Science.gov

Sample records for aberrant cell growth

  1. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  2. Aberrant Transforming Growth Factor-β Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia.

    PubMed

    Wang, Long; Xie, Liang; Tintani, Francis; Xie, Hui; Li, Changjun; Cui, Zhuang; Wan, Mei; Zu, Xiongbing; Qi, Lin; Cao, Xu

    2017-02-01

    Benign prostatic hyperplasia (BPH) is the overgrowth of prostate tissues with high prevalence in older men. BPH pathogenesis is not completely understood, but it is believed to be a result of de novo overgrowth of prostatic stroma. In this study, we show that aberrant activation of transforming growth factor-β (TGF-β) mobilizes mesenchymal/stromal stem cells (MSCs) in circulating blood, which are recruited for the prostatic stromal hyperplasia. Elevated levels of active TGF-β were observed in both a phenylephrine-induced prostatic hyperplasia mouse model and human BPH tissues. Nestin lineage tracing revealed that 39.6% ± 6.3% of fibroblasts and 73.3% ± 4.2% smooth muscle cells were derived from nestin(+) cells in Nestin-Cre, Rosa26-YFP(flox/+) mice. Nestin(+) MSCs were increased in the prostatic hyperplasia mice. Our parabiosis experiment demonstrate that nestin(+) MSCs were mobilized and recruited to the prostatic stroma of wild-type mice and gave rise to the fibroblasts. Moreover, injection of a TGF-β neutralizing antibody (1D11) inhibits mobilization of MSCs, their recruitment to the prostatic stroma and hyperplasia. Importantly, knockout of TβRII in nestin(+) cell lineage ameliorated stromal hyperplasia. Thus, elevated levels of TGF-β-induced mobilization and recruitment of MSCs to the reactive stroma resulting in overgrowth of prostate tissues in BPH and, thus, inhibition of TGF-β activity could be a potential therapy for BPH. Stem Cells Translational Medicine 2017;6:394-404.

  3. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    SciTech Connect

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-07-15

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations.

  4. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  5. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    PubMed

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  6. MORPHOLOGICAL ABERRATION OF ARTHROBACTER GLOBIFORMIS CELLS DUE TO BIOTIN DEFICIENCY.

    PubMed

    CHAN, E C

    1964-03-01

    Chan, E. C. S. (University of New Brunswick, Fredericton, New Brunswick, Canada). Morphological aberration of Arthrobacter globiformis cells due to biotin deficiency. J. Bacteriol. 87:641-651. 1964.-Morphological aberration of Arthrobacter globiformis strain 425 was shown to occur during growth in a chemically defined medium without added biotin. Such aberrant cells could revert back to normal coccoid forms upon inoculation into fresh medium supplemented with the vitamin. This abnormal cellular development occurred even when there was good growth (turbidity) or increase in total cell mass. Light photomicrographs of negative and cell-wall stains of the organism at different times of the morphological growth cycle are presented in support of these observations. The relationship between cellular aberration and the biochemical role of biotin is briefly discussed.

  7. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  8. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells.

    PubMed

    Taylor, Kathryn M; Vichova, Petra; Jordan, Nicola; Hiscox, Stephen; Hendley, Rhiannon; Nicholson, Robert I

    2008-10-01

    Antiestrogens such as tamoxifen are the mainstay of treatment for estrogen receptor-positive breast cancer. However, their effectiveness is limited by the development of endocrine resistance, allowing tumor regrowth and progression. Importantly, in vitro MCF7 cell models of acquired tamoxifen resistance (TamR cells) display an aggressive, invasive phenotype in which activation of epithelial growth factor receptor/IGF-I receptor/Src signaling plays a critical role. In this study, we report that TamR cells have increased levels of zinc and zinc transporter, ZIP7 [solute carrier family 39 (zinc transporter) member 7, also known as SLC39A7], resulting in an enhanced response to exogenous zinc, which is manifested as a greatly increased growth factor receptor activation, leading to increased growth and invasion. Removal of ZIP7, using small interfering RNA, destroys this activation of epithelial growth factor receptor/IGF-I receptor/Src signaling by reducing intracellular zinc levels. Similarly, it also blocks the activation of HER2, -3, and -4. These data suggest that intracellular zinc levels may be a critical factor in determining growth factor responses and that the targeting of zinc transporters may have novel therapeutic implications. We show that ZIP7 is a critical component in the redistribution of zinc from intracellular stores to the cytoplasm and, as such, is essential for the zinc-induced inhibition of phosphatases, which leads to activation of growth factor receptors. Removal of ZIP7 therefore offers a means through which zinc-induced activation of growth factor receptors may be effectively suppressed and provides a mechanism of targeting multiple growth factor pathways, increasing tumor kill, and preventing further development of resistance in breast cancer.

  9. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    SciTech Connect

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  10. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    SciTech Connect

    Ahluwalia, Amrita; Jones, Michael K.; Szabo, Sandor; Tarnawski, Andrzej S.

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 and VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is

  11. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  12. Aberrant mucosal mast cell protease expression in the enteric epithelium of nematode-infected mice lacking the integrin alphavbeta6, a transforming growth factor-beta1 activator.

    PubMed

    Knight, Pamela A; Brown, Jeremy K; Wright, Steven H; Thornton, Elisabeth M; Pate, Judith A; Miller, Hugh R P

    2007-10-01

    Infection of mice with the nematode Trichinella spiralis triggers recruitment and differentiation of intraepithelial intestinal mucosal mast cells expressing mouse mast cell protease 1 (Mcpt-1), which contributes to expulsion of the parasite. Expression of Mcpt-1 is transforming growth factor (TGF)-beta1-dependent in vitro. TGF-beta1, which is secreted within tissues as a biologically inactive complex with latency-associated peptide, requires extracellular modification to become functionally active. The integrin-alpha(nu)beta(6) mediates local activation of TGF-beta(1) in association with epithelia. Using T. spiralis-infected beta(6)(-/-) mice, we show accumulation of mucosal mast cells in the lamina propria of the small intestine with minimal recruitment into the epithelial compartment. This was accompanied by a coordinate reduction in expression of both Mcpt-1 and -2 in the jejunum and increased tryptase expression, whereas Mcpt-9 became completely undetectable. In contrast, the cytokine stem cell factor, a regulator of mast cell differentiation and survival, was significantly up-regulated in T. spiralis-infected beta(6)(-/-) mice compared with infected beta(6)(+/+) controls. Despite these changes, beta(6)(-/-) mice still appeared to expel the worms normally. We postulate that compromised TGF-beta(1) activation within the gastrointestinal epithelial compartment is a major, but not the only, contributing factor to the observed changes in mucosal mast cell protease and epithelial cytokine expression in beta(6)(-/-) mice.

  13. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  14. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  15. Optical aberrations, retinal image quality and eye growth: Experimentation and modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yibin

    2007-12-01

    Retinal image quality is important for normal eye growth. Optical aberrations are of interest for two reasons: first, they degrade retinal images; second, they might provide some cues to defocus. Higher than normal ocular aberrations have been previously associated with human myopia. However, these studies were cross-sectional in design, and only reported aberrations in terms of root mean square (RMS) errors of Zernike coefficients, a poor metric of optical quality. This dissertation presents results from investigations of ocular optical aberrations, retinal image quality and eye growth in chicks and humans. A number of techniques were utilized, including Shack-Hartmann aberrometry, high-frequency A-scan ultrasonography, ciliary nerve section (CNX), photorefractive keratectomy (PRK) as well as computer simulations and modeling. A technique to extract light scatter information from Shack-Hartmann images was also developed. The main findings of the dissertation are summarized below. In young chicks, most ocular aberrations decreased with growth in both normal and CNX eyes, and there were diurnal fluctuations in some aberrations. Modeling suggested active reduction in higher order aberrations (HOAs) during early development. Although CNX eyes manifested greater than normal HOAs, they showed near normal growth. Retinal image degradation varied greatly among individual eyes post-PRK in young chicks. Including light scatter information into analyses of retinal image quality better estimated the latter. Albino eyes showed more severe retinal image degradation than normal eyes, due to increased optical aberrations and light scatter, but their growth was similar to those of normal eyes, implying that they are relatively insensitive to retina image quality. Although the above results questioned the influence of optical aberrations on early ocular growth, some optical quality metrics, derived from optical aberrations data, could predict how much the eyes of young chicks

  16. [Aluminum induces chromosome aberrations in wheat root meristem cells].

    PubMed

    Bulanova, N V; Synzynys, B I; Koz'min, G V

    2001-12-01

    The yield and pattern of chromosome structure aberrations in wheat seedlings treated with aluminum nitrate and aluminum sulfate at various concentrations have been determined by the anaphase method. Aluminum has a genotoxic effect causing genome, chromatid, and chromosome aberrations in apical root meristem cells. The relationship between the total yield of structural mutations and the aluminum concentration follows a bell-shaped curve. The mutagenic activity of aluminum nitrate peaks at 10(-3) mg/ml, which is twice as high as the permissible concentration limit (PCL) of aluminum in potable water. The maximum of the mutagenic activity of aluminum sulfate is observed at 5 x 10(-4) mg/ml, i.e., one PCL. Tap water boiled for 2 h in an aluminum vessel has virtually no genotoxic effect on wheat cells.

  17. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Investigation of an Aberrant Cell Voltage During the Filling of a Large Lithium Thionyl Chloride Cell

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Quinzio, Michael V.

    1997-01-01

    The investigation of an aberrant cell voltage during the filling of a large lithium thionyl chloride cell summary is at: an aberrant voltage trace was noted during the review of cell filling data; incident was traced to an interruption during filling; experimentation suggested oxidizable sites within the carbon electrode were responsible for the drop in voltage; the voltage anomaly could be reproduced by interrupting the filling of similar cells; and anomalous voltage dip was not due to a short.

  19. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  20. Aberrant genomic imprinting in rhesus monkey embryonic stem cells.

