Science.gov

Sample records for aberdeen test center

  1. The Effect of Alternative Work Schedules (AWS) on Performance During Acquisition Based Testing at the U.S. Army Aberdeen Test Center

    DTIC Science & Technology

    2014-09-01

    Pickar Brad Naegle Melissa Steffen Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK i...Thomas Approved by: Charles Pickar Brad Naegle Melissa Steffen , U.S. Army Aberdeen Test Center William R...Melissa Steffen , for taking time out of their daily schedules to provide me with guidance, support and motivation during the execution of this project

  2. Aerosol tests conducted at Aberdeen Proving Grounds MD.

    SciTech Connect

    Brockmann, John E.; Lucero, Daniel A.; Servantes, Brandon Lee; Hankins, Matthew Granholm

    2012-06-01

    Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout the passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.

  3. Testing of Military Towbars

    DTIC Science & Technology

    2016-09-28

    test. Performance tests required for a complete towing analysis include the following: (1) Physical Characteristics (TOP 02-2-5004). (2...S) AND ADDRESS(ES) Automotive Directorate (TEDT-AT-AD) U.S. Army Aberdeen Test Center 400 Colleran Rd Aberdeen Proving Ground , MD 21005 8...U.S. Army Test and Evaluation Command 2202 Aberdeen Boulevard Aberdeen Proving Ground , MD 21005-5001 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR

  4. Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    DTIC Science & Technology

    2012-02-27

    The four landforms that the Laguna Level Trails West course crosses are dissected fan , alluvial fan and terrace, and wash. The surface cover of the... fan , alluvial terrace, and alluvial wash. The surface cover of the upper 5 cm (2 in.) of these landforms are mostly sub-rounded to angular gravel...approximately 6.3 km (3.9 mi) that crosses surfaces composed mostly of silt and sand with gravel. The percent mean dust content of the alluvial fan generally

  5. Personnel Management for Executives, Army Regional Training Center, Central Atlantic Region, Aberdeen Proving Ground, Maryland,

    DTIC Science & Technology

    1986-01-01

    HAVE PATIENCE ..TO WATCH FOR NEW ESSENTIALS .TO KEEP TRACK OF ESSENTIAL DETAIL ..TO TACKLE DIFFICULTIES WITH ZEST ..TO FACE DIFFICULTIES WITH REALISM .TO...AD-RI69 63B PERSONNEL MANAGEMENT FOR EXECUTIVES RMY REGIONAL i/ I TRINING CENTER CENTRAL..(U) BAR AND BAR COMMUINICATION I CONSULTANS AUSTIN TX N...BARR 1996 DAADSS-B6-M-L254 IUNCLASSIFIED F/O 5/10 L i flfllfllfllfllmfofl 11111 __________ 1_ 113- 41 5 1.8. 1*25 012 PERSONNEL MANAGEMENT FOR

  6. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    USGS Publications Warehouse

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  7. Test Control Center exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Have you ever wondered how the engineers at John C. Stennis Space Center in Hancock County, Miss., test fire a Space Shuttle Main Engine? The Test Control Center exhibit at StenniSphere can answer your questions by simulating the test firing of a Space Shuttle Main Engine. A recreation of one of NASA's test control centers, the exhibit explains and portrays the 'shake, rattle and roar' that happens during a real test firing.

  8. Test Control Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the test observation periscope in the Test Control Center exhibit in StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., visitors can observe a test of a Space Shuttle Main Engine exactly as test engineers might see it during a real engine test. The Test Control Center exhibit exactly simulates not only the test control environment, but also the procedure of testing a rocket engine. Designed to entertain while educating, StenniSphere includes informative dispays and exhibits from NASA's lead center for rocket propulsion and remote sensing applications. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  9. 15. OLD ROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN (EAST ABERDEEN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OLD ROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN (EAST ABERDEEN) One mile E of Aberdeen, 1000 ft. N of (1978) U.S. 45 bridge. Oblique view of bridge, in early 1900s. Credit: Evans Memorial Library, Aberdeen, MS. No date. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  10. Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using Calibration Lights

    DTIC Science & Technology

    2016-04-04

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Survivability/Lethality Division (TEDT-AT-SLB) U.S. Army Aberdeen Test Center 400...ADDRESS(ES) Range Infrastructure Division (CSTE-TM) U.S. Army Test and Evaluation Command 2202 Aberdeen Boulevard Aberdeen Proving Ground, MD 21005

  11. ERDC-CERL LD-870 Download Program Developed for Aberdeen Test Center: User’s Manual

    DTIC Science & Technology

    2007-05-01

    noise monitors. It provides a trouble- shooting guide for resolving known issues with the monitoring system and contains information regarding modem...On-hook – A telephone is on-hook when its receiver is placed in the cra - dle. The telephone is not using the transmission line in this state and is

  12. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  13. Design and Performance of an Enhanced Bioremediation Pilot Test in a Tidal Wetland Seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Majcher, Emily H.; Lorah, Michelle M.; Phelan, Daniel J.; McGinty, Angela L.

    2009-01-01

    Because of a lack of available in situ remediation methods for sensitive wetland environments where contaminated groundwater discharges, the U.S. Geological Survey, in cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, conceived, designed, and pilot tested a permeable reactive mat that can be placed horizontally at the groundwater/surface-water interface. Development of the reactive mat was part of an enhanced bioremediation study in a tidal wetland area along West Branch Canal Creek at Aberdeen Proving Ground, where localized areas of preferential discharge (seeps) transport groundwater contaminated with carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, and 1,1,2,2-tetrachloroethane from the Canal Creek aquifer to land surface. The reactive mat consisted of a mixture of commercially available organic- and nutrient-rich peat and compost that was bioaugmented with a dechlorinating microbial consortium, WBC-2, developed for this study. Due to elevated chlorinated methane concentrations in the pilot test site, a layer of zero-valent iron mixed with the peat and compost was added at the base of the reactive mat to promote simultaneous abiotic and biotic degradation. The reactive mat for the pilot test area was designed to optimize chlorinated volatile organic compound degradation efficiency without altering the geotechnical and hydraulic characteristics, or creating undesirable water quality in the surrounding wetland area, which is referred to in this report as achieving geotechnical, hydraulic, and water-quality compatibility. Optimization of degradation efficiency was achieved through the selection of a sustainable organic reactive matrix, electron donor, and bioaugmentation method. Consideration of geotechnical compatibility through design calculations of bearing capacity, settlement, and geotextile selection showed that a 2- to 3-feet tolerable thickness of the mat was possible, with 0.17 feet settlement predicted for

  14. The National Center Test for University Admissions

    ERIC Educational Resources Information Center

    Watanabe, Yoshinori

    2013-01-01

    This article describes the National Center Test for University Admissions, a unified national test in Japan, which is taken by 500,000 students every year. It states that implementation of the Center Test began in 1990, with the English component consisting only of the written section until 2005, when the listening section was first implemented…

  15. Welcome to the Saclay Propeller Testing Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The history, organization, purpose, and activities of the Saclay Propeller Testing Center is described. A list is provided of all facilities, current and planned, and the types of tests done in each facility are summarized.

  16. Contamination source review for Building E5974, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Billmark, K.A.; Emken, M.E.; O`Reilly, D.P.; Smits, M.P.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report documents the results of a contamination source review of Building E5974 at the Aberdeen Proving Ground (APG) in Maryland. The primary mission at APG has been the testing and evaluation of US Army warfare materials. Since its beginning in 1917, the Edgewood Area of APG has been the principal location for chemical warfare agent research, development, and testing in the US. APG was also used for producing chemical warfare agents during both world wars, and it has been a center for the storage of chemical warfare material. An attempt was made to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples.

  17. Test Reviewing at the Buros Center for Testing

    ERIC Educational Resources Information Center

    Carlson, Janet F.; Geisinger, Kurt F.

    2012-01-01

    The test review process used by the Buros Center for Testing is described as a series of 11 steps: (1) identifying tests to be reviewed, (2) obtaining tests and preparing test descriptions, (3) determining whether tests meet review criteria, (4) identifying appropriate reviewers, (5) selecting reviewers, (6) sending instructions and materials to…

  18. Station Robotics Testing at Johnson Space Center

    NASA Video Gallery

    At the Space Vehicle Mockup Facility at Johnson Space Center, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfer orbital repla...

  19. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  20. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  1. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal.

  2. Reading standards in Aberdeen, 1962-72

    ERIC Educational Resources Information Center

    Nisbet, J.; And Others

    1974-01-01

    The NFER findings on recent trends in reading standards are confirmed by this study. While in Aberdeen at the age of eight years, the standard of performance in reading comprehension is relatively unchanged, at age 11 there has been a slight decline in average standard. (Author)

  3. Employer-Student Workshops: The Aberdeen Experience.

    ERIC Educational Resources Information Center

    Heard, Sue; Farrington, John

    1998-01-01

    Outlines much of the work accomplished by the University of Aberdeen geography department and an employer-liaison group. The group, in conjunction with local businesses, prepared seminars on developing and connecting academic geographic skills to the employment market. Lists employers involved and summarizes students' responses to the seminars.…

  4. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  5. Establishment of Small Wind Regional Test Centers

    SciTech Connect

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-01-01

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options, but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. During the past few years, DOE, the National Renewable Energy Laboratory (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard, AWEA Standard 9.1 - 2009, in December 2009. The Small Wind Certification Council (SWCC) and Intertek, North American SWT certification bodies, began accepting applications for certification to the AWEA standard in 2010. To reduce certification testing costs, DOE and NREL are providing financial and technical assistance for an initial round of tests at four SWT test sites, which were selected through a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A and M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontracts with DOE and NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing

  6. Vehicle Test Facilities at Aberdeen Proving Ground

    DTIC Science & Technology

    1981-07-06

    which affects wheeled vehicles mainly be splash. Course 2 is laid out in a loop of moderately irregular terrain. The native soil includes Sassafras ...loamu, a silty loam with 17.3 percent clay content, and Sassafras silt loam, a silty loam with less than 15 percent clay. Surfaces range from smooth to

  7. 14. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN Reach by foot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN Reach by foot from E end of Vine St. St. Louis and San Francisco RR bridge. Bridge built 1887, replaced, 1969. Credit: Evans Memorial Library, Aberdeen, Ms. No date. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  8. Contamination source review for Building E5978, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Mosqueda, G.; Dougherty, J.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report documents the results of a contamination source review of Building E5978 at the Aberdeen Proving Group (APG) in Maryland. The primary mission at APG has been the testing and evaluation of US Army warfare materials. Since its beginning in 1917, the Edgewood Area of APG has been the principal location for chemical warfare agent research, development, and testing in the US. APG was also used for producing chemical warfare agents during both world wars, and it has been a center for the storage of chemical warfare material. An attempt was made to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples for the presence of volatile organic compounds.

  9. Contamination source review for Building E3641, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Zellmer, S.D.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report documents the results of a contamination source review of Building E3641 at the Aberdeen Proving Ground (APG) in Maryland. The primary mission at APG has been the testing and evaluation of US Army warfare materials. Since its beginning in 1917, the Edgewood Area of APG has been the principal location for chemical warfare agent research, development, and testing in the US. APG was also used for producing chemical warfare agents during both world wars, and it has been a center for the storage of chemical warfare material. An attempt was made to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building.

  10. PSP Testing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Hand, L. A.; Schairer, E. T.; Mehta, R. D.; George, Michael W. (Technical Monitor)

    1997-01-01

    Pressure sensitive paints (PSPs) are now used routinely for measuring surface pressures on wind tunnel models at transonic and supersonic Mach numbers. The method utilizes a surface coating containing fluorescent or phosphorescent materials, the brightness of which varies with the local air pressure on the surface. The present paper will summarize PSP activities (in progress and planned) at the NASA Ames Research Center. One of the main accomplishments at NASA Ames has been the development of a PSP measurement system that is production testing capable. This system has been integrated successfully into the large-scale wind tunnel facilities at Ames. There are several problems related to PSP testing which are unique to large-scale wind tunnel testing. The hardware is often difficult to set-up and must operate under harsh conditions (e.g. high pressures and low temperatures). The data acquisition and reduction times need to be kept to a minimum so that the overall wind tunnel productivity is not compromised. The pressure sensitive paints needs to be very robust; the paints must readily adhere to different surfaces with varying geometries and remain functional for long running times. The paint must have well understood, and preferably minimal, temperature sensitivity since fine control of the tunnel temperature is not easily achievable in the larger wind tunnels. In an effort to improve the overall accuracy of the PSP technique, we are currently evaluating some referenced pressure sensitive paints which contain a pressure- independent luminophor in addition to the one which is affected by the surface pressure. The two luminophors are chosen so that their emission wavelengths are somewhat different. Then by taking two 'wind-on' images with either two cameras (with different filters) or one camera with a rotating filter system, the need for 'wind-off' images can be eliminated. The ratio of the two wind-on images accounts for nonuniform lighting and model motion problems

  11. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  12. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema

    Felker, Fort

    2016-07-12

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  13. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    2 Table I Major Current Methods of Nondestructive Testing * RADIdCRAPHIC AND RADIOMETRIC TESTING X- rays Gamma rays Neutrons Filmless techniques...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...Date 0416 The Boeing Wichita Co. Bibliography $ 90 2/27/79 0417 FDA-WEAC Service Info. n/c 2/28/79 0418 Gull Airborne Instruments Tech. Inq. n/c 3/7

  14. Shuttle being tested at Marshall Center

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Ground vibration tests of the space shuttle vehicle performed to evaluate the structural dynamics and their effect on the control system of the shuttle are described. Test results are used to verify the system design and mathematical models that predict how the shuttle's control system will react to the much more severe vibrations expected during launch and flight into orbit. The test configurations, the test facility, and the dynamic test suspension system are among the topics discussed.

  15. Capabilities Report 2012, West Desert Test Center

    DTIC Science & Technology

    2012-03-12

    atmospheric conditions over the primary test ranges are very stable with the absence of storms , producing a consistent and reliable wind pattern...WSLAT methodology will determine if reliable agent-to-simulant correlation is maintained from chamber test data to field testing. Once operational...ovalbumin (OV), and smoke and dust . Although testing within the JABT does not replace field testing, it provides a controlled facility for instrument

  16. SSME testing technology at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Dill, Glenn

    1991-01-01

    An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.

  17. Aberdeen area fire training area hydrologic assessment, Aberdeen Proving Ground. Final report, September 1989-July 1991

    SciTech Connect

    Whitten, C.B.; Miller, S.P.; Derryberry, N.A.; Wade, R.

    1992-12-01

    In 1986, the US Environmental Protection Agency (EPA) issued a Hazardous Waste Management Permit to Aberdeen Proving Ground (APG), Maryland. The permit required a Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) of sites in the Aberdeen Area (AA) of APG. Recommendations from a draft RFA report suggested further investigations at the Fire Training Area (FTA). This study is in response to the recommendations. Three soil borings and twelve groundwater monitor wells were installed. Three rounds of groundwater sampling and analyses were conducted. APG lies in the Coastal Plain Physiographic Province which is underlain by sediments consisting of three major units, the Potomac Group, the Talbot Formation, and Recent (Holocene) sediments. The Lower Cretaceous sediments of the Potomac Group lie unconformably on the older Precambrian rocks. In the early 1960's fire training was initiated and training has been conducted as often as once a week. Trenches were ignited after being filled with oil and water. The exercises concluded in 1989. During the RFA shallow boring soil gas surveys were conducted for volatile organic compound (VOC) contamination at the FTA. Deeper borings were conducted for monitor wells and geologic mapping. Sampling and monitoring of groundwater, surface water, and soils was conducted. Analyses of groundwater from the monitor wells and two supply wells indicate the AFTA is contributing chemical contaminants to the upper aquifer, which is at a depth of approximately 30 feet below ground surface. ....Aberdeen Proving Ground, Maryland, Hydrogeology, Groundwater, Site characterization, Groundwater contamination.

  18. Field test of a center pivot irrigation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniformity of water distribution of a variable rate center pivot irrigation system was evaluated. This 4-span center pivot system was configured with 10 water application zones along its 233 m-long lateral. Two experiments were conducted for the uniformity tests. In one test, a constant water applic...

  19. Unexploded ordnance issues at Aberdeen Proving Ground: Background information

    SciTech Connect

    Rosenblatt, D.H.

    1996-11-01

    This document summarizes currently available information about the presence and significance of unexploded ordnance (UXO) in the two main areas of Aberdeen Proving Ground: Aberdeen Area and Edgewood Area. Known UXO in the land ranges of the Aberdeen Area consists entirely of conventional munitions. The Edgewood Area contains, in addition to conventional munitions, a significant quantity of chemical-munition UXO, which is reflected in the presence of chemical agent decomposition products in Edgewood Area ground-water samples. It may be concluded from current information that the UXO at Aberdeen Proving Ground has not adversely affected the environment through release of toxic substances to the public domain, especially not by water pathways, and is not likely to do so in the near future. Nevertheless, modest but periodic monitoring of groundwater and nearby surface waters would be a prudent policy.

  20. A consolidated environmental monitoring plan for Aberdeen Proving Ground, Maryland

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1997-04-01

    The US Army operates facilities in Edgewood and Aberdeen under several licenses from the Nuclear Regulatory Commission (NRC). Compliance with each license is time consuming and could potentially result in duplicated efforts to demonstrate compliance with existing environmental regulations. The goal of the ERM plan is to provide the sampling necessary to ensure that operations at Edgewood and Aberdeen are within applicable regulatory guidelines and to provide a means of ensuring that adverse effects to the environment are minimized. Existing sampling plans and environmental data generated from those plans are briefly reviewed as part of the development of the present ERM plan. The new ERM plan was designed to provide data that can be used for assessing risks to the environment and to humans using Aberdeen and Edgewood areas. Existing sampling is modified and new sampling is proposed based on the results of the long-term DU fate study. In that study, different environmental pathways were identified that would show transport of DU at Aberdeen. Those pathways would also be impacted by other radioactive constituents from Aberdeen and Edgewood areas. The ERM plan presented in this document includes sampling from Edgewood and Aberdeen facilities. The main radioactive constituents of concern at Edgewood are C, P, N, S, H, I, Co, Cs, Ca, Sr and U that are used in radiolabeling different compounds and tracers for different reactions and syntheses. Air and water sampling are the thrust of efforts at the Edgewood area.

  1. Depleted uranium risk assessment at Aberdeen Proving Ground

    SciTech Connect

    Ebinger, M.H.; Myers, O.B.; Kennedy, P.L.; Clements, W.H.

    1993-03-01

    The Environmental Science Group at Los Alamos and the Test and Evaluation Command (TECOM) are assessing the risk of depleted uranium (DU) testing at Aberdeen Proving Ground (APG). Conceptual and mathematical models of DU transfer through the APG ecosystem have been developed in order to show the mechanisms by which DU migrates or remains unavailable to different flora and fauna and to humans. The models incorporate actual rates of DU transfer between different ecosystem components as much as possible. Availability of data on DU transport through different pathways is scarce and constrains some of the transfer rates that can be used. Estimates of transfer rates were derived from literature sources and used in the mass-transfer models when actual transfer rates were unavailable. Objectives for this risk assessment are (1) to assess if DU transports away from impact areas; (2) to estimate how much, if any, DU migrates into Chesapeake Bay; (3) to determine if there are appreciable risks to the ecosystems due to DU testing; (4) to estimate the risk to human health as a result of DU testing.

  2. Depleted uranium risk assessment at Aberdeen Proving Ground

    SciTech Connect

    Ebinger, M.H. ); Myers, O.B.; Kennedy, P.L.; Clements, W.H. . Dept. of Fishery and Wildlife Biology)

    1993-01-01

    The Environmental Science Group at Los Alamos and the Test and Evaluation Command (TECOM) are assessing the risk of depleted uranium (DU) testing at Aberdeen Proving Ground (APG). Conceptual and mathematical models of DU transfer through the APG ecosystem have been developed in order to show the mechanisms by which DU migrates or remains unavailable to different flora and fauna and to humans. The models incorporate actual rates of DU transfer between different ecosystem components as much as possible. Availability of data on DU transport through different pathways is scarce and constrains some of the transfer rates that can be used. Estimates of transfer rates were derived from literature sources and used in the mass-transfer models when actual transfer rates were unavailable. Objectives for this risk assessment are (1) to assess if DU transports away from impact areas; (2) to estimate how much, if any, DU migrates into Chesapeake Bay; (3) to determine if there are appreciable risks to the ecosystems due to DU testing; (4) to estimate the risk to human health as a result of DU testing.

  3. Geophysics: Building E5282 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-08-01

    This report discusses Building E5282 which was one of 10 potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Magnetic surveys identified small, complicated, multiple anomalies west, north, and northeast of the building that may be caused by construction fill. Two underground storage tanks, at the northeast and southeast corners, were identified. A large magnetic anomaly complex east of the building was caused by aboveground pipes and unexploded ordnance fragments scattered at the surface. Electrical resistivity profiling showed a broad, conductive terrain superimposed over magnetic anomalies on the north and west. A broad, high-resistivity, nonmagnetic area centered 25 ft east of the building has an unknown origin, but it may be due to nonconductive organic liquids, construction fill, or a buried concrete slab; GPR imaging showed this area as a highly reflective zone at a depth of about 5 ft. The GPR data also showed a small-diameter pipe oriented north-south located east of the building.

  4. Geophysics: Building E5440 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Thompson, M.D.; McGinnis, M.G.

    1992-11-01

    Building E5440 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The results show several complex geophysical signatures. Isolated, one-point, magnetic anomalies surrounding the building may be associated with construction fill. A 10-ft-wide band of strongly magnetic positive anomalies bordering the north side of the building obliterates small magnetic sources that might otherwise be seen. A prominent magnetic nose'' extending northward from this band toward a standpipe at 100N,63E may be connected to an underground tank. The southeast corner of the site is underlain by a rectangular, magnetized source associated with strong radar images. A magnetic lineament extending south from the anomaly may be caused by a buried pipe; the anomaly itself may be caused by subsurface equipment associated with a manhole or utility access pit. A 2,500-gamma, positive magnetic anomaly centered at 0N,20E, which is also the location of a 12 [Omega]-m resistivity minimum, may be caused by a buried vault. It appears on radar imaging as a strong reflector.

  5. Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland

    SciTech Connect

    McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Miller, S.F.; Mandell, W.A.; Wrobel, J.

    1994-07-01

    Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling, outcrop mapping, and groundwater sampling and analyses. Suspected sources of near-surface contaminants were defined by magnetic and conductivity measurements. Negative conductivity anomalies may be associated with unlined trenches. Positive magnetic and conductivity anomalies outline suspected tanks and pipes. The anomalies of greatest concern are those spatially associated with a concrete slab that formerly supported a mobile clothing impregnating plant. Resistivity and conductivity profiling and depth soundings were used to identify an electrical anomaly extending through the surficial aquifer to the basal pleistocene unconformity, which was mapped by using seismic reflection methods. The anomaly may be representative of a contaminant plume connected to surficial sources. Major activities in the area included liquid rocket fuel tests, rocket fuel fire suppression tests, pyrotechnic material and smoke generator tests, and the use of solvents at a mobile clothing impregnating plant.

  6. Meeting on Solute/Solvent Interactions Held in Aberdeen Proving Ground, Maryland on May 29-30, 1991

    DTIC Science & Technology

    1992-01-01

    J. Taylor, Tetrahedxon Letters, 29, 1587 (1988). 6. G. M. Brown & 0. A. W. Strydom, Acta Crystallogr, Sewt. B 30,801 (1974). 7. P. Marsh & D. E...APPENDIX 3 ORGANIZATIONS OF AUTHORS IN THESE PROCEEDINGS Central Michigan University 49 Instituto de Quimica Fisica 33 La Sierra University, Riverside 71...Aberdeen Proving Gd, MD Joxe-Luis Abbud Christopher Cramer Instituto de Quimica Fisica SMCCR-RSP-C "Rocasolano" U.S. Army Chemical RD&E Center Conajo

  7. Battalion Combat Operations Center (COC) Test. Volume II. Test Report,

    DTIC Science & Technology

    1982-02-08

    reveal, perhaps, that item X can perform a task faster than item-Y. A utility assessment from an experienced, knowledgeable test participant, however...can ascertain whether or not item X can better enable him to accomplish his mission than item Y. 2.4 GENeRALIZED TEST FACILITY. The capabilities of...ATHE MIX D -IX AE4SY MIXES A & C MIX A .IX D M X D IMIX C RATHER DIFFICUJLT VERY DIFFICULT ABILITY TO ABILITY TO ABILITY TO CONTROL DATA EXPLOIT DATA

  8. Ecological effects of soil contamination at Aberdeen Proving Ground, Maryland

    SciTech Connect

    Kuperman, R.G.; Dunn, C.P. )

    1994-06-01

    Assessment of the ecological condition of contaminated soil was conducted in portions of the U.S. Army's Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. This area is covered by open fields, woods and nontidal marshes. Chemicals disposed of in open burning pits included methylphosphonothioic acid, dichlorodiethyl sulfide, and titanium tetrachloride and sulfur trioxide/chlorosulfonic acid. Previous soil analysis showed extensive surface soil contamination with metals, nitrate, PCBs and pesticides. This assessment included characterizing soil biota, biologically-mediated processes in soil and aboveground biomass. Field surveys of the soil invertebrate communities showed significant reductions in the total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local [open quotes]background[close quotes] area. Laboratory toxicity tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment.

  9. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  10. Space Chemical Propulsion Test Facilities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Urasek, Donald C.; Calfo, Frederick D.

    1993-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especially encouraged and often can be done in a cooperative manner that best uses the resources of all parties. An overview of the Lewis test facilities is presented.

  11. NASA Stennis Space Center Test Technology Branch Activities

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2000-01-01

    This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.

  12. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  13. Urban High School Students' Perspectives on Test-Centered Curriculum

    ERIC Educational Resources Information Center

    Wasserberg, Martin J.; Rottman, Amy

    2016-01-01

    The purpose of this study was to examine African American and Latino student perceptions on test-centered curricular protocols in the urban high school context. Data collection occurred through observations, classroom dialogue initiated by the researchers, and individual student interviews throughout an academic semester. Findings suggest that…

  14. Rocket Propulsion Testing at NASA's John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Schwer, Robert

    2005-01-01

    Viewgraph presentation on the design and testing Liquid Hydrogen Barge Vaporizers at NASA John C. Stennis Space Center is shown. The topics include: 1) Vaporizer Requirements; 2) Vaporizer Design; 3) LH2 # 2 Vaporizer Statistics; 4) Corrective Actions; and 5) Lessons Learned.

  15. Vibro-Acoustics Modal Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.

    1999-01-01

    This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.

  16. 77 FR 67689 - Fidelity Aberdeen Street Trust, et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... COMMISSION Fidelity Aberdeen Street Trust, et al.; Notice of Application November 6, 2012. AGENCY: Securities... certain joint arrangements (``Prior Order'').\\1\\ \\1\\ Colchester Street Trust, et al., Investment Company..., Colchester Street Trust, et al., Investment Company Act Release Nos. 23787 (Apr. 15, 1999) (notice) and...

  17. Symbiotic Situation. Brown County, Aberdeen, and Alexander Mitchell Public Library.

    ERIC Educational Resources Information Center

    Barton, David

    Utilizing 1970 census data and updates plus local data and library records, the study seeks to assess the current status of public library usage in and around Aberdeen, South Dakota. A demographic profile of the community as a whole was first constructed and then compared with similar data for known public library users. Information was also…

  18. Telemetry processing system for the Pacific Missile Test Center

    NASA Astrophysics Data System (ADS)

    Knight, Paul

    The Telemetry Processing System (TPS), which is to replace the Telemetry Data Handling System of the Pacific Missile Test Center's Telemetry Data Center in 1990, is discussed. The TPS is projected to have an operational life span of 10 years and will have a maximum throughput of 700,000 parameters per second. The TPS will have increased processing and display capability in comparison to the current telemetry systems, and will be more flexible and less manpower intensive in operation. The system requirements, functional implementation, software, and planned improvements of the TPS are addressed.

  19. HIV testing practices among New England college health centers

    PubMed Central

    2013-01-01

    Background The prevalence of human immunodeficiency virus (HIV) continues to increase among certain populations including young men who have sex with men (MSM). College campuses represent a potential setting to engage young adults and institute prevention interventions including HIV testing. The purpose of this study was to evaluate testing practices for HIV and other sexually transmitted infections (STIs) on college campuses. Methods Medical directors at four-year residential baccalaureate college health centers in New England were surveyed from June, 2011 to September, 2011. Thirty-one interviews were completed regarding experiences with HIV testing, acute HIV infection, other STI testing, and outreach efforts targeting specific at-risk groups such as MSM. Results Among schools that responded to the survey, less than five percent of students were tested for HIV at their local college health center in the past academic year (2010–2011). Significant barriers to HIV testing included cost and availability of rapid antibody testing. One-third of college health medical directors reported that their practitioners may not feel comfortable recognizing acute HIV infection. Conclusions Improved HIV testing practices are needed on college campuses. Programs should focus on outreach efforts targeting MSM and other at-risk populations. PMID:23496891

  20. Space chemical propulsion test facilities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Urasek, Donald C.; Calfo, Frederick D.

    1993-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especiallly encouraged and often can be done in a cooperative manner that best uses the resources of all parties. This paper presents an overview of the Lewis test facilities. These facilities are clustered into three test areas: the Rocket Engine Test Facilities (RETF), the Rocket Laboratory (RL), and the Cryogenic Components Laboratory (CCL).

  1. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  2. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  3. Marital Status and Reproduction: Associations with Childhood Intelligence and Adult Social Class in the Aberdeen Children of the 1950s Study

    ERIC Educational Resources Information Center

    von Stumm, Sophie; Batty, G. David; Deary, Ian J.

    2011-01-01

    Childhood intelligence (age 11) and occupational social status at midlife (age 46 to 51) was associated with marital status and reproduction in a sample from the Aberdeen Children of the 1950s cohort study (N = 9614). Male and female divorcees had lower childhood intelligence test scores than their married counterparts, but no meaningful…

  4. Analysis of a Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam

    2013-01-01

    The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.

