmetric standard model but also requires new exotic fields which play an important role in solving flavor puzzles. If our exotic quarks can be embedded into a S{sub 4} triplet, which corresponds to the number of the generation, one finds that dangerous proton decay can be well suppressed. Hence, it might be expected that the generation structure for lepton and quark in the standard model can be understood as a new system in order to stabilize the proton in a supersymmetric standard model. Moreover, because of the nature of the discrete non-Abelian symmetry itself, Yukawa coupling constants of our model are drastically reduced. In our paper, we show two predictive examples of the models for quark sector and lepton sector, respectively.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-12-11
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms. PMID:26705616
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Quantum Hall effects in a non-Abelian honeycomb lattice
NASA Astrophysics Data System (ADS)
Li, Ling; Hao, Ningning; Liu, Guocai; Bai, Zhiming; Li, Zai-Dong; Chen, Shu; Liu, W. M.
2015-12-01
We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a multi-Dirac-point system. We find that the quantum Hall effects present different features with the change in relative strengths of several perturbations. Namely, the quantum spin Hall effect can be induced by gauge-field-dressed next-nearest-neighbor hopping, which, together with a Zeeman field, can induce the quantum anomalous Hall effect characterized by different Chern numbers. Furthermore, we find that the edge states of the multi-Dirac-point system represent very different features for different boundary geometries, in contrast with the generic two-Dirac-point system. Our study extends the borders of the field of quantum Hall effects in a honeycomb optical lattice with multivalley degrees of freedom.
Vortex operator and BKT transition in Abelian duality
NASA Astrophysics Data System (ADS)
Chern, Tong
2016-04-01
We give a new simple derivation for the sine-Gordon description of Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Our derivation is simpler than traditional derivations. Besides, our derivation is a continuous field theoretic derivation by using path integration, different from the traditional derivations which are based on lattice theory or based on Coulomb gas model. Our new derivation relies on Abelian duality of two dimensional quantum field theory. By utilizing this duality in path integration, we find that the vortex configurations are naturally mapped to exponential operators in dual description. Since these operators are the vortex operators that can create vortices, the sine-Gordon description then naturally follows. Our method may be useful for the investigation to the BKT physics of superconductors.
Simulation of non-Abelian gauge theories with optical lattices.
Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M
2013-01-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080
Simulation of non-Abelian gauge theories with optical lattices
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.
2013-10-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).
Fixed point structure of the Abelian Higgs model
NASA Astrophysics Data System (ADS)
Fejős, G.; Hatsuda, T.
2016-06-01
The order of the superconducting phase transition is analyzed via the functional renormalization group approach. For the first time, we derive fully analytic expressions for the β functions of the charge and the self-coupling in the Abelian Higgs model with one complex scalar field in d =3 dimensions that support the existence of two charged fixed points: an infrared (IR) stable fixed point describing a second-order phase transition and a tricritical fixed point controlling the region of the parameter space that is attracted by the former one. It is found that the region separating first- and second-order transitions can be uniquely characterized by the Ginzburg-Landau parameter κ , and the system undergoes a second-order transition only if κ >κc≈0.62 /√{2 }.
Abelian Hidden Sectors at a GeV
Morrissey, David E.; Poland, David; Zurek, Kathryn; /Fermilab /Michigan U.
2009-04-16
We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1){sub x} gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.
Critical string from non-Abelian vortex in four dimensions
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2015-11-01
In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang-Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski-Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U (2) gauge group, the Fayet-Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP (2 , 2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.
Canonical non-Abelian dual transformations in supersymmetric field theories
Curtright, T.; Zachos, C.
1995-07-15
A generating functional {ital F} is found for a canonical non-Abelian dual transformation which maps the supersymmetric chiral O(4) {sigma} model to an equivalent supersymmetric extension of the dual {sigma} model. This {ital F} produces a mapping between the classical phase spaces of the two theories in which the bosonic (coordinate) fields transform nonlocally, the fermions undergo a local tangent space chiral rotation, and all currents (fermionic and bosonic) mix locally. Purely bosonic curvature-free currents of the chiral model become a {ital symphysis} of purely bosonic and fermion bilinear currents of the dual theory. The corresponding transformation functional {ital T} which relates wave functions in the two quantum theories is argued to be {ital exactly} given by {ital T}=exp({ital iF}).
On formulae for the class number of real Abelian fields
NASA Astrophysics Data System (ADS)
Kuz'min, L. V.
1996-08-01
For a given real Abelian field k and a given prime natural number \\ell we obtain an index formula for the order of the group \\operatorname{Cl}(k)_{\\ell,\\varphi}, where \\operatorname{Cl}(k)_{\\ell} is the \\ell-component of the class group of k \\operatorname{Cl}(k)_{\\ell,\\varphi} denotes the \\varphi-component of \\operatorname{Cl}(k)_\\ell corresponding to a {\\mathbf Q}_\\ell-irreducible character \\varphi of the Galois group G(k/{\\mathbf Q}) that is trivial on the Sylow \\ell-subgroup of G(k/{\\mathbf Q}). This result generalizes a conjecture of Gras. The proofs rely on the "main conjecture" of Iwasawa theory.
Non-Abelian gerbes and enhanced Leibniz algebras
NASA Astrophysics Data System (ADS)
Strobl, Thomas
2016-07-01
We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .
On Geometrical Interpretation of Non-Abelian Flat Direction Constraints
NASA Astrophysics Data System (ADS)
Cleaver, G. B.; Nanopoulos, D. V.; Perkins, J. T.; Walker, J. W.
In order to produce a low-energy effective field theory from a string model, it is necessary to specify a vacuum state. In order that this vacuum be supersymmetric, it is well known that all field expectation values must be along so-called flat directions, leaving the F- and D-terms of the scalar potential to be zero. The situation becomes particularly interesting when one attempts to realize such directions while assigning vacuum expectation values to fields transforming under non-Abelian representations of the gauge group. Since the expectation value is now shared among multiple components of a field, satisfaction of flatness becomes an inherently geometrical problem in the group space. Furthermore, the possibility emerges that a single seemingly dangerous F-term might experience a self-cancellation among its components. The hope exists that the geometric language can provide an intuitive and immediate recognition of when the D and F conditions are simultaneously compatible, as well as a powerful tool for their comprehensive classification. This is the avenue explored in this paper, and applied to the cases of SU(2) and SO(2N), relevant respectively to previous attempts at reproducing the MSSM and the flipped SU(5) GUT. Geometrical interpretation of non-Abelian flat directions finds application to M-theory through the recent conjecture of equivalence between D-term strings and wrapped D-branes of Type II theory.1 Knowledge of the geometry of the flat direction "landscape" of a D-term string model could yield information about the dual brane model. It is hoped that the techniques encountered will be of benefit in extending the viability of the quasirealistic phenomenologies already developed.
Sekhar Chivukula
2010-01-08
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level. Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter.
Gray, J E; Vogt, A
1997-01-01
Is symmetry informative? The answer is both yes and no. We examine what information and symmetry are and how they are related. Our approach is primarily mathematical, not because mathematics provides the final word, but because it provides an insightful and relatively precise starting point. Information theory treats transformations that messages undergo from source to destination. Symmetries are information that leave some property of interest unchanged. In this respect the studies of information and symmetry can both be regarded as a Quest for the identity transformation. PMID:9224554
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming; Vishwanath, Ashvin
2016-04-01
We study (2+1)-dimensional phases with topological order, such as fractional quantum Hall states and gapped spin liquids, in the presence of global symmetries. Phases that share the same topological order can then differ depending on the action of symmetry, leading to symmetry-enriched topological (SET) phases. Here, we present a K -matrix Chern-Simons approach to identify distinct phases with Abelian topological order, in the presence of unitary or antiunitary global symmetries. A key step is the identification of a smooth edge sewing condition that is used to check if two putative phases are indeed distinct. We illustrate this method by classifying Z2 topological order (Z2 spin liquids) in the presence of an internal Z2 global symmetry for which we find six distinct phases. These include two phases with an unconventional action of symmetry that permutes anyons leading to symmetry-protected Majorana edge modes. Other routes to realizing protected edge states in SET phases are identified. Symmetry-enriched Laughlin states and double-semion theories are also discussed. Somewhat surprisingly, we observe that (i) gauging the global symmetry of distinct SET phases leads to topological orders with the same total quantum dimension, and (ii) a pair of distinct SET phases can yield the same topological order on gauging the symmetry.
Neutrino mass and mixing with discrete symmetry
NASA Astrophysics Data System (ADS)
King, Stephen F.; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).
Leptonic Dirac CP violation predictions from residual discrete symmetries
NASA Astrophysics Data System (ADS)
Girardi, I.; Petcov, S. T.; Stuart, Alexander J.; Titov, A. V.
2016-01-01
Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i) Ge =Z2 and Gν =Zn, n > 2 or Zn ×Zm, n , m ≥ 2; ii) Ge =Zn, n > 2 or Zn ×Zm, n , m ≥ 2 and Gν =Z2; iii) Ge =Z2 and Gν =Z2; iv) Ge is fully broken and Gν =Zn, n > 2 or Zn ×Zm, n , m ≥ 2; and v) Ge =Zn, n > 2 or Zn ×Zm, n , m ≥ 2 and Gν is fully broken. For given Ge and Gν, the sum rules for cos δ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cos δ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cos δ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cos δ in these cases for the flavour symmetry groups Gf =S4, A4, T‧ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.
Beyond parafermions: Defects and zero-modes in non-Abelian phases
NASA Astrophysics Data System (ADS)
Lindner, Netanel; Berg, Erez; Stern, Ady
Non-Abelian topological phases of matter can be utilized to encode and manipulate quantum information in a non-local manner, such that it is protected from imperfections in the implemented protocols and from interactions with the environment. The condition that the non-Abelian statistics of the anyons supports a computationally universal set of gates sets a very stringent requirement which is not met by many topological phases. We consider the possibility to enrich the possible topological operations supported by a non-Abelian topological phase by introducing defects into the system. We show that such defects bind zero modes which form a unique algebra that goes beyond the algebra of parafermions which describes defects in Abelian phases. For the case of a bi-layer containing Ising anyons, we show that by coupling zero modes one can obtain a set of topological operations that implements a universal set of gates.
Field theory aspects of non-Abelian T-duality and {N} =2 linear quivers
NASA Astrophysics Data System (ADS)
Lozano, Yolanda; Núñez, Carlos
2016-05-01
In this paper we propose a linear quiver with gauge groups of increasing rank as field theory dual to the AdS 5 background constructed by Sfetsos and Thompson through non-Abelian T-duality. The formalism to study 4d {N} = 2 SUSY CFTs developed by Gaiotto and Maldacena is essential for our proposal. We point out an interesting relation between (Hopf) Abelian and non-Abelian T-dual backgrounds that allows to see both backgrounds as different limits of a solution constructed by Maldacena and Núñez. This suggests different completions of the long quiver describing the CFT dual to the nonAbelian T-dual background that match different observables.
Collective states of non-Abelian quasiparticles in a magnetic field
NASA Astrophysics Data System (ADS)
Levin, Michael; Halperin, Bertrand I.
2009-05-01
Motivated by the physics of the Moore-Read ν=1/2 state away from half filling, we investigate collective states of non-Abelian e/4 quasiparticles in a magnetic field. We consider two types of collective states: incompressible liquids and Wigner crystals. In the incompressible liquid case, we construct a natural series of states which can be thought of as a non-Abelian generalization of the Laughlin states. These states are associated with a series of hierarchical states derived from the Moore-Read state—the simplest of which occur at filling fraction 8/17 and 7/13. Interestingly, we find that the hierarchical states are Abelian even though their parent state is non-Abelian. In the Wigner crystal case, we construct two candidate states. We find that they, too, are Abelian—in agreement with previous analysis.
Symmetries in Lagrangian Dynamics
ERIC Educational Resources Information Center
Ferrario, Carlo; Passerini, Arianna
2007-01-01
In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…
ERIC Educational Resources Information Center
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
A non-perturbative argument for the non-abelian Higgs mechanism
De Palma, G.; Strocchi, F.
2013-09-15
The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.
Magnetic monopoles and Abelian gauge fixing in SU(4) gauge group
NASA Astrophysics Data System (ADS)
Rafibakhsh, Shahnoosh; Eshraghi, Mojtaba; Kahnemuii, Mohammad Javad
2016-01-01
Abelian gauge fixing procedure is used to create the SU (4) magnetic monopoles in the vicinity of the points where the gluon field becomes singular. The matrix of the scalar field is considered as almost diagonal in the SU (2) and SU (3) subspaces. The gauge transformation which diagonalizes the hedgehog filed, transforms the gluon field into two regular and singular parts. The abelian magnetic monopoles which appear in the latter part obey the quantization condition.
Chiral symmetry breaking with lattice propagators
Aguilar, A. C.; Papavassiliou, J.
2011-01-01
We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the 'one-loop dressed' integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.
Symmetry Effects in Computation
NASA Astrophysics Data System (ADS)
Yao, Andrew Chi-Chih
2008-12-01
The concept of symmetry has played a key role in the development of modern physics. For example, using symmetry, C.N. Yang and other physicists have greatly advanced our understanding of the fundamental laws of physics. Meanwhile, computer scientists have been pondering why some computational problems seem intractable, while others are easy. Just as in physics, the laws of computation sometimes can only be inferred indirectly by considerations of general principles such as symmetry. The symmetry properties of a function can indeed have a profound effect on how fast the function can be computed. In this talk, we present several elegant and surprising discoveries along this line, made by computer scientists using symmetry as their primary tool. Note from Publisher: This article contains the abstract only.
Lorentz symmetry breaking in a cosmological context
NASA Astrophysics Data System (ADS)
Gresham, Moira I.
This thesis is comprised primarily of work from three independent papers, written in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original motivation for the projects undertaken came from revisiting the standard assumption of spatial isotropy during inflation. Each project relates to the spontaneous breaking of Lorentz symmetry---in early Universe cosmology or in the context of effective field theory, in general. Chapter 1 is an introductory chapter that provides context for the thesis. Chapter 2 is an investigation of the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector "aether" fields. It is shown that models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. Chapter 3 is an investigation of the phenomenological properties of the one low-energy effective theory of spontaneous Lorentz symmetry breaking found in the previous chapter to have a globally bounded Hamiltonian and a perturbatively stable vacuum---the theory in which the Lagrangian takes the form of a sigma model. In chapter 4 cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton are examined. The dominant effects of a small, persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra are found using the "in-in" formalism of perturbation theory. It is found that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
Preserving spherical symmetry in axisymmetric coordinates for diffusion problems
Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.
2013-07-01
Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)
Non-abelian binding energies from the lightcone bootstrap
NASA Astrophysics Data System (ADS)
Li, Daliang; Meltzer, David; Poland, David
2016-02-01
We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C T , current central charge C J , and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D {N}=1 SQCD and the 3D O( N) vector models. We also show that in a unitary CFT, if the current central charge C J stays finite when the global symmetry group becomes infinitely large, such as the N → ∞ limit of the O( N) vector model, then the theory must contain an infinite number of higher spin currents.
Aspects of emergent symmetries
NASA Astrophysics Data System (ADS)
Gomes, Pedro R. S.
2016-03-01
These are intended to be review notes on emergent symmetries, i.e. symmetries which manifest themselves in specific sectors of energy in many systems. The emphasis is on the physical aspects rather than computation methods. We include some background material and go through more recent problems in field theory, statistical mechanics and condensed matter. These problems illustrate how some important symmetries, such as Lorentz invariance and supersymmetry, usually believed to be fundamental, can arise naturally in low-energy regimes of systems involving a large number of degrees of freedom. The aim is to discuss how these examples could help us to face other complex and fundamental problems.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
(Super)symmetries of semiclassical models in theoretical and condensed matter physics
NASA Astrophysics Data System (ADS)
Ngome, J.-P.
2011-03-01
Van Holten's covariant algorithm for deriving conserved quantities is presented, with particular attention paid to Runge-Lenz-type vectors. The classical dynamics of isospin-carrying particles is reviewed. Physical applications including non-Abelian monopole-type systems in diatoms, introduced by Moody, Shapere and Wilczek, are considered. Applied to curved space, the formalism of van Holten allows us to describe the dynamical symmetries of generalized Kaluza-Klein monopoles. The framework is extended to supersymmetry and applied to the SUSY of the monopoles. Yet another application concerns the three-dimensional non-commutative oscillator.
