Phase structure, magnetic monopoles, and vortices in the lattice Abelian Higgs model
Ranft, J.; Kripfganz, J.; Ranft, G.
1983-07-15
We present Monte Carlo calculations of lattice Abelian Higgs models in four dimensions and with charges of the Higgs particles equal to q = 1, 2, and 6. The phase transitions are studied in the plane of the two coupling constants considering separately average plaquette and average link expectation values. The density of topological excitations is studied. In the confinement phase we find finite densities of magnetic-monopole currents, electric currents, and vortex currents. The magnetic-monopole currents vanish exponentially in the Coulomb phase. The density of electric currents and vortex currents is finite in the Coulomb phase and vanishes exponentially in the Higgs phase.
Spin vortices in the Abelian-Higgs model with cholesteric vacuum structure
NASA Astrophysics Data System (ADS)
Peterson, Adam J.; Shifman, Mikhail; Tallarita, Gianni
2015-12-01
We continue the study of U(1) vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological Z2 behavior of SO(3) windings, the topological charge of the spin vortices is of the Z type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in 1 + 1 dimensions.
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Tasinato, Gianmassimo
2016-02-01
Vortex solutions are topologically stable field configurations that can play an important role in condensed matter, field theory, and cosmology. We investigate vortex configuration in a 2+1 dimensional Abelian Higgs theory supplemented by higher order derivative self-interactions, related with Galileons. Our vortex solutions have features that make them qualitatively different from well-known Abrikosov-Nielsen-Olesen configurations, since the derivative interactions turn on gauge invariant field profiles that break axial symmetry. By promoting the system to a 3+1 dimensional string configuration, we study its gravitational backreaction. Our results are all derived within a specific, analytically manageable system, and might offer indications for understanding Galileonic interactions and screening mechanisms around configurations that are not spherically symmetric, but only at most cylindrically symmetric.
Moduli Space of Non-Abelian Vortices
NASA Astrophysics Data System (ADS)
Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2006-04-01
We completely determine the moduli space MN,k of k vortices in U(N) gauge theory with N Higgs fields in the fundamental representation. Its open subset for separated vortices is found as the symmetric product (C×CPN-1)k/Sk. Orbifold singularities of this space correspond to coincident vortices and are resolved resulting in a smooth moduli manifold. The relation to Kähler quotient construction is discussed.
Non-Abelian vortices with a twist
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Schaposnik, Fidel A.
2015-06-01
Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of four-dimensional N =2 supersymmetric gauge theories. The specific model considered here possesses U(2 ) local×SU(2 ) global symmetry, with two scalar doublets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x3 direction, and they are characterized by a matrix phase between the two doublets, referred to as "twist." Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying first-order Bogomolny-type equations and second-order Gauss constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break cylindrical symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can keep their charge (or twist) fixed with respect to small perturbations.
Question of Abelian-Higgs hair expulsion from extremal dilaton black holes
NASA Astrophysics Data System (ADS)
Moderski, Rafał; Rogatko, Marek
1999-11-01
It has been argued that the extremal dilaton black holes exhibit a flux expulsion of Abelian-Higgs vortices. We carefully reexamine the problem and give analytic proofs for the flux expulsion to always take place. We also conduct a numerical analysis of the problem using three initial data sets on the horizon of an extreme dilatonic black hole, namely, core, vacuum, and sinusoidal initial conditions. We also show that an AbelianHiggs vortex can end on the extremal dilaton black hole. Concluding, we calculate the back reaction of the Abelian-Higgs vortex on the geometry of the extremal black hole and draw a conclusion that a straight cosmic string and the extreme dilatonic black hole hardly felt their presence.
Geometry and energy of non-Abelian vortices
Manton, Nicholas S.; Rink, Norman A.
2011-04-15
We study pure Yang-Mills theory on {Sigma}xS{sup 2}, where {Sigma} is a compact Riemann surface, and invariance is assumed under rotations of S{sup 2}. It is well known that the self-duality equations in this setup reduce to vortex equations on {Sigma}. If the Yang-Mills gauge group is SU(2), the Bogomolny vortex equations of the Abelian Higgs model are obtained. For larger gauge groups, one generally finds vortex equations involving several matrix-valued Higgs fields. Here we focus on Yang-Mills theory with gauge group SU(N)/Z{sub N} and a special reduction which yields only one non-Abelian Higgs field. One of the new features of this reduction is the fact that while the instanton number of the theory in four dimensions is generally fractional with denominator N, we still obtain an integral vortex number in the reduced theory. We clarify the relation between these two topological charges at a bundle geometric level. Another striking feature is the emergence of nontrivial lower and upper bounds for the energy of the reduced theory on {Sigma}. These bounds are proportional to the area of {Sigma}. We give special solutions of the theory on {Sigma} by embedding solutions of the Abelian Higgs model into the non-Abelian theory, and we relate our work to the language of quiver bundles, which has recently proved fruitful in the study of dimensional reduction of Yang-Mills theory.
Abelian-Higgs strings in Rastall gravity
NASA Astrophysics Data System (ADS)
Bezerra de Mello, Eugênio R.; Fabris, Júlio C.; Hartmann, Betti
2015-04-01
In this paper we analyze Abelian-Higgs strings in a phenomenological model that takes quantum effects in curved space-time into account. This model, first introduced by Rastall, cannot be derived from an action principle. We formulate phenomenological equations of motion under the guiding principle of minimal possible deformation of the standard equations. We construct string solutions that asymptote to a flat space-time with a deficit angle by solving the set of coupled nonlinear ordinary differential equations numerically. Decreasing the Rastall parameter from its Einstein gravity value, we find that the deficit angle of the space-time increases and becomes equal to 2π at some critical value of this parameter that depends on the remaining couplings in the model. For smaller values, the resulting solutions are supermassive string solutions possessing a singularity at a finite distance from the string core. Assuming the Higgs boson mass to be on the order of the gauge boson mass, we also find that in Rastall gravity this happens only when the symmetry breaking scale is on the order of the Planck mass. We observe that for specific values of the parameters in the model, the energy per unit length becomes proportional to the winding number, i.e. the degree of the map {{S}1}\\to {{S}1}. Unlike in the Bogomolnyi-Prasad-Sommerfield (BPS) limit in Einstein gravity, this is, however, not connected to an underlying mathematical structure, but rather constitutes a would-be-BPS bound.
The No-Hair Theorem for the Abelian Higgs Model
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
We consider the general procedure for proving no-hair theorems for static, spherically symmetric black holes. We apply this method to the Abelian Higgs model and find a proof of the no-hair conjecture that circumvents the objections raised against the original proof due to Adler and Pearson.
Tachyons on Dp-branes from abelian Higgs sphalerons
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Hartmann, Betti
2005-11-01
We consider the abelian Higgs model in a (p+2)-dimensional space time with topology Bbb Mp+1 × S1 as a field theoretical toy model for tachyon condensation on Dp-branes. The theory has periodic sphaleron solutions with the normal mode equations resembling Lamé-type equations. These equations are quasi-exactly solvable (QES) for specific choices of the Higgs- to gauge boson mass ratio and hence a finite number of algebraic normal modes can be computed explicitely. We calculate the tachyon potential for two different values of the Higgs- to gauge boson mass ratio and show that in comparison to previously studied pure scalar field models an exact cancellation between the negative energy contribution at the minimum of the tachyon potential and the brane tension is possible for the simplest truncation in the expansion about the field around the sphaleron. This gives further evidence for the correctness of Sen's conjecture.
Asymptotically free scaling solutions in non-Abelian Higgs models
NASA Astrophysics Data System (ADS)
Gies, Holger; Zambelli, Luca
2015-07-01
We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.
Infrared abelian dominance and dual Higgs mechanisms in MA gauge
NASA Astrophysics Data System (ADS)
Suganuma, H.; Amemiya, K.; Ichie, H.
We study infrared abelian dominance and the dual Higgs mechanism in the maximally abelian (MA) gauge using the lattice QCD Monte Carlo simulation. In the MA gauge, the off-diagonal gluon phase tends to be random, and the off-diagonal gluon Aμ± acquires the effective mass as Moff ≅ 1.2 GeV. From the monopole current in the MA gauge, we extract the dual gluon field Bμ and estimate the dual gluon mass as mB ≅ 0.5 GeV. The QCD-monopole structure is also investigated in terms of off-diagonal gluons. From the lattice QCD in the MA gauge, the dual Ginzburg-Landau (DGL) theory can be constructed as a realistic infrared effective theory based on QCD
The Abelian Higgs model on Optical Lattice?
NASA Astrophysics Data System (ADS)
Meurice, Yannick; Tsai, Shan-Wen; Bazavov, Alexei; Zhang, Jin
2015-03-01
We study the Lattice Gauge Theory of the U(1)-Higgs model in 1+1 dimensions in the strongly coupled regime. We discuss the plaquette corrections to the effective theory where link variables are integrated out. We discuss matching with the second-order perturbation theory effective Hamiltonian for various Bose-Hubbard models. This correspondence can be exploited for building a lattice gauge theory simulator on optical lattices. We propose to implement the quantum rotors which appear in the Hamiltonian formulation using Bose mixtures or p-orbitals. Recent progress on magnetic effects in 2+1 dimensions will be discussed. Supported by the Army Research Office of the Department of Defense under Award Number W911NF-13-1-0119.
Non-Abelian dynamics in the resonant decay of the Higgs after inflation
Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav E-mail: sami.nurmi@helsinki.fi
2014-10-01
We study the resonant decay of the Higgs condensate into weak gauge bosons after inflation and estimate the corrections arising from the non-Abelian self-interactions of the gauge fields. We find that non-Abelian interaction terms induce an effective mass which tends to shut down the resonance. For the broad resonance relevant for the Standard Model Higgs the produced gauge particles backreact on the dynamics of the Higgs condensate before the non-Abelian terms grow large. The non-Abelian terms can however significantly affect the final stages of the resonance after the backreaction. In the narrow resonance regime, which may be important for extensions of the Standard Model, the non-Abelian terms affect already the linear stage and terminate the resonance before the Higgs condensate is affected by the backreaction of decay products.
Non-Abelian quasigapless modes localized on mass vortices in superfluid He3-B
NASA Astrophysics Data System (ADS)
Nitta, Muneto; Shifman, Mikhail; Vinci, Walter
2013-04-01
Kelvin waves, or Kelvons, have been known for a long time as gapless excitations propagating along superfluid vortices. These modes can be interpreted as the Nambu-Goldstone excitations arising from the spontaneous breaking of the translational symmetry. Recently a different type of gapless excitation localized on strings—the so-called non-Abelian mode—attracted much attention in high-energy physics. We discuss their relevance in condensed matter physics. Non-Abelian rotational quasigapless excitations could appear on the mass vortices in the B phase of the superfluid He3, due to the fact that the order parameter in He3-B is tensorial. While the U(1) rotational excitations are well established in vortices with asymmetric cores, the non-Abelian rotational excitations belonging to the same family were not considered.
New CMB constraints for Abelian Higgs cosmic strings
NASA Astrophysics Data System (ADS)
Lizarraga, Joanes; Urrestilla, Jon; Daverio, David; Hindmarsh, Mark; Kunz, Martin
2016-10-01
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter Gμ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find Gμ < 2.0 × 10‑7 at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on Gμ is instead an improved treatment of the string evolution across the radiation-matter transition.
Gauge equivalence of two different IAnsaaumlItze Rfor non-Abelian charged vortices
Paul, S.K.
1987-05-15
Recently the existence of non-Abelian charged vortices has been established by taking two different Ansa$uml: tze in SU(2) gauge theories. We point out that these two Ansa$uml: tze are in two topologically equivalent prescriptions. We show that they are gauge equivalent only at infinity. We also show that this gauge equivalence is not possible for Z/sub N/ vortices in SU(N) gauge theories for Ngreater than or equal to3.
Energy-momentum correlations for Abelian Higgs cosmic strings
NASA Astrophysics Data System (ADS)
Daverio, David; Hindmarsh, Mark; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon
2016-04-01
We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the behavior of the correlators across cosmological transitions and discover that the correlation functions evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other methods previously used. The new method is more consistent, easier to implement, and significantly more accurate.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
NASA Astrophysics Data System (ADS)
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-08-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.
Scale-Setting Without the Higgs Mechanism:. Non-Abelian Symmetry
NASA Astrophysics Data System (ADS)
Anderson, J. T.
For the non-Abelian Higgs model it is shown that the coupled equations of motion for Aμ, ϕ and ϕ* have nonanalytic singularities which must be removed if the equations are integrable. Current conservation is found to remove the singularities in the vector-field equation and give a mass scale independent of V and the Higgs mechanism. The self-consistent field solutions for Aμ and the ϕ fields give either (1) the Higgs mechanism, zero current and the pure-gauge solution, or (2) nonzero current, a gauge-covariant solution and the mass scale independent of V and the Higgs mechanism.
NASA Astrophysics Data System (ADS)
Koma, Y.; Koma, M.; Ilgenfritz, E.-M.; Suzuki, T.; Polikarpov, M. I.
2003-11-01
The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.
Fermion structure of non-Abelian vortices in high density QCD
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2010-05-15
We study the internal structure of a non-Abelian vortex in color superconductivity with respect to quark degrees of freedom. Stable non-Abelian vortices appear in the color-flavor-locked phase whose symmetry SU(3){sub c+L+R} is further broken to SU(2){sub c+L+R} x U(1){sub c+L+R} at the vortex cores. Microscopic structure of vortices at scales shorter than the coherence length can be analyzed by the Bogoliubov-de Gennes equation (rather than the Ginzburg-Landau equation). We obtain quark spectra from the Bogoliubov-de Gennes equation by treating the diquark gap having the vortex configuration as a background field. We find that there are massless modes (zero modes) well-localized around a vortex, in the triplet and singlet states of the unbroken symmetry SU(2){sub c+L+R} x U(1){sub c+L+R}. The velocities v{sub i} of the massless modes (i=t, s for triplet and singlet) change at finite chemical potential {mu}{ne}0, and decrease as {mu} becomes large. Therefore, low energy excitations in the vicinity of the vortices are effectively described by 1+1 dimensional massless fermions whose velocities are reduced v{sub i}<1.
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Ruostekoski, Janne
2016-05-01
We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.
Three phases in the three-dimensional Abelian-Higgs model with nonlocal gauge interactions
Takashima, Shunsuke; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko
2006-08-15
We study the phase structure of the three-dimensional (3D) nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by Monte Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. In contrast to the 3D local Abelian-Higgs model having only the confinement phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is relevant not only to the 3D massless QED coupled with a Higgs field but also to electron fractionalization phenomena in strongly correlated electron systems like the high-T{sub c} superconductors and the fractional quantum Hall effect.
Monopoles in non-Abelian Born-Infeld-Higgs theory and Born-Infeld collapse
NASA Astrophysics Data System (ADS)
Dyadichev, V. V.; Gal'Tsov, D. V.
2002-06-01
Regular magnetic monopoles in the non-Abelian Born-Infeld-Higgs theory are known to exist in the region of the field strength parameter β>βcr, bounded from below. Beyond this region, only pointlike (embedded Abelian) monopoles exist, and we show that the transition from the regular to singular structure is reminiscent of gravitational collapse. Near the threshold behavior is characterized by the rapidly increasing negative pressure, which typically arises in the high density non-Abelian Born-Infeld (NBI) matter. Another feature, shared by both the NBI and gravitating monopoles, is the existence of excited states, which can be thought of as bound states of monopoles and sphalerons. These are labeled by the number N of nodes of the Yang-Mills function. Their masses are greater than the mass of the ground state monopole, and they are expected to be unstable. The sequence of masses MN rapidly converges to the mass of the embedded Abelian solution with a constant Higgs boson. The ratio of the sphaleron size to that of the monopole grows with decreasing β, and, at the same time, both fall down until the solutions cease to exist, again exhibiting a collapse to the point-like monopole. The results are presented and compared both for the ordinary and the symmetrized trace NBI actions.
Towards the String representation of the dual Abelian Higgs model beyond the London limit
NASA Astrophysics Data System (ADS)
Koma, Yoshiaki; Koma (Takayama, Miho; Ebert, Dietmar; Toki, Hiroshi
2002-08-01
We perform a path-integral analysis of the string representation of the dual abelian Higgs (DAH) model beyond the London limit, where the string describing the vortex of a flux tube has a finite thickness. We show that besides an additional vortex core contribution to the string tension, a modified Yukawa interaction appears as a boundary contribution in the type-II dual superconducting vacuum. In the London limit, the modified Yukawa interaction is reduced to the Yukawa one.
Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum
NASA Astrophysics Data System (ADS)
Diakonos, F. K.; Katsimiga, G. C.; Maintas, X. N.; Tsagkarakis, C. E.
2015-02-01
We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (mH) to the gauge-field mass (mA) . We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.
Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.
Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E
2015-02-01
We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.
The Born-Infeld vortices induced from a generalized Higgs mechanism
NASA Astrophysics Data System (ADS)
Han, Xiaosen
2016-04-01
We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a |φ|4- or |φ|6-type. For the |φ|4-model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the |φ|6-model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the |φ|6-model are also established.
Topologically stratified energy minimizers in a product Abelian field theory
NASA Astrophysics Data System (ADS)
Han, Xiaosen; Yang, Yisong
2015-09-01
We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realizing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from Ns vortices and Ps anti-vortices (s = 1, 2) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface S which states that a solution with prescribed N1, N2 vortices and P1, P2 anti-vortices of two designated species exists if and only if the inequalities
Gauge-invariant implementation of the Abelian-Higgs model on optical lattices
NASA Astrophysics Data System (ADS)
Bazavov, A.; Meurice, Y.; Tsai, S.-W.; Unmuth-Yockey, J.; Zhang, Jin
2015-10-01
We present a gauge-invariant effective action for the Abelian-Higgs model (scalar electrodynamics) with a chemical potential μ on a (1 +1 )-dimensional lattice. This formulation provides an expansion in the hopping parameter κ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling βp l=1 /g2 and small values of the scalar self-coupling λ . In the opposite limit of infinitely large λ , the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Gauss's law is automatically satisfied and the introduction of μ has consequences only if we have an external electric field, g2=0 or an explicit gauge symmetry breaking. The time-continuum limit of the blocked transfer matrix can be obtained numerically and, for g2=0 and a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large on-site repulsion. We extend this procedure for finite βp l and derive a spin-1 approximation of the Hamiltonian. It involves new terms corresponding to transitions among the two species in the Bose-Hubbard model. We propose an optical lattice implementation involving a ladder structure.
Cho Abelian decomposition to the exact A-M-A solutions of the SU(2) Yang-Mills-Higgs theory
NASA Astrophysics Data System (ADS)
Wong, Khai-Ming; Teh, Rosy; Tie, Timothy
2015-04-01
We consider Cho Abelian decomposition to the exact A-M-A configurations in the SU(2) Yang-Mills-Higgs theory. The non-Abelian Yang-Mills gauge potential is decomposed into the restricted and the valence part. With the decomposition, the complete Abelian picture that draws to the various monopoles configurations can be seen clearly. The singularities for the two accompanying antimonopoles and the vortex ring are removed by the corresponding valence potential. However the singularity of the composite monopole at the origin is not removed, but strengthened. Hence the composite monopole is a different kind of monopole entity. Elsewhere, the plane singularity in the solution is not readily be removed by the valence potential. On the other hand, we also solve the decomposed equations to study the solutions that lead to the spatial infinity boundary conditions of the various numerical monopoles configurations. The decomposed equations are also solved in the near-origin region for exact solutions and their properties such as the magnetic field are plotted, which confirms the correspondence with their properties at the near infinity region.
The existence of self-dual vortices in a non-Abelian {Phi}{sup 2} Chern-Simons theory
Chen Shouxin; Wang Ying
2010-09-15
Applying the dynamic shooting method, we proved the existence of nontopological radially symmetric n-vortex solutions to the self-dual equation in non-Abelian Chern-Simons gauge theory with a {Phi}{sup 2}-type potential. Moreover, we obtained all possible radially symmetric nontopological bare (or 0-vortex) solutions in the non-Abelian Chern-Simons model. Meanwhile, we established the asymptotic behavior for the solutions as |x|{yields}{infinity}.
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2007-03-15
We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension {mu} required to normalize to the WMAP 3-year data at multipole l=10 is G{mu}=[2.04{+-}0.06(stat.){+-}0.12(sys.)]x10{sup -6}, where we have quoted statistical and systematic errors separately, and G is Newton's constant. This is a factor 2-3 higher than values in current circulation.
Electroweak Vortices and Gauge Equivalence
NASA Astrophysics Data System (ADS)
MacDowell, Samuel W.; Törnkvist, Ola
Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.
Superconducting vortices in semilocal models.
Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S
2006-02-01
It is shown that the SU(2) semilocal model--the Abelian Higgs model with two complex scalars--admits a new class of stationary, straight string solutions carrying a persistent current and having finite energy per unit length. In the plane orthogonal to their direction they correspond to a nontrivial deformation of the embedded Abrikosov-Nielsen-Olesen (ANO) vortices by the current flowing through them. The new solutions bifurcate with the ANO vortices in the limit of vanishing current. They can be either static or stationary. In the stationary case, the relative phase of the two scalars rotates at constant velocity, giving rise to an electric field and angular momentum, while the energy remains finite. The new static vortex solutions have lower energy than the ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings).
Superconducting Vortices in Semilocal Models
NASA Astrophysics Data System (ADS)
Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S.
2006-02-01
It is shown that the SU(2) semilocal model—the Abelian Higgs model with two complex scalars—admits a new class of stationary, straight string solutions carrying a persistent current and having finite energy per unit length. In the plane orthogonal to their direction they correspond to a nontrivial deformation of the embedded Abrikosov-Nielsen-Olesen (ANO) vortices by the current flowing through them. The new solutions bifurcate with the ANO vortices in the limit of vanishing current. They can be either static or stationary. In the stationary case, the relative phase of the two scalars rotates at constant velocity, giving rise to an electric field and angular momentum, while the energy remains finite. The new static vortex solutions have lower energy than the ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings).
Superconducting vortices in semilocal models.
Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S
2006-02-01
It is shown that the SU(2) semilocal model--the Abelian Higgs model with two complex scalars--admits a new class of stationary, straight string solutions carrying a persistent current and having finite energy per unit length. In the plane orthogonal to their direction they correspond to a nontrivial deformation of the embedded Abrikosov-Nielsen-Olesen (ANO) vortices by the current flowing through them. The new solutions bifurcate with the ANO vortices in the limit of vanishing current. They can be either static or stationary. In the stationary case, the relative phase of the two scalars rotates at constant velocity, giving rise to an electric field and angular momentum, while the energy remains finite. The new static vortex solutions have lower energy than the ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings). PMID:16486806
Classical dynamics of the Abelian Higgs model from the critical point and beyond
NASA Astrophysics Data System (ADS)
Katsimiga, G. C.; Diakonos, F. K.; Maintas, X. N.
2015-09-01
We present two different families of solutions of the U(1)-Higgs model in a (1 + 1) dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum), which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl-Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.
Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2011-04-01
We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.
NASA Astrophysics Data System (ADS)
Sourrouille, Lucas
2015-11-01
We consider a generalization of non-relativistic Schrödinger-Higgs Lagrangian by introducing a nonstandard kinetic term. We show that this model is Galilean invariant, we construct the conserved charges associated to the symmetries and realize the algebra of the Galilean group. In addition, we study the model in the presence of a gauge field. We also show that the gauged model is Galilean invariant. Finally, we explore relations between the twin models and their solutions.
Pipelike current-carrying vortices in two-component condensates
Chernodub, M. N.; Nedelin, A. S.
2010-06-15
We study straight vortices with global longitudinal currents in the Bogomolny limit of the Abelian Higgs model with two charged scalar fields. The model possesses global SU(2) and local electromagnetic U(1) symmetries spontaneously broken to a global U(1) group, and corresponds to a semilocal limit of the standard electroweak model. We show that the contribution of the global SU(2) current to the vortex energy is proportional to the total current squared. Locally, these vortices carry also longitudinal electromagnetic currents, while the total electromagnetic current flowing through a transverse section of the vortex is always zero. The vortices with high winding numbers have, in general, a nested pipelike structure. The magnetic field of the vortex is concentrated at a certain distance from the geometric center of the vortex, thus resembling a 'pipe'. This magnetic pipe is layered between two electrically charged pipes that carry longitudinal electric currents in opposite directions.
Some exact BPS solutions for exotic vortices and monopoles
NASA Astrophysics Data System (ADS)
Ramadhan, Handhika S.
2016-07-01
We present several analytical solutions of BPS vortices and monopoles in the generalized Abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in [1,2]. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, f (| ϕ |) and w (| ϕ |). For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize the exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that w (| ϕ |) has negative value at some finite range of r, but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are acceptable BPS solutions.
Chern-Simons-Higgs transitions out of topological superconducting phases
NASA Astrophysics Data System (ADS)
Clarke, David J.; Nayak, Chetan
2015-10-01
In this study, we examine effective field theories of superconducting phases with topological order, making a connection to proposed realizations of exotic topological phases (including those hosting Ising and Fibonacci anyons) in superconductor-quantum Hall heterostructures. Our effective field theories for the non-Abelian superconducting states are non-Abelian Chern-Simons theories in which the condensation of vortices carrying non-Abelian gauge flux leads to the associated Abelian quantum Hall states. This Chern-Simons-Higgs condensation process is dual to the emergence of superconducting non-Abelian topological phases in coupled chain constructions. In such transitions, the chiral central charge of the system generally changes, so they fall outside the description of bosonic condensation transitions put forth by Bais and Slingerland [F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), 10.1103/PhysRevB.79.045316] (though the two approaches agree when the described transitions coincide). Our condensation process may be generalized to Chern-Simons theories based on arbitrary Lie groups, always describing a transition from a Lie algebra to its Cartan subalgebra. We include several instructive examples of such transitions.
Universal reconnection of non-Abelian cosmic strings.
Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2007-03-01
We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings. PMID:17359147
NASA Technical Reports Server (NTRS)
Dowker, Fay; Gregory, Ruth; Traschen, Jennie
1991-01-01
We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.
Type I non-abelian superconductors in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Eto, Minoru; Vinci, Walter
2007-11-01
Non-BPS non-Abelian vortices with Bbb CBbb P1 internal moduli space are studied in an Script N = 2 supersymmetric U(1) × SU(2) gauge theory with adjoint mass terms. For generic internal orientations the classical force between two vortices can be attractive or repulsive. On the other hand, the mass of the scalars in the theory is always less than that of the vector bosons; also, the force between two vortices with the same Bbb CBbb P1 orientation is always attractive: for these reasons we interpret our model as a non-Abelian generalization of type I superconductors. We compute the effective potential in the limit of two well separated vortices. It is a function of the distance and of the relative colour-flavour orientation of the two vortices; in this limit we find an effective description in terms of two interacting Bbb CBbb P1 sigma models. In the limit of two coincident vortices we find two different solutions with the same topological winding and, for generic values of the parameters, different tensions. One of the two solutions is described by a Bbb CBbb P1 effective sigma model, while the other is just an Abelian vortex without internal degrees of freedom. For generic values of the parameters, one of the two solutions is metastable, while there are evidences that the other one is truly stable.
Breaking an Abelian gauge symmetry near a black hole horizon
Gubser, Steven S.
2008-09-15
I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.
Non-Abelian discrete gauge theory
NASA Astrophysics Data System (ADS)
Lee, Kai-Ming
Gauge theory with a finite gauge group (or with a gauge group that has disconnected components) is systematically studied, with emphasis on the case of a non-Abelian gauge group. An operator formalism is developed, and an order parameter is constructed that can distinguish the various phases of a gauge theory. The non-Abelian Aharonov-Bohm interactions and holonomy interactions among cosmic string loops, vortices, and charged particles are analyzed; the detection of Cheshire charge and the transfer of charge between particles and string loops (or vortex pairs) are described. Non-Abelian gauge theory on a surface with non-trivial topology is also discussed. Interactions of vortices with "handles" on the surface are discussed in detail. The electric charge of the mouth of a "wormhole" and the magnetic flux "linked" by the wormhole are shown to be non-commuting observables. This observation is used to analyze the color electric field that results when a colored object traverses a wormhole.
Non-Abelian Discrete Gauge Theory.
NASA Astrophysics Data System (ADS)
Lee, Kai-Ming
Gauge theory with a finite gauge group (or with a gauge group that has disconnected components) is systematically studied, with emphasis on the case of a non-Abelian gauge group. An operator formalism is developed, and an order parameter is constructed that can distinguish the various phases of a gauge theory. The non-Abelian Aharonov-Bohm interactions and holonomy interactions among cosmic string loops, vortices, and charged particles are analyzed; the detection of Cheshire charge and the transfer of charge between particles and string loops (or vortex pairs) are described. Non-Abelian gauge theory on a surface with non-trivial topology is also discussed. Interactions of vortices with "handles" on the surface are discussed in detail. The electric charge of the mouth of a "wormhole" and the magnetic flux "linked" by the wormhole are shown to be non-commuting observables. This observation is used to analyze the color electric field that results when a colored object traverses a wormhole.
Gravitating non-Abelian cosmic strings
NASA Astrophysics Data System (ADS)
de Pádua Santos, Antônio; Bezerra de Mello, Eugênio R.
2015-08-01
In this paper, we study regular cosmic string solutions of the non-Abelian Higgs model coupled with gravity. In order to develop this analysis, we constructed a set of coupled non-linear differential equations. Because there is no closed solution for this set of equations, we solve it numerically. The solutions we are interested in asymptote to a flat spacetime with a planar angle deficit. The model under consideration presents two bosonic sectors, besides the non-Abelian gauge field. The two bosonic sectors may present a direct coupling, so we investigate the relevance of this coupling on the system, specifically in the linear energy density of the string and on the planar angle deficit. We also analyze the behaviors of these quantities as a function of the energy scale where the gauge symmetry is spontaneously broken.
Non-Abelian k-vortex dynamics in Script N = 1* theory and its gravity dual
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Kumar, S. Prem
2008-12-01
We study magnetic flux tubes in the Higgs vacuum of the Script N = 1* mass deformation of SU(Nc), Script N = 4 SYM and its large Nc string dual, the Polchinski-Strassler geometry. Choosing equal masses for the three adjoint chiral multiplets, for all Nc we identify a ``colour-flavour locked'' symmetry, SO(3)C+F which leaves the Higgs vacuum invariant. At weak coupling, we find explicit non-Abelian k-vortex solutions carrying a Bbb ZNc-valued magnetic flux, with winding, 0 < k < Nc. These k-strings spontaneously break SO(3)C+F to U(1)C+F resulting in an S2 moduli space of solutions. The world-sheet sigma model is a nonsupersymmetric Bbb CBbb P1 model with a theta angle θ1+1 = k(Nc-k)θ3+1 where θ3+1 is the Yang-Mills vacuum angle. We find numerically that k-vortex tensions follow the Casimir scaling law Tk propto k(Nc-k) for large Nc. In the large Nc IIB string dual, the SO(3)C+F symmetry is manifest in the geometry interpolating between AdS5 × S5 and the interior metric due to a single D5-brane carrying D3-brane charge. We identify candidate k-vortices as expanded probe D3-branes formed from a collection of k D-strings. The resulting k-vortex tension exhibits precise Casimir scaling, and the effective world-sheet theta angle matches the semiclassical result. S-duality maps the Higgs to the confining phase so that confining string tensions at strong 't Hooft coupling also exhibit Casimir scaling in Script N = 1* theory in the large Nc limit.
Infrared Maximally Abelian Gauge
Mendes, Tereza; Cucchieri, Attilio; Mihara, Antonio
2007-02-27
The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.
Weyl symmetric representation of SU(3) gluodynamics in abelian projection
NASA Astrophysics Data System (ADS)
Koma, Y.; Takayama, M.; Toki, H.; Ebert, D.
2001-10-01
The dual Ginzburg-Landau (DGL) theory corresponding to the SU(3) gluodynamics in Abelian projection is formulated in a Weyl symmetric way. The Weyl symmetric DGL theory can be regarded as the sum of three types of the U(1) dual Abelian Higgs (DAH) model. As an application of this approach, the hadronic flux-tube solution corresponding to the baryonic state is investigated adopting the similar techniques used in the U(1) DAH model. The string representation of the DGL theory is also discussed in a Weyl symmetric way.
Strong dynamics, composite Higgs and the conformal window
NASA Astrophysics Data System (ADS)
Nogradi, Daniel; Patella, Agostino
2016-08-01
We review recent progress in the lattice investigations of near-conformal non-Abelian gauge theories relevant for dynamical symmetry breaking and model building of composite Higgs models. The emphasis is placed on the mass spectrum and the running renormalized coupling. The role of a light composite scalar isosinglet particle as a composite Higgs particle is highlighted.
Observing Majorana bound states of Josephson vortices in topological superconductors
Grosfeld, Eytan; Stern, Ady
2011-01-01
In recent years there has been an intensive search for Majorana fermion states in condensed matter systems. Predicted to be localized on cores of vortices in certain nonconventional superconductors, their presence is known to render the exchange statistics of bulk vortices non-Abelian. Here we study the equations governing the dynamics of phase solitons (fluxons) in a Josephson junction in a topological superconductor. We show that the fluxon will bind a localized zero energy Majorana mode and will consequently behave as a non-Abelian anyon. The low mass of the fluxon, as well as its experimentally observed quantum mechanical wave-like nature, will make it a suitable candidate for vortex interferometry experiments demonstrating non-Abelian statistics. We suggest two experiments that may reveal the presence of the zero mode carried by the fluxon. Specific experimental realizations will be discussed as well. PMID:21730165
Vortex states in a non-Abelian magnetic field
NASA Astrophysics Data System (ADS)
Nikolić, Predrag
2016-08-01
A type-II superconductor survives in an external magnetic field by admitting an Abrikosov lattice of quantized vortices. This is an imprint of the Aharonov-Bohm effect created by the Abelian U(1) gauge field. The simplest non-Abelian analog of such a gauge field, which belongs to the SU(2) symmetry group, can be found in topological insulators. Here we discover a superconducting ground state with a lattice of SU(2) vortices in a simple two-dimensional model that presents an SU(2) "magnetic" field (invariant under time reversal) to attractively interacting fermions. The model directly captures the correlated topological insulator quantum well, and approximates one channel for instabilities on the Kondo topological insulator surface. Due to its simplicity, the model might become amenable to cold atom simulations in the foreseeable future. The vitality of low-energy vortex states born out of SU(2) magnetic fields is promising for the creation of incompressible vortex liquids with non-Abelian fractional excitations.