  5. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  6. The Center-TRACON Automation System: Simulation and field testing

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz

    1995-01-01

    A new concept for air traffic management in the terminal area, implemented as the Center-TRACON Automation System, has been under development at NASA Ames in a cooperative program with the FAA since 1991. The development has been strongly influenced by concurrent simulation and field site evaluations. The role of simulation and field activities in the development process will be discussed. Results of recent simulation and field tests will be presented.

  7. High Test Peroxide Incident at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, R.; Sewell, D.; Cockrell, M.

    2001-01-01

    A renewed interest n hydrogen peroxide as a rocket engine propellant has created a void in the experience base since the last era of significant peroxide use. Advanced catalyst beds and high concentration formulations are currently being developed and tested in the propulsion community. Although peroxide has many positive attributes, there are situations where peroxide must be handled with extreme care. An incident occurred at NASA's Stennis Space Center (SSC) in December 2000 where a significant over pressurization event damaged facility and test hardware. A description of the event and findings of the investigation board are presented and discussed.

  8. CALS Test Network Sacramento Air Logistics Center. CALS/EDI Transfer Test Number 2, Quick Short Test Report.

    DTIC Science & Technology

    2007-11-02

    McClellan AFB , CA. The test required CALS data (MIL-R-28002A Raster) to be sent in an EDI (Electronic Data Interchange) envelope over a commercial VAN...Livermore National Laboratory EC/EDI (Electronic Commerce Through Electronic Data Interchange) Project, and the Sacramento Air Logistics Center (SM-ALC...Value Added Network). CALS Test Network Sacramento Air Logistics Center CALS/EDI Data Transfer Test Number 2 Quick Short Test Report.

  9. Marshall Space Flight Center High Speed Turbopump Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Moore, Chip; Thom, Robert

    2000-01-01

    The Marshall Space Flight Center has a unique test rig that is used to test and develop rolling element bearings used in high-speed cryogenic turbopumps. The tester is unique in that it uses liquid hydrogen as the coolant for the bearings. This test rig can simulate speeds and loads experienced in the Space Shuttle Main Engine turbopumps. With internal modifications, the tester can be used for evaluating fluid film, hydrostatic, and foil bearing designs. At the present time, the test rig is configured to run two ball bearings or a ball and roller bearing, both with a hydrostatic bearing. The rig is being used to evaluate the lifetimes of hybrid bearings with silicon nitride rolling elements and steel races.

  10. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  11. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  12. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.; Tomczyk, N.A.; Sytsma, L.F.; Cohut, V.J.; Cobo, H.A.; O`Reilly, D.P.; Zimmerman, R.E.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine if other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.

  13. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  14. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  15. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  16. Summary of Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 W electric power output range. Tests at GRC have accumulated over 80,000 hr of operation. Test articles have been received from Infinia Corporation of Kennewick, Washington and from Sunpower of Athens, Ohio. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE-35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE- 35 s and is preparing for testing multiple ASC s. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for long-term operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  17. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  18. FY15 Final Annual Report for the Regional Test Centers.

    SciTech Connect

    Stein, Joshua

    2015-12-01

    Sandia National Laboratories (Sandia) manages four of the five PV Regional Test Centers (RTCs). This report reviews accomplishments made by the four Sandia-managed RTCs during FY2015 (October 1, 2014 to September 30, 2015) as well as some programmatic improvements that apply to all five sites. The report is structured by Site first then by Partner within each site followed by the Current and Potential Partner summary table, the New Business Process, and finally the Plan for FY16 and beyond. Since no official SOPO was ever agreed to for FY15, this report does not include reporting on specific milestones and go/no-go decisions.

  19. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  20. Establishment of Small Wind Regional Test Centers: Preprint

    SciTech Connect

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-03-01

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

  1. Helicopter transmission testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Coy, John J.

    1987-01-01

    The helicopter has evolved into a highly valuable air mobile vehicle for both military and civilian needs. The helicopter transmission requires advanced studies to develop a technology base for future rotorcraft advances. A joint helicopter transmission research program between the NASA Lewis Research Center and the U.S. Army Aviation Systems Command has existed since 1970. Program goals are to reduce weight and noise and to increase life and reliability. The current experimental activities at Lewis consist of full-scale helicopter transmission testing, a base effort in gearing technology, and a future effort in noise reduction technology. The experimental facilities at Lewis for helicopter transmission testing are described. A description of each of the rigs is presented along with some significant results and near-term plans.

  2. Johnson Space Center's Regenerative Life Support Systems Test Bed.

    PubMed

    Barta, D J; Henninger, D L

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  3. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  4. Evaluation of decommissioning alternatives for the Pilot Plant Complex, Aberdeen Proving Ground

    SciTech Connect

    Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report presents an evaluation of four decommissioning alternatives for the Pilot Plant Complex (PPC), an inactive chemical weapons research, development, and production facility consisting of nine buildings located in the Edgewood Area of the Aberdeen Proving Ground in Maryland. Decommissioning the PPC involves six steps: (1) assessing existing conditions; (2) dismantling the aboveground portions of the buildings (including the floor slabs, paved roads, and sidewalks within the PPC); (3) reducing the size of the demolition debris and sealing the debris in containers for later testing and evaluation; (4) testing and evaluating the debris; (5) conducting site operation and maintenance activities; and (6) recycling or disposing of the debris with or without prior treatment, as appropriate.

  5. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  6. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  7. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  8. The Aberdeen Indian Health Service infant mortality study: design, methodology, and implementation.

    PubMed

    Randall, L L; Krogh, C; Welty, T K; Willinger, M; Iyasu, S

    2001-01-01

    Of all Indian Health Service areas, the Aberdeen Area has consistently had the highest infant mortality rate. Among some tribes in this area the rate has exceeded 30/ 1000 live birth and half the infant deaths have been attributed to Sudden Infant Death Syndrome,a rate four to five times higher than the national average. The Indian Health Service, Centers for Disease Control and Prevention, National Institute of Child Health and Human Development, and the Aberdeen Area Tribal Chairmen's Health Board collaborated to investigate these high rates with the goals of refining the ascertainment of the causes of death, improving cause-specific infant mortality rates and identifying factors contributing to the high rates. Ten of the 19 tribes or tribal communities, representing 66%of the area population, participated in a 4-year prospective case-control study of infants who died after discharge from the hospital. Infant care practices and socio-demographic, economic, medical, health care, and environmental factors were examined. The study included parental interviews, death scene investigations, autopsies, neuropathology studies, medical chart abstractions, blood cotinine assays, and a surveillance system for infant deaths. Controls were the previous and subsequent infants born on the case mother's reservation. From December 1,1992 until November 30,1996,72 infant deaths were investigated. This report describes the study methods and the model employed for involving the community and multiple agencies to study the problem of infant mortality among Northern Plains Indians. Data gathered during the investigations are being analyzed and will be published at a later date.

  9. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  10. Groin Exploration for the Nonpalpable Testes: A Single Center Experience

    PubMed Central

    Sowande, Oludayo A; Talabi, Ademola O; Etonyeaku, Amarachukwu C; Adejuyigbe, Olusanya

    2015-01-01

    Background: Management of non-palpable testes in Nigeria can be difficult due to late presentation and poor resources. Surgical exploration is often required for diagnosis and treatment. Aim: This study reviews the management outcome of clinically non-palpable testeis in a tertiary center in Nigeria. Materials and Methods: Ten years retrospective review of all clinically non-palpable testes in children aged 2–15years managed at the Obafemi Awolowo University Teaching Hospitals Complex Ile-Ife Nigeria. Results: Thirty two children with 44 testicular units were managed. The right side was involved in 12 (37.5%); left in 8 (25.0%) and bilateral in 12 (37.5%) patients. Pre-operative ultrasound was done in 12 patients with localization in just 4 patients (33.3% success rate). At groin exploration, 34 (77.32%) testicular units were located in the inguinal canal. Eight patients with 10 The remaining 10 (22.7%) testicular units required additional mini-laparotomy for which six (13.6%) and 4 (9.1%) testicular units respectively were either in the retroperitoneum or not found. Of the testes in the groin, twenty two (64.7%) testicular units were normal while 12 (35.3%) were atrophic. Four of the retroperitoneal testes were normal while 2 were atrophic. Eight (22.5%) testicular units among the inguinal group had multi-staged orchidopexy; while 2 each of the retroperitoneal group had orchidectomy, one stage orchidopexy, two staged Fowler Stephens (F-S) procedure or lost to follow up after first stage of F-S procedure. Mean follow up period was 2 months. 2 testicular units each had retracted or vanished respectively during follow up. Conclusion: Groin exploration still offers a viable approach Surgical exploration is still useful in to the management of non-palpable testes in low resource environment despite the lack of laparoscopy. PMID:25838769

  11. Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Biang, C.; Benioff, P.; Martino, L.; Patton, T.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-

  12. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    SciTech Connect

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  13. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a

  14. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  15. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  16. An outbreak of Vicia villosa (hairy vetch) poisoning in grazing Aberdeen Angus bulls in Argentina.

    PubMed

    Odriozola, E; Paloma, E; Lopez, T; Campero, C

    1991-06-01

    Vicia villosa (hairy vetch) is used as a forage source in some cattle-producing areas in Argentina. The plant had no previous reports of toxicity in this country. A herd of 33 Aberdeen Angus bulls grazed during 20 days in October on a pasture composed mainly of hairy vetch. Eight animals developed conjunctivitis, rinitis, dermatitis, loss of hair and fever. All of them died within 15 d after the development of signs with a marked loss of body condition. No more animals became sick 5 d after the removal of the herd from the pasture. Serum parameters tested (calcium, phosphorus, magnesium, GOT, alfa-GT and bilirubin) enlarged liver and spleen, generalized hemorrhage in the abomasum, dilated kidneys and multiple pale areas on the heart. Severe necrotizing granulomatous myocarditis, interstitial nephritis, and necrotizing cholangitis were the most striking microscopic changes. Close observation of animals feeding on pastures in which V villosa is dominant is the only prevention.

  17. Static tests of excess ground attenuation at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Brown, R.

    1981-01-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  18. NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective

    NASA Astrophysics Data System (ADS)

    Cooper, Beth A.; Akers, James C.; Passe, Paul J.

    2005-09-01

    In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September, 2000, it has developed a comprehensive array of services and products that support hearing conservation goals within NASA and industry. The ATL provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL aggressively supports the vision of a low-noise on-orbit environment, which facilitates mission success as well as crew health, safety, and comfort. In concert with these goals, the ATL also produces and distributes free educational resources and low-noise advocacy tools for hearing conservation education and awareness. Among these are two compact discs of auditory demonstrations (of phenomena in acoustics, hearing conservation, and communication), and presentations, software packages, and other educational materials for use by engineers, audiologists, and other hearing conservation stakeholders. This presentation will highlight ATL's construction, history, technical capabilities, and current projects and will feature demonstrations of some of the unique educational resource materials that are distributed by the ATL.

  19. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  20. Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Hensarling, Paula L.

    2007-01-01

    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.

  1. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  2. The Savannah River Technology Center environmental monitoring field test platform

    SciTech Connect

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  3. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  4. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.

    2015-01-01

    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  5. System for Centering a Turbofan in a Nacelle During Tests

    NASA Technical Reports Server (NTRS)

    Cunningham, Cameron C.; Thompson, William K.; Hughes, Christopher E.; Shook, Tony D.

    2003-01-01

    A feedback position-control system has been developed for maintaining the concentricity of a turbofan with respect to a nacelle during acoustic and flow tests in a wind tunnel. The system is needed for the following reasons: Thermal and thrust loads can displace the fan relative to the nacelle; In the particular test apparatus (see Figure 1), denoted as a rotor-only nacelle (RAN), the struts, vanes, and other stator components of a turbofan engine that ordinarily maintain the required concentricity in the face of thermal and thrust loads are not present; and The struts and stator components are not present because it is necessary to provide a flow path that is acoustically clean in the sense that the measured noise can be attributed to the fan alone. The system is depicted schematically in Figure 2. The nacelle is supported by two struts attached to a two-axis traverse table located outside the wind-tunnel wall. Two servomotors acting through 100:1 gearboxes drive the table along the Y and Z axes, which are perpendicular to the axis of rotation. The Y and Z components of the deviation from concentricity are measured by four laser displacement sensors mounted on the nacelle and aimed at reflective targets on the center body, which is part of the fan assembly. The outputs of the laser displacement sensors are digitized and processed through a personal computer programmed with control software. The control output of the computer commands the servomotors to move the table as needed to restore concentricity. Numerous software and hardware travel limits and alarms are provided to maximize safety. A highly ablative rub strip in the nacelle minimizes the probability of damage in the event that a deviation from concentricity exceeds the radial clearance [<0.004 in. (<0.1 mm)] between the inner surface of the nacelle and the tips of the fan blades. To be able to prevent an excursion in excess of the tip clearance, the system must be accurate enough to control X and Y

  6. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect

    Giangiacomo, L.A.

    1998-12-31

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  7. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  8. 75 FR 67775 - Washington Department of Transportation, Olympic Division, Aberdeen Maintenance Office, Chehalis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Maintenance Office, Chehalis Drawbridge Tenders, Aberdeen, WA; Notice of Negative Determination Regarding..., requested administrative reconsideration of the negative determination regarding workers' ] eligibility to... justified reconsideration of the decision. The negative determination of the TAA petition filed on behalf...

  9. The Development in Scotland of a University Company Group: The Aberdeen Experience.

    ERIC Educational Resources Information Center

    Sellar, Keith

    1985-01-01

    The University of Aberdeen's development, with the petroleum industry, of a group of companies for research and development are discussed, including problems encountered and recommendations for other universities with similar interests. (MSE)

  10. Geophysical study of the Building 103 Dump, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Thompson, M.D.; McGinnis, M.G.

    1992-12-01

    The Building 103 Dump is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, resistivity, ground-penetrating radar, and seismic refraction, were conducted. These surveys indicate that much of the area is free of debris. However, prominent magnetic and resistivity anomalies occur along well-defined lineaments, suggestive of a dendritic stream pattern. Prior to the onset of dumping, the site was described as a ``sand pit,`` which suggests that headward erosion of Canal Creek tributaries cut into the surficial aquifer. Contaminants dumped into the landfill would have direct access to the surficial aquifer and thus to Canal Creek. Seismic refraction profiling indicates 6--12 ft of fill material now rests on the former land surface. Only the northern third of the former landfill was geophysically surveyed.

  11. Battery and cell testing at NASA. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitt, Tom; Jackson, Lorna

    1992-01-01

    An overview covering the ten cell/battery tests ongoing at MSFC are presented. The presentation is not intended to give specific test results on any test. The purpose and related program that applies to each test is acknowledged. Except for the Combined Release and Radiation Effects Satellite (CRRES), all are energy-stored and retrieval devices at low earth orbit (LEO) cycles.

  12. The Defense Language Institute Foreign Language Center Achievement Test Program.

    ERIC Educational Resources Information Center

    Henderson, Robert G.

    This article describes the organization, functions, and components of the Defense Language Institute. The test division is responsible for aptitude, achievement, and proficiency tests and for test development in a variety of resident and non-resident programs. The progress that has been made over a 10-year period is also described and special…

  13. Multi-Center Traffic Management Advisor Operational Field Test Results

    NASA Technical Reports Server (NTRS)

    Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.

    2005-01-01

    The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.

  14. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  15. Geophysics: Building E5282 decommissioning, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-08-01

    This report discusses Building E5282 which was one of 10 potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Magnetic surveys identified small, complicated, multiple anomalies west, north, and northeast of the building that may be caused by construction fill. Two underground storage tanks, at the northeast and southeast corners, were identified. A large magnetic anomaly complex east of the building was caused by aboveground pipes and unexploded ordnance fragments scattered at the surface. Electrical resistivity profiling showed a broad, conductive terrain superimposed over magnetic anomalies on the north and west. A broad, high-resistivity, nonmagnetic area centered 25 ft east of the building has an unknown origin, but it may be due to nonconductive organic liquids, construction fill, or a buried concrete slab; GPR imaging showed this area as a highly reflective zone at a depth of about 5 ft. The GPR data also showed a small-diameter pipe oriented north-south located east of the building.

  16. Geophysics: Building E5440 decommissioning, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Thompson, M.D.; McGinnis, M.G.

    1992-11-01

    Building E5440 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The results show several complex geophysical signatures. Isolated, one-point, magnetic anomalies surrounding the building may be associated with construction fill. A 10-ft-wide band of strongly magnetic positive anomalies bordering the north side of the building obliterates small magnetic sources that might otherwise be seen. A prominent magnetic ``nose`` extending northward from this band toward a standpipe at 100N,63E may be connected to an underground tank. The southeast corner of the site is underlain by a rectangular, magnetized source associated with strong radar images. A magnetic lineament extending south from the anomaly may be caused by a buried pipe; the anomaly itself may be caused by subsurface equipment associated with a manhole or utility access pit. A 2,500-gamma, positive magnetic anomaly centered at 0N,20E, which is also the location of a 12 {Omega}-m resistivity minimum, may be caused by a buried vault. It appears on radar imaging as a strong reflector.

  17. A Cost/Benefit Analysis of the Moraine Valley Community College Testing Center, Palos Hills, Illinois.

    ERIC Educational Resources Information Center

    Anderson, Jennifer

    In 1969, the Moraine Valley Community College (MVCC) Testing Center was established to provide a controlled atmosphere in which students could take tests assigned by their instructors. In 1983, a study of the center was conducted involving: (1) a review of ERIC materials, a survey of area colleges, and site visits to other educational testing…

  18. Current and Future Rocket Propulsion Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, H. M.; Rahman, S.; Gilbrech, R.

    2000-01-01

    Year 2000 has been an active one for large-scale propulsion testing at the NASA John C. Stennis Space Center. This paper highlights several of the current-year test programs conducted at the Stennis Space Center (SSC) including the X-33 Aerospike Engine, Ultra Low Cost Engine (ULCE) program, and the Hybrid Sounding Rocket (HYSR) program. Future directions in propulsion test are also introduced including the development of a large-scale Rocket Based Combined Cycle (RBCC) test facility.

  19. Wright Research and Development Center Test Facilities Handbook

    DTIC Science & Technology

    1990-01-01

    DIVISIONS: Defense Avionics (SNA) Aero Propulsion and Configuration (SNP) Structures and Materials (SNS) Technology Demonstration (SNT) TEHNOLOGY ...6553 (513) 255-6622 AV 785-6622 208 t W I: IP- FACILITY TYPE: Mobile Data Acquisition PURPOSE: Mobile data acquisition FACILITY NAME: Mobile Data...inovations FACILITY NAME: Mobility Development Laboratory PRIMARY CAPABILITIES: Dynamic Test Machine - whirling arm capable of testing subsystems

  20. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  1. Control Systems Security Test Center - FY 2004 Program Summary

    SciTech Connect

    Robert E. Polk; Alen M. Snyder

    2005-04-01

    In May 2004, the US-CERT Control Systems Security Center (CSSC) was established at Idaho National Laboratory to execute assessment activities to reduce the vulnerability of the nation’s critical infrastructure control systems to terrorist attack. The CSSC implements a program to accomplish the five goals presented in the US-CERT National Strategy for Control Systems Security. This report summarizes the first year funding of startup activities and program achievements that took place in FY 2004 and early FY 2005. This document was prepared for the US-CERT Control Systems Security Center of the National Cyber Security Division of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs federal departments to identify and prioritize the critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the National Cyber Security Division to address the control system security component addressed in the National Strategy to Secure Cyberspace and the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems.

  2. Lithium Ion Testing at NSWC Crane in Support of NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Jung, David; Lee, Leonine

    2010-01-01

    This viewgraph presentation reviews Lithium Ion Cell testing at the Naval Surface Warfare Center in Crane, India. The contents include: 1) Quallion 15 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 2) Lithion 50 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 3) ABSL 5 Ahr Lithium-Ion Battery, LRO-LLO Life Cycle Test, SDO-GEO Life Cycle Test; and 4) A123 40 Ahr Lithium-Ion Battery, GPM Life Cycle Test, MMS Life Cycle Test.

  3. Aberdeen Area Indian Health Service Environmental Health Program Review Conducted by: Indian Health Committee of the National Environmental Health Association (Aberdeen, South Dakota, May 23-27, 1977).

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Aberdeen, SD. Aberdeen Area Office.

    The Indian Health Committee met in Aberdeen, South Dakota, during the week of May 23, 1977 to (1) review the environmental health services provided to the tribal units on the 15 Indian reservations located in North Dakota, South Dakota, Nebraska and Iowa, and (2) make recommendations for improvement or expansion of current programs, if needed. The…

  4. Turbopump Seal Testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard G.

    2010-01-01

    The new ARES space flight program has presented many challenges to aerospace engineers and designers. One of the areas for consideration are the seals in the turbopumps that supply cryogenic propellants to the combustion chamber in the upper stage. Heritage face seals that worked in the past might not be sufficient in the newer turbopumps with increased speeds, pressures across the seals, and loads. New seal materials, engineering designs, and analysis techniques have been developed since the early use of these heritage seals, however, rub conditions and surface degradation at the sliding contact cannot be reliably predicted. Testing is required to determine the safe operating limits and verify seal wear life over the operating range. Rocketdyne in Canoga Park California entered into a task agreement with MSFC to design, fabricate, build, test, disassemble, and inspect hardware after tests of carbon materials and wear resistant coatings. The purpose of testing would be to determine the safe operating limits, empirically iterate the design, and select the best combination of materials for face seals and mating rings. This paper summarizes the many hours and efforts of individuals and teams to get the program operating successfully and presents the test results that were obtained.

  5. Contamination source review for Building E6891, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Zellmer, S.D.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of various APG buildings. This report provides the results of the contamination source review for Building E6891. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. This building is part of the Lauderick Creek Concrete Slab Test Site, located in the Lauderick Creek Area in the Edgewood Area. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances the potential exists` for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  6. Results and Implications of an Arithmetic Test.

    ERIC Educational Resources Information Center

    Watson, W. H.

    1980-01-01

    Incorrect answers on an arithmetic test given to 83 first-year students at Aberdeen College of Education in the United Kingdom are reviewed. The nature of wrong responses and the likely reasons for the given responses are discussed. (MP)

  7. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill.

  8. Geophysics: Building E5476 decommissiong, Aberdeen Proving Ground

    SciTech Connect

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-11-01

    Building E5476 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The large number of magnetic sources surrounding the building are believed to be contained in construction fill. The smaller anomalies, for the most part, were not imaged with ground radar or by electrical profiling. Large magnetic anomalies near the southwest comer of the building are due to aboveground standpipes and steel-reinforced concrete. Two high-resistivity areas, one projecting northeast from the building and another south of the original structure, may indicate the presence of organic pore fluids in the subsurface. A conductive lineament protruding from the south wall that is enclosed by the southem, high-resistivity feature is not associated with an equivalent magnetic anomaly. Magnetic and electrical anomalies south of the old landfill boundary are probably not associated with the building. The boundary is marked by a band of magnetic anomalies and a conductive zone trending northwest to southeast. The cause of high resistivities in a semicircular area in the southwest comer, within the landfill area, is unexplained.

  9. Environmental geophysics, offshore Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Miller, S.F.; Kuecher, G.J.; Davies, B.E.

    1995-11-01

    Geophysical studies in shallow waters adjacent to the Bush River Peninsula, Edgewood Area of Aberdeen Proving Ground, Maryland, have delineated the extent of waste disposal sites and established a hydrogeologic framework, which may control contaminant transport offshore. These studies indicate that during the Pleistocene Epoch, alternating stands of high and low sea levels resulted in a complex pattern of shallow channel-fill deposits around the Bush River Peninsula. Ground-penetrating radar studies reveal paleochannels greater than 50 ft deep. Some of the paleochannels are also imaged with marine seismic reflection. Conductivity highs measured with the EM-31 are also indicative of paleochannels. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the peninsula. Magnetic, conductivity, and side-scan sonar anomalies outline anthropogenic anomalies in the study area. On the basis of geophysical data, underwater anthropogenic materials do exist in some isolated areas, but large-scale offshore dumping has not occurred in the area studied.

  10. Geophysics: Building E5190 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-07-01

    Building E5190 is one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. A noninvasive geophysical survey, including the complementary technologies of magnetics, electrical resistivity, and ground-penetrating radar, was conducted around the perimeter as a guide to developing a sampling and monitoring program prior to decommissioning and dismantling the building. The magnetics surveys indicated that multistation, positive magnetic sources are randomly distributed north and west of the building. Two linear trends were noted: one that may outline buried utility lines and another that is produced by a steel-covered trench. The resistivity profiling indicated three conductive zones: one due to increased moisture in a ditch, one associated with buried utility lines, and a third zone associated with the steel-covered trench. Ground-penetrating radar imaging detected two significant anomalies, which were correlated with small-amplitude magnetic anomalies. The objectives of the study -- to detect and locate objects and to characterize a located object were achieved.

  11. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging.

  12. Geophysics: Building E5032 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.

    1991-07-01

    integration of data from surveys using three geophysical technologies has provided information used to define the locations of buried utilities, tanks, vaults, and debris near building E5032 at the Aberdeen Proving Ground. Ground penetrating radar (GPR) profiles indicate the presence of buried pipes, tanks, reinforcement rods (rebar), and remnants of railroad tracks. A magnetic map constructed from a detailed magnetic survey on the north side of the building outlines buried iron-rich objects that are interpreted to be iron pipes, tank, and other debris of uncertain origin at relatively shallow depths. Horizontal electrical resistivity surveys and vertical electrical resistivity soundings essentially corroborated the findings obtained with the magnetometer and GPR. In addition, a highly resistance layer was observed on the east side of the building where a former railroad bed with a thick grave fill is believed to immediately underlie the lawn. The resistivity data show no evidence of a conductive leachate plume. Geophysical measurements from three techniques over a buried concrete slab approximately 130 ft north of Building E5032 give geophysical signatures interpreted to be due to the presence of a large iron tank or vault. An attempt was made to gather meaningful magnetic data on the east, west, and south sides of the building; however, the quality of subsurface interpretations in those areas was poor because of the influence of surficial iron lids, pipes, grates, and the effects of the corrugated iron building itself. 11 figs., 1 tab.

  13. Early life predictors of childhood intelligence: evidence from the Aberdeen children of the 1950s study

    PubMed Central

    Lawlor, D.; Batty, G; Morton, S.; Deary, I.; Macintyre, S.; Ronalds, G.; Leon, D.

    2005-01-01

    Objective: To identify the early life predictors of childhood intelligence. Design: Cohort study of 10 424 children who were born in Aberdeen (Scotland) between 1950 and 1956. Results: Social class of father around the time of birth, gravidity, maternal age, maternal physical condition, whether the child was born outside of marriage, prematurity, intrauterine growth, and childhood height were all independently associated with childhood intelligence at ages 7, 9, and 11. The effect of social class at birth was particularly pronounced, with a graded linear association across the distribution even with adjustment for all other covariates (p<0.001 for linear trend). Those from the lowest social class (V) had intelligence scores that were on average 0.9–1.0 of a standard deviation lower than those from the higher groups (I and II) at each of the three ages of intelligence testing. Collectively, the early life predictors that were examined explained 16% of the variation in intelligence at each age. Conclusions: Father's social class around the time of birth was an important predictor of childhood intelligence, even after adjustment for maternal characteristics and perinatal and childhood factors. Studies of the association of childhood intelligence with future adult disease need to ensure that the association is not fully explained by socioeconomic position. PMID:16020642

  14. Contamination source review for Building E3642, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Booher, M.N.; O`Reilly, D.P.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of these buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG. The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation and review of available records regarding underground storage tanks associated with the building. This report provides the results of the contamination source review for Building E3642.

  15. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  16. Contamination source review for Building E2370, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    O`Reilly, D.P.; Glennon, M.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, and geophysical investigation. This report provides the results of the contamination source review for Building E2370. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  17. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  18. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the results of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  19. Review of analytical results from the proposed agent disposal facility site, Aberdeen Proving Ground

    SciTech Connect

    Brubaker, K.L.; Reed, L.L.; Myers, S.W.; Shepard, L.T.; Sydelko, T.G.

    1997-09-01

    Argonne National Laboratory reviewed the analytical results from 57 composite soil samples collected in the Bush River area of Aberdeen Proving Ground, Maryland. A suite of 16 analytical tests involving 11 different SW-846 methods was used to detect a wide range of organic and inorganic contaminants. One method (BTEX) was considered redundant, and two {open_quotes}single-number{close_quotes} methods (TPH and TOX) were found to lack the required specificity to yield unambiguous results, especially in a preliminary investigation. Volatile analytes detected at the site include 1, 1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene, all of which probably represent residual site contamination from past activities. Other volatile analytes detected include toluene, tridecane, methylene chloride, and trichlorofluoromethane. These compounds are probably not associated with site contamination but likely represent cross-contamination or, in the case of tridecane, a naturally occurring material. Semivolatile analytes detected include three different phthalates and low part-per-billion amounts of the pesticide DDT and its degradation product DDE. The pesticide could represent residual site contamination from past activities, and the phthalates are likely due, in part, to cross-contamination during sample handling. A number of high-molecular-weight hydrocarbons and hydrocarbon derivatives were detected and were probably naturally occurring compounds. 4 refs., 1 fig., 8 tabs.

  20. Testing primates with joystick-based automated apparatus - Lessons from the Language Research Center's Computerized Test System

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Rumbaugh, Duane M.

    1992-01-01

    Nonhuman primates provide useful models for studying a variety of medical, biological, and behavioral topics. Four years of joystick-based automated testing of monkeys using the Language Research Center's Computerized Test System (LRC-CTS) are examined to derive hints and principles for comparable testing with other species - including humans. The results of multiple parametric studies are reviewed, and reliability data are presented to reveal the surprises and pitfalls associated with video-task testing of performance.

  1. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    SciTech Connect

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-02-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations.

  2. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  3. Learner-Centered Instruction (LCI). Volume 5. Description of the Job Performance Test.

    ERIC Educational Resources Information Center

    Pieper, William J.; And Others

    An account is presented of the development of a job performance test for the Learner Centered Instruction (LCI) weapon control systems mechanic/technician Air Force course. The performance test was administered to the LCI experimental course subjects as well as the control course subjects upon graduation. Test items are, for the most part, based…

  4. Payload test philosophy. [implications of STS development at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Arman, A.