    PubMed

    Fujimoto, Akihisa; Mitalipov, Shoukhrat M; Kuo, Hung-Chih; Wolf, Don P

    2006-03-01

    Genomic imprinting involves modification of a gene or a chromosomal region that results in the differential expression of parental alleles. Disruption or inappropriate expression of imprinted genes is associated with several clinically significant syndromes and tumorigenesis in humans. Additionally, abnormal imprinting occurs in mouse embryonic stem cells (ESCs) and in clonally derived animals. Imprinted gene expression patterns in primate ESCs are largely unknown, despite the clinical potential of the latter in the cell-based treatment of human disease. Because of the possible implications of abnormal gene expression to cell or tissue replacement therapies involving ESCs, we examined allele specific expression of four imprinted genes in the rhesus macaque. Genomic and complementary DNA from embryos and ESC lines containing useful single nucleotide polymorphisms were subjected to polymerase chain reaction-based amplification and sequence analysis. In blastocysts, NDN expression was variable indicating abnormal or incomplete imprinting whereas IGF2 and SNRPN were expressed exclusively from the paternal allele and H19 from the maternal allele as expected. In ESCs, both NDN and SNRPN were expressed from the paternal allele while IGF2 and H19 showed loss of imprinting and biallelic expression. In differentiated ESC progeny, these expression patterns were maintained. The implications of aberrant imprinted gene expression to ESC differentiation in vitro and on ESC-derived cell function in vivo after transplantation are unknown.

  1. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  2. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia

    PubMed Central

    Alvira, Cristina M.

    2016-01-01

    In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized. PMID:27243014

  3. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin

    PubMed Central

    Ang, W.X. Gladys; Church, Alison M.; Kulis, Mike; Choi, Hae Woong; Burks, A. Wesley

    2016-01-01

    Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses. PMID:27669462

  4. Aberrant Levels of Hematopoietic/Neuronal Growth and Differentiation Factors in Euthyroid Women at Risk for Autoimmune Thyroid Disease

    PubMed Central

    Massolt, Elske T.; Effraimidis, Grigoris; Korevaar, Tim I. M.; Wiersinga, Wilmar M.; Visser, W. Edward; Peeters, Robin P.; Drexhage, Hemmo A.

    2016-01-01

    Background Subjects at risk for major mood disorders have a higher risk to develop autoimmune thyroid disease (AITD) and vice-versa, implying a shared pathogenesis. In mood disorder patients, an abnormal profile of hematopoietic/neuronal growth factors is observed, suggesting that growth/differentiation abnormalities of these cell lineages may predispose to mood disorders. The first objective of our study was to investigate whether an aberrant profile of these hematopoietic/neuronal growth factors is also detectable in subjects at risk for AITD. A second objective was to study the inter relationship of these factors with previously determined and published growth factors/cytokines in the same subjects. Methods We studied 64 TPO-Ab-negative females with at least 1 first- or second-degree relative with AITD, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. Subjects were compared with 32 healthy controls (HCs). We measured serum levels of brain-derived neurotrophic factor (BDNF), Stem Cell Factor (SCF), Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2), Epidermal Growth Factor (EGF) and IL-7 at baseline. Results BDNF was significantly lower (8.2 vs 18.9 ng/ml, P<0.001), while EGF (506.9 vs 307.6 pg/ml, P = 0.003) and IGFBP-2 (388.3 vs 188.5 ng/ml, P = 0.028) were significantly higher in relatives than in HCs. Relatives who seroconverted in the next 5 years had significantly higher levels of SCF than non-seroconverters (26.5 vs 16.7 pg/ml, P = 0.017). In a cluster analysis with the previously published growth factors/cytokines SCF clustered together with IL-1β, IL-6 and CCL-3, of which high levels also preceded seroconversion. Conclusion Relatives of AITD patients show aberrant serum levels of 4 hematopoietic/neuronal growth factors similar to the aberrancies found in mood disorder patients, suggesting that shared growth and differentiation defects in both the hematopoietic and neuronal system may underlie thyroid

  5. Analysis of transverse RMS emittance growth of a beam induced by spherical and chromatic aberration in a solenoidal field

    NASA Astrophysics Data System (ADS)

    Dash, Radhakanta; Nayak, Biswaranjan; Sharma, Archana; Mittal, Kailash C.

    2016-01-01

    In a medium energy beam transport line transverse rms emittance growth associated with spherical aberration is analysed. An analytical expression is derived for beam optics in a solenoid field considering terms up to the third order in the radial displacement. Two important phenomena: effect of spherical aberrations in axial-symmetric focusing lens and influence of nonlinear space charge forces on beam emittance growth are discussed for different beam distributions. In the second part nonlinear effect associated with chromatic aberration that describes the growth of emittance and distortion of phase space area is discussed.

  6. Interphase cytogenetics of multicentric renal cell tumours confirm associations of specific aberrations with defined cytomorphologies

    PubMed Central

    Amo-Takyi, B K; Mittermayer, C; Günther, K; Handt, S

    2000-01-01

    To demonstrate associations of certain chromosomal aberrations with defined renal cell tumour (RCT) subtypes, we analysed 239 tumour nephrectomy cases for specimens with multicentric tumours. Chromosomal in situ hybridization was then performed on 15 cases with 34 foci (16 conventional renal cell carcinomas (RCCs), and 18 papillary RCTs (11 carcinomas and seven adenomas) for specific chromosomal aberrations, using α-satellite probes for chromosomes 3, 7 or 17. Particular preference was given to cases which had separate foci with different cytomorphologies. Furthermore, we compared aberrations in relation to tumour size, stage, grade and between different foci in a specimen. Thirty-four cases had multiple tumours. Forty-seven per cent of the multicentric tumours were conventional RCCs and 53% papillary RCTs (against 83% solitary conventional RCCs and 5% solitary papillary RCTs). Three conventional RCCs sized 8 mm (G3), 13 cm (pT2, G2) and 15 cm (pT3b, G3), respectively, revealed monosomy 3, and 13 were disomic. Seventeen papillary RCTs (11 carcinomas and six adenomas) displayed trisomy 17, irrespective of size or grade. Four papillary carcinomas and six papillary adenomas had trisomy 7, and the rest (seven papillary carcinomas and one papillary adenoma) revealed disomy 7. In conclusion, papillary RCTs were tendentially multicentric. Although specific for conventional RCCs heedless of size, monosomy 3 was only observed in high-grade and/or advanced tumours. Trisomy 17 was only detectable in papillary RCTs irrespective of tumour state, showing increased copies with tumour growth. Papillary RCTs also appeared to lose some copies of chromosome 7 with tumour progress, possibly reflecting malignancy. © 2000 Cancer Research Campaign PMID:10780519

  7. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  8. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells.

    PubMed

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C; San Miguel, Jesus F; Orfao, Alberto

    2013-02-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138(+) microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥ 98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  9. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells

    PubMed Central

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C.; San Miguel, Jesus F.; Orfao, Alberto

    2013-01-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  10. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. High-LET induced damages are mostly a single track effect. Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET. Biosignatures may depend on the method the samples are collected. Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges. Whether space flight/microgravity affects radiation-induced chromosome aberration frequencies is still an open question.

  11. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  12. Constitutive activation of neuronal Src causes aberrant dendritic morphogenesis in mouse cerebellar Purkinje cells.

    PubMed

    Kotani, Takenori; Morone, Nobuhiro; Yuasa, Shigeki; Nada, Shigeyuki; Okada, Masato

    2007-02-01

    Src family tyrosine kinases are essential for neural development, but their in vivo functions remain elusive because of functional compensation among family members. To elucidate the roles of individual Src family members in vivo, we generated transgenic mice expressing the neuronal form of c-Src (n-Src), Fyn, and their constitutively active forms in cerebellar Purkinje cells using the L7 promoter. The expression of the constitutively active n-Src retarded the postnatal development of Purkinje cells and disrupted dendritic morphogenesis, whereas the wild-type n-Src had only moderate effects. Neither wild-type nor constitutively active Fyn over-expression significantly affected Purkinje-cell morphology. The aberrant Purkinje cells in n-Src transgenic mice retained multiple dendritic shafts extending in non-polarized directions and were located heterotopically in the molecular layer. Ultrastructural observation of the dendritic shafts revealed that the microtubules of n-Src transgenic mice were more densely and irregularly arranged, and had structural deformities. In primary culture, Purkinje cells from n-Src transgenic mice developed abnormally thick dendritic shafts and large growth-cone-like structures with poorly extended dendrites, which could be rescued by treatment with a selective inhibitor of Src family kinases, PP2. These results suggest that n-Src activity regulates the dendritic morphogenesis of Purkinje cells through affecting microtubule organization.

  13. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis

    PubMed Central

    Deep, Gagan; Schlaepfer, Isabel R.

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa. PMID:27384557

  14. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.

    PubMed

    Shinoda, Gen; Shyh-Chang, Ng; Soysa, T Yvanka de; Zhu, Hao; Seligson, Marc T; Shah, Samar P; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P; Gregory, Richard I; Asara, John M; Cantley, Lewis C; Moss, Eric G; Daley, George Q

    2013-08-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here, we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO could be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling.

  15. Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism

    PubMed Central

    Shinoda, Gen; Shyh-Chang, Ng; de Soysa, T. Yvanka; Zhu, Hao; Seligson, Marc T.; Shah, Samar P.; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P.; Gregory, Richard I.; Asara, John M.; Cantley, Lewis C.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO can be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling. PMID:23666760

  16. Pixantrone induces cell death through mitotic perturbations and subsequent aberrant cell divisions

    PubMed Central

    Beeharry, Neil; Di Rora, Andrea Ghelli Luserna; Smith, Mitchell R; Yen, Timothy J

    2015-01-01

    Pixantrone is a novel aza-anthracenedione active against aggressive lymphoma and is being evaluated for use against various hematologic and solid tumors. The drug is an analog of mitoxantrone, but displays less cardiotoxicity than mitoxantrone or the more commonly used doxorubicin. Although pixantrone is purported to inhibit topoisomerase II activity and intercalate with DNA, exact mechanisms of how it induces cell death remain obscure. Here we evaluated the effect of pixantrone on a panel of solid tumor cell lines to understand its mechanism of cell killing. Initial experiments with pixantrone showed an apparent discrepancy between its anti-proliferative effects in MTS assays (short-term) compared with clonogenic assays (long-term). Using live cell videomicroscopy to track the fates of cells, we found that cells treated with pixantrone underwent multiple rounds of aberrant cell division before eventually dying after approximately 5 d post-treatment. Cells underwent abnormal mitosis in which chromosome segregation was impaired, generating chromatin bridges between cells or within cells containing micronuclei. While pixantrone-treated cells did not display γH2AX foci, a marker of DNA damage, in the main nuclei, such foci were often detected in the micronuclei. Using DNA content analysis, we found that pixantrone concentrations that induced cell death in a clonogenic assay did not impede cell cycle progression, further supporting the lack of canonical DNA damage signaling. These findings suggest pixantrone induces a latent type of DNA damage that impairs the fidelity of mitosis, without triggering DNA damage response or mitotic checkpoint activation, but is lethal after successive rounds of aberrant division. PMID:26177126

  17. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts.