AGT relations for abelian quiver gauge theories on ALE spaces
NASA Astrophysics Data System (ADS)
Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.
2016-05-01
We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.
Fast non-Abelian geometric gates via transitionless quantum driving
Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-01-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580
Fast non-Abelian geometric gates via transitionless quantum driving
NASA Astrophysics Data System (ADS)
Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-12-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.
Non-Abelian statistics of Luttinger holes in quantum wells
NASA Astrophysics Data System (ADS)
Simion, George; Lyanda-Geller, Yuli
2015-03-01
Non-Abelian quasiparticle excitations represent a key element of topologically protected quantum computing. Such exotic states appear in fractional quantum Hall (FQH) effect as eigenstates of N-body interaction potential. These potentials can be obtained by renormalization of electron-electron interactions in the presence of Landau level (LL) mixing. The properties of valence band holes makes them fundamentally different from electrons. In the presence of magnetic field, low-lying states do not exhibit fan-like diagram and several of the levels cross. Variation of magnetic field in the vicinity of level crossings serves as a knob that tunes LL mixing and enhances the 3-body interaction. 1 / 2 filling factor FQH is a state that was not observed in electron liquid, but has been observed for holes. The properties of the two dimensional charged quantum hole liquid in the presence of magnetic field are studied using the spherical geometry. The properties of the novel 1 / 2 state are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.
Energy-momentum correlations for Abelian Higgs cosmic strings
NASA Astrophysics Data System (ADS)
Daverio, David; Hindmarsh, Mark; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon
2016-04-01
We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the behavior of the correlators across cosmological transitions and discover that the correlation functions evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other methods previously used. The new method is more consistent, easier to implement, and significantly more accurate.
Fast non-Abelian geometric gates via transitionless quantum driving.
Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-01-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580
Molecular symmetry with quaternions.
Fritzer, H P
2001-09-01
A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry. PMID:11666072
NASA Astrophysics Data System (ADS)
Golubitsky, Martin
2012-04-01
Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Dynamical symmetries for fermions
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.
ERIC Educational Resources Information Center
Groetsch, C. W.
2005-01-01
Resistance destroys symmetry. In this note, a graphical exploration serves as a guide to a rigorous elementary proof of a specific asymmetry in the trajectory of a point projectile in a medium offering linear resistance.
NASA Astrophysics Data System (ADS)
Castaños, Octavio
2010-09-01
The purpose of this course is to study the evolution of the symmetry concept and establish its influence in the knowledge of the fundamental laws of nature. Physicist have been using the symmetry concept in two ways: to solve problems and to search for new understanding of the world around us. In quantum physics symmetry plays a key role in gaining an understanding of the physical laws governing the behavior of matter and field systems. It provides, generally, a shortcut based on geometry for discovering the secrets of the Universe. Because it is believed that the laws of physics are invariant under discrete and continuous transformation operations of the space and time, there are continuous symmetries, for example, energy and momentum together with discrete ones corresponding to charge, parity and time reversal operations.
Topological phases with generalized global symmetries
NASA Astrophysics Data System (ADS)
Yoshida, Beni
2016-04-01
We present simple lattice realizations of symmetry-protected topological phases with q -form global symmetries where charged excitations have q spatial dimensions. Specifically, we construct d space-dimensional models supported on a (d +1 ) -colorable graph by using a family of unitary phase gates, known as multiqubit control-Z gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi
2011-10-01
We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.
Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure
NASA Astrophysics Data System (ADS)
Mong, Roger
2014-03-01
Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p + ip superconductor both support so-called Ising non-Abelian anyons. Here we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge- 2 e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that--unlike Ising anyons--allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics.
Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure
NASA Astrophysics Data System (ADS)
Mong, Roger S. K.; Clarke, David J.; Alicea, Jason; Lindner, Netanel H.; Fendley, Paul; Nayak, Chetan; Oreg, Yuval; Stern, Ady; Berg, Erez; Shtengel, Kirill; Fisher, Matthew P. A.
2014-01-01
Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
Barkeshli, Maissam; Wen Xiaogang
2011-09-15
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Non-abelian dynamics in first-order cosmological phase transitions
Johnson, Mikkel B.; Kisslinger, Leonard S.; Henley, Ernest M.; Hwang, P. W-Y.; Stevens, T.
2004-01-01
Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented. The investigations reported in this talk have been motivated by an interest in studying cosmological phase transitions quantitatively, taking the non-abelian character of the gauge fields into account. Ultimately, we hope to identify observable consequences of cosmological phase transitions. First-order phase transitions proceed by nucleation of bubbles of the broken phase in the background of the symmetric phase. Bubble collisions are of special interest, as they may lead to observable effects such as correlations in the cosmic microwave background (CMB) or as seeds of galactic and extra-galactic magnetic fields. The quantum chromodynamic (QCD) and the electroweak (EW) phase transitions are both candidates of interest in these respects. The Lagrangian driving both the QCD and the EW phase transitions are essentially known and make it possible to approach the physics of the phase transitions from first principles. However, a difficulty to making reliable predictions is that the fundamental guage fields in both these instances are non-abelian: the gluon field in QCD and the W and Z fields in the EW case. The quantitative role of non-abelian fields in cosmological phase transitions is poorly known and difficult to calculate due to the nonlinearities arising from the non-abelian character of the gauge fields.
Residual symmetries of the gravitational field
NASA Astrophysics Data System (ADS)
Ayón-Beato, Eloy; Velázquez-Rodríguez, Gerardo
2016-02-01
We develop a geometric criterion that unambiguously characterizes the residual symmetries of a gravitational Ansatz. It also provides a systematic and effective computational procedure for finding all the residual symmetries of any gravitational Ansatz. We apply the criterion to several examples starting with the Collinson Ansatz for circular stationary axisymmetric spacetimes. We reproduce the residual symmetries already known for this Ansatz including their conformal symmetry, for which we identify the corresponding infinite generators spanning the two related copies of the Witt algebra. We also consider the noncircular generalization of this Ansatz and show how the noncircular contributions on the one hand break the conformal invariance and on the other hand enhance the standard translation symmetries of the circular Killing vectors to supertranslations depending on the direction along which the circularity is lost. As another application of the method, the well-known relation defining conjugate gravitational potentials introduced by Chandrasekhar, which makes possible the derivation of the Kerr black hole from a trivial solution of the Ernst equations, is deduced as a special point of the general residual symmetry of the Papapetrou Ansatz. In this derivation we emphasize how the election of Weyl coordinates, which determines the Papapetrou Ansatz, breaks also the conformal freedom of the stationary axisymmetric spacetimes. Additionally, we study AdS waves for any dimension generalizing the residual symmetries already known for lower dimensions and exhibiting a very complex infinite-dimensional Lie algebra containing three families: two of them span the semidirect sum of the Witt algebra and scalar supertranslations and the third generates vector supertranslations. Independently of this complexity we manage to comprehend the true meaning of the infinite connected group as the precise diffeomorphisms subgroup allowing to locally deform the AdS background into Ad
Voit, E O
1992-04-01
An S-system is a set of first-order nonlinear differential equations that all have the same structure: The derivative of a variable is equal to the difference of two products of power-law functions. S-systems have been used as models for a variety of problems, primarily in biology. In addition, S-systems possess the interesting property that large classes of differential equations can be recast exactly as S-systems, a feature that has been proven useful in statistics and numerical analysis. Here, simple criteria are introduced that determine whether an S-system possesses certain types of symmetries and how the underlying transformation groups can be constructed. If a transformation group exists, families of solutions can be characterized, the number of S-system equations necessary for solution can be reduced, and some boundary value problems can be reduced to initial value problems. PMID:1591448
NASA Astrophysics Data System (ADS)
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang–Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang–Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross–Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang–Mills theory in four dimensions.
Pauli-Villars Regularization of Non-Abelian Gauge Theories
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-04-01
As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.
Pauli-Villars Regularization of Non-Abelian Gauge Theories
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-07-01
As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.
Gauge U(1) dark symmetry and radiative light fermion masses
NASA Astrophysics Data System (ADS)
Kownacki, Corey; Ma, Ernest
2016-09-01
A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U (1) to Z2 divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Controlling and probing non-abelian emergent gauge potentials in spinor Bose-Fermi mixtures
Phuc, Nguyen Thanh; Tatara, Gen; Kawaguchi, Yuki; Ueda, Masahito
2015-01-01
Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices. PMID:26330292
Perfect Abelian dominance of confinement in quark-antiquark potential in SU(3) lattice QCD
NASA Astrophysics Data System (ADS)
Suganuma, Hideo; Sakumichi, Naoyuki
2016-01-01
In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 324 at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part VAbel(r) and its off-diagonal part Voff(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σAbel ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ VAbel(r)+Voff(r).
NASA Astrophysics Data System (ADS)
Fang, Yi-Nan; Dong, Guo-Hui; Zhou, Duan-Lu; Sun, Chang-Pu
2016-04-01
Symmetry is conventionally described in a polarized manner that the system is either completely symmetric or completely asymmetric. Using group theoretical approach to overcome this dichotomous problem, we introduce the degree of symmetry (DoS) as a non-negative continuous number ranging from zero to unity. DoS is defined through an average of the fidelity deviations of Hamiltonian or quantum state over its transformation group G, and thus is computable by making use of the completeness relations of the irreducible representations of G. The monotonicity of DoS can effectively probe the extended group for accidental degeneracy while its multi-valued natures characterize some (spontaneous) symmetry breaking. Supported by the National Natural Science Foundation of China under Grant Nos. 11421063, 11534002, 11475254 and the National 973 Program under Grant Nos. 2014CB921403, 2012CB922104, and 2014CB921202
Chanowitz, M.S.
1990-09-01
The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Ismael, Jenann Tareq
1997-04-01
Structures of many different sorts arise in physics, e.g., the concrete structures of material bodies, the structure exemplified by the spatiotemporal configuration of a set of bodies, the structures of more abstract objects like states, state-spaces, laws, and so on. To each structure of any of these types there corresponds a set of transformations which map it onto itself. These are its symmetries. Increasingly ubiquitous in theoretical discussions in physics, the notion of symmetry is also at the root of some time-worn philosophical debates. This dissertation consists of a set of essays on topics drawn from places where the two fields overlap. The first essay is an informal introduction to the mathematical study of symmetry. The second essay defends a famous principle of Pierre Curie which states that the symmetries of a cause are always symmetries of its effect. The third essay takes up the case of reflection in space in the context of a controversy stemming from one of Kant's early arguments for the substantivality of space. The fourth essay is a discussion of the general conditions under which an asymmetry in a phenomenon suggests an asymmetry in the laws which govern it. The case of reflection in time-specifically, the theoretical strategy used in statistical mechanics to subsume the time-asymmetric phenomena of Thermodynamics under the time-symmetric classical dynamical laws-is used to illustrate the general points. The philosophical heart of the thesis lies in its fifth essay. Here a somewhat novel way of conceiving scientific theorizing is articulated, one suggested by the abstract mathematical perspective of symmetry.
Electric-magnetic dualities in non-abelian and non-commutative gauge theories
NASA Astrophysics Data System (ADS)
Ho, Jun-Kai; Ma, Chen-Te
2016-08-01
Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.
NASA Astrophysics Data System (ADS)
West, Carl T.; Kottos, Tsampikos; Prosen, Tomaz
2010-03-01
We study a new class of chaotic systems with dynamical localization, where gain/loss processes break the hermiticity, while allowing for parity-time PT symmetry. For a value γPT of the gain/loss parameter the spectrum undergoes a spontaneous phase transition from real (exact phase) to complex values (broken phase). We develop a one parameter scaling theory for γPT, and show that chaos assists the exact PT-phase. Our results will have applications to the design of optical elements with PT-symmetry.
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
NASA Astrophysics Data System (ADS)
Moore, Gregory
The vanishing of the one-loop string cosmological constant in nontrivial non supersymmetric backgrounds can be understood by viewing the path integral as an inner product of orthogonal wave functions. For special backgrounds the string theory has an extra symmetry, expressed as a transformation on moduli space. When left- and right-moving wave functions transform in different representations of this symmetry the cosmological constant must vanish. Specific examples of the mechanism are given at one loop for theories in two and four dimensions. Various suggestions are made for the higher loop extension of this idea.
BOOK REVIEW: Symmetry Breaking
NASA Astrophysics Data System (ADS)
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory
Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.
2005-07-01
We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.
Momentum subtraction scheme renormalization group functions in the maximal Abelian gauge
NASA Astrophysics Data System (ADS)
Bell, J. M.; Gracey, J. A.
2013-10-01
The one-loop 3-point vertex functions of QCD in the maximal Abelian gauge are evaluated at the fully symmetric point at one loop. As a consequence the theory is renormalized in the various momentum subtraction schemes, which are defined by the trivalent vertices, as well as in the MS¯ scheme. From these the two-loop renormalization group functions in the momentum schemes are derived using the one-loop conversion functions. In parallel we repeat the analysis for the Curci-Ferrari gauge, which corresponds to the maximal Abelian gauge in a specific limit. The relation between the Λ parameters in different schemes is also provided.
Non-Abelian geometric phase and long-range atomic forces
NASA Technical Reports Server (NTRS)
Zygelman, B.
1990-01-01
It is shown how gauge fields, or geometric phases, manifest as observable effects in both bound and free diatom systems. It is shown that, in addition to altering energy splittings in bound systems, geometric phases induce transitions in levels separated by a finite-energy gap. An example is given where the non-Abelian gauge field couples nondegenerate electronic levels in a diatom. This gauge-field coupling gives rise to an observable effect. It is shown that when the diatom is 'pulled apart', the non-Abelian geometric phase manifests as a long-range atomic force.
Necessity of an energy barrier for self-correction of Abelian quantum doubles
NASA Astrophysics Data System (ADS)
Kómár, Anna; Landon-Cardinal, Olivier; Temme, Kristan
2016-05-01
We rigorously establish an Arrhenius law for the mixing time of quantum doubles based on any Abelian group Zd. We have made the concept of the energy barrier therein mathematically well defined; it is related to the minimum energy cost the environment has to provide to the system in order to produce a generalized Pauli error, maximized for any generalized Pauli errors, not only logical operators. We evaluate this generalized energy barrier in Abelian quantum double models and find it to be a constant independent of system size. Thus, we rule out the possibility of entropic protection for this broad group of models.
Kauffman knot polynomials in classical abelian Chern-Simons field theory
Liu Xin
2010-12-15
Kauffman knot polynomial invariants are discovered in classical abelian Chern-Simons field theory. A topological invariant t{sup I(L)} is constructed for a link L, where I is the abelian Chern-Simons action and t a formal constant. For oriented knotted vortex lines, t{sup I} satisfies the skein relations of the Kauffman R-polynomial; for un-oriented knotted lines, t{sup I} satisfies the skein relations of the Kauffman bracket polynomial. As an example the bracket polynomials of trefoil knots are computed, and the Jones polynomial is constructed from the bracket polynomial.
Superfield Approach to Nilpotent Symmetries of the Freedman-Townsend Model: Novel Features
NASA Astrophysics Data System (ADS)
Malik, R. P.
2012-09-01
We perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the Freedman-Townsend (FT) model of topologically massive non-Abelian theory by exploiting its (1-form) Yang-Mills (YM) gauge transformations to show the existence of some novel features that are totally different from the results obtained in such a kind of consideration carried out for the dynamical non-Abelian 2-form theory. We tap here the potential and power of the augmented version of Bonora-Tonin's superfield approach to BRST formalism to derive the full set of off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations where, in addition to the horizontality condition (HC), we are theoretically compelled to exploit the appropriate gauge-invariant restrictions (GIRs) on the (super)fields for the derivation of the appropriate symmetry transformations for all the relevant fields. We compare our key results with that of the other such attempt for the discussion of the present model within the framework of BRST formalism.