    1979-01-01

    The implications of STS development for payload testing at the Goddard Space Flight Center are reviewed. The biggest impact of STS may be that instead of testing the entire payload, most of the testing may have to be limited to the subsystem or subassembly level. Particular consideration is given to the Goddard protoflight concept in which the test is geared to the design qualification levels, the test durations being those that are expected during the actual launch sequence.

  5. An evaluation of software testing metrics for NASA's mission control center

    NASA Technical Reports Server (NTRS)

    Stark, George E.; Durst, Robert C.; Pelnik, Tammy M.

    1991-01-01

    Software metrics are used to evaluate the software development process and the quality of the resulting product. Five metrics were used during the testing phase of the Shuttle Mission Control Center Upgrade at the NASA Johnson Space Center. All but one metric provided useful information. Based on the experience, it is recommended that metrics be used during the test phase of software development and additional candidate metrics are proposed for further study.

  6. NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

  7. Environmental geophysics at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Daudt, C.R.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1994-11-01

    Geophysical data collected at J-Field, Aberdeen Proving Ground, Maryland, were used in the characterization of the natural hydrogeologic framework of the J-Field area and in the identification of buried disturbances (trenches and other evidences of contamination). Seismic refraction and reflection data and electrical resistivity data have aided in the characterization of the leaky confining unit at the base of the surficial aquifer (designated Unit B of the Tertiary Talbot Formation). Excellent reflectors have been observed for both upper and lower surfaces of Unit B that correspond to stratigraphic units observed in boreholes and on gamma logs. Elevation maps of both surfaces and an isopach map of Unit B, created from reflection data at the toxic burning pits site, show a thickening of Unit B to the east. Abnormally low seismic compressional-wave velocities suggest that Unit B consists of gassy sediments whose gases are not being flushed by upward or downward moving groundwater. The presence of gases suggests that Unit B serves as an efficient aquitard that should not be penetrated by drilling or other activities. Electromagnetic, total-intensity magnetic, and ground-penetrating radar surveys have aided in delineating the limits of two buried trenches, the VX burning pit and the liquid smoke disposal pit, both located at the toxic burning pits site. The techniques have also aided in determining the extent of several other disturbed areas where soils and materials were pushed out of disposal pits during trenching activities. Surveys conducted from the Prototype Building west to the Gunpowder River did not reveal any buried trenches.

  8. Development and Implementation of NASA's Lead Center for Rocket Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Dawson, Michael C.

    2001-01-01

    With the new millennium, NASA's John C. Stennis Space Center (SSC) continues to develop and refine its role as rocket test service provider for NASA and the Nation. As Lead Center for Rocket Propulsion Testing (LCRPT), significant progress has been made under SSC's leadership to consolidate and streamline NASA's rocket test infrastructure and make this vital capability truly world class. NASA's Rocket Propulsion Test (RPT) capability consists of 32 test positions with a replacement value in excess of $2B. It is dispersed at Marshall Space Flight Center (MSFC), Johnson Space Center (JSC)-White Sands Test Facility (WSTF), Glenn Research Center (GRC)-Plum Brook (PB), and SSC and is sized appropriately to minimize duplication and infrastructure costs. The LCRPT also provides a single integrated point of entry into NASA's rocket test services. The RPT capability is managed through the Rocket Propulsion Test Management Board (RPTMB), chaired by SSC with representatives from each center identified above. The Board is highly active, meeting weekly, and is key to providing responsive test services for ongoing operational and developmental NASA and commercial programs including Shuttle, Evolved Expendable Launch Vehicle, and 2nd and 3rd Generation Reusable Launch Vehicles. The relationship between SSC, the test provider, and the hardware developers, like MSFC, is critical to the implementation of the LCRPT. Much effort has been expended to develop and refine these relationships with SSC customers. These efforts have met with success and will continue to be a high priority to SSC for the future. To data in the exercise of its role, the LCRPT has made 22 test assignments and saved or avoided approximately $51M. The LCRPT directly manages approximately $30M annually in test infrastructure costs including facility maintenance and upgrades, direct test support, and test technology development. This annual budges supports rocket propulsion test programs which have an annual budget

  9. Work plan for conducting an ecological risk assessment at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.

    1995-03-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland, and activities at the Edgewood Area since World War II have included the development, manufacture, testing, and destruction of chemical agents and munitions. The J-Field site was used to destroy chemical agents and munitions by open burning and open detonation. This work plan presents the approach proposed to conduct an ecological risk assessment (ERA) as part of the RI/FS program at J-Field. This work plan identifies the locations and types of field studies proposed for each area of concern (AOC), the laboratory studies proposed to evaluate toxicity of media, and the methodology to be used in estimating doses to ecological receptors and discusses the approach that will be used to estimate and evaluate ecological risks at J-Field. Eight AOCs have been identified at J-Field, and the proposed ERA is designed to evaluate the potential for adverse impacts to ecological receptors from contaminated media at each AOC, as well as over the entire J-Field site. The proposed ERA approach consists of three major phases, incorporating field and laboratory studies as well as modeling. Phase 1 includes biotic surveys of the aquatic and terrestrial habitats, biological tissue sampling and analysis, and media toxicity testing at each AOC and appropriate reference locations. Phase 2 includes definitive toxicity testing of media from areas of known or suspected contamination or of media for which the Phase 1 results indicate toxicity or adverse ecological effects. In Phase 3, the uptake models initially developed in Phase 2 will be finalized, and contaminant dose to each receptor from all complete pathways will be estimated.

  10. User-Centered Design and Usability Testing of a Web Site: An Illustrative Case Study.

    ERIC Educational Resources Information Center

    Corry, Michael D.; Frick, Theodore W.; Hansen, Lisa

    1997-01-01

    Presents an overview of user-centered design and usability testing. Describes a Web site evaluation project at a university, the iterative process of rapid prototyping and usability testing, and how the findings helped to improve the design. Discusses recommendations for university Web site design and reflects on problems faced in usability…

  11. 64 kW concentrator Photovoltaics Application Test Center. Volume. Final report

    SciTech Connect

    Jardine, D.M.; Jones, D.W.

    1980-06-01

    Kaman Sciences Corporation has designed a 64 kW Concentrating Photovoltaic Applications Test Center (APTEC). The APTEC employs a combined concentrating photovoltaic array in a total energy system application for load sharing the electric and thermal demands of a large computer center with the interfaced electric and natural gas utility. The photovoltaic array is composed of two-axis tracking heliostats of Fresnel lens concentrating, silicon solar cell modules. The modules are cooled with a fluid which transfers heat to a ground coupled heat sink/storage unit for subsequent use in meeting the computer center's thermal load demand. The combined photovoltaic power system shares basic components - a power conditioning unit, batteries and thermal conditioning equipment - with the electric and natural gas utility service, improving the computer center's operating availability time and displacing a portion of the fossil fuel required to power the computer center with solar energy. The detailed system design is reported.

  12. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  13. 13. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN 1.5 mi. NW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN 1.5 mi. NW of Amory. St. Louis and San Francisco RR bridge. Steam locomotive and coal train cross bridge on 10 August 1921. Credit: Owned by Jack Donnell, Columbus, Ms., photographer. Copied by Sarcone Photography, Columbus, Ms. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  14. Shivers Junior/Senior High School: Aberdeen School District in Mississippi. Case Study in Sustainable Design.

    ERIC Educational Resources Information Center

    Zimmerman, David

    Design information, floor plan, photos, and energy use data are presented of a combined 45,000 square foot junior/senior high school in Mississippi's Aberdeen School District, built in 1956, and retrofitted over time to improve its usability. Exterior and interior photos are presented showing classrooms, the cafeteria, and gymnasium. Data are…

  15. The Aberdeen Indian Health Service Infant Mortality Study: Design, Methodology, and Implementation

    ERIC Educational Resources Information Center

    Randall, Leslie L.; Krogh, Christopher; Welty, Thomas K.; Willinger, Marian; Iyasu, Solomon

    2001-01-01

    Of all Indian Health Service areas, the Aberdeen Area has consistently had the highest infant mortality rate. Among some tribes in this area the rate has exceeded 30/1000 live birth and half the infant deaths have been attributed to Sudden Infant Death Syndrome, a rate four to five times higher than the national average. The Indian Health Service,…

  16. School to Work: The Aberdeen Hearing-Impaired School-Leaver 1960-72

    ERIC Educational Resources Information Center

    Welsh, Jennifer

    1976-01-01

    A small scale survey of hearing-impaired graduates from Aberdeen schools was carried out in March 1973. It focused on the relation between types of schooling received, degree of hearing loss and levels of communication ability, employment satisfaction, training for work, promotion, and social attitudes. (Author/RK)

  17. The Nature of the Beast: Or, The Aberdeen Bestiary on the World Wide Web.

    ERIC Educational Resources Information Center

    Beavan, Iain; Arnott, Michael; McLaren, Colin

    1997-01-01

    Discusses the digitization of the Aberdeen Bestiary and describes plans by Kings College (England) to increase accessibility via the World Wide Web to its humanities collections. Factors influencing the choice of this manuscript for the Web site, the decision to use PhotoCD for digitization, and the potential for further development are discussed.…

  18. Aberdeen Area Final Evaluation Report, ESEA Title I Projects, Fiscal Year 1976.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Aberdeen, SD. Aberdeen Area Office.

    The final evaluation report on the 37 Elementary Secondary Education Act (ESEA) Title I projects in the Bureau of Indian Affairs (BIA) Aberdeen Area, this report presents graphic and tabular descriptions for each of the 37 projects re: (1) Title I expenditures (graphic display of expenditures for reading, math, language, administration, area…

  19. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the patrol boat may operate a distinctive rotating blue and red light, public address system, sound a..., eel pot, crab pot, and all other types of nets fastened by means of poles, stakes, weights, or anchors. Permits to fish and crab within the restricted waters of Aberdeen Proving Ground may be obtained...

  20. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the patrol boat may operate a distinctive rotating blue and red light, public address system, sound a..., eel pot, crab pot, and all other types of nets fastened by means of poles, stakes, weights, or anchors. Permits to fish and crab within the restricted waters of Aberdeen Proving Ground may be obtained...

  1. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  2. Pre-athletic training students perform better on written tests with teacher-centered instruction.

    PubMed

    Livecchi, Nicole M; Merrick, Mark A; Ingersoll, Christopher D; Stemmans, Catherine L

    2004-01-01

    There are many different methods of instruction used in the academic setting. Little experimental research exists examining which mode is more effective in educating students. The purpose of this study was to compare scores obtained on the written and the practical examinations of students on a single topic taught through either a teacher-centered format or a student-centered format. A 2 x 2 x 6 factorial design was used in this study. Independent variables were teaching style (teacher-centered instruction and student-centered instruction), order (first or second), and learning style (competitive, collaborative, participant, avoidant, dependent, and independent). The dependent variables were the scores obtained on a written and a practical examination of gait and crutch fitting. Forty pre-athletic training students in their first semester of their first year (16 males, 24 females) participated in this study. The Grasha-Reichmann Student Learning Style Scale was used to determine the learning styles of the subjects. The total subject pool was divided randomly into two groups, one taught by teacher-centered instruction and the other by student-centered instruction. Both groups took the same written and practical examinations, and scores were recorded. A 2 x 2 x 6 fixed model multivariate analysis of variance was performed. A difference was observed for teaching style (F2,21 = 5.35, p = 0.01), on the combination of written and practical exam scores. A difference also was observed on the written examination scores with the teacher-centered format producing better results (p < 0.05); but teacher-centered format scores did not differ from student-centered scores on the practical examination (p > 0.05). Teacher-centered instruction improves written test performance compared with student-centered instruction. When initially teaching a skill, direct teacher involvement may help students learn and perform better.

  3. Information Technology Support for Clinical Genetic Testing within an Academic Medical Center

    PubMed Central

    Aronson, Samuel; Mahanta, Lisa; Ros, Lei Lei; Clark, Eugene; Babb, Lawrence; Oates, Michael; Rehm, Heidi; Lebo, Matthew

    2016-01-01

    Academic medical centers require many interconnected systems to fully support genetic testing processes. We provide an overview of the end-to-end support that has been established surrounding a genetic testing laboratory within our environment, including both laboratory and clinician facing infrastructure. We explain key functions that we have found useful in the supporting systems. We also consider ways that this infrastructure could be enhanced to enable deeper assessment of genetic test results in both the laboratory and clinic. PMID:26805890

  4. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  5. Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center AUTEC

    DTIC Science & Technology

    2013-09-30

    selection of beaked whales. Thesis presented for Master’s of Science degree in Zoology at University of Aberdeen, Scotland, UK. 119 pp. DiMarzio, N., D...biopsy samples. Canadian Journal of Zoology . 79, 1442-1454. Kellar, N. M. et al. (2006) Determining pregnancy from blubber in three species of

  6. The test-retest reliability of knee joint center location techniques.

    PubMed

    Sinclair, Jonathan; Hebron, Jack; Taylor, Paul J

    2015-04-01

    The principal source of measurement error in three-dimensional analyses is the definition of the joint center about which segmental rotations occur. The hip joint has received considerable attention in three-dimensional modeling analyses yet the reliability of the different techniques for the definition of the knee joint center has yet to be established. This study investigated the reliability of five different knee joint center estimation techniques: femoral epicondyle, femoral condyle, tibial ridge, plugin- gait, and functional. Twelve male participants walked at 1.25 m·s-1 and three-dimensional kinetics/kinematics of the knee and ankle were collected. The knee joint center was defined twice using each technique (test-and-retest) and the joint kinetic/kinematic data were applied to both. Wilcoxon rank tests and intraclass correlation coefficients (ICCs) were used to compare test and retest angular parameters and kinematic waveforms. The results show significant differences in coronal and transverse planes angulation using the tibial ridge, plug-in-gait, and functional methods. The strongest test-retest ICCs were observed for the femoral epicondyle and femoral condyle configurations. The findings from the current investigation advocate that the femoral epicondyle and femoral condyle techniques for the estimation of the knee joint center are currently the most reliable techniques.

  7. Establishment of a Beta Test Center for the NPARC Code at Central State University

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1996-01-01

    Central State University has received a supplementary award to purchase computer workstations for the NPARC (National Propulsion Ames Research Center) computational fluid dynamics code BETA Test Center. The computational code has also been acquired for installation on the workstations. The acquisition of this code is an initial step for CSU in joining an alliance composed of NASA, AEDC, The Aerospace Industry, and academia. A post-Doctoral research Fellow from a neighboring university will assist the PI in preparing a template for Tutorial documents for the BETA test center. The major objective of the alliance is to establish a national applications-oriented CFD capability, centered on the NPARC code. By joining the alliance, the BETA test center at CSU will allow the PI, as well as undergraduate and post-graduate students to test the capability of the NPARC code in predicting the physics of aerodynamic/geometric configurations that are of interest to the alliance. Currently, CSU is developing a once a year, hands-on conference/workshop based upon the experience acquired from running other codes similar to the NPARC code in the first year of this grant.

  8. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2012-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory.

  9. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2011-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory

  10. Critique of FY 1984 Advertising Mix Test of Wharton Center for Applied Research.

    DTIC Science & Technology

    1986-09-01

    experiment and the selection of ADIs for the Reduced advertising Cells in the 1979 Navy Enlistment Marketing Experiment (reported in Marketing Science...AD-Ai?3 653 CRITIQUE OF FY 1984 ADVERTISING NIX TEST OF MHARTON i/1 CENTER FOR APPLIED RE..(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A...L4 11.6 M)CROCOPY RESOLUTION TEST CHART NA1I0NAL BUREAU Of SOANDARDS, I%3-A .A ’~A~ J ~. Research Report CCS 546 CRITIQUE OF FY 1984 ADVERTISING MIX

  11. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  12. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  13. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    SciTech Connect

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.

  14. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China

    PubMed Central

    Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread. PMID:27552230

  15. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China.

    PubMed

    Wu, Fuli; Xu, Xuebin; Xie, Jing; Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread.

  16. A deer study at Aberdeen Proving Ground: Project planning, data assimilation, and risk assessment

    SciTech Connect

    Whaley, J.; Leach, G.; Lee, R.

    1995-12-31

    For more than 75 years, Aberdeen Proving Ground (APG) has been in the business of research, development, and testing of munitions and military vehicles for the US Army. Currently, APG is on the National Priorities List and an installation wide human health risk assessment is underway. Like many Department of the Army facilities, APG has an active hunting program. Hunters harvest approximately 800 whitetail deer (Odocoileus virginanus) from APG annually. To assure public safety, the authors completed a study during the 1993 hunting season to identify any potential human health hazards associated with consumption of venison from APG. This paper will discuss the unique strategy behind the experimental design, the actual assimilation of the data, and the results of the human health risk assessment to establish an appropriate contaminant levels in APG deer. Also, based on information in the literature, the authors considered gender, age, and season in the study design. The list of chemicals for residue analysis included explosives, PCBs, organochlorine pesticides, and metals (As, Cd, Cr, Pb, Hg). Of the 150 deer sampled, metals were the only chemicals detected. The authors compared these data to metal levels in deer collected from an off post background site. Metal levels did not differ significantly between APG deer and off post deer. Finally, the authors completed a health risk assessment of eating deer harvested from both APG and off post. From a survey distributed to the hunters, they incorporated actual consumption data into the exposure assessment. Their findings concluded that the risk of eating APG deer was no higher than eating off post deer; however, total arsenic levels in muscle did appear to elevate the risk.

  17. Social influence in child care centers: a test of the theory of normative social behavior.

    PubMed

    Lapinski, Maria Knight; Anderson, Jenn; Shugart, Alicia; Todd, Ewen

    2014-01-01

    Child care centers are a unique context for studying communication about the social and personal expectations about health behaviors. The theory of normative social behavior (TNSB; Rimal & Real, 2005 ) provides a framework for testing the role of social and psychological influences on handwashing behaviors among child care workers. A cross-sectional survey of child care workers in 21 centers indicates that outcome expectations and group identity increase the strength of the relationship between descriptive norms and handwashing behavior. Injunctive norms also moderate the effect of descriptive norms on handwashing behavior such that when strong injunctive norms are reported, descriptive norms are positively related to handwashing, but when weak injunctive norms are reported, descriptive norms are negatively related to handwashing. The findings suggest that communication interventions in child care centers can focus on strengthening injunctive norms in order to increase handwashing behaviors in child care centers. The findings also suggest that the theory of normative social behavior can be useful in organizational contexts.

  18. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  19. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect

    Not Available

    1991-01-01

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  20. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect

    Not Available

    1991-12-31

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  1. [Routines of organization of clinical tests and interviews in the ELSA-Brasil investigation center].

    PubMed

    Bensenor, Isabela M; Griep, Rosane H; Pinto, Karina Araújo; Faria, Carolina Perim de; Felisbino-Mendes, Mariana; Caetano, Edna I; Albuquerque, Liliane da Silva; Schmidt, Maria Inês

    2013-06-01

    The ELSA-Brasil (Estudo Longitudinal de Saúde do Adulto - Brazilian Longitudinal Study for Adult Health) is a prospective cohort study with extensive assessments throughout time. This article describes the routine of clinical tests and interviews performed with participants and the structuring of the Research Center physical space and teams. The ELSA-Brasil assumes that participants will be present at the Research Center to have the tests and interviews performed, according to standard protocols developed by this study. Considering the multiplicity of activities involved, each with specific needs for standardization, several predetermined orders of clinical tests and interviews were created. This ensured a high standard of quality in data collection without harm to participants' comfort. Each participant was previously assigned to a specific sequence of clinical tests and interviews with a predefined arrival time, mean length of stay of five to six hours and departure time.

  2. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  3. The Center for Research on Evaluation, Standards, and Student Testing (CRESST). ERIC/TM Digest.

    ERIC Educational Resources Information Center

    Baker, Eva L.; Linn, Robert L.

    The Center for Research on Evaluation, Standards, and Student Testing (CRESST) attempts to advance the understanding of educational quality by research and development on the design, implementation, analysis, and use of assessment information. CRESST's research programs are directed at five major goals: (1) provide leadership to improve assessment…

  4. The Development and Testing of a Typology of Adult Education Programs in University Residential Centers.

    ERIC Educational Resources Information Center

    Buskey, John H.

    This study was designed to develop and field test a typology of framework providing for the systematic description, definition, and classification of activities in university continuing education centers. Basic questions pertained to whether such a typology could be developed, and whether other investigators and practitioners could use the…

  5. A Comparative Analysis of MEXT English Reading Textbooks and Japan's National Center Test

    ERIC Educational Resources Information Center

    Underwood, Paul

    2010-01-01

    Despite the influence of changing demographics in Japan, the National Center Test for University Entrance Exams continues to assert an ever increasing role in the process of university admissions. In preparation for this examination, the majority of senior high school students learn from textbooks approved by the Japanese Ministry of Education,…

  6. Environmental statement for the George C. Marshall Space Flight Center and Mississippi Test Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environmental impact was investigated for the George C. Marshall Space Flight Center, and the Mississippi Test Facility. The installations are described, and the missions, environmental impact, and commitment of resources are discussed. It is concluded that there are negligible adverse environmental effects related to these two installations.

  7. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  8. Usability Testing, User-Centered Design, and LibGuides Subject Guides: A Case Study

    ERIC Educational Resources Information Center

    Sonsteby, Alec; DeJonghe, Jennifer

    2013-01-01

    Usability testing has become a routine way for many libraries to ensure that their Web presence is user-friendly and accessible. At the same time, popular subject guide creation systems, such as LibGuides, decentralize Web content creation and put authorship into the hands of librarians who may not be trained in user-centered design principles. At…

  9. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  10. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  11. Solar-energy heats a transportation test center--Pueblo, Colorado

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  12. Crew escape system test at Naval Weapons Center, China Lake, California

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As part of a crew escape system (CES) test program, a lifelike dummy is pulled by a tractor rocket from an airborne Convair-240 (C-240) aircraft at Naval Weapons Center, China Lake, California. A P-3 chase plane accompanies the C-240. The C-240 was modified with a space shuttle side hatch mockup for the tests which will evaluate candidate concepts developed to provide crew egress capability during Space Shuttle controlled gliding flight.

  13. Repeat HIV Testing at Voluntary Testing and Counseling Centers in Croatia: Successful HIV Prevention or Failure to Modify Risk Behaviors?

    PubMed Central

    Matković Puljić, Vlatka; Kosanović Ličina, Mirjana Lana; Kavić, Marija; Nemeth Blažić, Tatjana

    2014-01-01

    HIV testing plays a critical role in preventing the spread of the virus and identifying infected individuals in need of care. Voluntary counseling and testing centers (VCTs) not only conduct testing but they also provide counseling. Since a proportion of people who test negative for HIV on their previous visit will return for retesting, the frequency of retesting and the characteristics of those who retest may provide insights into the efficacy of testing and counseling strategies. In this cross-sectional, retrospective study of 1,482 VCT clients in Croatia in 2010, 44.3% had been tested for HIV before. The rate of repeat HIV testing is lower in Croatia than in other countries. Men who have sex with men (MSM) clients, those with three or more sexual partners in the last 12 months, consistent condom users with steady partners, and intravenous drug users were more likely to be repeat testers. This finding suggests that clients presenting for repeat HIV testing are those who self-identify as being at a higher risk of infection. Our data showed that testing positive for HIV was not associated with repeat testing. However, the effects of repeat testing on HIV epidemiology needs to be explored. PMID:24705595

  14. Time Series Analysis in Flight Flutter Testing at the Air Force Flight Test Center: Concepts and Results

    NASA Technical Reports Server (NTRS)

    Lenz, R. W.; Mckeever, B.

    1976-01-01

    The Air Force Flight Test Center (AFFTC) flight flutter facility is described. Concepts of using a minicomputer-based time series analyzer and a modal analysis software package for flight flutter testing are examined. The results of several evaluations of the software package are given. The reasons for employing a minimum phase concept in analyzing response only signals are discussed. The use of a Laplace algorithm is shown to be effective for the modal analysis of time histories in flutter testing. Sample results from models and flight tests are provided. The limitations inherent in time series analysis methods are discussed, and the need for effective noise reduction techniques is noted. The use of digital time series analysis techniques in flutter testing is shown to be fast, accurate, and cost effective.

  15. RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Sanders, Timothy M.

    1990-01-01

    This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.

  16. Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.

    2008-01-01

    In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.

  17. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  18. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  19. Biomonitoring and hazard assessment evaluation of contaminated groundwater at Aberdeen Proving Ground-Edgewood area Beach Point Penincula. Annual report, 31 July 1993-30 July 1994

    SciTech Connect

    Burton, D.T.; Herriott, R.S.; Turley, S.D.

    1994-08-30

    Contaminated groundwater, which contained multiple heavy metals and chlorinated aliphatic hydrocarbons, from the surficial aquifer (well CC-33B) at Beach Point located in the Canal Creek Area of the U.S. Army Aberdeen Proving Ground-Edgewood Area, Aberdeen, Maryland, was evaluated for toxicity and environmental hazard. Toxicity was detected at various groundwater concentrations by 7 of 9 biomonitoring systems. when estimated maximum acceptable toxicant concentrations (MATC) were established, the data for algae, invertebrates and fish suggested that the groundwater would not be harmful at a concentration of 10% groundwater by volume. Likewise, no genotoxicity (Ames and SEC assays), develop- mental toxicity (FETAX), or chronic histopathology (9-month fish test) occurred at 10% groundwater by volume. The groundwater was considered to be a potentially excessive hazardous material to the benthic biota of the Bush River when a number of conservative assumptions (contaminant distribution and discharge rate of the aquifer) were used in the hazard assessment. However, the potential water quality impacts were judged to be minimal if a mixing zone were to be granted by the State of Maryland which allows for local exceedences of water quality standards.

  20. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  1. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  2. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  3. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  4. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  5. Safety and Environment- Masterplan 2020 of DLR's Rocket Test Center Lampoldhausen

    NASA Astrophysics Data System (ADS)

    Haberzettl, Andreas; Dommers, Michael

    2013-09-01

    The German Aerospace Center DLR is the German research institute with approximately 7000 employees in 16 domestic locations. Among the research priorities of the German Aerospace Center DLR includes aerospace, energy and transport. DLR is institutionally supported by federal and state governments.Next funding sources arise in the context of third-party funds business (contract research and public contracts and subsidiaries). Main activities of the test center Lampoldshausen are testing of ARIANE's main and upper stage engines in the frame of ESA contracts.In the last years the test center of the DLR in Lampoldshausen has grown strongly, so that the number of employees is actually of about 230. The testing department is mainly responsible for rocket combustion testing according to customer requirements.Two kinds of test facilities are operated, sea level test benches and the altitude simulation test facilities.In addition to the DLR's growth also the activities of the industrial partner ASTRIUM has been elevated so that actually nearly 600 employees are present on site Lampoldshausen.The management of the site in relation to safety and security requires special measures with special respect to the presence of more people inside the testing area in order to guarantee trouble-free and safe experimental operation onsite the DLR's test plants. In order to meet with the future needs of continuing growth, the security and safety requirements have to be adopted.This report gives comprehensive outlook information about future possible scenarios of our coming tasks.Main driving force for future requests is the evolution of the rocket ARIANE. The testing of the new upper stage test facility for ARIANE 5 midlife evolution has been started. A new test position P5.2 is foreseen to perform the qualification of the new upper stage with the VINCI engine. This project will be very complex, in parallel running operation processes will require special procedures related to the overall

  6. Virtual test: A student-centered software to measure student's critical thinking on human disease

    NASA Astrophysics Data System (ADS)

    Rusyati, Lilit; Firman, Harry

    2016-02-01

    The study "Virtual Test: A Student-Centered Software to Measure Student's Critical Thinking on Human Disease" is descriptive research. The background is importance of computer-based test that use element and sub element of critical thinking. Aim of this study is development of multiple choices to measure critical thinking that made by student-centered software. Instruments to collect data are (1) construct validity sheet by expert judge (lecturer and medical doctor) and professional judge (science teacher); and (2) test legibility sheet by science teacher and junior high school student. Participants consisted of science teacher, lecturer, and medical doctor as validator; and the students as respondent. Result of this study are describe about characteristic of virtual test that use to measure student's critical thinking on human disease, analyze result of legibility test by students and science teachers, analyze result of expert judgment by science teachers and medical doctor, and analyze result of trial test of virtual test at junior high school. Generally, result analysis shown characteristic of multiple choices to measure critical thinking was made by eight elements and 26 sub elements that developed by Inch et al.; complete by relevant information; and have validity and reliability more than "enough". Furthermore, specific characteristic of multiple choices to measure critical thinking are information in form science comic, table, figure, article, and video; correct structure of language; add source of citation; and question can guide student to critical thinking logically.

  7. Initial building investigations at Aberdeen Proving Ground, Maryland: Building E5190

    SciTech Connect

    Brubaker, K.L.; Dougherty, J.M.; Tome, C.

    1993-10-01

    As part of a building decommissioning and demolition program at Aberdeen Proving Ground, a detailed inspection of each target building is conducted in order to characterize and describe the state of the building as it currently exists and to identify areas potentially contaminated with toxic or other hazardous substances. Room surfaces, drains and sumps, remaining equipment, and such associated exterior aboveground and underground appurtenances as tanks and pipelines are among the features, generically termed compartments, that may be potentially contaminated. Detailed drawings are prepared to illustrate the existing structure of each building. This report presents the results of the inspection of building E5190 in the Edgewood/Canal Creek area of Aberdeen Proving Ground. This building houses a 10,000-gal tank formerly used to store xylene. Eleven potentially contaminated compartments were identified in this building and its vicinity.

  8. Initial building investigations at Aberdeen Proving Ground, Maryland: Building E5375

    SciTech Connect

    Brubaker, K.L.; Dougherty, J.M.; Tome, C.