    PubMed

    Nagasawa, H; Latt, S A; Lalande, M E; Little, J B

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation (D0 = 40-45 rad). Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D0's (100-110 rad) slightly lower than those for normal fibroblasts (D0 = 120-140 rad). There were three different response groups for a G1 phase block induced by 400 rad of X-rays: (1) minimal or no G1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells.

  18. Chromosome aberrations and cell death by ionizing radiation: Evolution of a biophysical model

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Carante, Mario P.

    2016-11-01

    The manuscript summarizes and discusses the various versions of a radiation damage biophysical model, implemented as a Monte Carlo simulation code, originally developed for chromosome aberrations and subsequently extended to cell death. This extended version has been called BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations). According to the basic assumptions, complex double-strand breaks (called ;Cluster Lesions;, or CLs) produce independent chromosome free-ends, mis-rejoining within a threshold distance d (or un-rejoining) leads to chromosome aberrations, and ;lethal aberrations; (i.e., dicentrics plus rings plus large deletions) lead to clonogenic cell death. The mean number of CLs per Gy and per cell is an adjustable parameter. While in BIANCA the threshold distance d was the second parameter, in a subsequent version, called BIANCA II, d has been fixed as the mean distance between two adjacent interphase chromosome territories, and a new parameter, f, has been introduced to represent the chromosome free-end un-rejoining probability. Simulated dose-response curves for chromosome aberrations and cell survival obtained by the various model versions were compared with literature experimental data. Such comparisons provided indications on some open questions, including the role of energy deposition clustering at the nm and the μm level, the probability for a chromosome free-end to remain un-rejoined, and the relationship between chromosome aberrations and cell death. Although both BIANCA and BIANCA II provided cell survival curves in general agreement with human and hamster fibroblast survival data, BIANCA II allowed for a better reproduction of dicentrics, rings and deletions considered separately. Furthermore, the approach adopted in BIANCA II for d is more consistent with estimates reported in the literature. After testing against aberration and survival data, BIANCA II was applied to investigate the depth-dependence of the radiation

  19. The fate of cells with chromosome aberrations after total-body irradiation and bone marrow transplantation

    SciTech Connect

    Carbonell, F.; Ganser, A.; Fliedner, T.M.; Arnold, R.; Kubanek, B.

    1983-03-01

    Cytogenetic studies were done on bone marrow cells and peripheral lymphocytes of four patients (three with acute nonlymphocytic leukemia, one with aplastic anemia) at various intervals up to 861 days after total-body X irradiation (TBI) at doses between 4.5 and 10 Gy (450-1000 rad) followed by syngeneic or allogeneic bone marrow transplantation. Whereas no radiation-induced aberrations could be found in the bone marrow, apart from a transient finding in the patient with the lowest radiation dose, aberrant metaphases were seen in the peripheral lymphocytes of three patients in the range from 2.5 to 46% even at 861 days after the exposure. There were no demonstrable aberrations related to TBI in the only patient developing graft-versus-host disease. The dicentric yield as determined in the aberrant metaphases with 46 centromeres ranged between 3.4 +/- 1.3 and 4.9 +/- 0.4. In one patient it was demonstrated by BUdR-labeling that after 10 Gy (1000 rad) TBI the surviving and heavily damaged lymphocytes can go into cell cycle and reach at least the third mitosis. The percentage of aberrant cells diminished by about 25% at each mitotic division.

  20. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  1. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  2. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells.

    PubMed

    Natarajan, Adayapalam T; Palitti, Fabrizio; Hill, Mark A; Stevens, David L; Ahnström, Gunnar

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  3. Comparative studies on radiation-induced micronuclei and chromosomal aberrations in V79 cells

    SciTech Connect

    Keshava, C.; Ong., T. |; Nath, J.

    1994-12-31

    Induction of micronuclei (MN) and structural chromosomal aberrations (SCA) by physical agents extensively in a variety of cell lines for genotoxicity assessment. However, comparative data on the relationship between these two cytogenetic endpoints are limited. This study compares MN and SCA formation in V79 Chinese hamster lung cells treated with X-rays and UV radiation. Four replicate cultures of exponentially growing cells were exposed to four doses of X-rays (100 to 800 rad). For two replicate cultures, cytochalasin B (3 {mu}g/ml) was added and cells harvested 16 h later for MN and cell cycle kinetics assessments. For the remaining two replicate cultures, colcemid (0.025{mu}g/ml) was added 16 h post-treatment and harvested 2 h later for SCA and mitotic index (MI) analysis. This experiment was duplicated using four doses of UV radiation (100 to 800 {mu}joules x 10{sup 2}/cm{sup 2}). In the x-ray experiment, a dose-related decrease in the % of binucleated (BN) cells and MI was noted. Also, there was a clear dose-related increase in micronucleated binucleate (MNBN) and aberrant cells. Similar dose-response, but with lower frequencies, was observed in the UV radiation treatment. These data suggest that there is a good relationship between chromosome damage as measured by the % of MNBN and aberrant cells and cytotoxicity as measured by the % of BN cells and MI in these assays.

  4. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types

  5. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A

    PubMed Central

    Yang, Yang; Zhang, Mei-Yin; Rao, Hui-Lan; Wang, Hui-Yun; Zheng, X.F. Steven

    2015-01-01

    mTORC1 is a master regulator of cell growth and proliferation, and an established anticancer drug target. Aberrant mTORC1 signaling is common in hepatocellular carcinoma (HCC), but the underlying mechanism remains elusive. Rab1A is a newly identified mTORC1 activator that mediates an alternative amino acid (AA) signaling branch to Rag GTPases. Because liver is a physiological hub for nutrient sensing and metabolic homeostasis, we investigated the possible role of Rab1A in HCC. We found that Rab1A is frequently overexpressed in HCC, which enhances hyperactive AA-mTORC1 signaling, promoting malignant growth and metastasis of HCC in vitro and in vivo. Moreover, aberrant Rab1A expression is closely associated with poor prognosis. Strikingly, aberrant Rab1A overexpression leads to increased rapamycin sensitivity, indicating that inappropriate activation of AA signaling is a cancer-driving event in HCC. Our findings further suggest that Rab1A is a valuable biomarker for prognosis and personalized mTORC1-targeted therapy in liver cancer. PMID:26308575

  6. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    SciTech Connect

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed.

  7. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  8. Induction of chromosomal aberrations in bone marrow cells of asbestotic rats

    SciTech Connect

    Fatma, N.; Khan, S.G.; Aslam, M.; Rahman, Q. )

    1992-04-01

    In the present study, cytogenetic effects of Indian chrysotile asbestos in rat bone marrow cells after 290 days of intratracheal inoculation, when it develops massive pulmonary fibrosis, were investigated. The pulmonary fibrosis was confirmed by both histopathological studies and increased collagen content in the lung of the treated animals. In the asbestotic rats a significant increase in chromosomal aberrations was recorded and a decrease in mitotic index of bone marrow cells. The types of chromosomal aberrations in these cells were chromatid gaps and breaks. The results indicate the significant cytogenetic changes in the bone marrow cells of asbestotic rats and also suggest that these changes directly or indirectly may be one of the biological events involved in eliciting the asbestos-mediated toxic responses.

  9. Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines.

    PubMed

    Saferali, Aabida; Grundberg, Elin; Berlivet, Soizik; Beauchemin, Hugues; Morcos, Lisanne; Polychronakos, Constantin; Pastinen, Tomi; Graham, Jinko; McNeney, Brad; Naumova, Anna K

    2010-01-01

    DNA methylation patterns are often poorly conserved through cell culturing. To determine the effect of cell immortalization and culture on DNA methylation profiles, we analyzed methylation in the differentially methylated regions (DMR) of five imprinted domains: the intergenic (IG) DMR on chromosome 14q32; potassium voltage-gated channel, KQT-like subfamily, member 1, (KCNQ1); small nuclear ribonucleoprotein polypeptide N (SNRPN), mesoderm specific transcript homolog (MEST); and H19 in lymphoblastoid cell lines (LCLs). In the IG DMR we found an aberrant methylation pattern that was consistent through all the cell lines tested and significantly different from that of noncultured peripheral blood cells. Using a generalized linear mixed model to compare methylation profiles, we show that recently derived LCLs significantly differ from the CEPH LCLs. This implies a gradual cell-culture related deterioration of DNA methylation in the IG DMR with at least two steps that may be identified: loss of methylation at CG sites 1 and 8; and loss of allelic differences in DNA methylation. The IG DMR methylation profile also confirms the high level of clonality of the CEPH LCLs. We conclude that non-transformed primary cells may be less susceptible to epigenetic anomalies and therefore may provide a more accurate reflection of gene expression in vivo.

  10. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  11. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  12. The distribution and significance of aberrant ganglion cells in the facial nerve trunk of the cat.