From non-Abelian anyons to quantum computation to coin-flipping by telephone
NASA Astrophysics Data System (ADS)
Mochon, Carlos
Following their divorce, Alice and Bob would like to split some of their possessions by flipping a coin. Unwilling to meet in person, and without a trusted third party, they must figure out a scheme to flip the coin over a telephone that guarantees that neither party can cheat. The preceding scenario is the traditional definition of two-party coin-flipping. In a classical setting, without limits on the available computational power, one player can always guarantee a coin-flipping victory by cheating. However, by employing quantum communication it is possible to guarantee, with only information-theoretic assumptions, that neither party can win by cheating, with a probability greater than two thirds. Along with the description of such a protocol, this thesis derives a tight lower bound on the bias for a large family of quantum weak coin-flipping protocols, proving such a protocol optimal within the family. The protocol described herein is an improvement and generalization of one examined by Spekkens and Rudolph. The key steps of the analysis involve Kitaev's description of quantum coin-flipping as a semidefinite program whose dual problem provides a certificate that upper bounds the amount of cheating for each party. In order for such quantum protocols to be viable, though, a number of practical obstacles involving the communication and processing of quantum information must be resolved. In the second half of this thesis, a scheme for processing quantum information is presented, which uses non-abelian anyons that are the magnetic and electric excitations of a discrete-group quantum gauge theory. In particular, the connections between group structure and computational power are examined, generalizing previous work by Kitaev, Ogburn and Preskill. Anyon based computation has the advantage of being topological, which exponentially suppresses the rate of decoherence and the errors associated with the elementary quantum gates. Though no physical systems with such
Zwart, P.H.; Grosse-Kunstleve, R.W.; Adams, P.D.
2006-07-31
Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell parameters and a space group. The new iotbx.explore{_}metric{_}symmetry command produces an overview of the various relations between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) PHENIX and CCI Apps distributions.
ERIC Educational Resources Information Center
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Introduction to chiral symmetry
Koch, V.
1996-01-08
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.
NASA Astrophysics Data System (ADS)
Maes, Christian; Salazar, Alberto
2014-01-01
In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.
ERIC Educational Resources Information Center
McGehe, Carol
1991-01-01
Presents math activities, problems, and games for teaching elementary students to recognize the world's natural symmetry and understand the mathematical qualities it represents; suggests activities with construction paper, blocks, and calculators. Instructions for using the calculator to create palindromes are included. (SM)
Dynamics of non-integrable phases and gauge symmetry breaking
Hosotani, Y.
1989-03-01
On a multiply-connected space the non-integrable phase factor/ital P/ exp(ig..integral../ital A//sub ..mu..//ital dx//sup ..mu..//r brace/), a path-ordered line integral along anon-contractable loop, becomes a dynamical degree of freedom in gauge theory.The dynamics of such non-integrable phases are examined in detail with themost general boundary condition for gauge fields and fermions. Sometimesthe dynamics of the non-integrable phases compensate the arbitrariness inthe boundary condition imposed, leading to the same physics results. Inother cases the dynamics of the non-integrable phases induce spontaneousbreaking of non-Abelian gauge symmetry. In other words the physically realizedsymmetry of the system differs from, and can be either greater or smaller than,the symmetry of the boundary condition. The effective potential for thenon-integrable phases in the /ital SU/(/ital N/) gauge theory on/ital S//sup 1//direct product//ital R//sup 1/ital d//minus/2/is computed in the one-loop approximation. It is shown that the gauge symmetryis dynamically broken in the presence of fermions in the adjoint representation,depending on the value of the boundary condition parameter./copyright/ 1989 Academic Press, Inc.
Permutation-symmetry related selection rules in spinor quantum gases
NASA Astrophysics Data System (ADS)
Yurovsky, Vladimir
2014-05-01
Selection rules constraining possible transitions between states of quantum systems can be derived from the system symmetry. Invariance over permutations of indistinguishable particles, contained in each physical system, is one of the basic symmetries. Consider a many-body system with separable spin and spatial degrees of freedom of particles with arbitrary spins s. Eigenfunctions of such systems can be expressed as a sum of products of spin and spatial functions, which form irreducible representations (irreps) of the symmetric group. The quantum numbers are the Young diagrams λ = [λ1 , ... ,λ2 s + 1 ] . The selection rules for a general k-body interactions allow transitions between the states λ and λ' only if ∑m=12s+1 |λm -λm'| <= 2 k . For s = 1 / 2 , the Young diagrams are unambiguously related to the total spin, and if k = 1 , we get the conventional selection rule for dipole transitions. However, if s > 1 / 2 , the rules cannot be expressed in terms of spins. The selection rules provide a way of control over the formation of many-body entangled states, belonging to multidimensional, non-Abelian irreps of the symmetric group. The effects can be observed with spinor atoms in an optical lattice in the Mott-insulator regime.
Gauging without initial symmetry
NASA Astrophysics Data System (ADS)
Kotov, Alexei; Strobl, Thomas
2016-01-01
The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Σ, the original functional is extended appropriately by additional Lie(G) -valued 1-form gauge fields so as to lift the symmetry to Maps(Σ , G) . Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields va on the target M satisfying the extended Killing equationv a(i ; j) = 0 for some connection acting on the index a. For regular foliations this is equivalent to requiring the conormal bundle to the leaves with its induced metric to be invariant under leaf-preserving diffeomorphisms of M, which in turn generalizes Riemannian submersions to which the notion reduces for smooth leaf spaces M / ∼. The resulting gauge theory has the usual quotient effect with respect to the original ungauged theory: in this way, much more general orbits can be factored out than usually considered. In some cases these are orbits that do not correspond to an initial symmetry, but still can be generated by a finite-dimensional Lie group G. Then the presented gauging procedure leads to an ordinary gauge theory with Lie algebra valued 1-form gauge fields, but showing an unconventional transformation law. In general, however, one finds that the notion of an ordinary structural Lie group is too restrictive and should be replaced by the much more general notion of a structural Lie groupoid.
NASA Astrophysics Data System (ADS)
Shukla, A.; Krishna, S.; Malik, R. P.
2014-12-01
We derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, corresponding to the (1-form) Yang-Mills (YM) and (2-form) tensorial gauge symmetries of the four (3+1)-dimensional (4D) Freedman-Townsend (FT) model, by exploiting the augmented version of Bonora-Tonin's (BT) superfield approach to BRST formalism where the 4D flat Minkowskian theory is generalized onto the (4, 2)-dimensional supermanifold. One of the novel observations is the fact that we are theoretically compelled to go beyond the horizontality condition (HC) to invoke an additional set of gauge-invariant restrictions (GIRs) for the derivation of the full set of proper (anti-)BRST symmetries. To obtain the (anti-)BRST symmetry transformations, corresponding to the tensorial (2-form) gauge symmetries within the framework of augmented version of BT-superfield approach, we are logically forced to modify the FT-model to incorporate an auxiliary 1-form field and the kinetic term for the antisymmetric (2-form) gauge field. This is also a new observation in our present investigation. We point out some of the key differences between the modified FT-model and Lahiri-model (LM) of the dynamical non-Abelian 2-form gauge theories. We also briefly mention a few similarities.
Emergent SO(5) Symmetry at the Néel to Valence-Bond-Solid Transition.
Nahum, Adam; Serna, P; Chalker, J T; Ortuño, M; Somoza, A M
2015-12-31
We show numerically that the "deconfined" quantum critical point between the Néel antiferromagnet and the columnar valence-bond solid, for a square lattice of spin 1/2, has an emergent SO(5) symmetry. This symmetry allows the Néel vector and the valence-bond solid order parameter to be rotated into each other. It is a remarkable (2+1)-dimensional analogue of the SO(4)=[SU(2)×SU(2)]/Z(2) symmetry that appears in the scaling limit for the spin-1/2 Heisenberg chain. The emergent SO(5) symmetry is strong evidence that the phase transition in the (2+1)-dimensional system is truly continuous, despite the violations of finite-size scaling observed previously in this problem. It also implies surprising relations between correlation functions at the transition. The symmetry enhancement is expected to apply generally to the critical two-component Abelian Higgs model (noncompact CP(1) model). The result indicates that in three dimensions there is an SO(5)-symmetric conformal field theory that has no relevant singlet operators, so is radically different from conventional Wilson-Fisher-type conformal field theories. PMID:26765019
Gravity from Lorentz Symmetry Violation
Potting, Robertus
2006-06-19
In general relativity, the masslessness of gravitons can be traced to symmetry under diffeomorphisms. In this talk, we consider another possibility, whereby the masslessness arises from spontaneous violation of Lorentz symmetry.
PREFACE: Symmetries in Science XVI
NASA Astrophysics Data System (ADS)
2014-10-01
-session, topics ranging from theoretical chemistry and molecular physics via fundamental problems in quantum theory to thermodynamics, nonlinear dynamics, soliton theory and finally cosmology, were examined and lively discussed. Nearly all the talks can also be viewed on the conference website. The majority of participants contributed to these Proceedings but some were unable to do so as their results were either previously submitted or published elsewhere. We refer to: · Quesne C 2013, J. Math. Phys. 54, 102102. · Spera M 2013, (Nankai Series in Pure, Applied Mathematics and Theoretical Physics): 11 Symmetries and Groups in Contemporary Physics: pp. 593-598 Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20 - 26 August 2012 (World Scientific, Singapore) · Snobl L and Winternitz P 2014, Classification and Identification of Lie Algebras, CRM Monograph Series 33 (Montreal) ISBN-10: 0-8218-4355-9, ISBN-13: 978-0-8218-4355-0 (http://www.ams.org/bookstore?fn=20&arg1=crmmseries&ikey=CRMM-33). Our personal thanks to Daniel and family! Endless support from the Schenk Family who, among other things, sponsored (yet again) the entire conference dinner (including wines and banquet hall) meant that some costs could be alleviated. We could therefore assist various colleagues from economically-weak countries, despite the lack of external funding. A financial deficit meant we would have had to forego the Conference Proceedings, published in previous years by IOP. After long deliberations, and with donations from Gerhard Berssenbrügge, Dr. Dr. Stephan Hauk and Dr. Volker Weisswange, this could be facilitated. We are very grateful to these private donors for their generous and wholehearted support. The staff of Collegium Mehrerau is also to be thanked for their hospitality. Finally, our sincere thanks to Yvette not only for her preparatory work and support during the conference, but also for her persistent interest and help in producing
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Di Chiara, Stefano; Foadi, Roshan
2009-11-01
We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zb{sub L}b{sub L} coupling from large corrections. This 'doublet-extended standard model' adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4)xU(1){sub X}{approx}SU(2){sub L}xSU(2){sub R}xP{sub LR}xU(1){sub X} symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2){sub L}xU(1){sub Y} electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M{yields}0) and standard-model-like (M{yields}{infinity}) limits. In this simple model, we find that the experimental limits on the Zb{sub L}b{sub L} coupling favor smaller M while the presence of a potentially sizable negative contribution to {alpha}T strongly favors large M. Comparison with precision electroweak data shows that the heavy partner of the top quark must be heavier than about 3.4 TeV, making it difficult to search for at LHC. This result demonstrates that electroweak data strongly limit the amount by which the custodial symmetry of the top-quark mass generating sector can be enhanced relative to the standard model. Using an effective field theory calculation, we illustrate how the leading contributions to {alpha}T, {alpha}S, and the Zb{sub L}b{sub L} coupling in this model arise from an effective operator coupling right-handed top quarks to the Z boson, and how the effects on these observables are correlated. We contrast this toy model with extradimensional models in which the extended custodial symmetry is invoked to control the size of additional contributions to {alpha}T and the Zb{sub L}b{sub L} coupling, while leaving the standard model contributions essentially unchanged.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin
2015-08-01
Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.
A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields
NASA Astrophysics Data System (ADS)
Bertrand, Daniel; Pillay, Anand
2010-04-01
We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a {Q} -linearly independent set of algebraic numbers are algebraically independent), replacing {Q}^{alg} by {C}(t)^{alg} and {G}_{m}^{n} by a semi-abelian variety over {C}(t)^{alg} . Both the formulations of our results and the methods are differential algebraic in nature.
Constraint Structure and Quantization of a Non-Abelian Gauge Theory by Means of Dirac Brackets
NASA Astrophysics Data System (ADS)
Bracken, Paul
An SO(3) non-Abelian gauge theory is introduced. The Hamiltonian density is determined and the constraint structure of the model is derived. The first-class constraints are obtained and gauge-fixing constraints are introduced into the model. Finally, using the constraints, the Dirac brackets can be determined and a canonical quantization is found using Dirac's procedure.
Collective States of D(D3) Non-Abelian Anyons
NASA Astrophysics Data System (ADS)
Finch, P. E.; Frahm, H.
2013-11-01
We study an exactly solvable model of non-Abelian anyons symmetric under the quantum double of the dihedral group D3 on a one-dimensional lattice. Bethe ansatz methods are employed to compute the ground states of this model in different regions of the parameter space. The finite size spectrum is studied and the corresponding low energy field theories are identified.
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Reflections on Symmetry and Proof
ERIC Educational Resources Information Center
Merrotsy, Peter
2008-01-01
The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…
PREFACE: Symmetries in Science XV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2012-08-01
Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There
PSEUDOSPIN SYMMETRY IN NUCLEI, SPIN SYMMETRY IN HADRONS
P. PAGE; T. GOLDMAN; J. GINOCCHIO
2000-08-01
Ginocchio argued that chiral symmetry breaking in QCD is responsible for the relativistic pseudospin symmetry in the Dirac equation, explaining the observed approximate pseudospin symmetry in sizable nuclei. On a much smaller scale, it is known that spin-orbit splittings in hadrons are small. Specifically, new experimental data from CLEO indicate small splittings in D-mesons. For heavy-light mesons we identify a cousin of pseudospin symmetry that suppresses these splittings in the Dirac equation, known as spin symmetry. We suggest an experimental test of the implications of spin symmetry for wave functions in electron-positron annihilation. We investigate how QCD can give rise to two different dynamical symmetries on nuclear and hadronic scales.
A broken symmetry ontology: Quantum mechanics as a broken symmetry
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
NASA Astrophysics Data System (ADS)
Christodoulides, Demetrios
2015-03-01
Interest in complex Hamiltonians has been rekindled after the realization that a wide class of non-Hermitian Hamiltonians can have entirely real spectra as long as they simultaneously respect parity and time reversal operators. In non-relativistic quantum mechanics, governed by the Schrödinger equation, a necessary but not sufficient condition for PT symmetry to hold is that the complex potential should involve real and imaginary parts which are even and odd functions of position respectively. As recently indicated, optics provides a fertile ground to observe and utilize notions of PT symmetry. In optics, the refractive index and gain/loss profiles play the role of the real and imaginary parts of the aforementioned complex potentials. As it has been demonstrated in several studies, PT-symmetric optical structures can exhibit peculiar properties that are otherwise unattainable in traditional Hermitian (conservative) optical settings. Among them, is the possibility for breaking this symmetry through an abrupt phase transition, band merging effects and unidirectional invisibility. Here we review recent developments in the field of -symmetric optics.
Non-abelian gauge extensions for B-decay anomalies
NASA Astrophysics Data System (ADS)
Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier
2016-09-01
We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b → sℓ+ℓ- and b → cℓν decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU (2) L factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.
Non-Abelian dark matter: Models and constraints
NASA Astrophysics Data System (ADS)
Chen, Fang; Cline, James M.; Frey, Andrew R.
2009-10-01
Numerous experimental anomalies hint at the existence of a dark matter (DM) multiplet χi with small mass splittings. We survey the simplest such models which arise from DM in the low representations of a new SU(2) gauge symmetry, whose gauge bosons have a small mass μ≲1GeV. We identify preferred parameters Mχ≅1TeV, μ˜100MeV, αg˜0.04, and the χχ→4e annihilation channel, for explaining PAMELA, Fermi, and INTEGRAL/SPI lepton excesses, while remaining consistent with constraints from relic density, diffuse gamma rays, and the CMB. This consistency is strengthened if DM annihilations occur mainly in subhalos, while excitations (relevant to the excited DM proposal to explain the 511 keV excess) occur in the galactic center, due to higher velocity dispersions in the galactic center, induced by baryons. We derive new constraints and predictions which are generic to these models. Notably, decays of excited DM states χ'→χγ arise at one loop and could provide a new signal for INTEGRAL/SPI; big bang nucleosynthesis constraints on the density of dark SU(2) gauge bosons imply a lower bound on the mixing parameter γ between the SU(2) gauge bosons and photon. These considerations rule out the possibility of the gauge bosons that decay into e+e- being long-lived. We study in detail models of doublet, triplet, and quintuplet DM, showing that both normal and inverted mass hierarchies can occur, with mass splittings that can be parametrically smaller [e.g., O(100)keV] than the generic MeV scale of splittings. A systematic treatment of Z2 symmetry, which insures the stability of the intermediate DM state, is given for cases with inverted mass hierarchy, of interest for boosting the 511 keV signal from the excited dark matter mechanism.