    1993-06-01

    As part of a building decommissioning and demolition program at Aberdeen Proving Ground, a detailed inspection of each target building is being conducted in order to characterize and describe the state of the building as it currently exists and to identify areas potentially contaminated with toxic or other hazardous substances. Room surfaces, drains and sumps, remaining equipment, and such associated exterior aboveground and underground appurtenances as tanks and pipelines are among the features, generically termed compartments, that may be potentially contaminated. Detailed drawings are being prepared for each building to illustrate the existing structure. This report presents the results of the inspection of Building E5375 in the Edgewood/Canal Creek area of Aberdeen Proving Ground. Nine potentially contaminated compartments were identified in this building and its vicinity.

  9. Chemical-Stockpile Disposal Program. Evaluation of multiple-incinerator air-quality impacts, Edgewood Area, Aberdeen Proving Ground. Final report, November 1986-May 1987

    SciTech Connect

    Not Available

    1987-05-01

    The purpose of this study was to examine the long-term additive ambient impact of certain toxic air pollutants that will potentially be emitted from the Chemical Agent Incinerator (AI) proposed for the Edgewood Area (EA) of Aberdeen Proving Ground (APG), Maryland and from three additional planned or existing incinerators also located on the EA. This impact was determined in consideration of the existence and operation of three additional planned or existing incinerators also located on EA. Based on air-dispersion modeling conducted as part of an original analysis, emissions were estimated of chlorinated organics from the U.S. Army Medical Research Institute for Chemical Research, Development and Engineering Center Decontamination/Detoxification Municipal Waste Incinerator (MWI), for downwind distances as great as the distance to the nearest boundary of the EA. Consequently, for this evaluation, only the MWI is considered to emit chlorinated organics.

  10. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  11. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    SciTech Connect

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  12. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

    2000-01-01

    The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

  13. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  14. Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

    2011-01-01

    A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

  15. The Frustration of Lady Aberdeen in her Crusade against Tuberculosis in Ireland

    PubMed Central

    Breathnach, Caoimhghín S; Moynihan, John B

    2012-01-01

    When in his Annual Report for 1905 the Registrar General for Ireland pointed out to the lately arrived Lord Lieutenant, The Earl of Aberdeen, that annually in every 100 deaths in Ireland 16 were victims of tuberculosis, Lady Aberdeen took notice. In March 1907 she founded the WNHA with the clear duty of taking part in the fight against the appalling ravages of that disease, and organised a Tuberculosis Exhibition the following October. And so began a campaign that led to the building of Peamount Sanatorium in county Dublin, the Allan Ryan Hospital at Ringsend, and the Collier Dispensary in the city centre. However, the Irish parliamentarians at Westminster emasculated the Tuberculosis Prevention (Ireland) Act 1908 by ensuring that notification was not made compulsory. Passage of the National Health Insurance Act (1911) necessitated changes that resulted in the Tuberculosis Prevention (Ireland) Act (1913), but the crucial shortcomings of the earlier Act were not rectified: notification was necessary but still not compulsory. Lady Aberdeen recognised this serious flaw she was powerless to correct, and turned to propaganda, editing Sláinte, a monthly magazine founded in January 1909 by the WNHA, and editing a three-volume account of Ireland’s Crusade Against Tuberculosis (1908-1909). PMID:23536737

  16. The frustration of Lady Aberdeen in her crusade against tuberculosis in Ireland.

    PubMed

    Breathnach, Caoimhghín S; Moynihan, John B

    2012-01-01

    When in his Annual Report for 1905 the Registrar General for Ireland pointed out to the lately arrived Lord Lieutenant, The Earl of Aberdeen, that annually in every 100 deaths in Ireland 16 were victims of tuberculosis, Lady Aberdeen took notice. In March 1907 she founded the WNHA with the clear duty of taking part in the fight against the appalling ravages of that disease, and organised a Tuberculosis Exhibition the following October. And so began a campaign that led to the building of Peamount Sanatorium in county Dublin, the Allan Ryan Hospital at Ringsend, and the Collier Dispensary in the city centre. However, the Irish parliamentarians at Westminster emasculated the Tuberculosis Prevention (Ireland) Act 1908 by ensuring that notification was not made compulsory. Passage of the National Health Insurance Act (1911) necessitated changes that resulted in the Tuberculosis Prevention (Ireland) Act (1913), but the crucial shortcomings of the earlier Act were not rectified: notification was necessary but still not compulsory. Lady Aberdeen recognised this serious flaw she was powerless to correct, and turned to propaganda, editing Sláinte, a monthly magazine founded in January 1909 by the WNHA, and editing a three-volume account of Ireland's Crusade Against Tuberculosis (1908-1909).

  17. A High Temperature Cyclic Oxidation Data Base for Selected Materials Tested at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    2003-01-01

    The cyclic oxidation test results for some 1000 high temperature commercial and experimental alloys have been collected in an EXCEL database. This database represents over thirty years of research at NASA Glenn Research Center in Cleveland, Ohio. The data is in the form of a series of runs of specific weight change versus time values for a set of samples tested at a given temperature, cycle time, and exposure time. Included on each run is a set of embedded plots of the critical data. The nature of the data is discussed along with analysis of the cyclic oxidation process. In addition examples are given as to how a set of results can be analyzed. The data is assembled on a read-only compact disk which is available on request from Materials Durability Branch, NASA Glenn Research Center, Cleveland, Ohio.

  18. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  19. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  20. Recent Advances in Hydrogen Peroxide Propulsion Test Capability at NASA's Stennis Space Center E-Complex

    NASA Technical Reports Server (NTRS)

    Jacks, Thomas E.; Beisler, Michele

    2003-01-01

    In recent years, the rocket propulsion test capability at NASA's John C. Stennis Space Center's (SSC) E-Complex has been enhanced to include facilitization for hydrogen peroxide (H2O2) based ground testing. In particular, the E-3 test stand has conducted numerous test projects that have been reported in the open literature. These include combustion devices as simple as small-scale catalyst beds, and larger devices such as ablative thrust chambers and a flight-type engine (AR2-3). Consequently, the NASA SSC test engineering and operations knowledge base and infrastructure have grown considerably in order to conduct safe H2O2 test operations with a variety of test articles at the component and engine level. Currently, the E-Complex has a test requirement for a hydrogen peroxide based stage test. This new development, with its unique set of requirements, has motivated the facilitization for hydrogen peroxide propellant use at the E-2 Cell 2 test position in addition to E-3. Since the E-2 Cell 2 test position was not originally designed as a hydrogen peroxide test stand, a facility modernization-improvement project was planned and implemented in FY 2002-03 to enable this vertical engine test stand to accomodate H2O2. This paper discusses the ongoing enhancement of E-Complex ground test capability, specifically at the E-3 stand (Cell 1 and Cell 2) and E-2 Cell 2 stand, that enable current and future customers considerable test flexibility and operability in conducting their peroxide based rocket R&D efforts.

  1. Expanding Hydrogen Peroxide Propulsion Test Capability at NASA's Stennis Space Center E-Complex

    NASA Technical Reports Server (NTRS)

    Jacks, Thomas E.; Beisler, Michele

    2003-01-01

    In recent years, the rocket propulsion test capability at NASA s John C. Stennis Space Center's (SSC) E-Complex has been enhanced to include facilitization for hydrogen peroxide (H2O2) based ground testing. In particular, the E-3 test stand has conducted numerous test projects that have been reported in the open literature. These include combustion devices as simple at small-scale catalyst beds, and larger devices such as ablative thrust chambers and a flight-type engine (AR2-3). Consequently, the NASA SSC test engineering and operations knowledge base and infrastructure have grown considerably in order to conduct safe H2O2 test operations with a variety of test articles at the component and engine level. Currently, the E-Complex has a test requirement for a hydrogen peroxide based stage test. This new development, with its unique set of requirements, has motivated the facilitization for hydrogen peroxide propellant use at the E-2 Cell 2 test position in addition to E-3. Since the E-2 Cell 2 test position was not originally designed as a hydrogen peroxide test stand, a facility modernization- improvement project was planned and implemented in FY 2002-03 to enable this vertical engine test stand to accommodate H2O2. This paper discusses the ongoing enhancement of E-Complex ground test capability, specifically at the E-3 stand (Cell 1 and Cell 2) and E-2 Cell 2 stand, that enable current and future customers considerable test flexibility and operability in conducting their peroxide based rocket R&D efforts.

  2. Center for Disease Control Diagnostic Immunology Proficiency Testing Program results for 1978.

    PubMed Central

    Taylor, R N; Fulford, K M; Przybyszewski, V A; Pope, V

    1979-01-01

    Data from about 1,000 laboratories participating in the Diagnostic Immunology portion of the 1978 Center for Disease Control Proficiency Testing Program provided information dealing with laboratory performance and trends in testing protocols. Ninety specimens were distributed in scheduled quarterly and semiannual shipments, and five additional specimens were provided in a special survey. The specimens offered both qualitative and quantitative challenges for a wide variety of analytes which included syphilis serology, rheumatoid factor, bacterial agglutinins, hepatitis B surface antigen, immunoglobulins and other serum proteins, infectious mononucleosis, rubella, toxoplasma, antinuclear antibodies, and streptococcal exoenzymes. This paper summarizes the results of the 1978 program. PMID:230201

  3. Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu

    2015-01-01

    This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.

  4. Mission Control Center (MCC) system specification for the shuttle Orbital Flight Test (OFT) timeframe

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.

  5. Economic Analysis of Requests for Laboratory Tests in Primary Health Care Centers

    PubMed Central

    Zunic, Lejla

    2012-01-01

    Introduction: Operation of the Primary health care center and Medical-biochemical laboratories depends on the number of performed laboratory tests. The number of unnecessary tests significantly affect the operation of health institutions. Material and methods: We analyzed the 1000 requests for laboratory tests at the Primary Health Care Centre in Gracanica from primary care units. Based on the requests for laboratory diagnostics advisable diagnoses from primary health care unit in the Primary Health Care Center (PHC) we made an economic analysis of the total required laboratory tests in the requests for laboratory diagnosis. Incorporating the economic analysis of laboratory tests in requests for laboratory diagnosis by doctors in primary health care (PHC) and the economic analysis of laboratory tests by the disease in primary health care. Results: The economic value of 5333 laboratory tests was 84 312 points (1 point is 0.80 KM). Of the total value of the index score requirements of GPs are 44, 1%, the requirement of family doctors account for 40% and requirements of other specialists make up 15, 9%.. Discussion: In the requests of the PHC units for laboratory tests are required all levels of services: urine, CBC, SE, glucose, bilirubine, ALT, AST, AF, CK, cholesterol, HDL chol., triglicerdes, creatinine, urea, uric acid, CRP, fibrinogen, calcium and phosphorus. The following requests are the most common laboratory tests: urine, CBC, blood glucose, cholesterol, triglycerides, aminotransferases, creatinine, urea. The doctors in family practice most often requested: blood glucose, urine, CBC, SE, TGL. , Chol., ALT, AST, creatinine and urea. General practitioners were demanding more cholesterol and triglycerides, and family medicine doctors were demanding less cholesterol and triglycerides and more often CRP, fibrinogen, ALT, AST, what from the level of economic cost analysis rises the issue whether this was justified? PMID:23322950

  6. Capabilities and History of NASA Marshall Space Flight Center's Hydrogen Test Facility

    NASA Technical Reports Server (NTRS)

    Malone, T. W.

    2007-01-01

    The Hydrogen Test Facility (HTF) has conducted mechanical testing for aerospace materials at NASA's Marshall Space Flight Center for many years. One of the first facilities of its kind to run high-pressure cryogenic permeability tests in liquid hydrogen, HTF is now characterized as a unique national resource capable of overcoming hazardous conditions to perform tests directly in various hydrogen environments. At HTF, custom test systems are operated in eight structurally reinforced test cells from 0 to 68,948 kPa (0 to 10,000 psi) at -253 to 982 C (--423 to 1800 F) in hydrogen, air, helium, and nitrogen, with other environments available upon request. Standard mechanical procedures include compression, fatigue crack growth rate, four-point bend, high/low cycle fatigue, fracture toughness, shear, strain-to-crack, and tensile testing. Cryogenic permeability and thermal conductivity and gaseous creep testing are offered, as well as simulated service under different combinations of operating environment(s), stress, pressure, and ambient-to-extreme temperatures. Advanced tests are routinely developed upon demand, and special component testing is also available. Current efforts include the renovation of two high-pressure gaseous test cells to generate data for a J-2X engine designed for Constellation's Ares I and V vehicles. In the past, HTF has supported other critical NASA programs, such as Apollo, Space Shuttle, and Next Generation Launch Technologies. During the 1990's, hundreds of tests were conducted in liquid hydrogen and liquid nitrogen during development of the Space Shuttle's super lightweight tank, which provided the thrust required to achieve low Earth orbit for the International Space Station. This facility was designed and built in 1963. Originally called the Low Temperature Test Facility, it became known as the Cryogenic Test Facility in the late 1980's and HTF in the early 1990's.

  7. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  8. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  9. Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.

    2007-01-01

    The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility

  10. Recommended Strain Gage Application Procedures for Various Langley Research Center Balances and Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1997-01-01

    The NASA Langley Research Center uses more than 10000 strain gages per year in supporting its various research programs. The character of the testing at LaRC is such that the types of strain gage installations, the materials they are applied to, and the test environments encountered, require many varied approaches for installing strain gages. These installations must be accomplished in the most technically discerning and appropriate manner. This technical memorandum is offered as an assisting guide in helping the strain gage user to determine the appropriate approach for a given strain gage application requirement. Specifically, this document offers detailed recommendations for strain gaging the following: LaRC-Designed balances, LARC custom transducers, certain composite materials and alloys, high-temperature test articles, and selected non-typical or unique materials or test conditions.

  11. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.

  12. The Testing Behind the Test Facility: the Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.

  13. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  16. The fracture toughness of wood in compact specimens (CT specimens) tested for off-center tension

    SciTech Connect

    Gappoev, M.M.

    1995-07-01

    The application of fracture mechanics methods in the design of building construction requires reliable knowledge of material crack resistance characteristics. At present, no standard test techniques for crack resistance in wood materials have been developed. In testing wood for crack resistance, it has been recommended that single-notched beam specimens (of the SENB type) subjected to three-point bending be used. The recommended method is rather simple; however, it has disadvantages that impair its accuracy. In particular, errors may arise from not directly accounting for the proper mass of a specimen. To evaluate these errors and to lend support to our previous results obtained on beam specimens, we tested compact specimens for off-center tension. Methods for determining the crack resistance characteristics (G{sub Ic,}, G{sub IF}, K{sub Ic}) of compact wood specimens (CT-specimens), tested for off-center tension, are described. The behavior of the fracture energy G{sub IF} during crack propagation is discussed.

  17. Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

    SciTech Connect

    Cantrell, J.

    2012-05-23

    The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

  18. Test and simulation of full-scale self-centering beam-to-column connection

    NASA Astrophysics Data System (ADS)

    Deng, Kailai; Pan, Peng; Lam, Alexandre; Pan, Zhenhua; Ye, Lieping

    2013-12-01

    A new type of beam-to-column connection for steel moment frames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 rad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.

  19. Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.

    2005-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.

  20. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site.

  1. Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree of Freedom Dynamic Test System

    NASA Technical Reports Server (NTRS)

    Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of "pathfinder" testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft s Low Impact Docking System (LIDS). Project team members have integrated the Orion simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a "pathfinder" activity in order to pave the way for future testing with the actual Orion sensors. This paper describes the test configuration and test results.

  2. Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree-of-Freedom Dynamic Test System

    NASA Astrophysics Data System (ADS)

    Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the Rendezvous, Proximity Operations and Docking (RPOD) sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of ``pathfinder'' testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft's Low Impact Docking System (LIDS). Project team members have integrated the Orion GN&C simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a ``pathfinder'' activity in preparation for future testing with the actual Orion sensors. This paper describes the test configuration and test results.

  3. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  4. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  5. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  6. Nozzle Side Load Testing and Analysis at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2009-01-01

    Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed

  7. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  8. Evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated wastewater and groundwater. Volume 2. Aberdeen Proving Ground Wastewater Treatment Plant. Final report, November 1988-December 1991

    SciTech Connect

    Burton, D.T.; Herriott, R.S.

    1992-07-01

    An evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated effluent was conducted at the Aberdeen Proving Ground Wastewater Treatment Plant (APG-WWTP), Aberdeen Proving Ground, MD, from early May 1990 to February 13, 1991. An array of biomonitoring tests structured in a tiered hazard assessment framework was used in the evaluation of the effluent. Several levels of biological organization were included in the array of tests. Acute toxicity was evaluated on daily 24-h composite samples using a 5- and 15-min Microtox assay which employs microbial (Photobacterium phosphoreum) bioluminescent activity. Three 24-h LC50 rotifer (Brachionus rubens) toxicity tests were conducted using 24-h composite samples. The following chronic tests were all performed three times using 24-h composite samples: 96-h EC50 algal (Selenastrum capricornutum) growth test, 7-d daphnid (Ceriodaphnia dubia) survival and reproduction test, and 7-d fathead minnow (Pimephales promelas) survival and growth test. The acute rotifer tests and all chronic tests were conducted during the same periods in order to compare toxicological responses between biomonitoring systems.... Wastewater, Aquatic, Acute toxicity, Chronic toxicity, Mutagenicity, Ames, Teratogencity, FETAX, Carcinogenicity, Ventilatory biomonitoring system, Microtox, Photobacterium.

  9. Evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated wastewater and groundwater. Volume 1. Aberdeen proving ground-edgewood area wastewater treatment plant. Final report, November 1988-December 1991

    SciTech Connect

    Burton, D.T.; Graves, W.C.

    1992-07-01

    An evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated effluent was conducted at the Aberdeen Proving Ground-Edgewood Area Wastewater Treatment Plant (APG-EA WWTP), Aberdeen Proving Ground, MD, from January 1989 to December 13, 1989. An array of biomonitoring tests structured in a tiered hazard assessment framework was used in the evaluation of the effluent. Several levels of biological organization were included in the array of tests. Acute toxicity was evaluated on 24-h composite samples using a 15-min Microtox R assay which employs microbial (Photobacterium phosphoreum) bioluminescent activity. Two 24-h LC50 rotifer (Brachionus rubens) toxicity tests were conducted using 24-h composite samples The following chronic tests were all performed two times using 24-h composite samples: 96-h EC50 algal (Selenastrum capricornutum) growth test, 7-d daphnid (Ceriodaphnia dubia) survival and reproduction test, and 7-d fathead minnow (Pimephales promelas) survival and growth test. Generally, the acute rotifer tests and all chronic tests were conducted during the same periods in order to compare toxicological responses between biomonitoring systems.... Wastewater, Aquatic, Acute toxicity, Chronic toxicity, Mutagenicity, Ames, Teratogenicity, FETAX, Carcinogenicity, Ventilatory biomonitoring system, Microtox R, Photobacterium.

  10. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  11. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  12. An optimized groundwater extraction system for the toxic burning pits area of J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Quinn, J.J.; Johnson, R.L.; Patton, T.L.; Martino, L.E.

    1996-06-01

    Testing and disposal of chemical warfare agents, munitions, and industrial chemicals at the J-Field area of the Aberdeen Proving Ground (APG) have resulted in contamination of soil and groundwater. The discharge of contaminated groundwater to on-site marshes and adjacent estuaries poses a potential risk to ecological receptors. The Toxic Burning Pits (TBP) area is of special concern because of its disposal history. This report describes a groundwater modeling study conducted at J-Field that focused on the TBP area. The goal of this modeling effort was optimization of the groundwater extraction system at the TBP area by applying linear programming techniques. Initially, the flow field in the J-Field vicinity was characterized with a three-dimensional model that uses existing data and several numerical techniques. A user-specified border was set near the marsh and used as a constraint boundary in two modeled remediation scenarios: containment of the groundwater and containment of groundwater with an impermeable cap installed over the TBP area. In both cases, the objective was to extract the minimum amount of water necessary while satisfying the constraints. The smallest number of wells necessary was then determined for each case. This optimization approach provided two benefits: cost savings, in that the water to be treated and the well installation costs were minimized, and minimization of remediation impacts on the ecology of the marsh.

  13. Microfiche/Telex Oriented Document Services Center Established in Sylvania Library Through Cooperative Test Program with Defense Documentation Center.

    ERIC Educational Resources Information Center

    Little, Dean K.

    In a cooperative program with Defense Documentation Center Headquarters, Sylvania arranged for procurement of 70,000 unclassified-unlimited documents without DDC Form I cards and 30,000 unclassified-limited and classified documents with Form I's. This was done in order to overcome effects of an in-house documents inventory/selective destruction…

  14. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  15. Space Shuttle Main Engine Turbopump Bearing Testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip

    2010-01-01

    The Space Shuttle has three main engines that are used for lift off into orbit. These engines are fed propellants by low and high pressure turbopumps on each engine. A main element of the pumps are the bearings supporting the main shaft that spins the turbine and pumps. These bearings must spin at high speeds, support the radial and axial thrust loads, and have high wear resistance without the benefit of lubrication. This paper describes the bearing testing that was done at the Marshall Space Flight Center and the results that were obtained to provide the best bearing design possible for safe and reliable engine performance.

  16. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  17. Superfund Record of Decision (EPA Region 3): USA Aberdeen, Operable Unit One, Michaelsville, MD. (Second remedial action), June 1992

    SciTech Connect

    Not Available

    1992-06-30

    The 20-acre USA Aberdeen Michaelsville Landfill is a municipal landfill located along the Chesapeake Bay in Harford County, Maryland. The site is in the northern portion of the Aberdeen Proving Ground (APG) in the Aberdeen Area (AA) between Michaelsville Road and Trench Warfare Road. The majority of materials reportedly disposed of at the site included domestic trash, trash from nonindustrial sources at APG, solvents, waste motor oils, PCB transformer oils, wastewater treatment sludges, pesticides containing thallium, insecticides containing selenium, and rodenticides containing antimony. The ROD addresses protection of the ground water by minimizing leachate flow and preventing current or future exposure to waste materials as the first of two OUs planned for the site. The primary contaminants of concern affecting the soil are organics, including pesticides; and metals, including chromium and lead.

  18. Early Air Force Flight Test Center (AFFTC) experience with Peripheral Vision Horizon Displays (PVHD)

    NASA Technical Reports Server (NTRS)

    Schofield, B. L.

    1984-01-01

    Three separate Air Force Flight Test Center (AFFTC) tests were conducted in 1980 and 1981 on two models of the peripheral vision horizon displays (PVHD) (Malcolm Horizon). A fixed base simulator test was conducted with twenty test pilot subjects using the Flight Simulator Demonstration Model which incorporated a Helium Neon laser as the light bar medium. Two separate flight tests were conducted by the Test Pilot School classes 80A and 80B in a Twin Otter commuter aircraft using the Stage A Model PVHD. The Xenon lighted A Model was tested in its original configuration by class 80A. Class 80B used a modified configuration which incorporated an AFFTC designed and manufactured hood. With the hood, the PVHD projected a thinner, distinct light bar. Only a few general remarks concerning the tests and unrestricted, overall conclusions reached by the author are presented. The conclusions of all three AFFTC evaluations of the PVHD concept were that it has not yet been adequately evaluated. There seems to be a significant learning curve associated with the PVHD and the project pilots for Test Pilot School Class 80B only got a good start on the learning curve. A lengthy learning curve for the PVHD should be anticipated in view of the training period required for the attitude display indicator (ADI). This does seem to point out that the PVHD, in its present form, is simply not as compelling as the natural horizon. It can also be concluded that any attempt at a valid evaluation of the PVHD concept can be done only under instrument meteorological conditions (IMC) or validly simulated IMC conditions. The knee in the learning curve, however, may be reached without full IMC, although it may take much longer to reach.

  19. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  20. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  1. Results of the analysis of the blood lymphocyte proliferation test data from the National Jewish Center

    SciTech Connect

    From, E.L.; Newman, L.S.; Mroz, M.M.

    1997-03-01

    A new approach to the analysis of the blood beryllium lymphocyte proliferation test (LPT) was presented to the Committee to Accredit Beryllium Sensitization Testing-Beryllium Industry Scientific Advisory Committee in April, 1994. Two new outlier resistant methods were proposed for the analysis of the blood LPT and compared with the approach then in use by most labs. The National Jewish Center (NJC) agreed to provide data from a study that was underway at that time. Three groups of LPT data are considered: (1) a sample of 168 beryllium exposed (BE) workers and 20 nonexposed (NE) persons; (2) 25 unacceptable LPTs, and (3) 32 abnormal LPTs for individuals known to have chronic beryllium disease (CBD). The LAV method described in ORNL-6818 was applied to each LPT. Graphical and numerical summaries similar to those presented for the ORISE data are given. Three methods were used to identify abnormal LPTs. All three methods correctly identified the 32 known CBD cases as abnormal.

  2. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  3. Nuclear counting filter based on a centered Skellam test and a double exponential smoothing

    SciTech Connect

    Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan; Rohee, Emmanuel; Normand Stephane

    2015-07-01

    Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activity occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)

  4. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  5. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  6. An Occupational Performance Test Validation Program for Fire Fighters at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Schonfeld, Brian R.; Doerr, Donald F.; Convertino, Victor A.

    1990-01-01

    We evaluated performance of a modified Combat Task Test (CTT) and of standard fitness tests in 20 male subjects to assess the prediction of occupational performance standards for Kennedy Space Center fire fighters. The CTT consisted of stair-climbing, a chopping simulation, and a victim rescue simulation. Average CTT performance time was 3.61 +/- 0.25 min (SEM) and all CTT tasks required 93% to 97% maximal heart rate. By using scores from the standard fitness tests, a multiple linear regression model was fitted to each parameter: the stairclimb (r(exp 2) = .905, P less than .05), the chopping performance time (r(exp 2) = .582, P less than .05), the victim rescue time (r(exp 2) = .218, P = not significant), and the total performance time (r(exp 2) = .769, P less than .05). Treadmill time was the predominant variable, being the major predictor in two of four models. These results indicated that standardized fitness tests can predict performance on some CTT tasks and that test predictors were amenable to exercise training.

  7. High temperature cyclic oxidation furnace testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1981-01-01

    A standardized method of testing the cyclic oxidation resistance of various alloys in static air to 1200 C was developed and is routinely used at NASA Lewis Research Center. Test samples are automatically raised and lowered into a resistance wound furnace for a series of fixed interval heating and cooling cycles. Spall catchers collect the accumulated spall from each sample. The samples are weighed intermittently to generate specific weight change/time data. At various test times the samples and the accumulated spall are analyzed by X-ray diffraction. A computer program uses this gravimetric and X-ray data as input to print out the oxidation curves and specific weight change/time and X-ray results in a published format, organizes, and indexes the data. So far, several hundred Fe, Ni, and Co base alloys were tested using this same basic procedure and results form the basis of a series of cyclic oxidation handbooks to be published by NASA. Such specific weight change/time data were used to estimate the oxidative metal consumption by several computer modeling techniques to rank alloys and for use in life testing estimates.

  8. J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reynolds, D. C.; Hormonzian, Carlo

    2010-01-01

    NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.

  9. Testing the abundant center model using range-wide demographic surveys of two coastal dune plants.

    PubMed

    Samis, Karen E; Eckert, Christopher G

    2007-07-01

    It is widely accepted that species are most abundant at the center of their geographic ranges and become progressively rarer toward range limits. Although the abundant center model (ACM) has rarely been tested with range-wide surveys, it influences much thinking about the ecology and evolution of species' distributions. We tested ACM predictions using two unrelated but ecologically similar plants, Camissonia cheiranthifolia and Abronia umbellata. We intensively sampled both throughout their one-dimensional distributions within the Pacific coastal dunes of North America, from northern Baja California, Mexico, to southern Oregon, USA. Data from > 1100 herbarium specimens indicated that these limits have been stable for at least the last 100 years. Range-wide field surveys detected C. cheiranthifolia at 87% of 124 sites and A. umbellata at 54% of 113 sites, but site occupancy did not decline significantly toward range limits for either species. Permutation analysis did not detect a significant fit of geographical variation in local density to the ACM. Mean density did not correlate negatively with mean individual performance (plant size or number of seeds/plant), probably because both species occur at low densities. Although size and seeds per plant varied widely, central populations tended to have the highest values for size only. For C. cheiranthifolia, we observed asymmetry in the pattern of variation between the northern and southern halves of the range consistent with the long-standing prediction that range limits are imposed by different ecological factors in different parts of the geographical distribution. However, these asymmetries were difficult to interpret and likely reflect evolutionary differentiation as well as plastic responses to ecological variation. Both density and seeds per plant contributed to variation in seed production per unit area. In C. cheiranthifolia only, sites with highest seed production tended to occur at the range center, as

  10. Green Propellant Test Capabilities of the Altitude Combustion Stand at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kubiak, Jonathan M.; Arnett, Lori A.

    2016-01-01

    The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and

  11. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  12. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  13. Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.

  14. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    USGS Publications Warehouse

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential

  15. Site investigation of Cluster 3, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    SciTech Connect

    Sharp, M.K.; Kean, T.B.

    1995-08-01

    The Waterways Experiment Station (WES) is currently involved in investigating several sites at the Edgewood Area (EA) of Aberdeen Proving Ground (APG), Maryland. These investigations consist of placing monitoring wells and periodically collecting samples for laboratory analysis. Additionally, several of the sites are to be investigated geophysically to determine if any anomalous areas exist. One of the sites, Cluster 3, a suspected landfill area is the focus of this report. Geophysical surveys were conducted to help delineate any anomalies indicative of buried waste, waste containers, boundaries of burial trenches, and the depth to water table. The geophysical methods utilized at the site were electromagnetic induction (EM), magnetics, and seismic refraction.

  16. Tri-Center Analysis: Determining Measures of Trichotomous Central Tendency for the Parametric Analysis of Tri-Squared Test Results

    ERIC Educational Resources Information Center

    Osler, James Edward

    2014-01-01

    This monograph provides an epistemological rational for the design of a novel post hoc statistical measure called "Tri-Center Analysis". This new statistic is designed to analyze the post hoc outcomes of the Tri-Squared Test. In Tri-Center Analysis trichotomous parametric inferential parametric statistical measures are calculated from…

  17. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  18. Agreement in the Scoring of Respiratory Events Among International Sleep Centers for Home Sleep Testing

    PubMed Central

    Magalang, Ulysses J.; Arnardottir, Erna S.; Chen, Ning-Hung; Cistulli, Peter A.; Gíslason, Thorarinn; Lim, Diane; Penzel, Thomas; Schwab, Richard; Tufik, Sergio; Pack, Allan I.