    PubMed

    Satomi, H; Takahashi, K

    1986-01-01

    The distribution and peripheral connections of aberrant ganglion cells in the facial nerve trunk of the cat were studied by means of Klüver-Barrera staining and retrograde transport of horseradish peroxidase (HRP). By the Klüver-Barrera staining, aberrant ganglion cells were observed in the facial nerve trunk between the geniculate ganglion and the junction of the auricular branch of the vagus with the facial nerve trunk, although the number varied considerably with each animal. These cells were generally medium-sized and of round or oval shape, with densely stained Nissl substance, the features of which were essentially similar to those of the geniculate ganglion. In cases where HRP injections were made into the anterior wall of the auricle, several HRP-labeled cells were found ipsilaterally in the facial nerve trunk in addition to cell labeling of the geniculate ganglion. The present study in the cat demonstrated that at least some of the aberrant ganglion cells scattered in the facial nerve trunk are parental to the axons to the auricle, subserving the cutaneous sensory function.

  13. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  14. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  15. Aberrant LPL Expression, Driven by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells

    PubMed Central

    Rozovski, Uri; Grgurevic, Srdana; Bueso-Ramos, Carlos; Harris, David M.; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Jain, Preetesh; Wierda, William; Burger, Jan; O’Brien, Susan; Jain, Nitin; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2015-01-01

    While reviewing chronic lymphocytic leukemia (CLL) bone marrow slides we identified cytoplasmic lipid vacuoles in CLL cells but not in normal B cells. Because lipoprotein lipase (LPL), which catalyzes hydrolysis of triglycerides into free fatty acids (FFAs), is aberrantly expressed in CLL, we investigated whether LPL regulates the oxidative metabolic capacity of CLL cells. We found that unlike normal B cells, CLL cells metabolize FFAs. Because STAT3 is constitutively activated in CLL cells and because we identified putative STAT3 binding sites in the LPL promoter, we sought to determine whether STAT3 drives the aberrant expression of LPL. Transfection of luciferase reporter gene constructs driven by LPL promoter fragments into MM1 cells revealed that STAT3 activates the LPL promoter. In addition, chromatin immunoprecipitation (ChIP) confirmed that STAT3 binds to the LPL promoter. Furthermore, transfection of CLL cells with STAT3-shRNA downregulated LPL transcripts and protein levels, confirming that STAT3 activates the LPL gene. Finally, transfection of CLL cells with LPL-siRNAs decreased the capacity of CLL cells to oxidize FFAs and reduced cell viability. PMID:25733697

  16. Identification of Targetable HER2 Aberrations in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Birkeland, Andrew C.; Yanik, Megan; Tillman, Brittny N.; Scott, Megan V.; Foltin, Susan K.; Mann, Jacqueline E.; Michmerhuizen, Nicole L.; Ludwig, Megan L.; Sandelski, Morgan M.; Komarck, Christine M.; Carey, Thomas E.; Prince, Mark E.P.; Bradford, Carol R.; McHugh, Jonathan B.; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Importance HER2 is an important drug target in breast cancer, where anti-HER2 therapy has been shown to lead to improvements in disease recurrence and overall survival. HER2 status in head and neck squamous cell carcinoma (HNSCC) has not been well studied. Identification of HER2 positive tumors and characterization of response to HER2 therapy could lead to targeted treatment options in HNSCC. Objective To identify HER2 aberrations in HNSCCs and investigate potential for HER2 targeted therapy in HNSCCs. Design, Setting, and Participants Retrospective case series of patients with laryngeal and oral cavity SCC enrolled in the University of MichiganSPORE. Publically available sequencing data(TCGA) was reviewed to identify additional mutations and overexpression in HER2 in HNSCC. Established HNSCC cell lines were used for follow-up in vitro analysis. Interventions Using targeted, amplicon-based sequencing with the Oncomine Cancer Panel, we assessed the copy number and mutation status of commonly altered genes in HNSCCs. Immunohistochemical staining was performed on tissue microarrays of HNSCCs to assess expression of HER2. Western blotting for HNSCC cell line HER2 expression, and cell survival assays after treatment with HER2 inhibitors were performed. Main Outcomes and Measures Prevalence of HER2 genetic aberrations and HER2 overexpression in laryngeal and oral cavity squamous cell carcinomas (SCCs). Prevalence of HER2 aberrations in HNSCC in TCGA. HER2 protein expression in HNSCC cell lines. Response of HNSCC cell lines to targeted HER2 inhibitors. Results Forty-two laryngeal SCC samples were screened by targeted sequencing, of which 4 were positive for HER2 amplification. Two samples identified with sequencing showed HER2 overexpression on immunohistochemistry. Two of 94 oral cavity SCC samples were positive for HER2 on immunohistochemistry. Analysis of 288 patients from publicly available HNSCC sequencing data revealed 9 amplifications in HER2. Protein expression

  17. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express Aurora kinase A.

    PubMed

    Yang, Jing; Ikezoe, Takayuki; Nishioka, Chie; Nobumoto, Atsuya; Udaka, Keiko; Yokoyama, Akihito

    2013-12-01

    We previously showed that Aurora kinase A (AURKA) is aberrantly expressed in acute myelogenous leukemia (AML) cells when compared to bone marrow mononuclear cells isolated from healthy volunteers. We have also shown that CD34(+) /CD38(-) AML cells, one of compartments enriched for leukemia stem cells in most leukemia subgroups, were relatively resistant to cytarabine-mediated growth inhibition when compared to their CD34(+) /CD38(+) counterparts. Our study attempted to identify therapeutic targets in CD34(+) /CD38(-) AML cells and found that CD34(+) /CD38(-) AML cells isolated from patients (n = 26) expressed larger amounts of AURKA than their CD34(+) /CD38(+) counterparts and CD34(+) normal hematopoietic stem/progenitor cells isolated from healthy volunteers (n = 6), as measured by real-time reverse-transcriptase polymerase chain reaction. Blockade of AURKA by the specific inhibitor MLN8237 or a short hairpin RNA (shRNA) against AURKA significantly inhibited proliferation, impaired self-renewal capability and induced apoptosis of CD34(+) /CD38(-) AML cells, in association with modulation of levels of Bcl-2 family member proteins. Importantly, inhibition of AURKA in CD34(+) /CD38(-) AML cells by MLN8237 or an shRNA significantly impaired engraftment of these cells in severely immunocompromised mice and appeared to prolong their survival. These results suggest that AURKA is a promising molecular target to eliminate chemotherapy-resistant CD34(+) /CD38(-) AML cells.

  18. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  19. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    2007-01-01

    This viewgraph presentation reviews some of the techniques used to analyze the damage done to chromosome from ion radiation. Fluorescence in situ hybridization (FISH), mFISH, mBAND, telomere and centromereprobes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. There is some comparison of the different results from the various techniques. The results of the study are summarized.

  20. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Numerous published studies have reported the Relative Biological Effectiveness (RBE) values for chromosome aberrations induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo has been suggested to show a similar relationship as the quality factor for cancer induction. Therefore, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. However, the RBE value is known to be very different for different types of cancer. Previously, we reported that, even though the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions, the RBE was significantly reduced after multiple cell divisions post irradiation. To test the hypothesis that RBE values for chromosome aberrations are cell type dependent, and different between early and late damages, we exposed human lymphocytes ex vivo, and human mammary epithelial cells in vitro to various charged particles. Chromosome aberrations were quantified using the samples collected at first mitosis post irradiation for initial damages, and the samples collected after multiple generations for the remaining or late arising aberrations. Results of the study suggested that the effectiveness of high-LET charged particles for late chromosome aberrations may be cell type dependent, even though the RBE values are similar for early damages.

  1. Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss.

    PubMed

    Aarts, Esther; Helmich, Rick C; Janssen, Marcel J R; Oyen, Wim J G; Bloem, Bastiaan R; Cools, Roshan

    2012-02-15

    Dopamine has been implicated in reward-related impulsivity, but the exact relationship between dopamine, reward and impulsivity in humans remains unknown. We address this question in Parkinson's disease (PD), which is characterized by severe dopamine depletion. PD is associated primarily with motor and cognitive inflexibility, but can also be accompanied by reward-related impulsivity. This paradoxical symptom of PD has often been attributed to dopaminergic overstimulation by antiparkinson medication, which is necessary to relieve the motor and cognitive inflexibility. However, factors other than medication may also contribute to aberrant impact of reward. Here we assess whether cognitive inflexibility and aberrant reward impact in PD are two sides of the same coin, namely dopamine cell loss. To measure dopamine cell loss, we employed (123)I-FP-CIT Single Photon Emission Computed Tomography (SPECT) in 32 PD patients (10 never-medicated patients and 22 patients after withdrawal of all medication for >12h) and related the values to behavior on a rewarded task-switching paradigm. Dopamine cell loss was associated not only with cognitive inflexibility (under low reward), but also with aberrant impact of reward. These effects could not be attributed to medication use. Relative to controls (n=26), aberrant reward processing in PD was particularly expressed as reduced capacity to maintain (i.e., repeat) the current task-set under high reward. Our findings demonstrate that factors intrinsically related to PD may underlie the paradoxical symptoms of inflexibility and reward-related impulsivity in PD. The present results concur with observations that low baseline dopamine states predispose to drug and other addictions.

  2. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  3. Chromosomal aberrations induced by the restriction endonucleases EcoR I, Pst I, Sal I and Bam HI in CHO cells.

    PubMed

    Zhang, S Z; Dong, W F

    1987-09-01

    4 widely used cohesive end-producing restriction endonucleases (REs), EcoR I, Pst I, Sal I and Bam HI were tested in CHO cells for their aberration-inducing effects. It was demonstrated that all these REs significantly increased the frequencies of aberrant cells, the aberration frequencies per cell and the aberration frequencies per chromosome. The effects of REs on chromosomal aberrations are similar to ionizing radiation, but more minutes and interchange figures are observed. Polyploid cells are more susceptible to RE treatment, an interesting finding which may be explained by the mechanisms leading to the formation of polyploid cells.

  4. Induction of chromosome aberrations in mammalian cells after heavy ion exposure

    NASA Astrophysics Data System (ADS)

    Ritter, S.; Kraft-Weyrather, W.; Scholz, M.; Kraft, G.

    The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/μm). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately.

  5. Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains

    SciTech Connect

    Larramendy, M.L.; Popescu, N.C.; DiPaolo, J.A.