Symmetries in laminated composite plates
NASA Technical Reports Server (NTRS)
Noor, A. K.
1976-01-01
The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.
Classical dynamics of the Abelian Higgs model from the critical point and beyond
NASA Astrophysics Data System (ADS)
Katsimiga, G. C.; Diakonos, F. K.; Maintas, X. N.
2015-09-01
We present two different families of solutions of the U(1)-Higgs model in a (1 + 1) dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum), which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl-Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.
Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1) B- L
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Rose, Luigi Delle; Marzo, Carlo
2016-02-01
We present a renormalization group study of the scalar potential in a minimal U(1) B- L extension of the Standard Model involving one extra heavier Higgs and three heavy right-handed neutrinos with family universal B-L charge assignments. We implement a type-I seesaw for the masses of the light neutrinos of the Standard Model. In particular, compared to a previous study, we perform a two-loop extension of the evolution, showing that two-loop effects are essential for the study of the stability of the scalar potential up to the Planck scale. The analysis includes the contribution of the kinetic mixing between the two abelian gauge groups, which is radiatively generated by the evolution, and the one-loop matching conditions at the electroweak scale. By requiring the stability of the potential up to the Planck mass, significant constraints on the masses of the heavy neutrinos, on the gauge couplings and the mixing in the Higgs sector are identified.
Thermal symmetry in isoscaling
Escudero, C. R.; Lopez, J. A.; Dorso, C. O.
2007-02-12
It is determined that isoscaling data, if produced by two isotopic reactions under similar thermodynamic conditions, should satisfy a simple numerical relationship. This, which helps to explore the symmetry of thermodynamic conditions of isotopic reactions, is studied using molecular dynamics simulations of 40Ca+40Ca, 48Ca+48Ca, and 52Ca+52Ca, at beam energies from 35 MeV / A to 85 MeV / A, and as a function of time. Strong deviations from the rule are detected in the beginning of the collision, with an excellent convergence at long times for some energies. A comparison with experimental data and other calculations is also included.
Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Schreiber, K. A.; Gardner, G. C.; Manfra, M. J.; Fradkin, E.; Csáthy, G. A.
2016-02-01
Until the late 1980s, phases of matter were understood in terms of Landau’s symmetry-breaking theory. Following the discovery of the quantum Hall effect, the introduction of a second class of phases, those with topological order, was necessary. Phase transitions within the first class of phases involve a change in symmetry, whereas those between topological phases require a change in topological order. However, in rare cases, transitions may occur between the two classes, in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. Here, we report the existence of such a transition in a two-dimensional electron gas hosted by a GaAs/AlGaAs crystal. When tuned by hydrostatic pressure, the ν = 5/2 fractional quantum Hall state, believed to be a prototypical non-Abelian topological phase, gives way to a quantum Hall nematic phase. Remarkably, this nematic phase develops spontaneously, in the absence of any externally applied symmetry-breaking fields.
NASA Astrophysics Data System (ADS)
Hong, Xiaochun; Xie, Shaolong; Chen, Longwei
In this study, we determine the associated number of zeros for Abelian integrals in four classes of quadratic reversible centers of genus one. Based on the results of [Li et al., 2002b],, we prove that the upper bounds of the associated number of zeros for Abelian integrals with orbits formed by conics, cubics, quartics, and sextics, under polynomial perturbations of arbitrary degree n, depend linearly on n.
The existence of self-dual vortices in a non-Abelian {Phi}{sup 2} Chern-Simons theory
Chen Shouxin; Wang Ying
2010-09-15
Applying the dynamic shooting method, we proved the existence of nontopological radially symmetric n-vortex solutions to the self-dual equation in non-Abelian Chern-Simons gauge theory with a {Phi}{sup 2}-type potential. Moreover, we obtained all possible radially symmetric nontopological bare (or 0-vortex) solutions in the non-Abelian Chern-Simons model. Meanwhile, we established the asymptotic behavior for the solutions as |x|{yields}{infinity}.
Twofold PT symmetry in doubly exponential optical lattices
NASA Astrophysics Data System (ADS)
Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2016-01-01
We introduce a family of non-Hermitian optical potentials that are given in terms of double-exponential periodic functions. The center of PT symmetry is not around zero and the potential satisfies a shifted PT -symmetry relation at two distinct locations. Motivated by wave transmission through thin phase screens and gratings, we examine these refractive index modulations from the perspective of optical lattices that are homogeneous along the propagation direction. The diffraction dynamics, abrupt phase transitions in the eigenvalue spectrum, and exceptional points in the band structure are examined in detail. In addition, the nonlinear properties of wave propagation in Kerr nonlinearity media are studied. In particular, coherent structures such as lattice solitons are numerically identified by applying the spectral renormalization method. The spatial symmetries of such lattice solitons follow the shifted PT -symmetric relations. Furthermore, such lattice solitons have a power threshold and their linear and nonlinear stabilities are critically dependent on their spatial symmetry point.
NASA Technical Reports Server (NTRS)
Rosensteel, George
1995-01-01
Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Colorful Horizons with Charge in Anti-de Sitter Space
Gubser, Steven S.
2008-11-07
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstroem-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of gauge invariance and spatial rotational invariance.
Study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge
Capri, M.A.L. Guimaraes, M.S. Lemes, V.E.R. Sorella, S.P. Tedesco, D.G.
2014-05-15
A study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge is presented in the case of the gauge group SU(2) and for different Euclidean space–time dimensions. Explicit examples of classes of normalizable zero modes and corresponding gauge field configurations are constructed by taking into account two boundary conditions, namely: (i) the finite Euclidean Yang–Mills action, (ii) the finite Hilbert norm. -- Highlights: •We study the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge. •For d=2 we obtain solutions with finite action but not finite Hilbert norm. •For d=3,4 we obtain solutions with finite action and finite Hilbert norm. •These results can be compared with those previously obtained in the Landau gauge.
Bulk-Edge Correspondence in 2+1-Dimensional Abelian Topological Phases
NASA Astrophysics Data System (ADS)
Plamadeala, Eugeniu; Cheng, Meng; Mulligan, Michael; Nayak, Chetan; Cano, Jennifer; Yard, Jon
2014-03-01
The same bulk two-dimensional topological phase can have multiple distinct, fully-chiral edge phases. We show that this can occur in the integer quantum Hall and Abelian fractional quantum Hall states. We give a general criterion for the existence of multiple distinct chiral edge phases for the same bulk phase and discuss experimental consequences. We show that fermionic systems can have edge phases with only bosonic low-energy excitations and discuss a fermionic generalization of the relation between bulk topological spins and the central charge. The latter follows from our demonstration that every fermionic topological phase can be represented as a bosonic topological phase, together with some number of filled Landau levels. Our analysis shows that every Abelian topological phase can be decomposed into a tensor product of theories associated with prime numbers p in which every quasiparticle has a topological spin that is a pn-th root of unity for some n.
Non-Abelian vortices on a cylinder: Duality between vortices and walls
Eto, Minoru; Fujimori, Toshiaki; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke; Ohta, Kazutoshi
2006-04-15
We investigate vortices on a cylinder in supersymmetric non-Abelian gauge theory with hypermultiplets in the fundamental representation. We identify moduli space of periodic vortices and find that a pair of wall-like objects appears as the vortex moduli is varied. Usual domain walls also can be obtained from the single vortex on the cylinder by introducing a twisted boundary condition. We can understand these phenomena as a T duality among D-brane configurations in type II superstring theories. Using this T-duality picture, we find a one-to-one correspondence between the moduli space of non-Abelian vortices and that of kinky D-brane configurations for domain walls.
Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan
2009-07-15
We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.
Particle coupled to a heat bath in non-Abelian gauge potentials
NASA Astrophysics Data System (ADS)
Guingarey, Issoufou; Avossevou, Gabriel Y. H.
2015-12-01
We derive the quantum Langevin equation (QLE) for a harmonically single trapped cold atom subjected to artificial non-Abelian gauge potentials and linearly coupled to a heat bath. The independent-oscillator (IO) and the momentum-momenta coupling models are studied. In each case, the non-Abelian effect on the QLE is pointed out for a U(2 ) gauge transformation. For the IO model, only the generalized Lorentz force is modified by the appearance of an additive term. For the momentum-momenta coupling model, the generalized Lorentz force as well as the friction force are subjected to modifications. The dependence of the system on the magnetic field is explicit even if the gauge potential is uniform in space.
Haag duality for Kitaev’s quantum double model for abelian groups
NASA Astrophysics Data System (ADS)
Fiedler, Leander; Naaijkens, Pieter
2015-11-01
We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.
Leptogenesis and residual CP symmetry
NASA Astrophysics Data System (ADS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-03-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Symmetry of Magnetically Ordered Quasicrystals
NASA Astrophysics Data System (ADS)
Lifshitz, Ron
1998-03-01
The notion of magnetic symmetry is reexamined in light of the recent observation of long-range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals, is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.
Topological phase transitions on a triangular optical lattice with non-Abelian gauge fields
NASA Astrophysics Data System (ADS)
Iskin, M.
2016-03-01
We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice and construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic non-Abelian gauge field.
Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions
NASA Astrophysics Data System (ADS)
Gyulassy, M.; Levai, P.; Vitev, I.; Biró, T. S.
2014-09-01
We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vnM{1}, and even numbered 2ℓ gluon distribution, vnM{2ℓ}, inclusive distributions in high-energy p +A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 2ℓ, at the RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of the intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT,η). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple analytic solution to the beam energy scan puzzle of the near √s independence of vn(pT) moments observed down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D)+A and noncentral A+A at the same dN/dη multiplicity as observed at the RHIC and LHC.
Maximal Abelian and Curci-Ferrari gauges in momentum subtraction at three loops
NASA Astrophysics Data System (ADS)
Bell, J. M.; Gracey, J. A.
2015-12-01
The vertex structure of QCD fixed in the maximal Abelian gauge (MAG) and Curci-Ferrari gauge is analyzed at two loops at the fully symmetric point for the 3-point functions corresponding to the three momentum subtraction (MOM) renormalization schemes. Consequently, the three-loop renormalization group functions are determined for each of these three schemes in each gauge using properties of the renormalization group equation.
An Abelian Model of Gravity and Canonical Quantization by Means of Path Integrals
NASA Astrophysics Data System (ADS)
Bracken, Paul
An Abelian model of gravity is introduced and its constraint structure is obtained. The main task is to show that the model with constraints can be canonically quantized by means of the canonical path integral formalism using the Faddeev-Popov approach. It is shown how the path integral can be simplified by carrying out the integrals over those variables for which the integrals can be computed.
Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals
NASA Astrophysics Data System (ADS)
Figueras, Jordi-Lluís; Tucker, Warwick; Villadelprat, Jordi
We develop techniques for the verification of the Chebyshev property of Abelian integrals. These techniques are a combination of theoretical results, analysis of asymptotic behavior of Wronskians, and rigorous computations based on interval arithmetic. We apply this approach to tackle a conjecture formulated by Dumortier and Roussarie in [F. Dumortier, R. Roussarie, Birth of canard cycles, Discrete Contin. Dyn. Syst. 2 (2009) 723-781], which we are able to prove for q≤2.
Vacuum spacetimes with controlled singularities and without symmetries
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Klinger, Paul
2015-08-01
We show the existence of a family of four-dimensional vacuum spacetimes with asymptotically velocity-dominated singularities and without symmetries. The solutions are obtained using Fuchsian methods and are parametrized by several free functions of all space coordinates which control their asymptotic expansion.
Entanglement of Vortex Lattices for Ultracold Bose Gases in a Non-Abelian Gauge Potential
NASA Astrophysics Data System (ADS)
Cheng, Szu-Cheng; Jiang, T. F.; Jheng, Shih-Da; Atomic; Molecular Physics Team; Atomic; Molecular Physics Team
We develop a theory, referred to as the von Neumann lattice in a higher Landau level, for vortex lattices labelled by an integral number of flux quantums per unit cell in a higher Landau level. Using this lattice theory, we study the vortex lattice states of a pseudospin-1/2 ultracold Bose gas with contact interactions in a non-Abelian gauge potential. In addition to a uniform magnetic field, the Bose gas is also subjected to a non-Abelian gauge field, which creates an effect of the spin-orbit coupling to lift the spin degeneracy of the Landau levels. Because of interactions from the spin-orbit coupling, there are new degenerate points of the single particle spectrum due to the crossings of two Landau levels at certain coupling strengths. We show that interactions from the spin-orbit coupling force the nature and structure of the vortex lattice changing dramatically if the strength of the non-Abelian gauge field is increasing. We also find that the ground state of the vortex lattice at a degenerate point exhibits strong correlation and entanglement involving vortex lattices from different Landau levels. This entangled state builds the connection between two phases of vortex lattices during the first order phase transition of the adiabatic evolution.
Numerical characterization of non-Abelian Moore-Read state in the microscopic lattice boson model
NASA Astrophysics Data System (ADS)
Zhu, Wei; Gong, Shoushu; Haldane, F. D. M.; Sheng, D. N.
2015-03-01
Identifying the interacting systems that host the non-Abelian (NA) topological phases have attracted intense attention in physics. Theoretically, it is possible to realize the NA Moore-Read (MR) state in bosonic system or double-layer system by coupling two Abelian fractional quantum Hall (FQH) states together. Here, based on the density matrix renormalization group and exact diagonalization calculations, we study two such examples in the microscopic lattice models and investigate their NA nature. In the first example, we provide a thorough characterization of the universal properties of MR state on Haldane honeycomb lattice model, including both the edge spectrum and the bulk anyonic quasiparticle statistics. By inspecting the entanglement spectral response to the U (1) flux, it is found that two of Abelian ground states can be adiabatically connected through a charge unit quasiparticle pumping from one edge to the other. In the second example, we study a double-layer bosonic FQH system built from the π-flux lattice model. Some evidences of NA nature has been identified, including the groundstate degeneracy and finite drag Hall conductance. The numerical methods we developed here provides a useful and practical way for detecting the full information of NA topological order. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46305.
Non-Abelian black holes in D=5 maximal gauged supergravity
Cvetic, M.; Lue, H.; Pope, C. N.
2010-02-15
We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS{sub 2}xS{sup 3}. If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.
Application of abelian holonomy formalism to the elementary theory of numbers
NASA Astrophysics Data System (ADS)
Abe, Yasuhiro
2012-05-01
We consider an abelian holonomy operator in two-dimensional conformal field theory with zero-mode contributions. The analysis is made possible by use of a geometric-quantization scheme for abelian Chern-Simons theory on S1 × S1 × R. We find that a purely zero-mode part of the holonomy operator can be expressed in terms of Riemann's zeta function. We also show that a generalization of linking numbers can be obtained in terms of the vacuum expectation values of the zero-mode holonomy operators. Inspired by mathematical analogies between linking numbers and Legendre symbols, we then apply these results to a space of Fp = Z/pZ, where p is an odd prime number. This enables us to calculate "scattering amplitudes" of identical odd primes in the holonomy formalism. In this framework, the Riemann hypothesis can be interpreted by means of a physically obvious fact, i.e., there is no notion of "scattering" for a single-particle system. Abelian gauge theories described by the zero-mode holonomy operators will be useful for studies on quantum aspects of topology and number theory.
Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states
Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan
2011-02-15
We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506, 685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c=1+(1/2) conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.
NASA Astrophysics Data System (ADS)
Weber, S. V.; Casey, D. T.; Pino, J. E.; Rowley, D. P.; Smalyuk, V. A.; Spears, B. K.; Tipton, R. E.