    2016-01-01

    Study Objectives: Home sleep testing (HST) is used worldwide to confirm the presence of obstructive sleep apnea (OSA). We sought to determine the agreement of HST scoring among international sleep centers. Methods: Fifteen HSTs, previously recorded using a type 3 monitor, were deidentified and saved in European Data Format. The studies were scored by nine technologists from the sleep centers of the Sleep Apnea Global Interdisciplinary Consortium (SAGIC) using the locally available software. Each study was scored separately using one of three different airflow signals: nasal pressure (NP), transformed (square root) nasal pressure signal (transformed NP), and uncalibrated respiratory inductive plethysmography (RIP) flow. Only one of the three airflow signals was visible to the scorer at each scoring session. The scoring procedure was repeated to determine the intrarater reliability. Results: The intraclass correlation coefficients (ICCs) using the NP were: apnea-hypopnea index (AHI) = 0.96 (95% confidence interval [CI]: 0.93–0.99); apnea index = 0.91 (0.83–0.96); and hypopnea index = 0.75 (0.59–0.89). The ICCs using the transformed NP were: AHI = 0.98 (0.96–0.99); apnea index = 0.95 (0.90–0.98); and hypopnea index = 0.90 (0.82–0.96). The ICCs using the RIP flow were: AH I = 0.98 (0.96–0.99); apnea index = 0.66 (0.48–0.84); and hypopnea index = 0.78 (0.63–0.90). The mean difference of first and second scoring sessions of the same respiratory variables ranged from −1.02 to 0.75/h. Conclusion: There is a strong agreement in the scoring of the respiratory events for HST among international sleep centers. Our results suggest that centralized scoring of HSTs may not be necessary in future research collaboration among international sites. Commentary: A commentary on this article appears in this issue on page 7. Citation: Magalang UJ, Arnardottir ES, Chen NH, Cistulli PA, Gíslason T, Lim D, Penzel T, Schwab R, Tufik S, Pack AI, SAGIC Investigators

  19. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  20. Transmissivity and storage coefficient estimates from slug tests, Naval Air Warfare Center, West Trenton, New Jersey

    USGS Publications Warehouse

    Fiore, Alex R.

    2014-01-01

    Slug tests were conducted on 56 observation wells open to bedrock at the former Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. Aquifer transmissivity (T) and storage coefficient (S) values for most wells were estimated from slug-test data using the Cooper-Bredehoeft-Papadopulos method. Test data from three wells exhibited fast, underdamped water-level responses and were analyzed with the Butler high-K method. The range of T at NAWC was approximately 0.07 to 10,000 square feet per day. At 11 wells, water levels did not change measurably after 20 minutes following slug insertion; transmissivity at these 11 wells was estimated to be less than 0.07 square feet per day. The range of S was approximately 10-10 to 0.01, the mode being 10-10. Water-level responses for tests at three wells fit poorly to the type curves of both methods, indicating that these methods were not appropriate for adequately estimating T and S from those data.

  1. Large Scale Refrigeration Plant for Ground Testing the James Webb Telescope at NASA Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Decker, Lutz; Howe, D.; Urbin, J.; Homan, Jonathan; Reis, Carl; Creel, J.; Ganni, V.; Knudsen, P.; Sidi-Yekhlef, A.

    2010-04-01

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle-Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  2. Results of limestone clear liquor scrubbing tests at EPRI`s Environmental Control Technology Center (ECTC)

    SciTech Connect

    Hargrove, O.W. Jr.; Skarupa, R.C.; Wilhelm, J.H.

    1995-06-01

    In a continuing effort to offer lower cost SO{sub 2} control alternatives for its member utilities, EPRI has developed and tested a limestone clear liquor scrubbing using the 0.4-MW{sub e} mini-pilot FGD system at EPRI`s Environmental Control Technology Center. In the first-phase of testing, existing equipment was used to evaluate the feasibility of the process concept. Following the encouraging Phase I results, a pilot-scale sludge bed limestone reactor was designed and fabricated for a second-phase of testing. Tests have been conducted in both inhibited and forced oxidation modes. Variables investigated include: type of organic acid, buffer concentration, solid-phase residence time, pH, L/G, and chloride level. Results show that the clear liquor process can achieve SO{sub 2} removal and solids properties equivalent to or better than that of an enhanced slurry process without scale build-up. Preliminary economics indicate that the clear liquor gypsum process could reduce overall capital and operating expense by 5 to 10% relative to an organic acid-enhanced slurry process and by 15 to 20% relative to a conventional, unenhanced limestone process.

  3. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  4. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to +662F (-150 to +350C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  5. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  6. Weight, center of gravity and modal test report for NTF fan blade set no. 3

    NASA Technical Reports Server (NTRS)

    Friedman, Inger P.

    1992-01-01

    A complete set of fan blades for the National Transonic Facility (NTF) at the NASA Langley Research Center was recently fabricated by Dynamic Engineering Inc. (DEI). These blades were the third complete set of blades fabricated by the NTF. The first set of blades was fabricated by NASA and installed in the tunnel in December 1981. This original set was destroyed in a mishap in January 1989. The second set of blades is currently in use in the NTF. The third set of blades recently fabricated by DEI is a spare set. In order to ensure that the blades met the requirements, DEI performed a series of tests on each of the completed blades. In addition, a model survey was conducted on each blade to define the dynamic characteristics. Discussed here are the blade tests conducted by DEI and the test results. The test set-ups and procedures are discussed in detail. The results obtained for each of the 27 blades are documented and comparisons are made between this set of blades and similar data for two previous sets of NTF fan blades.

  7. High temperature cyclic oxidation furnace testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1981-01-01

    A standardized method of testing the cyclic oxidation resistance of various alloys in static air up to 1200 C has been developed and routinely used at the NASA Lewis Research Center. Test samples are automatically raised and lowered into a resistance wound furnace for a series of fixed-interval heating and cooling cycles. Spall catchers collect the accumulated spall from each sample. The samples are weighed intermittently to generate specific weight change with time data. At various test times the samples and the accumulated spall are analyzed by X-ray diffraction. A computer program is used to print out the specific weight change versus time data and the X-ray data in tabular form and to plot the specific weight change versus time data in a publishable format. The data are also organized and indexed. So far several hundred Fe-, Ni-, and Co-base alloys have been tested using this basic procedure and will form the basis of a series of cyclic oxidation handbooks to be published by NASA. Such specific weight change/time data have been used to estimate the oxidative metal consumption by several computer modeling techniques both to rank alloys and to estimate life.

  8. The Changing Landscape of Molecular Diagnostic Testing: Implications for Academic Medical Centers

    PubMed Central

    Rehm, Heidi L.; Hynes, Elizabeth; Funke, Birgit H.

    2016-01-01

    Over the last decade, the field of molecular diagnostics has undergone tremendous transformation, catalyzed by the clinical implementation of next generation sequencing (NGS). As technical capabilities are enhanced and current limitations are addressed, NGS is increasingly capable of detecting most variant types and will therefore continue to consolidate and simplify diagnostic testing. It is likely that genome sequencing will eventually serve as a universal first line test for disorders with a suspected genetic origin. Academic Medical Centers (AMCs), which have been at the forefront of this paradigm shift are now presented with challenges to keep up with increasing technical, bioinformatic and interpretive complexity of NGS-based tests in a highly competitive market. Additional complexity may arise from altered regulatory oversight, also triggered by the unprecedented scope of NGS-based testing, which requires new approaches. However, these challenges are balanced by unique opportunities, particularly at the interface between clinical and research operations, where AMCs can capitalize on access to cutting edge research environments and establish collaborations to facilitate rapid diagnostic innovation. This article reviews present and future challenges and opportunities for AMC associated molecular diagnostic laboratories from the perspective of the Partners HealthCare Laboratory for Molecular Medicine (LMM). PMID:26828522

  9. An Evaluation of North Korea’s Nuclear Test by Belbasi Nuclear Tests Monitoring Center-KOERI

    NASA Astrophysics Data System (ADS)

    Necmioglu, O.; Meral Ozel, N.; Semin, K.

    2009-12-01

    Bogazici University and Kandilli Observatory and Earthquake Research Institute (KOERI) is acting as the Turkish National Data Center (NDC) and responsible for the operation of the International Monitoring System (IMS) Primary Seismic Station (PS-43) under Belbasi Nuclear Tests Monitoring Center for the verification of compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) since February 2000. The NDC is responsible for operating two arrays which are part of the IMS, as well as for transmitting data from these stations to the International Data Centre (IDC) in Vienna. The Belbasi array was established in 1951, as a four-element (Benioff 1051) seismic array as part of the United States Atomic Energy Detection System (USAEDS). Turkish General Staff (TGS) and U.S. Air Force Technical Application Center (AFTAC) under the Defense and Economic Cooperation Agreement (DECA) jointly operated this short period array. The station was upgraded and several seismometers were added to array during 1951 and 1994 and the station code was changed from BSRS (Belbasi Seismic Research Station) to BRTR-PS43 later on. PS-43 is composed of two sub-arrays (Ankara and Keskin): the medium-period array with a ~40 km radius located in Ankara and the short-period array with a ~3 km radius located in Keskin. Each array has a broadband element located at the middle of the circular geometry. Short period instruments are installed at depth 30 meters from the surface while medium and broadband instruments are installed at depth 60 meters from surface. On 25 May 2009, The Democratic People’s Republic of Korea (DPRK) claimed that it had conducted a nuclear test. Corresponding seismic event was recorded by IMS and IDC released first automatic estimation of time (00:54:43 GMT), location (41.2896°N and 129.0480°E) and the magnitude (4.52 mb) of the event in less than two hours time (USGS: 00:54:43 GMT; 41.306°N, 129.029°E; 4.7 mb) During our preliminary analysis of the 25th May 2009 DPRK

  10. Preliminary Assessment, Army Reserve Center, Pewaukee, Wisconsin

    DTIC Science & Technology

    1994-01-14

    U.S. ARMY ENVIRONMENTAL CENTER INSTALLATION RESTORATION DIVISION BLDG. E4480 ABERDEEN PROVING GROUND, MARYLAND 21010I - PREPARED BY: PEER CONSULTANTS...Reserve Center in Pewaukee, Wisconsin Pamela A. Lemme; John W. Tucker, Jr. 7. PIERFOnminG ORGANIZATiON KA*6S AND A002=15E) I ~IOI"OGNETO PEER Consultants...environment and provide the infomation necessary to reevaluate the facility’s status on the Federal Facility Docket. PEER Consultants, P.C. was retained to

  11. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    SciTech Connect

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  12. GALACTIC-CENTER S STARS AS A PROSPECTIVE TEST OF THE EINSTEIN EQUIVALENCE PRINCIPLE

    SciTech Connect

    Angelil, Raymond; Saha, Prasenjit

    2011-06-10

    The S stars in the Galactic-center region are found to be on near-perfect Keplerian orbits around presumably a supermassive black hole, with periods of 15-50 yr. Since these stars reach a few percent of light speed at pericenter, various relativistic effects are expected and have been discussed in the literature. We argue that an elegant test of the Einstein equivalence principle should be possible with existing instruments, through spectroscopic monitoring of an S star concentrated during the months around pericenter, supplemented with an already-adequate astrometric determination of the inclination. In essence, the spectrum of an S star can be considered a heterogeneous ensemble of clocks in a freely falling frame, which near pericenter is moving at relativistic speeds.

  13. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  14. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  15. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  16. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  17. Capabilities of NASA/Marshall Space Flight Center's Impact Testing Facility

    NASA Technical Reports Server (NTRS)

    Hovater, Mary; Hubbs, Whitney; Finchum, Andy; Evans, Steve; Nehls, Mary

    2006-01-01

    The Impact Testing Facility (ITF) serves as an important installation for materials science at Marshall Space Flight Center (MSFC). With an array of air, powder, and two-stage light gas guns, a variety of projectile and target types and sizes can be accommodated. The ITF allows for simulation of impactors from rain to micrometeoroids and orbital debris on materials being investigated for space, atmospheric, and ground use. Expendable, relatively simple launch assemblies are used to obtain well-documented results for impact conditions comparable to those from ballistic and rocket sled ranges at considerably lower cost. In addition, for applications requiring study of impacts at speeds in excess of those attainable by gun launches, hydrocode simulations, validated by test data, can be used to extend the velocity range. In addition to serving various NASA directorates, the ITF has performed testing on behalf of the European and Russian space agencies, as well as the Department of Defense, and academic institutions. The m s contributions not only enable safer space flight for NASA s astronauts, but can help design materials and structures to protect soldiers and civilians on Earth, through advances in body armor, aircraft survivability, and a variety of other applications.

  18. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  19. The Language Research Center's Computerized Test System for environmental enrichment and psychological assessment

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.

    1992-01-01

    In the spring of 1987, we undertook to provide environmental enrichment to nonhuman primate subjects in ways that would complement and even contribute to the bio-behaviorial science that justified the monkeys' captivity. Of course, the psychological well-being of captive primates--and indeed all research species-- has been an area of intense research activity since the 1985 amendment of the Animal Welfare Act. This mandate for researchers to ensure the psychological, as well as physical, fitness of experimental animals catalyzed the humane and scientific interests of the research community. The contemporary literature is replete with proposed means both of assaying and of providing enrichment and well-being. Notwithstanding, consensus on either assessment or intervention has yet to be reached. The paradigm we employed was modelled after successful efforts with chimpanzees. An automated test system was constructed in which subjects responded to computer tasks by manipulating a joystick. The tasks, interactive game-like versions of many of the classic testing paradigms of cognitive and comparative psychology, permitted the controlled presentation of stimuli and demands without the required presence of a human experimenter. Despite significant barriers to the success, rhesus monkeys (Macaca mulatta) and a variety of other primate species (including, of course, humans) have mastered the skills necessary for testing in this paradigm. Previous experiments have illustrated the utility of the test system for addressing questions of learning, memory, attention, perception, and motivation. Additional data have been reported to support the contention that the Language Research Center's Computerized Test System (LRC-CTS) serves its other raison d'etre--providing environmental enrichment and assessing psychological well-being. This paper is designed to augment previous descriptions of the technology and the paradigm for scientists and caretakers interested in environmental

  20. Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland.

    PubMed

    Stromdahl, E Y; Randolph, M P; O'Brien, J J; Gutierrez, A G

    2000-05-01

    Human monocytic ehrlichiosis (HME) is a sometimes fatal, emerging tick-borne disease caused by the bacterium Ehrlichia chaffeensis. It is frequently misdiagnosed because its symptoms mimic those of the flu. Current evidence indicates that Amblyomma americanum (L.), the lone star tick, is the major vector of HME. To determine if E. chaffeensis is present in ticks at Aberdeen Proving Ground, MD, questing A. americanum ticks were collected from 33 sites. Nucleic acid was extracted from 34 adult and 81 nymphal pools. Sequences diagnostic for E. chaffeensis from three different loci (16S rRNA, 120-kDa protein, and a variable-length polymerase chain reaction [PCR] target, or VLPT) were targeted for amplification by the PCR. Fifty-two percent of the collection sites yielded pools infected with E. chaffeensis, confirming the presence and widespread distribution of E. chaffeensis at Aberdeen Proving Ground. Analysis with the both the 120-kDa protein primers and the VLPT primers showed that genetic variance exists. A novel combination of variance for the two loci was detected in two tick pools. The pathogenic implications of genetic variation in E. chaffeensis are as yet unknown.

  1. Dr. Auzoux's botanical teaching models and medical education at the universities of Glasgow and Aberdeen.

    PubMed

    Olszewski, Margaret Maria

    2011-09-01

    In the 1860s, Dr. Louis Thomas Jérôme Auzoux introduced a set of papier-mâché teaching models intended for use in the botanical classroom. These botanical models quickly made their way into the educational curricula of institutions around the world. Within these institutions, Auzoux's models were principally used to fulfil educational goals, but their incorporation into diverse curricula also suggests they were used to implement agendas beyond botanical instruction. This essay examines the various uses and meanings of Dr. Auzoux's botanical teaching models at the universities of Glasgow and Aberdeen in the nineteenth century. The two main conclusions of this analysis are: (1) investing in prestigious scientific collections was a way for these universities to attract fee-paying students so that better medical accommodation could be provided and (2) models were used to transmit different kinds of botanical knowledge at both universities. The style of botany at the University of Glasgow was offensive and the department there actively embraced and incorporated ideas of the emerging new botany. At Aberdeen, the style of botany was defensive and there was some hesitancy when confronting new botanical ideas.

  2. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  3. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  4. [Public free anonymous HIV testing centers: cost analysis and financing options].

    PubMed

    Dozol, Adrien; Tribout, Martin; Labalette, Céline; Moreau, Anne-Christine; Duteil, Christelle; Bertrand, Dominique; Segouin, Christophe

    2011-01-01

    The services of general interest provided by hospitals, such as free HIV clinics, have been funded since 2005 by a lump sum covering all costs. The allocation of the budget was initially determined based on historical and declarative data. However, the French Ministry of Health (MoH) recently outlined new rules for determining the allocation of financial resources and contracting hospitals for each type of services of general interest provided. The aim of this study was to estimate the annual cost of a public free anonymous HIV-testing center and to assess the budgetary implications of new financing systems. Three financing options were compared: the historic block grant; a mixed system recommended by the MoH associating a lump sum covering the recurring costs of an average center and a variable part based on the type and volume of services provided; and a fee-for-services system. For the purposes of this retrospective study, the costs and activity data of the HIV testing clinic of a public hospital located in the North of Paris were obtained for 2007. The costs were analyzed from the perspective of the hospital. The total cost was estimated at 555,698 euros. Personnel costs accounted for 31% of the total costs, while laboratory expenses accounted for 36% of the total costs. While the estimated deficit was 292,553 euros under the historic system, the financial balance of the clinic was found to be positive under a fee-for-services system. The budget allocated to the HIV clinic under the system recommended by the MoH covers most of the current expenses of the HIV clinic while meeting the requirements of free confidential care.

  5. History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave

    2010-01-01

    The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and

  6. Service Networks and Patterns of Utilization: Mental Health Programs, Indian Health Service (IHS). Volume 2: Aberdeen Area, 1965-1973.

    ERIC Educational Resources Information Center

    Attneave, Carolyn L.; Beiser, Morton

    The second volume in a 10-volume report on the historical development (1966-1973) of the 8 administrative Area Offices of the Indian Health Service (IHS) Mental Health Programs, this report presents information on the Aberdeen Area Office. Included in this document are: (1) Description of the Area (geography of the Area's Western Portion and…

  7. Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2011-01-01

    The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.

  8. Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder

    NASA Technical Reports Server (NTRS)

    Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm

    1996-01-01

    This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed

  9. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  10. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  11. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  12. NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  13. Multi-laboratory testing of a screening method for world trade center (WTC) collapse dust.

    PubMed

    Rosati, Jacky A; Bern, Amy M; Willis, Robert D; Blanchard, Fredrick T; Conner, Teri L; Kahn, Henry D; Friedman, David

    2008-02-15

    The September 11, 2001 attack on the World Trade Center (WTC) covered a large area of downtown New York City with dust and debris. This paper describes the testing of an analytical method designed to evaluate whether sampled dust contains dust that may have originated from the collapse of the WTC. Using dust samples collected from locations affected and not affected (referred to as 'background' locations) by the collapse, a scanning electron microscopy (SEM) analysis method was developed to screen for three materials that are believed to be present in large quantities in WTC dusts: slag wool, concrete, and gypsum. An inter-laboratory evaluation of the method was implemented by having eight laboratories analyze a number of 'blind' dust samples, consisting of confirmed background dust and confirmed background dust spiked with varying amounts of dust affected by the WTC collapse. The levels of gypsum and concrete in the spiked samples were indistinguishable from the levels in the background samples. Measurements of slag wool in dust demonstrated potential for distinguishing between spiked and background samples in spite of considerable within and between laboratory variability. Slag wool measurements appear to be sufficiently sensitive to distinguish dust spiked with 5% WTC-affected dust from 22 out of 25 background dust samples. Additional development work and inter-laboratory testing of the slag wool component will be necessary to improve the precision and accuracy of the method and reduce inter- and intra-laboratory variability from levels observed in the inter-laboratory evaluation.

  14. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  15. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  16. Identifying the HIV Testing Beliefs of Healthcare Provider Staff at a University Student Health Center: An Exploratory Study

    ERIC Educational Resources Information Center

    Harris, Cornelia A.

    2012-01-01

    This research project examined the views and perceptions of healthcare provider staff regarding HIV testing and the implementation of HIV testing as a routine part of medical practice in a university student health center at a Historically Black College or University (HBCU). This study further explored whether healthcare provider staff promoted…

  17. Comparing Test Anxiety Levels between Assessment Center Students Who Have Participated in an Orientation Session and Those Who Have Not.

    ERIC Educational Resources Information Center

    Jones, Joan

    A study was conducted at Oxnard College to assess the effectiveness of a multimodal orientation program designed by the college's Assessment Center to reduce test anxiety traumas by explaining theories of stress and techniques for stress reduction, self-help breathing, muscle relaxation, and creative visualization. The Test Anxiety Inventory (TAI)…

  18. Obstructive Sleep Apnea Devices for Out-Of-Center (OOC) Testing: Technology Evaluation

    PubMed Central

    Collop, Nancy A.; Tracy, Sharon L.; Kapur, Vishesh; Mehra, Reena; Kuhlmann, David; Fleishman, Sam A.; Ojile, Joseph M.

    2011-01-01

    Guidance is needed to help clinicians decide which out-of-center (OOC) testing devices are appropriate for diagnosing obstructive sleep apnea (OSA). A new classification system that details the type of signals measured by these devices is presented. This proposed system categorizes OOC devices based on measurements of Sleep, Cardiovascular, Oximetry, Position, Effort, and Respiratory (SCOPER) parameters. Criteria for evaluating the devices are also presented, which were generated from chosen pre-test and post-test probabilities. These criteria state that in patients with a high pretest probability of having OSA, the OOC testing device has a positive likelihood ratio (LR+) of 5 or greater coinciding with an in-lab-polysomnography (PSG)-generated apnea hypopnea index (AHI) ≥ 5, and an adequate sensitivity (at least 0.825). Since oximetry is a mandatory signal for scoring AHI using PSG, devices that do not incorporate oximetry were excluded. English peer-reviewed literature on FDA-approved devices utilizing more than 1 signal was reviewed according to the above criteria for 6 questions. These questions specifically addressed the adequacy of different respiratory and effort sensors and combinations thereof to diagnose OSA. In summary, the literature is currently inadequate to state with confidence that a thermistor alone without any effort sensor is adequate to diagnose OSA; if a thermal sensing device is used as the only measure of respiration, 2 effort belts are required as part of the montage and piezoelectric belts are acceptable in this context; nasal pressure can be an adequate measurement of respiration with no effort measure with the caveat that this may be device specific; nasal pressure may be used in combination with either 2 piezoelectric or respiratory inductance plethysmographic (RIP) belts (but not 1 piezoelectric belt); and there is insufficient evidence to state that both nasal pressure and thermistor are required to adequately diagnose OSA. With

  19. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  20. Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments

    SciTech Connect

    Ebinger, M.H.; Beckman, R.J.; Myers, O.B.; Kennedy, P.L.; Clements, W.; Bestgen, H.T.

    1996-09-01

    The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

  1. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  2. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  3. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  4. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  5. Electric Power Research Institute, High Sulfur Test Center report to the Steering Committee, March 1994. [Monthly report

    SciTech Connect

    Not Available

    1994-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s High Sulfur Test Center. The Suncor Limestone Reagent and Dewatering tests were completed on the Pilot unit this month. As this test block ended, the Pilot unit was modified for the High Velocity Scrubbing tests. This testing began on March 28, 1994 with test PHV-AN. As Phase II of the Mini-Pilot Clear Liquor Scrubbing test block was completed this month, the unit was taken off-line. Testing on the Cold-Side Selective Catalytic Reduction (SCR) unit continued this month as ammonia slip measurements were conducted. Catalyst material from the reactor was inspected and sampled during a scheduled outage this month in preparation for a low temperature test block.

  6. 14 CFR 142.53 - Training center instructor training and testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... limitations; (iv) Training policies and procedures; (v) Cockpit resource management and crew coordination; and... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training center instructor training and..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS...

  7. 14 CFR 142.53 - Training center instructor training and testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... limitations; (iv) Training policies and procedures; (v) Cockpit resource management and crew coordination; and... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training center instructor training and..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS...

  8. 14 CFR 142.53 - Training center instructor training and testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limitations; (iv) Training policies and procedures; (v) Cockpit resource management and crew coordination; and... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training center instructor training and..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS...

  9. 14 CFR 142.53 - Training center instructor training and testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... limitations; (iv) Training policies and procedures; (v) Cockpit resource management and crew coordination; and... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training center instructor training and..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS...

  10. 3 CFR - Medicare Demonstration To Test Medical Homes in Federally Qualified Health Centers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Memorandum for the Secretary of Health and Human Services My Administration is committed to building a high...) provided $2 billion for health centers, including $500 million to expand health centers' services to over 2... health information technology and electronic health records. One of the key benefits health...

  11. Crop production data for bioregenerative life support: Observations from testing at NASA's Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C.; Knott, W. M.

    NASA s Biomass Production Chamber BPC at Kennedy Space Center was decommissioned ca 1998 but in the preceding decade several crop tests were conducted that have not been reported in the open literature These included monoculture studies with wheat soybean potato and tomato For each of these studies 20 m 2 of crops were grown in an atmospherically closed chamber 113 m 3 vol using a nutrient film hydroponic technique along with elevated CO 2 1000 or 1200 mu mol mol -1 Canopy light PAR levels ranged from 30 to 85 mol m -2 d -1 depending on the crop and selected photoperiod Total biomass DM productivities reached 40 g m -2 d -1 for wheat 16 g m -2 d -1 for soybean 33 g m -2 d -1 for potato and 20 g m -2 d -1 for tomato Edible biomass DM productivities reached 13 g m -2 d -1 for wheat 6 g m -2 d -1 for soybean 20 g m -2 d -1 for potato and 10 g m -2 d -1 for tomato The highest radiation use efficiencies for biomass were 0 60 g DM mol -1 PAR for wheat 0 50 g mol -1 for soybean 0 95 g mol -1 for potato and 0 51 g mol -1 for tomato The highest radiation use efficiencies for edible biomass were 0 22 g DM mol -1 for wheat 0 18 g mol -1 for soybean 0 58 g mol -1 for potato and 0 25 g mol -1 for tomato Use of transplanting cycles or spacing techniques to reduce open gaps between plants early in growth would have improved productivities and radiation use efficiencies for soybeans potatoes and

  12. Live Operation Data Collection Optimization and Communication for the Domestic Nuclear Detection Office’s Rail Test Center

    SciTech Connect

    Gelston, Gariann M.

    2010-04-06

    For the Domestic Nuclear Detection Office’s Rail Test Center (i.e., DNDO’s RTC), port operation knowledge with flexible collection tools and technique are essential in both technology testing design and implementation intended for live operational settings. Increased contextual data, flexibility in procedures, and rapid availability of information are keys to addressing the challenges of optimization, validation, and analysis within live operational setting data collection. These concepts need to be integrated into technology testing designs, data collection, validation, and analysis processes. A modified data collection technique with a two phased live operation test method is proposed.

  13. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Keith Avery 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0172 TR-2014-0172 COMMERCIAL PARTS RADIATION TESTING Craig J. Kief COSMIAC at UNM 2350 Alamo Avenue SE Suite 300...Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE

  14. Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Assessing Beaked Whale Reproduction and Stress Response...both groups of animals to investigate whether there is a relationship between sonar activity, stress measures, and reproductive rates, to assess... Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC) 5a. CONTRACT NUMBER 5b. GRANT

  15. Superfund Record of Decision (EPA Region 4): Aberdeen Pesticide/Fairway Six, Inc. (First Remedial Action), June 1989

    SciTech Connect

    Not Available

    1989-06-30

    The Aberdeen Pesticide Dumps/Fairway Six site is a former disposal area in Moore County, North Carolina, approximately 1.6 miles west-northwest of Aberdeen. In August 1984, the State was alerted that pesticides had been disposed of at and around the site for a number of years. A State inspection revealed that soil and debris were contaminated with pesticides. In June 1985, EPA initiated an emergency response action to excavate and remove onsite contaminated surface soil and two buried trenches. The soil and debris were disposed of offsite. The predominant contaminants of concern affecting the soil and debris are chlorinated organo-pesticides. The selected remedial action for this site includes excavating and homogenizing stockpiled pesticide-contaminated wastes; treating homogenized wastes in an onsite, mobile thermal treatment facility and reinjecting process waste water or scrubber blowdown into the thermal treatment facility.

  16. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  17. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  18. Space Program Testing in the NASA Glenn Research Center 10x10 SWT

    NASA Technical Reports Server (NTRS)

    Ogorzaly, Matthew; Becks, Edward

    2008-01-01

    Historically, testing in the 10x10 Supersonic Wind Tunnel involved aeronautics type testing including testing of Supersonic Propulsion Components such as inlets and nozzles, Propulsion System Integration, Full-scale Jet and Rocket Engines, Aerodynamic Force and Moment testing, Sonic Boom Mitigation and the investigation of Advanced Aircraft Models. The New Space Directive(s) called for new areas of testing. Two interesting and challenging tests were proposed for the 10x10 SWT, the Inflatable Aerodynamic Decelerator (IAD) and the Mars Science Lab (MSL) Flexible Parachute. This presentation highlights those tests and plans for future testing in the 10x10 SWT.

  19. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center, MS - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.

    2008-01-01

    May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.