    1981-01-01

    Sister chromatid exchange (SCE) and chromosome aberration induction were determined for several inorganic metal salts. Arsenic, nickel, and beryllium salts at concentrations effective in causing transformation of Syrian hamster cells (HEC) induced SCE and chromosome aberrations of HEC and human lymphocytes, whereas sodium tungstate, a non-transforming chemical, neither induced SCE nor chromosome aberrations. Normal human and hamster cells exhibited equal sensitivity to SCE induction; nontoxic concentrations of sodium arsenite, beryllium sulfate, and nickel sulfate caused an increase of 8-10 SCE/cell over control values. Sodium arsenite, a trivalent arsenic, and sodium arsenate, a pentavalent arsenic, produced increases in SCE but the former was effective at lower concentrations. Both arsenic salts were less efficient in inducing SCE in human whole blood than in purified lymphocyte cultures. Sodium arsenite, sodium arsenate, nickel sulfate, and beryllium sulfate also caused damage consisting primarily of chromatid type of aberrations. In HEC, with doses most effective in SCE induction , all four metals produced aberrations in 16-21% of cells. In human lymphocytes, 34 and 30% of the cells had chromosome damage after sodium arsenite and sodium arsenate, respectively, whereas beryllium sulfate or nickel sulfate caused damage in about 10% of the cells. The induction of SCE and chromosomal aberrations by metals reemphasizes the sensitivity of cytological assays and their importance for detecting genetic damage caused by carcinogens.

  6. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  7. Chromosome aberrations and rogue cells in lymphocytes of Chernobyl clean-up workers.

    PubMed

    Lazutka, J R

    1996-03-09

    A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested.

  8. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  9. Anaphase aberrations: a measure of genotoxicity in mutagen-treated fish cells

    SciTech Connect

    Kocan, R.M.; Landolt, M.L.; Sabo, K.M.

    1982-01-01

    Rainbow trout gonad cells (RTG-2) were cultured for various lengths of time in the presence of several classes of known mutagenic chemicals and several related compounds that possessed no known mutagenic/carcinogenic activity. During the course of exposure the cells were examined for the presence of abnormalities in the chromosome arrangement of anaphase figures during mitosis. Untreated and solvent-treated (dimethylsulfoxide-treated) cells exhibited a background abnormality rate of 12% with only minor chromosomal defects being observed. This was also true for those cells exposed to naphthol and anthracene, two chemicals with no proven mutagenic or carcinogenic activity. Conversely, significant increases in the frequency of anaphase aberrations were produced in cells treated with N-methyl-N'-nitro-N-nitrosoguanidine, benzo(a)pyrene, 9-aminoacridine and mitomycin-C. These abnormalities were also far more complex and extensive than those observed in the control and nonmutagen-treated cells. Many species of fish have extremely small and numerous chromosomes, making resolution of chromosome defects such as sister chromatid exchange and deletions more difficult than in most mammalian diploid cells, which generally have larger and fewer chromosomes. Examination of cells during anaphase eliminates the need to observe each chromosome separately as well as the need to produce well-spread metaphase chromosomes. Since the sensitivity of anaphase aberrations to known mutagenic/carcinogenic compounds appears to be quite high in trout cells and since hundreds of suitable cells are available for analysis, this may be an appropriate alternative or addition to some of the more standard chromosome macrolesion tests developed in mammalian systems.

  10. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  11. Cytotoxicity and anaphase aberrations induced by mineral fibres in cultured human mesothelial cells.

    PubMed

    Pelin, K; Husgafvel-Pursiainen, K; Vallas, M; Vanhala, E; Linnainmaa, K

    1992-09-01

    The in vitro cytotoxicity of two amphibole asbestos fibres (amosite and crocidolite), a serpentine asbestos (chrysotile), a non-asbestos fibrous aluminosilicate (erionite) and three different size fractions of both glass wool and rock wool fibres were assessed in an immortalized human mesothelial cell line, MeT-5A. We also investigated the induction of anaphase aberrations by the asbestos and erionite fibres. On a comparison by weight, amosite, crocidolite and chrysotile showed similar toxic effects (2-5 mug/cm(2) of the asbestos fibres caused 50% of cells to die) but erionite was less toxic (10-20 mug/cm(2) was needed for the same effect). When the doses were converted to the number of fibres/cm(2) of culture area, amosite was shown to be about 10 times more cytotoxic than crocidolite and chrysotile. Crocidolite and chrysotile showed similar cytotoxicity, and erionite was again less toxic. Of the man-made mineral fibres (MMMF), thin glass wool was the most cytotoxic (50% cell death for 10-20 mug/cm(2)), followed (in descending order of cytotoxicity) by thin rock wool, coarse glass wool, milled rock wool, milled glass wool and coarse rock wool. In general, the MMMF samples were less toxic than the asbestos and erionite samples. All three asbestos types studied induced anaphase aberrations at high (near toxic) doses. A statistically significant increase in the number of aberrant anaphases was observed in cultures treated with crocidolite or chrysotile at 5 mug/cm(2). The increase was caused by lagging chromatids, chromosomes or chromosome fragments.

  12. Analysis of Heavy Ion-Induced Chromosome Aberrations in Human Fibroblast Cells Using In Situ Hybridization

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2

  13. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells.

    PubMed

    Bryant, P E; Johnston, P J

    1993-05-01

    Restriction endonucleases (RE) can be used to mimic and model the clastogenic effects of ionising radiation. With the development of improved techniques for cell poration: electroporation and recently streptolysin O (SLO), it has become possible more confidently to study the relationships between DNA double-strand breaks (dsb) of various types (e.g. blunt or cohesive-ended) and the frequencies of induced metaphase chromosomal aberrations or micronuclei in cytokinesis-blocked cells. Although RE-induced dsb do not mimic the chemical end-structure of radiation-induced dsb (i.e. the 'dirty' ends of radiation-induced dsb), it has become clear that cohesive-ended dsb, which are thought to be the major type of dsb induced by radiation, are much less clastogenic than blunt-ended dsb. It has also been possible, with the aid of electroporation or SLO to measure the kinetics of dsb in cells as a function of time after treatment. These experiments have shown that some RE (e.g. Pvu II) are extremely stable inside CHO cells and at high concentrations persist and induce dsb over a period of many hours following treatment. Cutting of DNA by RE is thought to be at specific recognition sequences (as in free DNA) although the frequencies of sites in native chromatin available to RE is not yet known. DNA condensation and methylation are both factors limiting the numbers of available cutting sites. Relatively little is known about the kinetics of incision or repair of RE-induced dsb in cells. Direct ligation may be a method used by cells to rejoin the bulk of RE-induced dsb, since inhibitors such as araA, araC and aphidicolin appear not prevent rejoining, although these inhibitors have been found to lead to enhanced frequencies of chromosomal aberrations. 3-Aminobenzimide, the poly-ADP ribose polymerase inhibitor is the only agent that has so far been shown to inhibit rejoining of RE-induced dsb. Data from the radiosensitive xrs5 cell line, where chromosomal aberration frequencies are

  14. Immunological control of cell cycle aberrations for the avoidance of oncogenesis: the case of tetraploidy.

    PubMed

    Senovilla, Laura; Galluzzi, Lorenzo; Castedo, Maria; Kroemer, Guido

    2013-05-01

    Tetraploid cells--cells that contain twice the normal amount of DNA--are more prone to neoplastic transformation than their normal, diploid counterparts since they are genomically unstable and frequently undergo asymmetric, multipolar cell divisions. Similar to many other genomic aberrations, tetraploidization is normally avoided by multiple, nonredundant cell-intrinsic mechanisms that are tied to cell cycle checkpoints. Unexpectedly, tetraploidization is also under the control of a cell-extrinsic mechanism determined by the immune system. Indeed, oncogene- or carcinogen-induced cancers developing in immunodeficient mice contain cells with a higher DNA content than similar tumors growing in immunocompetent hosts. Moreover, cancer cell lines that have been rendered tetraploid in vitro grow normally in immunodeficient mice, yet almost fail to generate tumors in immunocompetent animals. One of the mechanisms whereby the immune system recognizes tetraploid cells originates from tetraploidy causing an endoplasmic reticulum (ER) stress response that culminates in the exposure of the ER protein calreticulin on the cell surface. Hence, tetraploidy exemplifies a potentially oncogenic alteration that is repressed by a combination of cell-autonomous mechanisms and immunosurveillance. Oncogenesis and tumor progression require the simultaneous failure of both such control systems.

  15. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  16. Aberrant Expression of MICO1 and MICO1OS in Deceased Somatic Cell Nuclear Transfer Calves.

    PubMed

    Wang, Guan-Nan; Yang, Wen-Zhi; Xu, Da; Li, Dong-Jie; Zhang, Cui; Chen, Wei-Na; Li, Shi-Jie

    2017-04-06

    Incomplete reprogramming of a donor nucleus following somatic cell nuclear transfer (SCNT) results in aberrant expression of developmentally important genes, and is the primary source of the phenotypic abnormalities observed in cloned animals. Expression of non-coding RNAs in the murine Dlk1-Dio3 imprinted domain was previously shown to correlate with the pluripotency of mouse induced pluripotent stem cells. In this study, we examined the transcription of the bovine orthologs from this locus, MICO1 (Maternal intergenic circadian oscillating 1) and MICO1OS (MICO1 opposite strand), in tissues from artificially inseminated and SCNT calves that died during the perinatal period. A single-nucleotide polymorphism (SNP), a T-to-C transition, was used to analyze the allelic transcription of MICO1. Our results indicate monoallelic expression of the MICO1 C allele among the six analyzed tissues (heart, liver, spleen, lung, kidney, and brain) of artificially inseminated calves, indicating that this gene locus may be imprinted in bovine. Conversely, we observed variable allelic transcription of MICO1 in SCNT calves. We asked if DNA methylation regulated the monoallelic expression of MICO1 and MICO1OS by evaluating the methylation levels of six regions within or around this locus in tissues with normal or aberrant MICO1 transcription; all of the samples from either artificially inseminated or SCNT calves exhibited hypermethylation, implying that DNA methylation may not be involved in regulating its monoallelic expression. Furthermore, three imprinted genes (GTL2, MEG9, and DIO3) nearby MICO1 showed monoallelic expression in SCNT calves with aberrant MICO1 transcription, indicating that not all of the genes in the bovine DLK1-DIO3 domain are mis-regulated. This article is protected by copyright. All rights reserved.