2013-10-01
NIF CH ablator symmetry capsules are filled with hydrogen or helium gas. SymCaps have more moderate convergence ratios ~ 15 as opposed to ~ 35 for ignition capsules with DT ice layers, and better agreement has been achieved between simulations and experimental data. We will present modeling of capsules with CD layers and tritium fill, for which we are able to match the dependence of DT yield on recession distance of the CD layer from the gas. We can also match the performance of CH capsules with D3 He fill. The simulations include surface roughness, drive asymmetry, a mock-up of modulation introduced by the tent holding the capsule, and an empirical prescription for ablator-gas atomic mix. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links
NASA Astrophysics Data System (ADS)
Carillo, Sandra; Fuchssteiner, Benno
1989-07-01
Explicit computation for a Kawamoto-type equation shows that there is a rich associated symmetry structure for four separate hierarchies of nonlinear integrodifferential equations. Contrary to the general belief that symmetry groups for nonlinear evolution equations in 1+1 dimensions have to be Abelian, it is shown that, in this case, the symmetry group is noncommutative. Its semisimple part is isomorphic to the affine Lie algebra A(1)1 associated to sl(2,C). In two of the additional hierarchies that were found, an explicit dependence of the independent variable occurs. Surprisingly, the generic invariance for the Kawamoto-type equation obtained in Rogers and Carillo [Phys. Scr. 36, 865 (1987)] via a reciprocal link to the Möbius invariance of the singularity equation of the Kaup-Kupershmidt (KK) equation only holds for one of the additional hierarchies of symmetry groups. Thus the generic invariance is not a universal property for the complete symmetry group of equations obtained by reciprocal links. In addition to these results, the bi-Hamiltonian formulation of the hierarchy is given. A direct Bäcklund transformation between the (KK) hierarchy and the hierarchy of singularity equation for the Caudrey-Dodd-Gibbon-Sawada-Kotera equation is exhibited: This shows that the abundant symmetry structure found for the Kawamoto equation must exist for all fifth-order equations, which are known to be completely integrable since these equations are connected either by Bäcklund transformations or reciprocal links. It is shown that similar results must hold for all hierarchies emerging out of singularity hierarchies via reciprocal links. Furthermore, general aspects of the results are discussed.
ERIC Educational Resources Information Center
Hancock, Karen
2007-01-01
In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…
Crystallographic and Spectroscopic Symmetry Notations.
ERIC Educational Resources Information Center
Sharma, B. D.
1982-01-01
Compares Schoenflies and Hermann-Mauguin notations of symmetry. Although the former (used by spectroscopists) and latter (used by crystallographers) both describe the same symmetry, there are distinct differences in the manner of description which may lead to confusion in correlating the two notations. (Author/JN)
Symmetry in Sign Language Poetry
ERIC Educational Resources Information Center
Sutton-Spence, Rachel; Kaneko, Michiko
2007-01-01
This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)
Generalized Atkin-Lehner symmetry
NASA Astrophysics Data System (ADS)
Dienes, Keith R.
1990-09-01
Atkin-Lehner symmetry was proposed several years ago as a mechanism for obtaining a vanishing one-loop cosmological constant in nonsupersymmetric superstring models, but for models formulated in four-dimensional spacetime this symmetry cannot be realized. We therefore investigate various means of retaining the general Atkin-Lehner idea without having strict Atkin-Lehner symmetry. We first explicitly construct non-Atkin-Lehner-symmetric partition functions which not only lead to vanishing cosmological constants but which also avoid a recent proof that Atkin-Lehner-symmetric partition functions cannot arise from physically viable string models in greater than two dimensions. We then develop a systematic generalization of Atkin-Lehner symmetry, basing our considerations on the use of non-Hermitian operators as well as on a general class of possible congruence subgroups of the full modular group. We find that whereas in many instances our resulting symmetries reduce to either strict Atkin-Lehner symmetry or symmetries closely related to it, in other cases we obtain symmetries of a fundamentally new character. Our results therefore suggest possible new avenues for retaining the general Atkin-Lehner ``selection rule'' approach for obtaining a vanishing one-loop cosmological constant.
Generalized Atkin-Lehner symmetry
Dienes, K.R. )
1990-09-15
Atkin-Lehner symmetry was proposed several years ago as a mechanism for obtaining a vanishing one-loop cosmological constant in nonsupersymmetric superstring models, but for models formulated in four-dimensional spacetime this symmetry cannot be realized. We therefore investigate various means of retaining the general Atkin-Lehner idea without having strict Atkin-Lehner symmetry. We first explicitly construct non-Atkin-Lehner-symmetric partition functions which not only lead to vanishing cosmological constants but which also avoid a recent proof that Atkin-Lehner-symmetric partition functions cannot arise from physically viable string models in greater than two dimensions. We then develop a systematic generalization of Atkin-Lehner symmetry, basing our considerations on the use of non-Hermitian operators as well as on a general class of possible congruence subgroups of the full modular group. We find that whereas in many instances our resulting symmetries reduce to either strict Atkin-Lehner symmetry or symmetries closely related to it, in other cases we obtain symmetries of a fundamentally new character. Our results therefore suggest possible new avenues for retaining the general Atkin-Lehner selection rule'' approach for obtaining a vanishing one-loop cosmological constant.
PREFACE: Symmetries in Science XVI
NASA Astrophysics Data System (ADS)
2014-10-01
-session, topics ranging from theoretical chemistry and molecular physics via fundamental problems in quantum theory to thermodynamics, nonlinear dynamics, soliton theory and finally cosmology, were examined and lively discussed. Nearly all the talks can also be viewed on the conference website. The majority of participants contributed to these Proceedings but some were unable to do so as their results were either previously submitted or published elsewhere. We refer to: · Quesne C 2013, J. Math. Phys. 54, 102102. · Spera M 2013, (Nankai Series in Pure, Applied Mathematics and Theoretical Physics): 11 Symmetries and Groups in Contemporary Physics: pp. 593-598 Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20 - 26 August 2012 (World Scientific, Singapore) · Snobl L and Winternitz P 2014, Classification and Identification of Lie Algebras, CRM Monograph Series 33 (Montreal) ISBN-10: 0-8218-4355-9, ISBN-13: 978-0-8218-4355-0 (http://www.ams.org/bookstore?fn=20&arg1=crmmseries&ikey=CRMM-33). Our personal thanks to Daniel and family! Endless support from the Schenk Family who, among other things, sponsored (yet again) the entire conference dinner (including wines and banquet hall) meant that some costs could be alleviated. We could therefore assist various colleagues from economically-weak countries, despite the lack of external funding. A financial deficit meant we would have had to forego the Conference Proceedings, published in previous years by IOP. After long deliberations, and with donations from Gerhard Berssenbrügge, Dr. Dr. Stephan Hauk and Dr. Volker Weisswange, this could be facilitated. We are very grateful to these private donors for their generous and wholehearted support. The staff of Collegium Mehrerau is also to be thanked for their hospitality. Finally, our sincere thanks to Yvette not only for her preparatory work and support during the conference, but also for her persistent interest and help in producing
Partial restoration of chiral symmetry in a confining string
Kharzeev, Dmitri E.; Loshaj, F.
2014-08-01
Here, we attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be effectively described by the 1+1 dimensional massless electrodynamics, which is exactly soluble. The transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources can then be attributed to the fluctuations in the position of the string. The dependence of the chiral condensate in the string on the (chromo-)electric field can be evaluated analytically, and is determined by the chiral anomaly and the θ-vacuum structure. Moreover, our picture allows us to predict the distribution of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This prediction is compared to the lattice QCD results; a good agreement is found.
Ultraviolet completion without symmetry restoration
NASA Astrophysics Data System (ADS)
Endlich, Solomon; Nicolis, Alberto; Penco, Riccardo
2014-03-01
We show that it is not possible to UV complete certain low-energy effective theories with spontaneously broken spacetime symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform nonlinearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of spacetime and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
Asymptotic symmetries from finite boxes
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Marolf, Donald
2016-01-01
It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a 'box.' This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the anti-de Sitter and Poincaré asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2 + 1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.
Symmetry inheritance of scalar fields
NASA Astrophysics Data System (ADS)
Smolić, Ivica
2015-07-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.
Symmetry of charge order in cuprates
NASA Astrophysics Data System (ADS)
Comin, R.; Sutarto, R.; He, F.; da Silva Neto, E. H.; Chauviere, L.; Fraño, A.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Yoshida, Y.; Eisaki, H.; Achkar, A. J.; Hawthorn, D. G.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.
2015-08-01
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-Tc superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr2-xLaxCuO6+δ (Bi2201) and YBa2Cu3O6+y (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.
Symmetry of charge order in cuprates.
Comin, R; Sutarto, R; He, F; da Silva Neto, E H; Chauviere, L; Fraño, A; Liang, R; Hardy, W N; Bonn, D A; Yoshida, Y; Eisaki, H; Achkar, A J; Hawthorn, D G; Keimer, B; Sawatzky, G A; Damascelli, A
2015-08-01
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity. PMID:26006005
Huang, Z. )
1992-12-01
We examine an interesting scenario to solve the domain-wall problem recently suggested by Preskill, Trivedi, Wilczek, and Wise. The effective potential is calculated in the presence of the QCD axial anomaly. It is shown that some discrete symmetries such as {ital CP} and {ital Z}{sub 2} can be anomalous due to a so-called {ital K} term induced by instantons. We point out that the {ital Z}{sub 2} domain-wall problem in the two-doublet standard model can be resolved by two types of solutions: the {ital CP}-conserving one and the {ital CP}-breaking one. In the first case, there exist two {ital Z}{sub 2}-related local minima whose energy splitting is provided by the instanton effect. In the second case, there is only one unique vacuum so that the domain walls do not form at all. The consequences of this new source of {ital CP} violation are discussed and shown to be well within the experimental limits in weak interactions.
NASA Astrophysics Data System (ADS)
Quinto, A. G.; Ferrari, A. F.; Lehum, A. C.
2016-06-01
In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective superpotential and the study of Dynamical Symmetry Breaking (DSB) in an N = 1 supersymmetric theory including an Abelian Chern-Simons superfield coupled to N scalar superfields in (2 + 1) dimensional spacetime. The classical Lagrangian presents scale invariance, which is broken by radiative corrections to the effective superpotential. We calculate the effective superpotential up to two-loops by using the RGE and the beta functions and anomalous dimensions known in the literature. We then show how the RGE can be used to improve this calculation, by summing up properly defined series of leading logs (LL), next-to-leading logs (NLL) contributions, and so on... We conclude that even if the RGE improvement procedure can indeed be applied in a supersymmetric model, the effects of the consideration of the RGE are not so dramatic as it happens in the non-supersymmetric case.
Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2.
Willett, R L; Nayak, C; Shtengel, K; Pfeiffer, L N; West, K W
2013-11-01
We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates with the magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter. PMID:24237543
Geometrical spin symmetry and spin
Pestov, I. B.
2011-07-15
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Spectral theorem and partial symmetries
Gozdz, A.; Gozdz, M.
2012-10-15
A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.
Hidden symmetries and black holes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
2009-10-01
The paper contains a brief review of recent results on hidden symmetries in higher dimensional black hole spacetimes. We show how the existence of a principal CKY tensor (that is a closed conformal Killing-Yano 2-form) allows one to generate a `tower' of Killing-Yano and Killing tensors responsible for hidden symmetries. These symmetries imply complete integrability of geodesic equations and the complete separation of variables in the Hamilton-Jacobi, Klein-Gordon, Dirac and gravitational perturbation equations in the general Kerr-NUT-(A)dS metrics. Equations of the parallel transport of frames along geodesics in these spacetimes are also integrable.
Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories
NASA Astrophysics Data System (ADS)
Cartas-Fuentevilla, R.; Meza-Aldama, O.
2016-02-01
Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1)× SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries.
F-theory and all things rational: surveying U(1) symmetries with rational sections
NASA Astrophysics Data System (ADS)
Lawrie, Craig; Schäfer-Nameki, Sakura; Wong, Jin-Mann
2015-09-01
We study elliptic fibrations for F-theory compactifications realizing 4d and 6d supersymmetric gauge theories with abelian gauge factors. In the fibration these U(1) symmetries are realized in terms of additional rational section. We obtain a universal characterization of all the possible U(1) charges of matter fields by determining the corresponding codimension two fibers with rational sections. In view of modelling supersymmetric Grand Unified Theories, one of the main examples that we analyze are U(1) symmetries for SU(5) gauge theories with overline{5} and 10 matter. We use a combination of constraints on the normal bundle of rational curves in Calabi-Yau three- and four-folds, as well as the splitting of rational curves in the fibers in codimension two, to determine the possible configurations of smooth rational sections. This analysis straightforwardly generalizes to multiple U(1)s. We study the flops of such fibers, as well as some of the Yukawa couplings in codimension three. Furthermore, we carry out a universal study of the U(1)-charged GUT singlets, including their KK-charges, and determine all realizations of singlet fibers. By giving vacuum expectation values to these singlets, we propose a systematic way to analyze the Higgsing of U(1)s to discrete gauge symmetries in F-theory.
Topological Symmetry, Spin Liquids and CFT Duals of Polyakov Model with Massless Fermions
Unsal, Mithat
2008-04-30
We prove the absence of a mass gap and confinement in the Polyakov model with massless complex fermions in any representation of the gauge group. A U(1){sub *} topological shift symmetry protects the masslessness of one dual photon. This symmetry emerges in the IR as a consequence of the Callias index theorem and abelian duality. For matter in the fundamental representation, the infrared limits of this class of theories interpolate between weakly and strongly coupled conformal field theory (CFT) depending on the number of flavors, and provide an infinite class of CFTs in d = 3 dimensions. The long distance physics of the model is same as certain stable spin liquids. Altering the topology of the adjoint Higgs field by turning it into a compact scalar does not change the long distance dynamics in perturbation theory, however, non-perturbative effects lead to a mass gap for the gauge fluctuations. This provides conceptual clarity to many subtle issues about compact QED{sub 3} discussed in the context of quantum magnets, spin liquids and phase fluctuation models in cuprate superconductors. These constructions also provide new insights into zero temperature gauge theory dynamics on R{sup 2,1} and R{sup 2,1} x S{sup 1}. The confined versus deconfined long distance dynamics is characterized by a discrete versus continuous topological symmetry.
PREFACE: Symmetries in Science XIV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2010-04-01
also included in these Proceedings. It was especially rewarding and greatly appreciated that symposium-founder Bruno Gruber attended all the sessions and that Dr. Hubert Regner, a distinguished official of the provincial administration and ardent supporter of the symposia for over twenty years, honoured us with a visit and an encouraging address to the participants. We wish to express our sincere gratitude to the local community, particularly the Schenk Family and the staff of Collegium Mehrerau for the selfless friendship, generosity and kind hospitality they offered our gathering. It made a lasting impression on participants and guests alike and provided an excellent basis for fruitful scientific discussions and personal interactions. This and the positive resonance from participants have encouraged us to take the experiment a step further to "Symmetries in Science 2011"! Thanks also to Yvette for continuous and reliable support. The conference and proceedings would probably not have materialized without her. Frankfurt am Main and Graz, June 2010 Dieter Schuch Michael Ramek Conference photograph
Combining Flavour and CP Symmetries
NASA Astrophysics Data System (ADS)
Feruglio, Ferruccio
2013-07-01
I shortly review the impact of the most recent neutrino oscillation data on our attempts to construct a realistic model for neutrino masses and mixing angles. Models based on anarchy and its variants remain an open possibility, reinforced by the latest experimental findings. Many models based on discrete symmetries no longer work in their simplest realizations. I illustrate several proposals that can rescue discrete symmetries. In particular I discuss the possibility of combining discrete flavour symmetries and CP, and I describe a recently proposed symmetry breaking pattern that allows to predict all mixing parameters, angles and phases, in terms of a single real unknown. I analyze several explicit examples of this construction, providing new realistic mixing patterns.
Liu, Y.; Keller, J.
1996-09-01
It is proved that there exists an additional intrinsic symmetry in the left-handed and right-handed fermions (and other fields). The corresponding group of transformations is induced by the Poincar{acute e} translations in the space{endash}time manifold. This symmetry predicts an additional intrinsic energy-momentum for fermions. Considering this symmetry as local leads to introduction of a gauge field and of a nonintegrable phase angle, the corresponding Berry-type phase depends on the topology of the Riemannian space{endash}time manifold as determined by the vierbein. This additional symmetry provides us with the possibility of considering the fermions as gauge fields on the nonvector bundle. {copyright} {ital 1996 American Institute of Physics.}
Symmetries from the solution manifold
NASA Astrophysics Data System (ADS)
Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco
2015-07-01
We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-12-31
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.