  20. Success with ELLs: ELLs at the Center--Rethinking High-Stakes Testing

    ERIC Educational Resources Information Center

    Ortiz-Marrero, Floris Wilma; Sumaryono, Karen

    2010-01-01

    Learning a language can be a long and arduous journey, and there is a lot of pressure on teachers to get students ready for standardized tests quickly. Because of the high-stakes consequences attached to standardized tests in combination with consistently lower test scores among English language learners (ELLs), the tests greatly impact the…

  1. Do Collaborative Practical Tests Encourage Student-Centered Active Learning of Gross Anatomy?

    ERIC Educational Resources Information Center

    Green, Rodney A.; Cates, Tanya; White, Lloyd; Farchione, Davide

    2016-01-01

    Benefits of collaborative testing have been identified in many disciplines. This study sought to determine whether collaborative practical tests encouraged active learning of anatomy. A gross anatomy course included a collaborative component in four practical tests. Two hundred and seven students initially completed the test as individuals and…

  2. Uniform engine testing program. Phase 1: NASA Lewis Research Center participation

    NASA Technical Reports Server (NTRS)

    Blesiadny, T.; Burkardt, L.; Braithwaite, W.

    1982-01-01

    Two jet engines were tested under identical conditions in a variety of altitude and ground level facilities as a means to correlating these facilities. Two J57-19W turbojet engines were tested in an altitude test facility. The test results are summarized.

  3. The Space Operations Simulation Center (SOSC) and Closed-loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela

    2011-01-01

    The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.

  4. Developing and Testing a Sex Education Program for the Female Clients of Health Centers in Iran

    ERIC Educational Resources Information Center

    Shirpak, Khosro Refaie; Ardebili, Hassan Eftekhar; Mohammad, Kazem; Maticka-Tyndale, Eleanor; Chinichian, Maryam; Ramenzankhani, Ali; Fotouhi, Akbar

    2007-01-01

    In this study a matched intervention-control site design in 14 urban health centers with random selection of 160 participants (80 in each of intervention and control) was used to evaluate a sex education program in Iran. Qualitative methods were used in a needs assessment that also set the content and method of delivery of the program. The…

  5. A Multilanguage Online Writing Center for Professional Communication: Development and Testing

    ERIC Educational Resources Information Center

    Jacobs, Geert; Opdenacker, Liesbeth; Waes, Luuk Van

    2005-01-01

    An online writing center developed at the University of Antwerp, Belgium, called Calliope, provides a modular platform aimed at enhancing learners' professional writing skills in five different languages: Dutch, English, French, German, and Spanish. It supports courses in business and technical communication. The current version includes modules…

  6. The use of innovative screening-level techniques for the bioassessment of estuarine sediments at U.S. Army Aberdeen Proving Ground, MD

    SciTech Connect

    Neubauer, R.J.; Thebeau, L.; Paul, J.

    1994-12-31

    The US Army Aberdeen Proving Ground (APG) is a primarily undeveloped installation on the upper Chesapeake bay in Maryland. The bush and Gunpowder Rivers are two sub-estuaries that run through the installation before emptying into the Chesapeake Bay. Past activities at EA APG include pilot-scale chemical agent manufacturing, munitions testing, smoke/incendiary manufacturing, domestic and rubble landfilling, and disposal of chemical warfare agents as well as other materials. It was determined that if contamination of the Gunpowder River exists from these previous activities on EA APG it was most likely to be found in the sediments. The initial phase was to conduct a sediment survey of the river to determine the spatial distribution of sediment types and the suitability of the benthos for the proposed methodologies. The second phase was to combine innovative screening-level investigative methodologies as well as sediment chemical and physical analyses into one survey of the benthos and sediments of the Gunpowder River. This phase used the Microtox luminescent bioassay and Daphnia magna IQ Toxicity Test, Surface and Profile Image (SPI) photography, analysis of sediment physical characteristics, and limited chemical analysis to identify locations that warrant a more focused investigation.

  7. Proceedings of the Conference on the Design of Experiments in Army Research, Development, and Testing (24th) Held at Mathematics Research Center, University of Wisconsin, Madison, Wisconsin on 4-6 October 1978

    DTIC Science & Technology

    1979-06-01

    TO SETBACK FORCES Dr. Richard S. Simak, Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland SUCCESSFUL APPLICATION OF STEWARTSON’S LIQUiD...INSTABILITY- STABILITY CRITERIA TO THE DESIGN OF MUNITIONS Dr. John M. Ferriter, Chemical Systems Laboratory, Aberdeen Prov2itg Ground, Maryland Xiv...because they vary from year to year, and tile red noise fluctuations are predictive only with respect to their statistical properties . The

  8. Cryogenic Optical Systems and Instrumentation IX (AM 116) Newly Modified Cryogenic Optical Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Eng, Ronnie; Kegley, Jeff; Keidel, John

    2000-01-01

    Marshall Space Flight Center (MSFC) has maintained and operated a world-class x-ray optics and detector testing facility known as the X-ray Calibration Facility (XRCF) since the mid 1970's. The ground test and calibration of the Chandra X-ray Observatory optics and detectors were successfully completed at the XRCF in 1997. The beginning of the Next Generation Space Telescope (NGST) development programs (NMSD, SBMD, AMSD, etc.) and the establishment of the Space Optics Manufacturing Technology Center at MSFC have led to an XRCF modification. In 1999 the facility was upgraded to perform cryogenic testing of lightweight visible optics (without compromising the existing x-ray testing capability). A thermal enclosure capable of 20 degrees Kelvin and vibration isolated instrumentation mount were added. A vacuum-compatible five-axis motion table was modified to operate under cryogenic conditions. Optics up to two meters in diameter with radii of curvature of up to twenty meters can be accommodated. Facility characterization tests and one NGST program mirror test have been completed to date. By July 2000, two other mirrors will be tested. Optical wavefront measurements were made at < 35 degrees Kelvin with several instruments located at the test mirror's radius of curvature. The current wavefront measuring instruments include a Shack-Hartman wavefront sensor, a point diffraction interferometer, a point spread function-measuring device, and a radius of curvature measuring instrument. A vibration insensitive phase shifting interferometer is planned for future optical testing. This paper will present a brief history of the facility, a discussion of its current x-ray optic testing capabilities, and a complete description of the new capabilities in the visible optical testing regime.

  9. Primary care provider practices and beliefs related to cervical cancer screening with the HPV test in Federally Qualified Health Centers

    PubMed Central

    Roland, K.B.; Benard, V.B.; Greek, A.; Hawkins, N.A.; Manninen, D.; Saraiya, M.

    2015-01-01

    Objective Cervical cancer screening using the human papillomavirus (HPV) test and Pap test together (co-testing) is an option for average-risk women ≥30 years of age. With normal co-test results, screening intervals can be extended. The study objective is to assess primary care provider practices, beliefs, facilitators and barriers to using the co-test and extending screening intervals among low-income women. Method Data were collected from 98 providers in 15 Federally Qualified Health Center (FQHC) clinics in Illinois between August 2009 and March 2010 using a cross-sectional survey. Results 39% of providers reported using the co-test, and 25% would recommend a three-year screening interval for women with normal co-test results. Providers perceived greater encouragement for co-testing than for extending screening intervals with a normal co-test result. Barriers to extending screening intervals included concerns about patients not returning annually for other screening tests (77%), patient concerns about missing cancer (62%), and liability (52%). Conclusion Among FQHC providers in Illinois, few administered the co-test for screening and recommended appropriate intervals, possibly due to concerns over loss to follow-up and liability. Education regarding harms of too-frequent screening and false positives may be necessary to balance barriers to extending screening intervals. PMID:23628517

  10. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    NASA Technical Reports Server (NTRS)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  11. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  12. Vertical drop test of a transport fuselage center section including the wheel wells

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.

  13. Auditory Automotive Mechanics Diagnostic Achievement Test. Center Technical Paper No. 2.

    ERIC Educational Resources Information Center

    Swanson, Richard Arthur

    The Auditory Automotive Mechanics Diagnostic Achievement Test assesses an automobile mechanic's ability to determine mechanical faults from auditory cues alone. The 44-item test and its instructions are recorded on magnetic tape; answer choices are presented on tape, and are also written in the printed test booklets. The norming and validity…

  14. A Primer-Test Centered Equating Method for Setting Cut-Off Scores

    ERIC Educational Resources Information Center

    Zhu, Weimo; Plowman, Sharon Ann; Park, Youngsik

    2010-01-01

    This study evaluated the use of a new primary field test method based on test equating to address inconsistent classification among field tests. We analyzed students' information on the Progressive Aerobic Cardiovascular Endurance Run (PACER), mile run (MR), and VO[subscript 2]max from three data sets (college: n = 94; middle school: n = 39;…

  15. Block 4 solar cell module design and test specification for intermediate load center applications

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Requirements for performance of terrestrial solar cell modules intended for use in various test applications are established. During the 1979-80 time period, such applications are expected to be in the 20 to 500 kilowatt size range. A series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance test for acceptance of modules are specified.

  16. Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC)

    DTIC Science & Technology

    2011-09-30

    England. (2001) Joint interim report Bahamas marine mammal stranding event of 15 – 16 March 2000. National Oceanographic and Atmospheric Administration...Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC) Diane Elaine Claridge Bahamas Marine Mammal Research...ADDRESS(ES) Bahamas Marine Mammal Research Organisation,P.O. Box AB-20714,Marsh Harbour,Abaco, Bahamas, 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  17. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  18. Functional Specifications for Selected Staff Workstations Within the Close Combat Test Bed’s Automated Battalion Tactical Operations Center.

    DTIC Science & Technology

    1992-09-01

    COL, AR Commanding Research accomplished under contract for the Department of the Army Micro Analysis & Design Inc. Technical review by Michael J...PERFORMING ORGANIZATION Micro Analysis & Design Inc. REPORT NUMBER 3300 Mitchell Lane, Suite 175 Boulder, CO 80301 9. SPONSORING / MONITORING AGENCY NAME(S...Staff Workstations Within the Close Combat Test Bed’s Automated Battalion Tactical Operations Center Nils D. LaVine Micro Analysis & Design Inc. Field

  19. A critical review of the life sciences project management at Ames Research Center for the Spacelab Mission development test 3

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.

    1979-01-01

    A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.

  20. Environmental impact statement for Manned Spacecraft Center and White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This environment has not only attracted people and increased payrolls, but has also created a broader base for the local economy. The activity of the center was a catalyst to private enterprise and has led to sizeable residential and commercial developments. Adequate treatment of domestic and industrial waste water was maintained. A feasibility study is now being conducted to establish a plan for a coordinated, centerwide plan for advanced treatment of domestic and industrial waste water.

  1. Space and Missile Systems Center Standard: Test Requirements for Ground Systems

    DTIC Science & Technology

    2013-09-30

    changes, additions, deletions, etc.) and any pertinent data that may be of use in improving this standard should be forwarded to the following addressee... using the Standardization Document Improvement Proposal appearing at the end of this document or by letter: Division Chief, SMC/ENE SPACE AND...MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space and

  2. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  3. Geophysics: Building E5476 decommissiong, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-11-01

    Building E5476 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The large number of magnetic sources surrounding the building are believed to be contained in construction fill. The smaller anomalies, for the most part, were not imaged with ground radar or by electrical profiling. Large magnetic anomalies near the southwest comer of the building are due to aboveground standpipes and steel-reinforced concrete. Two high-resistivity areas, one projecting northeast from the building and another south of the original structure, may indicate the presence of organic pore fluids in the subsurface. A conductive lineament protruding from the south wall that is enclosed by the southem, high-resistivity feature is not associated with an equivalent magnetic anomaly. Magnetic and electrical anomalies south of the old landfill boundary are probably not associated with the building. The boundary is marked by a band of magnetic anomalies and a conductive zone trending northwest to southeast. The cause of high resistivities in a semicircular area in the southwest comer, within the landfill area, is unexplained.

  4. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill.

  5. Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

    1995-01-01

    Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

  6. Environmental geophysics: Building E3640 Decommissioning, Aberdeen Proving Ground, Maryland. Interim progress report

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Borden, H.M.; Benson, M.A.; Thompson, M.D.; Padar, C.A.; Daudt, C.R.

    1995-01-01

    Building E3640 is a potentially contaminated site in the Edgewood area of Aberdeen Proving Ground. Noninvasive geophysical survey techniques, including magnetics, EM-31, EM-61, and ground-penetrating radar, were used as part of a sampling and monitoring program prior to decommissioning and dismantling of the building. Complex and large-amplitude anomalies caused by aboveground metal in this area obscure many smaller features produced by subsurface sources. No underground storage tanks were found in the areas surveyed. Major anomalies produced by subsurface sources include the following: EM-61 and EM-31 lineaments caused by a water line extending north from the south fence; a broad positive magnetic anomaly caused by magnetic fill north of the material and drum storage area and northeast of E3640; a 30-ft-wide band of EM-31 anomalies extending from the front gate to the southeast comer of E3640 and a coincident EM-61 anomaly produced by buried utilities; ground-penetrating radar images along three lines extending from a sump at the northeast comer of E3640 to the eastern fence; and EM-61, EM-31, and magnetic anomalies caused by overhead and underground pipes extending south from the north fence. Smaller, unidentified, localized anomalies observed throughout the survey area are also described in this report.

  7. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  8. Contamination source review for Building E5485, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E5485 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. Building E5485 (APG designation) is located in the drainage basin of the west branch of Canal Creek in the Edgewood Area of APG. The building was constructed in 1922 and used as a fan house for agent operations in Building E5487 from 1925 to 1966. Building E5485 was then used as a laboratory to support manufacturing and storage of flammable agents and chemical warfare agents from 1966 until 1967, when it was placed on the inactive list. Air quality samples were collected upwind, downwind, and inside Building E5485 in November 1994. Analytical results showed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample collected inside Building E5485. These results indicate that Building E5485 is not a source of volatile organic compound contamination.

  9. Contamination source review for Building E3162, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Miller, G.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3162 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3162 (APG designation) is part of the Medical Research Laboratories Building E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War 2. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment involving chemical warfare agents. Building E3162 was used as a holding and study area for animals involved in non-agent burns. The building was constructed in 1952, placed on inactive status in 1983, and remains unoccupied. Analytical results from these air samples revealed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample taken inside Building E3162.

  10. Geophysics: Building E5190 decommissioning, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-07-01

    Building E5190 is one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. A noninvasive geophysical survey, including the complementary technologies of magnetics, electrical resistivity, and ground-penetrating radar, was conducted around the perimeter as a guide to developing a sampling and monitoring program prior to decommissioning and dismantling the building. The magnetics surveys indicated that multistation, positive magnetic sources are randomly distributed north and west of the building. Two linear trends were noted: one that may outline buried utility lines and another that is produced by a steel-covered trench. The resistivity profiling indicated three conductive zones: one due to increased moisture in a ditch, one associated with buried utility lines, and a third zone associated with the steel-covered trench. Ground-penetrating radar imaging detected two significant anomalies, which were correlated with small-amplitude magnetic anomalies. The objectives of the study -- to detect and locate objects and to characterize a located object were achieved.

  11. An accelerated remedial strategy developed for J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Yuen, C.R.; Martino, L.; Patton, T.; Wrobel, J.

    1995-06-01

    For an installation with many disposal sites and multiple contaminant sources, successful remediation at minimum cost can be complicated by insufficient geologic and hydrogeologic information, incomplete records of historical disposal activities, and uncertainty about the effectiveness of different investigative methods. To reduce these uncertainties and to increase the probability of successful remediation at minimum cost, a ``Phased and pilot`` accelerated remedial strategy has been developed for the J-Field area of Aberdeen Proving Ground, Maryland. The strategy includes four phases. First, the most contaminated site is selected as a pilot for detailed investigation. Second, the most contaminated areas within the pilot site are chosen as a pilot source area for interim action study, and a remedial action is developed to remove the primary contaminant sources. The subsequent sitewide investigation uses the effective tools developed in the first phase. Third, a cleanup operation is initiated in the pilot source area, while a sitewide feasibility study is developed by taking advantage of lessons learned in the interim action. Fourth, a sitewide cleanup operation proceeds.

  12. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground. Interim progress report

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging.

  13. Interim progress report -- geophysics: Decommissioning of Buildings E5974 and E5978, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-11-01

    Buildings E5974 and E5978, located near the mouth of Canal Creek, were among 10 potentially contaminated sites in the Westwood and Canal Creek areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including the complementary technologies of magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeters of the buildings to guide a sampling program prior to decommissioning and dismantling. The magnetic anomalies and the electrically conductive areas around these buildings have a spatial relationship similar to that observed in low-lying sites in the Canal Creek area; they are probably associated with construction fill. Electrically conductive terrain is dominant on the eastern side of the site, and resistive terrain predominates on the west. The smaller magnetic anomalies are not imaged with ground radar or by electrical profiling. The high resistivities in the northwest quadrant are believed to be caused by a natural sand lens. The causes of three magnetic anomalies in the high-resistivity area are unidentified, but they are probably anthropogenic.

  14. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Johnson, Mark A.; Fleck, William B.

    1997-01-01

    Ground-water contaminant plumes that are flowing toward or currently discharging to wetland areas present unique remediation problems because of the hydrologic connections between ground water and surface water and the sensitive habitats in wetlands. Because wetlands typically have a large diversity of microorganisms and redox conditions that could enhance biodegradation, they are ideal environments for natural attenuation of organic contaminants, which is a treatment method that would leave the ecosystem largely undisturbed and be cost effective. During 1992-97, the U.S. Geological Survey investigated the natural attenuation of chlorinated volatile organic compounds (VOC's) in a contaminant plume that discharges from a sand aquifer to a freshwater tidal wetland along the West Branch Canal Creek at Aberdeen Proving Ground, Maryland. Characterization of the hydrogeology and geochemistry along flowpaths in the wetland area and determination of the occurrence and rates of biodegradation and sorption show that natural attenuation could be a feasible remediation method for the contaminant plume that extends along the West Branch Canal Creek.

  15. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  16. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)

  17. Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1993-01-01

    Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.

  18. Phase II environmental geophysics at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Thompson, M.D.; Yuen, C.R.

    1995-09-01

    Geophysical studies were conducted at eight sites on the tip of Gunpowder Neck (J-Field) in the Edgewood Area of Aberdeen Proving Ground, Maryland. The results of the studies were used to delineate the extent of three former burning pits and help determine the necessity of further investigation at five potential areas of concern (PAOCs). Intensive investigations were performed at the three former burning pits and two of the PAOCs by using electromagnetic (EM-31 and EM-61), total field magnetometry, and ground-penetrating radar geophysical techniques. The successful integration of the four data sets characterized the extent, the approximate depth and nature of fill material, and the location of metallic debris at the three former burning pits. At the two PAOC sites that were intensively investigated, no continuous areas of metallic debris, indicating organized burials, were present. Less extensive exploratory profiles conducted at three other PAOC sites indicated the presence of buried metal objects, but they were inconclusive in defining the nature and extent of buried materials.

  19. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  20. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  1. Magnetic Test Performance Capabilities at the Goddard Space Flight Center as Applied to the Global Geospace Science Initiative

    NASA Technical Reports Server (NTRS)

    Mitchell, Darryl R.

    1997-01-01

    Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.

  2. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  3. Nickel-Hydrogen Cell Testing Experience, NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    1999-01-01

    The objectives of the project were to test the Nickel-Hydrogen Cell to: (1) verify the Aerospace Cell Flight Worthiness, (2) Elucidate the Aerospace Cell Thermal Behavior, (3) Develop the Aerospace Battery Assembly Design(s) and In-orbit Battery Management plan(s) and (4) Understand the Aerospace Cell Failure Mechanism. The tests included the LEO and GEO Life cycle tests, Calorimetric Analysis, Destructive Physical analysis, and special tests. Charts show the Mission Profile Cycling Data, Stress Cycling Data. The test data complies with the mission requirements, validating the flight worthiness of batteries. The nominal stress and mission profile cycling performance test shows the charge voltage as high as 1.60V and recharge ratio greater than 1.05. It is apparent that the electrochemical signatures alone do not provide conclusive proof for Nickel precharge. The researchers recommend a gas and positive plate analyses for further confirmation.

  4. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  5. SPRE I Free-Piston Stirling Engine Testing at NASA Lewis Research Center

    SciTech Connect

    Cairelli, J.E.

    1994-09-01

    As part of the NASA funded portion of the SP-100 Advanced Technology Program the Space Power Research Engine (SPRE I) was designed and built to serve as a research tool for evaluation and development of advanced Stirling engine concepts. The SPRE I is designed to produce 12.5 kW electrical power when operated with helium at 15 MPa and with an absolute temperature ratio of two. The engine is now under test in a new test facility which was designed and built at NASA LeRC specifically to test the SPRE I. This paper describes the SPRE I, the NASA test facility, the initial SPRE I test results, and future SPRE I test plans.

  6. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  7. Tests of Cook Technological Center Parachutes in the Wake of a Conical-Nosed Body (Part 5 of 6)

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Unitary Plan Wind Tunnel Tests of Cook Technological Center Parachutes in the Wake of a Conical-Nosed Cylindrical Body Having a Base Diameter of 2.375-Inches (Part 5 of 6). The film depicts two tests of a flat roof, conical inlet canopy parachute. The first test is a series of wind tunnel trials with a flat circular ribbon roof of 22 percent porosity. The second test is a single series of wind tunnel trials with a flat circular ribbon roof of 25 percent porosity. Variables for both trials include Mach number, dynamic pressure, longitudinal separation distances (x/d), and drag coefficient C(sub d). [Entire movie available on DVD from CASI as Doc ID 20070030960. Contact help@sti.nasa.gov

  8. A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  9. Changing resident test ordering behavior: a multilevel intervention to decrease laboratory utilization at an academic medical center.

    PubMed

    Vidyarthi, Arpana R; Hamill, Timothy; Green, Adrienne L; Rosenbluth, Glenn; Baron, Robert B

    2015-01-01

    Hospital laboratory test volume is increasing, and overutilization contributes to errors and costs. Efforts to reduce laboratory utilization have targeted aspects of ordering behavior, but few have utilized a multilevel collaborative approach. The study team partnered with residents to reduce unnecessary laboratory tests and associated costs through multilevel interventions across the academic medical center. The study team selected laboratory tests for intervention based on cost, volume, and ordering frequency (complete blood count [CBC] and CBC with differential, common electrolytes, blood enzymes, and liver function tests). Interventions were designed collaboratively with residents and targeted components of ordering behavior, including system changes, teaching, social marketing, academic detailing, financial incentives, and audit/feedback. Laboratory ordering was reduced by 8% cumulatively over 3 years, saving $2 019 000. By involving residents at every stage of the intervention and targeting multiple levels simultaneously, laboratory utilization was reduced and cost savings were sustained over 3 years.

  10. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  11. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.

  12. Results of field testing with the FightSight infrared-based projectile tracking and weapon-fire characterization technology

    NASA Astrophysics Data System (ADS)

    Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark

    2010-04-01

    This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.

  13. Do collaborative practical tests encourage student-centered active learning of gross anatomy?

    PubMed

    Green, Rodney A; Cates, Tanya; White, Lloyd; Farchione, Davide

    2016-05-06

    Benefits of collaborative testing have been identified in many disciplines. This study sought to determine whether collaborative practical tests encouraged active learning of anatomy. A gross anatomy course included a collaborative component in four practical tests. Two hundred and seven students initially completed the test as individuals and then worked as a team to complete the same test again immediately afterwards. The relationship between mean individual, team, and difference (between team and individual) test scores to overall performance on the final examination (representing overall learning in the course) was examined using regression analysis. The overall mark in the course increased by 9% with a decreased failure rate. There was a strong relationship between individual score and final examination mark (P < 0.001) but no relationship for team score (P = 0.095). A longitudinal analysis showed that the test difference scores increased after Test 1 which may be indicative of social loafing and this was confirmed by a significant negative relationship between difference score on Test 4 (indicating a weaker student) and final examination mark (P < 0.001). It appeared that for this cohort, there was little peer-to-peer learning occurring during the collaborative testing and that weaker students gained the benefit from team marks without significant active learning taking place. This negative outcome may be due to insufficient encouragement of the active learning strategies that were expected to occur during the collaborative testing process. An improved understanding of the efficacy of collaborative assessment could be achieved through the inclusion of questionnaire based data to allow a better interpretation of learning outcomes. Anat Sci Educ 9: 231-237. © 2015 American Association of Anatomists.

  14. Quantum trajectory tests of radical-pair quantum dynamics in CIDNP measurements of photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Tsampourakis, K.; Kominis, I. K.

    2015-11-01

    Chemically induced dynamic nuclear polarization is a ubiquitous phenomenon in photosynthetic reaction centers. The relevant nuclear spin observables are a direct manifestation of the radical-pair mechanism. We here use quantum trajectories to describe the time evolution of radical-pairs, and compare their prediction of nuclear spin observables to the one derived from the radical-pair master equation. While our approach provides a consistent description, we unravel a major inconsistency within the conventional theory, thus challenging the theoretical interpretation of numerous CIDNP experiments sensitive to radical-pair reaction kinetics.

  15. Memoirs of an Aeronautical Engineer: Flight Tests at Ames Research Center: 1940-1970

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.

    2002-01-01

    Seth worked over a period of several years to prepare this monograph-collecting information, drafting the text, and finding and selecting the historic photographs. He describes the beginnings of flight research as he knew it at Ames Research Center, recalls numerous World War II programs, relates his experiences with powered-lift aircraft, and concludes with his impressions of two international flight research efforts. His comprehensive collection of large-format photographs of the airplanes and people involved in the various flight activities related in the text constitutes a compelling part of his work.

  16. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  17. Ongoing nickel-hydrogen energy storage device testing at George C. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowery, John E.; Lanier, John R., Jr.; Hall, Charles I.; Whitt, Thomas H.

    1990-01-01

    The primary objective of the testing is to characterize Ni-H2 cells for successful integration into the electrical power system (EPS) of the Hubble Space Telescope (HST). A broad spectrum of Ni-H2 design technology is encompassed by the testing configurations; tests include cells with dates of manufacture as early as 1976. The database includes cells of varied storage times, capacity, plate design, stack design, terminal configuration, pressure vessel thickness, separator material, potassium hydroxide (KOH) concentration, and thermal control. Currently, 196 Ni-H2 cells are being tested, grouped as follows: 12 RNH-35-3, 14 RNH-30-1, 22 HST cells (1 battery, flight spare lot), 132 HST cells (6 batteries, test modules 1 and 2, called TM1 and TM2), 12 HST cells (3 four-cell packs, TM1, TM2, flight spare module FSM), and 4 HST cells (engineering lot). In addition to the characterization and life testing, an extensive thermal vacuum and purge test was conducted in November 1989 and February 1990 using the HST FSM (3 batteries composed of 69 HST cells from the flight spare lot) to help verify thermal design. A report is presented of the progress, significant findings, and future objectives of the testing.

  18. U.S. Army Natick Soldier Research, Development & Engineering Center Testing Facilities And Equipment. Second Edition

    DTIC Science & Technology

    2011-04-01

    FACILITY This facility is an accredited laboratory that complies with the standard requirements of Quality Management Systems ISO 9001 :2000 and ISO ...11 Combustion Monitoring and Analysis Laboratory . 11 ISO 9001 :2000 and ISO 17025:1999 Certified Tex- tiles and Fabric Testing and...Evaluation Facility, ISO 9001 :2008 Textile Performance Testing Facility ..... 12 Abrasion Resistance Testers ............................. 12 Air

  19. Energetic Materials Center Report--Small-Scale Safety and Thermal Testing Evaluation of Butyl Nitrate

    SciTech Connect

    Hsu, Peter C.; Reynolds, John G.

    2013-04-26

    Butyl Nitrate (BN) was examined by Small-Scale Safety and Thermal (SSST) Testing techniques to determine its sensitivity to impact, friction, spark and thermal exposure simulating handling and storage conditions. Under the conditions tested, the BN exhibits thermal sensitivity above 150 °C, and does not exhibit sensitive to impact, friction or spark.

  20. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  1. EPRI High-Sulfur Test Center: Wet FGD (flue gas desulfurization) sodium carbonate mass-transfer tests: Final report

    SciTech Connect

    Jarvis, J.B.; Burke, J.M.

    1988-10-01

    HSTC contains pilot- and mini-pilot-scale systems for investigating wet FGD technologies, as well as dry-injection and spray-drying pilot systems for investigating dry FGD technologies. A series of sodium carbonate (Na/sub 2/CO/sub 3/) mass-transfer tests is the first step in characterizing the SO/sub 2/ removal capabilities of wet FGD systems at HSTC. By using sodium as the SO/sub 2/ absorbent, an excess of liquid-phase alkalinity is provided to assure that gas-limited mass transfer alone will control SO/sub 2/ removal. Objectives of this project were to determine the maximum possible SO/sub 2/ removal capabilities of the HSTC wet FGD systems under different configurations; to provide data for modeling SO/sub 2/ absorption under gas-limited mass-transfer conditions. Sodium mass-transfer tests were conducted using slurry with a high concentration of liquid-phase alkalinity, established by adding sodium carbonate and maintained with a unique, in situ, dual-alkali operating system that continuously regenerated slurry alkalinity with slaked quicklime (Ca(OH)/sub 2/). This process allows testing of a slurry, simulating a lime or limestone scrubber, while maintaining an excess of liquid-phase alkalinity to assure gas-limited mass-transfer conditions. SO/sub 2/ removal efficiencies were measured of the mini-pilot and pilot systems for three absorber configurations---spray tower, tray tower, and packed tower. More than 300 tests were conducted over a wide range of operating conditions, using various types of spray nozzles characterized for spray distribution patterns. 5 refs., 74 figs., 23 tabs.

  2. Strict vs lenient criteria for elution testing: comparison of yields between two tertiary care medical centers.

    PubMed

    Veeraputhiran, Muthu K; Pesek, Gina A; Blackall, Douglas P

    2011-09-01

    In this study, 2 patient populations, using different elution strategies, were compared to evaluate eluate yields under more and less restrictive conditions. An informative eluate was defined as one in which an antibody that could be clinically significant was detected in the eluate but was not detectable in the plasma at the time of elution testing. The results for 160 direct antiglobulin tests (DATs) and 160 elution studies were evaluated in 71 patients at the adult hospital (lenient criteria). The results for 372 DATs and 43 elution studies were evaluated in 123 patients at the pediatric hospital (strict criteria). The yields from these eluates were 0.6% at the adult hospital (C antibody) vs 2.3% at the pediatric hospital (Jk(a) antibody). Thus, the yield of information from eluate testing is low regardless of the stringency applied to testing. However, considering the cost and time required for testing, more stringent criteria are advised.