Moduli of Vortices and Grassmann Manifolds
NASA Astrophysics Data System (ADS)
Biswas, Indranil; Romão, Nuno M.
2013-05-01
We use the framework of Quot schemes to give a novel description of the moduli spaces of stable n-pairs, also interpreted as gauged vortices on a closed Riemann surface Σ with target {Mat_{r × n}({C})}, where n ≥ r. We then show that these moduli spaces embed canonically into certain Grassmann manifolds, and thus obtain natural Kähler metrics of Fubini-Study type. These spaces are smooth at least in the local case r = n. For abelian local vortices we prove that, if a certain "quantization" condition is satisfied, the embedding can be chosen in such a way that the induced Fubini-Study structure realizes the Kähler class of the usual L 2 metric of gauged vortices.
Abelian and non-Abelian Hopfions in all odd dimensions
NASA Astrophysics Data System (ADS)
Radu, Eugen; Tchrakian, Tigran
2014-10-01
We extend the definition of the topological charge pertaining to the CP1 (i.e. O(3)) Skyrme-Fadde'ev Hopfion on Bbb R3 to candidates for topological charges of Bbb CPn sigma models on Bbb R2n+1 for all n. For this, the Abelian composite connections of the Bbb CPn sigma models are employed. In higher dimensions (n >= 1) it turns out that such charges, described by the nonAbelian composite connections of suitable Grassmannian sigma models, can also be constructed. A concrete discussion of the non-Abelian case for n = 2 is presented.
Non-Abelian strings in high-density QCD: Zero modes and interactions
Nakano, Eiji; Nitta, Muneto; Matsuura, Taeko
2008-08-15
The most fundamental strings in high-density color superconductivity are the non-Abelian semisuperfluid strings which have color-gauge flux tubes but behave as superfluid vortices in the energetic point of view. We show that in addition to the usual translational zero modes, these vortices have normalizable orientational zero modes in the internal space, associated with the color-flavor locking symmetry broken in the presence of the strings. The interaction among two parallel non-Abelian semisuperfluid strings is derived for general relative orientational zero modes to show the universal repulsion. This implies that the previously known superfluid vortices, formed by spontaneously broken U(1){sub B}, are unstable to decay. Moreover, our result proves the stability of color superconductors in the presence of external color-gauge fields.
Lattice calculation of the decay of primordial Higgs condensate
NASA Astrophysics Data System (ADS)
Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav; Weir, David J.
2016-02-01
We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into SU(2) gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale H = 108 GeV, we find that 90% of the Higgs condensate has decayed after n~ 10 oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.
Quintet pairing and non-Abelian vortex string in spin- 3/2 cold atomic systems
Wu, C.
2010-03-02
We study the s-wave quintet Cooper pairing phase (S{sub pair} = 2) in spin-3/2 cold atomic systems and identify various novel features which do not appear in spin-1/2 pairing systems. A single quantum vortex is shown to be energetically less stable than a pair of half-quantum vortices. The half-quantum vortex exhibits the global analogue of the non-Abelian Alice string and SO(4) Cheshire charge in gauge theories. The non-Abelian half-quantum vortex loop enables topological generation of quantum entanglement.
Bogomolny equations for vortices in the noncommutative torus
NASA Astrophysics Data System (ADS)
Forgács, Peter; Lozano, Gustavo S.; Moreno, Enrique F.; Schaposnik, Fidel A.
2005-07-01
We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model.
Coverings of topological semi-abelian algebras
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Demir, Serap
2016-08-01
In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.
Two-component Abelian sandpile models.
Alcaraz, F C; Pyatov, P; Rittenberg, V
2009-04-01
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches. PMID:19518280
Introducing Abelian Groups Using Bullseyes and Jenga
ERIC Educational Resources Information Center
Smith, Michael D.
2016-01-01
The purpose of this article is to share a new approach for introducing students to the definition and standard examples of Abelian groups. The definition of an Abelian group is revised to include six axioms. A bullseye provides a way to visualize elementary examples and non-examples of Abelian groups. An activity based on the game of Jenga is used…
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2012-11-01
We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2012-11-01
We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions. PMID:23215268
NASA Astrophysics Data System (ADS)
Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2005-07-01
When instantons are put into the Higgs phase, vortices are attached to instantons. We construct such composite solitons as 1/4 BPS states in five-dimensional supersymmetric U(NC) gauge theory with NF(≥NC) fundamental hypermultiplets. We solve the hypermultiplet BPS equation and show that all 1/4 BPS solutions are generated by an NC×NF matrix which is holomorphic in two complex variables, assuming the vector multiplet BPS equation does not give additional moduli. We determine the total moduli space formed by topological sectors patched together and work out the multi-instanton solution inside a single vortex with complete moduli. Small instanton singularities are interpreted as small sigma-model lump singularities inside the vortex. The relation between monopoles and instantons in the Higgs phase is also clarified as limits of calorons in the Higgs phase. Another type of instantons stuck at an intersection of two vortices and dyonic instantons in the Higgs phase are also discussed.
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
2014-05-01
Higgs Computed Axial Tomography, an excerpt. The Higgs boson lineshape ( and the devil hath power to assume a pleasing shape, Hamlet, Act II, scene 2) is analyzed for the process, with special emphasis on the off-shell tail which shows up for large values of the Higgs virtuality. The effect of including background and interference is also discussed. The main focus of this work is on residual theoretical uncertainties, discussing how much-improved constraint on the Higgs intrinsic width can be revealed by an improved approach to analysis.
Neutrinos Masses in a Multi-Higgs Model with A4 symmetry
NASA Astrophysics Data System (ADS)
Machado, A. C. B.; Montero, J. C.; Pleitez, V.
2012-08-01
Presently it is well known that neutrino oscillation data are well described by massive neutrinos and their mixing. This suggests changes in the standard model (SM) and makes the flavor physics even more interesting. Recently, it has been proposed a multi-Higgs extension of the SM with Abelian and non-Abelian discrete symmetries which seeks to explain the origin of the masses and mixing matrices in all charge sectors.
Abelian duality at higher genus
NASA Astrophysics Data System (ADS)
Beasley, Chris
2014-07-01
In three dimensions, a free, periodic scalar field is related by duality to an abelian gauge field. Here I explore aspects of this duality when both theories are quantized on a Riemann surface of genus g. At higher genus, duality involves an identification of winding with momentum on the Jacobian variety of the Riemann surface. I also consider duality for monopole and loop operators on the surface and exhibit the operator algebra, a refinement of the Wilson-'t Hooft algebra.
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Vortex operator and BKT transition in Abelian duality
NASA Astrophysics Data System (ADS)
Chern, Tong
2016-04-01
We give a new simple derivation for the sine-Gordon description of Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Our derivation is simpler than traditional derivations. Besides, our derivation is a continuous field theoretic derivation by using path integration, different from the traditional derivations which are based on lattice theory or based on Coulomb gas model. Our new derivation relies on Abelian duality of two dimensional quantum field theory. By utilizing this duality in path integration, we find that the vortex configurations are naturally mapped to exponential operators in dual description. Since these operators are the vortex operators that can create vortices, the sine-Gordon description then naturally follows. Our method may be useful for the investigation to the BKT physics of superconductors.
Detailed study of the Abelian-projected SU(2) flux tube and its dual Ginzburg-Landau analysis
NASA Astrophysics Data System (ADS)
Koma, Y.; Koma, M.; Ilgenfritz, E.-M.; Suzuki, T.
2003-12-01
The color-electric flux tube of Abelian-projected (AP) SU(2) lattice gauge theory in the maximally Abelian gauge (MAG) is examined. It is shown that the lattice Gribov copy effect in the MAG is crucial for the monopole-related parts of the flux-tube profiles. Taking into account both the gauge fixing procedure and the effect of finite quark-antiquark distance properly, the scaling property of the flux-tube profile is confirmed. The quantitative relation between the measured AP flux tube and the flux-tube solution of the U(1) dual Abelian Higgs (DAH) model is also discussed. The fitting of the AP flux tube in terms of the DAH flux tube indicates that the vacuum can be classified as a weakly type-I dual superconductor.
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
NASA Astrophysics Data System (ADS)
Pinho, Suani T. R.; Andrade, Roberto F. S.
Statistical analyses of long-term records of daily rain suggest that rain phenomena might be a manifestation of self-organized criticality. In this work the essential mechanisms of rain phenomena, the growth of droplets inside a cloud and the subsequent rainfall, are described by an Abelian sandpile model of self-organized criticality. Several simulations support the existence of scale invariance. The introduction of variations of the basic model, to provide a better description of the phenomena, does not alter the critical behavior.
Monopoles, Abelian projection, and gauge invariance
Bonati, Claudio; Di Giacomo, Adriano; Lepori, Luca; Pucci, Fabrizio
2010-04-15
A direct connection is proved between the non-Abelian Bianchi Identities (NABI's) and the Abelian Bianchi identities for the 't Hooft tensor. As a consequence, the existence of a nonzero magnetic current is related to the violation of the NABI's and is a gauge-invariant property. The construction allows us to show that not all Abelian projections can be used to expose monopoles in lattice configurations: each field configuration with nonzero magnetic charge identifies its natural projection, up to gauge transformations which tend to unity at large distances. It is shown that the so-called maximal-Abelian gauge is a legitimate choice. It is also proven, starting from the NABI, that monopole condensation is a physical gauge-invariant phenomenon, independent of the choice of the Abelian projection.
NASA Astrophysics Data System (ADS)
Ortín, Tomás; Ramírez, Pedro F.
2016-09-01
We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.
An exact solution of the Jackiw-Rebbi equations for a fermion-monopole-Higgs system
NASA Astrophysics Data System (ADS)
Din, A. M.; Roy, S. M.
1983-09-01
We present an exact solution for arbitrary partial waves to the Jackiw-Rebbi equations for an isospinor fermion in the background of a non-abelian singular magnetic monopole and a Higgs field. The Higgs coupling produces a centrifugal barrier making the hamiltonian self-adjoint with ordinary boundary conditions at the origin. There are infinitely many bound states, each doubly degenerate. The scattering is charge conserving.
NASA Astrophysics Data System (ADS)
Mineev, V. P.
2013-10-01
Unlike to superfluid 4He the superfluid 3He-A support the existence of vortices with half-quantum of circulation as well as single quantum vortices. The singular single quanta vortices as well as nonsingular vortices with 2 quanta of circulation have been revealed in rotating 3He-A. However, the half-quantum vortices in open geometry always possess an extra energy due to spin-orbit coupling leading to formation of domain wall at distances larger than dipole length ˜10-3 cm from the vortex axis. Fortunately the same magnetic dipole-dipole interaction does not prevent the existence of half-quantum vortices in the polar phase of superfluid 3He recently discovered in peculiar porous media "nematically ordered" aerogel. Here we discuss this exotic possibility. The discoveries of half-quantum vortices in triplet pairing superconductor Sr2RuO4 as well in the exciton-polariton condensates are the other parts of the story about half-quantum vortices also described in the paper.
CERN LEP indications for two light Higgs bosons and the U(1){sup '} model
Demir, Durmus A.; Solmaz, Levent; Solmaz, Saime
2006-01-01
Reanalyses of LEP data have shown preference to two light CP-even Higgs bosons. We discuss implications of such a Higgs boson spectrum for the minimal supersymmetric model extended by a standard model singlet chiral superfield and an additional Abelian gauge invariance [the U(1){sup '} model]. We, in particular, determine parameter regions that lead to two light CP-even Higgs bosons while satisfying existing bounds on the mass and mixings of the extra vector boson. In these parameter regions, the pseudoscalar Higgs is found to be nearly degenerate in mass with either the lightest or next-to-lightest Higgs boson. Certain parameters of the U(1){sup '} model such as the effective {mu} parameter are found to be significantly bounded by the LEP two light Higgs signal.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-07-28
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-07-28
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
NASA Technical Reports Server (NTRS)
Holmes, Bruce J. (Inventor); Carraway, Debra L. (Inventor); Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor)
1988-01-01
A crossflow vorticity sensor for the detection of crossflow vorticity characteristics is described. The sensor is comprised of crossflow sensors which are noninvasively adhered to a swept wing laminar surface either singularly, in multi-element strips, in polar patterns, or in orthogonal patterns. These crossflow sensors are comprised of hot-film sensor elements which operate as a constant temperature anemometer circuit to detect heat transfer rate changes. Accordingly, crossflow vorticity characteristics are determined via cross-correlation. In addition, the crossflow sensors have a thickness which does not exceed a maximum value h in order to avoid contamination of downstream crossflow sensors.
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
The distribution of vorticity in a large vortical motion
NASA Technical Reports Server (NTRS)
Disimile, Peter J.
1988-01-01
An experimental investigation into the distribution of vorticity in the large scale vortical motions which are found in free shear layers was undertaken. Using hot-wire anemometry, both quasi-instantaneous and phase averaged transverse vorticity were acquired. These results appear to indicate that the transverse vorticity in a large scale vortical motion is distributed in a marble cake manner and not in laminated sheets spooled up into a coil or helical spring. Also, levels of vorticity were found to vary by as much as an order of magnitude in these concentrated vortical cores.
Peters, Krisztian
2009-11-01
We present the status and prospects of Higgs searches at the Tevatron and the LHC. Results from the Tevatron are using up to 5 fb{sup -} of data collected with the CDF and D0 detectors. The major contributing processes include associated production (WH {yields} l{nu}bb, ZH {yields} {nu}{nu}bb, ZH {yields} llbb) and gluon fusion (gg {yields} H {yields} WW{sup (*)}). Improvements across the full mass range resulting from the larger data sets, improved analyses techniques and increased signal acceptance are discussed. Recent results exclude the SM Higgs boson in a mass range of 160 < m{sub H} < 170 GeV. Searches for the neutral MSSM Higgs boson in the region 90 < m{sub A} < 200 GeV exclude tan {beta} values down to 30 for several benchmark scenarios.
Abelian and non-Abelian bosonization: The operator solution of the WZW. sigma. model
do Amaral, R.L.P.G. ); Stephany Ruiz, J.E. )
1991-03-15
The complete equivalence between the Abelian and the non-Abelian bosonization formalisms for the treatment of SU({ital N}) fermions in two dimensions is analyzed and the operator solution of the Wess-Zumino-Witten nonlinear {sigma} model, written in terms of the scalar fields of the non-Abelian construction, is obtained. The importance of the order and disorder operators is stressed. In particular, they are used to show that an adequate reinterpretation of Mandelstam's formula gives the fermion representation in the non-Abelian bosonization formalism.
Conformal field theory approach to Abelian and non-Abelian quantum Hall quasielectrons.
Hansson, T H; Hermanns, M; Regnault, N; Viefers, S
2009-04-24
The quasiparticles in quantum Hall liquids carry fractional charge and obey fractional quantum statistics. Of particular recent interest are those with non-Abelian statistics, since their braiding properties could, in principle, be used for robust coding of quantum information. There is already a good theoretical understanding of quasiholes in both Abelian and non-Abelian quantum Hall states. Here we develop conformal field theory methods that allow for an equally precise description of quasielectrons and explicitly construct two- and four-quasielectron excitations of the non-Abelian Moore-Read state.
Bardeen, William A.; /Fermilab
2008-05-01
I discuss the Standard Model of Elementary Particle Physics and potential for discoveries of the physics responsible for electroweak symmetry breaking. I review the ideas leading to development of the Brout-Englert-Higgs mechanism that now forms the basis for the conventional Standard Model. I discuss various issues that challenge application of the Standard Model to the known physics of elementary particles. I examine alternatives to the Standard Model that address these issues and may lead to new discoveries at the LHC that go Beyond Higgs.
Non-Abelian quantum Hall states of fermions and bosons
NASA Astrophysics Data System (ADS)
Read, Nicholas
2007-03-01
In a non-Abelian quantum Hall state, there are types of elementary excitations or quasiparticles that obey non-Abelian statistics. This is an extension of the idea of fractional statistics that means that when several of these quasiparticles are present in the system and are well-separated at well-defined positions, there is a degenerate space of lowest-energy states. When the quasiparticles are then exchanged adiabatically, the result is a matrix operation on this space of states. Greg Moore and the author^1 introduced this idea to condensed matter physics in 1991. They proposed a basic example called the Moore-Read Pfaffian state. The physics of the existence of the degenerate states for the quasiparticles in this system can be understood by viewing it as a px-ipy paired state of composite fermions, in which quasiparticles are hc/2e vortices that carry Majorana fermion zero modes. This state is expected to be realized in the filling factor ν=5/2 fractional quantum Hall (FQH) state. In later work, a series (labeled by an integer k) of ``parafermion'' states was proposed^2. This talk will review these ideas, and describe recent numerical work that strongly supports the idea that the k=3 member of the sequence occurs in the filling factor 12/5 FQH state for electrons^3, and also^4 in a system of bosons, such as rotating cold atoms, at filling factor 3/2. It will also describe recent analytical results^5 on the explicit quasihole trial wavefunctions of the parafermion states. 1. G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991). 2. N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999). 3. E.H. Rezayi and N. Read, cond-mat/0608346. 4. E.H. Rezayi, N. Read, and N.R. Cooper, Phys. Rev. Lett.95, 160404 (2005). 5. N. Read, Phys. Rev. B 73, 245334 (2006).
ERIC Educational Resources Information Center
Veltman, Martinus J. G.
1986-01-01
Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)
On whole Abelian model dynamics
Chauca, J.; Doria, R.
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.
Vortex dynamics in self-dual Chern-Simons-Higgs systems
Kim, Y. ); Lee, K. )
1994-02-15
We consider vortex dynamics in self-dual Chern-Simons-Higgs systems. We show that the naive Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons-Higgs systems in which vortices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single dual electromagnetic'' interaction. This dual electromagnetic interaction leads to the right statistical phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be bounded to each other by the Magnus force.
Reichhardt, Charles
2008-01-01
When a sufficiently strong magnetic field is applied to a superconductor, some of the field can pierce it through the generation of magnetic vortices, each of which contains a quantized amount of magnetic flux. Although the superconducting state of the material outside each vortex is maintained (and destroyed within each vortex), the interaction of vortices with a current passing through the material can cause them to move, dissipating energy and thereby generating a source of electrical resistance. The ability to manipulate an individual superconducting vortex represents a powerful tool for studying the dynamics of vortices and the superconductors that support them. It could also lead to the development of a new class of fluxon-based electronics.
NASA Astrophysics Data System (ADS)
Vaupel, M.; Weiss, C. O.
1995-05-01
Using a photorefractive oscillator, we show experimental optical patterns whose principal features are optical vortices moving around an optical axis on circles. These patterns can be interpreted as simultaneous emission of helical fields with high-charge phase singularities and other rotationally symmetric fields. Patterns with up to nine circling vortices are shown, as well as patterns with two concentric ``wheels'' of vortices. Mode locking in these rotating patterns corresponds to a stopping of the rotation. An intermediate case between free rotation and locking, in which the pattern ``jumps'' between certain angular positions, is demonstrated, showing that phase locking of these modes, which is not possible for an isotropic resonator, can come about by small anisotropies.
Relaminarization under stationary vortices
NASA Astrophysics Data System (ADS)
Breidenthal, Robert
2005-11-01
Flow visualization reveals that a turbulent boundary layer is relaminarized when stationary streamwise vortices are introduced. Following a suggestion of Balle, the vortices are stabilized by large streamwise ``Karman'' grooves in a wavy wall. In a water tunnel, upstream vortex generators place a large streamwise vortex in the middle of each groove, at the stationary point where Prandtl's vortex force vanishes. According to a theory by Cotel, the wall fluxes of a turbulent boundary layer should decline to laminar values under such ``persistent'' vortices. The observed relaminarization is consistent with this theory and with previous measurements of heat transfer by Touel and Balle. However, the structure of the transverse flow resembles the cats-eye pattern of a temporal shear layer rather than the anticipated von Karman wake. The cats-eye pattern corresponds to the forced shear layers of Oster-Wygnanski and Roberts, who found that the Reynolds stresses and mixing rate also decline to laminar values.
Olson Reichhardt, C J; Hastings, M B
2004-04-16
We propose an experiment for directly constructing and locally probing topologically entangled states of superconducting vortices which can be performed with present-day technology. Calculations using an elastic string vortex model indicate that as the pitch (the winding angle divided by the vertical distance) increases, the vortices approach each other. At values of the pitch higher than a maximum value the entangled state becomes unstable to collapse via a singularity of the model. We provide predicted experimental signatures for both vortex entanglement and vortex cutting. The local probe we propose can also be used to explore a wide range of other quantities.
NASA Astrophysics Data System (ADS)
Olson Reichhardt, C. J.; Hastings, M. B.
2004-04-01
We propose an experiment for directly constructing and locally probing topologically entangled states of superconducting vortices which can be performed with present-day technology. Calculations using an elastic string vortex model indicate that as the pitch (the winding angle divided by the vertical distance) increases, the vortices approach each other. At values of the pitch higher than a maximum value the entangled state becomes unstable to collapse via a singularity of the model. We provide predicted experimental signatures for both vortex entanglement and vortex cutting. The local probe we propose can also be used to explore a wide range of other quantities.
Alternatives to an elementary Higgs
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Grojean, Christophe; Terning, John
2016-10-01
Strongly coupled and extra-dimensional models of electroweak symmetry breaking are reviewed. Models examined include warped extra dimensions, bulk Higgs, "little" Higgs, dilaton Higgs, composite Higgs, twin Higgs, quantum critical Higgs, and "fat" SUSY Higgs. Also discussed are current bounds and future LHC searches for this class of models.
Non-Abelian Braiding of Light.
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-12
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-01
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.
Bogomol'nyi equations in the Einstein-Yang-Mills-Higgs system
NASA Astrophysics Data System (ADS)
Balakrishna, B. S.; Wali, Kameshwar C.
1992-12-01
A static configuration of point charges held together by the gravitational attraction is known to be given by the Majumdar-Papapetrou solution in the Einstein-Maxwell theory. We consider a generalization of this solution to non-Abelian monopoles of the Yang-Mills-Higgs system coupled to gravity. The coupling to gravity is unconventional and the solution appears to have naked singularities. It is governed by an analogue of the Bogomol'nyi equations that had played a central role in the analysis of non-Abelian monopoles.
Toward modeling wingtip vortices
NASA Technical Reports Server (NTRS)
Zeman, O.
1993-01-01
Wingtip vortices are generated by lifting airfoils; their salient features are compactness and relatively slow rate of decay. The principal motivation for studying the far field evolution of wingtip vortices is the need to understand and predict the extent of the vortex influence during aircraft take-off or landing. On submarines a wingtip vortex ingested into a propeller can be a source of undesirable noise. The main objectives of this research are (1) to establish theoretical understanding of the principal mechanisms that govern the later (diffusive) stages of a turbulent vortex, (2) to develop a turbulence closure model representing the basic physical mechanisms that control the vortex diffusive stage, and further (3) to investigate coupling between the near and far field evolutions; in other words, to study the effect of initial conditions on the vortex lifetime and the ultimate state.
NASA Astrophysics Data System (ADS)
Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo
2016-06-01
In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose-Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.
Axisymmetric Vortices with Swirl
NASA Astrophysics Data System (ADS)
Elcrat, A.
2007-11-01
This talk is concerned with finding solutions of the Euler equations by solving elliptic boundary value problems for the Bragg-Hawthorne equation L u= -urr -(1/r)ur - = r^2f (u) + h(u). Theoretical results have been given for previously (Elcrat and Miller, Differential and Integral Equations 16(4) 2003, 949-968) for problems with swirl and general classes of profile functions f, h by iterating Lu(n+1)= rf(u)n)) + h(u(n)), and showing u(n) converges montonically to a solution. The solutions obtained depend on the initial guess, which can be thought of as prescribing level sets of the vortex. When a computational program was attempted these monotone iterations turned out to be numerically unstable, and a stable computation was acheived by fixing the moment of the cross section of a vortex in the merideanal plane. (This generalizes previous computational results in Elcrat, Fornberg and Miller, JFM 433 2001, (315-328) We obtain famillies of vortices related to vortex rings with swirl, Moffatt's generalization of Hill's vortex and tubes of vorticity with swirl wrapped around the symmetry axis. The vortices are embedded in either an irrotational flow or a flow with shear, and we deal with the transition form no swirl in the vortex to flow with only swirl, a Beltrami flow.
On abelian and discrete symmetries in F-theory
NASA Astrophysics Data System (ADS)
Piragua, Hernan Augusto
In this dissertation, we systematically construct and study global F-theory compactifications with abelian and discrete gauge groups. These constructions are of fundamental relevance for both conceptual and phenomenological reasons. In the case of abelian symmetries, we systematically engineer compactifications that support U(1)xU(1) and U(1)xU(1)xU(1) gauge groups. The engineered geometries are elliptic fibrations with Mordell-Weil group rank two and three respectively. The bases of the fibrations are arbitrary, but as proofs of concept, we explicit create examples with bases P 2 and P3. We study the low energy physics of these compactifications, we calculate the matter spectrum and confirm that it is anomaly free. In 4D compactifications, the G4 flux is designed and the existence of Yukawa couplings is verified. We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. The discrete gauge groups Z3 and U(1) x Z2 are naturally found when P2 and P1 x P1 are used as fiber ambient spaces. We also find the first realization of matter with U(1) charge three. Finally, we study the discrete gauge group Z 3 in detail. We find the three elements of the Tate-Shafarevich (TS) group. We make use of the Higgs mechanism with the charge three hypermultiplets and the Kaluza-Klein reduction from 6D to 5D. The results are interpreted from the F- M- theory duality perspective. In F-theory, compactifications over any of the three elements of the TS groups yield the same low energy physics, however, M-theory compactifications over the same elements give rise to different
Interaction of Atmospheric Plasma Vortices
NASA Astrophysics Data System (ADS)
Izhovkina, N. I.; Artekha, S. N.; Erokhin, N. S.; Mikhailovskaya, L. A.
2016-08-01
Atmospheric electric fields, connected with the ionization of particles and plasma processes, occur in the fields of pressure gradients of mosaic mesh topology. Atmospheric aerosol particles play a significant role in the vortex generation. The Coriolis force and the motion of charged particles in the geomagnetic field lead to gyrotropy of the atmosphere and ionosphere. Occurrence of plasma vortices is stochastically determined for such an inhomogeneous gyrotropic medium. The geomagnetic field influences the change of structures of inhomogeneous media in the process of excitation of plasma vortices and their interaction. If colliding vortices are centered on the one geomagnetic line, the merge of vortices and the generation of a joint powerful vortex are possible. If a collision of vortices with centers at different geomagnetic field lines occurs, then the emergence of areas of heating and jet streams and the generation of new vortices are possible.
Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan
There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.
Abelian and non-Abelian states in ν =2 /3 bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Peterson, Michael R.; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan; Das Sarma, Sankar
2015-07-01
There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν =n +2 /3 , for integer n . Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν =n +2 /3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν =2 /3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν =8 /3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν =8 /3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively.
Model Wavefunctions For Non-Abelian Quasiparticles
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei; Haldane, F. D. M.
2008-03-01
We present model wavefunctions for quasiparticle (as opposed to quasihole)excitations of the Zk parafermion sequence (Laughlin/Moore-Read/Read-Rezayi) of Fractional Quantum Hall states. These states satisfy two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together, or when two clusters of k+1 electrons are formed at different positions. For Abelian Fractional Quantum Hall states (k=1), our construction reproduces the Jain quasielectron wavefunction, and elucidates the difference between the Jain and Laughlin quasiparticle constructions. For two (or more) quasiparticles, our states differ from those constructed using Jain's method. By adding our quasiparticles to the Laughlin state, we obtain a hierarchy scheme which gives rise to a non-abelian ν=2 5 FQH state.
Non-Abelian strings and axions
Gorsky, A.; Shifman, M.; Yung, A.
2006-06-15
We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings.
Quantum corrections of Abelian duality transformations
NASA Astrophysics Data System (ADS)
Balog, J.; Forgács, P.; Horváth, Z.; Palla, L.
1996-02-01
A modification of the Abelian duality transformations is proposed guaranteeing that a (not necessarily conformally invariant) σ-model be quantum equivalent (at least up to two loops in perturbation theory) to its dual. This requires a somewhat nonstandard perturbative treatment of the dual σ-model. Explicit formulae of the modified duality transformation are presented for a special class of block diagonal purely metric σ-models.
Defining and Computing Vortices Objectively from the Vorticity
NASA Astrophysics Data System (ADS)
Haller, George; Hadjighasem, Alireza; Farazmand, Mohammad; Huhn, Florian
2015-11-01
We introduce the notion of rotationally coherent Lagrangian vortices as tubular material surfaces in which fluid elements complete equal bulk material rotation relative to the mean rotation of the fluid. We find that initial positions of such tubes coincide with tubular level surfaces of the Lagrangian-Averaged Vorticity Deviation (LAVD), the trajectory integral of the normed difference of the vorticity from its spatial mean. LAVD-based vortices turn out to be objective, i.e., invariant under time-dependent rotations and translations of the reference frame. In the limit of vanishing Rossby numbers in geostrophic flows, cyclonic LAVD vortex centers can be proven to coincide with the observed attractors for light particles. A similar result holds for heavy particles in anticyclonic LAVD vortices. We also discuss a relationship between rotationally coherent Lagrangian vortices and their instantaneous Eulerian counterparts. The latter are formed by tubular surfaces of equal material rotation rate, objectively measured by the Instantaneous Vorticity Deviation (IVD). We show how the LAVD and the IVD detect rotationally coherent Lagrangian and Eulerian vortices objectively in analytic flow models and numerical flow data.
Theory of defects in Abelian topological states
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Jian, Chao-Ming; Qi, Xiao-Liang
2013-12-01
The structure of extrinsic defects in topologically ordered states of matter is host to a rich set of universal physics. Extrinsic defects in 2+1-dimensional topological states include linelike defects, such as boundaries between topologically distinct states, and pointlike defects, such as junctions between different line defects. Gapped boundaries in particular can themselves be topologically distinct, and the junctions between them can localize topologically protected zero modes, giving rise to topological ground-state degeneracies and projective non-Abelian statistics. In this paper, we develop a general theory of point defects and gapped line defects in 2+1-dimensional Abelian topological states. We derive a classification of topologically distinct gapped boundaries in terms of certain maximal subgroups of quasiparticles with mutually bosonic statistics, called Lagrangian subgroups. The junctions between different gapped boundaries provide a general classification of point defects in topological states, including as a special case the twist defects considered in previous works. We derive a general formula for the quantum dimension of these point defects and a general understanding of their localized “parafermion” zero modes and we define a notion of projective non-Abelian statistics for them. The critical phenomena between topologically distinct gapped boundaries can be understood in terms of a general class of quantum spin chains or, equivalently, “generalized parafermion” chains. This provides a way of realizing exotic 1+1D generalized parafermion conformal field theories in condensed-matter systems.
Chern-Simons-Higgs theory with visible and hidden sectors and its N = 2 SUSY extension
NASA Astrophysics Data System (ADS)
Arias, Paola; Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni
2015-10-01
We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the two scalars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an N = 2 supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolny equations do exist in this case and we study their string-like solutions numerically.
Commercial aircraft wake vortices
NASA Astrophysics Data System (ADS)
Gerz, Thomas; Holzäpfel, Frank; Darracq, Denis
2002-04-01
This paper discusses the problem of wake vortices shed by commercial aircraft. It presents a consolidated European view on the current status of knowledge of the nature and characteristics of aircraft wakes and of technical and operational procedures of minimizing and predicting the vortex strength and avoiding wake encounters. Methodological aspects of data evaluation and interpretation, like the description of wake ages, the characterization of wake vortices, and the proper evaluation of wake data from measurement and simulation, are addressed in the first part. In the second part an inventory of our knowledge is given on vortex characterization and control, prediction and monitoring of vortex decay, vortex detection and warning, vortex encounter models, and wake-vortex safety assessment. Each section is concluded by a list of questions and required actions which may help to guide further research activities. The primary objective of the joint international efforts in wake-vortex research is to avoid potentially hazardous wake encounters for aircraft. Shortened aircraft separations under appropriate meteorological conditions, whilst keeping or even increasing the safety level, is the ultimate goal. Reduced time delays on the tactical side and increased airport capacities on the strategic side will be the benefits of these ambitious ventures for the air transportation industry and services.
NASA Technical Reports Server (NTRS)
Greenblatt, David
2005-01-01
A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.
Non-Abelian cosmic strings in de Sitter and anti-de Sitter space
NASA Astrophysics Data System (ADS)
Santos, Antônio de Pádua; Bezerra de Mello, Eugênio R.
2016-09-01
In this paper we investigate the non-Abelian cosmic string in de Sitter and anti-de Sitter spacetimes. In order to do that we construct the complete set of equations of motion considering the presence of a cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields and also of the metric tensor for specific values of the physical parameters of the theory. For the de Sitter case, we find the appearance of an horizon. This horizon is consequence of the presence of the cosmological constant, and its position strongly depends on the value of the gravitational coupling. In the anti-de Sitter case, we find that the system does not present horizons. In fact the new feature of this system is related with the behavior of the (00) and (z z ) components of the metric tensor. They present a strong increasing behavior for large distance from the string.
Low energy dynamics of slender monopoles in non-Abelian superconductor
NASA Astrophysics Data System (ADS)
Arai, M.; Blaschke, F.; Eto, M.; Sakai, N.
2016-01-01
Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2)c gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles in this phase are slender ellipsoids, pierced by a vortex string. We investigate scattering of monopole with anti-monopole and find that they do not always decay into radiation, contrary to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances. We point out that some part of solutions in 1 + 3 dimensions can be mapped exactly onto the sine-Gordon system in 1 + 1 dimensions in the first non-trivial order of rigid-body approximation and we provide analytic formulas for such solutions there.
Anisotropic inflation with non-abelian gauge kinetic function
Murata, Keiju; Soda, Jiro E-mail: jiro@tap.scphys.kyoto-u.ac.jp
2011-06-01
We study an anisotropic inflation model with a gauge kinetic function for a non-abelian gauge field. We find that, in contrast to abelian models, the anisotropy can be either a prolate or an oblate type, which could lead to a different prediction from abelian models for the statistical anisotropy in the power spectrum of cosmological fluctuations. During a reheating phase, we find chaotic behaviour of the non-abelian gauge field which is caused by the nonlinear self-coupling of the gauge field. We compute a Lyapunov exponent of the chaos which turns out to be uncorrelated with the anisotropy.