  17. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  18. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Numerous published studies have reported the RBE values for chromosome chromosomes induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo showed a similar relationship as the quality factor for cancer induction. Consequently, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. The RBE value is known to be very different for different types of cancer. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. After multiple cell divisions post irradiation, the RBE was significantly smaller. To test the hypothesis that the RBE values for chromosome aberrations are different between early and late damages and also different between different cell types, we exposed human lymphocytes ex vivo, and human fibroblast cells and human mammary epithelial cells in vitro to 600 MeV/u Fe ions. Post irradiation, the cells were collected at first mitosis, or cultured for multiple generations for collections of remaining or late arising chromosome aberrations. The chromosome aberrations were quantified using fluorescent in situ hybridization (FISH) with whole chromosome specific probes. This study attempts to offer an explanation for the varying RBE values for different cancer types.

  19. Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays.

    PubMed

    Yildiz, Mustafa; Ciğerci, Ibrahim Hakki; Konuk, Muhsin; Fidan, A Fatih; Terzi, Hakan

    2009-05-01

    We used the anaphase-telophase chromosome aberration and comet (Single Cell Gel Electrophoresis, SCGE) assays to evaluate the genotoxic effects of copper sulphate (CS) and cobalt chloride (CC) chemicals prepared in two concentrations (EC(50), 2xEC(50)), using methyl methanesulfonate (MMS) as a positive control and untreated cells as a negative control. In Allium root growth inhibition test, EC(50) values for CS and CC are 1.5 and 5.5 ppm, respectively. Mitotic index (MI) decreased in all concentrations tested of CS and CC compared to the control at each exposure time. The bridge, stickiness, vagrant chromosomes, fragments, c-anaphase and multipolarity chromosome aberrations were observed in anaphase-telophase cells. The total chromosome aberrations were more frequent with an increasing in the exposure time and the concentrations of both chemicals. The genotoxicity of CS and CC in Allium cepa root cells was analyzed using a mild alkaline comet assay at pH 12.3, which allows the detection of single strand breaks. In all the concentrations, CS and CC induced a significant increase (P<0.05) in DNA damage. No significant difference was found between positive control (300+/-5.81) and 3 ppm CS (280+/-4.61). The methods used are applicable for biological monitoring of environmental pollutants.

  20. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  1. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer

    PubMed Central

    Forsberg, Lars A.; Rasi, Chiara; Pekar, Gyula; Davies, Hanna; Piotrowski, Arkadiusz; Absher, Devin; Razzaghian, Hamid Reza; Ambicka, Aleksandra; Halaszka, Krzysztof; Przewoźnik, Marcin; Kruczak, Anna; Mandava, Geeta; Pasupulati, Saichand; Hacker, Julia; Prakash, K. Reddy; Dasari, Ravi Chandra; Lau, Joey; Penagos-Tafurt, Nelly; Olofsson, Helena M.; Hallberg, Gunilla; Skotnicki, Piotr; Mituś, Jerzy; Skokowski, Jaroslaw; Jankowski, Michal; Śrutek, Ewa; Zegarski, Wojciech; Tiensuu Janson, Eva; Ryś, Janusz; Tot, Tibor; Dumanski, Jan P.

    2015-01-01

    Sporadic breast cancer (SBC) is a common disease without robust means of early risk prediction in the population. We studied 282 females with SBC, focusing on copy number aberrations in cancer-free breast tissue (uninvolved margin, UM) outside the primary tumor (PT). In total, 1162 UMs (1–14 per breast) were studied. Comparative analysis between UM(s), PT(s), and blood/skin from the same patient as a control is the core of the study design. We identified 108 patients with at least one aberrant UM, representing 38.3% of cases. Gains in gene copy number were the principal type of mutations in microscopically normal breast cells, suggesting that oncogenic activation of genes via increased gene copy number is a predominant mechanism for initiation of SBC pathogenesis. The gain of ERBB2, with overexpression of HER2 protein, was the most common aberration in normal cells. Five additional growth factor receptor genes (EGFR, FGFR1, IGF1R, LIFR, and NGFR) also showed recurrent gains, and these were occasionally present in combination with the gain of ERBB2. All the aberrations found in the normal breast cells were previously described in cancer literature, suggesting their causative, driving role in pathogenesis of SBC. We demonstrate that analysis of normal cells from cancer patients leads to identification of signatures that may increase risk of SBC and our results could influence the choice of surgical intervention to remove all predisposing cells. Early detection of copy number gains suggesting a predisposition toward cancer development, long before detectable tumors are formed, is a key to the anticipated shift into a preventive paradigm of personalized medicine for breast cancer. PMID:26430163

  2. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer.

    PubMed

    Forsberg, Lars A; Rasi, Chiara; Pekar, Gyula; Davies, Hanna; Piotrowski, Arkadiusz; Absher, Devin; Razzaghian, Hamid Reza; Ambicka, Aleksandra; Halaszka, Krzysztof; Przewoźnik, Marcin; Kruczak, Anna; Mandava, Geeta; Pasupulati, Saichand; Hacker, Julia; Prakash, K Reddy; Dasari, Ravi Chandra; Lau, Joey; Penagos-Tafurt, Nelly; Olofsson, Helena M; Hallberg, Gunilla; Skotnicki, Piotr; Mituś, Jerzy; Skokowski, Jaroslaw; Jankowski, Michal; Śrutek, Ewa; Zegarski, Wojciech; Tiensuu Janson, Eva; Ryś, Janusz; Tot, Tibor; Dumanski, Jan P

    2015-10-01

    Sporadic breast cancer (SBC) is a common disease without robust means of early risk prediction in the population. We studied 282 females with SBC, focusing on copy number aberrations in cancer-free breast tissue (uninvolved margin, UM) outside the primary tumor (PT). In total, 1162 UMs (1-14 per breast) were studied. Comparative analysis between UM(s), PT(s), and blood/skin from the same patient as a control is the core of the study design. We identified 108 patients with at least one aberrant UM, representing 38.3% of cases. Gains in gene copy number were the principal type of mutations in microscopically normal breast cells, suggesting that oncogenic activation of genes via increased gene copy number is a predominant mechanism for initiation of SBC pathogenesis. The gain of ERBB2, with overexpression of HER2 protein, was the most common aberration in normal cells. Five additional growth factor receptor genes (EGFR, FGFR1, IGF1R, LIFR, and NGFR) also showed recurrent gains, and these were occasionally present in combination with the gain of ERBB2. All the aberrations found in the normal breast cells were previously described in cancer literature, suggesting their causative, driving role in pathogenesis of SBC. We demonstrate that analysis of normal cells from cancer patients leads to identification of signatures that may increase risk of SBC and our results could influence the choice of surgical intervention to remove all predisposing cells. Early detection of copy number gains suggesting a predisposition toward cancer development, long before detectable tumors are formed, is a key to the anticipated shift into a preventive paradigm of personalized medicine for breast cancer.

  3. Anaphase aberrations: a measure of genotoxicity in mutagen-treated fish cells

    SciTech Connect

    Kocan, R.M.; Landolt, M.L.; Sabo, K.M.

    1982-01-01

    Rainbow trout gonad cells (RTG-2) were cultured for various lengths of time in the presence of several classes of known mutagenic chemicals and several related compounds that possessed no known mutagenic/carcinogenic activity. During the course of exposure the cells were examined for the presence of abnormalities in the chromosome arrangement of anaphase figures during mitosis. Untreated and solvent-treated (dimethylsulfoxide-treated) cells exhibited a background abnormality rate of 12% with only minor chromosomal defects being observed. This was also true for those cells exposed to naphthol and anthracene, two chemicals with no proven mutagenic or carcinogenic activity. Conversely, significant increases in the frequency of anaphase aberrations were produced in cells treated with N-methyl-N'-nitro-N-nitrosoguanidine, benzo(a)pyrene, 9-aminoacridine and mitomycin-C. These abnormalities were also far more complex and extensive than those observed in the control and nonmutagen-treated cells. Many species of fish have extremely small and numerous chromosomes, making resolution of chromosome defects such as sister chromatid exchange and deletions more difficult than in most mammalian diploid cells, which generally have larger and fewer chromosomes. Examination of cells during anaphase eliminates the need to observed each chromosome separately as well as the need to produce well-spread metaphase chromosomes. (JMT)

  4. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations

    PubMed Central

    Guntermann, Christine; Piaia, Alessandro; Hamel, Marie-Laure; Theil, Diethilde; Rubic-Schneider, Tina; del Rio-Espinola, Alberto; Dong, Linda; Billich, Andreas; Kaupmann, Klemens; Dawson, Janet; Hoegenauer, Klemens; Orain, David; Hintermann, Samuel; Stringer, Rowan; Patel, Dhavalkumar D.; Doelemeyer, Arno; Deurinck, Mark

    2017-01-01

    Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with neoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk. PMID:28289717

  5. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    SciTech Connect

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) is equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.

  6. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  7. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  8. The aberrancy of immunophenotype and immunoglobulin status as indicators of prognosis in B cell diffuse large cell lymphoma.

    PubMed Central

    Spier, C. M.; Grogan, T. M.; Lippman, S. M.; Slymen, D. J.; Rybski, J. A.; Miller, T. P.