  3. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  4. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  5. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  6. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  7. Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Wassum, Donald L.; Hyman, Curtis E., Jr.

    1988-01-01

    Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

  8. Second Stage (S-II) Arrives at Marshall Space Flight Center For Testing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The business end of a Second Stage (S-II) slowly emerges from the shipping container as workers prepare to transport the Saturn V component to the testing facility at MSFC. The Second Stage (S-II) underwent vibration and engine firing tests. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  9. Space shuttle I-tube radiator testing at Johnson Space Center, May 1976, volume 1

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1976-01-01

    During the two weeks of thermal vacuum testing a representative forward panel was successfully operated in a variety of simulated environmental conditions. Performance limits for both high and low load operations were established. Confidence in the stable operation of the panel throughout its typical operating range was verified by the testing, and design studies were conducted to analyze the effects of the payload bay door, and the panel deployment angle, on performance.

  10. Overview of 10 inch Diameter HTPB Hybrid Motor Testing with Liquid Oxygen at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy E.; Kearney, Darren; Roberts, Ryan

    2005-01-01

    To further explore the operation of hybrid rocket motors and to demonstrate the performance characteristics of the motor design Lockheed Martin funded research on a series of 10 inch diameter hybrid motors that produce less than 10 klbf sea level thrust. This test series was given the name "Hybrid Technology Test Program." These motors were fired in the existing test stand at the SSC E-3 complex Cell 1. The fuel and oxidizer for these 10 inch diameter motors are HTPB and LO2, respectively. The original goal of the testing was to verify that the predicted performance matched the actual performance of these 10 inch motors (ref. figure 1) and then confirm that the motors performed acceptably. For this element of testing horizontally fired hybrid motors will be tested using LO2 supplied from the existing facility 100 gallon LO2 tank that is pressurized with facility GN2. The thrust produced by the motor will be measured by a Lockheed Martin supplied load cell.

  11. Regenerative Fuel Cell Test Rig Completed and Operational at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has completed construction of its first closed-cycle hydrogen-oxygen regenerative fuel cell (RFC). The RFC is an electrochemical system that collects and stores solar energy during the day then releases that energy at night, thus making the Sun's energy available all 24 hours. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for reuse during the next cycle.

  12. Millimeter-wave center of curvature test for a fast paraboloid.

    PubMed

    Goldberg, Samuel; Padin, Stephen

    2012-01-20

    We describe a technique for measuring the surface profile of a radio telescope with a fast paraboloidal primary. The technique uses a sensor, at the center of curvature of the primary, consisting of a millimeter-wave source and an array of receivers to measure the field in the caustic. The sensor is mounted on the telescope enclosure and it moves with the telescope, so the measurements can be used for continuous, slow, closed-loop control of the surface. Sensor decenter and despace errors, due to wind buffeting and thermal deformation of the sensor support, do not compromise the surface measurements because they result in profile errors that are mainly translation, which has no effect on astronomical observations, or tilt and defocus, which can be measured using astronomical sources. If the position of the sensor is known to 20 μm rms, the surface can be measured to ~1  μm rms at λ=3 mm.

  13. Testing a family-centered intervention to promote functional and cognitive recovery in hospitalized older adults.

    PubMed

    Boltz, Marie; Resnick, Barbara; Chippendale, Tracy; Galvin, James

    2014-12-01

    A comparative trial using a repeated-measures design was designed to evaluate the feasibility and outcomes of the Family-Centered Function-Focused-Care (Fam-FFC) intervention, which is intended to promote functional recovery in hospitalized older adults. A family-centered resource nurse and a facility champion implemented a three-component intervention (environmental assessment and modification, staff education, individual and family education and partnership in care planning with follow-up after hospitalization for an acute illness). Control units were exposed to function-focused-care education only. Ninety-seven dyads of medical patients aged 65 and older and family caregivers (FCGs) were recruited from three medical units of a community teaching hospital. Fifty-three percent of patients were female, 89% were white, 51% were married, and 40% were widowed, and they had a mean age of 80.8 ± 7.5. Seventy-eight percent of FCGs were married, 34% were daughters, 31% were female spouses or partners, and 38% were aged 46 to 65. Patient outcomes included functional outcomes (activities of daily living (ADLs), walking performance, gait, balance) and delirium severity and duration. FCG outcomes included preparedness for caregiving, anxiety, depression, role strain, and mutuality. The intervention group demonstrated less severity and shorter duration of delirium and better ADL and walking performance but not better gait and balance performance than the control group. FCGs who participated in Fam-FFC showed a significant increase in preparedness for caregiving and a decrease in anxiety and depression from admission to 2 months after discharge but no significant differences in strain or quality of the relationship with the care recipient from FCGs in the control group. Fam-FFC is feasible and has the potential to improve outcomes for hospitalized older adults and their caregivers.

  14. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results

  15. HIV Testing in Patients With Cancer at the Initiation of Therapy at a Large US Comprehensive Cancer Center

    PubMed Central

    Hwang, Jessica P.; Granwehr, Bruno P.; Torres, Harrys A.; Suarez-Almazor, Maria E.; Giordano, Thomas P.; Barbo, Andrea G.; Lin, Heather Y.; Fisch, Michael J.; Chiao, Elizabeth Y.

    2015-01-01

    Purpose: To determine the rates of HIV testing and infection among patients with cancer at initiation of systemic cancer therapy. Methods: We conducted a retrospective cohort study of adults with cancer who registered at a comprehensive cancer center from January 2004 through April 2011 and received systemic cancer therapy. We determined rates of HIV-1/2 and/or Western blot testing and HIV positivity at initiation of systemic cancer therapy. Multivariable logistic regression was used to determine predictors of HIV testing. Results: Of 18,874 patients with cancer who received systemic cancer therapy during the study period, 3,514 (18.6%) were tested for HIV at initiation of cancer therapy. The prevalence of positive HIV test results was 1.2% (41 of 3,514), and the prevalence of newly diagnosed HIV was 0.3% (12 of 3,514). The HIV testing rate was lower in black than in white patients (13.7% v 19.2%), but the prevalence of positive test results was higher in black patients (4.5%) than in any other racial/ethnic group. Among patients with AIDS-defining cancers (eg, non-Hodgkin lymphoma and cervical cancer), predictors of HIV testing were history of non-Hodgkin lymphoma, younger age, and registration after 2006. Among patients with non–AIDS-defining cancers, predictors of HIV testing were younger age, registration after 2006, male sex, history of illicit drug use or sexually transmitted disease, having a hematologic malignancy, and black race. Conclusion: The prevalence of HIV infection among patients with cancer was 1.2%, higher than the 0.1% prevalence threshold above which national guidelines recommend routine opt-out testing; however, the overall HIV testing rate was low. PMID:26243649

  16. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  17. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  18. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  19. Summary of model VTOL lift fan tests conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.

    1975-01-01

    The purpose of the tests was to obtain overall performance and influencing factors as well as detailed measurements of the internal flow characteristics. The first experiment consisted of crossflow tests of a 15-inch diameter fan installed in a two-dimensional wing. Tests were run with and without exit louvers over a range of tunnel speeds, fan speeds, and wing angle of attack. The wing was used for a study of installation effects on lift fan performance. The model tested consisted of three 5.5-inch diameter tip-turbine driven model VTOL lift fans mounted chord-wise in the two-dimensional wing to simulate a pod-type array. Several inlet and exit cover door configurations and an adjacent fuselage panel were tested. For the third program, a pod was attached to the wing, and an investigation was conducted of the effect of design tip speed on the aerodynamic performance and noise of a 15-inch diameter lift fan-in-pod under static and crossflow conditions. Three single VTOL lift fan stages were designed for the same overall total pressure ratio but at three different rotor tip speeds.

  20. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  1. Testing amendments for remediation of military range contaminated soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military range soils are often strongly contaminated with metals. Information on effectiveness of remediation techniques on these soils is scarce. We tested effectiveness of compost and mineral treatments for remediation of military range soil collected in Aberdeen, MD. The soil was barren due to...

  2. Single-center experience of the Korean-Developmental Screening Test for infants and children

    PubMed Central

    Suh, Chae-Ri; Sohn, Su Ye; Kim, Gun-Ha; Jung, Seong-Kwan

    2016-01-01

    Purpose We investigated the number of test takers of the Korean-Developmental Screening Test (K-DST) in a single children's hospital within a year, according to age, referral rate, and follow-up percentage. Methods For this study, 4,062 children who visited and received K-DST at Woorisoa Children's Hospital between January and December 2015 were enrolled. Seven test sets were used according to the Korean National Health Screening Program for infants and children in the following age groups: 4 to 6, 9 to 12, 18 to 24, 30 to 36, 42 to 48, 54 to 60, and 66 to 71 months. The results of the K-DST were categorized into 4 groups as follows: further evaluation (<−2 standard deviation [−2SD]), follow-up test (−2SD to −1SD), peer level (−1SD to 1SD), and high level (>1SD). Results The test participants' population and follow-up population were concentrated before the age of 24 months (2,532, 62.3%). The children most commonly referred for further evaluation were those in the 30- to 41-month age group. A mismatch was found between the results of the K-DST and the additional questions. Most of the infants and children with suspicious developmental delays showed catch-up development in their follow-up tests (43 of 55, 78.2%). Conclusion The use of K-DST should be encouraged, especially among children aged over 24 months. Multiple-choice question format for the additional questions is recommended to avoid confusion. We suggest a nationwide study to evaluate and revise the K-DST. PMID:28194214

  3. Testing of Westinghouse hot gas candle filter at Foster Wheeler Karhula R and D Center

    SciTech Connect

    Eriksson, T.; Sellakumar, K.M.; Lippert, T.; Dennis, R.; Feldmann, H.; Brown, R.

    1996-12-31

    The main objectives of the project are to provide performance and environmental data to the design of a PCFB Demonstration project and evaluate Westinghouse advanced ceramic barrier filter system and candle materials. A total test duration of 1,000 to 1,500 hrs in three segments of 500 hrs each has been planned for evaluating the filter unit. A single cluster Westinghouse hot gas candle filter is being tested. The filter system, which houses 112 ceramic candles in three plenums, takes the full flue gas flow from the PCFB combustor. At full load operation (10 MW load, 10 Bar, 850 C), the nominal filtration velocity is 4.3 cm/s. FWEI and WEC have selected a set of advanced ceramic candle materials based on a state of the art evaluation of the material characteristics in the WEC facilities and earlier test experience at many coal-fired test sites including the 2000 hour testing at the Karhula PCFB pilot plant. The selection comprises the following four types of advanced ceramic candles: Schumacher FT-20; 3M SiCoNeX; Pall 326; and Coors mullite. The ICB has supplied coal and the sorbent. Tests have been in progress since November 1995 and are scheduled for completion by the middle of 1996. The filter unit performance so far has been very satisfactory at the nominal design conditions--10 to 12 bar (150 to 175 psis), 800 to 850 C (1,500 to 1,575 F), and nearly 100% dust removal. There was no visible evidence of any dust carry over into the clean side. This paper describes the performance of the filter including the pulse system and the mechanical package.

  4. Ames Research Center Mars/Pathfinder Heat Shield Design Verification ARC-JET Test

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Hui, Frank; Wercinski, Paul; Cartledge, Alan; Tauber, Mike; Tran, Duoc T.; Chen, Y. K.; Arnold, James O. (Technical Monitor)

    1995-01-01

    Design verification tests were performed on samples representing the aerobrake of the Mars/Pathfinder vehicle. The test specimens consisted of the SLA-561V ablator bonded to the honeycomb structure. The primary objective was to evaluate the ablation materials performance and to measure temperatures within the ablator, at the structural bondline and at the back sheet of the honeycomb structure. Other objectives were to evaluate the effect of ablative repair plug material treatment and voids in the heat shield. A total of 29 models were provided for testing in the Ames 60MW arc-jet facility. Of these, 23 models were flat-faced and six remaining models were curved edge ones, intended to simulate the conditions on the curved rim of the forebody where the maximum shear occurred. Eight sets of test conditions were used. The stagnation point heating rates varied from 47 to 240 W/cm2 and the stagnation pressures from 0.15 to 0.27 atm. (The maximum flight values are 132 W/cm2 and 0.25 atm) The majority of these runs were made at a nominal stagnation pressure of 0.25 atm. Two higher pressure runs were made to check the current (denser) ablation material for spallation, or other forms of thermal stress failure. Over 60% of the flatfaced models yielded good thermocouple data and all produced useful surface recession information. Of the five curved-edge models that were tested, only one gave good data; the remaining ones experienced model-holder failure. The test results can be summarized by noting that no failure of the ablative material was observed on any model. Also, the bondline temperature design limit of 250 C was never reached within an equivalent flight time despite a stagnation point heat load that exceeded the maximum flight value by up to 130%. At heating rates of over 200W/cm2 and stagnation pressures of 0.25 atm, or greater, the average surface recessions exceeded 0.5 cm on some models. The surface roughness increased dramatically at pressures above 0.25 atm and

  5. Uniform engine testing program phase 7: NASA Lewis Research Center second entry

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Burkardt, L. A.; Abdelwahab, M.; Braithwaite, W. M.; Kirchgessner, T. A.; Silver, D.

    1986-01-01

    The propulsion and Energetics Panel, Working Group 15, of the Advisory Group for Aerospace Research and Development (AGARD) is sponsoring a Uniform Engine Testing Program (UETP). In this program, two jet engines were tested under identical conditions in certain NATO altitude and ground-level facilities as a means of correlating these facilities. With this second entry, NASA documented engine deterioration that may have occurred since inception of the UETP. Additionally, NASA investigated anomalies discovered during review of data from the five facilities which had participated in the program between the two NASA entries.

  6. Investigation of soil contamination at the Riot Control Burning Pit area in J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Wang, Ying-Ya; Yuen, C.R.; Martino, L.

    1996-05-01

    A remedial investigation was conducted to identify soil contamination in the Riot Control Burning Pit area in J-field, Aberdeen Proving Ground, Maryland. The investigation included geophysical surveys to delineate the filled section of the pit, soil-gas surveys to locate the organic contamination area, field X-ray fluorescence measurements along the burning pit to identify the major metal contamination, and surface and subsurface soil analyses to investigate the nature and extent of contamination. This paper presents the results of this investigation

  7. Hydrogeologic, soil, and water-quality data for j-field, Aberdeen Proving Ground, Maryland, 1989-94

    USGS Publications Warehouse

    Phelan, D.J.

    1996-01-01

    Disposal of chemical-warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has resulted in ground-water, surface-water, and soil contamination. This report presents data collected by the U.S. Geological Survey from Novembr 1989 through September 1994 as part of a remedial investigation of J-Field in response to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Hydrogeologic data, soil-gas and soil-quality data, and water-qualtiy data are included.

  8. Contamination source review for Building E5032, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Booher, M.N.; O`Reilly, D.P.; Smits, M.P.

    1995-09-01

    This report by Argonne National Laboratory (ANL) documents results of a contamination source review of Building E5032 at the Aberdeen Proving Ground (APG) in Maryland. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with Building E5032. The field investigations were performed by ANL during 1994 and 1995. Building E5032 (APG designation), originally known as Building 99, is located at the northwest comer of the intersection of Hoadley Road and Magnolia Road in the Edgewood Area of APG. It was constructed during World War I as an incendiary bomb filling plant and in 1920s and 1930s maintained as a filling facility. During World War II the building was a pilot plant for the development of a dry white phosphorus filling process. Since then the building has been used for white phosphorus filling pilot studies. Most of the dry filling methods were developed in Building E5032 between 1965 and 1970. Other filling operations in Building E5032 have included mustard during the period shortly after World War II and triethyl aluminum (TEA) during the late 1960s and early 1970s. During the World War II period, the building was connected to the sanitary sewer system with one large and at least one small interior sump. There are also seven sumps adjacent to the exterior of the building: two on the west elevation, four near the four bays on the south elevation, and one at the northeast corner of the building. All of these sumps are connected with the chemical sewer system and received most, if not all, of the production operation wastewater. The discharge from this system was released into the east branch of Canal Creek; the discharge pipe was located southeast of Building E5032. There are no records indicating the use of Building E5032 after 1974, and it is assumed that the building has been out of service since that time.

  9. Contamination source review for Building E3613, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Billmark, K.A.; Emken, M.E.; Muir-Ploense, K.L.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3613 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the U.S. Army in planning for the future use or disposition of this building, The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3613 (APG designation) is located in the Canal Creek Area of APG. The building was constructed in 1954 for use as a change house, office, and storage building in support of the white phosphorus smoke program. The building has not been used since 1988. During an inspection in 1988, asbestos was listed as the only potential contaminant. The physical inspection and photographic documentation of Building E3613 were completed in November 1994. At the time of the inspection, Building E3613 was inactive and in disrepair. The single-story, rectangular structure contains five rooms and measures 16 ft 2 in. by 32 ft. The building is wood frame construction with a gabled roof. The exterior walls and roof are constructed of wood covered with asphalt sheeting. The building rests on a concrete foundation. The interior walls are 6-in.-thick wood, and the ceiling is assumed to be white drywall nailed to a wooden frame. Overhead steam pipes supported by vertical pipes traverse the area. Two concrete footings for guy wires that support the overhead steam pipes are located north and west of the building. Four additional vertical pipes exit the ground east of the building.

  10. Geophysical survey at cluster 6, Westwood Area, US Army Aberdeen Proving Ground. Final report

    SciTech Connect

    Simms, J.E.; Harrelson, D.W.; Sharp, M.K.

    1995-05-01

    A geophysical investigation was conducted at Cluster 6 Site 5, located in Westwood Area of the U.S. Army Aberdeen Proving Ground. This site is the former Westwood Area Radioactive Material Disposal Facility (WRMDF) which was used for processing and packaging radioactive waste material prior to disposal. Original structures at the site included Building 3013 and adjacent concrete slabs where the waste handling work was performed, a small equipment shed, and a wastewater holding and drain system which included tanks in a concrete pit. Discharge of wastewater from the tanks was to Reardon Inlet, located a short distance south of the tank pit. Possible release of radioactive waste to the environment would have been due to either spillage, leakage, or discharge from the wastewater system. Two terra cotta pipelines, one on the western end and one of the eastern end, extended from Building 3013 to Reardon Inlet. The east pipeline handled low-level radioactive wastewater. The west pipeline was the original wastewater line and it is presumed that radioactive wastewater was not discharged through this line. After radioactive waste handling activities were discontinued at WRMDF, the west pipeline system was upgraded to include a septic tank, sand filter bed, and a chlorine contact chamber. The structures associated with the WRMDF were removed during the early 1970`s, including the concrete tank pit. Both pipelines are visible near the edge of Reardon inlet, suggesting that the pipes and related structures have not been removed. Geophysical surveys, including magnetics, electromagnetics (EM), and ground penetrating radar, were performed to identify the location of the two terra cotta pipes, septic tank, and sand filter bed.

  11. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  12. EVALUATION AND DISPOSAL OF WASTE MATERIALS WITHIN 19 TEST LYSIMETERS AT CENTER HILL

    EPA Science Inventory

    The report describes the termination of a ten-year experimental landfill co-disposal project. Nineteen simulated landfills were constructed in 1974 and 1975 and operated until September 1983. Data collected during the termination study included observations of overall test cell c...

  13. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  14. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  15. Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.; Weiss, Christoph; Brand, Joachim

    2016-10-01

    Multimode expansions in computational quantum dynamics promise convergence toward exact results upon increasing the number of modes. Convergence is difficult to ascertain in practice due to the unfavorable scaling of required resources for many-particle problems and therefore a simplified criterion based on a threshold value for the least occupied mode function is often used. Here we show how the separable quantum motion of the center of mass can be used to sensitively detect unconverged numerical multiparticle dynamics in harmonic potentials. Based on an experimentally relevant example of attractively interacting bosons in one dimension, we demonstrate that the simplified convergence criterion fails to assure qualitatively correct results. Furthermore, the numerical evidence for the creation of two-hump fragmented bright soliton-like states presented by A. I. Streltsov et al. [Phys. Rev. Lett. 100, 130401 (2008), 10.1103/PhysRevLett.100.130401] is shown to be inconsistent with exact results. Implications for understanding dynamical fragmentation in attractive boson systems are briefly discussed.

  16. Computerized training in breast self-examination: a test in a community health center.

    PubMed

    Reis, Janet; Trockel, Mickey; King, Tyreasa; Remmert, David

    2004-01-01

    Fifty-eight women recruited from a community health center completed either a brief interactive multimedia training program on breast self-examination using a breast model and computer guided feedback on accuracy of lump detection or read a National Cancer Institute pamphlet on breast self-examination and breast lumps. Women using the computer program as compared to the pamphlet group reported a higher sense of self-efficacy for being able to perform a breast self-examination immediately after their educational session and 1 month later. However, the increase in self-efficacy for the computer group diminished over 4 weeks, underscoring the importance of an environment that reminds and reinforces learning for women about the performance of regular breast self-examination. The increase in sense of self-efficacy to perform breast self-examination with roughly 20 minutes of computer-based training and the partial maintenance of that self-efficacy 30 days later suggests the utility of incorporating short, focused interventions in busy primary healthcare settings.

  17. Facility Activation and Characterization for IPD Workhorse Preburner and Oxidizer Turbopump Hot-Fire Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.

  18. Cold-Flow Testing of a Proposed Integrated Center-Body Diffuser/Steam Blocker Concept for Plum Brook Station's B-2 Test Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.

    2009-01-01

    The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.

  19. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  20. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  1. Status of the NASA-Lewis Research Center spacecraft charging investigation. [spacecraft materials tests

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.

    1978-01-01

    The technology necessary to control the absolute and differental charging of spacecraft surfaces is detailed for developing ground simulation facilities, characterizing the charging and discharging characteristics of spacecraft materials, deriving analytical modelling tools and issuing design guideline documents. Facilities were developed and testing of various materials was completed. Comparisons between experimental results, space results and predictions from models were made. Harness transient monitors were flown on satellites.

  2. Development of an EUV Test Facility at the Marshall Space Flight Center

    DTIC Science & Technology

    2011-08-22

    In late 1989, the facility was upgraded in size and capability to perform the AXAF end -to- end calibrations (see http: ·:optics.nasa.go...and hard X-ray optics and detectors. To support this testing, the SLF detectors include a front - illuminated CCD (charge-coupled device) and a...scanning CZT (cadmium- zinc-telluride) detector, with low- energy cut-offs of 0.8 and 3 keY, respectively2• Several enhancements to the facility

  3. The Author’s Guide to Writing Air Force Flight Test Center Technical Reports

    DTIC Science & Technology

    2009-08-01

    or designated technical expert 2. Author(s): you and anyone also listed as an author 3. Author’s lead at the test organization 4. An operator...it was designed to do, not what it actually did (it should not sound like results). 4. Objectives: State the general objective(s). Do not list the...met or could not meet design objectives and whether or not it was cleared for operational release, as applicable. Do not provide recommendations

  4. The evaluation of drug provocation tests in pediatric allergy clinic: a single center experience.

    PubMed

    Vezir, Emine; Erkocoglu, Mustafa; Civelek, Ersoy; Kaya, Aysenur; Azkur, Dilek; Akan, Aysegül; Ozcan, Celal; Toyran, Muge; Ginis, Tayfur; Misirlioglu, Emine Dibek; Kocabas, Can Naci

    2014-01-01

    Drug provocation tests (DPTs) are gold standard to diagnose drug allergy. Our goal was to evaluate the results and safety of diagnostic methods including DPTs during childhood. Between January 2010 and February 2013 DPTs were performed and evaluated, prospectively, in children who attended our pediatric allergy clinic with a suspected drug hypersensitivity reaction. One hundred ninety-eight suspected drug reactions in 175 patients (88 boys and 87 girls) were evaluated. The median age of the subjects at the time of the suspected drug-induced hypersensitivity reaction and at the time of the study was 56 (interquartile range [IQR] = 24-120 months) months and 76 (IQR = 35-149 months) months, respectively. Suspected drugs were beta-lactam antibiotics in 108 cases (54.5%), non-beta-lactam antibiotics in 22 cases (11.1%), and nonsteroid anti-inflammatory drugs in 52 cases (26.3%). The history was compatible with immediate-type reactions in 69 cases (34.8%). Skin-prick tests were not positive in any of the cases. Intradermal tests were positive in three cases (4%). DPTs were positive in 13 (6.8%) of 191 provocation cases, which were performed with culprit drugs. Our results suggest that a positive clinical history is not enough to make a diagnosis of drug allergy, which highlights the significance of undertaking further diagnostic evaluation especially for DPTs.

  5. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material: ATM-10 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-..mu..m iron-chrome (suspected spinel) crystals and /approximately/0.5-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 ..mu..m, was observed in all samples. 4 refs., 10 figs., 21 tabs.

  6. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  7. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  8. Low Cost Propulsion Technology at the Marshall Space Flight Center: Fastrac Engine and the Propulsion Test Article

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Ise, Michael R.

    1998-01-01

    The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center (MSFC). The engine, the 60,000 lbf, RP-1 and LOX Fastrac Engine has been designed as a robust, low cost liquid rocket engine with applications for X-34 as well as future low cost booster systems. The engine is a turbopump fed, gas generator cycle, rocket motor with an ablative nozzle. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-1 tank, flight feedlines and pressurization system, stacked in a booster configuration. A general description of the PTA and the Fastrac engine is given, with emphasis on the technical specification of the hardware including flow rates, pressures and other operating conditions. The process which has been used for the design and integration of this hardware is described.

  9. Microbial Consortia Development and Microcosm and Column Experiments for Enhanced Bioremediation of Chlorinated Volatile Organic Compounds, West Branch Canal Creek Wetland Area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Majcher, Emily H.; Jones, Elizabeth J.; Voytek, Mary A.

    2008-01-01

    Chlorinated solvents, including 1,1,2,2-tetrachloroethane, tetrachloroethene, trichloroethene, carbon tetrachloride, and chloroform, are reaching land surface in localized areas of focused ground-water discharge (seeps) in a wetland and tidal creek in the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland. In cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, the U.S. Geological Survey is developing enhanced bioremediation methods that simulate the natural anaerobic degradation that occurs without intervention in non-seep areas of the wetland. A combination of natural attenuation and enhanced bioremediation could provide a remedy for the discharging ground-water plumes that would minimize disturbance to the sensitive wetland ecosystem. Biostimulation (addition of organic substrate or nutrients) and bioaugmentation (addition of microbial consortium), applied either by direct injection at depth in the wetland sediments or by construction of a permeable reactive mat at the seep surface, were tested as possible methods to enhance anaerobic degradation in the seep areas. For the first phase of developing enhanced bioremediation methods for the contaminant mixtures in the seeps, laboratory studies were conducted to develop a microbial consortium to degrade 1,1,2,2-tetrachloroethane and its chlorinated daughter products under anaerobic conditions, and to test biostimulation and bioaugmentation of wetland sediment and reactive mat matrices in microcosms. The individual components required for the direct injection and reactive mat methods were then combined in column experiments to test them under groundwater- flow rates and contaminant concentrations observed in the field. Results showed that both direct injection and the reactive mat are promising remediation methods, although the success of direct injection likely would depend on adequately distributing and maintaining organic substrate throughout the wetland sediment in the seep

  10. Inappropriateness of Cardiovascular Radiological Imaging Testing; A Tertiary Care Referral Center Study

    PubMed Central

    Carpeggiani, Clara; Marraccini, Paolo; Morales, Maria Aurora; Prediletto, Renato; Landi, Patrizia; Picano, Eugenio

    2013-01-01

    Aims Radiological inappropriateness in medical imaging leads to loss of resources and accumulation of avoidable population cancer risk. Aim of the study was to audit the appropriateness rate of different cardiac radiological examinations. Methods and Principal Findings With a retrospective, observational study we reviewed clinical records of 818 consecutive patients (67±12 years, 75% males) admitted from January 1-May 31, 2010 to the National Research Council – Tuscany Region Gabriele Monasterio Foundation cardiology division. A total of 940 procedures were audited: 250 chest x-rays (CXR); 240 coronary computed tomographies (CCT); 250 coronary angiographies (CA); 200 percutaneous coronary interventions (PCI). For each test, indications were rated on the basis of guidelines class of recommendation and level of evidence: definitely appropriate (A, including class I, appropriate, and class IIa, probably appropriate), uncertain (U, class IIb, probably inappropriate), or inappropriate (I, class III, definitely inappropriate). Appropriateness was suboptimal for all tests: CXR (A = 48%, U = 10%, I = 42%); CCT (A = 58%, U = 24%, I = 18%); CA (A = 45%, U = 25%, I = 30%); PCI (A = 63%, U = 15%, I = 22%). Top reasons for inappropriateness were: routine on hospital admission (70% of inappropriate CXR); first line application in asymptomatic low-risk patients (42% of CCT) or in patients with unchanged clinical status post-revascularization (20% of CA); PCI in patients either asymptomatic or with miscellaneous symptoms and without inducible ischemia on non-invasive testing (36% of inappropriate PCI). Conclusion and Significance Public healthcare system – with universal access paid for with public money – is haemorrhaging significant resources and accumulating avoidable long-term cancer risk with inappropriate cardiovascular imaging prevention. PMID:24312272

  11. Heat transfer results and operational characteristics of the NASA Lewis Research Center Hot Section Cascade Test Facility

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

    1985-01-01

    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5x10(6) to 2.5x10(6) based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage filmcooled vanes for the initial series of research tests.

  12. Heat transfer results and operational characteristics of the NASA Lewis Research Center hot section cascade test facility

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

    1985-01-01

    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5 x 1 million to 2.5 x 1 million based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage film cooled vanes for the initial series of research tests.