Quaternion-Octonion Analyticity for Abelian and Non-Abelian Gauge Theories of Dyons
NASA Astrophysics Data System (ADS)
Bisht, P. S.; Negi, O. P. S.
2008-06-01
Einstein-Schrödinger (ES) non-symmetric theory has been extended to accommodate the Abelian and non-Abelian gauge theories of dyons in terms of the quaternion-octonion metric realization. Corresponding covariant derivatives for complex, quaternion and octonion spaces in internal gauge groups are shown to describe the consistent field equations and generalized Dirac equation of dyons. It is also shown that quaternion and octonion representations extend the so-called unified theory of gravitation and electromagnetism to the Yang-Mill’s fields leading to two SU(2) gauge theories of internal spaces due to the presence of electric and magnetic charges on dyons.
Photon collider Higgs factories
NASA Astrophysics Data System (ADS)
Telnov, V. I.
2014-09-01
The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.
Geller, Michael; Telem, Ofri
2015-05-15
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.
Geller, Michael; Telem, Ofri
2015-05-15
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160
Abelian gauge symmetries and proton decay in global F-theory GUTs
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Weigand, Timo
2010-10-01
The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on the global geometry of the internal Calabi-Yau four-fold and has important phenomenological consequences. We study conceptual and phenomenological aspects of such U(1) symmetries along the Coulomb and the Higgs branch. As one application we examine Abelian gauge factors arising after a certain global restriction of the Tate model that goes beyond a local spectral cover analysis. In SU(5) grand unified theory (GUT) models this mechanism enforces a global U(1)X symmetry that prevents dimension-4 proton decay and allows for an identification of candidate right-handed neutrinos. We invoke a detailed account of the singularities of Calabi-Yau four-folds and their mirror duals starting from an underlying E8 and E7×U(1) enhanced Tate model. The global resolutions and deformations of these singularities can be used as the appropriate framework to analyze F-theory GUT models.
The primordial curvature perturbation from vector fields of general non-Abelian groups
Karciauskas, Mindaugas
2012-01-01
We consider the generation of primordial curvature perturbation by general non-Abelian vector fields without committing to a particular group. Self-interactions of non-Abelian fields make the field perturbation non-Gaussian. We calculate the bispectrum of the field perturbation using the in-in formalism at tree level. The bispectrum is dominated by the classical evolution of fields outside the horizon. In view of this we show that the dominant contribution can be obtained from the homogeneous classical equation of motion. Then we calculate the power spectrum of the curvature perturbation. The anisotropy in spectrum is suppressed by the number of fields. This makes it possible for vector fields to be responsible for the total curvature perturbation in the Universe without violating observational bounds on statistical anisotropy. The bispectrum of the curvature perturbation is also anisotropic. Finally we give an example of the end-of-inflation scenario in which the curvature perturbation is generated by vector gauge fields through varying gauge coupling constant(s), which in covariant derivatives couples the Higgs field to the vector fields. We find that reasonably large gauge groups may result in the observable anisotropy in the power spectrum of the curvature perturbation.
NASA Astrophysics Data System (ADS)
Giardino, Pier Paolo; Kannike, Kristjan; Masina, Isabella; Raidal, Martti; Strumia, Alessandro
2014-05-01
We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a `universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standard Model predictions and are well approximated by our `universal' fit. Latest data exclude the dilaton as an alternative to the Higgs, and disfavour fits with negative Yukawa couplings. We derive for the first time the SM Higgs boson mass from the measured rates, rather than from the peak positions, obtaining M h = 124 .4 ± 1 .6 GeV.
Magnetic monopole solutions in a modified Einstein-Yang-Mills-Higgs system
NASA Astrophysics Data System (ADS)
Ai Viet, Nguyen; Wali, Kameshwar C.
1995-02-01
We study the Yang-Mills-Higgs system within the framework of general relativity with an unconventional coupling of the scalar field to gravity. In the static situation, using a Bogomol'nyi-type analysis, we derive a positive-definite energy functional with a lower bound that is attained when the Bogomolnyi conditions are satisfied. Specializing to the gauge group SU(2) and the 't Hooft-Polyakov ansatz for the gauge and Higgs fields, we seek static, spherically symmetric solutions to the coupled system of equations together with Bogomol'nyi conditions. In both the isotropic and standard coordinate systems, in the spontaneously broken symmetry situation, we find great simplifications reducing the solutions of the coupled system to the solution of a single nonlinear differential equation, different one in each case, but well known in other contexts of physics. We find Abelian and non-Abelian monopole solutions with gravitational fields playing the role of Higgs fields in providing attraction that balances the repulsion due to the gague fields. These solutions in general have naked singularities at the origin. But as solutions we also find extreme Reissner-Nordström black holes as well as a new non-Abelian monopole solution that has a horizon enclosing the singularity.
Yang-Mills gauge theory and Higgs particle
NASA Astrophysics Data System (ADS)
Wu, Tai Tsun; Wu, Sau Lan
2015-12-01
Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU(2) × SU(3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.
Yang-Mills Gauge Theory and Higgs Particle
NASA Astrophysics Data System (ADS)
Wu, Tai Tsun; Wu, Sau Lan
Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU (2) × SU (3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.
Stability of streamwise vortices
NASA Technical Reports Server (NTRS)
Khorrami, M. K.; Grosch, C. E.; Ash, R. L.
1987-01-01
A brief overview of some theoretical and computational studies of the stability of streamwise vortices is given. The local induction model and classical hydrodynamic vortex stability theories are discussed in some detail. The importance of the three-dimensionality of the mean velocity profile to the results of stability calculations is discussed briefly. The mean velocity profile is provided by employing the similarity solution of Donaldson and Sullivan. The global method of Bridges and Morris was chosen for the spatial stability calculations for the nonlinear eigenvalue problem. In order to test the numerical method, a second order accurate central difference scheme was used to obtain the coefficient matrices. It was shown that a second order finite difference method lacks the required accuracy for global eigenvalue calculations. Finally the problem was formulated using spectral methods and a truncated Chebyshev series.
Decanini, Yves; Folacci, Antoine
2003-04-01
By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.
Motion of multiple helical vortices
NASA Astrophysics Data System (ADS)
Velasco Fuentes, Oscar
2015-11-01
In 1912 Joukowsky deduced that in an unbounded ideal fluid a set of helical vortices--when these are equal, coaxial and symmetrically arranged--would translate and rotate steadily while the vortices preserve their form and relative position. Each vortex is an infinite tube whose cross-section is circular (with radius a) and whose centerline is a helix of pitch L and radius R. The motion is thus determined by three non-dimensional parameters only: the number of vortices N, the vortex radius α = a / R and the vortex pitch τ = L / 2 πR . Here, we express the linear and angular velocities of the vortices as the sum of the mutually induced velocities found by Okulov (2004) and the self-induced velocities found by Velasco Fuentes (2015). We verified that our results are accurate over the whole range of values of the vortices' pitch and radius by numerically computing the vortex motion with two smoothed versions of the Biot-Savart law. It was found that the translation velocity U grows with the number of vortices (N) but decreases as the vortices' radius and pitch (a and τ, respectively) increase; in contrast, the rotation velocity Ω grows with N and a but has a local minimum around τ = 1 for fixed values of N and a.
Directed Abelian sandpile with multiple downward neighbors
NASA Astrophysics Data System (ADS)
Dhar, D.; Pruessner, G.; Expert, P.; Christensen, K.; Zachariou, N.
2016-04-01
We study the directed Abelian sandpile model on a square lattice, with K downward neighbors per site, K >2 . The K =3 case is solved exactly, which extends the earlier known solution for the K =2 case. For K >2 , the avalanche clusters can have holes and side branches and are thus qualitatively different from the K =2 case where avalanche clusters are compact. However, we find that the critical exponents for K >2 are identical with those for the K =2 case, and the large-scale structure of the avalanches for K >2 tends to the K =2 case.
Non abelian hydrodynamics and heavy ion collisions
NASA Astrophysics Data System (ADS)
Calzetta, E.
2014-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, E.
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Directed Abelian sandpile with multiple downward neighbors.
Dhar, D; Pruessner, G; Expert, P; Christensen, K; Zachariou, N
2016-04-01
We study the directed Abelian sandpile model on a square lattice, with K downward neighbors per site, K>2. The K=3 case is solved exactly, which extends the earlier known solution for the K=2 case. For K>2, the avalanche clusters can have holes and side branches and are thus qualitatively different from the K=2 case where avalanche clusters are compact. However, we find that the critical exponents for K>2 are identical with those for the K=2 case, and the large-scale structure of the avalanches for K>2 tends to the K=2 case. PMID:27176254
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
2011-01-01
As part of an ongoing effort to find ways to make vortex flow fields decompose more quickly, photographs and observations are presented of vortex flow fields that indicate the presence of multiple layers of fluid rotating about a common axis. A survey of the literature indicates that multiple-layered vortices form in waterspouts, tornadoes and lift-generated vortices of aircraft. An explanation for the appearance of multiple-layered structures in vortices is suggested. The observations and data presented are intended to improve the understanding of the formation and persistence of vortex flow fields.
Longitudinal vortices beneath breaking waves
NASA Astrophysics Data System (ADS)
Nepf, H. M.; Cowen, E. A.; Kimmel, S. J.; Monismith, S. G.
1995-08-01
The formation of longitudinal vortices has been observed in a wavy channel flow and appears to be linked to spilling breaking and/or to vertical vorticity generated by a wave instability at the wave maker. Both conditions were present when the wave slope, ak exceeded 0.25. The wave instability produced velocity jets beneath and just downstream of the plunger that could provide the initial perturbation for the CL2 instability mechanism (Faller and Caponi, 1978). The breaker activity could also contribute to the CL2 production mechanism by eliminating the negative, stabilizing shear observed within the wave maker wake and by providing seed perturbations to the vorticity field. As the cells evolved downstream, they were maintained through interaction with the bottom boundary layer. When the vortices were present, both vertical mixing and turbulent kinetic energy were enhanced. Despite some differences in scale these results suggest that Langmuir circulation may produce similar changes in the mixed layer.
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Kuntz, Iberê
2016-05-01
In this paper we point out that Starobinsky inflation could be induced by quantum effects due to a large non-minimal coupling of the Higgs boson to the Ricci scalar. The Higgs Starobinsky mechanism provides a solution to issues attached to large Higgs field values in the early universe which in a metastable universe would not be a viable option. We verify explicitly that these large quantum corrections do not destabilize Starobinsky's potential.
On spectroscopy for a whole Abelian model
Chauca, J.; Doria, R.
2012-09-24
Postulated on the whole meaning a whole abelian gauge symmetry is being introduced. Various physical areas as complexity, statistical mechanics, quantum mechanics are partially supporting this approach where the whole is at origin. However, the reductionist crisis given by quark confinement definitely sustains this insight. It says that fundamental parts can not be seen isolatedely. Consequently, there is an experimental situation where the parts should be substituted by something more. This makes us to look for writing the wholeness principle under gauge theory. For this, one reinterprets the gauge parameter where instead of compensating fields it is organizing a systemic gauge symmetry. Now, it introduces a fields set {l_brace}A{sub {mu}I}{r_brace} rotating under a common gauge symmetry. Thus, given a fields collection {l_brace}A{sub {mu}I}{r_brace} as origin, the effort at this work is to investigate on its spectroscopy. Analyze for the abelian case the correspondent involved quanta. Understand that for a whole model diversity replaces elementarity. Derive the associated quantum numbers as spin, mass, charge, discrete symmetries in terms of such systemic symmetry. Observe how the particles diversity is manifested in terms of wholeness.
Gravitating Vortices, Cosmic Strings, and the Kähler-Yang-Mills Equations
NASA Astrophysics Data System (ADS)
Álvarez-Cónsul, Luis; Garcia-Fernandez, Mario; García-Prada, Oscar
2016-09-01
In this paper we construct new solutions of the Kähler-Yang-Mills equations, by applying dimensional reduction methods to the product of the complex projective line with a compact Riemann surface. The resulting equations, which we call gravitating vortex equations, describe abelian vortices on the Riemann surface with back reaction of the metric. As a particular case of these gravitating vortices on the Riemann sphere we find solutions of the Einstein-Bogomol'nyi equations, which physically correspond to Nielsen-Olesen cosmic strings in the Bogomol'nyi phase. We use this to provide a Geometric Invariant Theory interpretation of an existence result by Y. Yang for the Einstein-Bogomol'nyi equations, applying a criterion due to G. Székelyhidi.
Dawson, S.; Haber, H.E.; Rindani, S.D.
1989-05-01
This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K /yields/ /pi/H, /eta//prime/ /yields/ /eta/H,/Upsilon/ /yields/ H/gamma/ and e/sup +/e/sup /minus// /yields/ ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab.
Studying critical string emerging from non-Abelian vortex in four dimensions
NASA Astrophysics Data System (ADS)
Koroteev, P.; Shifman, M.; Yung, A.
2016-08-01
Recently a special vortex string was found [5] in a class of soliton vortices supported in four-dimensional Yang-Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang-Mills theory has the U (2) gauge group and the Fayet-Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP (2 , 2) model. The full target space is R4 ×Y6 where Y6 is a non-compact Calabi-Yau space. We study the above vortex string from the standpoint of string theory, focusing on the massless states in four dimensions. In the generic case all massless modes are non-normalizable, hence, no massless gravitons or vector fields are predicted in the physical spectrum. However, at the selfdual point (at strong coupling) weighted CP (2 , 2) admits deformation of the complex structure, resulting in a single massless hypermultiplet in the bulk. We interpret it as a composite "baryon."
Quasi-abelian and fully non-abelian gauge field copies: A classification
NASA Astrophysics Data System (ADS)
Doria, Francisco Antonio
1981-12-01
We show that a theorem by S. Solomon on quasi-abelian gauge fields extends to a full classification of ambiguous potentials for any general non-abelian field which exhibits this phenomenon. A characterization for such fields is given, as well as a criterion that distinguishes in a straightforward manner between potentials that are at least locally gauge-equivalent to a fixed canonical potential and those which are not equivalent to that potential anywhere inside a neighborhood of space-time. Our results are obtained for R4 with an arbitrary non-degenerate metric, but can be easily extended to any space-time. Three examples (due to S. Deser and F. Wilczek, S. Coleman, and T. T. Wu and C. N. Yang) are discussed in order to clarify our analysis.
Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center
Ko, P.; Park, Wan-Il; Tang, Yong
2014-09-05
We show that the GeV scale γ-ray excess from the direction of the Galactic Center can be naturally explained by the pair annihilation of Abelian vector dark matter (VDM) into a pair of dark Higgs bosons (VV→ϕϕ), followed by the subsequent decay of ϕ into bb{sup -bar} or ττ{sup -bar}. All the processes are described by a renormalizable VDM model with the Higgs portal, which is naturally flavor-dependent. Some parameter space of this scenario can be tested at the near future direct dark matter search experiments such as LUX and XENON1T.
LHC diphoton Higgs signal predicted by little Higgs models
Wang Lei; Yang Jinmin
2011-10-01
Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the diphoton signal pp{yields}h{yields}{gamma}{gamma}. In this work, we perform a comparative study for this signal in some typical little Higgs models, namely, the littlest Higgs model, two littlest Higgs models with T-parity (named LHT-I and LHT-II), and the simplest little Higgs models. We find that compared with the standard model prediction, the diphoton signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (< or approx. 10%) in the littlest Higgs model but can be quite severe ({approx_equal}90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the diphoton channel at the LHC will be more difficult than discovering the standard model Higgs boson.
On the Potential Vorticity Dynamics of Tropical Instability Vortices
NASA Astrophysics Data System (ADS)
Holmes, R.; Thomas, L. N.; Thompson, L.; Darr, D.
2012-12-01
Tropical Instability Vortices (TIVs) in the Eastern Equatorial Pacific contain numerous energetic submesoscale features (sharp fronts and vortices) that can have a significant influence on the broader scale circulation by driving lateral mixing and vertical exchange between the ocean surface and interior. We use a set of nested high-resolution simulations of the Equatorial Pacific, with a finest grid size of 3km, to show that the spatial and temporal distribution of the Ertel potential vorticity (PV), which determines the balanced dynamics of the TIVs, is influenced by submesoscale processes. The TIV cores are characterized by vortically low PV water: the relative vorticity is anticyclonic with magnitude similar to the local Coriolis parameter. A study of the variation of PV and other scalars along Lagrangian fluid parcel tracks entering the TIVs shows that the low PV water in their cores is a mix of Equatorial Undercurrent water and North Equatorial Counter Current water. As these water masses enter the TIVs, Lagrangian changes in temperature, salinity, and PV occur that are largest near the submesoscale fronts in the cold cusps on the western flanks of the vortices. The leading order force balance at these fronts is geostrophy with a secondary contribution from the centrifugal force. However, frontogenetic and frontolytic strain disrupt the geostrophic balance and drive vertical motions and subduction. These results emphasize the role of submesoscale processes in altering the properties and transport of water masses in the Equatorial Pacific, with implications for the large-scale circulation.(Bottom) Model SST and temperature-PV diagram for Lagrangian floats inside a TIV. (Top) Model SST and temperature-PV diagram for the same Lagrangian floats 75 days earlier. The floats are shaded with latitude. Water from the Equatorial Undercurrent and the North Equatorial Counter Current combine experiencing significant Lagrangian changes in temperature and PV to form the
How rotational vortices enhance transfers
NASA Astrophysics Data System (ADS)
Griffani, D.; Rognon, P.; Metzger, B.; Einav, I.
2013-09-01
Inspired by recent observations of granular flow, we examine how rotational vortices contribute to heat or mass transfer enhancement in a fluid. We use a tracer method to simulate both diffusion and advection in systems of differing intrinsic diffusivities D0, vortex sizes R, vortex rotation frequencies f, and vortex lifetimes ℓ. The results reveal that these systems exhibit an effective diffusive behavior, characterized by an effective diffusivity Deff. A striking finding is the existence of two regimes, dichotomised by the Péclet number Pe = R2f/D0. When the Péclet number is less than one, there is no transfer enhancement, Deff = D0. For higher values, vortices produce some transfer enhancement with a corresponding power law Deff/D0 ≈ Pen. The power n ranges from a lower bound of 0.5 for stationary vortices of lifetime infinity, to an upper bound of 1 for vortices of lifetimes shorter than half a rotation. This difference is attributed to two different internal mechanisms involving the coupling of diffusion and advection. These results could provide new insights on the transfer properties of fluid systems comprising rotational vortices, such as granular materials, suspensions, foams, and emulsions, as well as low Reynolds number stirred flows.
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574
Hairpin Vortices: Autogeneration and Interaction
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; Maharjan, Rijan; Sanders, Andrew
2013-11-01
The regeneration of hairpin vortices is examined in a free-surface water channel where vortices are artificially generated by means of injection in a laminar boundary layer. The process is visualized with dye and hydrogen bubble-wire techniques. The strength of an isolated hairpin required to begin the autogeneration process is established by means of PIV measurements on the symmetry plane. Because hairpins are in close proximity in a fully-turbulent boundary layer, two hairpins are generated at different streamwise locations and allowed to interact at different stages of development. The relative position, strength and maturity of the interacting hairpins that generate secondary vortices are examined. The morphology of the generation process and of the resulting secondary hairpin for both the isolated and interacting cases are discussed and compared to previous work. Supported by the National Science Foundation under Grant CBET-1040236.
Spinning gas clouds - without vorticity
NASA Astrophysics Data System (ADS)
Gaffet, B.
2000-06-01
Ovsiannikov and Dyson have considered an ordinary differential reduction of the gas-dynamical equations for an ideal gas which is adiabatically expanding and rotating. Gaffet has shown, based on its Painlevé property, the complete integrability of that ellipsoidal gas cloud model, when there is neither rotation nor vorticity and the gas is monatomic (γ = 5/3), and has conjectured that the integrability might persist in more general cases including rotation. In this paper we show that the presence of vorticity in general destroys the integrability property, but the conjecture is otherwise verified, under the simplifying assumption of rotation around a fixed axis. In a future work we hope to extend the present result to Dyson's most general spinning gas cloud without vorticity.
Engineering complex topological memories from simple Abelian models
NASA Astrophysics Data System (ADS)
Wootton, James R.; Lahtinen, Ville; Doucot, Benoit; Pachos, Jiannis K.
2011-09-01
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviors. An exciting proposal for quantum computation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. The so-called non-Abelian anyons are most promising for quantum computation, but their physical realization may prove to be complex. Abelian anyons, however, are easier to understand theoretically and realize experimentally. Here we show that complex topological memories inspired by non-Abelian anyons can be engineered in Abelian models. We explicitly demonstrate the control procedures for the encoding and manipulation of quantum information in specific lattice models that can be implemented in the laboratory. This bridges the gap between requirements for anyonic quantum computation and the potential of state-of-the-art technology.
Non-Abelian Born Infeld action, geometry and supersymmetry
NASA Astrophysics Data System (ADS)
Julio Cirilo-Lombardo, Diego
2005-12-01
In this work, we propose a new non-Abelian generalization of the Born Infeld Lagrangian. It is based on a geometrical property of the Abelian Born Infeld Lagrangian in its determinantal form. Our goal is to extend the Abelian second-type Born Infeld action to the non-Abelian form preserving this geometrical property, which permits us to compute the generalized volume element as a linear combination of the components of metric and the Yang Mills energy momentum tensors. Under the BPS-like condition, the action proposed reduces to that of the Yang Mills theory, independently of the gauge group. New instanton-wormhole solution and static and spherically symmetric solution in curved spacetime for an SU(2) isotopic ansatz are solved and the N= 1 supersymmetric extension of the model is performed.
Vortices in Spatially Inhomogeneous Superfluids
NASA Astrophysics Data System (ADS)
Sheehy, Daniel E.; Radzihovsky, Leo
2004-03-01
Trapped degenerate Bose gases exhibit superfluidity with spatially nonuniform superfluid density. We study the vortex distribution in such rotating nonuniform superfluids, focusing particularly on deviations from a uniform distribution corresponding to an average rigid-body rotation. The origin of such deviations is the discrete way in which vortices impart angular momentum to the superfluid. This effect favors highest vortex density in regions where the superfluid density is most uniform, i.e., at the center of a trap, while tending to decrease the overall number of vortices. Supported by NSF DMR-0321848 and the Packard Foundation.
General composite Higgs models
NASA Astrophysics Data System (ADS)
Marzocca, David; Serone, Marco; Shu, Jing
2012-08-01
We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.
Supersymmetric leptophilic Higgs model
Marshall, Gardner; Sher, Marc
2011-01-01
In the leptophilic model, one Higgs doublet couples to quarks and another couples to leptons. We study the supersymmetric version of this model, concentrating on the tightly constrained Higgs sector, which has four doublets. Constraints from perturbativity, unitarity, and LEP bounds are considered. It is found that the lightest Higgs, h, can have a mass well below 114 GeV, and for masses below 100 GeV will have a substantially enhanced branching ratio into {tau} pairs. For this region of parameter space, traditional production mechanisms (Higgs-strahlung, W fusion, and gluon fusion) are suppressed, but it may be produced in the decay of heavier particles. The second lightest Higgs has a mass of approximately 110 GeV for virtually all of parameter space, with standard model couplings, and thus an increase of a few GeV in the current lower bound on the standard model Higgs mass would rule out the model. The two heavier Higgs are both gauge phobic, one decays almost entirely into bb and can be produced via gluon fusion while the other decays almost entirely into {tau}{sup +}{tau}{sup -} but cannot be easily produced.
Engineering complex topological memories from simple Abelian models
Wootton, James R.; Lahtinen, Ville; Doucot, Benoit; Pachos, Jiannis K.
2011-09-15
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviors. An exciting proposal for quantum computation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. The so-called non-Abelian anyons are most promising for quantum computation, but their physical realization may prove to be complex. Abelian anyons, however, are easier to understand theoretically and realize experimentally. Here we show that complex topological memories inspired by non-Abelian anyons can be engineered in Abelian models. We explicitly demonstrate the control procedures for the encoding and manipulation of quantum information in specific lattice models that can be implemented in the laboratory. This bridges the gap between requirements for anyonic quantum computation and the potential of state-of-the-art technology. - Highlights: > A novel quantum memory using Abelian anyons is developed. > This uses an advanced encoding, inspired by non-Abelian anyons. > Errors are suppressed topologically, by means of single spin interactions. > An implementation with current Josephson junction technology is proposed.
Asymptotically safe Higgs inflation
Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: hjhe@tsinghua.edu.cn
2014-10-01
We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.
What Causes Mars' Annular Polar Vortices?
NASA Astrophysics Data System (ADS)
Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.
2016-09-01
Martian polar vortices exhibit annuli of high potential vorticity, unlike the Earth, likely due to the effect of latent heating of carbon dioxide condensation in polar regions, which does not occur for Earth's most abundant atmospheric species.
Stochastic Vorticity and Associated Filtering Theory
Amirdjanova, A.; Kallianpur, G.
2002-12-19
The focus of this work is on a two-dimensional stochastic vorticity equation for an incompressible homogeneous viscous fluid. We consider a signed measure-valued stochastic partial differential equation for a vorticity process based on the Skorohod-Ito evolution of a system of N randomly moving point vortices. A nonlinear filtering problem associated with the evolution of the vorticity is considered and a corresponding Fujisaki-Kallianpur-Kunita stochastic differential equation for the optimal filter is derived.
Combustor with multistage internal vortices
Shang, Jer Yu; Harrington, R.E.
1987-05-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.
Combustor with multistage internal vortices
Shang, Jer Y.; Harrington, Richard E.
1989-01-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.
Black holes and Abelian symmetry breaking
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo
2016-09-01
Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector–tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector–tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.
Black holes and Abelian symmetry breaking
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo
2016-09-01
Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.
Higgs dynamics during inflation
Enqvist, Kari; Meriniemi, Tuukka; Nurmi, Sami E-mail: tuukka.meriniemi@helsinki.fi
2014-07-01
We investigate inflationary Higgs dynamics and constraints on the Standard Model parameters assuming the Higgs potential, computed to next-to-next leading order precision, is not significantly affected by new physics. For a high inflationary scale H ∼ 10{sup 14} GeV suggested by BICEP2, we show that the Higgs is a light field subject to fluctuations which affect its dynamics in a stochastic way. Starting from its inflationary value the Higgs must be able to relax to the Standard Model vacuum well before the electroweak scale. We find that this is consistent with the high inflationary scale only if the top mass m{sub t} is significantly below the best fit value. The region within 2σ errors of the measured m{sub t}, the Higgs mass m{sub h} and the strong coupling α{sub s} and consistent with inflation covers approximately the interval m{sub t}∼<171.8 GeV+0.538(m{sub h}−125.5 GeV) with 125.4 GeV∼
On the light quark mass effects in Higgs boson production in gluon fusion
NASA Astrophysics Data System (ADS)
Melnikov, Kirill; Penin, Alexander
2016-05-01
Production of Higgs bosons at the LHC is affected by the contribution of light quarks, that mediate the gg → Hg transition. Although their impact is suppressed by small Yukawa couplings, it is enhanced by large logarithms of the ratio of the Higgs boson mass or its transverse momentum to light quark masses. We study the origin of this enhancement, focusing on the abelian corrections to gg → Hg amplitudes of the form {({C}_F{α}_s{mathcal{L}}^2)}^n , where mathcal{L}in \\{ ln (s/{m}_b^2),kern0.5em ln ({p}_{perp}^2/{m}_b^2)\\} . We show how these non-Sudakov double logarithmic terms can be resummed to all orders in the strong coupling constant. Interestingly, we find that the transverse momentum dependence of these corrections is very weak due to a peculiar cancellation between different logarithmic terms. Although the abelian part of QCD corrections is not expected to be dominant, it can be used to estimate missing higher-order corrections to light quark contributions to Higgs boson production at the LHC.
Mechanical Control of Individual Superconducting Vortices
2016-01-01
Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018
Abelian non-global logarithms from soft gluon clustering
NASA Astrophysics Data System (ADS)
Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba
2012-09-01
Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.
NASA Astrophysics Data System (ADS)
Mattner, Trent; Chong, Min; Joubert, Peter
2000-11-01
Vortical flow past a sphere in a constant diameter pipe was studied experimentally in a guide vane apparatus similar to those used in fundamental experimental studies of vortex breakdown. The initial effect of swirl was to shorten the downstream separation bubble. For a small range of the swirl intensity, an almost stagnant upstream separation bubble formed. As the swirl intensity was increased, the bubble became unstable and an unsteady spiral formed. At high swirl intensity there was a mean recirculation region which penetrated far upstream while the flow on the downstream hemisphere was attached. Measurements of the velocity field were obtained using laser Doppler velocimetry. Analysis of these results suggests that the onset of upstream separation is associated with the formation of a negative azimuthal vorticity component which slows the axial flow near the axis of symmetry. This is consistent with inviscid distortion of the vortex filaments in the diverging flow approaching the sphere.
Vortices in spin-orbit-coupled Bose-Einstein condensates
Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.
2011-12-15
Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.
Breathers on quantized superfluid vortices.
Salman, Hayder
2013-10-18
We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings. PMID:24182275
Breathers on Quantized Superfluid Vortices
NASA Astrophysics Data System (ADS)
Salman, Hayder
2013-10-01
We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.
Resolution of Chern-Simons-Higgs Vortex Equations
NASA Astrophysics Data System (ADS)
Han, Xiaosen; Lin, Chang-Shou; Yang, Yisong
2016-04-01
It is well known that the presence of multiple constraints of non-Abelian relativisitic Chern-Simons-Higgs vortex equations makes it difficult to develop an existence theory when the underlying Cartan matrix K of the equations is that of a general simple Lie algebra and the strongest result in the literature so far is when the Cartan subalgebra is of dimension 2. In this paper we overcome this difficulty by implicitly resolving the multiple constraints using a degree-theorem argument, utilizing a key positivity property of the inverse of the Cartan matrix deduced in an earlier work of Lusztig and Tits, which enables a process that converts the equality constraints to inequality constraints in the variational formalism. Thus this work establishes a general existence theorem that settles a long-standing open problem in the field regarding the general solvability of the equations.
NASA Astrophysics Data System (ADS)
Pogrebkov, A. K.
2016-06-01
We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.
Non-Abelian bosonic currents in cosmic strings
Lilley, Marc; Di Marco, Fabrizio; Martin, Jerome; Peter, Patrick
2010-07-15
A non-Abelian generalization of the neutral Witten current-carrying string model is discussed in which the bosonic current carrier belongs to a two-dimensional representation of SU(2). We find that the current-carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which case one is left with an Abelian current-carrying string, or the three currents are all lightlike, traveling in the same direction (only left or right movers). The third, genuinely non-Abelian situation, cannot be handled within a cylindrically symmetric framework, but can be shown to depend on all possible string Lorentz invariant quantities that can be constructed out of the phase gradients.
Non-Abelian quantum holonomy of hydrogenlike atoms
Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik
2011-09-15
We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.
Generalized Kitaev models and extrinsic non-Abelian twist defects.
Barkeshli, Maissam; Jiang, Hong-Chen; Thomale, Ronny; Qi, Xiao-Liang
2015-01-16
We present a wide class of partially integrable lattice models with two-spin interactions which generalize the Kitaev honeycomb model. These models have a conserved quantity associated with each plaquette, conserved large loop operators on the torus, and topological degeneracy. We introduce a "slave-genon" approach which generalizes the Majorana fermion approach in the Kitaev model. The Hilbert space of our spin model can be embedded in an enlarged Hilbert space of non-Abelian twist defects, referred to as genons. In the enlarged Hilbert space, the spin model is exactly reformulated as a model of non-Abelian genons coupled to a discrete gauge field. We discuss in detail a particular Z_{3} generalization, and we show that in a certain limit the model is analytically tractable and produces a non-Abelian topological phase with chiral parafermion edge states. PMID:25635553
Search for electron liquids with non-Abelian quasiparticles
NASA Astrophysics Data System (ADS)
Wójs, Arkadiusz
2010-03-01
We use exact numerical diagonalization in the search of fractional quantum Hall states with non-Abelian quasiparticle statistics. For the (most promising) states in a partially filled second Landau level, the search is narrowed to the range of filling factors 7/3 < ve < 8/3. In this range, the analysis of energy spectra and correlation functions, calculated including finite width and Landau level mixing, supports the prominent non-Abelian candidates at ve = 5/2 (paired Moore-Read "pfafian" state) and 12/5 (clustered Read-Rezayi "parafermion" state). Outside of this range, the noninteracting composite fermion model with four attached flux quanta is validated, yielding the family of quantum liquids with fractional, but Abelian statistics. The borderline ve = 7/3 state is shown to be adiabatically connected to the Laughlin liquid, but its short-range correlations are significantly different.
Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Jiang, Hong-Chen; Thomale, Ronny; Qi, Xiao-Liang
2015-01-01
We present a wide class of partially integrable lattice models with two-spin interactions which generalize the Kitaev honeycomb model. These models have a conserved quantity associated with each plaquette, conserved large loop operators on the torus, and topological degeneracy. We introduce a "slave-genon" approach which generalizes the Majorana fermion approach in the Kitaev model. The Hilbert space of our spin model can be embedded in an enlarged Hilbert space of non-Abelian twist defects, referred to as genons. In the enlarged Hilbert space, the spin model is exactly reformulated as a model of non-Abelian genons coupled to a discrete gauge field. We discuss in detail a particular Z3 generalization, and we show that in a certain limit the model is analytically tractable and produces a non-Abelian topological phase with chiral parafermion edge states.
The Hilbert scheme of points for supersingular abelian surfaces
NASA Astrophysics Data System (ADS)
Schröer, Stefan
2009-04-01
We study the geometry of Hilbert schemes of points on abelian surfaces and Beauville’s generalized Kummer varieties in positive characteristics. The main result is that, in characteristic two, the addition map from the Hilbert scheme of two points to the abelian surface is a quasifibration such that all fibers are nonsmooth. In particular, the corresponding generalized Kummer surface is nonsmooth, and minimally elliptic singularities occur in the supersingular case. We unravel the structure of the singularities in dependence of p-rank and a-number of the abelian surface. To do so, we establish a McKay Correspondence for Artin’s wild involutions on surfaces. Along the line, we find examples of canonical singularities that are not rational singularities.