    1988-01-01

    To assess the prognostic significance of the immunophenotype in diffuse large cell lymphoma (DLCL), 105 DLCL patients were studied between 1978 and 1987 using a panel of 40 monoclonal antibodies applied to frozen tissue. Eighty-three patients were found to have B cell phenotypes, and 20 patients had T cell phenotypes. Focusing on markers relevant to clinical outcome among B cell LCL showed that lack of expression of the pan B antigens Leu14 and Leu16 were correlated with decreased survival (Leu14, P = 0.01; Leu16, P = 0.06; log-rank). HLA-DR activity also showed that lack of expression of this antigen correlated with poor survival (P = 0.004, log-rank). Kappa light chain immunoglobulin lack of expression showed predictive value for decreased survival as well (P = 0.005, log-rank). Multivariate analyses of known clinically important variables and the immune phenotypes confirm that the loss of HLA-DR and B cell aberrancy are independent factors predicting a poor clinical outcome. Losing some B activation/kappa antigens appears to be a broad biologic phenomenon linking surface antigen lack of expression with decreased survival. This suggests that aberrancy of immunophenotype and immunoglobulin status are key predictors of survival in B-LCL. PMID:3140668

  9. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy.

    PubMed

    Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels

    2011-06-01

    Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.

  10. Effects of brevetoxins on murine myeloma SP2/O cells: Aberrant cellular division

    USGS Publications Warehouse

    Han, T.K.; Derby, M.; Martin, D.F.; Wright, S.D.; Dao, M.L.

    2003-01-01

    Massive deaths of manatees (Trichechus manatus latirostris) during the red tide seasons have been attributed to brevetoxins produced by the dinoflagellate Karenia brevis (formerly Ptychodiscus breve and Gymnodinium breve). Although these toxins have been found in macrophages and lymphocytes in the lung, liver, and secondary lymphoid tissues of these animals, the molecular mechanisms of brevetoxicosis have not yet been identified. To investigate the effects of brevetoxins on immune cells, a murine myeloma cell line (SP2/O) was used as a model for in vitro studies. By adding brevetoxins to cultures of the SP2/O cells at concentrations ranging from 20 to 600 ng/ml, an apparent increase in proliferation was observed at around 2 hours post challenge as compared to the unchallenged cell cultures. This was followed by a drop in cell number at around 3 hours, suggesting an aberrant effect of brevetoxins on cellular division, the cells generated at 2 hours being apparently short-lived. In situ immunochemical staining of the SP2/O cells at 1 and 2 hour post challenge showed an accumulation of the toxins in the nucleus. A 21-kDa protein was subsequently isolated from the SP2/O cells as having brevetoxin-binding properties, and immunologically identified as p21, a nuclear factor known to down-regulate cellular proliferation through inhibition of cyclin-dependent kinases. These data are the first on a possible effect of brevetoxins on the cell cycle via binding to p21, a phenomenon that needs to be further investigated and validated in normal immune cells.

  11. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  12. Induction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.

    PubMed

    Hada, Megumi; Chappell, Lori J; Wang, Minli; George, Kerry A; Cucinotta, Francis A

    2014-10-01

    The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with oxygen (77 keV/μm), silicon (99 keV/μm) or Fe (175 keV/μm), Fe (195 keV/μm) or Fe (240 keV/μm) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Nonlinear regression models were used to evaluate possible linear and nonlinear dose-response models based on these data. Dose responses for simple exchanges for human fibroblasts irradiated under confluent culture conditions were best fit by nonlinear models motivated by a nontargeted effect (NTE). The best fits for dose response data for human lymphocytes irradiated in blood tubes were a linear response model for all particles. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low-particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high-LET radiation at the relevant range of low doses.

  13. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis

    PubMed Central

    Kwon, Bumsup; Kumar, Pravir; Lee, Han-Kyu; Zeng, Ling; Walsh, Kenneth; Fu, Qinghao; Barakat, Amey; Querfurth, Henry W.

    2014-01-01

    Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors. PMID:24556217

  14. Differential sensitivity of a mouse myeloid leukemia cell line and normal mouse bone marrow cells to X-ray-induced chromosome aberrations

    SciTech Connect

    Aardema, M.J.; Au, W.W.; Hand, R.E. Jr.; Preston, R.J.

    1985-11-01

    Cell line ML-1 was established from a myelogenous leukemia of an RFM mouse. The ML-1 cells and in vitro normal mouse bone marrow cells were analyzed to determine if there was a differential sensitivity to X-ray-induced chromosome aberrations in G1 cells and/or differences in postirradiation cell cycle progression. Cells identified as being in G1 at the time of irradiation by their staining pattern after replication in 5-bromodeoxyuridine were analyzed for all types of chromosomal aberrations following X-ray doses of 0.5, 1.0, 1.5, and 2.0 Gy. ML-1 cells showed a greater sensitivity to the induction of both chromosome-type aberrations and chromatid-type aberrations compared to normal mouse bone marrow cells, which only contained chromosome-type aberrations. The presence of chromatid-type aberrations in the ML-1 cells and not normal bone marrow cells suggested a differential progression through the cell cycle for the two cell types after irradiation. Mitotic index and flow cytometric analyses were performed and showed that both cell types have a delay in progression from G2 into mitosis, but only the normal mouse bone marrow cells have a delay in progression from G1 into S, as well as delayed progression through the S phase following X-irradiation. These results indicate that the ML-1 leukemia cells have an increased radiosensitivity. These same characteristics have been observed in ataxia telangiectasia cells and may well represent a general feature of cells with increased radiosensitivity.

  15. Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1

    PubMed Central

    Xie, Jianling; Wang, Hua; Xie, Chanlu; Lee, C.Soon; Fahey, Paul; Dong, Qihan; Xu, Hongxi

    2016-01-01

    Hepatocellular carcinoma (HCC) is an aggressive malignancy and the 5-year survival rate of advanced HCC is < 10%. Guttiferone K (GUTK) isolated from the Garcinia genus inhibited HCC cells migration and invasion in vitro and metastasis in vivo without apparent toxicity. Proteomic analysis revealed that actin-binding protein profilin 1 (PFN1) was markedly increased in the presence of GUTK. Over-expression of PFN1 mimicked the effect of GUTK on HCC cell motility and metastasis. The effect of GUTK on cell motility was diminished when PFN1 was over-expressed or silenced. Over-expression of PFN1 or incubation with GUTK decreased F-actin levels and the expression of proteins involved in actin nucleation, branching and polymerization. Moreover, a reduction of PFN1 protein levels was common in advanced human HCC and associated with poor survival rate. In conclusion, GUTK effectively suppresses the motility and metastasis of HCC cells mainly by restoration of aberrantly reduced PFN1 protein expression. PMID:27494863

  16. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection.

    PubMed

    González, Andrea E; Lay, Margarita K; Jara, Evelyn L; Espinoza, Janyra A; Gómez, Roberto S; Soto, Jorge; Rivera, Claudia A; Abarca, Katia; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2016-12-02

    Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.

  17. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes.

    PubMed

    Nakano, M; Kodama, Y; Ohtaki, K; Itoh, M; Awa, A A; Cologne, J; Kusunoki, Y; Nakamura, N

    2004-03-01

    Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.

  18. HABP1/p32/gC1qR induces aberrant growth and morphology in Schizosaccharomyces pombe through its N-terminal {alpha} helix

    SciTech Connect

    Mallick, Jaideep; Datta, Kasturi . E-mail: kdatta@mail.jnu.ac.in

    2005-10-01

    Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domain of HABP1, its N- and C-terminal truncated variants ({delta}N.HABP1 and {delta}C.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, {delta}C.HABP1 too directly interacts with CDC 25 while {delta}N.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal {alpha}-helix.

  19. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells

    PubMed Central

    Baykal, Ahmet T.; Jain, Mohit R.

    2009-01-01

    Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. PMID:19774105

  20. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    PubMed

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  1. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation.

  2. Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae.

    PubMed

    Cloud, Karen A; Dillard, Joseph P

    2004-11-01

    The function of lytic peptidoglycan transglycosylases is poorly understood. Single lytic transglycosylase mutants of Escherichia coli have no growth phenotype. By contrast, mutation of Neisseria gonorrhoeae ltgC inhibited cell separation without affecting peptidoglycan monomer production. Thus, LtgC has a dedicated function in gonococcal cell division.

  3. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells.

    PubMed

    Brockhausen, I; Yang, J M; Burchell, J; Whitehouse, C; Taylor-Papadimitriou, J

    1995-10-15

    The product of the MUC1 gene, the polymorphic epithelial mucin (PEM) is aberrantly glycosylated in breast and other carcinomas, resulting in exposure of normally cryptic peptide epitopes. PEM expressed by breast cancer cells contains more sialylated O-glycans and has a lower GlcNAc content than that expressed by normal cells. The exposure of peptide epitopes is thus thought to be due to the sugar side chains being shorter on the tumour-associated mucin. To investigate possible mechanisms underlying the different pattern of glycosylation in breast cancer cells, we analysed the pathways involved in the biosynthesis of O-glycan chains of mucins in normal and cancerous mammary epithelial cells. An immortalized mammary epithelial cells line originating from normal human milk. MTSV1-7, and three human breast cancer cell lines, BT20, MCF-7 and T47D, were studied. Glycosyltransferase activities assembling, elongating and terminating O-glycan core-1 [Gal beta 1-3GalNAc alpha-R] and core-2 [GlcNac beta 1-6 (Gal beta 1-3) GalNAc alpha-R] were present in the normal mammary cell line. Many of the glycosyltransferase activities were also expressed at variable levels in breast cancer cells. However, a sialyltransferase activity (CMP-sialic acid Gal beta 1-3GalNAc alpha 3-sialyltransferase) was increased several fold in all three cancer cell lines. Moreover, mammary cancer cell lines BT20 and T47D have lost the ability to synthesize core-2, as shown by the lack of UDP-GlcNAc: Gal beta 1-3GalNAc (GlcNAc to GalNAc) beta 6-GlcNAc-transferase activity, which corresponded to the absence of the mRNA transcript. However, MCF-7 breast cancer cells expressed this enzyme. Thus, the mechanism for the exposure of peptide epitopes in BT20 and T47D cells is proposed to be the loss of core-2 branching leading to shorter, sialylated O-glycan chains. A different mechanism is proposed for MCF-7 breast cancer cells.

  4. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to High and Low LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Wilkins, R.; Saganti, P. B.; Gersey, B.; Cucinotta, F. A.; Wu, H.