Effective models of doped quantum ladders of non-Abelian anyons
NASA Astrophysics Data System (ADS)
Soni, Medha; Troyer, Matthias; Poilblanc, Didier
2016-01-01
Quantum spin models have been studied extensively in one and higher dimensions. Furthermore, these systems have been doped with holes to study t -J models of SU (2 ) spin-1/2. Their anyonic counterparts can be built from non-Abelian anyons, such as Fibonacci anyons described by SU (2) 3 theories, which are quantum deformations of the SU (2 ) algebra. Inspired by the physics of SU (2 ) spins, several works have explored ladders of Fibonacci anyons and also one-dimensional (1D) t -J models. Here, we aim to explore the combined effects of extended dimensionality and doping by studying ladders composed of coupled chains of interacting itinerant Fibonacci anyons. We show analytically that in the limit of strong rung couplings these models can be mapped onto effective 1D models. These effective models can either be gapped models of hole pairs, or gapless models described by t -J (or modified t -J -V ) chains of Fibonacci anyons, whose spectrum exhibits a fractionalization into charge and anyon degrees of freedom. The charge degrees of freedom are described by the hardcore boson spectra while the anyon sector is given by a chain of localized interacting anyons. By using exact diagonalizations for two-leg and three-leg ladders, we show that indeed the doped ladders show exactly the same behavior as that of t -J chains. In the strong ferromagnetic rung limit, we can obtain a new model that hosts two different kinds of Fibonacci particles, which we denote as the heavy τ 's and light τ 's. These two particle types carry the same (non-Abelian) topological charge but different (Abelian) electric charges. Once again, we map the two-dimensional ladder onto an effective chain carrying these heavy and light τ 's. We perform a finite size scaling analysis to show the appearance of gapless modes for certain anyon densities, whereas a topological gapped phase is suggested for another density regime.
Understanding the physics of a possible non-Abelian fractional quantum hall effect state.
Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III
2010-10-01
We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.
Bulk-edge correspondence in (2 + 1)-dimensional Abelian topological phases
NASA Astrophysics Data System (ADS)
Cano, Jennifer; Cheng, Meng; Mulligan, Michael; Nayak, Chetan; Plamadeala, Eugeniu; Yard, Jon
2014-03-01
The same bulk two-dimensional topological phase can have multiple distinct, fully chiral edge phases. We show that this can occur in the integer quantum Hall states at ν =8 and 12, with experimentally testable consequences. We show that this can occur in Abelian fractional quantum Hall states as well, with the simplest examples being at ν =8/7,12/11,8/15,16/5. We give a general criterion for the existence of multiple distinct chiral edge phases for the same bulk phase and discuss experimental consequences. Edge phases correspond to lattices while bulk phases correspond to genera of lattices. Since there are typically multiple lattices in a genus, the bulk-edge correspondence is typically one-to-many; there are usually many stable fully chiral edge phases corresponding to the same bulk. We explain these correspondences using the theory of integral quadratic forms. We show that fermionic systems can have edge phases with only bosonic low-energy excitations and discuss a fermionic generalization of the relation between bulk topological spins and the central charge. The latter follows from our demonstration that every fermionic topological phase can be represented as a bosonic topological phase, together with some number of filled Landau levels. Our analysis shows that every Abelian topological phase can be decomposed into a tensor product of theories associated with prime numbers p in which every quasiparticle has a topological spin that is a pnth root of unity for some n. It also leads to a simple demonstration that all Abelian topological phases can be represented by U(1)N Chern-Simons theory parameterized by a K matrix.
Family Preservation & Family Functioning.
ERIC Educational Resources Information Center
McCroskey, Jacquelyn; Meezan, William
This book reports a study of the outcomes of home-based family preservation services for abusive and neglectful families in Los Angeles County. Using the Family Assessment Form, the research project evaluated services provided by two voluntary agencies, and focused on changes in family functioning between the opening and closing of services during…
Momentum dependence of symmetry energy
NASA Astrophysics Data System (ADS)
Coupland, Daniel D.; Youngs, Michael; Chajecki, Zbigniew; Lynch, William; Tsang, Betty; Zhang, Yingxun; Famiano, Michael; Ghosh, Tilak; Giacherio, B.; Kilburn, Micha; Lee, Jenny; Lu, Fei; Russotto, Paulo; Sanetullaev, Alisher; Showalter, Rachel; Verde, Giuseppe; Winkelbauer, Jack
2014-09-01
One of the main uncertainties in the Equation of State of neutron-rich nuclear matter concerns the density and momentum dependence of the nuclear symmetry energy. Some constraints on the density dependence of the symmetry energy at sub-saturation densities have been recently obtained. However questions remain, especially concerning the momentum dependence of the symmetry mean-field potential that can make the neutron and proton effective masses different. We probe the momentum dependence of this isovector mean-field potential by comparing the energy spectra of neutrons and protons emitted in 112Sn+112Sn and 124Sn +124Sn collisions at incident energies of E/A = 50 and 120 MeV. We achieve an experimental precision that can discriminate between transport model predictions for the n/p double ratio for different momentum dependencies of the symmetry mean-field potential. One of the main uncertainties in the Equation of State of neutron-rich nuclear matter concerns the density and momentum dependence of the nuclear symmetry energy. Some constraints on the density dependence of the symmetry energy at sub-saturation densities have been recently obtained. However questions remain, especially concerning the momentum dependence of the symmetry mean-field potential that can make the neutron and proton effective masses different. We probe the momentum dependence of this isovector mean-field potential by comparing the energy spectra of neutrons and protons emitted in 112Sn+112Sn and 124Sn+124Sn collisions at incident energies of E/A = 50 and 120 MeV. We achieve an experimental precision that can discriminate between transport model predictions for the n/p double ratio for different momentum dependencies of the symmetry mean-field potential. PHY-1102511.
Symmetry and quaternionic integrable systems
NASA Astrophysics Data System (ADS)
Gaeta, G.; Rodríguez, M. A.
2015-01-01
Given a hyperkahler manifold M, the hyperkahler structure defines a triple of symplectic structures on M; with these, a triple of Hamiltonians defines a so-called hyperHamiltonian dynamical system on M. These systems are integrable when can be mapped to a system of quaternionic oscillators. We discuss the symmetry of integrable hyperHamiltonian systems, i.e. quaternionic oscillators, and conversely how these symmetries characterize, at least in the Euclidean case, integrable hyperHamiltonian systems.
Dynamical symmetries in nuclear structure
Casten, R.F.
1986-01-01
In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.
Broken Symmetries and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
Role of nonlocal probes of thermalization for a strongly interacting non-Abelian plasma
NASA Astrophysics Data System (ADS)
Bellantuono, L.; Colangelo, P.; De Fazio, F.; Giannuzzi, F.; Nicotri, S.
2016-07-01
The thermalization process of an out-of-equilibrium boost-invariant strongly interacting non-Abelian plasma is investigated using a holographic method. Boundary sourcing, a distortion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed in the fully dynamical system through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. A dependence of the thermalization time on the size of the probes is found, which can be compared to the result of local observables: the onset of thermalization is first observed at short distances.
Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid
Zhu Shiliang; Shao, L.-B.; Wang, Z. D.; Duan, L.-M.
2011-03-11
We propose an experiment to directly probe the non-Abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.
Mimetic discretization of the Abelian Chern-Simons theory and link invariants
Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo
2013-12-15
A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.
Phase structure, magnetic monopoles, and vortices in the lattice Abelian Higgs model
Ranft, J.; Kripfganz, J.; Ranft, G.
1983-07-15
We present Monte Carlo calculations of lattice Abelian Higgs models in four dimensions and with charges of the Higgs particles equal to q = 1, 2, and 6. The phase transitions are studied in the plane of the two coupling constants considering separately average plaquette and average link expectation values. The density of topological excitations is studied. In the confinement phase we find finite densities of magnetic-monopole currents, electric currents, and vortex currents. The magnetic-monopole currents vanish exponentially in the Coulomb phase. The density of electric currents and vortex currents is finite in the Coulomb phase and vanishes exponentially in the Higgs phase.
Russian doll spectrum in a non-Abelian string-net ladder
NASA Astrophysics Data System (ADS)
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2015-04-01
We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent energy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark contrast with the ones obtained for Fibonacci or Ising theories.
Infinite-randomness fixed points for chains of non-Abelian quasiparticles.
Bonesteel, N E; Yang, Kun
2007-10-01
One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size L in these phases scales as S(L) approximately lnd/3 log(2)L for large L, where d is the quantum dimension of the particles. PMID:17930652
Non-Abelian Berry-s phase effects and optical pumping of atoms
Segert, J.
1987-11-01
We predict experimentally verifiable manifestations of non-Abelian Berry's phase effects for atoms in external collinear electric and magnetic fields. The field strengths are arranged so as to cause accidental degeneracy between atomic states. The relevant theoretical results, which have been presented in detail elsewhere, are summarized and explained. We propose an experiment using optically pumped metastable multiplets of Pb/sup 208/ in an atomic beam apparatus to test these predictions. We estimate required experimental parameters, and conclude that the proposed experiment can realistically be performed. copyright 1987 Academic Press, Inc.
A simple model for the evolution of a non-Abelian cosmic string network
NASA Astrophysics Data System (ADS)
Cella, G.; Pieroni, M.
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.
Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time
Medeiros, D. M.; Landim, R. R.; Almeida, C. A. S.
2001-06-15
Starting from a recently proposed Abelian topological model in 2+1 dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for the generalization is detected. However, we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore, in order to quantize the theory, we construct a complete set of Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST equations using the horizontality condition.
Quantum phase transition of ultracold bosons in the presence of a non-Abelian synthetic gauge field
Grass, T.; Saha, K.; Sengupta, K.; Lewenstein, M.
2011-11-15
We study the Mott phases and the superfluid-insulator transition of two-component ultracold bosons on a square optical lattice in the presence of a non-Abelian synthetic gauge field, which renders a SU(2)-hopping matrix for the bosons. Using a resummed hopping expansion, we calculate the excitation spectra in the Mott insulating phases and demonstrate that the superfluid-insulator phase boundary displays a nonmonotonic dependence on the gauge-field strength. We also compute the momentum distribution of the bosons in the presence of the non-Abelian field and show that they develop peaks at nonzero momenta as the superfluid-insulator transition point is approached from the Mott side. Finally, we study the superfluid phases near the transition and discuss the induced spatial pattern of the superfluid density due to the presence of the non-Abelian gauge potential.
Anticoherence of spin states with point-group symmetries
NASA Astrophysics Data System (ADS)
Baguette, D.; Damanet, F.; Giraud, O.; Martin, J.
2015-11-01
We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.
Central configurations of four bodies with an axis of symmetry
NASA Astrophysics Data System (ADS)
Érdi, Bálint; Czirják, Zalán
2016-05-01
A complete solution is given for a symmetric case of the problem of the planar central configurations of four bodies, when two bodies are on an axis of symmetry, and the other two bodies have equal masses and are situated symmetrically with respect to the axis of symmetry. The positions of the bodies on the axis of symmetry are described by angle coordinates with respect to the outside bodies. The solution is such, that giving the angle coordinates, the masses for which the given configuration is a central configuration, can be computed from simple analytical expressions of the angles. The central configurations can be described as one-parameter families, and these are discussed in detail in one convex and two concave cases. The derived formulae represent exact analytical solutions of the four-body problem.
NASA Astrophysics Data System (ADS)
Huang, Ching-Yu; Wei, Tzu-Chieh
2016-04-01
Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Santos, Luiz H.; Wen, Xiao-Gang
2015-05-01
The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of (2+1)D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G =∏iZNi=ZN1×ZN2×ZN3×⋯ ). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZN charges) at the 0D kink of the symmetry-breaking domain walls, while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number, and the zero energy mode degeneracy to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of matrix product operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2012-11-01
We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions. PMID:23215268
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-08-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
Experimental realization of non-abelian geometric gates with a superconducting three-level system
NASA Astrophysics Data System (ADS)
Abdumalikov, Abdufarrukh; Fink, J. M.; Juliusson, K.; Pechal, M.; Berger, S.; Wallraff, A.; Filipp, S.
2013-03-01
Geometric gates hold promise to provide the building blocks for robust quantum computation. In our experiments, we use a superconducting three-level system (transmon) to realize non-adiabatic non-abelian geometric gates. As computational basis we choose the ground and second excited states, while the first excited state acts as an ancilla state. The gates are realized by applying two resonant drives between the transmon levels. During the geometric gate ration of the amplitudes of the two drive tone is kept constant. Different gates are obtained for different ratio of the drive tones. We implement a Hadamard, a NOT and a phase gates with the fidelities of 95 % , 98 % , and 97 % as determined by full process tomography and maximum likelihood methods. We explicitly show the non-abelian nature of gates by applying two non-commuting gates in alternating order. The demonstrated holonomic gates are not exclusive to superconducting quantum devices, but can also be applied to other three level systems with similar energy level structure.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-01-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877
Non-Abelian states in Fractional Quantum Hall effect in charge carrier hole systems
NASA Astrophysics Data System (ADS)
Simion, George; Lyanda-Geller, Yuli
Quasiparticle excitations obeying non-Abelian statistics represent the key element of topological quantum computing. Crossing of levels and strong coupling between angular momentum and orbital motion, described by Luttinger Hamiltonian, make properties of charge carrier holes different from those of electrons. Peculiarities of hole spectrum in magnetic field provide an opportunity for controlling Landau level mixing in charge carier hole systems. In order to describe Fractional Quantum Hall effect for holes, we propose a method to map hole spectrum and wavefunctions using a spherical shell. We investigate the experimentally observed ν = 1 / 2 state in spherical geometry. Haldane pseudopotentials are computed and the effect of Landau level mixing is evaluated. Exact diagonalization of Coulomb interaction in systems with eight to fourteen holes is performed. We determine that the ground state superposition with Abelian 331 state is very small and the overlap with Moore-Read state is significant. The quasihole and quasielectron excitations are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.
NASA Astrophysics Data System (ADS)
Goldman, N.; Gerbier, F.; Lewenstein, M.
2013-07-01
We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.
Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation.
Pan, Wei; Thalakulam, Madhu; Shi, Xiaoyan; Crawford, Matthew; Nielsen, Erik; Cederberg, Jeffrey George
2013-10-01
Topological quantum computation (TQC) has emerged as one of the most promising approaches to quantum computation. Under this approach, the topological properties of a non-Abelian quantum system, which are insensitive to local perturbations, are utilized to process and transport quantum information. The encoded information can be protected and rendered immune from nearly all environmental decoherence processes without additional error-correction. It is believed that the low energy excitations of the so-called =5/2 fractional quantum Hall (FQH) state may obey non-Abelian statistics. Our goal is to explore this novel FQH state and to understand and create a scientific foundation of this quantum matter state for the emerging TQC technology. We present in this report the results from a coherent study that focused on obtaining a knowledge base of the physics that underpins TQC. We first present the results of bulk transport properties, including the nature of disorder on the 5/2 state and spin transitions in the second Landau level. We then describe the development and application of edge tunneling techniques to quantify and understand the quasiparticle physics of the 5/2 state.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan
2014-01-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877
Creating and manipulating non-Abelian anyons in cold atom systems using auxiliary bosons
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Sreejith, G. J.; Jain, J. K.
2015-08-01
The possibility of realizing bosonic fractional quantum Hall effect in ultracold atomic systems suggests a new route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture quasiholes and thus inherit their nontrivial braiding properties. States with localized quasiholes at any desired locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor ν =1 . We show that a Hamiltonian with an appropriate three-body interaction can produce two-quasihole states in two distinct fusion channels of the topological "qubit." Characteristics of these states that are related to the non-Abelian nature can be probed and verified by a measurement of the effective relative angular momentum of the auxiliary bosons, which is directly related to their pair distribution function. Moore-Read states of more than two quasiholes can also be produced in a similar fashion. We investigate some issues related to the experimental feasibility of this approach, in particular, how large the systems should be for a realization of this physics and to what extent this physics carries over to systems with the more standard two-body contact interaction.