G2HDM: Gauged Two Higgs Doublet Model
NASA Astrophysics Data System (ADS)
Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang
2016-04-01
A novel model embedding the two Higgs doublets in the popular two Higgs doublet models into a doublet of a non-abelian gauge group SU(2) H is presented. The Standard Model SU(2) L right-handed fermion singlets are paired up with new heavy fermions to form SU(2) H doublets, while SU(2) L left-handed fermion doublets are singlets under SU(2) H . Distinctive features of this anomaly-free model are: (1) Electroweak symmetry breaking is induced from spontaneous symmetry breaking of SU(2) H via its triplet vacuum expectation value; (2) One of the Higgs doublet can be inert, with its neutral component being a dark matter candidate as protected by the SU(2) H gauge symmetry instead of a discrete Z 2 symmetry in the usual case; (3) Unlike Left-Right Symmetric Models, the complex gauge fields ( W 1 ' ∓ W 2 ' ) (along with other complex scalar fields) associated with the SU(2) H do not carry electric charges, while the third component W 3 ' can mix with the hypercharge U(1) Y gauge field and the third component of SU(2) L ; (4) Absence of tree level flavour changing neutral current is guaranteed by gauge symmetry; and etc. In this work, we concentrate on the mass spectra of scalar and gauge bosons in the model. Constraints from previous Z' data at LEP and the Large Hadron Collider measurements of the Standard Model Higgs mass, its partial widths of γγ and Zγ modes are discussed.
Higgs combination and properties of the Higgs boson
NASA Astrophysics Data System (ADS)
Duehrssen, Michael; Petrucciani, Giovanni
2016-10-01
The combination of different Higgs boson searches was instrumental for the discovery of the Higgs boson in summer 2012. After the discovery the ATLAS and CMS collaborations have used the LHC Run 1 data to determine the properties of the Higgs boson. The mass of the Higgs boson is 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV. Measurements of kinematic properties of Higgs boson production and decay as well as measurements of signal yields and the coupling strengths to other particles show very good consistency with the predictions of the Standard Model.
Gauge invariance and the physical spectrum in the two-Higgs-doublet model
NASA Astrophysics Data System (ADS)
Maas, Axel; Pedro, Leonardo
2016-03-01
Observable states are gauge invariant. In a non-Abelian gauge theory, these are necessarily composite operators. We investigate the spectrum of these operators in the two-Higgs-doublet model. For this purpose, we are working along the lines of the Fröhlich-Morchio-Strocchi mechanism to relate the physical spectrum to the spectrum of the elementary particles. We also investigate the consequences of spontaneous breaking of the global (custodial) symmetry group. Finally, we briefly comment on how to test the results using lattice methods.
Abelian spatial string tension in finite temperature SU(2) gauge theory
NASA Astrophysics Data System (ADS)
Sekiguchi, Takashige; Ishiguro, Katsuya
2016-09-01
We investigate Abelian and monopole contributions to spatial string tension in the deconfined phase of finite temperature SU(2) gauge theory without imposing any gauge fixing conditions. Lattice calculations of non-Abelian and Abelian spatial string tensions from the Wilson action at gauge coupling β = 2.74 and lattice volume 243 × N t (Nt = {24, 8, 6, 4, 2}) show that these string tensions agree with each other within error bars at any adopted value of Nt, which implies Abelian dominance. From measurements of non-Abelian, Abelian and monopole forces that arise from the corresponding spatial string tension, furthermore, we find the tendency that the monopole contribution to the spatial string tension can be almost as large as the non-Abelian and Abelian ones. The temperature dependence of the calculated non-Abelian and Abelian spatial string tensions allows us to conclude that the concept of dimensional reduction holds both for non-Abelian and Abelian sectors at temperatures higher than twice the critical temperature.
Correlation-induced non-Abelian quantum holonomies
NASA Astrophysics Data System (ADS)
Johansson, Markus; Ericsson, Marie; Singh, Kuldip; Sjöqvist, Erik; Williamson, Mark S.
2011-04-01
In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the Lévay geometric phase (2004 J. Phys. A: Math. Gen. 37 1821) in the case of two-qubit systems undergoing local SU(2) evolutions.
Non-Abelian family symmetries as portals to dark matter
NASA Astrophysics Data System (ADS)
de Medeiros Varzielas, I.; Fischer, O.
2016-01-01
Non-Abelian family symmetries offer a very promising explanation for the flavour structure in the Standard Model and its extensions. We explore the possibility that dark matter consists in fermions that transform under a family symmetry, such that the visible and dark sector are linked by the familons - Standard Model gauge singlet scalars, responsible for spontaneously breaking the family symmetry. We study three representative models with non-Abelian family symmetries that have been shown capable to explain the masses and mixing of the Standard Model fermions.
Plane mixing layer vortical structure kinematics
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1993-01-01
The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.
Vortical sources of aerodynamic force and moment
NASA Technical Reports Server (NTRS)
Wu, J. Z.; Wu, J. M.
1989-01-01
It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.
Harnik, Roni
2004-10-27
Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.
Two applications of potential vorticity thinking
NASA Technical Reports Server (NTRS)
Robinson, Walter A.
1987-01-01
The phenomena of dissipative destabilization of external Rossby waves and the acceleration of the zonal mean jet during baroclinic life cycles are described in terms of potential vorticity. The main principle of the potential temperature variations at rigid boundaries have the same effect on the interior flow as do sheets of potential vorticity located just within the boundaries. It is noted that the potential vorticity theory is useful for understanding the dynamical behavior of meterological phenomena.
Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly
NASA Astrophysics Data System (ADS)
Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang
2016-08-01
In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2)H, while the standard model SU(2)L right-handed fermion singlets are paired up with new heavy fermions to form SU(2)H doublets, and SU(2)L left-handed fermion doublets are singlets under SU(2)H. An SU(2)H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2)H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.
Separation vortices and pattern formation
NASA Astrophysics Data System (ADS)
Andersen, Anders; Bohr, Tomas; Schnipper, Teis
2010-03-01
In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl-Kármán-Pohlhausen approach to stationary boundary layers with free surfaces going through separation, and thus obtain a quantitative theory of the simplest type of hydraulic jump, where a single separation vortex is present outside the jump. A second type of jump, where an additional roller appears at the surface, cannot be captured by this approach and has not been given an adequate theoretical description. Such a model is needed to describe “polygonal” hydraulic jumps, which occur by spontaneous symmetry breaking of the latter state. Time-dependent separation is of importance in the formation of sand ripples under oscillatory flow, where the separation vortices become very strong. In this case no simple theory exists for the determination of the location and strengths of separation vortices over a wavy bottom of arbitrary profile. We have, however, recently suggested an amplitude equation describing the long-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.
Making sound vortices by metasurfaces
NASA Astrophysics Data System (ADS)
Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou
2016-08-01
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Higgs potential and hidden light Higgs scenario in two Higgs doublet models
NASA Astrophysics Data System (ADS)
Chang, Sanghyeon; Kang, Sin Kyu; Lee, Jong-Phil; Song, Jeonghyeon
2015-10-01
In two Higgs doublet models, there exists an interesting possibility, the hidden light Higgs scenario, that the discovered SM-like Higgs boson is the heavier C P -even Higgs boson H0 and the lighter C P -even h0 has not been observed yet in any experiment. We study the current status of this scenario in Types I, II, X, and Y, through the scans of the parameters with all relevant theoretical and experimental constraints. We employ not only the most up-to-date Higgs signal strength measurements with the feed-down effects, but also all the available LHC exclusion limits from heavy Higgs searches. Adjusting the heavier H0 to the 125 GeV state while hiding the lighter h0 from the LEP Higgs search prohibits the extreme decoupling limit: there exist upper bounds on the masses of the pseudoscalar A0 and the charged Higgs H± below about 600 GeV. In addition, the Z2 symmetry is shown to be a good approximate symmetry since the soft Z2 symmetry breaking parameter m122 should be less than about (45 GeV )2 . Most interestingly, a few parameters in the Higgs potential and the related Higgs triple and quartic couplings are shown to be meaningfully constrained by the current data. The double Higgs-strahlung process at an e+e- collider is also studied.
Fibonacci anyons from Abelian bilayer quantum Hall states.
Vaezi, Abolhassan; Barkeshli, Maissam
2014-12-01
The possibility of realizing non-Abelian statistics and utilizing it for topological quantum computation (TQC) has generated widespread interest. However, the non-Abelian statistics that can be realized in most accessible proposals is not powerful enough for universal TQC. In this Letter, we consider a simple bilayer fractional quantum Hall system with the 1/3 Laughlin state in each layer. We show that interlayer tunneling can drive a transition to an exotic non-Abelian state that contains the famous "Fibonacci" anyon, whose non-Abelian statistics is powerful enough for universal TQC. Our analysis rests on startling agreements from a variety of distinct methods, including thin torus limits, effective field theories, and coupled wire constructions. We provide evidence that the transition can be continuous, at which point the charge gap remains open while the neutral gap closes. This raises the question of whether these exotic phases may have already been realized at ν=2/3 in bilayers, as past experiments may not have definitively ruled them out. PMID:25526149
Non-Abelian strings in supersymmetric Yang-Mills
Shifman, M.
2012-09-26
I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.
Deligne-Beilinson cohomology and Abelian link invariants: Torsion case
Thuillier, F.
2009-12-15
For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and present an explicit path-integral nonperturbative computation of the Chern-Simons link invariants in SO(3){approx_equal}RP{sup 3}, a toy example of a 3-manifold with torsion.
CDF's Higgs sensitivity status
Junk, Tom; /Illinois U., Urbana
2005-10-01
The combined sensitivity of CDF's current Standard Model Higgs boson searches is presented. The expected 95% CL limits on the production cross section times the relevant Higgs boson branching ratios are computed for the W{sup {+-}}H {yields} {ell}{sup {+-}}{nu}b{bar b}, ZH {yields} {nu}{bar {nu}}b{bar b}, gg {yields} H {yields} W{sup +}W{sup -} W{sup {+-}}H {yields} W{sup {+-}}W{sup +}W{sup -} channels as they stand as of the October 2005, using results which were prepared for Summer 2005 conferences and a newer result form the gg {yields} H {yields} W{sup +}W{sup -} channel. Correlated and uncorrelated systematic uncertainties are taken into account, and the luminosity requirements for 95% CL exclusion, 3{sigma} evidence, and 5{sigma} discovery are computed for median experimental outcomes. A list of improvements required to achieve the sensitivity to a SM Higgs boson as quantified in the Higgs Sensitivity Working Group's report is provided.
Higgs inflation and naturalness
NASA Astrophysics Data System (ADS)
Lerner, Rose N.; McDonald, John
2010-04-01
Inflation based on scalar fields which are non-minimally coupled to gravity has been proposed as a way to unify inflation with weak-scale physics, with the inflaton being identified with the Higgs boson or other weak-scale scalar particle. These models require a large non-minimal coupling ξ ~ 104 to have agreement with the observed density perturbations. However, it has been suggested that such models are unnatural, due to an apparent breakdown of the calculation of Higgs-Higgs scattering via graviton exchange in the Jordan frame. Here we argue that Higgs inflation models are in fact natural and that the breakdown does not imply new physics due to strong-coupling effects or unitarity breakdown, but simply a failure of perturbation theory in the Jordan frame as a calculational method. This can be understood by noting that the model is completely consistent when analysed in the Einstein frame and that scattering rates in the two frames are equal by the Equivalence Theorem for non-linear field redefinitions.
NASA Astrophysics Data System (ADS)
von Gersdorff, Gero; Pontón, Eduardo; Rosenfeld, Rogerio
2015-06-01
We present a simple microscopic realization of a pseudo-Nambu-Goldstone (pNGB) boson Higgs scenario arising from the breaking of SO(5) → SO(4). The Higgs constituents are explicitly identified as well as the interactions responsible for forming the bound state and breaking the electroweak symmetry. This outcome follows from the presence of four-fermion interactions with a super-critical coupling, and uses the Nambu-Jona-Lasinio mechanism to break the global SO(5) symmetry. The Higgs potential is found to be insensitive to high energy scales due to the existence of an approximate infrared fixed point. The appearance of vector resonances is described and the correspondence with other proposals in the literature established. The model described here is significantly simpler than other recent ultraviolet completions of pNGB scenarios. The observed Higgs mass can be accommodated, and agreement with electroweak precision tests achieved in certain regions of parameter space. There are also new vector-like fermions, some of which may lie within reach of the LHC. In addition, we predict a heavy standard model singlet scalar in the multi-TeV range. The amount of fine-tuning required in the model is studied. Finally, we show that such a scheme can be completed in the ultraviolet by a renormalizable theory.
Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles
Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru
2009-09-01
The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.
Vortices in spatially inhomogeneous superfluids
NASA Astrophysics Data System (ADS)
Sheehy, Daniel E.; Radzihovsky, Leo
2004-12-01
We study vortices in a radially inhomogeneous superfluid, as realized by a trapped degenerate Bose gas in a uniaxially symmetric potential. We show that, in contrast to a homogeneous superfluid, an off-axis vortex corresponds to an anisotropic superflow whose profile strongly depends on the distance to the trap axis. One consequence of this superflow anisotropy is vortex precession about the trap axis in the absence of an imposed rotation. In the complementary regime of a finite prescribed rotation, we compute the minimum-energy vortex density, showing that in the rapid-rotation limit it is extremely uniform, despite a strongly inhomogeneous (nearly) Thomas-Fermi condensate density ρs(r) . The weak radially dependent contribution [∝∇2lnρs(r)] to the vortex distribution, that vanishes with the number of vortices Nv as 1/Nv , arises from the interplay between vortex quantum discreteness (namely their inability to faithfully support the imposed rigid-body rotation) and the inhomogeneous superfluid density. This leads to an enhancement of the vortex density at the center of a typical concave trap, a prediction that is in quantitative agreement with recent experiments. One striking consequence of the inhomogeneous vortex distribution is an azimuthally directed, radially shearing superflow.
The static quark potential from the gauge independent Abelian decomposition
NASA Astrophysics Data System (ADS)
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for
An Integrated Higgs Force Theory
NASA Astrophysics Data System (ADS)
Colella, Antonio
2016-03-01
An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).
Competing Abelian and non-Abelian topological orders in ν =1 /3 +1 /3 quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Geraedts, Scott; Zaletel, Michael P.; Papić, Zlatko; Mong, Roger S. K.
2015-05-01
Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two subbands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the problem of quantum Hall bilayers at filling ν =1 /3 +1 /3 . We first consider the Coulomb interaction at bilayer separation d , bilayer tunneling energy ΔSAS, and individual layer width w , where we find a phase diagram which includes three competing Abelian phases: a bilayer Laughlin phase (two nearly decoupled ν =1 /3 layers), a bilayer spin-singlet phase, and a bilayer symmetric phase. We also study the order of the transitions between these phases. A variety of non-Abelian phases has also been proposed for these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we find a robust non-Abelian phase which we identify as the "interlayer-Pfaffian" phase. In addition to non-Abelian statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results suggest that ν =1 /3 +1 /3 systems merit further experimental study.
On generating counter-rotating streamwise vortices
NASA Astrophysics Data System (ADS)
Winoto, S. H.; Mitsudharmadi, H.; Budiman, A. C.; Hasheminejad, S. M.; Nadesan, T.; Tandiono; Low, H. T.; Lee, T. S.
2015-09-01
Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.
Nonquasineutral electron vortices in nonuniform plasmas
Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W.; Ottinger, P. F.
2014-11-15
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
Flute vortices in nonuniform magnetic fields
Yu, M.Y.; Shukla, P.K.; Varma, R.K.
1985-09-01
Localized double vortices associated with the flute modes are shown to exist. Special emphasis is given to the effect of the convective variation of the fluid magnetic moment. It is shown that the latter effect considerably modifies the existence regions of the vortices.
Vortices in normal part of proximity system
Kogan, V. G.
2015-05-26
It is shown that the order parameter Δ induced in the normal part of superconductor-normal-superconductor proximity system is modulated in the magnetic field differently from vortices in bulk superconductors. Whereas Δ turns zero at vortex centers, the magnetic structure of these vortices differs from that of Abrikosov's.
Vorticity generation by contoured wall injectors
NASA Technical Reports Server (NTRS)
Waitz, Ian A.; Marble, Frank E.; Zukoski, Edward E.
1992-01-01
A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface.
Relative equilibria of vortices in two dimensions.
Palmore, J I
1982-01-01
An old problem of the evolution of finitely many interacting point vortices in the plane is shown to be amenable to investigation by critical point theory in a way that is identical to the study of the planar n-body problem of celestial mechanics. For any choice of positive circulations of the vortices it is shown by critical point theory applied to Kirchhoff's function that there are many relative equilibria configurations. Each of these configurations gives rise to a stationary configuration of the vortices in a suitably chosen rotating coordinate system. A sharp lower bound on the number of stationary vortex configurations for the problem of point vortices interacting in the plane is given. The problem of point vortices in a circular disk is defined and it is shown that these estimates hold for stationary configurations of small size. PMID:16593155
Vorticity generation by contoured wall injectors
Waitz, I.A.; Marble, F.E.; Zukoski, E.E. California Institute of Technology, Pasadena )
1992-07-01
A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface. 19 refs.
Relative equilibria of vortices in two dimensions.
Palmore, J I
1982-01-01
An old problem of the evolution of finitely many interacting point vortices in the plane is shown to be amenable to investigation by critical point theory in a way that is identical to the study of the planar n-body problem of celestial mechanics. For any choice of positive circulations of the vortices it is shown by critical point theory applied to Kirchhoff's function that there are many relative equilibria configurations. Each of these configurations gives rise to a stationary configuration of the vortices in a suitably chosen rotating coordinate system. A sharp lower bound on the number of stationary vortex configurations for the problem of point vortices interacting in the plane is given. The problem of point vortices in a circular disk is defined and it is shown that these estimates hold for stationary configurations of small size.
Composite vortices in nonlinear circular waveguide arrays
NASA Astrophysics Data System (ADS)
Leykam, Daniel; Malomed, Boris; Desyatnikov, Anton S.
2013-04-01
It is known that, in continuous media, composite solitons with hidden vorticity, which are built of two mutually symmetric vortical components whose total angular momentum is zero, may be stable while their counterparts with explicit vorticity and nonzero total angular momentum are unstable. In this work, we demonstrate that the opposite occurs in discrete media: hidden vortex states in relatively small ring chains become unstable with the increase of the total power, while explicit vortices are stable, provided that the corresponding scalar vortex state is also stable. There are also stable mixed states, in which the components are vortices with different topological charges. Additionally, degeneracies in families of composite vortex modes lead to the existence of long-lived breather states which can exhibit vortex-charge flipping in one or both components.
Goh, Hock-Seng; Goh, Hock-Seng; Krenke, Christopher A.
2007-07-25
We present a twin Higgs model based on left-right symmetry with a tree level quartic. This is made possible by extending the symmetry of the model to include two Z_2 parities, each of which is sufficient to protect the Higgs from getting a quadratically divergent mass squared. Although both parities are brokenexplicitly, the symmetries that protect the Higgs from getting a quadratically divergent mass are broken only collectively. The quadratic divergences of the Higgs mass are thus still protected at one loop. We find that the fine-tuning in this model is reduced substantially compared to the original left-right twin Higgs model. This mechanism can also be applied to the mirror twin Higgs model to get a significant reduction of the fine-tuning, while keeping the mirror photon massless.
Ferroelectric vortices from atomistic simulations
NASA Astrophysics Data System (ADS)
Bellaiche, Laurent
2011-03-01
In 2004, the use of a first-principles-based effective Hamiltonian led to the prediction of a novel structure in zero-dimensional ferroelectrics, in which the electric dipoles organize themselves to form a vortex. Such structure exhibits the so-called spontaneous toroidal moment, rather than the spontaneous polarization, as its order parameter. Subsequently, various original phenomena, all related to vortices, were predicted in ferroelectric nanostructures. Examples of such phenomena are: (i) the existence of a new order parameter, denoted as the hypertoroidal moment, that is associated with many complex dipolar structures (such as double-vortex states); (ii) the possible control of single and double vortex states by electric fields, via the formation of original intermediate states [4-8]; (iii) the discovery of a new class of quantum materials (denoted as incipient ferrotoroidics), for which zero-point vibrations wash out the vortex state and yield a complex local structure; (iv) the existence of chiral patterns of oxygen octahedral tiltings that originate from the coupling of these tiltings with the ferroelectric vortices. The purpose of this talk is to discuss some of these striking phenomena, as well as, to reveal others (if time allows). These studies are done in collaboration with A.R. Akbarzadeh, H. Fu, I. Kornev, I. Naumov, I. Ponomareva, S. Prosandeev, Wei Ren and D. Sichuga. These works are supported by the NSF grants DMR 0701558 and DMR-0080054 (C-SPIN), DOE grant DE-SC0002220, and ONR grants N00014-08-1-0915 and N00014-07-1-0825 (DURIP).
Generation and Growth of Single Hairpin Vortices
NASA Astrophysics Data System (ADS)
Haji-Haidari, Ahmad
The behavior of selectively generated single hairpin vortices are examined within a laminar boundary layer environment over a range of Reynolds numbers, the hairpin vortices are experimentally generated by means of controlled fluid injection from a streamwise slot. Flow visualization using both dye and hydrogen bubble wire is employed in conjunction with hot film anemometry to investigate the growth characteristics and evolution of these single hairpin vortices. Qualitatively, it is established that hairpin vortices form by local destabilization at the interface between the low-speed fluid introduced through the slot and the higher speed boundary layer flow. Kinematical considerations of the hairpin vortex are established. It is observed that a hairpin vortex generally displays visualization and velocity signatures characteristic of those observed for a turbulent boundary layer. Hydrogen-bubble wire visualization results specifically indicate that hairpin vortices generate two purely turbulent-like flow patterns. The first is a low-speed streak pattern developing immediately adjacent to the surface due to surface interaction by the counter -rotating legs of the hairpin vortex; the second pattern is a turbulent pocket-like pattern farther removed from the surface. It is determined from the visualization data that hairpin vortices manifest the necessary flow characteristics which give rise to the regenerative and sustained process required for maintenance of turbulence. The regeneration and the growth process takes place through the formation of similar hairpin-like vortices by one of two means. The first is an inviscid lateral propagation of the initial disturbance which gives rise to outboard (subsidiary), vortices which cause the lateral spreading of the structure. A more complicated and eruptive process occurs by means of viscous-inviscid interactions which give rise to trailing vortices (secondary), which cause the streamwise elongation of the disturbance. A
NASA Astrophysics Data System (ADS)
Arraut, Ivan
2015-09-01
The Higgs mechanism at the graviton level formulated as a Vainshtein mechanism in time domains implies that the extra-degrees of freedom become relevant depending on the direction of time (frame of reference) with respect to the preferred time direction (preferred frame) defined by the Stückelberg function T_0(r,t) which contains the information of the extra-degrees of freedom of the theory. In this manuscript, I make the general definition of the Higgs mechanism by analyzing the gauge symmetries of the action and the general form of the vacuum solutions for the graviton field. In general, the symmetry generators depending explicitly on the Stückelberg fields are broken at the vacuum level. These broken generators, define the number of Nambu-Goldstone bosons which will be eating up by the dynamical metric in order to become massive.
Draper, P.; Liu, T.; Wagner, C. E. M.; Wang, L.-T.; Zhang, H.
2011-03-24
We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, ?, and flavor physics.
Generation of the Higgs Mass through Radiative Effects
NASA Astrophysics Data System (ADS)
Hanif, Tanvir
We consider the effective potential V in the Standard Model with a single Higgs doublet in the limit that the only mass scale mu present is radiatively generated. Using a technique that has been shown to determine V completely in terms of the renormalization group (RG) functions when using the Coleman-Weinberg (CW) renormalization scheme, we first sum leading-log (LL) contributions to V using the one loop RG functions, associated with five couplings (the top quark Yukawa coupling x, the quartic coupling of the Higgs field y, the SU(3) gauge coupling z, and the SU(2) ⊗U(1) couplings r and s). We then employ the two loop RG functions with the three couplings x, y, z to sum the next-to-leading-log (NLL) contributions to V and then the three to five loop RG functions with one coupling y to sum all the N2LL ... N 4LL contributions to V. In order to compute these sums, it is necessary to convert those RG functions that have been originally computed explicitly in the minimal subtraction (MS) scheme to their form in the CW scheme. The Higgs mass can then be determined from the effective potential: the LL result is m H = 219 GeV/c2 decreases to mH = 188 GeV/c2 at N2LL order and mH = 163 GeV/c2 at N 4LL order. No reasonable estimate of m H can be made at orders VNLL or VN3LL, since the method employed gives either negative or imaginary values for the quartic scalar coupling. The fact that we get reasonable values for m H from the LL, N2LL and N4LL approximations is taken to be an indication that this mechanism for spontaneous symmetry breaking is in fact viable, though one in which there is slow convergence towards the actual value of mH. If the decrease in the values of mH observed when we get from the LL to the N4 LL estimate were to continue, then mH = 163 GeV/c2 would be an upper bound on the mass of the Higgs. Keywords: lagrangian; action; field; standard model; effective action; effective potential; abelian; gauge transformation; gauge field; gauge-fixing; self
NASA Astrophysics Data System (ADS)
David, André Dührssen, Michael
2016-10-01
This chapter presents an overview of the measured properties of the Higgs boson discovered in 2012 by the ATLAS and CMS collaborations at the CERN LHC. Searches for deviations from the properties predicted by the standard theory are also summarised. The present status corresponds to the combined analysis of the full Run 1 data sets of collisions collected at centre-of-mass energies of 7 and 8 TeV.
Quantum dissipative Higgs model
Amooghorban, Ehsan Mahdifar, Ali
2015-09-15
By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.
Schafer-Nameki, Sakura; Tamarit, Carlos; Torroba, Gonzalo; /SLAC /Santa Barbara, KITP
2010-08-26
We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the {mu}/B{sub {mu}} problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of 'single-sector' models are discussed.
Merging of co-rotating vortices
NASA Astrophysics Data System (ADS)
Cerretelli, C.; Williamson, C. H. K.
2001-11-01
We present results from an experimental study on the interaction of two co-rotating trailing vortices. The flow is generated by towing a biplane wing system through a tank of water. The vortex dynamics, as a function of the Reynolds number (Re), are analyzed by means of DPIV. We find that vortex merging is essentially a 3-stage process. Initially, the vortices undergo a diffusive growth until the cores reach a critical size. This diffusion process can be either viscous (when Re < 530) or turbulent (when Re > 530). The second (convective) stage in vortex merging, involves a breaking of the initial symmetry of the vorticity field. At this point, the convective stage occurs, with a strong deformation of the vortex cores which start moving towards each other. The decomposition of the vorticity and velocity fields into symmetric and antisymmetric components shows that the antisymmetric vorticity pushes the vortices together, and causes the phenomenon of merging. The merging velocity can be measured from the antisymmetric velocity field, and agrees very well with direct measurement of the rate at which the centroids approach each other. The third stage of vortex merger is again a diffusive stage, whereby the final merging of the two vortices into one axisymmetric structure is achieved only by diffusion.
Maximal Abelian gauge and a generalized BRST transformation
NASA Astrophysics Data System (ADS)
Deguchi, Shinichi; Pandey, Vipul Kumar; Mandal, Bhabani Prasad
2016-05-01
We apply a generalized Becchi-Rouet-Stora-Tyutin (BRST) formulation to establish a connection between the gauge-fixed SU (2) Yang-Mills (YM) theories formulated in the Lorenz gauge and in the Maximal Abelian (MA) gauge. It is shown that the generating functional corresponding to the Faddeev-Popov (FP) effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST) transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.
Memory on multiple time-scales in an Abelian sandpile
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Melatos, Andrew; Kieu, Tien; Webster, Rachel
2015-06-01
We report results of a numerical analysis of the memory effects in two-dimensional Abelian sandpiles. It is found that a sandpile forgets its instantaneous configuration in two distinct stages: a fast stage and a slow stage, whose durations roughly scale as N and N2 respectively, where N is the linear size of the sandpile. We confirm the presence of the longer time-scale by an independent diagnostic based on analysing emission probabilities of a hidden Markov model applied to a time-averaged sequence of avalanche sizes. The application of hidden Markov modelling to the output of sandpiles is novel. It discriminates effectively between a sandpile time series and a shuffled control time series with the same time-averaged event statistics and hence deserves further development as a pattern-recognition tool for Abelian sandpiles.
Non-Abelian Effects on D-Branes
Russo, Jorge G.
2008-07-28
We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.
Identifying non-Abelian topological order through minimal entangled states.
Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N
2014-03-01
The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions. PMID:24655269
Braiding non-Abelian quasiholes in fractional quantum Hall states.
Wu, Yang-Le; Estienne, B; Regnault, N; Bernevig, B Andrei
2014-09-12
Quasiholes in certain fractional quantum Hall states are promising candidates for the experimental realization of non-Abelian anyons. They are assumed to be localized excitations, and to display non-Abelian statistics when sufficiently separated, but these properties have not been explicitly demonstrated except for the Moore-Read state. In this work, we apply the newly developed matrix product state technique to examine these exotic excitations. For the Moore-Read and the Z_{3} Read-Rezayi states, we estimate the quasihole radii, and determine the correlation lengths associated with the exponential convergence of the braiding statistics. We provide the first microscopic verification for the Fibonacci nature of the Z_{3} Read-Rezayi quasiholes. We also present evidence for the failure of plasma screening in the nonunitary Gaffnian wave function. PMID:25259996
Possibility of early Higgs boson discovery in nonminimal Higgs sectors
Chang, Spencer; Evans, Jared A.; Luty, Markus A.
2011-11-01
Particle physics models with more than one Higgs boson occur in many frameworks for physics beyond the standard model, including supersymmetry, technicolor, composite Higgs, and ''little Higgs'' models. If the Higgs sector contains couplings stronger than electroweak gauge couplings, there will be heavy Higgs particles that decay to lighter Higgs particles plus heavy particles such as W, Z, and t. This motivates searches for final states involving multiple W, Z, t, and bb pairs. A two Higgs doublet model with custodial symmetry is a useful simplified model to describe many of these signals. The model can be parameterized by the physical Higgs masses and the mixing angles {alpha} and {beta}, so discovery or exclusion in this parameter space has a straightforward physical interpretation. We illustrate this with a detailed analysis of the process gg{yields}A followed by A{yields}hZ and h{yields}WW. For m{sub A}{approx_equal}330 GeV, m{sub h}{approx_equal}200 GeV we can get a 4.5{sigma} signal with 1 fb{sup -1} of integrated luminosity at the Large Hadron Collider.
Quantum corrections of Abelian Duality Transformations in Sigma models
NASA Astrophysics Data System (ADS)
Balog, J.; Forgács, P.; Horváth, Z.; Palla, L.
1997-07-01
A review is given of a recently proposed modification of the Abelian Duality transformations guaranteeing that a (not necessarily conformally invariant) σ-model be quantum equivalent (at least up to two loops in perturbation theory) to its dual. This requires a somewhat non standard perturbative treatment of the dual σ-model. Explicit formulae of the modified duality transformation are presented for a special class of block diagonal purely metric σ-models.
Global aspects of abelian duality in dimension three
NASA Astrophysics Data System (ADS)
Beasley, Chris
2014-08-01
In three dimensions, an abelian gauge field is related by duality to a free, periodic scalar field. Though usually considered on , this duality can be extended to a general three-manifold M , in which case topological features of M become important. Here I comment upon several of these features as related to the partition function on M. In a companion article, I discuss similarly the algebra of operators on a surface of genus g.
Measurement of vorticity diffusion by NMR microscopy.
Brown, Jennifer R; Callaghan, Paul T
2010-05-01
In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid, at the cylinder's rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low viscosity fluids without the need to measure stress. PMID:20189854
Vortices and turbulence in trapped atomic condensates
White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.
2014-01-01
After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880
Vorticity in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Deng, Wei-Tian; Huang, Xu-Guang
2016-06-01
We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.
Vortices in magnetically coupled superconducting layered systems
Mints, Roman G.; Kogan, Vladimir G.; Clem, John R.
2000-01-01
Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that vortices may skip surface layers in samples of less than a certain size R{sub c} which might be macroscopic. The Josephson coupling suppresses R{sub c} estimates. (c) 2000 The American Physical Society.
Hollow vortices in weakly compressible flows
NASA Astrophysics Data System (ADS)
Krishnamurthy, Vikas; Crowdy, Darren
2015-11-01
In a two-dimensional, inviscid and steady fluid flow, hollow vortices are bounded regions of constant pressure with non-zero circulation. It is known that for an infinite row of incompressible hollow vortices, analytical solutions for the flow field and the shape of the hollow vortex boundary can be obtained using conformal mapping methods. In this talk, we show how to derive analytical expressions for a weakly compressible hollow vortex row. This is done by introducing a new method based on the Imai-Lamla formula. We will also touch upon how to extend these results to a von-Karman street of hollow vortices.
Designer non-Abelian anyon platforms: from Majorana to Fibonacci
NASA Astrophysics Data System (ADS)
Alicea, Jason; Stern, Ady
2015-12-01
The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.
Non-Abelian discrete gauge symmetries in F-theory
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego
2016-02-01
The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.
NASA Astrophysics Data System (ADS)
Roberts, Alex
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
Atmospheric Vortices near Guadalupe Island
NASA Technical Reports Server (NTRS)
2000-01-01
These MISR images from June 11, 2000 (Terra orbit 2569) demonstrate a turbulent atmospheric flow pattern known as the von Karman vortex street. This phenomenon is named after aerodynamicist Theodore von Karman, who theoretically derived the conditions under which it occurs. The alternating double row of vortices can form in the wake of an obstacle, in this instance the eastern Pacific island of Guadalupe. The rugged terrain of this volcanic Mexican island reaches a maximum elevation of 1.3 kilometers. The island is about 35 kilometers long and is located 260 kilometers west of Baja California.
The vortex pattern is made visible by the marine stratocumulus clouds around Guadalupe Island. The upper image is a color view obtained by MISR's vertical-viewing (nadir) camera. North is toward the left. The orientation of the vortex street indicates that the wind direction is from lower left to upper right (northwest to southeast). The areas within the vortex centers tend to be clear because the rotating motions induce a vertical wind component that can break up the cloud deck.
The lower view is a stereo picture generated from data acquired by MISR's fore- and aft-viewing 70-degree cameras. A 3-D effect is obtained by viewing the image with red/blue glasses and placing the red filter over your left eye. Note how the downwelling atmospheric motion (change in elevation from high to low) is accompanied by a clearing in the center of the first vortex. As the vortices propagate downstream, their rotational velocities weaken. As a consequence, the induced vertical motion and cloud-clearing effect weakens as well.
Theodore von Karman was a Professor of Aeronautics at Caltech and Director of Caltech's Guggenheim Aeronautical Laboratory from 1930-1949. He was one of the principal founders of the Jet Propulsion Laboratory.
MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra
Top, Higgs and Electroweak Physics
Tipton, Paul L.
2006-11-17
Hadron colliders are, and will continue to be, an excellent venue for testing the standard model of particle physics. We describe the status of top-quark physics and the direct search for a standard model Higgs boson. We briefly describe the use of Tevatron and LEP data to indirectly infer the standard model Higgs mass through precision electroweak measurements.
Escalante, Alberto Manuel-Cabrera, J.
2015-10-15
A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2010-12-01
A large class of fractional quantum Hall (FQH) states can be classified according to their pattern of zeros, which describes the way ideal ground-state wave functions go to zero as various clusters of electrons are brought together. In this paper, we generalize this approach to classify multilayer FQH states. Such a classification leads to the construction of a class of non-Abelian multilayer FQH states that are closely related to ĝk parafermion conformal field theories, where ĝk is an affine simple Lie algebra. We discuss the possibility of some of the simplest of these non-Abelian states occurring in experiments on bilayer FQH systems at ν=2/3 , 4/5, 4/7, etc.
An Algorithm to Compute Abelian Subalgebras in Linear Algebras of Upper-Triangular Matrices
NASA Astrophysics Data System (ADS)
Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F.
2009-08-01
This paper deals with the maximal abelian dimension of the Lie algebra hn, of n×n upper-triangular matrices. Regarding this, we obtain an algorithm which computes abelian subalgebras of hn as well as its implementation (and a computational study) by using the symbolic computation package MAPLE, where the order n of the matrices in hn is the unique input needed. Let us note that the algorithm also allows us to obtain a maximal abelian subalgebra of hn.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang; Wang, Zhenghan
2008-06-01
The classification of complex wave functions of infinite variables is an important problem since it is related to the classification of possible quantum states of matter. In this paper, we propose a way to classify symmetric polynomials of infinite variables using the pattern of zeros of the polynomials. Such a classification leads to a construction of a class of simple non-Abelian quantum Hall states which are closely related to parafermion conformal field theories.
Improving the Higgs Mass Resolution
NASA Astrophysics Data System (ADS)
Hanzlik, Jessica
2007-10-01
The search for the Higgs boson is of great interest, with a variety of searches ongoing at the CDF and D0 experiments at the Tevatron at Fermilab, as well as planned searches in the upcoming LHC detectors ATLAS and CMS. At Fermilab, one primary mode for a low mass Higgs is via ZH production. In this channel, the Z boson decays into a neutrino pair, and the Higgs boson decays into a bottom quark and an anti-bottom quark pair. In these events, there are two jets (from the two quarks) ass well as a large energy imbalance from the undetected neutrinos. This analysis investigates the use of the energy imbalance to improve the measurement of the individual jets and thus the determination of the resulting Higgs mass. The method we investigate involves the use of Artificial Neural Networks. We present expected improvements in Higgs mass resolution.
Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields
NASA Astrophysics Data System (ADS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz
2016-04-01
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
Vorticity matching in superfluid helium
NASA Astrophysics Data System (ADS)
Samuels, David C.
1991-12-01
Recent experiments have rekindled interest in high Reynolds number flows using superfluid helium. In a continuing series of experiments, the flow of helium II through various devices (smooth pipes, corrugated pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) was investigated. In all cases, the measured values (typically, mass flow rates and pressure drops) were found to be well described by classical relations for high Reynolds flows. This is unexpected since helium II consists of two interpenetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with zero viscosity (the superfluid). Only the normal fluid component should directly obey classical relations. Since the experiments listed above only measure the external behavior of the flow (i.e., pressure drops over devices), there is a great deal of room for interpretation of their results. One possible interpretation is that in turbulent flows the normal fluid and the superfluid velocity fields are somehow 'locked' together, presumably by the mutual friction force between the superfluid vortex filaments and the normal fluid. We refer to this locking together of the two fluids as 'vorticity matching.'
Combustion enhancement by axial vortices
NASA Astrophysics Data System (ADS)
Gutmark, E.; Schadow, K. C.; Parr, T. P.; Parr, D. M.; Wilson, K. J.
1987-06-01
A tapered slot jet was studied experimentally in nonreacting and reacting tests using hot-wire anemometry, water-tunnel flow visualization, and Planar Laser Induced Fluorescence (PLIF). The tapered slot jet is a modified elliptic jet which has a conical contraction leading to its outlet. The added contraction changes the entire flow field. The jet spread in the major axis plane is larger than in the minor axis plane, which is the opposite behavior of an elliptic jet. Consequently, no axes switching, typical to an elliptic jet, is observed. The turbulence amplification in the jet core is higher than in circular and elliptic jets. The different behavior is attributed to the change in flow direction, inside the nozzle, from the conical section to the slot outlet. During this transition, the flow acquires angular momentum thereby generating axial vorticity. The influence of the contraction angle and the outlet aspect ratio were investigated. The effect of the augmented turbulence on reactive flow was tested in a premixed flame. The combustion rate was augmented in both the core and edges of the flame relative to a circular burner.
Tornadoes and other atmospheric vortices
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1976-01-01
The growth of random vortices in an atmosphere with buoyant instability and vertical wind shear is studied along with the velocities in a single gravity-driven vortex; a frictionless adiabatic model which is supported by laboratory experiments is first considered. The effects of axial drag, heat transfer, and precipitation-induced downdrafts are then calculated. Heat transfer and axial drag tend to have stabilizing effects; they reduce the downdrafts of updrafts due to buoyancy. It is found that downdrafts or tornadic magnitude might occur in negatively-buoyant columns. The radial-inflow velocity required to maintain a given maximum tangential velocity in a tornado is determined by using a turbulent vortex model. Conditions under which radial-inflow velocities become sufficiently large to produce tangential velocities of tornadic magnitude are determined. The radial velocities in the outer regions, as well as the tangential velocities in the inner regions may be large enough to cause damage. The surface boundary layer, which is a region where large radial inflows can occur, is studied, and the thickness of the radial-inflow friction layer is estimated. A tornado model which involves a rotating parent cloud, as well as buoyancy and precipitation effects, is discussed.
Analytic vortex solutions on compact hyperbolic surfaces
NASA Astrophysics Data System (ADS)
Maldonado, Rafael; Manton, Nicholas S.
2015-06-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Electroweak Baryogenesis and Higgs Properties
Cohen, Timothy; Morrissey, David E.; Pierce, Aaron; /Michigan U., MCTP
2012-03-13
We explore the connection between the strength of the electroweak phase transition and the properties of the Higgs boson. Our interest is in regions of parameter space that can realize electroweak baryogenesis. We do so in a simplified framework in which a single Higgs field couples to new scalar fields charged under SU(3){sub c} by way of the Higgs portal. Such new scalars can make the electroweak phase transition more strongly first-order, while contributing to the effective Higgs boson couplings to gluons and photons through loop effects. For Higgs boson masses in the range 115 {approx}< m{sub h} {approx}< 130 GeV, whenever the phase transition becomes strong enough for successful electroweak baryogenesis, we find that Higgs boson properties are modified by an amount observable by the LHC. We also discuss the baryogenesis window of the minimal supersymmetric standard model (MSSM), which appears to be under tension. Furthermore, we argue that the discovery of a Higgs boson with standard model-like couplings to gluons and photons will rule out electroweak baryogenesis in the MSSM.
Jackson, C. B.; Servant, G.; Shaughnessy, G.; Tait, T. M. P.; Taoso, M.; High Energy Physics; Northwestern Univ; Univ. of California at Irvine; CERN; Univ. de Valencia
2010-04-01
We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z{prime} acting as a portal to the Standard Model through its strong coupling to top quarks. Annihilation into light standard model degrees of freedom is suppressed and generates a feeble continuum spectrum of gamma rays. Loops of top quarks mediate annihilation into {gamma}Z, {gamma}h, and {gamma}Z{prime}, providing a forest of lines in the spectrum. Such models can be probed by the Fermi/GLAST satellite and ground-based Air Cherenkov telescopes
Gaseous Vortices in Barred Spiral Galaxies
NASA Technical Reports Server (NTRS)
England, Martin N.; Hunter, James H., Jr.
1995-01-01
During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).
On Higgs inflation and naturalness
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Lee, H. M.; Trott, Michael
2010-07-01
We reexamine recent claims that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Λ ≃ M p /ξ. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.
Invisible Higgs boson, continuous mass fields, and unparticle Higgs mechanism
Calmet, X.; Deshpande, N. G.; Hsu, S. D. H.; He, X. G.
2009-03-01
We explore the consequences of an electroweak symmetry breaking sector which exhibits approximately scale invariant dynamics, i.e., nontrivial fixed point behavior, as in unparticle models. One can think of an unparticle Higgs as a composite Higgs boson with a continuous mass distribution. We find it convenient to represent the unparticle Higgs in terms of a Kaellen-Lehmann spectral function, from which it is simple to verify the generation of gauge boson and fermion masses, and unitarization of WW scattering. We show that a spectral function with broad support, which corresponds to approximate fixed point behavior over an extended range of energy, can lead to an effectively invisible Higgs particle, whose decays at CERN LEP or LHC could be obscured by background.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values
Veneziano amplitudes, spin chains and Abelian reduction of QCD
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady
2009-05-01
Although QCD can be treated perturbatively in the high energy limit, lower energies require uses of nonperturbative methods such as ADS/CFT and/or Abelian reduction. These methods are not equivalent. While the first is restricted to supersymmetric Yang-Mills model with number of colors going to infinity, the second is not restricted by requirements of supersymmetry and is designed to work in the physically realistic limit of a finite number of colors. In this paper we provide arguments in favor of the Abelian reduction methods. This is achieved by further developing results of our recent works re-analyzing Veneziano and Veneziano-like amplitudes and the models associated with these amplitudes. It is shown, that the obtained new partition function for these amplitudes can be mapped exactly into that for the Polychronakos-Frahm (P-F) spin chain model recoverable from the Richardon-Gaudin (R-G) XXX spin chain model originally designed for treatments of the BCS-type superconductivity. Because of this, it is demonstrated that the obtained mapping is compatible with the method of Abelian reduction. The R-G model is recovered from the asymptotic (WKB-type) solutions of the rational Knizhnik-Zamolodchikov (K-Z) equation. Linear independence of these solutions is controlled by determinants whose explicit form (up to a constant) coincides with Veneziano (or Veneziano-like) amplitudes. In the simplest case, the determinantal conditions coincide with those discovered by Kummer in the 19th century. Kummer's results admit physical interpretation by relating determinantal formula(s) to Veneziano-like amplitudes. Furthermore, these amplitudes can be interpreted as Poisson-Dirichlet distributions playing a central role in the stochastic theory of random coagulation-fragmentation processes. Such an interpretation is complementary to that known for the Lund model widely used for the description of coagulation-fragmentation processes in QCD.
Trapped fermions in a synthetic non-Abelian gauge field
Ghosh, Sudeep Kumar; Vyasanakere, Jayantha P.; Shenoy, Vijay B.
2011-11-15
On increasing the coupling strength ({lambda}) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density {rho}{approx}k{sub F}{sup 3} undergoes a change at a critical value, {lambda}{sub T}{approx_equal}k{sub F}[Phys. Rev. B 84, 014512 (2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-(1/2) fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing {lambda}. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling {lambda}. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular
On spectral synthesis on zero-dimensional Abelian groups
Platonov, S S
2013-09-30
Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace H⊆C(G) is said to be an invariant subspace if it is invariant with respect to the translations τ{sub y}:f(x)↦f(x+y), y∈G. In the paper, it is proved that any invariant subspace H admits spectral synthesis, that is, H coincides with the closed linear span of the characters of G belonging to H. Bibliography: 25 titles.
The Abelian Sandpile Model on a Random Binary Tree
NASA Astrophysics Data System (ADS)
Redig, F.; Ruszel, W. M.; Saada, E.
2012-06-01
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.
Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.
2016-03-01
In this paper, I analyze numerically the behaviour of the solutions corresponding to an Abelian string in the framework of the Starobinsky model. The role played by the quadratic term in the Lagrangian density f(R)=R+η {R}2 of this model is emphasized and the results are compared with the corresponding ones obtained in the framework of Einstein’s theory of gravity. I have found that the angular deficit generated by the string is lowered as the η parameter increases, allowing a well-behaved spacetime for a large range of values of the symmetry-breaking scale.
Abelian tensor hierarchy in 4D N = 1 conformal supergravity
NASA Astrophysics Data System (ADS)
Aoki, Shuntaro; Higaki, Tetsutaro; Yamada, Yusuke; Yokokura, Ryo
2016-09-01
We consider Abelian tensor hierarchy in four-dimensional N = 1 supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce p-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the super-forms. As a result, each of form fields is expressed by a single gauge invariant superfield. We also show the relation between the superspace formalism and the superconformal tensor calculus.
Abelian tensor hierarchy in 4D, N = 1 superspace
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Linch, William D.; Robbins, Daniel
2016-03-01
With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N =1superspaceandconstructitsChern-Simons-likeinvariants. Whenspecializedtothe case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N = 1 superfields.
Non-Abelian gauge invariance and the infrared approximation
Cho, H.h.; Fried, H.M.; Grandou, T.
1988-02-15
Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter
Exact integration of height probabilities in the Abelian Sandpile model
NASA Astrophysics Data System (ADS)
Caracciolo, Sergio; Sportiello, Andrea
2012-09-01
The height probabilities for the recurrent configurations in the Abelian Sandpile model on the square lattice have analytic expressions, in terms of multidimensional quadratures. At first, these quantities were evaluated numerically with high accuracy and conjectured to be certain cubic rational-coefficient polynomials in π-1. Later their values were determined by different methods. We revert to the direct derivation of these probabilities, by computing analytically the corresponding integrals. Once again, we confirm the predictions on the probabilities, and thus, as a corollary, the conjecture on the average height, <ρ> = 17/8.
Non-Abelian topological insulators from an array of quantum wires
NASA Astrophysics Data System (ADS)
Sagi, Eran; Oreg, Yuval
2014-11-01
We suggest a construction of a large class of topological states using an array of quantum wires. First, we show how to construct a Chern insulator using an array of alternating wires that contain electrons and holes, correlated with an alternating magnetic field. This is supported by semiclassical arguments and a full quantum-mechanical treatment of an analogous tight-binding model. We then show how electron-electron interactions can stabilize fractional Chern insulators (Abelian and non-Abelian). In particular, we construct a non-Abelian Z3 parafermion state. Our construction is generalized to wires with alternating spin-orbit couplings, which give rise to integer and fractional (Abelian and non-Abelian) topological insulators. The states we construct are effectively two dimensional, and are therefore less sensitive to disorder than one-dimensional systems. The possibility of experimental realization of our construction is addressed.
Lincoln, Don
2011-07-07
Fermilab scientist Don Lincoln describes the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.
Supersymmetric Higgs bosons and beyond
Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose
2010-01-01
We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.
Supersymmetric Higgs Bosons and Beyond
Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose; /Fermilab /Buenos Aires U.
2010-08-26
We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.
Lincoln, Don
2016-07-12
Fermilab scientist Don Lincoln describes the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.
Higgs Boson Signatures of MSSM Electroweak Baryogenesis
Menon, Arjun; Morrissey, David
2010-02-10
Electroweak baryogenesis in the MSSM can account for the cosmological baryon asymmetry, but only with a very light scalar top and a SM-like Higgs boson. We investigate the effects of this light scalar top on Higgs boson production and decay. Relative to the standard model Higgs boson, we find a large enhancement of the Higgs production rate through gluon fusion and a suppression of the Higgs branching fraction into photon pairs. These modifications in the properties of the Higgs boson are large enough that they can potentially be tested at the Tevatron and the LHC.
NASA Astrophysics Data System (ADS)
Sardanashvily, G. A.
2014-12-01
We consider a classical gauge theory on a principal fiber bundle P → X in the case where its structure group G is reduced to a subgroup H in the presence of classical Higgs fields described by global sections of the quotient fiber bundle P/H → X. We show that matter fields with the exact symmetry group H in such a theory are described by sections of the composition fiber bundle Y → P/H → X, where Y → P/H is the fiber bundle with the structure group H, and the Lagrangian of these sections is factored by virtue of the vertical covariant differential determined by a connection on the fiber bundle Y → P/H.
Measurements of Supersonic Wing Tip Vortices
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James
1994-01-01
An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
Vorticity, defects and correlations in active turbulence
Thampi, Sumesh P.; Golestanian, Ramin; Yeomans, Julia M.
2014-01-01
We describe a numerical investigation of a continuum model of an active nematic, concentrating on the regime of active turbulence. Results are presented for the effect of three parameters, activity, elastic constant and rotational diffusion constant, on the order parameter and flow fields. Defects and distortions in the director field act as sources of vorticity, and thus vorticity is strongly correlated to the director field. In particular, the characteristic length of decay of vorticity and order parameter correlations is controlled by the defect density. By contrast, the decay of velocity correlations is determined by a balance between activity and dissipation. We highlight the role of microscopic flow generation mechanisms in determining the flow patterns and characteristic scales of active turbulence and contrast the behaviour of extensile and contractile active nematics. PMID:25332382
Droplet Vorticity Alignment in Model Polymer Blends
NASA Astrophysics Data System (ADS)
Migler, Kalman
2000-03-01
The shear induced deformation of polymeric droplets in an immiscible polymeric matrix is studied using a transparent rotating plate-plate device. We consider the case where the viscosity ratio of the two phases is near unity, but the elasticity ratio of the droplet to the matrix is of order 10^2. This is achieved by using a matrix of PDMS and a droplet of a PIB based Boger fluid. In the limit of weak shear and small droplets, the droplet alignment is along the shear direction, whereas for strong shear and large droplets, the alignment is along the vorticity direction. There is a range of conditions for which alignment can be along either axis. For droplets aligned along the vorticity axis, the distribution of aspect ratios is broad. The transformation from flow alignment to vorticity alignment upon commencement of shear flow has been observed and correlates with the time scale for development of normal forces in the Boger fluid.
Possible dust devils - Vortices on Mars
NASA Technical Reports Server (NTRS)
Ryan, J. A.; Lucich, R. D.
1983-01-01
This paper presents the results of a study of local vortices, and dust devils, on Mars as observed by Viking Landers 1 and 2. It is found that these vortices are most common during Martian spring and summer, as occurs on earth. Seven of the vortices involve wind speeds that may raise dust from the Martian surface. There is no indication that these possible dust devils contribute to the planet-wide spread of major dust storms. However, it appears that they may help in maintaining the atmospheric dust content. The data indicate that there is no preference in rotation direction, at least to core diameters of 300 m (corresponding to a region of influence of about 3 km diameter).
Vorticity and Divergence in the Solar Photosphere
NASA Astrophysics Data System (ADS)
Wang, Yi; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.
1995-07-01
We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar fields: the vertical component of the curl, the horizontal divergence, and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
A Note on Trapping Moving Vortices
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
2000-01-01
The topic of stationary configurations of point vortices, also known as vortex equilibrium, has received considerable attention in recent years. By observing numerical results, it is found that a "counterpart" of this system also exists, in which moving vortices may be "trapped" by an inlet-like device to form a stationary pattern with no translational motion. After an intuitive explanation for the process, vortex trajectory maps based on numerical results are presented. These maps exhibit two stationary points under the present conditions, which are the focal points of vortex trajectories. A vortex upstream of these points, if within a certain offset range, will move towards these points spontaneously and be captured there. This proposed device is also capable of trapping spinning vortex pairs and triads. It is possible to impose a uniform stream at infinity, as long as the flow field is still dominated by the moving vortices.
Vorticity and divergence in the solar photosphere
NASA Technical Reports Server (NTRS)
Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.
1995-01-01
We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
Identification of vortices in complex flows
NASA Astrophysics Data System (ADS)
Chakraborty, P.; Balachandar, S.; Adrian, R. J.
2007-12-01
Dating back to Leonardo da Vinci's famous sketches of vortices in turbulent flows, fluid dynamicists for over five centuries have continued to visualize and interpret complex flows in terms of motion of vortices. Nevertheless, much debate surrounds the question of how to unambiguously define vortices in complex flows. This debate has resulted in the availability of many vortex identification criteria---mathematical statements of what constitutes a vortex. Here we review the popularly used local or point- wise vortex identification criteria. Based on local flow kinematics, we describe a unified framework to interpret the similarities and differences in the usage of these criteria. We discuss the limitations on the applicability of these criteria when there is a significant component of vortex interactions. Finally, we provide guidelines for applying these criteria to geophysical flows.
Characterization of reconnecting vortices in superfluid helium
Bewley, Gregory P.; Paoletti, Matthew S.; Sreenivasan, Katepalli R.; Lathrop, Daniel P.
2008-01-01
When two vortices cross, each of them breaks into two parts and exchanges part of itself for part of the other. This process, called vortex reconnection, occurs in classical and superfluids, and in magnetized plasmas and superconductors. We present the first experimental observations of reconnection between quantized vortices in superfluid helium. We do so by imaging micrometer-sized solid hydrogen particles trapped on quantized vortex cores and by inferring the occurrence of reconnection from the motions of groups of recoiling particles. We show that the distance separating particles on the just-reconnected vortex lines grows as a power law in time. The average value of the scaling exponent is approximately ½, consistent with the self-similar evolution of the vortices. PMID:18768790
The Higgs portal above threshold
Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun
2016-02-18
The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. In this study, we systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14TeV LHC and a prospective 100TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an o ff-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy inmore » association with vector boson fusion, monojets, and top pairs. In addition, we forecast the sensitivity of searches in these channels at √s = 14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.« less
On discrete symmetries for a whole Abelian model
NASA Astrophysics Data System (ADS)
Chauca, J.; Doria, R.
2012-10-01
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {Dμ,Xiμ} and the physical basis {GμI}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {GμI} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Matrix product states and the non-Abelian rotor model
NASA Astrophysics Data System (ADS)
Milsted, Ashley
2016-04-01
We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.
On discrete symmetries for a whole Abelian model
Chauca, J.; Doria, R.
2012-09-24
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Aerodynamics and vortical structures in hovering fruitflies
NASA Astrophysics Data System (ADS)
Meng, Xue Guang; Sun, Mao
2015-03-01
We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.
Martian polar vortices: Comparison of reanalyses
NASA Astrophysics Data System (ADS)
Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.
2016-09-01
The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
Up-sliding Slantwise Vorticity Development and the complete vorticity equation with mass forcing
NASA Astrophysics Data System (ADS)
Cui, Xiaopeng; Gao, Shouting; Wu, Guoxiong
2003-09-01
The moist potential vorticity (MPV) equation is derived from complete atmospheric equations including the effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development (USVD) is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeper the isentropic surface is, the more violent the development will be. From the definition of MPV and the MPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, which explicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, and vertical shear of horizontal wind, and external forcings, such as diabatic heating, friction, and mass forcing. When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. The physical interpretations of some of the items which are included in the complete vorticity equation but not in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A 60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe region and the output of the model is studied qualitatively based on the theory of USVD. The result shows that the conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms in the downwind direction, that is, the theory of USVD is important to the development and movement of these kinds of systems.
Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction
NASA Astrophysics Data System (ADS)
Pierson, Kristopher; Povitsky, Alex
2013-11-01
In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.
Lattices of quantized vortices in polariton superfluids
NASA Astrophysics Data System (ADS)
Boulier, Thomas; Cancellieri, Emiliano; Sangouard, Nicolas D.; Hivet, Romain; Glorieux, Quentin; Giacobino, Élisabeth; Bramati, Alberto
2016-10-01
In this review, we will focus on the description of the recent studies conducted in the quest for the observation of lattices of quantized vortices in resonantly injected polariton superfluids. In particular, we will show how the implementation of optical traps for polaritons allows for the realization of vortex-antivortex lattices in confined geometries and how the development of a flexible method to inject a controlled orbital angular momentum (OAM) in such systems results in the observation of patterns of same-sign vortices.
Noise from two-dimensional vortices
NASA Technical Reports Server (NTRS)
Sanders, N. D.; Stockman, N. O.
1972-01-01
The fluctuating flow in an idealized model of a turbulent shear layer composed of many discrete vortices is analyzed. Computer solutions reveal irregular motions which are similar in many respects to observed flows in turbulent three-dimensional layers. The model is further simplified to a pair of equal co-rotating vortices and the noise generation is analyzed in terms of equivalent quadrupole oscillations. Results of the analysis in a uniform medium are consistent with Lighthill's results. New results are obtained for the effects of mean velocity gradients, compressibility, temperature inhomogenities, and gradients of the mean Mach number.
Spatially-partitioned many-body vortices
NASA Astrophysics Data System (ADS)
Klaiman, S.; Alon, O. E.
2016-02-01
A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.
Vortices and the related principles of hydrodynamics
NASA Technical Reports Server (NTRS)
Betz, A
1921-01-01
Here, conceptions concerning vortices are illustrated by the simplest possible examples. Mathematical formulas and similar means of presentation, which, for the most part, do not help the understanding of persons not versed therein, have been avoided as much as possible. Instead, the author has endeavored to demonstrate the phenomena by means of simple geometrical and mechanical illustrations. For the sake of clarity, the author chiefly considers currents in one plane only, a situation that can be readily represented by diagrams. Some of the peculiarities of vortices in three dimensional flow are briefly discussed.
Linear phase distribution of acoustical vortices
Gao, Lu; Zheng, Haixiang; Ma, Qingyu; Tu, Juan; Zhang, Dong
2014-07-14
Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.
A factor involved in efficient breakdown of supersonic streamwise vortices
NASA Astrophysics Data System (ADS)
Hiejima, Toshihiko
2015-03-01
Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.
Evolution of a barotropic shear layer into elliptical vortices.
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory A
2013-01-01
When a barotropic shear layer becomes unstable, it produces the well-known Kelvin-Helmholtz instability (KHI). The nonlinear manifestation of the KHI is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KHI characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counterpropagating vorticity waves is solely responsible for this KHI formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides a possible explanation for the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g., meddies, stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot, and coherent vortices in the wind belts of Uranus. PMID:23410439
Evolution of a barotropic shear layer into elliptical vortices.
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory A
2013-01-01
When a barotropic shear layer becomes unstable, it produces the well-known Kelvin-Helmholtz instability (KHI). The nonlinear manifestation of the KHI is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KHI characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counterpropagating vorticity waves is solely responsible for this KHI formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides a possible explanation for the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g., meddies, stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot, and coherent vortices in the wind belts of Uranus.
T-Parity in Little Higgs Models
Krohn, David
2008-11-23
We examine quantum anomalies in the context of little Higgs theories. In particular, we investigate the restrictions imposed upon little Higgs models when one requires an exact T-parity. Applications to LHC phenomenology are briefly discussed.
Twin Higgs mechanism and a composite Higgs boson
NASA Astrophysics Data System (ADS)
Low, Matthew; Tesi, Andrea; Wang, Lian-Tao
2015-05-01
We combine the twin Higgs mechanism with the paradigm of composite Higgs models. In this class of models the Higgs is a pseudo-Nambu-Goldstone boson from a strongly coupled sector near the TeV scale, and it is additionally protected by a discrete symmetry due to the twin mechanism. We discuss the model-building issues associated with this setup and quantify the tuning needed to achieve the correct electroweak vacuum and the Higgs mass. In contrast to standard composite Higgs models, the lightest resonance associated with the top sector is the uncolored mirror top, while the colored top partners can be made parameterically heavier without extra tuning. In some cases, the vector resonances are predicted to lie in the multi-TeV range. We present models where the resonances—both fermions and vectors—being heavier alleviates the pressure on naturalness coming from direct searches demonstrating that theories with low tuning may survive constraints from the Large Hadron Collider.
Non-Abelian Meissner effect in Yang-Mills theories at weak coupling
Gorsky, A.; Shifman, M.; Yung, A.
2005-02-15
We present a weak-coupling Yang-Mills model supporting non-Abelian magnetic flux tubes and non-Abelian confined magnetic monopoles. In the dual description the magnetic flux tubes are prototypes of the QCD strings. Dualizing the confined magnetic monopoles we get gluelumps which convert a 'QCD string' in the excited state to that in the ground state. Introducing a mass parameter m we discover a phase transition between the Abelian and non-Abelian confinement at a critical value m=m{sub *}{approx}{lambda}. Underlying dynamics are governed by a Z{sub N} symmetry inherent to the model under consideration. At m>m{sub *} the Z{sub N} symmetry is spontaneously broken, resulting in N degenerate Z{sub N} (Abelian) strings. At m
Cyclones and attractive streaming generated by acoustical vortices.
Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier
2014-07-01
Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating "attractive streaming" with the flow directed toward the transducer. This opens perspectives for contactless vortical flow control.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Wang, Xueyun; Kamiya, Yoshitomo; Chern, Gia-Wei; Fan, Fei; Fan, David; Casas, Brian; Liu, Yue; Kiryukhin, Valery; Zurek, Wojciech H.; Batista, Cristian D.; Cheong, Sang-Wook
2014-12-01
Lars Onsager and Richard Feynman envisaged that the three-dimensional (3D) superfluid-to-normal λ transition in 4He occurs through the proliferation of vortices. This process should hold for every phase transition in the same universality class. The role of topological defects in symmetry-breaking phase transitions has become a prime topic in cosmology and high-temperature superconductivity, even though direct imaging of these defects is challenging. Here we show that the U(1) continuous symmetry that emerges at the ferroelectric critical point of multiferroic hexagonal manganites leads to a similar proliferation of vortices. Moreover, the disorder field (vortices) is coupled to an emergent U(1) gauge field, which becomes massive by means of the Higgs mechanism when vortices condense (span the whole system) on heating above the ferroelectric transition temperature. Direct imaging of the vortex network in hexagonal manganites offers unique experimental access to this dual description of the ferroelectric transition, while enabling tests of the Kibble-Zurek mechanism.
Measuring Higgs couplings from LHC data.
Klute, Markus; Lafaye, Rémi; Plehn, Tilman; Rauch, Michael; Zerwas, Dirk
2012-09-01
Following recent ATLAS and CMS publications we interpret the results of their Higgs searches in terms of standard model operators. For a Higgs boson mass of 125 GeV we determine several Higgs couplings from published 2011 data and extrapolate the results towards different scenarios of LHC running. Even though our analysis is limited by low statistics we already derive meaningful constraints on modified Higgs sectors.
THE HIGGS WORKING GROUP: SUMMARY REPORT.
DAWSON, S.; ET AL.
2005-08-01
This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.
Is the Higgs boson composed of neutrinos?
Krog, Jens; Hill, Christopher T.
2015-11-09
We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.
Is the Higgs boson composed of neutrinos?
Krog, Jens; Hill, Christopher T.
2015-11-09
We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~10^{13}–10^{14} GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.
Infrared Issues in Graviton Higgs Theory
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Majumdar, Parthasarathi
2015-01-01
We investigate the one-loop infrared behaviour of the effective potential in minimally coupled graviton Higgs theory in Minkowski background. The gravitational analogue of one loop Coleman Weinberg effective potential turns out to be complex, the imaginary part indicating an infrared instability. This instability is traced to a tachyonic pole in the graviton propagator for constant Higgs fields. Physical implications of this behaviour are studied. We also discuss physical differences between gauge theories coupled to Higgs fields and graviton Higgs theory.
Electroweak Gauge-Higgs Unification Scenario
Hosotani, Yutaka
2008-11-23
In the gauge-Higgs unification scenario 4D Higgs fields are unified with gauge fields in higher dimensions. The electroweak model is constructed in the Randall-Sundrum warped space. The electroweak symmetry is dynamically broken by the Hosotani mechanism due to the top quark contribution. The Higgs mass is predicted to be around 50 GeV with the vanishing ZZH and WWH couplings so that the LEP2 bound for the Higgs mass is evaded.
Bound states in the Higgs model
NASA Astrophysics Data System (ADS)
di Leo, Leo; Darewych, Jurij W.
1994-02-01
We derive relativistic wave equations for the bound states of two Higgs bosons within the Higgs sector of the minimal standard model. The variational method and the Hamiltonian formalism of QFT are used to obtain the equations using a simple ||hh>+||hhh> Fock-space ansatz. We present approximate solutions of these equations for a range of Higgs boson masses, and explore the parameter space which corresponds to the existence of two-Higgs-boson bound states.
Fat Jets for a Light Higgs Boson
Plehn, Tilman; Salam, Gavin P.; Spannowsky, Michael
2010-03-19
At the LHC associated top quark and Higgs boson production with a Higgs boson decay to bottom quarks has long been a heavily disputed search channel. Recently, it has been found not to be viable. We show how it can be observed by tagging massive Higgs bosons and top jets. For this purpose we construct boosted top and Higgs taggers for standard-model processes in a complex QCD environment.
HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC
NASA Astrophysics Data System (ADS)
Bechtle, Philip; Heinemeyer, Sven; Stål, Oscar; Stefaniak, Tim; Weiglein, Georg
2014-02-01
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at GeV.
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Cosmological perturbations: Vorticity, isocurvature and magnetic fields
NASA Astrophysics Data System (ADS)
Christopherson, Adam J.
2014-10-01
In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.
Long Term Changes in the Polar Vortices
NASA Astrophysics Data System (ADS)
Braathen, Geir O.
2016-04-01
As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented. The unusual meteorological conditions of the 2015 south polar vortex and the 2010/11 and 2015/16 north polar vortices will be compared to other recent years.
Controlled Manipulation of Individual Vortices in a Superconductor
Straver, E.W.J.
2010-04-05
We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.
Higgs friends and counterfeits at hadron colliders
Fox, Patrick J.; Tucker-Smith, David; Weiner, Neal; /New York U., CCPP /New York U. /Princeton, Inst. Advanced Study
2011-04-01
We consider the possibility of 'Higgs counterfeits' - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving 'Higgs friends,' fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW,ZZ,{gamma}{gamma}, or even {gamma}Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with 'effective Z's,' where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.