  13. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  14. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  15. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  16. High Altitude Maneuver Control Tests in the NSWC (Naval Surface Weapons Center) Hypervelocity Wind Tunnel

    DTIC Science & Technology

    1983-01-01

    designed to interface with the model 2Hill, J . A. F., Wardlaw , A. B., Jr., Pronchick, S. W., and Holmes, J . E., "Verification Tests in Mach 14 Nozzle (f the...REPORT NUMBER 7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(es) Benito D. Prats , Michael A. Metzger Jacques A.F. Hill 9. PERFORMING ORGANIZATION NAME...particular E. Bruce Watts, J . P. Johnson, Mary Ellen Falusi, Stephen Cothran, Jr., and Mark M. Opeka, for their tireless efforts to make this a

  17. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  18. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  19. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Astrophysics Data System (ADS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-10-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  20. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    SciTech Connect

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  1. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer

  2. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  3. Intelligence, Social Class of Origin, Childhood Behavior Disturbance and Education as Predictors of Status Attainment in Midlife in Men: The Aberdeen Children of the 1950s Study

    ERIC Educational Resources Information Center

    von Stumm, Sophie; Macintyre, Sally; Batty, David G.; Clark, Heather; Deary, Ian J.

    2010-01-01

    In a birth cohort of 6281 men from Aberdeen, Scotland, social class of origin, childhood intelligence, childhood behavior disturbance and education were examined as predictors of status attainment in midlife (46 to 51 years). Social class of origin, intelligence and behavior disturbance were conceptualized as correlated predictors, whose effects…

  4. The Potential of Live Teacher Supported Distance Learning: A Case-Study of the Use of Audio Conferencing at the University of Aberdeen.

    ERIC Educational Resources Information Center

    Newlands, David; McLean, Alasdair

    1996-01-01

    The experience of teaching a University of Aberdeen distance learning course to students in the Scottish Highlands and Islands using audio conferencing suggests that with new technologies the benefits of distance learning can be preserved while the problems of traditional distance courses can be mitigated. The results of a survey of 45 students…

  5. Chronic obstructive pulmonary disease assessment test can predict depression: a prospective multi-center study.

    PubMed

    Lee, Young Seok; Park, Sunghoon; Oh, Yeon-Mok; Lee, Sang-Do; Park, Sung-Woo; Kim, Young Sam; In, Kwang Ho; Jung, Bock Hyun; Lee, Kwan Ho; Ra, Seung Won; Hwang, Yong Il; Park, Yong-Bum; Jung, Ki-Suck

    2013-07-01

    This study was conducted to investigate the association between the chronic obstructive pulmonary disease (COPD) assessment test (CAT) and depression in COPD patients. The Korean versions of the CAT and patient health questionnaire-9 (PHQ-9) were used to assess COPD symptoms and depressive disorder, respectively. In total, 803 patients with COPD were enrolled from 32 hospitals and the prevalence of depression was 23.8%. The CAT score correlated well with the PHQ-9 score (r=0.631; P<0.001) and was significantly associated with the presence of depression (β±standard error, 0.452±0.020; P<0.001). There was a tendency toward increasing severity of depression in patients with higher CAT scores. By assessment groups based on the 2011 Global Initiative for Chronic Obstructive Lung Disease guidelines, the prevalence of depression was affected more by current symptoms than by airway limitation. The area under the receiver operating characteristic curve for the CAT was 0.849 for predicting depression, and CAT scores ≥21 had the highest accuracy rate (80.6%). Among the eight CAT items, energy score showed the best correlation and highest power of discrimination. CAT scores are significantly associated with the presence of depression and have good performance for predicting depression in COPD patients.

  6. Results of the Updated NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Deker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    We present here the methodology and results of the Operational Acceptance Test (OAT) performed on the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP). On day-of-launch (DOL), space launch vehicle operators have used data from the DRWP to invalidate winds in prelaunch loads and trajectory assessments due to the DRWP's capability to quickly identify changes in the wind profile within a rapidly-changing wind environment. The previous DRWP has been replaced with a completely new system, which needs to undergo certification testing before being accepted for use in range operations. The new DRWP replaces the previous three-beam system made of coaxial cables and a copper wire ground plane with a four-beam system that uses Yagi antennae with enhanced beam steering capability. In addition, the new system contains updated user interface software while maintaining the same general capability as the previous system. The new DRWP continues to use the Median Filter First Guess (MFFG) algorithm to generate a wind profile from Doppler spectra at each range gate. DeTect (2015) contains further details on the upgrade. The OAT is a short-term test designed so that end users can utilize the new DRWP in a similar manner to the previous DRWP during mission operations at the Eastern Range in the midst of a long-term certification process. This paper describes the Marshall Space Flight Center Natural Environments Branch's (MSFC NE's) analyses to verify the quality and accuracy of the DRWP's meteorological data output as compared to the previous DRWP. Ultimately, each launch vehicle program has the responsibility to certify the system for their own use.

  7. Report on errors in pretransfusion testing from a tertiary care center: A step toward transfusion safety

    PubMed Central

    Sidhu, Meena; Meenia, Renu; Akhter, Naveen; Sawhney, Vijay; Irm, Yasmeen

    2016-01-01

    Introduction: Errors in the process of pretransfusion testing for blood transfusion can occur at any stage from collection of the sample to administration of the blood component. The present study was conducted to analyze the errors that threaten patients’ transfusion safety and actual harm/serious adverse events that occurred to the patients due to these errors. Materials and Methods: The prospective study was conducted in the Department Of Transfusion Medicine, Shri Maharaja Gulab Singh Hospital, Government Medical College, Jammu, India from January 2014 to December 2014 for a period of 1 year. Errors were defined as any deviation from established policies and standard operating procedures. A near-miss event was defined as those errors, which did not reach the patient. Location and time of occurrence of the events/errors were also noted. Results: A total of 32,672 requisitions for the transfusion of blood and blood components were received for typing and cross-matching. Out of these, 26,683 products were issued to the various clinical departments. A total of 2,229 errors were detected over a period of 1 year. Near-miss events constituted 53% of the errors and actual harmful events due to errors occurred in 0.26% of the patients. Sample labeling errors were 2.4%, inappropriate request for blood components 2%, and information on requisition forms not matching with that on the sample 1.5% of all the requisitions received were the most frequent errors in clinical services. In transfusion services, the most common event was accepting sample in error with the frequency of 0.5% of all requisitions. ABO incompatible hemolytic reactions were the most frequent harmful event with the frequency of 2.2/10,000 transfusions. Conclusion: Sample labeling, inappropriate request, and sample received in error were the most frequent high-risk errors. PMID:27011670

  8. Manufacturing methods of testing the large-sized optics at the stage of grinding, aspherical surface centering, and interface elements positioning before gluing

    NASA Astrophysics Data System (ADS)

    Semenov, Aleksandr P.; Abdulkadyrov, Magomed A.; Patrikeev, Vladimir E.

    2016-07-01

    The article describes the method of testing the absolute profile of large-sized astronomical mirrors grinded aspherical surface and the method of test the aspherical surface decentering relative to the astronomical mirror geometrical center by means of a linear three-point spherometer, which is subsequently moved perpendicular to the direction from the optical surface center to the edge, as well as the method of positioning the interface elements being glued.

  9. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  10. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  11. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  12. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Chappell, S.P.

    2009-01-01

    The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a

  13. Incorporating Acute HIV Screening into Routine HIV Testing at Sexually Transmitted Infection Clinics, and HIV Testing and Counseling Centers in Lilongwe, Malawi

    PubMed Central

    Pettifor, Audrey E.; Phiri, Sam; Kamanga, Gift; Hoffman, Irving F.; Hosseinipour, Mina C.; Rosenberg, Nora E.; Nsona, Dominic; Pasquale, Dana; Tegha, Gerald; Powers, Kimberly A.; Phiri, Mcleod; Tembo, Bisweck; Chege, Wairimu; Miller, William C.

    2016-01-01

    Background and Objectives: Integrating acute HIV-infection (AHI) testing into clinical settings is critical to prevent transmission, and realize potential treatment-as-prevention benefits. We evaluated acceptability of AHI testing and compared AHI prevalence at sexually transmitted infection (STI) clinics and HIV testing and counseling (HTC) clinics in Lilongwe, Malawi. Methods: We conducted HIV RNA testing for HIV-seronegative patients visiting STI and HTC clinics. AHI was defined as positive RNA and negative/discordant rapid antibody tests. We evaluated demographic, behavioral, and transmission-risk differences between STI and HTC patients and assessed performance of a risk-score for targeted screening. Results: Nearly two-thirds (62.8%, 9280/14,755) of eligible patients consented to AHI testing. We identified 59 persons with AHI (prevalence = 0.64%)–a 0.9% case-identification increase. Prevalence was higher at STI [1.03% (44/4255)] than at HTC clinics [0.3% (15/5025), P < 0.01], accounting for 2.3% of new diagnoses vs 0.3% at HTC clinic. Median viral load (VL) was 758,050 copies per milliliter; 25% (15/59) had VL ≥10,000,000 copies per milliliter. Median VL was higher at STI (1,000,000 copies/mL) compared with HTC (153,125 copies/mL, P = 0.2). Among persons with AHI, those tested at STI clinics were more likely to report genital sores compared with those tested at HTC clinics (54.6% vs 6.7%, P < 0.01). The risk score algorithm performed well in identifying persons with AHI at HTC clinics (sensitivity = 73%, specificity = 89%). Conclusions: The majority of patients consented to AHI testing. AHI prevalence was substantially higher in STI clinics than HTC clinics. Remarkably high VLs and concomitant genital scores demonstrate the potential for transmission. Universal AHI screening at STI clinics, and targeted screening at HTC centers, should be considered. PMID:26428231

  14. Current Performance Characteristics of NASA Langley Research Center's Cockpit Motion Base and Standardized Test Procedure for Future Performance Characterization

    NASA Technical Reports Server (NTRS)

    Cowen, Brandon; Stringer, Mary T.; Hutchinson, Brian K.; Davidson, Paul C.; Gupton, Lawrence E.

    2014-01-01

    This report documents the updated performance characteristics of NASA Langley Research Center's (LaRC) Cockpit Motion Base (CMB) after recent revisions that were made to its inner-loop, feedback control law. The modifications to the control law will be briefly described. The performance of the Cockpit Motion Facility (CMF) will be presented. A short graphical comparison to the previous control law can be found in the appendix of this report. The revised controller will be shown to yield reduced parasitic accelerations with respect to the previous controller. Metrics based on the AGARD Advisory Report No. 144 are used to assess the overall system performance due to its recent control algorithm modification. This report also documents the standardized simulator test procedure which can be used in the future to evaluate potential updates to the control law.

  15. Recent Lightning Experiments at the International Center for Lightning Research and Testing: From Ball Lightning to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Uman, M. A.

    2008-12-01

    Recent lightning data and the instrumentation used to acquire it at the UF-FIT International Center for Lightning Research and Testing, located on about 1 square kilometer of flat ground at the Camp Blanding Army National Guard Base in north-central Florida, are discussed. The progress of several on-going studies is reviewed: (1) understanding the physics of the "classical" rocket-and-wire triggering of lightning from natural overhead thunderclouds, (2) attempting to generate ball lightning by allowing triggered-lightning to strike various materials and objects (e.g., tree-trunk sections, pools of salt water, silicon powder), (3) measuring the very close (100 m to 1 km) electric and magnetic fields of natural cloud-to-ground lightning, and (4) probing the relationship between lightning processes and the x-rays and gamma-rays associated with them.

  16. A 727 airplane center duct inlet low speed performance confirmation model test for refanned JT8D engines, phase 2

    NASA Technical Reports Server (NTRS)

    Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.

    1973-01-01

    The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.

  17. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  18. Hazard Division 1.2 Tests - Instrumentation Results and Interpretation

    DTIC Science & Technology

    1994-03-09

    program and the instrumentation used and summarizes the instrumentation results which have been obtained. iii /iv NSWCDD/TR-93/218 CONTENTS 1 INTRODUCTION...CENTER ABERDEEN PROVING GROUND FT RUCKER AL 36362-5363 MD 21010 ATTN AMXOS SE 1 ATTN AMSMI RD PR T ( THORN ) DIRECTOR COMMANDING GENERAL AMC FIELD SAFETY...R14 (J CONNOR) 1 ATTN HYLA NAPADENSKY 1 NAPADENSKY ENGINEERS INC 650 JUDSON AVENUE EVANSTON IL 60202-2551 APPLIED ORDNANCE TECHNOLOGY 2001 JEFFERSON

  19. Life testing of the vapor compression distillation urine processor assembly (VCD/UPA) at the Marshall Space Flight Center.

    PubMed

    Wieland, P

    1998-01-01

    Wastewater and urine generated on the International Space Station (ISS) will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAs, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4800 h, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.87 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 h of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  20. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  1. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect

    Vermeul, Vincent R.; Williams, Mark D.; Evans, John C.; Szecsody, James E.; Bjornstad, Bruce N.; Liikala, Terry L.

    2000-10-25

    Pacific Northwest National Laboratory conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the innovative remedial technology In Situ Redox Manipulation (ISRM) to treat groundwater contaminated with dissolved TCE. ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is created by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to chemically reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent has been given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn through the same well. Redox-sensitive contaminants such as TCE, moving in a dissolved-phase plume through the treatment zone, are destroyed. TCE is degraded via reductive dechlorination within the treatment zone to benign degradation products (acetylene, ehtylene). Analyses of sediment samples collected from post-test boreholes showed a high degree of iron reduction, which confirmed the effectiveness of the treatment zone.

  2. Acoustic tests on a new motor generator system for the minuteman launch control centers in Hill engineering test facilities 1 and 2, Hill AFB, Utah

    NASA Astrophysics Data System (ADS)

    Fairman, Terry M.

    1989-04-01

    Post critical design review acoustic tests were performed in Hill Engineering Test Facilities 1 and 2 (HETF) on a proposed new motor generator system for the Minuteman Launch Control Centers (LCC). A performance noise criteria equivalent to a preferred noise criterion (PNC-50) curve was established as the standard by which to judge the effectiveness of the new motor generator. Measurements were obtained at both the commander's console and the deputy commander's console. Results indicated the noise from the motor generator as configured in HETF 1 (the small LCC) exceeded the PNC-50 criteria primarily in the 63 hertz (Hz) octave band by 10 decibels (dB) when operated in both the ac and dc modes. The motor generator as configured in HETF 2 (the large LCC) exceeded the PNC-50 criteria by 3 dB in the 125 Hz octave band only at the deputy commander's console when operated in the ac mode. Acoustic intensity measurements were obtained to isolate specific noise sources and determine the transmission loss of the floor panels. Vibration measurements were also made on and near the motor generator to determine paths of structure-borne vibration energy. Specific recommendations for improving the acoustic environment in the LCC's are presented.

  3. The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study.

    PubMed

    Petersen, Esben Thade; Mouridsen, Kim; Golay, Xavier

    2010-01-01

    Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test-retest study across sites from around the world, dubbed "The QUASAR reproducibility study". Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87+/-0.95 mm and rotations of 1.56+/-0.66 degrees . Mean gray matter CBF was 47.4+/-7.5 [ml/100 g/min] with a between-subject standard variation SD(b)=5.5 [ml/100 g/min] and a within-subject standard deviation SD(w)=4.7 [ml/100 g/min]. The corresponding repeatability was 13.0 [ml/100 g/min] and was found to be within the range of previous studies.

  4. Assessment of a novel group-centered testing schema in an upper-level undergraduate molecular biotechnology course.

    PubMed

    Srougi, Melissa C; Miller, Heather B; Witherow, D Scott; Carson, Susan

    2013-01-01

    Providing students with assignments that focus on critical thinking is an important part of their scientific and intellectual development. However, as class sizes increase, so does the grading burden, prohibiting many faculty from incorporating critical thinking assignments in the classroom. In an effort to continue to provide our students with meaningful critical thinking exercises, we implemented a novel group-centered, problem-based testing scheme. We wanted to assess how performing critical thinking problem sets as group work compares to performing the sets as individual work, in terms of student attitudes and learning outcomes. During two semesters of our recombinant DNA course, students had the same lecture material and similar assessments. In the Fall semester, student learning was assessed by two collaborative take-home exams, followed immediately by individual, closed-book in-class exams on the same content, as well as a final cumulative exam. Student teams on the take-home exams were instructor-assigned, and each team turned in one collaborative exam. In the Spring semester, the control group of students were required to turn in their own individual take-home exams, followed by the in-class exams and final cumulative exam. For the majority of students, learning outcomes were met, regardless of whether they worked in teams. In addition, collaborative learning was favorably received by students and grading was reduced for instructors. These data suggest that group-centered, problem-based learning is a useful model for achievement of student learning outcomes in courses where it would be infeasible to provide feedback on individual critical thinking assignments due to grading volume.

  5. Toxicity of sediments surrounding the Gunpowder Neck Superfund Site at Aberdeen Proving Ground, Maryland. Final report, August 1992-December 1993

    SciTech Connect

    Haley, M.V.; Anthony, J.S.; Chester, N.A.; Kurnas, C.W.

    1995-07-01

    From the late 1940s through the 1960s, the standard practice for disposing of toxic chemicals at Aberdeen Proving Ground, MD, was open burning. This disposal site has since been placed on the National Priority List (NPt) by U.S. Environmental Protection Agency. In the spring 1992, sediment samples were taken from waterways that surround that disposal area. Chemical analysis and sediment toxicity assays (Ampelisca abdita) were conducted. Toxicity comparison, with sediment leachate from an Adapted Toxicity Characteristic teaching Procedure (ATCLP), were made using Daphnia magna and a fluorescent bacterium Photobacterium phosphoreum in MICROTOX assays. Amphipods showed a wide range of mortality in mud as well as coarser sediments indicating substrate preference is not critical to the outcome of the assay. Toxicity results from the leachates showed the sediments were not toxic to daphnia and MICROTOX assays.

  6. Wheeled and Tracked Vehicle Endurance Testing

    DTIC Science & Technology

    2014-10-02

    Range Bound will be the 90-Percent Range value from the Low Severity run. The upper Caution Zone 90-Percent Range Bound will be the 90-Percent Range ...upper Caution Zone bounds. A sample plot of the Left Front Suspension Acceleration 90-Percent Range Values and Caution and Control Bounds for a...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Test and Evaluation Command CSTE-TM ( Range Infrastructure Division) 2202 Aberdeen

  7. Maximum Likelihood Program for Sequential Testing Documentation

    DTIC Science & Technology

    1983-03-01

    Research Laboratory AREA 6 WORK UNIT NUMBERS ,ATITN: DRDAR-BLB Aberdeen Proving Ground. MD 21005 RDT&E 1L162618AH80 It. CONTROLLING OFFICE No,,4E...Availability Codes ist~ Special,-----vail and/or Jo I. INTRODUCTION The Army has used sensitivity testing for many years, especially in the areas of...response distribucion when the data do not meet the requirements for the DiDonato and Jarnagin procedure. Examples are provided for each of these

  8. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect

    VR Vermeul; MD Williams; JC Evans; JE Szecsody; BN Bjornstad; TL Liikala

    2000-10-25

    Pacific Northwest National Laboratory (PNNL) conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the In Situ Redox Manipulation (ISRM) technology for remediating groundwater contaminated with dissolved trichloroethylene (TCE). ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is formed by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent is injected and given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn from the aquifer through the same well used for the injection. Redox-sensitive contaminants such as TCE, moving through the treatment zone under natural groundwater flow conditions, are destroyed. TCE is degraded via reductive dechlorination within the ISRM treatment zone to benign degradation products (i.e., acetylene, ethylene). Prior to the proof-of-principle field test, the ISRM technology was successfully demonstrated in laboratory experiments for the reductive dechlorination of dissolved TCE using sediments from the Fort Lewis site. The Logistics Center was placed on the National Priorities List in December 1989 because of TCE contamination in groundwater beneath the site. A Federal Facilities Agreement between the Army, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology became effective in January 1990, and a Record of Decision (ROD) was signed in September 1990. The major components of the ROD included installation of two pump-and-treat systems for the upper aquifer and further investigation of the lower aquifer and other potential sources of contamination. The pump-and-treat systems became operational in August 1995. Fort Lewis asked PNNL to provide

  9. Pilot-Scale Testing of In Situ Vitrification of Arnold Engineering Development Center Site 10 Contaminated Soils

    SciTech Connect

    Timmerman, C. L.; Peterson, M. E.

    1990-02-01

    Process verification testing using in situ vitrification (ISV) was successfully performed in a pilot-scale test using soils containing fuel oils and heavy metals from Site 10 Installation Restoration Program (IRP) at the Arnold Engineering Development Center (AEDC) located in the southern portion of middle Tennessee. This effort was directed through the U.S. Department of Energy ' s Hazardous Waste Remedial Action Program (HAZWRAP) Office managed by Martin Marietta Energy Systems. In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable product containing glass and crystalline phases. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure; organic constituents are typically destroyed or removed and captured by the off-gas treatment system. The objective of this test is to verify the applicability of the ISV process for stabilization of the contaminated soil at Site 10 . The pilotscale ISV testing results, reported herein, indicate that the AEDC Site 10 Fire Training Area may be successfully processed by ISV. Site 10 is a fire training pit that is contaminated with fuel oils and heavy metals from fire training exercises. Actual site material was processed by ISV to verify its feasible application to those soils . Initial feasibility bench-scale testing and analyses of the soils determined that a lower-melting, electrically conductive fluxing additive (such as sodium carbonate) is required as an additive to the soil for ISV processing to work effecti vely. The actual Site 10 soils showed a larger degree of compositional variation than the soil used for the bench-scale test . This variation dictates that each vitrification setting should be analyzed to determine the composition as. a function of depth and location . This data will dictate the amount (if any) of fluxing add itives of sodium and calci um to bring the melt composition to the recommended

  10. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 4: Ground/flight acceptance tests

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kizer, J. A.

    1976-01-01

    The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.

  11. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect

    Bickford, J.; Taylor, P.

    2007-07-01

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  12. Proteomic profiling of bovine M. longissimus lumborum from Crossbred Aberdeen Angus and Belgian Blue sired steers varying in genetic merit for carcass weight.

    PubMed

    Keady, Sarah M; Kenny, David A; Ohlendieck, Kay; Doyle, Sean; Keane, M G; Waters, Sinéad M

    2013-02-01

    Bovine skeletal muscle is a tissue of significant value to the beef industry and global economy. Proteomic analyses offer the opportunity to detect molecular mechanisms regulating muscle growth and intramuscular fat accumulation. The current study aimed to investigate differences in protein abundance in skeletal muscle tissue of cattle from two breeds of contrasting maturity (early vs. late maturing), adiposity, and muscle growth potential, namely, Belgian Blue (BB) × Holstein Friesian and Aberdeen Angus (AA) × Holstein Friesian. Twenty AA (n = 10) and BB (n = 10) sired steers, the progeny of sires of either high or low genetic merit, expressed as expected progeny difference for carcass weight (EPDcwt), and bred through AI, were evaluated as 4 genetic groups, BB-High, BB-Low, AA-High, and AA-Low (n = 5 per treatment). Chemical composition analysis of M. longissimus lumborum showed greater protein and moisture and decreased lipid concentrations for BB-sired compared with AA-sired steers. To investigate the effects of both sire breed and EPDcwt on M. longissimus lumborum, proteomic analysis was performed using 2-dimensional difference gel electrophoresis followed by mass spectrometry. Proteins were identified from their peptide sequences, using the National Center for Biotechnology Information (NCBI) and Swiss-prot databases. Metabolic enzymes involved in glycolysis (glycogen phosphorylase, phosphoglycerate mutase) and the citric acid cycle (aconitase 2, oxoglutarate dehydrogenase) were increased in AA- vs. BB-sired steers. Expression of proteins involved in cell structure, such as myosin light chain isoforms and troponins I and T, were also altered due to sire breed. Furthermore, heat shock protein β-1 and peroxiredoxin 6, involved in cell defense, had increased abundance in muscle of AA-sired relative to BB-sired steers. Protein abundance of glucose-6-phosphate isomerase, enolase-3, and pyruvate kinase was greater in AA-sired animals of High compared with Low

  13. User Guide for Unmanned Aerial System (UAS) Operations on the National Ranges

    DTIC Science & Technology

    2007-11-01

    FL180 g. Flight below FL180 h. Flight over congested areas i. Lost link j. Onboard cameras /sensors k. Pilot/observer medical standards l. Pilot...Space Wing Vandenberg AFB, CA 2 ROPS /DO 805 606-3602 45 Space Wing Patrick AFB, FL 45 RANS/DOUX 321 853-8259 Aberdeen Test Center Aberdeen... ROPS /DON 805 606-3602 45 Space Wing Patrick AFB, FL 1 ROPS /DOOS 321 853-5936 Aberdeen Test Center Aberdeen Proving, MD CSTE-DTC-AT-PO-R 410

  14. The contribution of medical physicists and doctors in Aberdeen to the evolution of modern medical imaging--SPECT, PET and MRI, 1965-1992.

    PubMed

    Mallard, John R

    2006-05-01

    From the beginnings of medical imaging with radioactivity, an account is given of the development in Aberdeen of Computed Tomography (CT) scanners in Nuclear Medicine, and their clinical value, leading to present-day gamma-cameras. The introduction and clinical use of the cyclotron and Positron Emission Tomography (PET) imager in Aberdeen, has led to a national programme for the cancer patients in Scotland. Early animal work with electron magnetic resonance, which developed into a programme towards nuclear magnetic resonance of water, and then to a quest to build the first clinically-useful whole-body MRI, is described. Successful diagnostic images obtained with it have led to the present-day worldwide use of the MRI technique.

  15. User-Centered Digital Library Project Phase 2: User Testing with Teachers and Students with Disabilities. Evaluation Report

    ERIC Educational Resources Information Center

    Moeller, Babette

    2010-01-01

    The goal of the User-Centered Digital Library Project, conducted by the National Center for Accessible Media (NCAM) at WGBH, was to adapt the Teachers' Domain online digital library to enable teachers and students with disabilities to more readily use the resources in science classrooms. NCAM added accessibility features such as captions and audio…

  16. Evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated ground water at the Old O-Field site at the Edgewood area of Aberdeen Proving Ground. Interim report, Jul 90-Sep 91

    SciTech Connect

    Burton, D.T.; Turley, S.D.

    1991-11-01

    The toxicity of contaminated Old O-Field (Edgewood Area of Aberdeen Proving Ground) groundwater and the reduction and/or elimination of toxicity by various treatment processes were evaluated. The study was divided into a bench scale and pilot scale study. The bench scale studies consisted of 48-h definitive acute toxicity tests run with daphnid neonates (Daphnia magna) and juvenile fathead minnows (Pimephales promelas) exposed to untreated Old O-Field groundwater and groundwater treated by (1) metals precipitation, (2) UV oxidation (H2O ), (3) carbon adsorption, and (4) carbon adsorption/biological sludge. The pilot scale studies consisted of (1) several 96-h definitive acute toxicity tests run with two freshwater and two saltwater invertebrates and fish and (2) Ames mutagenicity assays. Acute toxicity tests were run on untreated Old 0-Field groundwater and groundwater treated by (1) metals precipitation, (2) UV oxidation (H2O2), (3) air stripping, and (4) carbon adsorption during the pilot scale study. The freshwater invertebrate and fish used in the study were daphnid neonates and juvenile fathead minnows, respectively.

  17. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    USGS Publications Warehouse

    Crowe, Bruce M.; Sargent, Kenneth A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  18. The Center for Alternatives to Animal Testing - Europe (CAAT-EU): a transatlantic bridge for the paradigm shift in toxicology.

    PubMed

    Daneshian, Mardas; Leist, Marcel; Hartung, Thomas

    2010-01-01

    The Center for Alternatives to Animal Testing - Europe (CAAT-EU) was founded based collaboration between the Johns Hopkins Bloomberg School of Public Health and the University of Konstanz. CAAT-EU, housed at the University of Konstanz, will coordinate transatlantic activities to promote humane science in research and education, and participate, as partner or coordinator, in publicly and privately funded European projects. Thomas Hartung will serve as program liaison representing Johns Hopkins University and Marcel Leist as the University of Konstanz liaison. CAAT-EU aims to: 1) Set up transatlantic consortia for international research projects on alternative methods. 2) Establish a CAAT Europe faculty and advisory board composed of sponsor representatives and prominent academics from Europe . 3) Participate in the Transatlantic Think Tank for Toxicology (t4) devoted to conceptual work for the paradigm shift in toxicology. 4) Coordinate a series of information days in Europe on relevant developments in the US, similar to the 2009 series CAAT held in the US on EU issues (one on the 7th Amendment to the EU Cosmetics Directive and one on EU and US chemical regulation). 5) Support ALTEX as the official journal of CAAT and CAAT-EU. 6) Develop strategic projects with sponsors to promote humane science and new toxicology, especially with CAAT faculty members. 7) Develop a joint education program between Johns Hopkins and the University of Konstanz, such as e-courses and the existing Humane Science Certificate program developed by CAAT, a student exchange program, and collaboration with the International Graduate School "Cell-based Characterization of De- and Regeneration" in Konstanz.

  19. Heat transfer tests of the NASA-MSC space shuttle configuration at the Langley Research Center Mach 8 Variable Density Facility

    NASA Technical Reports Server (NTRS)

    Connor, L. E.; Sparks, V. W.; Bhadsavle, A. G.

    1971-01-01

    The experimental investigations performed on the NASA-Manned Spacecraft Center Space Shuttle orbiter and booster configurations at a Mach 8 variable density facility are presented. The test program was a series of aerothermodynamic wind tunnel tests that were run over a range of angles of attack, yaw angles, and Reynolds numbers. Objectives of the test program were to obtain heat transfer data over the NASA-Manned Spacecraft Center Space Shuttle orbiter, booster, and launch configurations for a range of angles of attack from - 20 to + 30 deg, yaw angles of 0 and + or - 6 deg, and Reynolds numbers of 0.6, 2.0, and 3.7 x one million. The phase-change coating technique was used to obtain heat transfer data. Information received from these tests will be instrumental in performing thermal protection systems studies and vehicle aerodynamic design.

  20. High-Power Vehicle-Towed TEM for Small Ordnance Detection at Depth

    DTIC Science & Technology

    2014-02-01

    27 4.4 MUNITIONS CONTAMINATION ...Report vi ACRONYM LIST APG Aberdeen Proving Ground ATC Aberdeen Test Center ATV all terrain vehicle EEGS Environmental and Engineering...transmitter with vertical dipole receiver USAESCH U.S. Army Engineering Support Center, Huntsville UXO unexploded ordnance MR-201105 Final