Simulation of non-Abelian lattice gauge fields with a single-component gas
NASA Astrophysics Data System (ADS)
Kosior, Arkadiusz; Sacha, Krzysztof
2014-07-01
We show that non-Abelian lattice gauge fields can be simulated with a single-component ultra-cold atomic gas in an optical-lattice potential. An optical lattice can be viewed as a Bravais lattice with a N-point basis. An atom located at different points of the basis can be considered as a particle in different internal states. The appropriate engineering of tunneling amplitudes of atoms in an optical lattice allows one to realize U(N) gauge potentials and control a mass of particles that experience such non-Abelian gauge fields. We provide and analyze a concrete example of an optical-lattice configuration that allows for simulation of a static U(2) gauge model with a constant Wilson loop and an adjustable mass of particles. In particular, we observe that the non-zero mass creates large conductive gaps in the energy spectrum, which could be important in the experimental detection of the transverse Hall conductivity.
Parity-time symmetry broken by point-group symmetry
Fernández, Francisco M. Garcia, Javier
2014-04-15
We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.
Physical symmetry and lattice symmetry in the lattice Boltzmann method
Cao, N.; Chen, S.; Jin, S.; Martinez, D.
1997-01-01
The lattice Boltzmann method (LBM) is regarded as a specific finite difference discretization for the kinetic equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models, such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equations. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermohydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-Lewey condition and using the semi-implicit collision scheme. {copyright} {ital 1997} {ital The American Physical Society}
Radiating stars with exponential Lie symmetries
NASA Astrophysics Data System (ADS)
Mohanlal, R.; Maharaj, S. D.; Tiwari, Ajey K.; Narain, R.
2016-07-01
We analyze the general model of a radiating star in general relativity. A group analysis of the under determined, nonlinear partial differential equation governing the model's gravitational potentials is performed. This analysis is an extension of previous group analyses carried out and produces new group invariant solutions. We find that the gravitational potentials depend on exponential functions owing to the choice of the Lie symmetry generator. The fundamental boundary equation to be solved is in general a Riccati equation. Several new exact families of solutions to the boundary condition are generated. Earlier models of Euclidean stars and generalized Euclidean stellar models are regained as special cases. Linear equations of state can be found for shear-free and shearing spacetimes.
Symmetry in finite phase plane
NASA Astrophysics Data System (ADS)
Zak, J.
2010-03-01
The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.
On the symmetries of integrability
Bellon, M.; Maillard, J.M.; Viallet, C. )
1992-06-01
In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiate the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.
Symmetry Guide to Ferroaxial Transitions
NASA Astrophysics Data System (ADS)
Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.
2016-04-01
The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .
What happens if an unbroken flavor symmetry exists?
Koide, Yoshio
2005-01-01
Without assuming any specific flavor symmetry and/or any specific mass-matrix forms, it is demonstrated that if an unbroken flavor symmetry exists, we cannot obtain the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix V and the Maki-Nakagawa-Sakata (MNS) lepton mixing matrix U except for those between two families for the case with the completely undegenerated fermion masses, so that we can never give the observed CKM and MNS mixings. Only in the limit of m{sub {nu}}{sub 1}=m{sub {nu}}{sub 2} (m{sub d}=m{sub s}), we can obtain three family mixing with an interesting constraint U{sub e3}=0 (V{sub ub}=0)
Symmetry breaking in molecular ferroelectrics.
Shi, Ping-Ping; Tang, Yuan-Yuan; Li, Peng-Fei; Liao, Wei-Qiang; Wang, Zhong-Xia; Ye, Qiong; Xiong, Ren-Gen
2016-07-11
Ferroelectrics are inseparable from symmetry breaking. Accompanying the paraelectric-to-ferroelectric phase transition, the paraelectric phase adopting one of the 32 crystallographic point groups is broken into subgroups belonging to one of the 10 ferroelectric point groups, i.e. C1, C2, C1h, C2v, C4, C4v, C3, C3v, C6 and C6v. The symmetry breaking is captured by the order parameter known as spontaneous polarization, whose switching under an external electric field results in a typical ferroelectric hysteresis loop. In addition, the responses of spontaneous polarization to other external excitations are related to a number of physical effects such as second-harmonic generation, piezoelectricity, pyroelectricity and dielectric properties. Based on these, this review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferroelectrics. PMID:27051889
CKM matrix and flavor symmetries
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Ishida, Hiroyuki; Ishimori, Hajime; Kobayashi, Tatsuo; Ogasahara, Atsushi
2013-11-01
Following the way proposed recently by Hernandez and Smirnov, we seek possible residual symmetries in the quark sector with a focus on the von Dyck groups. We begin with two extreme cases in which both θ13 and θ23 or only θ13 are set to zero. Then, cases where all the Cabibbo-Kobayashi-Maskawa parameters are allowed to take nonzero values are explored. The Z7 symmetry is favorable to realize only the Cabibbo angle. On the other hand, larger groups are necessary in order to be consistent with all the mixing parameters. Possibilities of embedding the obtained residual symmetries into the Δ(6N2) series are also briefly discussed.
Symmetries in geometrical optics: theory
NASA Astrophysics Data System (ADS)
Szilagyi, M.; Mui, P. H.
1995-12-01
A study of light and charged-particle optical systems with inversion, reflection, rotation, translation, and/or glide symmetries is presented. The constraints imposed by the various symmetries on the first-order properties of a lens are investigated. In particular, the mathematical structures of the deflection vectors and the transfer matrices are described for various symmetrical systems. In the course of studying the translation and the glide symmetries, a simple technique for characterizing a general system of N identical components in series (or cascade) is also developed, based on the linear algebra theory of factoring matrices into Jordan canonical forms. Applications of these results are presented in a follow-up paper [J. Opt. Soc. Am. 12, XXXX (1995)]. Copyright (c) 1995 Optical Society of America
Heisenberg symmetry and hypermultiplet manifolds
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstantinos
2016-04-01
We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry - as opposed to Heisenberg ⋉ U (1). We finally discuss the realization of the latter by gauging appropriate Sp (2 , 4) generators in N = 2 conformal supergravity.
Unparticles and electroweak symmetry breaking
Lee, Jong-Phil
2008-11-23
We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.
Kastner, Ruth E.
2011-11-29
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Symmetry analysis of cellular automata
NASA Astrophysics Data System (ADS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Symmetries of coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1993-01-01
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid
2015-03-01
Several experiments detected signatures of Majorana fermions in nanowires, and the focus of current research is shifting toward systems where non-Abelian statistics of excitations can be demonstrated. To achieve this goal we are developing a new platform where non-Abelian excitations can be created and manipulated in a two-dimensional plane, with support for Majorana and higher order non-Abelian excitations. The system is based on CdTe quantum wells non-uniformly doped with paramagnetic impurities, which result in a complicate field-dependence of Zeeman splitting. A unique property of the system is that at high fields we can form a quantum Hall ferromagnet with gate-controllable spin polarization. Helical 1D edge channels formed along the edges of electrostatic gates may support generalized non-Abelian excitations in the fractional qunatum Hall regime, and Majorana and parafermion excitations in the presence of induced superconductivity. We will present results on the gate control of s-d exchange in specially designed heterostructures, demonstrate gate control of spin polarization at filling factor ν = 2 , and show spatial separation of quantum Hall states with different spin polarization using lithographically defined gates.
Three-family unification in higher dimensional models
Mimura, Yukihiro; Nandi, S.
2009-05-01
In orbifold models, gauge, Higgs, and the matter fields can be unified in one multiplet from the compactification of higher dimensional supersymmetric gauge theory. We study how three families of chiral fermions can be unified in the gauge multiplet. The bulk gauge interaction includes the Yukawa interactions to generate masses for quarks and leptons after the electroweak symmetry is broken. The bulk Yukawa interaction has global or gauged flavor symmetry originating from the R symmetry or bulk gauge symmetry, and the Yukawa structure is restricted. When the global and gauged flavor symmetries are broken by orbifold compactification, the remaining gauge symmetry which contains the standard model gauge symmetry is restricted. The restrictions from the bulk flavor symmetries can provide explanations of fermion mass hierarchy.
Spin symmetry in the antinucleon spectrum.
Zhou, Shan-Gui; Meng, Jie; Ring, P
2003-12-31
We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra. PMID:14754045
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Superdeformations and fermion dynamical symmetries
Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.
ERIC Educational Resources Information Center
Brown, Laurie M.
This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…
Paper Models Illustrating Virus Symmetry.
ERIC Educational Resources Information Center
McCarthy, D. A.
1990-01-01
Instructions are given for constructing two models, one to illustrate the general principles of symmetry in T=1, T=3, and T=4 viruses, and the other to illustrate the disposition of protein subunits in the T=3 plant viruses and the picornaviruses. (Author/CW)
Entanglement renormalization and gauge symmetry
Tagliacozzo, L.; Vidal, G.
2011-03-15
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z{sub 2} lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16x16 sites (16{sup 2}x2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Concomitant Ordering and Symmetry Lowering
ERIC Educational Resources Information Center
Boo, William O. J.; Mattern, Daniell L.
2008-01-01
Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…
Turning Students into Symmetry Detectives
ERIC Educational Resources Information Center
Wilders, Richard; VanOyen, Lawrence
2011-01-01
Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…
From symmetries to number theory
Tempesta, P.
2009-05-15
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Circular codes, symmetries and transformations.
Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz
2015-06-01
Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes. PMID:25008961
Strong coupling electroweak symmetry breaking
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Quantitative Analysis of Face Symmetry.
Tamir, Abraham
2015-06-01
The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait. PMID:26080172
Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Escobar, C. A.; Urrutia, L. F.
2015-07-01
The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general SO (N ) non-Abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a nonperturbative Hamiltonian analysis, we prove that the SO (N ) Yang-Mills (YM) theory is equivalent to the corresponding NANM, after both current conservation and the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the nonlinear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of the YM theory, Aia and Eb j , is given by a canonical transformation. In terms of the latter variables, the NANM Hamiltonian has the same form as the YM Hamiltonian, except that the Gauss laws do not arise as first-class constraints. The dynamics of the NANM further guarantees that it is sufficient to impose them only as initial conditions, in order to recover the full equivalence. It is interesting to observe that this particular parametrization exhibits the NANM as a regular theory, thus providing a substantial simplification in the calculations.
Snake states and their symmetries in graphene
NASA Astrophysics Data System (ADS)
Liu, Yang; Tiwari, Rakesh P.; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
2015-12-01
Snake states are open trajectories for charged particles propagating in two dimensions under the influence of a spatially varying perpendicular magnetic field. In the quantum limit they are protected edge modes that separate topologically inequivalent ground states and can also occur when the particle density rather than the field is made nonuniform. We examine the correspondence of snake trajectories in single-layer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric field profile and (b) antisymmetric carrier distribution in a uniform field. These families support different internal symmetries but the same pattern of boundary and interface currents. We demonstrate that these physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p -wave paired state. A variational model is introduced to interpret the interfacial solutions of both domain wall problems.
Snake states and their symmetries in graphene
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh; Liu, Yang; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
Snake states are open trajectories for charged particles moving in two dimensions under the influence of a spatially varying perpendicular magnetic field. They can also occur in a constant perpendicular magnetic field when the particle density is made nonuniform as realized at a pn junction in a semiconductor, or in graphene. We examine the correspondence of such trajectories in monolayer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric perpendicular magnetic field and (b) antisymmetric carrier density distribution in a uniform perpendicular magnetic field. Although, these families support different internal symmetries, the pattern of the boundary and interface currents is the same in both cases. We demonstrate that these two physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these two problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired state.
Topological phase transitions with non-Abelian gauge potentials on square lattices
NASA Astrophysics Data System (ADS)
Chen, Yao-Hua; Li, Jian; Ting, C. S.
2013-11-01
We investigate the topological phase transition on interacting square lattices via the non-Abelian potential by employing the real-space cellular dynamical mean-field theory combining with the continuous-time Monte Carlo method. For a weak on-site Hubbard interaction, a topological band insulating state with a pair of gapless edge states is induced by a next-nearest-neighbor hopping. A phase transition from the metallic phase to the Mott insulating phase is observed when the interaction is increased. These two phases can be distinguished by detecting whether a bulk gap in the K-dependent spectral function exists. The whole phase diagrams as functions of the interaction, next-nearest-neighbor hopping energy, and temperature are presented. The experimental setup to observe these new interesting phase transitions is also discussed.
Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium
Bliokh, K. Yu.; Frolov, D. Yu.; Kravtsov, Yu. A.
2007-05-15
A theory of electromagnetic wave propagation in a weakly anisotropic smoothly inhomogeneous medium is developed, based on the quantum-mechanical diagonalization procedure applied to Maxwell equations. The equations of motion for the translational (ray) and intrinsic (polarization) degrees of freedom are derived ab initio. The ray equations take into account the optical Magnus effect (spin Hall effect of photons) as well as trajectory variations owing to the medium anisotropy. Polarization evolution is described by the precession equation for the Stokes vector. In the generic case, the evolution of wave turns out to be non-Abelian: it is accompanied by mutual conversion of the normal modes and periodic oscillations of the ray trajectories analogous to electron zitterbewegung. The general theory is applied to examples of wave evolution in media with circular and linear birefringence.
Extended hubbard model with ring exchange: a route to a non-Abelian topological phase.
Freedman, Michael; Nayak, Chetan; Shtengel, Kirill
2005-02-18
We propose an extended Hubbard model on a 2D kagome lattice with an additional ring exchange term. The particles can be either bosons or spinless fermions. We analyze the model at the special filling fraction 1/6, where it is closely related to the quantum dimer model. We show how to arrive at an exactly soluble point whose ground state is the "d-isotopy" transition point into a stable phase with a certain type of non-Abelian topological order. Near the "special" values, d=2cos(pi/(k+2), this topological phase has anyonic excitations closely related to SU(2) Chern-Simons theory at level k. PMID:15783757
Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas
Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten
2009-03-15
We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.
Collective Non-Abelian Instabilities in a Melting Color Glass Condensate
Romatschke, Paul; Venugopalan, Raju
2006-02-17
We present first results for (3+1)D simulations of SU(2) Yang-Mills equations for matter expanding into the vacuum after a heavy ion collision. Violations of boost invariance cause a non-Abelian Weibel instability leading soft modes to grow with proper time {tau} as exp({gamma}{radical}(g{sup 2}{mu}{tau})), where g{sup 2}{mu} is a scale arising from the saturation of gluons in the nuclear wave function. The scale for the growth rate {gamma} is set by a plasmon mass, defined as {omega}{sub pl}={kappa}{sub 0}{radical}(g{sup 2}{mu}/{tau}), generated dynamically in the collision. We compare the numerical ratio {gamma}/{kappa}{sub 0} to the corresponding value predicted by the hard thermal loop formalism for anisotropic plasmas.
Beta function in the non-Abelian Nambu-Jona-Lasinio model in four dimensions
Alves, Van Sergio; Pinheiro, S. V. L.; Nascimento, Leonardo; Pena, Francisco
2009-08-15
In this paper we present the structure of the renormalization group in non-Abelian Nambu-Jona-Lasinio model up to 1-loop order. The model is not perturbatively renormalizable in the usual power counting sense, but it is treated as an effective theory, valid in a scale of energy in which p<<{lambda}, where p is the external momenta of the loop and {lambda} is a massive parameter that characterizes the couplings of the nonrenormalizable vertex. We clarify the tensorial structure of the interaction vertices and calculate the functions of the renormalization group. The analysis of the fixed points of the theory is also presented using Zimmermann's procedure for reducing the coupling constants. We find that the origin is an infrared-stable fixed point at low energies and also there is a nontrivial ultraviolet stable fixed point, indicating that the theory could be perturbatively investigated in the low momentum regime.
Non-Abelian chiral instabilities at high temperature on the lattice
NASA Astrophysics Data System (ADS)
Akamatsu, Yukinao; Rothkopf, Alexander; Yamamoto, Naoki
2016-03-01
We report on an exploratory lattice study on the phenomenon of chiral instabilities in non-Abelian gauge theories at high temperature. It is based on a recently constructed anomalous Langevin-type effective theory of classical soft gauge fields in the presence of a chiral number density n 5 = n R - n L. Evaluated in thermal equilibrium using classical lattice techniques it reveals that the fluctuating soft fields indeed exhibit a rapid energy increase at early times and we observe a clear dependence of the diffusion rate of topological charge (sphaleron rate) on the the initial n 5, relevant in both early universe baryogenesis and relativistic heavy-ion collisions. The topological charge furthermore shows a drift among distinct vacuum sectors, roughly proportional to the initial n 5 and in turn the chiral imbalance is monotonously reduced as required by helicity conservation.