An eddy closure for potential vorticity
Ringler, Todd D
2009-01-01
The Gent-McWilliams (GM) parameterization is extended to include a direct influence in the momentum equation. The extension is carried out in two stages; an analysis of the inviscid system is followed by an analysis of the viscous system. In the inviscid analysis the momentum equation is modified such that potential vorticity is conserved along particle trajectories following a transport velocity that includes the Bolus velocity in a manner exactly analogous to the continuity and tracer equations. In addition (and in contrast to traditional GM closures), the new formulation of the inviscid momentum equation results in a conservative exchange between potential and kinetic forms of energy. The inviscid form of the eddy closure conserves total energy to within an error proportional to the time derivative of the Bolus velocity. The hypothesis that the viscous term in the momentum equation should give rise to potential vorticity being diffused along isopycnals in a manner analogous to other tracers is examined in detail. While the form of the momentum closure that follows from a strict adherence to this hypothesis is not immediately interpretable within the constructs of traditional momentum closures, three approximations to this hypothesis results in a form of dissipation that is consistent with traditional Laplacian diffusion. The first two approximations are that relative vorticity, not potential vorticity, is diffused along isopyncals and that the flow is in approximate geostrophic balance. An additional approximation to the Jacobian term is required when the dissipation coefficient varies in space. More importantly, the critique of this hypothesis results in the conclusion that the viscosity parameter in the momentum equation should be identical to the tradition GM closure parameter {Kappa}. Overall, we deem the viscous form of the eddy closure for potential vorticity as a viable closure for use in ocean circulation models.
Bilinear relative equilibria of identical point vortices
NASA Astrophysics Data System (ADS)
Aref, Hassan; Beelen, Peter; Brøns, Morten
2011-11-01
A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, taken to be the x- and y-axes of a cartesian coordinate system, is introduced and studied. In general we have m vortices on the y-axis and n on the x- axis. We define generating polynomials q (z) and p (z) , respectively, for each set of vortices. A second order, linear ODE for p (z) given q (z) is derived. Several results relating the general solution of the ODE to relative equilibrium configurations are established. Our strongest result, obtained using Sturm's comparison theorem, is that if p (z) satisfies the ODE for a given q (z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n - m + 2 simple, real zeros. For m = 2 this provides a complete characterization of all zeros, and we study this case in some detail. In particular, we show that given q (z) =z2 +η2 , where η is real, there is a unique p (z) of degree n, and a unique value of η2 =An , such that the zeros of q (z) and p (z) form a relative equilibrium of n + 2 point vortices. We show that An ~2/3 n +1/2 , as n --> ∞ , where the coefficient of n is determined analytically, the next order term numerically. Supported in part by the Danish National Research Foundation through a Niels Bohr visiting professorship.
Prometheus Induced Vorticity in Saturn's F Ring
NASA Astrophysics Data System (ADS)
Sutton, Phil J.; Kusmartsev, Feo V.
2016-09-01
Saturn's rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order ~20-50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.
Higgs bosons in extra dimensions
NASA Astrophysics Data System (ADS)
Quiros, Mariano
2015-04-01
In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits
NASA Astrophysics Data System (ADS)
Mezzacapo, A.; Rico, E.; Sabín, C.; Egusquiza, I. L.; Lamata, L.; Solano, E.
2015-12-01
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-12-11
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms. PMID:26705616
Study of the Gribov region in Euclidean Yang-Mills theories in the maximal Abelian gauge
Capri, M. A. L.; Gomez, A. J.; Lemes, V. E. R.; Sobreiro, R. F.; Sorella, S. P.
2009-01-15
The properties of the Gribov region in SU(2) Euclidean Yang-Mills theories in the maximal Abelian gauge are investigated. This region turns out to be bounded in all off-diagonal directions, while it is unbounded along the diagonal one. The soft breaking of the Becchi-Rouet-Stora-Tyutin invariance due to the restriction of the domain of integration in the path integral to the Gribov region is scrutinized. Owing to the unboundedness in the diagonal direction, the invariance with respect to Abelian transformations is preserved, a property which is at the origin of the local U(1) Ward identity of the maximal Abelian gauge.
Non-Abelian gerbes and enhanced Leibniz algebras
NASA Astrophysics Data System (ADS)
Strobl, Thomas
2016-07-01
We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .
Simulation of non-Abelian gauge theories with optical lattices.
Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M
2013-01-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080
Simulation of non-Abelian gauge theories with optical lattices
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.
2013-10-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).
Abelian Floquet symmetry-protected topological phases in one dimension
NASA Astrophysics Data System (ADS)
Roy, Rahul; Harper, Fenner
2016-09-01
Time-dependent systems have recently been shown to support novel types of topological order that cannot be realized in static systems. In this paper we consider a range of time-dependent, interacting systems in one dimension that are protected by an Abelian symmetry group. We classify the distinct topological phases that can exist in this setting and find that they may be described by a bulk invariant associated with the unitary evolution of the closed system. In the open system, nontrivial phases correspond to the appearance of edge modes, which have signatures in the many-body quasienergy spectrum and which relate to the bulk invariant through a form of bulk-edge correspondence. We introduce simple models which realize nontrivial dynamical phases in a number of cases, and outline a loop construction that can be used to generate such phases more generally.
Abelian Hidden Sectors at a GeV
Morrissey, David E.; Poland, David; Zurek, Kathryn; /Fermilab /Michigan U.
2009-04-16
We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1){sub x} gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.
The Higgs of the Higgs and the diphoton channel
NASA Astrophysics Data System (ADS)
Kannike, Kristjan; Pelaggi, Giulio Maria; Salvio, Alberto; Strumia, Alessandro
2016-07-01
LHC results do not confirm conventional natural solutions to the Higgs mass hierarchy problem, motivating alternative interpretations where a hierarchically small weak scale is generated from a dimension-less quantum dynamics. We propose weakly and strongly-coupled models where the field that breaks classical scale invariance giving mass to itself and to the Higgs is identified with a possible new resonance within the LHC reach. As an example, we identify such resonance with the 750 GeV diphoton excess recently reported by ATLAS and CMS. Such models can be extrapolated up to the Planck scale, provide Dark Matter candidates and eliminate the SM vacuum instability.
Non-Abelian gauge field theory in scale relativity
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-03-15
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.
Measuring vortical flows in the solar interior
NASA Astrophysics Data System (ADS)
Langfellner, Jan
2015-09-01
This thesis focuses on observations of the effects of rotation on solar convection at the length scales of supergranulation and larger (>30 Mm). Rotation drives vortical flows through the Coriolis force and causes anisotropic velocity correlations that are believed to influence the large-scale solar dynamics. We obtain horizontal flows using photospheric Doppler velocity and continuum intensity images from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) spacecraft via the techniques of time-distance helioseismology (TD) and local correlation tracking (LCT) of granules. In time-distance helioseismology, the local vertical vorticity can be measured by taking the difference between wave travel times measured in the anti-clockwise and clockwise directions along a closed contour. The agreement between the TD and LCT methods is excellent up to Â±60Â° latitude, provided that a center-to-limb correction is applied. Averaging over longitude, one finds that there is a small but significant correlation between the horizontal divergence and the vertical vorticity component of supergranular flows away from the solar equator. By comparison to a noise model, we find that the TD technique can be used to probe the vertical vorticity of flows on spatial scales larger than about 15 Mm, thus including supergranules and also giant cells. We also find that the vertical vorticity signal is much easier to measure using SDO/HMI observations than previous observations. The impact of the Sun's rotation on supergranulation is studied in detail by making spatial maps of the vertical vorticity of the flows associated with the average supergranule. The average supergranule is constructed by co-aligning thousands of individual supergranules in a given latitude band. For the first time, we are able to spatially resolve vorticity associated with inflows and outflow regions. In the northern hemisphere, outflows are on average associated with a clockwise
Margaroli, Fabrizio
2014-09-15
We show the latest results from the CDF and D0 collaborations on the study of the Higgs boson, stemming from the analysis of the entire Tevatron Run\\,II dataset. Combining the results of many individual analyses, most of which use the full data set available, an excess with a significance of approximately three standard deviations with respect to the Standard Model hypothesis is observed at a Higgs boson mass of 125\\,GeV/$c^2$. The Tevatron unique environment allows in addition to study for the first time the spin-parity hypothesis of the Higgs boson in events where it decays to quarks. Within the current experimental uncertainties, the newly discovered boson behaves as expected by the SM in the fermionic sector.
Vortical versus skyrmionic states in mesoscopic p -wave superconductors
NASA Astrophysics Data System (ADS)
Fernández Becerra, V.; Sardella, E.; Peeters, F. M.; Milošević, M. V.
2016-01-01
We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p -wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.
Recovering the vorticity of a light beam after scattering
Salla, Gangi Reddy Perumangattu, Chithrabhanu; Anwar, Ali; Prabhakar, Shashi; Singh, Ravindra P.
2015-07-13
We generate optical vortices and scatter them through a rough surface. However, the scattered light passing through a lens shows the same vorticity when probed at the Fourier plane. The vorticity is measured using a nonseparable state of polarization and orbital angular momentum of light as it cannot be confirmed by the standard interferometric technique. The observed vorticity is found to be independent of the amount of scattered light collected. Therefore, vortices can be used as information carriers even in the presence of scattering media. The experimental results are well supported by the theoretical results.
Higgs triplets and limits from precision measurements
Chen, Mu-Chun; Dawson, Sally; Krupovnickas, Tadas; /Brookhaven
2006-04-01
In this letter, they present the results on a global fit to precision electroweak data in a Higgs triplet model. In models with a triplet Higgs boson, a consistent renormalization scheme differs from that of the Standard Model and the global fit shows that a light Higgs boson with mass of 100-200 GeV is preferred. Triplet Higgs bosons arise in many extensions of the Standard Model, including the left-right model and the Little Higgs models. The result demonstrates the importance of the scalar loops when there is a large mass splitting between the heavy scalars. It also indicates the significance of the global fit.
Ryskin, M. G.; Shuvaev, A. G.
2010-06-15
We study possible phenomenological consequences of the recently proposed new approach to the Weinberg-Salam model. The electroweak theory is considered as a gravity and the Higgs particle is interpreted in it as a dilaton, without the usual potential of interaction in the Higgs sector. We have taken as a test the process of photon pair production, e{sup +} + e{sup -} {sup {yields}}Z + {gamma} + {gamma}. In the framework of new formulation this reaction is mediated in the lowest order by the dilaton. The cross section is found to be rather small.
Intensity of vortices: from soap bubbles to hurricanes
Meuel, T.; Xiong, Y. L.; Fischer, P.; Bruneau, C. H.; Bessafi, M.; Kellay, H.
2013-01-01
By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410
Development and Interaction of Artificially Generated Hairpin Vortices
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; McKenna, Christopher
2012-11-01
The development and interaction of hairpin vortices are examined and categorized to better understand their role in fully turbulent boundary layers. Hairpin vortices are generated within an otherwise laminar boundary layer using a free surface water channel. Direct injection is the primary generation method and the behavior of the vortices is first examined using flow visualization. Hydrogen bubble wire is combined with dye injection to help clarify the role of the vorticity in the fluid immediately surrounding the hairpin vortex. PIV data is also used to classify the development and maturity of the vortices for a range of free stream and injection conditions. The interactions of two hairpin vortices of varying maturity are characterized to investigate the potential mechanisms for the formation of hairpin packets beyond autogeneration. Finally, the behavior of hairpin vortices generated with a new technique that uses a transient hemispherical protrusion is also examined. Supported by the National Science Foundation under Grant CBET-1040236.
Intensity of vortices: from soap bubbles to hurricanes.
Meuel, T; Xiong, Y L; Fischer, P; Bruneau, C H; Bessafi, M; Kellay, H
2013-01-01
By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410
Intensity of vortices: from soap bubbles to hurricanes.
Meuel, T; Xiong, Y L; Fischer, P; Bruneau, C H; Bessafi, M; Kellay, H
2013-01-01
By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones.
Manifestation of a non-Abelian Berry phase in a p -type semiconductor system
NASA Astrophysics Data System (ADS)
Li, T.; Yeoh, L. A.; Srinavasan, A.; Klochan, O.; Ritchie, D. A.; Simmons, M. Y.; Sushkov, O. P.; Hamilton, A. R.
2016-05-01
Gauge theories, while describing fundamental interactions in nature, also emerge in a wide variety of physical systems. Abelian gauge fields have been predicted and observed in a number of novel quantum many-body systems, topological insulators, ultracold atoms, and many others. However, the non-Abelian gauge field, while playing the most fundamental role in particle physics, up to now has remained a purely theoretical construction in many-body physics. In this paper, we report an observation of a non-Abelian gauge field in a spin-orbit coupled quantum system. The gauge field manifests itself in quantum magnetic oscillations of a hole doped two-dimensional (2D) GaAs heterostructure. Transport measurements were performed in tilted magnetic fields, where the effect of the emergent non-Abelian gauge field was controlled by the components of the magnetic field in the 2D plane.
Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude
NASA Astrophysics Data System (ADS)
Hu, Zi-Xiang; Lee, Ki H.; Rezayi, Edward H.; Wan, Xin; Yang, Kun
2011-03-01
We study the scaling behavior in the tunneling amplitude when quasiparticles tunnel along a straight path between the two edges of a fractional quantum Hall annulus. Such scaling behavior originates from the propagation and tunneling of charged quasielectrons and quasiholes in an effective field analysis. In the limit when the annulus deforms continuously into a quasi-one-dimensional (1D) ring, we conjecture the exact functional form of the tunneling amplitude for several cases, which reproduces the numerical results in finite systems exactly. The results for Abelian quasiparticle tunneling is consistent with the scaling analysis; this allows for the extraction of the conformal dimensions of the quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian quasiparticles in the Read-Rezayi { Z}_k -parafermion states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit non-trivial k-dependent corrections to the scaling exponent.
Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=k/r
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei; Haldane, F. D. M.
2008-12-01
We compute the physical properties of non-Abelian fractional quantum Hall (FQH) states described by Jack polynomials at general filling ν=k/r. For r=2, these states are the Zk Read-Rezayi parafermions, whereas for r>2 they represent new FQH states. The r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9,…. We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and the non-Abelian quasihole propagator. The properties of the r>2 Jack polynomials indicate they are correlators of fields of nonunitary conformal field theories (CFT), but the CFT-FQH connection fails when invoked to compute physical properties such as the quasihole propagator. The quasihole wave function, written as a coherent state representation of Jack polynomials, has an identical structure for all non-Abelian states.
Non-abelian black holes and black strings in higher dimensions
Hartmann, Betti
2009-05-01
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in d>4, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S{sup 2}xS{sup 1} are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
Effective multi-Higgs couplings to gluons
NASA Astrophysics Data System (ADS)
Spira, Michael
2016-10-01
Standard-Model Higgs bosons are dominantly produced via the gluon-fusion mechanism gg → H at the LHC, i.e. in a loop-mediated process with top loops providing the dominant contribution. For the measured Higgs boson mass of ˜ 125 GeV the limit of heavy top quarks provides a reliable approximation as long as the relative QCD corrections are scaled with the full mass-dependent LO cross section. In this limit the Higgs coupling to gluons can be described by an effective Lagrangian. The same approach can also be applied to the coupling of more than one Higgs boson to gluons. We will derive the effective Lagrangian for multi-Higgs couplings to gluons up to N4LO thus extending previous results for more than one Higgs boson. Moreover we discuss gluonic Higgs couplings up to NNLO, if several heavy quarks contribute.
NASA Astrophysics Data System (ADS)
Mross, David F.; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-01
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.
Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-22
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.
Emergent vortices in populations of colloidal rollers.
Bricard, Antoine; Caussin, Jean-Baptiste; Das, Debasish; Savoie, Charles; Chikkadi, Vijayakumar; Shitara, Kyohei; Chepizhko, Oleksandr; Peruani, Fernando; Saintillan, David; Bartolo, Denis
2015-01-01
Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries. PMID:26088835
Emergent vortices in populations of colloidal rollers
Bricard, Antoine; Caussin, Jean-Baptiste; Das, Debasish; Savoie, Charles; Chikkadi, Vijayakumar; Shitara, Kyohei; Chepizhko, Oleksandr; Peruani, Fernando; Saintillan, David; Bartolo, Denis
2015-01-01
Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries. PMID:26088835
Numerical prediction of flow in slender vortices
NASA Technical Reports Server (NTRS)
Reyna, Luis G.; Menne, Stefan
1988-01-01
The slender vortex approximation was investigated using the Navier-Stokes equations written in cylindrical coordinates. It is shown that, for free vortices without external pressure gradient, the breakdown length is proportional to the Reynolds number. For free vortices with adverse pressure gradients, the breakdown length is inversely proportional to the value of its gradient. For low Reynolds numbers, the predictions of the simplified system agreed well with the ones obtained from solutions of the full Navier-Stokes equations, whereas for high Reynolds numbers, the flow became quite sensitive to pressure fluctuations; it was found that the failure of the slender vortex equations corresponded to the critical condition as identified by Benjamin (1962) for inviscid flows. The predictions obtained from the approximating system were compared with available experimental results. For low swirl, a good agreement was obtained; for high swirl, on the other hand, upstream effects on the pressure gradient produced by the breakdown bubble caused poor agreement.
Dynamics and nucleation of vorticity in superfluids
NASA Astrophysics Data System (ADS)
Freire, Jose Arruda De Oliveira
1997-11-01
This thesis contains numerical studies on vortex dynamics and on quantum nucleation of vorticity in superfluids at zero temperature. In both cases the superfluid was described by the Gross-Pitaevskii model. In the first part of the thesis, the vortex mass problem is analyzed by a numerical integration of the condensate equation of motion, the nonlinear Schrodinger equation. We were able to extract, from the observed vortex dynamics in a time-dependent superflow, the frequency dependence of the vortex effective mass. In the second part, the problem of quantum nucleation of vorticity in superflows past obstacles, in both one and two dimensions, is studied by the application of the bounce formalism of Coleman (12) to the coherent state action of the Gross-Pitaevskii model. We obtained bounce solutions and tunneling rates by directly solving the field equations for the condensate in imaginary time.
Motion of vortices outside a cylinder
NASA Astrophysics Data System (ADS)
Tulu, Serdar; Yilmaz, Oguz
2010-12-01
The problem of motion of the vortices around an oscillating cylinder in the presence of a uniform flow is considered. The Hamiltonian for vortex motion for the case with no uniform flow and stationary cylinder is constructed, reduced, and constant Hamiltonian (energy) curves are plotted when the system is shown to be integrable according to Liouville. By adding uniform flow to the system and by allowing the cylinder to vibrate, we model the natural vibration of the cylinder in the flow field, which has applications in ocean engineering involving tethers or pipelines in a flow field. We conclude that in the chaotic case forces on the cylinder may be considerably larger than those on the integrable case depending on the initial positions of vortices and that complex phenomena such as chaotic capture and escape occur when the initial positions lie in a certain region.
Numerical Investigations of Reconnection of Quantized Vortices
NASA Astrophysics Data System (ADS)
Rorai, Cecilia; Fisher, Michael E.; Lathrop, Daniel P.; Sreenivasan, Katepalli R.; Kerr, Robert M.
2011-11-01
Reconnection of quantized vortices in superfluid helium was conjectured by Feynman in 1955, and first observed experimentally by Bewley et al. (PNAS 105, 13708, 2007). The nature of this phenomenon is quantum mechanical, involving atomically thin vortex cores. At the same time, this phenomenon influences the large scale dynamics, since a tangle of vortices can change topology through reconnection and evolve in time. Numerically, the Gross-Pitaevskii (GP) equation allows detailed predictions of vortex reconnection as first shown by Koplik and Levine (1993). We have undertaken further calculations to characterize the dynamics of isolated reconnection events. Initial conditions have been analyzed carefully, different geometries have been considered and a new approach has been proposed. This approach consists in using the diffusion equation associated to the GP equation to set minimum energy initial vortex profiles. The underlying questions we wish to answer are the universality of vortex reconnection and its effect on energy dissipation to the phonon field.
Shear-Layer Effects on Trailing Vortices
NASA Technical Reports Server (NTRS)
Zheng, Z. C.; Baek, K.
1998-01-01
Crosswind shear can influence the trailing vortex trajectories significantly, according to both field measurement and numerical simulations. Point vortex models are used in this paper to study the fluid dynamic mechanism in the interactions between trailing vortex pair and shear layers. It has been shown that the shear-layer deformation causes the vortex descent history difference in the two vortices of the vortex pair. When a shear layer is below the vortex pair with the same sign as the left vortex, the right vortex descends less than the left vortex. When the same shear layer is above the vortex pair, the right vortex descends more. The descent altitudes of the two vortices are the same when they go through a constant, non-deformed shear layer. Those trends are in agreement with Navier-Stokes simulations.
Electric generation of vortices in polariton superfluids
NASA Astrophysics Data System (ADS)
Flayac, H.; Pavlovic, G.; Kaliteevski, M. A.; Shelykh, I. A.
2012-02-01
We have theoretically demonstrated the on-demand electric generation of vortices in an exciton-polariton superfluid. Electric pulses applied to a horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a noncylindrically symmetric solitonic wave in the system. Breakdown of its wave front at focal points leads to the formation of vortex-antivortex pairs, which subsequently propagate in the superfluid. The trajectory of these vortex dipoles can be controlled by applying a voltage to additional electrodes. They can be confined within channels formed by metallic stripes and unbound by a wedged mesa giving birth to grey solitons. Finally, single static vortices can be generated using a single metallic plate configuration.
Double Higgs production in the Two Higgs Doublet Model at the linear collider
Arhrib, Abdesslam; Benbrik, Rachid; Chiang, C.-W.
2008-04-21
We study double Higgs-strahlung production at the future Linear Collider in the framework of the Two Higgs Doublet Models through the following channels: e{sup +}e{sup -}{yields}{phi}{sub i}{phi}{sub j}Z, {phi}{sub i} = h deg., H deg., A deg. All these processes are sensitive to triple Higgs couplings. Hence observations of them provide information on the triple Higgs couplings that help reconstructing the scalar potential. We discuss also the double Higgs-strahlung e{sup +}e{sup -}{yields}h deg. h deg. Z in the decoupling limit where h deg. mimics the SM Higgs boson.
Holographic phase transitions from higgsed, non abelian charged black holes
NASA Astrophysics Data System (ADS)
Giordano, Gastón L.; Lugo, Adrián R.
2015-07-01
We find solutions of a gravity-Yang-Mills-Higgs theory in four dimensions that represent asymptotic anti-de Sitter charged black holes with partial/full gauge symme-try breaking. We then apply the AdS/CFT correspondence to study the strong coupling regime of a 2 + 1 quantum field theory at temperature T and finite chemical potential, which undergoes transitions to phases exhibiting the condensation of a composite charged vector operator below a critical temperature T c , presumably describing p + ip/p-wave su-perconductors. In the case of p + ip-wave superconductors the transitions are always of second order. But for p-wave superconductors we determine the existence of a critical value αc of the gravitational coupling (for fixed Higgs v.e.v. parameter ) beyond which the transitions become of first order. As a by-product, we show that the p-wave phase is energetically favored over the p + ip one, for any values of the parameters. We also find the ground state solutions corresponding to zero temperature. Such states are described by domain wall geometries that interpolate between AdS 4 spaces with different light veloc-ities, and for a given , they exist below a critical value of the coupling. The behavior of the order parameter as function of the gravitational coupling near the critical coupling suggests the presence of second order quantum phase transitions. We finally study the dependence of the solution on the Higgs coupling, and find the existence of a critical value beyond which no condensed solution is present.
Generation of optical vortices by fractional derivative
NASA Astrophysics Data System (ADS)
Preda, L.
2014-03-01
This paper presents a new method of vortex generation using two-dimensional fractional derivative. The characteristics of vortices obtained using this method from Gaussian and Hermite-Gauss distributions are presented. Changing the parameters of fractional derivative such as the fractional order, r, and the direction, θ, the positions of the vortex centers can be changed. The method can be used to design a filter for vortex generation. The analysis of an experimental vortex pattern using fractional derivative is also demonstrated.
Vorticity, Stokes' Theorem and the Gauss's Theorem
NASA Astrophysics Data System (ADS)
Narayanan, M.
2004-12-01
Vorticity is a property of the flow of any fluid and moving fluids acquire properties that allow an engineer to describe that particular flow in greater detail. It is important to recognize that mere motion alone does not guarantee that the air or any fluid has vorticity. Vorticity is one of four important quantities that define the kinematic properties of any fluid flow. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. However, the divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into, or away from the region through its boundary. This is also known as Gauss's Theorem. It should also be noted that there are many useful extensions of Gauss's Theorem, including the extension to include surfaces of discontinuity in V. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. Integral (Surface) [(DEL X V)] . dS = Integral (Contour) [V . dx] In this paper, the author outlines and stresses the importance of studying and teaching these mathematical techniques while developing a course in Hydrology and Fluid Mechanics. References Arfken, G. "Gauss's Theorem." 1.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 57-61, 1985. Morse, P. M. and Feshbach, H. "Gauss's Theorem." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 37-38, 1953. Eric W. Weisstein. "Divergence Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivergenceTheorem.html
Admissible upstream conditions for slender compressible vortices
NASA Technical Reports Server (NTRS)
Liu, C. H.; Krause, E.; Menne, S.
1986-01-01
The influence of the compressibility on the flow in slender vortices is being studied. The dependence of the breakdown of the slender-vortex approximation on the upstream conditions is demonstrated for various Reynolds numbers and Mach numbers. Compatibility conditions, which have to be satisfied if the vortex is to remain slender, are discussed in detail. The general discussions are supplemented by several sample calculations.
Vortices in rotating superfluid 3He.
Lounasmaa, O V; Thuneberg, E
1999-07-01
In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.
Anomalous Energetics and Dynamics of Moving Vortices.
Radzihovsky, Leo
2015-12-11
Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely suspended smectic-C films, I study the deformation, energetics, and dynamics of moving vortices in an overdamped XY model and show that their properties are significantly and qualitatively modified by the motion. PMID:26705656
Anomalous Energetics and Dynamics of Moving Vortices
NASA Astrophysics Data System (ADS)
Radzihovsky, Leo
2015-12-01
Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely suspended smectic-C films, I study the deformation, energetics, and dynamics of moving vortices in an overdamped X Y model and show that their properties are significantly and qualitatively modified by the motion.
Anomalous energetics and dynamics of moving vortices
NASA Astrophysics Data System (ADS)
Radzihovsky, Leo
Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely-suspended smectic-C films, I study the deformation, energetics and dynamics of moving vortices in an overdamped xy-model and show that their properties are significantly and qualitatively modified by the motion. Supported by NSF through DMR-1001240, MRSEC DMR-0820579, and by Simons Investigator award from Simons Foundation.
Chiral Self-Gravitating Cosmic Vortices
Rybakov, Yu.P.
2005-06-01
In the framework of general relativity, an exact axisymmetric (vortex) solution of the equations of motion is obtained for the SU(2) symmetric sigma model. This solution is characterized by the topological charge (winding number) and angular deficit. In the linearized approximation, the Lyapunov stability of vortices is proved and the deflection angle of a light ray in the gravitational field of the vortex (gravitational lens effect) is calculated.
Surface Signature of Subsurface-Intensified Vortices
NASA Astrophysics Data System (ADS)
Ciani, D.; Carton, X. J.; Chapron, B.; Bashmachnikov, I.
2014-12-01
The ocean at mesoscale (20-200 km) and submesoscale (0.5-20km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origin areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea surface and at intrathermocline depths (0-1500m), and are presently investigated by means of model outputs, in-situ and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT satellite mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011).Using analytical models in the frame of the QG theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both coupled QG-SQG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddy characteristics (radius, depth, thickness, velocity) were varied, to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), is a first step towards systematic and synoptic detection of subsurface vortices.
Vortices in rotating superfluid 3He.
Lounasmaa, O V; Thuneberg, E
1999-07-01
In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895
Model flocks in a steady vortical flow.
Baggaley, A W
2015-05-01
We modify the standard Vicsek model to clearly distinguish between intrinsic noise due to imperfect alignment between organisms and extrinsic noise due to fluid motion. We then consider the effect of a steady vortical flow, the Taylor-Green vortex, on the dynamics of the flock, for various flow speeds, with a fixed intrinsic particle speed. We pay particular attention to the morphology of the flow, and quantify its filamentarity. Strikingly, above a critical flow speed there is a pronounced increase in the filamentarity of the flock, when compared to the zero-flow case. This is due to the fact that particles appear confined to areas of low vorticity; a familiar phenomena, commonly seen in the clustering of inertial particles in vortical flows. Hence, the cooperative motion of the particles gives them an effective inertia, which is seen to have a profound effect on the morphology of the flock, in the presence of external fluid motion. Finally, we investigate the angle between the flow and the particles direction of movement and find it follows a power-law distribution. PMID:26066260
Thermally Activated Decay of Magnetic Vortices
NASA Astrophysics Data System (ADS)
Burgess, Jacob; Grombacher, Denys; Fortin, David; Davis, John; Freeman, Mark
2010-03-01
We experimentally probe thermally activated decay of magnetic vortices, by observing annihilations within an array of Ni80Fe20 discs through hysteresis measurements. Specifically, the statistics of vortex annihilation are mapped as a function of the magnitude of, and the dwell time at, the peak fields applied during hysteresis scans. Magnetic vortices in micro- and nano-scale thin film ferromagnetic elements exhibit interesting and complex behavior. Demagnetization interactions make understanding processes like the annihilation of a vortex during magnetic switching challenging. Recent work has shown that the annihilation process can take place over an extended period of timefootnotetextZ. Liu, R.D. Sydora and M.R. Freeman, PRB 77, 174410 (2008). implying that there is a characteristic decay process, likely thermally governed. Through application of an Arrhenius model we extract information about the energy barrier preventing decay, and hence information about the energetic contributions of the demagnetization effects. We anticipate that this information will be useful in extending analytical models of magnetic vortices.
Long term changes in the polar vortices
NASA Astrophysics Data System (ADS)
Braathen, Geir O.
2015-04-01
As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented.
Merging of co-rotating trailing vortices
NASA Astrophysics Data System (ADS)
Cerretelli, C.; Leweke, T.; Williamson, C. H. K.
1999-11-01
The merging of co-rotating vortices is an important physical phenomenon in aerodynamics as well as in fundamental turbulent flows. Merging plays a role in the aerodynamics of airplane wing wakes, where it can accelerate the development of the Crow instability (Crouch 1997). Although vortex merger has been extensively studied, most numerical investigations concern the case of the two dimensional inviscid interactions. On the other hand, the dynamics of three dimensional viscous vortices, which spin around each other in an helical path, is not yet fully understood, and this is the focus of the present experimental investigation. Previous work by Chen, Jacob and Savas (1999) shows that merging of co-rotating vortices, from a flapped wing, occurs at approximately 0.8 of an orbit period after formation, independently of the circulation Reynolds number Re_Γ. In the present work, merging is studied by using a biplane wing system, as well as the DPIV technique. In our investigation, we find that the time taken for merging, measured in orbit periods, is a function not only of the experimental geometry, but is also a function of the circulation Reynolds number.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Managing Flap Vortices via Separation Control
NASA Technical Reports Server (NTRS)
Greenblatt, David
2006-01-01
A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management by means of boundary layer separation control. Passive control was achieved using a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressures, was used to predict vortex characteristics based on inviscid rollup relations and vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over either outboard or inboard edge vortices while producing small lift and moment excursions. Unsteady surface pressures indicated that dynamic separation and attachment control can be exploited to perturb vortices at wavelengths shorter than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.
Two-particle vortices in graphene
NASA Astrophysics Data System (ADS)
Portnoi, Mikhail; Downing, Charles
We show that a pair of two-dimensional massless Dirac-Weyl fermions can form a bound state independently on the sign of the inter-particle interaction potential, as long as this potential decays at large distances faster than Kepler's inverse distance law. The coupling occurs only at the Dirac point, when the charge carriers lose their chirality. These bipartite states must have a non-zero internal angular momentum, meaning that they only exist as stationary vortices. This leads to the emergence of a new type of energetically-favorable quasiparticles: double-charged zero-energy vortices. Their bosonic nature allows condensation and gives rise to Majorana physics without invoking a superconductor. The presence of dark-matter-like silent immobile vortices explains a range of poorly understood experiments in gated graphene structures at low doping. This work was supported by EU H2020 RISE project CoExAN, EU FP7 ITN NOTEDEV and FP7 IRSES project InterNoM.
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Lee, Hye Sung; Sher, Marc
2013-06-01
We perform a detailed study of a specific Two Higgs Doublet Model (2HDM) with a U(1) gauge symmetry, instead of a typical Z{sub 2} discrete symmetry, containing a very light gauge boson Z' (GeV scale or below). The Standard Model (SM) fermions do not carry U(1) charges, but induced couplings to the Z' (called the dark Z) are generated through mixing with the SM neutral gauge bosons. Such a light Z' could explain some astrophysical anomalies as well as the muon g-2 deviation, and has been the subject of great experimental interest. We consider the scenario in which the 125 GeV SM-like Higgs (H) is the heavier scalar state, and focus on the lighter neutral state (h) as well as charged Higgs. We analyze the constraints on the model from various experiments and predict novel channels to search for these Higgs scalars at the LHC. In particular, experiments looking for lepton-jets are among potentially important searches.
The Higgs boson and cosmology.
Shaposhnikov, Mikhail
2015-01-13
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production. PMID:26949807
The Higgs boson and cosmology.
Shaposhnikov, Mikhail
2015-01-13
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Theoretical studies in mesoscale jets and vortices
NASA Astrophysics Data System (ADS)
Radko, Timour
1997-11-01
Mesoscale vortices in the mid-ocean are known to move large distances without loss of coherence, preserving their speed and (usually westward) direction. Still open are the questions of how an eddy is able to preserve its structure during many turnaround times and what is the role in this process of the specific perturbations of the circular basic state. To investigate the effect of the rectilinear motion of the isolated eddies, we construct several analytical steady state models and examine the realizability in time of those solutions using the initial-value numerical calculations. To gain a preliminary understanding of the process, we first consider the barotropic f-plane model. It is demonstrated using linearized (about the circular basic state) calculations that for almost any eddy with compact basic velocity we can find a small amplitude disturbance of the first azimuthal harmonic (m=1 mode) that results in the rectilinear motion of an eddy. If such a disturbance is sufficiently small, the vortex can propagate many diameters away from its origin, as shown by a weak non-linear theory. This conclusion is confirmed by the spectral calculations using the full two dimensional vorticity equation. A more realistic representation of the ocean eddies is given by the equivalent-barotropic model, which includes effects of the passive lower layer and the ambient potential vorticity gradient (the beta-effect). Analytical theory is developed to construct a wide class of stable quasi-monopolar vortecies propagating in the westward direction with the supercritical (U<{-}beta Rsbsp{d}{2}) velocities. A remarkable similarity is found between the structure of the solutions in barotropic and equivalent-barotropic models for all values of the propagation velocity. The numerical spectral calculations, initiated by our analytical solutions, indicate that the (supercritical) vortices initially move with the predicted velocity, but later slow down to the speed of the long planetary
Waves and vortices in rotating stratified turbulence
NASA Astrophysics Data System (ADS)
Pouquet, Annick; Herbert, Corentin; Marino, Raffaele; Rosenberg, Duane
2015-04-01
The interactions between vortices and waves is a long-standing problem in fluid turbulence. It can lead to a self-sustaining process that is dominant, for example in pipe flows, and to the prediction of large-scale coherent structures such as baroclinic jets in planetary atmospheres, and it can also be used as a control tool for the onset of turbulence. Similarly, the dynamics of the atmosphere and the ocean is dominated by complex interactions between nonlinear eddies and waves due to a combination of rotation and stratification (characterized respectively by frequencies f and N), as well as shear layers. The waves are faster at large scales, and this leads to a quasi-geostrophic quasi-linear regime in which there is a balance between pressure gradient and the Coriolis and gravity forces. The range of scales in these geophysical flows before dissipation prevails is such that other regimes can arise in which turbulence comes into play, with the eddy turn-over time becoming comparable to the wave period, and for which isotropy recovers for sufficiently high Reynolds numbers. One may decompose the flow-- observational, experimental or numerical, in terms of the normal modes that it supports, i.e. the inertia-gravity waves and the (slow, zero frequency) vortical modes carrying the potential vorticity, thanks to the existence of a small parameter, as for example the fluctuation around a mean flow or the ratio of the wave period to the eddy turn-over time. In this context an ensemble of data sets of rotating stratified turbulence will be analyzed, stemming from accurate direct numerical simulations of the Boussinesq equations at high resolution, up to 40963 grid points, using high-performance computing. These flows all support a constant-flux bi-directional cascade of energy towards both the large scales and the small scales. The parameter space includes the Reynolds number, the Prandtl number(s), and the Rossby and Froude numbers, and a universal response to a variety
Large Deviation Statistics of Vorticity Stretching in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2015-11-01
A key feature of 3D fluid turbulence is the stretching/re-alignment of vorticity by the action of the strain-rate. It is shown using the cumulant-generating function that cumulative vorticity stretching along a Lagrangian path in isotropic turbulence behaves statistically like a sum of i.i.d. variables. The Cramer function for vorticity stretching is computed from the JHTDB isotropic DNS (Reλ = 430) and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain-rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramer functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of largest FTLE. A model Fokker-Planck equation is constructed by approximating the viscous destruction of vorticity with a deterministic non-linear relaxation law matching conditional statistics, while the fluctuations in vorticity stretching are modelled by stochastic noise matching the statistics encoded in the Cramer function. The model predicts a stretched-exponential tail for the vorticity magnitude PDF, with good agreement for the exponent but significant error (30-40%) in the pre-factor. Supported by NSF Graduate Fellowship (DGE-1232825) and NSF Grant CMMI-0941530.
Surfzone vorticity in the presence of extreme bathymetric variability
NASA Astrophysics Data System (ADS)
Clark, D.; Elgar, S.; Raubenheimer, B.
2014-12-01
Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.
Higgs in bosonic channels (CMS)
NASA Astrophysics Data System (ADS)
Gori, Valentina
2015-05-01
The main Higgs boson decays into bosonic channels will be considered, presenting and discussing results from the latest reprocessing of data collected by the CMS experiment at the LHC, using the full dataset recorded at centre-of-mass energies of 7 and 8 TeV. For this purpose, results from the final Run-I papers for the H → ZZ → 4ℓ, H → γγ and H → WW analyses are presented, focusing on the Higgs boson properties, like the mass, the signal strenght, the couplings to fermions and vector bosons, the spin and parity properties. Furthermore, the Higgs boson width measurement exploiting the on-shell versus the off-shell cross section (in the H → ZZ → 4ℓ and H → ZZ → 2ℓ2ν decay channels) will be shown. All the investigated properties result to be fully consistent with the SM predictions: the signal strength and the signal strength modifiers are consistent with unity in all the bosonic channels considered; the hypothesis of a scalar particle is strongly favored, against the pseudoscalar or the vector/pseudovector or the spin-2 boson hypotheses (all excluded at 99% CL or higher in the H → ZZ → 4ℓ channel). The Higgs boson mass measurement from the combination of H → ZZ → 4ℓ and H → γγ channels gives a value mH = 125.03+0.26-0.27 (stat.) +0.13-0.15 (syst.). An upper limit ΓH < 22 MeV can be put on the Higgs boson width thanks to the new indirect method.
Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime
Hosotani, Y.; Noda, S.; Sakamura, Y.; Shimasaki, S.
2006-05-01
In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime, the Higgs boson mass is predicted in the range 120-290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the Kaluza-Klein excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10{sup -8}, 10{sup -6}, and 10{sup -2} for {mu}-e, {tau}-e and t-e, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor cos(1/2){theta}{sub W} where {theta}{sub W} is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.
Fast non-Abelian geometric gates via transitionless quantum driving
Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-01-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580
AGT relations for abelian quiver gauge theories on ALE spaces
NASA Astrophysics Data System (ADS)
Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.
2016-05-01
We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.
Fast non-Abelian geometric gates via transitionless quantum driving.
Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-12-21
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.
Qi Ran; Liu, W. M.; Yu, Xiao-Lu; Li, Z. B.
2009-05-08
We investigate the non-Abelian Josephson effect in F=2 spinor Bose-Einstein condensates with double optical traps. We propose a real physical system which contains non-Abelian Josephson effect and has very different density and spin tunneling characters compared with the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps, respectively, which are the crucial feature of the non-Abelian Josephson effect. We also give an experimental protocol to observe this novel effect in future experiments.
Numerical studies of the margin of vortices with decaying cores
NASA Technical Reports Server (NTRS)
Liu, G. C.; Ting, L.
1986-01-01
The merging of vortices to a single one is a canonical incompressible viscous flow problem. The merging process begins when the core sizes or the vortices are comparable to their distances and ends when the contour lines of constant vorticity lines are circularized around one center. Approximate solutions to this problem are constructed by adapting the asymptotic solutions for distinct vortices. For the early stage of merging, the next-order terms in the asymptotic solutions are added to the leading term. For the later stage of merging, the vorticity distribution is reinitialized by vortices with overlapping core structures guided by the 'rule of merging' and the velocity of the 'vortex centers' are then defined by a minimum principle. To show the accuracy of the approximate solution, it is compared with the finite-difference solution.
Zombie Vortices: Angular Momentum Transport and Planetesimal Formation
NASA Astrophysics Data System (ADS)
Barranco, Joseph; Marcus, Philip; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Lecoanet, Daniel
2014-11-01
Zombie vortices may fill the dead zones of protoplanetary disks, where they may play important roles in star and planet formation. We will investigate this new, purely hydrodynamic instability and explore the conditions necessary to resurrect the dead zone and fill it with large amplitude vortices that may transport angular momentum and allow mass to accrete onto the protostar. One unresolved issue is whether angular momentum transport is mediated via asymmetries in the vortices, vortex-vortex interactions, or acoustic waves launched by the vortices. Vortices may also play a crucial role in the formation of planetesimals, the building blocks of planets. It is still an open question how grains grow to kilometer-size. We will investigate the interactions of dust with vortices generated via our new hydrodynamic instability, and bridge the gap between micron-sized grains and kilometer-sized planetesimals. Supported by NSF AST-1010052.
Higgs boson signatures of MSSM electroweak baryogenesis
Menon, Arjun; Morrissey, David E.
2009-06-01
Electroweak baryogenesis in the minimal supersymmetric standard model can account for the cosmological baryon asymmetry, but only within a restricted region of the parameter space. In particular, minimal supersymmetric standard model electroweak baryogenesis requires a mostly right-handed stop that is lighter than the top quark and a standard model-like light Higgs boson. In the present work we investigate the effects of the light stop on Higgs boson production and decay. Relative to the standard model Higgs boson, we find a large enhancement of the Higgs production rate through gluon fusion and a suppression of the Higgs branching fraction into photon pairs. These modifications in the properties of the Higgs boson are directly related to the effect of the light stop on the electroweak phase transition, and are large enough that they can potentially be tested at the Tevatron and the LHC.
A Historical Profile of the Higgs Boson
Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.
2012-01-31
The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.
Effective field theory with two Higgs doublets
NASA Astrophysics Data System (ADS)
Crivellin, Andreas; Ghezzi, Margherita; Procura, Massimiliano
2016-09-01
In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a Z 2-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.
NASA Astrophysics Data System (ADS)
Hassanzadeh, Pedram
Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to
X-ray phase vortices: theory and experiment
NASA Astrophysics Data System (ADS)
Peele, Andrew G.; Nugent, Keith A.; Mancuso, Adrian P.; Paterson, David; McNulty, Ian; Hayes, Jason P.
2004-08-01
We review the current work on x-ray phase vortices. We explain the role of an x-ray vortex in phase recovery and speculate on its possible applications in other fields of x-ray optical research. We present our theoretical understanding of the structure of phase vortices and test these predictions against experiment. We present experimental observations of phase vortices with charge greater than 3 and observe that their propagation appears to be consistent with our theoretical models.
Electroweak Baryogenesis with Anomalous Higgs Couplings
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Wu, Lei; Yue, Jason
2016-07-01
In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.
The Higgs Boson for the Masses?
Quigg, Chris
2012-04-04
The Higgs boson is the object of one of the greatest campaigns in the history of particle physics and a pop-culture icon. But what is a Higgs boson, and what would we like it to do for us? What will we understand after a discovery that we don't understand before? How would the world be different if nothing did the job of the Higgs boson? We will explore all these questions and more through demonstration, simulation, and audience participation.
Emergent two-Higgs doublet models
NASA Astrophysics Data System (ADS)
Abe, Tomohiro; Omura, Yuji
2016-08-01
We investigate origin of three features that are often assumed in analysis of two-Higgs doublet models: (i) softly broken Z 2 symmetry, (ii) CP invariant Higgs potential, and (iii) degenerated mass spectra. We extend electroweak gauge symmetry, introducing extra gauge symmetry and extra scalars, and we show that our models effectively derive two-Higgs doublet models at low energy which naturally hold the three features. We also find that the models can solve the strong CP problem.
Recent Higgs results from the ATLAS experiment
Brendlinger, Kurt; Collaboration: ATLAS Collaboration
2014-06-24
This paper presents recent results on the Higgs boson from the ATLAS experiment at the Large Hadron Collider. The Collaboration reports on measurements of the signal strength, couplings, and spin of the Higgs in several decay channels. We find all measurements to be consistent with Standard Model predictions. The Higgs branching fraction to invisible particles is constrained and no evidence of physics beyond the Standard Model is found.
On relation between scalar interfaces and vorticity in inviscid flows
NASA Astrophysics Data System (ADS)
Ramesh, O. N.; Patwardhan, Saurabh
2013-11-01
A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.
Gluon propagators and center vortices in gluon plasma
Chernodub, M. N.; Nakagawa, Y.; Nakamura, A.; Saito, T.; Zakharov, V. I.
2011-06-01
We study electric and magnetic components of the gluon propagators in quark-gluon plasma in terms of center vortices by using a quenched simulation of SU(2) lattice theory. In the Landau gauge, the magnetic components of the propagators are strongly affected in the infrared region by removal of the center vortices, while the electric components are almost unchanged by this procedure. In the Coulomb gauge, the time-time correlators, including an instantaneous interaction, also have an essential contribution from the center vortices. As a result, one finds that magnetic degrees of freedom in the infrared region couple strongly to the center vortices in the deconfinement phase.
Dynamics of vortices and drift waves: a point vortex model
NASA Astrophysics Data System (ADS)
Leoncini, Xavier; Verga, Alberto
2013-03-01
The complex interactions of localized vortices with waves are investigated using a model of point vortices in the presence of a transverse or longitudinal wave. This simple model shows a rich dynamical behavior including oscillations of a dipole, splitting and merging of two like-circulation vortices, and chaos. The analytical and numerical results of this model have been found to predict under certain conditions, the behavior of more complex systems, such as the vortices of the Charney-Hasegawa-Mima equation, where the presence of waves strongly affects the evolution of large coherent structures.
Drift waves and vortices: a dynamical point vortex model
NASA Astrophysics Data System (ADS)
Leoncini, Xavier; Verga, Alberto
2013-10-01
Interactions of localized vortices with drift waves are investigated using a model of point vortices in the presence of a transverse or longitudinal wave. This simple model shows a rich dynamical behavior including oscillations of a dipole, splitting and merging of two like-circulation vortices, and chaos. The analytical and numerical results of this model have been found to predict under certain conditions, the behavior of more complex systems, such as the vortices of the Charney-Hasegawa-Mima equation, where the presence of waves strongly affects the evolution of large coherent structures.
Observations of Electron Vorticity in the Inner Plasma Sheet
NASA Technical Reports Server (NTRS)
Gurgiolo, C.; Goldstein, M. L.; Vinas, A. F.; Matthaeus, W. H.; Fazakerley, A. N.
2011-01-01
From a limited number of observations it appears that vorticity is a common feature in the inner plasma sheet. With the four Cluster spacecraft and the four PEACE instruments positioned in a tetrahedral configuration, for the first time it is possible to directly estimate the electron fluid vorticity in a space plasma. We show examples of electron fluid vorticity from multiple plasma sheet crossings. These include three time periods when Cluster passed through a reconnection ion diffusion region. Enhancements in vorticity are seen in association with each crossing of the ion diffusion region.
Vorticity, gyroscopic precession, and spin-curvature force
NASA Astrophysics Data System (ADS)
Liang, Wei Chieh; Lee, Si Chen
2013-02-01
In investigating the relationship between vorticity and gyroscopic precession, we calculate the vorticity vector in Godel, Kerr, Lewis, Schwarzschild, and Minkowski metrics and find that the vorticity vector of the specific observers is the angular velocity of the gyroscopic precession. Furthermore, when space-time torsion is included, the vorticity and spin-curvature force change sign. This result is very similar to the behavior of the positive and negative helicities of quantum spin in the Stern-Gerlach force. It implies that the inclusion of torsion will lead to an analogous property of quantum spin even in classical treatment.
NASA Astrophysics Data System (ADS)
Nogueira, Flavio S.; Sudbø, Asle; Eremin, Ilya
2015-12-01
We demonstrate that the Higgs mechanism in three-dimensional topological superconductors exhibits unique features with experimentally observable consequences. The Higgs model we discuss has two superconducting components and an axionlike magnetoelectric term with the phase difference of the superconducting order parameters playing the role of the axion field. Due to this additional term, quantum electromagnetic and phase fluctuations lead to a robust topologically nontrivial state that holds also in the presence of interactions. In this sense, we show that the renormalization flow of the topologically nontrivial phase cannot be continuously deformed into a topologically nontrivial one. One consequence of our analysis of quantum critical fluctuations is the possibility of having a first-order phase transition in the bulk and a second-order phase transition on the surface. We also explore another consequence of the axionic Higgs electrodynamics, namely, the anomalous Hall effect. In the low-frequency London regime an anomalous Hall effect is induced in the presence of an applied electric field parallel to the surface. This anomalous Hall current is induced by a Lorentz-like force arising from the axion term, and it involves the relative superfluid velocity of the superconducting components. The anomalous Hall current has a negative sign, a situation reminiscent of but quite distinct in physical origin from the anomalous Hall effect observed in high-Tc superconductors. In contrast to the latter, the anomalous Hall effect in topological superconductors is nondissipative and occurs in the absence of vortices.
Inviscid to turbulent transition of trailing vortices
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1974-01-01
The characteristics of the plateau region in the vortex system which trails from a lifting wing are discussed. The decay of the vortex due to viscous or turbulent shear is very slow in the plateau so that the maximum tangential speed in the vortices remains nearly constant for some distance downstream of roll-up and then begins to decrease, becoming inversely proportional to the square root of the distance downstream. Mathematical models are developed to analyze the structure of the plateau area. Solutions are obtained for both constant and variable eddy viscosity models.
A geometric approach to quantum vortices
NASA Astrophysics Data System (ADS)
Penna, Vittorio; Spera, Mauro
1989-12-01
In this paper a geometrical description is given of the theory of quantum vortices first developed by Rasetti and Regge [Physica A 80, 217 (1975)] relying on the symplectic techniques of Marsden and Weinstein [J. Phys. D 7, 305 (1983)], and Kirillov-Kostant-Souriau geometric quantization. The RR-current algebra is interpreted as the natural Hamiltonian algebra associated to a certain coadjoint orbit of the group G=SDiff(R3), the KKS prequantization condition of which is related to the Feynman-Onsager relation. This orbit is also shown to possess a G-invariant Kaehler structure, whence, in principle, it is possible to quantize it in a natural way.
Nonlinear Generation of Vorticity by Surface Waves.
Filatov, S V; Parfenyev, V M; Vergeles, S S; Brazhnikov, M Yu; Levchenko, A A; Lebedev, V V
2016-02-01
We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect. PMID:26894714
Effect of Trapping on Vortices in Plasma
NASA Astrophysics Data System (ADS)
Siddiqui, H.; Shah, H. A.; Tsintsadze, N. L.
2008-09-01
Microscopic trapping of electrons is considered in one- and two-dimensional potential wells (shallow and deep) and its effect on vortex formation is investigated by deriving modified Hasegawa Mima (HM) equations. Inhomogenieties in the number density and magnetic field are taken into account. The modified HM equations are analysed by considering bounce frequencies of the trapped particles. Solitary vortices are obtained via Kortweg deVries (KdV) type of equations and both exact and Sagdeev potential solutions are obtained. In general it is observed that trapping produces stronger non-linearities and this leads to the modification of the original HM equation.
Higgs decays and brane gravi-vectors
Clark, T. E.; Liu Boyang; Love, S. T.; Xiong, C.; Veldhuis, T. ter
2008-10-01
Higgs boson decays in flexible brane world models with stable, massive gravi-vectors are considered. Such vectors couple bilinearly to the standard model fields through either the standard model energy-momentum tensor, the weak hypercharge field strength, or the Higgs scalar. The role of the coupling involving the extrinsic curvature is highlighted. It is found that within the presently allowed parameter space, the decay rate of the Higgs into two gravi-vectors (which would appear as an invisible Higgs decay) can be comparable to the rate for any of the standard model decay modes.
CP violation in heavy MSSM Higgs scenarios
Carena, M.; Ellis, J.; Lee, J. S.; Pilaftsis, A.; Wagner, C. E. M.
2016-02-18
We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales MS above a few TeV and a charged Higgs boson mass MH+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. To consider scenarios with amore » charged Higgs boson much heavier than the Standard Model (SM) particles but much lighter than the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector. We compute the Higgs boson masses in the presence of CP violating phases, implementing improved matching and renormalization-group (RG) effects, as well as two-loop RG effects from the effective two-Higgs Doublet Model (2HDM) scale MH± to the scale MS. Here, we illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector using new benchmark scenarios named.« less
Temporal evolution of vorticity staircases in randomly strained two-dimensional vortices
NASA Astrophysics Data System (ADS)
Turner, M. R.
2014-11-01
The evolution of a Gaussian vortex subject to a weak-external-random n-fold multipolar strain field is examined using fully nonlinear simulations. The simulations show that at large Reynolds numbers, fine scale steps form at the periphery of the vortex, before merging, generally leaving one large step, which acts as a barrier between the vorticity within the coherent core and the surrounding, well mixed, "surf zone." It is shown for n = 2 that the width and the number of fine scale steps which initially form at the periphery of the vortex is dependent on the strain parameters, but that the range of radial values for which steps initially occur is only dependent on n and the amplitude of the strain field. A criteria is developed which can predict this range of radial values using the linear stability results of Le Dizès ["Non-axisymmetric vortices in two-dimensional flows," J. Fluid Mech. 406, 175 (2000)]. This criteria is based upon the perturbation vorticity needing to be larger than some fraction of the vorticity gradient to flatten the vortex profile. For n = 3 and 4, the radial step range is again predicted, and it is observed that for these higher wavenumbers the long lasting steps are narrower than the n = 2 case. For n = 4 the steps which form are so narrow that they do not persist very long before they are destroyed by the strain field and viscosity.
NASA Astrophysics Data System (ADS)
Huang, Kerson
We give a critical review of the "triviality" of the λϕ4 theory, i.e., the vanishing of the renormalized self-coupling. Evidence from perturbation theory and Monte-Carlo simulations are cited. It is noted that (a) the theory is "trivial" but not entirely free, for there is spontaneous symmetry breaking; (b) perturbation theory is unreliable. Soluble examples with similar behavior are compared, in particular the Lee model and the 3D δ function potential. The latter case is especially important, for it shows that triviality is a symptom that the interaction is too singular, and suggests a cure. The import for the Higgs sector of the standard model is discussed. It is argued that, like the Fermi pseudopotential, the Higgs field is a long-wavelength approximation that should be used in lowest order perturbation theory only.
Draper, Patrick; Liu, Tao; Wagner, Carlos E M; Wang, Lian-Tao; Zhang, Hao
2011-03-25
We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, Υ, and flavor physics. PMID:21517303
The Higgs Machine Learning Challenge
NASA Astrophysics Data System (ADS)
Adam-Bourdarios, C.; Cowan, G.; Germain-Renaud, C.; Guyon, I.; Kégl, B.; Rousseau, D.
2015-12-01
The Higgs Machine Learning Challenge was an open data analysis competition that took place between May and September 2014. Samples of simulated data from the ATLAS Experiment at the LHC corresponding to signal events with Higgs bosons decaying to τ+τ- together with background events were made available to the public through the website of the data science organization Kaggle (kaggle.com). Participants attempted to identify the search region in a space of 30 kinematic variables that would maximize the expected discovery significance of the signal process. One of the primary goals of the Challenge was to promote communication of new ideas between the Machine Learning (ML) and HEP communities. In this regard it was a resounding success, with almost 2,000 participants from HEP, ML and other areas. The process of understanding and integrating the new ideas, particularly from ML into HEP, is currently underway.
Lincoln, Don
2016-07-12
With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.
Lincoln, Don
2014-04-28
With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.
Draper, Patrick; Liu Tao; Wagner, Carlos E. M.; Wang, Lian-Tao; Zhang Hao
2011-03-25
We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, {Upsilon}, and flavor physics.
Ultracold atoms in U(2) non-Abelian gauge potentials preserving the Landau levels
Burrello, Michele; Trombettoni, Andrea
2011-10-15
We study ultracold atoms subjected to U(2) non-Abelian potentials: we consider gauge potentials having, in the Abelian limit, degenerate Landau levels and we then investigate the effect of general homogeneous non-Abelian terms. The conditions under which the structure of degenerate Landau levels is preserved are classified and discussed. The typical gauge potentials preserving the Landau levels are characterized by a fictitious magnetic field and by an effective spin-orbit interaction (e.g., obtained through the rotation of two-dimensional atomic gases coupled with a tripod scheme). The single-particle energy spectrum can be analytically determined for a class of gauge potentials, whose physical implementation is discussed. The corresponding Landau levels are deformed by the non-Abelian contribution of the potential and their spin degeneracy is split. The related deformed quantum Hall states for fermions and bosons (in the presence of strong intraspecies interaction) are determined far from and at the degeneracy points of the Landau levels, where non-Abelian states appear. We present a discussion of the effect of the angular momentum, as well as results for U(3) gauge potentials.
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2011-09-01
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z4 parafermion (Read-Rezayi) state is a special case. This provides an example in which Z2 electron fractionalization leads to non-Abelian topological phases. The naive “ideal” wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
Barkeshli, Maissam; Wen Xiaogang
2011-09-15
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Neutrino Oscillations, the Higgs Boson, and the Private Higgs Model
NASA Astrophysics Data System (ADS)
BenTov, Jonathan
"CESR, PEP, PETRA, ISABELLE, p-bar p colliders, LEP, the tevatron, and ep machines are at various levels of design or construction. They will study the properties of b-matter, see weak intermediaries, and perhaps find the t-quark and the Higgs boson. Never before was there such a bestiary waiting to be discovered; and what surprises will be found!" - S. L. Glashow ("The Future of Elementary Particle Physics," Quarks and Leptons, NATO Advanced Study Institutes Series Volume 61, 1980, pp 687-713) The situation in 1980 was clearly different from the present situation in 2013, in which we face the very real possibilty that no new degrees of freedom will ever again be within reach of a collider. In an intriguing twist of fate, this very fact results in a sharp paradox for fundamental physics: the Higgs mass should be MP/m h ˜ 1017 times larger than it actually is, and the vacuum energy density of the universe should be (M P/A)4 ˜ (1031)4 times larger than it actually is, and apparently nature refuses to give us any more clues as to why. These together are what I would call the main problem of 21st century physics: despite all of the predictive success of particle physics so far, we must find a way to suitably modify the rules of quantum field theory, lest we accept the unproductive defeatist attitude that our universe is simply fine-tuned. In the meantime, there is much interesting work to be done in more "traditional" particle physics: we have learned that neutrinos actually have tiny but nonzero masses, which is clear and unambiguous evidence for physics beyond the Standard Model. I will allocate the first third of this document to phenomena related to neutrino oscillations. In particular, I would like to argue that some of the apparent differences between neutrino mixing and quark mixing are to an extent illusory, and actually many aspects of the two sectors can be understood in a coherent framework for extending the Standard Model. The remaining two-thirds of this
NASA Astrophysics Data System (ADS)
Gu, Mingyao; Feltham, Graham; Ekmekci, Alis
2014-11-01
When oncoming streams of weak vorticity aligned with the axle axis of a two-wheel landing gear impinge near the forward stagnation point of the wheels, a mechanism for vorticity collection, growth, amplification into discrete large-scale vortices, and shedding was formerly shown to exist. In the current study, the impinging vorticity streams are perpendicular to the axle axis, i.e. in a vertical orientation as opposed to the horizontal orientation before. Experiments are conducted in a recirculating water channel using hydrogen bubble visualization and particle image velocimetry at a Reynolds number of 32,500 (based on the wheel diameter). As with the horizontal orientation, vorticity collection and amplification are observed, but the large-scale vortices thus formed are stretched around the wheel circumference in contrast to being stretched around the wheel sides, as observed for the horizontal orientation. This flow behavior varies with the impingement location of the vorticity streams across the wheel width. Maximum vorticity amplification occurs at a critical impingement location and drastically alters the flow separation along the wheel circumference. In addition, the instantaneous vortical structures are identified and tracked using a Galilean-invariant criterion.
Exploring holographic Composite Higgs models
NASA Astrophysics Data System (ADS)
Croon, Djuna; Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica
2016-07-01
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of "colours" N , thus increasing the decay constant of the Goldstone Higgs. This is essentially a `Little Randall-Sundrum Model', which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small UV cutoff is not in tension with the current experimental data.
The effect of entrainment on starting vortices
NASA Astrophysics Data System (ADS)
Rosi, Giuseppe; Rival, David
2015-11-01
Recent work shows that vortex detachment behind accelerating plates coincides with when streamlines enclosing the starting vortex (SV) form a full saddle. In the case of a linearly accelerating plate, it can be shown that vorticity-containing mass, and thus the SV's development scale with only dimensionless towed distance, while the SV's circulation scales with the acceleration rate. This results in shear-layer instabilities whose structure is Reynold-number independent, but whose strength scale with Reynolds number. It is hypothesized that the increased strength of the instabilities promotes entrainment, which causes the formation of the full saddle and thereby detachment to occur at an earlier dimensionless towed distance. To test this hypothesis, a circular plate is linearly accelerated from rest to pinch-off with chord-based Reynolds numbers of 103, 104, and 105 at the midpoint of the motion. Planar PIV data is acquired, from which FTLE and enstrophy fields are calculated. Vortex detachment is identified from the dynamics of the FTLE saddles, while the enstrophy fields are used to calculate both the vorticity-containing mass entering from the shear layer and the mass entrained from the quiescent surroundings.
Tomographic PIV Study of Hairpin Vortices
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; Rossmann, Tobias
2014-11-01
Tomographic PIV is used in a free surface water channel to quantify the flow behavior of hairpin vortices that are artificially generated in a laminar boundary layer. Direct injection from a 32:1 aspect ratio slot at low blowing ratios (0 . 1 < BR < 0 . 2) is used to generate an isolated hairpin vortex in a thick laminar boundary layer (485 < Reδ* < 600). Due to the large dynamic range of length and velocity scales (the resulting vortices have advection velocities 5X greater than their tangential velocities), a tailored optical arrangement and specialized post processing techniques are required to fully capture the small-scale behavior and long-time development of the flow field. Hairpin generation and evolution are presented using the λ2 criterion derived from the instantaneous, three-dimensional velocity field. The insight provided by the tomographic data is also compared to the conclusions drawn from 2D PIV and passive scalar visualizations. Finally, the three-dimensional behavior of the measured velocity field is correlated with that of a simultaneously imaged, passive scalar dye that marks the boundary of the injected fluid, allowing the examination of the entrainment behavior of the hairpin. Supported by the National Science Foundation under Grant CBET-1040236.
Close relative equilibria of identical point vortices
NASA Astrophysics Data System (ADS)
Dirksen, Tobias; Aref, Hassan
2011-11-01
Via numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane we have found configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. Numerical solutions of this kind were found for 3 n + 1 vortices, where n = 2 , 3 , ... , 30 . A sufficient, although apparently not necessary, condition for this phenomenon of close solutions is that the ``core'' of the configuration is marginally stable, as occurs for a central vortex surrounded by an equilateral triangle. The open, regular heptagon also has this property, and new relative equilibria close to the nested, symmetrically arranged, regular heptagons have been found. The centered regular nonagon is also marginally stable. Again, a new family of close relative equilibria has been found. The closest relative equilibrium pairs occur, however, for symmetrically nested equilateral triangles. The numerical evidence is surveyed and related recent work mentioned. A Letter in Physics of Fluids 23 (2011) 051706 is available. Supported in part by the Danish National Research Foundation through a Niels Bohr visiting professorship.
Dynamics of Quantized Vortices Before Reconnection
NASA Astrophysics Data System (ADS)
Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.
2016-04-01
The main goal of this paper is to investigate numerically the dynamics of quantized vortex loops, just before the reconnection at finite temperature, when mutual friction essentially changes the evolution of lines. Modeling is performed on the base of vortex filament method using the full Biot-Savart equation. It was discovered that the initial position of vortices and the temperature strongly affect the dependence on time of the minimum distance δ (t) between tips of two vortex loops. In particular, in some cases, the shrinking and collapse of vortex loops due to mutual friction occur earlier than the reconnection, thereby canceling the latter. However, this relationship takes a universal square-root form δ ( t) =√{( κ/2π ) ( t_{*}-t) } at distances smaller than the distances, satisfying the Schwarz reconnection criterion, when the nonlocal contribution to the Biot-Savart equation becomes about equal to the local contribution. In the "universal" stage, the nearest parts of vortices form a pyramid-like structure with angles which neither depend on the initial configuration nor on temperature.
Monopoles and fractional vortices in chiral superconductors
Volovik, G. E.
2000-01-01
I discuss two exotic objects that must be experimentally identified in chiral superfluids and superconductors. These are (i) the vortex with a fractional quantum number (N = 1/2 in chiral superfluids, and N = 1/2 and N = 1/4 in chiral superconductors), which plays the part of the Alice string in relativistic theories and (ii) the hedgehog in the ^l field, which is the counterpart of the Dirac magnetic monopole. These objects of different dimensions are topologically connected. They form the combined object that is called a nexus in relativistic theories. In chiral superconductors, the nexus has magnetic charge emanating radially from the hedgehog, whereas the half-quantum vortices play the part of the Dirac string. Each half-quantum vortex supplies the fractional magnetic flux to the hedgehog, representing 1/4 of the “conventional” Dirac string. I discuss the topological interaction of the superconductor's nexus with the ‘t Hooft–Polyakov magnetic monopole, which can exist in Grand Unified Theories. The monopole and the hedgehog with the same magnetic charge are topologically confined by a piece of the Abrikosov vortex. Such confinement makes the nexus a natural trap for the magnetic monopole. Other properties of half-quantum vortices and monopoles are discussed as well, including fermion zero modes. PMID:10716980
Heterotic non-Abelian string of a finite length
NASA Astrophysics Data System (ADS)
Monin, S.; Shifman, M.; Yung, A.
2016-06-01
We consider non-Abelian strings in N =2 supersymmetric quantum chromodynamics (QCD) with the U (N ) gauge group and Nf=N quark flavors deformed by a mass term for the adjoint matter. This deformation breaks N =2 supersymmetry down to N =1 . Dynamics of orientational zero modes on the string world sheet are described then by C P (N -1 ) model with N =(0 ,2 ) supersymmetry. We study the string of a finite length L assuming compactification on a cylinder (periodic boundary conditions). The world-sheet theory is solved in the large-N approximation. At N =∞ we find a rich phase structure in the (L ,u ) plane where u is a deformation parameter. At large L and intermediate u we find a phase with broken Z2 N symmetry, N vacua and a mass gap. At large values of L and u still larger we have the Z2 N-symmetric phase with a single vacuum and massless fermions. In both phases N =(0 ,2 ) supersymmetry is spontaneously broken. We also observe a phase with would-be broken SU (N ) symmetry at small L (it is broken only for N =∞ ). In the latter phase the mass gap vanishes and the vacuum energy is zero in the leading 1 /N approximation. We expect that at large but finite N corrections O (1 /N ) will break N =(0 ,2 ) supersymmetry. Simultaneously, the phase transitions will become rapid crossovers. Finally we discuss how the observed rich phase structure matches the N =(2 ,2 ) limit in which the world-sheet theory has a single phase with the mass gap independent of L .
Neutral Supersymmetric Higgs Boson Searches
Robinson, Stephen Luke
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL and
NASA Astrophysics Data System (ADS)
Hassanzadeh, Pedram
Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to
Production of light Higgs pairs in 2-Higgs doublet models via the Higgs-strahlung process at the LHC
NASA Astrophysics Data System (ADS)
Moretti, M.; Moretti, S.; Piccinini, F.; Pittau, R.; Rathsman, J.
2010-11-01
At the Large Hadron Collider, we prove the feasibility to detect pair production of the lightest CP -even Higgs boson h of a Type II 2-Higgs Doublet Model through the process q{overline q^{left( ' right)}} to Vhh (Higgs-strahlung, V = W ± ,Z), in presence of two h to boverline b decays. We also show that, through such production and decay channels, one has direct access to the following Higgs self-couplings, thus enabling one to distinguish between a standard and the Supersymmetric version of the above model: λ Hhh — which constrains the form of the Higgs potential — as well as λ W ± H ∓ h and λ Z Ah — which are required by gauge invariance. Unfortunately, such claims cannot be extended to the Minimal Supersymmetric Standard Model, where the extraction of the same signals is impossible.