Robustness of non-Abelian holonomic quantum gates against parametric noise
Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo
2004-10-01
We present a numerical study of the robustness of a specific class of non-Abelian holonomic quantum gates. We take into account the parametric noise due to stochastic fluctuations of the control fields which drive the time-dependent Hamiltonian along an adiabatic loop. The performance estimator used is the state fidelity between noiseless and noisy holonomic gates. We carry over our analysis with different correlation times and we find out that noisy holonomic gates seem to be close to the noiseless ones for 'short' and 'long' noise correlation times. This result can be interpreted as a consequence of the geometric nature of the holonomic operator. Our simulations have been performed by using parameters relevant to the excitonic proposal for the implementation of holonomic quantum computation [P. Solinas et al., Phys. Rev. B 67, 121307 (2003)].
Low energy dynamics of slender monopoles in non-Abelian superconductor
NASA Astrophysics Data System (ADS)
Arai, M.; Blaschke, F.; Eto, M.; Sakai, N.
2016-01-01
Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2)c gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles in this phase are slender ellipsoids, pierced by a vortex string. We investigate scattering of monopole with anti-monopole and find that they do not always decay into radiation, contrary to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances. We point out that some part of solutions in 1 + 3 dimensions can be mapped exactly onto the sine-Gordon system in 1 + 1 dimensions in the first non-trivial order of rigid-body approximation and we provide analytic formulas for such solutions there.
C*-Algebras Associated with Endomorphisms and Polymorphisms of Compact Abelian Groups
NASA Astrophysics Data System (ADS)
Cuntz, Joachim; Vershik, Anatoly
2013-07-01
A surjective endomorphism or, more generally, a polymorphism in the sense of Schmidt and Vershik [Erg Th Dyn Sys 28(2):633-642, 2008], of a compact abelian group H induces a transformation of L 2( H). We study the C*-algebra generated by this operator together with the algebra of continuous functions C( H) which acts as multiplication operators on L 2( H). Under a natural condition on the endo- or polymorphism, this algebra is simple and can be described by generators and relations. In the case of an endomorphism it is always purely infinite, while for a polymorphism in the class we consider, it is either purely infinite or has a unique trace. We prove a formula allowing to determine the K-theory of these algebras and use it to compute the K-groups in a number of interesting examples.
Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure
NASA Astrophysics Data System (ADS)
Correa, R. A. C.; Dantas, D. M.; Almeida, C. A. S.; da Rocha, Roldão
2016-04-01
In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios is capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.
Fields in nonaffine bundles. IV. Harmonious non-Abelian currents in string defects
NASA Astrophysics Data System (ADS)
Carter, Brandon
2010-11-01
This article continues the study of the category of harmonious field models that was recently introduced as a kinetically nonlinear generalization of the well-known harmonic category of multiscalar fields over a supporting brane world sheet in a target space with a curved Riemannian metric. Like the perfectly harmonious case of which a familiar example is provided by ordinary barotropic perfect fluids, another important subcategory is the simply harmonious case, for which it is shown that as well as “wiggle” modes of the underlying brane world sheet, and sound type longitudinal modes, there will also be transverse shake modes that propagate at the speed of light. Models of this type are shown to arise from a non-Abelian generalization of the Witten mechanism for conducting string formation by ordinary scalar fields with a suitable quartic self-coupling term in the action.
Three phases in the three-dimensional Abelian-Higgs model with nonlocal gauge interactions
Takashima, Shunsuke; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko
2006-08-15
We study the phase structure of the three-dimensional (3D) nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by Monte Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. In contrast to the 3D local Abelian-Higgs model having only the confinement phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is relevant not only to the 3D massless QED coupled with a Higgs field but also to electron fractionalization phenomena in strongly correlated electron systems like the high-T{sub c} superconductors and the fractional quantum Hall effect.
On the effective character of a non-abelian DBI action
NASA Astrophysics Data System (ADS)
Osorio, M. A. R.; Suárez, M.
2001-03-01
We study the way Lorentz covariance can be reconstructed from Matrix Theory as a IMF description of M-theory. The problem is actually related to the interplay between a non-abelian Dirac-Born-Infeld action and Super-Yang-Mills as its generalized non-relativistic approximation. All this physics shows up by means of an analysis of the asymptotic expansion of the Bessel functions Kν that profusely appear in the computations of amplitudes at finite temperature and solitonic calculations. We hope this might help to better understand the issue of getting a Lorentz covariant formulation in relation with the /N-->+∞ limit. There are also some computations that could be of some interest in Relativistic Statistical Mechanics.
Wire constructions of Abelian topological phases in three or more dimensions
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
2016-05-01
Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian topological states of matter in two spatial dimensions. In many cases, their success has been complemented by the vast arsenal of other theoretical tools available to study such systems. In three dimensions, however, much less is known about topological phases. Since the theoretical arsenal in this case is smaller, it stands to reason that wire constructions, which are based on one-dimensional physics, could play a useful role in developing a greater microscopic understanding of three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on the geometric arrangement of commuting projectors in the toric code, to generate and characterize coupled-wire realizations of strongly interacting three-dimensional topological phases. We show how this method can be used to construct pointlike and linelike excitations, and to determine the topological degeneracy. We also point out how, with minor modifications, the machinery already developed in two dimensions can be naturally applied to study the surface states of these systems, a fact that has implications for the study of surface topological order. Finally, we show that the strategy developed for the construction of three-dimensional topological phases generalizes readily to arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout the paper, we discuss Zm topological order in three and four dimensions as a concrete example of this approach, but the approach itself is not limited to this type of topological order.
Explicit non-Abelian monopoles and instantons in SU(N) pure Yang-Mills theory
Popov, Alexander D.
2008-06-15
It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R{sup 3,1}. I show that such solutions exist in SU(N) gauge theory on the spaces R{sup 2}xS{sup 2} and RxS{sup 1}xS{sup 2} with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on TxS{sup 2}, where T is R or S{sup 1}. Namely, imposing SO(3) invariance and some reality conditions, I consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the {phi}{sup 4} kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R{sup 1,1}xS{sup 2} via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on RxS{sup 1} admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S{sup 1} with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space RxS{sup 1}xS{sup 2} which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). I also describe similar solutions in Euclidean SU(N) gauge theory on S{sup 1}xS{sup 3} interpreted as chains of n instanton-anti-instanton pairs.
Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries
NASA Astrophysics Data System (ADS)
Ding, Gui-Jun; Zhou, Ye-Ling
2015-02-01
We propose to understand the mixing angles and CP-violating phases from the Δ(48) family symmetry combined with the generalized CP symmetry. A model-independent analysis is performed by scanning all the possible symmetry breaking chains. We find a new mixing pattern with only one free parameter, excellent agreement with the observed mixing angles can be achieved and all the CP-violating phases are predicted to take nontrivial values. This mixing pattern is testable in the near future neutrino oscillation and neutrinoless double-beta decay experiments. Finally, a flavor model is constructed to realize this mixing pattern. Supported by National Natural Science Foundation of China (11275188, 11179007, 11135009)
What symmetries can do for you
NASA Astrophysics Data System (ADS)
Nucci, M. C.
2015-04-01
Several applications of Lie symmetries and its generalisation are presented: from turning butterflies into tornados, to its applications in epidemics, population dynamics, and ultimately converting classical problems into the quantum realm. Applications of nonclassical symmetries are also illustrated.
Universal Formulation For Symmetries In Computed Flows
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1995-01-01
Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.
Yet another symmetry breaking to be discovered
NASA Astrophysics Data System (ADS)
Yoshimura, M.
2016-07-01
The discovery of spontaneous symmetry breaking in particle physics was the greatest contribution in Nambu's achievements. There is another class of symmetries that exist in low-energy nature, yet is doomed to be broken at high energy, due to a lack of protection of the gauge symmetry. I shall review our approach to searching for this class of symmetry breaking, the lepton number violation linked to the generation of the matter-antimatter asymmetry in our universe.
Partial Dynamical Symmetry in Nuclear Systems
Escher, J E
2003-06-02
Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Applications of Symmetry to Problem Solving.
ERIC Educational Resources Information Center
Leikin, Roza; Berman, Abraham; Zaslavsky, Orit
2000-01-01
Symmetry is an important mathematical concept that plays an extremely important role as a problem solving technique. Presents examples of problems from several branches of mathematics that can be solved using different types of symmetry. Discusses teachers' attitudes and beliefs regarding the use of symmetry in the solutions of these problems.…
Symmetry of cardiac function assessment
Bai, Xu-Fang; Ma, Amy X
2016-01-01
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768
Symmetry of cardiac function assessment.
Bai, Xu-Fang; Ma, Amy X
2016-09-01
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768
Tensionless strings from worldsheet symmetries
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Chakrabortty, Shankhadeep; Parekh, Pulastya
2016-01-01
We revisit the construction of the tensionless limit of closed bosonic string theory in the covariant formulation in the light of Galilean conformal symmetry that rises as the residual gauge symmetry on the tensionless worldsheet. We relate the analysis of the fundamentally tensionless theory to the tensionless limit that is viewed as a contraction of worldsheet coordinates. Analysis of the quantum regime uncovers interesting physics. The degrees of freedom that appear in the tensionless string are fundamentally different from the usual string states. Through a Bogoliubov transformation on the worldsheet, we link the tensionless vacuum to the usual tensile vacuum. As an application, we show that our analysis can be used to understand physics of strings at very high temperatures and propose that these new degrees of freedom are naturally connected with the long-string picture of the Hagedorn phase of free string theory. We also show that tensionless closed strings behave like open strings.
NASA Astrophysics Data System (ADS)
Kesavan, Aruna; Ashtekar, Abhay
2016-03-01
Conservation laws of asymptotic symmetries are essential to quantify the amount of energy-momentum and angular momentum carried away by gravitational radiation from isolated systems. The asymptotic symmetry group of asymptotically flat spacetimes at null infinity is the Bondi-Metzner-Sachs (BMS) group. While the flux associated to an arbitrary BMS vector field was provided by Ashtekar and Streubel (1981) using symplectic methods, the tensorial expression of a corresponding two-dimensional charge integral linear in an arbitrary BMS vector field has not been available in the literature. We fill this gap by providing such a charge. I will discuss its properties and relation to Geroch's supermomentum and the charge of Dray and Streubel (1984).
Chiral symmetry in rotating systems
NASA Astrophysics Data System (ADS)
Malik, Sham S.
2015-08-01
The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.
Symmetry and Stochastic Gene Regulation
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José E. M.
2007-09-01
Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Dark matter and global symmetries
NASA Astrophysics Data System (ADS)
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-09-01
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.
Painlevé property, symmetries and symmetry reductions of the coupled Burgers system
NASA Astrophysics Data System (ADS)
Lian, Zeng-Ju; Chen, Li-Li; Lou, Sen-Yue
2005-08-01
The Painlevé property, inverse recursion operator, infinite number of symmetries and Lie symmetry reductions of the coupled Burgers equation are given explicitly. Three sets of infinitely many symmetries of the considered model are obtained by acting the recursion operator and the inverse recursion operator on the trivial symmetries such as the identity transformation, the space translation and the scaling transformation respectively. These symmetries constitute an infinite dimensional Lie algebra while its finite dimensional Lie point symmetry subalgebra is used to find possible symmetry reductions and then the group invariant solutions.
The atomic basis of biological symmetry and periodicity.
Lima-de-Faria, A
1997-01-01
a large number of plant families which are not closely related in evolutionary terms; (8) the re-emergence of the same symmetry at different levels of organization is also elucidated by the fact that different atom combinations can display the same form and even the same function. This is what has been called molecular mimicry. Examples are the minerals with quite different chemical compositions which display the same symmetry and the proteins, that although they consist of different amino acid sequences, result in the same structural pattern and the same function. Due to the occurrence of molecular mimicry, in the cell's main macromolecules, an organism does not even need to have the same genes to exhibit a symmetry that appeared long ago in evolution; and (9) support for the concept that the biological periodicity is anchored on the chemical periodicity is found, among other features, on the fact that the six atoms that build the main macromolecules of the cell: the nucleic acids and proteins are all simple atoms that are located in a 'niche' on the right side of the Periodic Table of the chemical elements. The basis of biological symmetry and periodicity is now starting to be elucidated in atomic terms. PMID:9231909
Lie group symmetries and Riemann function of Klein-Gordon-Fock equation with central symmetry
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.
2014-06-01
In the present paper Lie symmetry group method is applied to find new exact invariant solutions for Klein-Gordon-Fock equation with central symmetry. The found invariant solutions are important for testing finite-difference computational schemes of various boundary value problems of Klein-Gordon-Fock equation with central symmetry. The classical admitted symmetries of the equation are found. The infinitesimal symmetries of the equation are used to find the Riemann function constructively.
Polyhedra with noncrystallographic symmetry as the orbits of crystallographic point symmetry groups
NASA Astrophysics Data System (ADS)
Ovsetsina, T. I.; Chuprunov, E. V.
2015-11-01
Polyhedra with noncrystallographic symmetry are analyzed as the orbits of crystallographic point symmetry groups on a set of smooth or structured ("hatched") planes. Polyhedra with symmetrically equivalent faces, obtained using crystallographic point groups but having noncrystallographic symmetry, and polyhedra, the symmetry group T of which is crystallographic but can be implemented only on the assumption of a noncrystallographic character of the internal structure of polyhedron, are studied. The results of the analysis for all 32 point symmetry groups are listed in table.
Minimally allowed beta beata 0_nu rates from approximate flavor symmetries
Jenkins, James
2008-01-01
Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2013-08-01
In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete) in d space-time dimensions. We show a very close relation between gauge anomalies for gauge group G and symmetry-protected trivial (SPT) orders (also known as symmetry-protected topological (SPT) orders) with symmetry group G in one-higher dimension. The SPT phases are classified by group cohomology class Hd+1(G,R/Z). Through a more careful consideration, we argue that the gauge anomalies are described by the elements in Free[Hd+1(G,R/Z)]⊕Hπ˙d+1(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of Hd+1(G,R/Z) (denoted as Free[Hd+1(G,R/Z)]). We refer to other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as non-ABJ gauge anomalies, which include Witten SU(2) global gauge anomalies. We introduce a notion of π-cohomology group, Hπ˙d+1(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[Hd+1(G,R/Z)] and topological cohomology group Hd+1(BG,R/Z) as subgroups. We argue that Hπ˙d+1(BG,R/Z) classifies the bosonic non-ABJ gauge anomalies and partially classifies fermionic non-ABJ anomalies. Using the same approach that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies are connected to topological orders (i.e., patterns of long-range entanglement) in one-higher dimension.
Enhanced Facial Symmetry Assessment in Orthodontists
Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342
Symmetry measures of the electron density.
Casanova, David; Alemany, Pere; Alvarez, Santiago
2010-10-01
In this communication we define electronic symmetry operation and symmetry group measures, eSOM and eSGM, respectively, develop the basic algorithms to obtain them, and give some examples of the possible applications of these new computational tools. These new symmetry measures based on the electron density have been tested in an analysis of (a) the inversion symmetry for heteronuclear diatomic molecules, for the eclipsed and staggered conformations of ethane and tetrafluoroethane, and for a series of octahedral sulfur halides; (b) the reflection symmetry of three different conformers of tetrafluoroethene; and (c) the loss of C(6) symmetry along the B(2u) distortion mode of benzene and an analysis of rotational symmetry for different six-member ring heterocycles. PMID:20652983
Symmetries in nuclei: New methods and applications
NASA Astrophysics Data System (ADS)
Caprio, Mark A.
2011-04-01
When a symmetry is a ``good'' symmetry of the nuclear system, as in the dynamical symmetries of the shell model and interacting boson model, this symmetry can directly give the spectroscopic properties of the nucleus, without the need for involved calculations. However, even if a symmetry is strongly broken, it nonetheless provides a calculational tool, classifying the basis states used in a full computational treatment of the many-body problem and greatly simplifying the underlying computational machinery. The symmetry then serves as the foundation for a physically meaningful truncation scheme for the calculation. This talk will provide an introduction to new applications of symmetry approaches to the nuclear problem, including the required mathematical developments. Supported by the US DOE under grant DE-FG02-95ER-40934 and by the Research Corporation for Science Advancement under a Cottrell Scholar Award.