Controlling and probing non-abelian emergent gauge potentials in spinor Bose-Fermi mixtures
Phuc, Nguyen Thanh; Tatara, Gen; Kawaguchi, Yuki; Ueda, Masahito
2015-01-01
Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices. PMID:26330292
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
On non-abelian T-dual geometries with Ramond fluxes
NASA Astrophysics Data System (ADS)
Sfetsos, Konstadinos; Thompson, Daniel C.
2011-05-01
We show how to implement T-duality along non-abelian isometries in backgrounds with non-vanishing Ramond fields. When the dimension of the isometry group is odd (even) the duality swaps (preserves) the chirality of the theory. In certain cases a non-abelian duality can result in a massive type-IIA background. We provide two examples by dualising SU(2) isometry subgroups in AdS×S and AdS×S×T. The resultant dual geometries inherit the original AdS factors but have transverse spaces with reduced isometry and preserve only half of the original supersymmetry. The non-abelian dual of AdS×S has an M-theory lift which is related to the gravity duals of N=2 superconformal theories. We comment on a possible interpretation of this as a high spin limit.
A fresh look at the flux tube in Abelian-projected SU(2) gluodynamics
NASA Astrophysics Data System (ADS)
Koma, Y.; Koma, M.; Suzuki, T.; Ilgenfritz, E.-M.; Polikarpov, M. I.
2003-05-01
We reconsider the properties of the QQ¯ flux tube within Abelian-projected SU(2) lattice gauge theory in terms of electric field and monopole current. In maximal Abelian gauge fixing, we assess the influence of Gribov copies on the apparent flux-tube profile. For the profile corresponding to optimal gauge fixing, we study the independence of the lattice spacing for β = 2.3, 2.4, and 2.5115 on a 32 4 lattice. We apply the decomposition of the Abelian Wilson loop into monopole and photon parts and compare the electric and monopole profile emerging from these three different sources with the field strength and monopole current within the DGL theory.
Separating Internal Waves and Vortical Structure in the Open Ocean
NASA Astrophysics Data System (ADS)
Lauffenburger, N. E.; Sanford, T. B.; Lien, R.
2012-12-01
Deviating from past oceanographic surveys, a new, powerful array of profiling floats has been deployed for three weeks in the Sargasso Sea to monitor the evolving sub-mesoscale field. Using 18-20 EM-APEX floats, profiling to 100 m depth simultaneously, velocity (U and V), temperature, salinity and microstructure measurements (χ) were made on horizontal scales between 100 m and 10 km. This strategy provided a 3-D snapshot of the physical properties every half hour, which significantly reduces temporal aliasing. Area-averaged relative vorticity, vortex stretching, non-linear twisting, horizontal divergence and Ertel's potential vorticity have been computed and projected onto isopycnal surfaces. Since vortical modes carry Ertel's potential vorticity (and internal waves do not), this is a useful step in understanding the energetic contribution of vortical motions to the background internal wave field on small scales. In addition, the temporal material conservation law of Ertel's potential vorticity will be tested for the first time by determining the advection of the floats' measurements relative to the motion of the water parcels and by computing the horizontal gradients of the potential vorticity signal. The three deployments provide data to analyze the interaction of inertial waves, vortical processes and barotropic tides in and out of active frontogenesis.
Numerical Capture of Wing-tip Vortex Using Vorticity Confinement
NASA Astrophysics Data System (ADS)
Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard
2012-11-01
Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.
Towards a theory of stochastic vorticity-augmentation. [tornado model
NASA Technical Reports Server (NTRS)
Liu, V. C.
1977-01-01
A new hypothesis to account for the formation of tornadoes is presented. An elementary one-dimensional theory is formulated for vorticity transfer between an ambient sheared wind and a transverse penetrating jet. The theory points out the relevant quantities to be determined in describing the present stochastic mode of vorticity augmentation.
Electric-magnetic dualities in non-abelian and non-commutative gauge theories
NASA Astrophysics Data System (ADS)
Ho, Jun-Kai; Ma, Chen-Te
2016-08-01
Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.
Bounding the Higgs boson width through interferometry.
Dixon, Lance J; Li, Ye
2013-09-13
We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.
(SUSY) Higgs Search at the LHC
Muehlleitner, M. Margarete
2008-11-23
The discovery of the Standard Model (SM) or supersymmetric (SUSY) Higgs bosons belongs to the main endeavors of the Large Hadron Collider (LHC). In this article the status of the signal and background calculations for Higgs boson production at the LHC is reviewed.
Higgs Boson Mass, Neutrino Oscillations and Inflation
Shafi, Qaisar
2008-11-23
Finding the Standard Model scalar (Higgs) boson is arguably the single most important mission of the LHC. I review predictions for the Higgs boson mass based on stability and perturbativity arguments, taking into account neutrino oscillations. Primordial inflation based on the Coleman-Weinberg potential is briefly discussed.
Higgs boson masses in supersymmetric models
Berger, M.S.
1991-04-01
Imposing supersymmetry on a Higgs potential constrains the parameters that define the potential. In supersymmetric extensions to the stranded model containing only Higgs SU(2){sub L} doublets there exist Higgs boson mass sum rules and bounds on the Higgs masses at tree level. The prescription for renormalizing these sum rules is derived. An explicit calculation is performed in the minimal supersymmetric extension to the standard model (MSSM). In this model at tree level the mass sum rule is M{sub H}{sup 2} + M{sub h}{sup 2} = M{sub A}{sup 2} + M{sub Z}{sup 2}. The results indicate that large corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top quark. Squarks significantly heavier than their fermionic partners contribute large contributions when mixing occurs in the squark sector. These large corrections result from squark-Higgs couplings that become large in this limit. Contributions to individual Higgs boson masses that are quadratic in the squark masses cancel in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden in the combination of Higgs boson masses that comprise the sum rule. 39 refs., 13 figs.
Vorticity amplification near the stagnation point of landing gear wheels
NASA Astrophysics Data System (ADS)
Feltham, G.; Ekmekci, A.
2014-04-01
The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non
Numerical study of vorticity-enhanced heat transfer
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2013-11-01
Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.
Formation and early development of wingtip vortices
NASA Astrophysics Data System (ADS)
Giuni, Michea
Wingtip vortices are extremely important phenomena in fluid dynamics for their negative effects in many applications. Despite the many studies on this particular flow, the current understanding is still poor in providing a form base for the design of effective tip geometry modifications and vortex control devices. A rectangular wing with squared and rounded wingtips was tested in order to identify the main mechanisms involved in the formation of the vortex on the wing and in its early development in the wake. The complementarity of a number of experimental techniques adopted, such as surface flow visualizations, wall pressure measurements, smoke visualizations and stereoscopic particle image velocimetry (SPIV), gave a richer insight of the physics and the basic mechanisms of the vortex development. Furthermore, a large number of configurations were tested exploring the effects of several parameters such as wing chord, aspect ratio, wingtip geometry, angle of attack and Reynolds number. The development of the vortex along the wing showed the formation of several secondary vortices which interacted with the primary vortex generating low frequency fluctuations. The structure of the flow at this stage was analysed introducing a compact description through characteristic lines of the vortex system defined from the velocity vector field in the vicinity of the wing surface. The high spatial resolution achieved by the SPIV arrangement allowed a deeper understanding of the vortex structure in the early wake and the turbulence production and dissipation within the vortex core. The relaminarization process of the vortex core promoted by centrifugal motion was observed. The relation between vortex meandering, turbulence, secondary vortices and wake sheet was discussed. A comparison of different methods for the averaging of instantaneous planar vector fields was performed showing the effects and importance of the meandering. An axial acceleration of the flow within the vortex
Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory
Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.
2005-07-01
We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.
Generalized flux-tube solution in Abelian-projected SU(N) gauge theory
NASA Astrophysics Data System (ADS)
Koma, Yoshiaki
2002-12-01
The [U(1)]N-1 dual Ginzburg-Landau (DGL) theory as a low-energy effective theory of Abelian-projected SU(N) gauge theory is formulated in a Weyl symmetric way. The string tensions of the flux-tube solutions of the DGL theory associated with color-electric charges in various representations of SU(N) are calculated analytically at the border between type I and type II of the dual superconducting vacuum (Bogomol’nyi limit). The resulting string tensions satisfy the flux counting rule, which reflects the non-Abelian nature of gauge theory.
Necessity of an energy barrier for self-correction of Abelian quantum doubles
NASA Astrophysics Data System (ADS)
Kómár, Anna; Landon-Cardinal, Olivier; Temme, Kristan
2016-05-01
We rigorously establish an Arrhenius law for the mixing time of quantum doubles based on any Abelian group Zd. We have made the concept of the energy barrier therein mathematically well defined; it is related to the minimum energy cost the environment has to provide to the system in order to produce a generalized Pauli error, maximized for any generalized Pauli errors, not only logical operators. We evaluate this generalized energy barrier in Abelian quantum double models and find it to be a constant independent of system size. Thus, we rule out the possibility of entropic protection for this broad group of models.
Conformal flatness, non-Abelian Kaluza-Klein reduction and quaternions
NASA Astrophysics Data System (ADS)
Maraner, Paolo; Pachos, Jiannis K.
2012-02-01
The non-Abelian Kaluza-Klein reduction of conformally flat spaces is considered for arbitrary dimensions and signatures. The corresponding equations are particularly elegant when the internal space supports a global Killing parallelization. Assuming this imposes the generalized 'spacetime' to be maximally symmetric with holonomy in the unitary quaternionic group Sp(d/4). Recalling an analogous result for the complex case, we conclude that all special manifolds with constant properly 'holonomy-related' sectional curvature, are in natural correspondence with conformally flat, possibly non-Abelian, Kaluza-Klein spaces.
Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-22
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes. PMID:26849608
Non-Abelian geometric phase and long-range atomic forces
NASA Technical Reports Server (NTRS)
Zygelman, B.
1990-01-01
It is shown how gauge fields, or geometric phases, manifest as observable effects in both bound and free diatom systems. It is shown that, in addition to altering energy splittings in bound systems, geometric phases induce transitions in levels separated by a finite-energy gap. An example is given where the non-Abelian gauge field couples nondegenerate electronic levels in a diatom. This gauge-field coupling gives rise to an observable effect. It is shown that when the diatom is 'pulled apart', the non-Abelian geometric phase manifests as a long-range atomic force.
The problem with false vacuum Higgs inflation
Fairbairn, Malcolm; Grothaus, Philipp; Hogan, Robert E-mail: philipp.grothaus@kcl.ac.uk
2014-06-01
We investigate the possibility of using the only known fundamental scalar, the Higgs, as an inflaton with minimal coupling to gravity. The peculiar appearance of a plateau or a false vacuum in the renormalised effective scalar potential suggests that the Higgs might drive inflation. For the case of a false vacuum we use an additional singlet scalar field, motivated by the strong CP problem, and its coupling to the Higgs to lift the barrier allowing for a graceful exit from inflation by mimicking hybrid inflation. We find that this scenario is incompatible with current measurements of the Higgs mass and the QCD coupling constant and conclude that the Higgs can only be the inflaton in more complicated scenarios.
Gauge-Higgs EW and grand unification
NASA Astrophysics Data System (ADS)
Hosotani, Yutaka
2016-07-01
Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase 𝜃H in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for 𝜃H < 0.1, and predicts Z‧ bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.
Higgs coupling measurements at the LHC
NASA Astrophysics Data System (ADS)
Englert, Christoph; Kogler, Roman; Schulz, Holger; Spannowsky, Michael
2016-07-01
Due to the absence of tantalising hints for new physics during the LHC's Run 1, the extension of the Higgs sector by dimension-six operators will provide the new phenomenological standard for searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant dimension-six operators in a global and correlated fit. We show in how far these constraints can be improved by new Higgs channels becoming accessible at higher energy and luminosity, both through inclusive cross sections as well as through highly sensitive differential distributions. This allows us to discuss the sensitivity to new effects in the Higgs sector that can be reached at the LHC if direct hints for physics beyond the SM remain elusive. We discuss the impact of these constraints on well-motivated BSM scenarios.
The Minimal Supersymmetric Fat Higgs Model
Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi
2003-11-26
We present a calculable supersymmetric theory of a composite"fat'" Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.
Minimal Composite Higgs Models at the LHC
Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo
2014-06-26
We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the “partial compositeness” paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Z b ¯ b coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.
New HiggsBounds from LEP and the Tevatron
Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.
2010-02-10
We review the program HiggsBounds that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. We explicitly list the bounds that have been added after the first release of HiggsBounds.
Vortices and superfields on a graph
Kan, Nahomi; Kobayashi, Koichiro; Shiraishi, Kiyoshi
2009-08-15
We extend the dimensional deconstruction by utilizing the knowledge of graph theory. In the dimensional deconstruction, one uses the moose diagram to exhibit the structure of the 'theory space'. We generalize the moose diagram to a general graph with oriented edges. In the present paper, we consider only the U(1) gauge symmetry. We also introduce supersymmetry into our model by use of superfields. We suppose that vector superfields reside at the vertices and chiral superfields at the edges of a given graph. Then we can consider multivector, multi-Higgs models. In our model, [U(1)]{sup p} (where p is the number of vertices) is broken to a single U(1). Therefore, for specific graphs, we get vortexlike classical solutions in our model. We show some examples of the graphs admitting the vortex solutions of simple structure as the Bogomolnyi solution.
Vortices and superfields on a graph
NASA Astrophysics Data System (ADS)
Kan, Nahomi; Kobayashi, Koichiro; Shiraishi, Kiyoshi
2009-08-01
We extend the dimensional deconstruction by utilizing the knowledge of graph theory. In the dimensional deconstruction, one uses the moose diagram to exhibit the structure of the “theory space.” We generalize the moose diagram to a general graph with oriented edges. In the present paper, we consider only the U(1) gauge symmetry. We also introduce supersymmetry into our model by use of superfields. We suppose that vector superfields reside at the vertices and chiral superfields at the edges of a given graph. Then we can consider multivector, multi-Higgs models. In our model, [U(1)]p (where p is the number of vertices) is broken to a single U(1). Therefore, for specific graphs, we get vortexlike classical solutions in our model. We show some examples of the graphs admitting the vortex solutions of simple structure as the Bogomolnyi solution.
Vorticity is a marker of right ventricular diastolic dysfunction.
Fenster, Brett E; Browning, James; Schroeder, Joyce D; Schafer, Michal; Podgorski, Chris A; Smyser, Jamie; Silveira, Lori J; Buckner, J Kern; Hertzberg, Jean R
2015-09-15
Right ventricular diastolic dysfunction (RVDD) is an important prognostic indicator in pulmonary arterial hypertension (PAH). RV vortex rings have been observed in healthy subjects, but their significance in RVDD is unknown. Vorticity, the local spinning motion of an element of fluid, may be a sensitive measure of RV vortex dynamics. Using four-dimensional (4D) flow cardiac magnetic resonance imaging (CMR), we investigated the relationship between right heart vorticity with echocardiographic indexes of RVDD. Thirteen (13) PAH subjects and 10 controls underwent same-day 4D flow CMR and echocardiography. RV diastolic function was assessed using trans-tricuspid valve (TV) early (E) and late (A) velocities, E/A ratio, and e' and a' tissue Doppler velocities. RV and right atrial (RA) integrated mean vorticity was calculated for E and A-wave filling periods using 4D datasets. Compared with controls, A-wave vorticity was significantly increased in RVDD subjects in both the RV [2343 (1,559-3,295) vs. 492 (267-2,649) 1/s, P = 0.028] and RA [30 (27-44) vs. 9 (5-27) 1/s, P = 0.005]. RA E vorticity was significantly decreased [13 (7-22) vs. 28 (15-31) 1/s, P = 0.038] in RVDD. E-wave vorticity correlated TV e', E-,and TV E/A (P < 0.05), and A-wave vorticity associated with both TV A and E/A (P < 0.02). RVDD is associated with alterations in E- and A-wave vorticity, and vorticity correlates with multiple echocardiographic markers of RVDD. Vorticity may be a robust noninvasive research tool for the investigation of RV fluid and tissue mechanical interactions in PAH. PMID:26254331
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Large-deviation statistics of vorticity stretching in isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry L.; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Reλ=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor. PMID:27078458
Standard electroweak interactions and Higgs bosons
Cox, B.; Gilman, F.J.
1984-09-01
In the standard model, only one basic component remains to be found: the Higgs boson. The specifics of Higgs boson production and detection, with decay to t anti t and a particular t quark mass range in mind, have not been examined in detail. As such, the working group on Standard Electroweak Interactions and Higgs Bosons at this meeting decided to concentrate on Higgs boson production and detection at SSC energies in the particular case where the Higgs mass is in the range so as to make t anti t quark-antiquark pairs the dominant decay mode. The study of this case, that of the so-called intermediate mass Higgs, had already been launched in the Berkeley PSSC Workshop on Electroweak Symmetry Breaking, and was continued and extended here. The problems of t quark jet identification and detection efficiency and the manner of rejection of background (especially from b quark jets) with realistic detectors then occupied much of the attention of the group. The subject of making precise measurements of parameters in the standard model at SSC energies is briefly examined. Then we delve into the Higgs sector, with an introduction to the neutral Higgs of the standard model together with its production cross-sections in various processes and the corresponding potential backgrounds. A similar, though briefer, discussion for a charged Higgs boson (outside the Standard Model) follows. The heart of the work on identifying and reconstructing the t and then the Higgs boson in the face of backgrounds is discussed. The problems with semileptonic decays, low energy jet fragments, mass resolution, and b-t discrimination all come to the fore. We have tried to make a serious step here towards a realistic assessment of the problems entailed in pulling a signal out of the background, including a rough simulation of calorimeter-detector properties. 25 references.
Sound Generation by Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Wang, Frank Y.
2003-01-01
This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.
Dynamics of coupled vortices in perpendicular field
Jain, Shikha; Novosad, Valentyn Fradin, Frank Y.; Pearson, John E.; Bader, Samuel D.
2014-02-24
We explore the coupling mechanism of two magnetic vortices in the presence of a perpendicular bias field by pre-selecting the polarity combinations using the resonant-spin-ordering approach. First, out of the four vortex polarity combinations (two of which are degenerate), three stable core polarity states are achieved by lifting the degeneracy of one of the states. Second, the response of the stiffness constant for the vortex pair (similar polarity) in perpendicular bias is found to be asymmetric around the zero field, in contrast to the response obtained from a single vortex core. Finally, the collective response of the system for antiparallel core polarities is symmetric around zero bias. The vortex core whose polarization is opposite to the bias field dominates the response.
Monitoring Wake Vortices for More Efficient Airports
NASA Technical Reports Server (NTRS)
2005-01-01
Wake vortices are generated by all aircraft during flight. The larger the aircraft, the stronger the wake, so the Federal Aviation Administration (FAA) separates aircraft to ensure wake turbulence has no effect on approaching aircraft. Currently, though, the time between planes is often larger than it needs to be for the wake to dissipate. This unnecessary gap translates into arrival and departure delays, but since the wakes are invisible, the delays are nearly inevitable. If, however, the separation between aircraft can be reduced safely, then airport capacity can be increased without the high cost of additional runways. Scientists are currently studying these patterns to identify and introduce new procedures and technologies that safely increase airport capacity. NASA, always on the cutting edge of aerospace research, has been contributing knowledge and testing to these endeavors.
Geometric investigations of a vorticity model equation
NASA Astrophysics Data System (ADS)
Bauer, Martin; Kolev, Boris; Preston, Stephen C.
2016-01-01
This article consists of a detailed geometric study of the one-dimensional vorticity model equation which is a particular case of the generalized Constantin-Lax-Majda equation. Wunsch showed that this equation is the Euler-Arnold equation on Diff (S1) when the latter is endowed with the right-invariant homogeneous H ˙ 1 / 2-metric. In this article we prove that the exponential map of this Riemannian metric is not Fredholm and that the sectional curvature is locally unbounded. Furthermore, we prove a Beale-Kato-Majda-type blow-up criterion, which we then use to demonstrate a link to our non-Fredholmness result. Finally, we extend a blow-up result of Castro-Córdoba to the periodic case and to a much wider class of initial conditions, using a new generalization of an inequality for Hilbert transforms due to Córdoba-Córdoba.
Dynamic Assembly of Magnetic Colloidal Vortices.
Mohorič, Tomaž; Kokot, Gašper; Osterman, Natan; Snezhko, Alexey; Vilfan, Andrej; Babič, Dušan; Dobnikar, Jure
2016-05-24
Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications. PMID:27128501
Computational simulations of vorticity enhanced diffusion
NASA Astrophysics Data System (ADS)
Vold, Erik L.
1999-11-01
Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.
Dynamics of Giant Planet Polar Vortices
NASA Astrophysics Data System (ADS)
Brueshaber, Shawn R.; Sayanagi, Kunio M.
2016-10-01
The polar atmospheres of the giant planets have come under increasing interest since a compact, warm-core, stable, cyclonic polar vortex was discovered at each of Saturn's poles. In addition, the south pole of Neptune appears to have a similar feature, and Uranus' north pole is exhibiting activity that could indicate the formation of a polar vortex. We investigate the formation and maintenance of these giant planet polar vortices by varying several key atmospheric dynamics parameters in a forced-dissipative, 1.5-layer shallow water model. Our simulations are run using the EPIC (Explicit Planetary Isentropic Coordinate) global circulation model, to which we have added a gamma-plane rectangular grid option appropriate for simulating polar atmospheric dynamics.In our numerical simulations, we vary the atmospheric deformation radius, planetary rotation rate, storm forcing intensity, and storm vorticity (cyclone-to-anticyclone) ratio to determine what combination of values favors the formation of a polar vortex. We find that forcing the atmosphere by injecting small-scale mass perturbations ("storms") to form either all cyclones, all anticyclones, or equal numbers of both, may all result in a cyclonic polar vortex. Additionally, we examine the role of eddy momentum convergence in the intensification and maintenance of a polar cyclone.Our simulation results are applicable to understanding all four of the solar system giant planets. In the future, we plan to expand our modeling effort with a more realistic 3D primitive equations model, also with a gamma-plane rectangular grid using EPIC. With our 3D primitive equations model, we will study how various vertical atmospheric stratification structures influence the formation and maintenance of a polar cyclone. While our shallow-water model only involves storms of a single layer, a 3D primitive equations model allows us to study how storms of finite vertical extent and at differing levels in the atmosphere may further favor
Higgs pair productions in the CP-violating two-Higgs-doublet model
NASA Astrophysics Data System (ADS)
Bian, Ligong; Chen, Ning
2016-09-01
In this work, we study the SM-like Higgs pair productions in the framework of the general CP-violating two-Higgs-doublet model. Several constraints are imposed to the model sequentially, including the SM-like Higgs boson signal fits, the precise measurements of the electric dipole moments, the perturbative unitarity and stability bounds to the Higgs potential, and the most recent LHC searches for the heavy Higgs bosons. We show how the CP-violating mixing angles are related to the Higgs cubic self couplings in this setup. Based on these constraints, we suggest benchmark models for the future high-energy collider searches for the Higgs pair productions. The e + e - colliders operating at √{s} = (500 GeV, 1 TeV) are capable of measuring the Higgs cubic self couplings of the benchmark models directly. Afterwards, we estimate the cross sections of the resonance contributions to the Higgs pair productions for the benchmark models at the future LHC and SppC/Fcc-hh runs. Other possible decay modes for the heavy Higgs bosons are also discussed.
Visualization of vorticity and vortices in wall-bounded turbulent flows.
Helgeland, Anders; Pettersson Reif, B Anders; Andreassen, Øyvind; Wasberg, Carl Erik
2007-01-01
This study was initiated by the scientifically interesting prospect of applying advanced visualization techniques to gain further insight into various spatio-temporal characteristics of turbulent flows. The ability to study complex kinematical and dynamical features of turbulence provides means of extracting the underlying physics of turbulent fluid motion. The objective is to analyze the use of a vorticity field line approach to study numerically generated incompressible turbulent flows. In order to study the vorticity field, we present a field line animation technique which uses a specialized particle advection and seeding strategy. Efficient analysis is achieved by decoupling the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. Multifield visualizations are obtained using a flexible volume rendering framework which is presented in this paper. Vorticity field lines have been employed as indicators to provide a means to identify "ejection" and "sweep" regions; two particularly important spatio-temporal events in wall-bounded turbulent flows. Their relation to the rate of turbulent kinetic energy production and viscous dissipation, respectively, have been identified. PMID:17622687
Liu, Ying
2015-11-30
This project deals with odd-parity superconductor Sr_{2}RuO_{4} and related material systems, aiming at understanding the unconventional nature of superconductivity in this material. An odd-parity superconductor is expected to feature a novel topological object, the half-flux-quantum vortex that hosts a Majorana anyons. Majorana anyons carry non-Abelian statistics that can be used are the building block for constructing a fault-tolerated topological quantum computer. Half-flux-quantum vortices form in an odd-parity superconductor because of the availability of charge neutral spin supercurrent in addition to the normal supercurrent. Half-height magnetization steps were found in a cantilever magnetometry measurement of doubly connected mesoscopic samples of Sr_{2}RuO_{4} in the presence of an in-plane magnetic field (J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart, and Y. Maeno, Science 331, 186 (2011)), which suggests the presence of a half-flux-quantum (Φ_{0}/2 = h/4e) state. Evidence for half flux quantum states, which can be viewed as coreless half vortices, was obtained in mesoscopic samples of Sr_{2}RuO_{4} in the torque magnetomitry measurements. However, the existence of such an important property has not been confirmed by any other independent measurement.
Black holes and Higgs stability
NASA Astrophysics Data System (ADS)
Tetradis, Nikolaos
2016-09-01
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Evolution of Imposed Vortices Over Concave Surfaces in Hypervelocity Flow
NASA Astrophysics Data System (ADS)
Flaherty, William; Austin, Joanna
2012-11-01
Steamwise oriented vortices in the boundary layer of a hypersonic flow have the potential to affect heat transfer and skin friction significantly. These effects can be exacerbated by the addition of extra strain rates associated with concave surface curvature. Vortices can either occur naturally (in the form of Goertler vortices), or be introduced by some form of mechanical distortion (such as a protuberance). In this work we experimentally investigate the effect of concave surface curvature on the propagation of imposed vortices. These experiments are carried out in the Hypervelocity Expansion Tube at the University of Illinois. This facility is capable of generating flows with high enthalpies (4-9MJ/kg) and Mach numbers (3-7). Using a novel, fast-response pressure sensitive paint we are able to observe the development of vortices which are induced using diamond-shaped vortex generators. Models with varying amount of surface curvature (encompassing Goertler numbers between 10-22) are used to investigate the dynamics of vortex propagation and interaction. Our results show that the vortices remain attached and of constant strength for 10-12cm (80 boundary layer thicknesses) along the curved surfaces, while on flat plates the vortices are no longer apparent within 6 cm downstream.
Vorticity Generation on a Flat Surface in 3D Flows
NASA Astrophysics Data System (ADS)
Casciola, C. M.; Piva, R.; Bassanini, P.
1996-12-01
Vortex methods, based on the splitting into Euler and Stokes operators, have been successfully adopted in numerical solutions of three-dimensional Navier-Stokes equations in free-space. Here we deal with their application to flows bounded by solid walls, discussing in particular the boundary conditions for vorticity and their approximation. In two dimensions this has been accomplished by introducing a vortex sheet at the wall, determined by the local slip-velocity, as an approximation of the vorticity source. For three-dimensional flows, we analyze in the context of the Stokes substep the integral equation for the vorticity source and its connection with the creation algorithm adopted in vortex methods. The present analysis leads to a formulation which shows the connection between the exact vorticity source at the wall and the discrete vorticity creation operator adopted in the Chorin-Marsden formula. In particular, the slip velocity at the wall is identified as an approximate solution of the integral equation for the vorticity source and the corresponding error estimate is also discussed. Besides showing the consistency of this approximation, we indicate a numerical procedure which provides a wall-generation of solenoidal vorticity. This is a crucial issue for an accurate application of vortex methods to three-dimensional flows.
The motion of point vortices on closed surfaces
Dritschel, D. G.; Boatto, S.
2015-01-01
We develop a mathematical framework for the dynamics of a set of point vortices on a class of differentiable surfaces conformal to the unit sphere. When the sum of the vortex circulations is non-zero, a compensating uniform vorticity field is required to satisfy the Gauss condition (that the integral of the Laplace–Beltrami operator must vanish). On variable Gaussian curvature surfaces, this results in self-induced vortex motion, a feature entirely absent on the plane, the sphere or the hyperboloid. We derive explicit equations of motion for vortices on surfaces of revolution and compute their solutions for a variety of surfaces. We also apply these equations to study the linear stability of a ring of vortices on any surface of revolution. On an ellipsoid of revolution, as few as two vortices can be unstable on oblate surfaces or sufficiently prolate ones. This extends known results for the plane, where seven vortices are marginally unstable (Thomson 1883 A treatise on the motion of vortex rings, pp. 94–108; Dritschel 1985 J. Fluid Mech. 157, 95–134 (doi:10.1017/S0022112088003088)), and the sphere, where four vortices may be unstable if sufficiently close to the equator (Polvani & Dritschel 1993 J. Fluid Mech. 255, 35–64 (doi:10.1017/S0022112093002381)).
Determining Grain-scale Vorticity Axes from Crystallographic Orientation Data
NASA Astrophysics Data System (ADS)
Michels, Z. D.; Kruckenberg, S. C.; Davis, J. R.; Tikoff, B.
2015-12-01
Aggregates deformed by crystal plastic mechanisms often contain grains that exhibit crystallographic distortion (e.g., kinking, undulose extinction, subgrain development). In such grains, crystallographic orientations are typically dispersed along small circles on lower hemisphere equal-area plots. Thus, we consider that an intragranular dispersion axis represents a grain-scale axis of material rotation, and its position coincides with that of a highly localized vorticity axis. We present a new method for determining the position of a grain-scale vorticity axis from intragranular crystallographic orientation data. This method leverages a method of rotational statistics known as principal geodesic analysis to identify a single best-fit rotational axis that matches the rotational dispersion of crystallographic orientations in a deformed grain. We further demonstrate that populations of such grain-scale vorticity axes can be used to infer a preferred vorticity axis for volumes of deformed aggregates. As an example of this type of application, we calculate intragranular vorticity axes from a sample-scale selection of grains (i.e., all the grains mapped in an EBSD orientation map) and use kernel density estimation to identify a preferred, sample-scale vorticity axis. The results of our bulk analysis match the vorticity axis inferred in previous studies of rocks deformed in the same shear zones.
Heat transfer enhancement using tip and junction vortices
NASA Astrophysics Data System (ADS)
Gentry, Mark Cecil
1998-10-01
Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to
NMSSM interpretations of the observed Higgs signal
NASA Astrophysics Data System (ADS)
Domingo, Florian; Weiglein, Georg
2016-04-01
While the properties of the signal that was discovered in the Higgs searches at the LHC are consistent so far with the Higgs boson of the Standard Model (SM), it is crucial to investigate to what extent other interpretations that may correspond to very different underlying physics are compatible with the current results. We use the Next-to-Minimal Supersymmetric Standard Model (NMSSM) as a well-motivated theoretical framework with a sufficiently rich Higgs phenomenology to address this question, making use of the public tools HiggsBounds and HiggsSignals in order to take into account comprehensive experimental information on both the observed signal and on the existing limits from Higgs searches at LEP, the TeVatron and the LHC. We find that besides the decoupling limit resulting in a single light state with SM-like properties, several other configurations involving states lighter or quasi-degenerate with the one at about 125 GeV turn out to give a competitive fit to the Higgs data and other existing constraints. We discuss the phenomenology and possible future experimental tests of those scenarios, and compare the features of specific scenarios chosen as examples with those arising from a more global fit.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2014-10-01
It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.
A Note on the Abelian Sandpile in ±b{{Z}}d
NASA Astrophysics Data System (ADS)
Tyomkyn, Mykhaylo
2012-09-01
We analyze the abelian sandpile model on ℤ d for the starting configuration of n particles in the origin and 2 d-2 particles otherwise. We give a new short proof of the theorem of Fey, Levine and Peres (J. Stat. Phys. 198:143-159, 2010) that the radius of the toppled cluster of this configuration is O( n 1/ d ).
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
On the quantum corrections to two-dimensional (1,0)-supersymmetric Abelian gauge models
Almeida, C.A.S.; De Oliveira, M.W. ); Kneipp, M.A.C. )
1991-05-30
In this paper the machinery of (1,0)-supergravity is employed to evaluate 1-loop corrections to the effective action and chiral symmetry supercurrent in the framework of an (1,0)-supersymmetric Abelian gauge model. As a by-product, a dynamically-generated mass is found out for the gauge (1,0)-superconductions.
Kinetic study of ion-acoustic plasma vortices
Khan, S. A.; Aman-ur-Rehman; Mendonca, J. T.
2014-09-15
The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.
Stability and nesting of dissipative vortex solitons with high vorticity
NASA Astrophysics Data System (ADS)
Aleksić, B. N.; Aleksić, N. B.; Skarka, V.; Belić, M.
2015-04-01
Using the variational method extended to dissipative systems and numerical simulations, an analytical stability criterion is established allowing the determination of stability domains of parameters for vortices with high topological charge S. Parameters from these domains are used as inputs for numerical self-generation of previously unexplored coexisting stable vortex solitons with topological charge ranging from S =3 to S =20 . The nesting of low-vorticity solitons within those of higher vorticity is discovered. Such a self-organized structuring of light allows for selective dynamic nanophotonic tweezing.
Origin, Evolution, and Imaging of Vortices in Atomic Processes
Macek, Joseph H; Sternberg, James; Ovchinnikov, Serguei Yurevich; Lee, Teck G; Schultz, David Robert
2009-01-01
Vortices are usually associated with systems containing large numbers of particles. Of particular topical interest though are those formed within atomic-scale wave functions and observed in macroscopic systems such as superfluids and quantum condensates. We uncover them here in one of the most fundamental quantum systems consisting of just one electron and two protons. Moreover, the results of novel simulations of the dynamics of this system reveal previously unknown mechanisms of angular momentum transfer and new ways to image atomic-scale quantized vortices at macroscopic distances. Probing of vortices and vortex-driven dynamics in quantum systems is thereby illustrated.
Dynamics of circular arrangements of vorticity in two dimensions.
Swaminathan, Rohith V; Ravichandran, S; Perlekar, Prasad; Govindarajan, Rama
2016-07-01
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more
Dynamics of circular arrangements of vorticity in two dimensions
NASA Astrophysics Data System (ADS)
Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama
2016-07-01
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more