    2006-01-01

    Energetic heavy ions pose a health risk to astronauts in extended ISS and future Mars missions. High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human epithelial cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells (CH184B5F5/M10) were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory, high energy neutron at the Los Alamos Nuclear Science Center (LANSCE) or Cs-137-gamma radiation source at the University of Texas, MD Anderson Cancer Center. After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The results of the mBAND study showed a higher ratio of inversion involved with interchromosomal exchange in heavy ions compared to -ray irradiation. Analysis of chromosome aberrations using mBAND has the potential to provide useful information on human cell response to space-like radiation.

  5. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  6. In Vitro Chromosome Aberrations Study in Chinese Hamster Ovary (CHO) Cells

    DTIC Science & Technology

    2016-06-07

    24, 1996 Experimental Start Date: Experimental Termination Date: Study Coŕpletion Date: 10.0 Test System: Exponentially growing CHO-K1 cells...by a decline in cell growth , or by achieving the highest possible concentration (i.e., 100.0%). If possible, the high dose was selected to give at...8.0) was detected in the toxicity test cultures at doses selected for clastogenic testing. 13.2 Toxicity Test: Exponentially growing cells seeded

  7. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?

    PubMed

    Roberts, Anna C; Gohil, Jai; Hudson, Laura; Connolly, Kyle; Warburton, Philip; Suman, Rakesh; O'Toole, Peter; O'Regan, David J; Turner, Neil A; Riches, Kirsten; Porter, Karen E

    2015-01-01

    Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30%) and angiogenesis (~40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  8. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  9. Polyethylene glycol, unique among laxatives, suppresses aberrant crypt foci, by elimination of cells

    PubMed Central

    Taché, Sylviane; Parnaud, Géraldine; Van Beek, Erik; Corpet, Denis E.

    2006-01-01

    Background Polyethylene glycol (PEG), an osmotic laxative, is a very potent inhibitor of colon cancer in rats. In a search for mechanisms, we tested the hypothesis that fecal bulking and moisture decreases colon carcinogenesis. We also looked for PEG effects on crypt cells in vivo. Methods Fischer 344 rats (N=272) were given an injection of the colon carcinogen azoxymethane. They were then randomized to a standard AIN76 diet containing one of 19 laxative agents (5% w/w in most cases): PEG 8000 and other PEG-like compounds, carboxymethylcellulose, polyvinylpyrrolidone, sodium polyacrylate, calcium polycarbophil, karaya gum, psyllium, mannitol, sorbitol, lactulose, propylene glycol, magnesium hydroxide, sodium phosphate, bisacodyl, docusate, and paraffin oil. Aberrant crypt foci (ACF) and fecal values were measured blindly after a 30-day treatment. Proliferation, apoptosis, and the removal of cells from crypts were studied in control and PEG-fed rats by various methods, including TUNEL and fluorescein dextran labeling. Results PEG 8000 reduced nine-fold the number of ACF in rats (p<0.001). The other PEGs and magnesium-hydroxide modestly suppressed ACF, but not the other laxatives. ACF number did not correlate with fecal weight or moisture. PEG doubled the apoptotic bodies per crypt (p<0.05), increased proliferation by 25–50% (p<0.05) and strikingly increased (>40-fold) a fecal marker of epitheliolysis in the gut (p<0.001). PEG normalized the percentage of fluorescein dextran labeled cells on the top of ACF (p<0.001). Conclusions Among laxatives, only PEG afforded potent chemoprevention. PEG protection was not due to increased fecal bulking, but likely to the elimination of cells from precancerous lesions. PMID:16716974

  10. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  11. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  12. The aberrant expression and localization of DNA methyltransferase 3B in endometriotic stromal cells

    PubMed Central

    Dyson, Matthew T.; Kakinuma, Toshiyuki; Pavone, Mary Ellen; Monsivais, Diana; Navarro, Antonia; Malpani, Saurabh S.; Ono, Masanori; Bulun, Serdar E.

    2015-01-01

    Objective To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. Design Basic science. Setting University research center. Patients Premenopausal women with or without endometriosis. Interventions Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 µM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. Main Outcome Measure(s) DNMT1, DNMT3A, and DNMT3B expression in E-IUM and E-OSIS were assessed by qRT-PCR and immunoblotting. DNMT3B recruitment to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation Results IVD treatment reduced DNMT3B mRNA (74%) and protein levels (81%) only in E-IUM. DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. DNMT3B enrichment across three ESR1 promoters was reduced in E-IUM after IVD, although the more distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. Conclusions The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones. PMID:26239024

  13. Aberrant Expression Profile of Long Noncoding RNA in Human Sinonasal Squamous Cell Carcinoma by Microarray Analysis

    PubMed Central

    Meng, Ling-zhao; Sun, Jing-wu; Yang, Fan

    2016-01-01

    Objectives. This study aimed to identify aberrantly expressed long noncoding RNAs (lncRNAs) profile of sinonasal squamous cell carcinoma (SSCC) and explore their potential functions. Methods. We investigated lncRNA and mRNA expression in SSCC and paired adjacent noncancerous tissues obtained from 6 patients with microarrays. Gene ontology (GO) analysis and pathway analysis were utilized to investigate the gene function. Gene signal-network and lncRNA-mRNA network were depicted. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to validate 5 lncRNAs in a second set of paired SSCC and adjacent noncancerous tissues obtained from 22 additional patients. Results. We identified significantly differentially expressed lncRNAs (n = 3146) and mRNAs (n = 2208) in SSCC relative to noncancerous tissues. The GO annotation indicated that there are some core gene products that may be attributed to the progress of SSCC. The pathway analysis identified many pathways associated with cancer. The results of lncRNA-mRNA network and gene signal-network implied some core lncRNAs/mRNAs might play important roles in SSCC pathogenesis. The results of qRT-PCR showed that all of the 5 lncRNAs were differentially expressed and consistent with the microarray results. Conclusion. Our study is the first screening and analysis of lncRNAs expression profile in SSCC and may offer new insights into pathogenesis of this disease. PMID:28044124

  14. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  15. Induction of chromosomal aberrations by the fuel additive methylcyclopentadienyl-manganese tricarbonyl (MMT) in Chinese hamster ovary cells

    SciTech Connect

    Blakey, D.H.; Bayley, J.M.

    1995-11-01

    Methylcyclopentadienyl-manganese tricarbonyl (MMT) is a fuel additive used throughout Canada as replacement for lead-based antiknock compounds in gasoline and as an anti-smoking compound in other fuels. Because of the widespread use of MMT in Canadian gasoline, it is important to determine whether MMT is a safe alternative to alkyllead as a fuel additive. Although environmental exposure to MMT is unlikely because it is almost completely consumed during combustion and any MMT exhaust emissions would be degraded rapidly, human contact can occur occupationally through accidental exposure, or incidentally while refuelling gasoline-powered engines. In order to determine the intrinsic mutagenicity of MMT, an in vitro chromosomal aberration assay was performed using Chinese hamster ovary cells. In the presence of metabolic activation, MMT was a potent inducer of structural chromosomal aberrations. There was significant (p{le}0.0114), reproducible increase in chromosomal aberrations at concentrations as low as 0.02 {mu}l/ml (0.12 mM). Without metabolic activation, MMT failed to induce a significant increase in chromosomal aberrations following either a 3 hr (p = 0.412) or continuous (p = 0.178) exposure. In order to determine whether the intrinsic mutagenicity identified in vitro is expressed in vivo, a mouse bone marrow micronucleus assay will be performed. In addition, the mutagenicity of MMT combustion byproducts will be evaluated.

  16. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    PubMed Central

    Vossen, J H; Müller, W H; Lipke, P N; Klis, F M

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structures. The majority of the cell wall protein precursors that eventually left the ER were not covalently incorporated into the cell wall but were secreted into the growth medium. Despite the inefficient incorporation of cell wall proteins, there was no net effect on the protein level in the cell wall. It is postulated that the availability of GPI-dependent cell wall proteins determines the rate of cell wall construction and limits growth rate. PMID:9079905

  17. Aberrant PGE₂ metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells.

    PubMed

    Eruslanov, Evgeniy; Daurkin, Irina; Vieweg, Johannes; Daaka, Yehia; Kusmartsev, Sergei

    2011-07-01

    Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin E₂ (PGE₂) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGE₂. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGE₂, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGE₂ metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue.

  18. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to Space-like Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, F. A.; Gonda, S. R.; Wu, H.

    2005-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells and lymphocytes were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory (Upton, NY) or Cs-137 gamma radiation source at the Baylor College (Houston, TX). After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The possible relationship between the frequency of inter- and intra-chromosomal exchanges and the track structure of radiation is discussed. The work was supported by the NASA Space Radiation Health Program.

  19. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  20. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration

    PubMed Central

    Yee, Christopher W; Toychiev, Abduqodir H; Ivanova, Elena; Sagdullaev, Botir T

    2014-01-01

    Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here, we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30–60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward’s method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having 5 clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration. PMID:25099614

  1. Ultraviolet light-induced chromosomal aberrations in cultured cells from Cockayne syndrome and complementation group C xeroderma pigmentosum patients: lack of correlation with cancer susceptibility

    SciTech Connect

    Seguin, L.R.; Tarone, R.E.; Liao, K.H.; Robbins, J.H.

    1988-03-01

    Both Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are inherited diseases with defective repair of damage induced in DNA by UV. Patients with XP, but not those with CS, have an increased susceptibility to formation of sunlight-induced skin tumors. We determined the frequency of UV-induced chromosomal aberrations in cultured lymphoblastoid cell lines from five CS patients and three complementation-group-C XP patients to determine whether such aberrations were abnormally increased only in the XP cells. We found that CS cells had the same abnormally increased number of induced aberrations as the XP cells, indicating that the number of UV-induced aberrations in XP group C cells does not account for the susceptibility of these XP patients to sunlight-induced skin cancer.

  2. Aberrant Circulating Th17 Cells in Patients with B-Cell Non-Hodgkin’s Lymphoma

    PubMed Central

    Lu, Ting; Yu, Shuang; Liu, Yan; Yin, Congcong; Ye, Jingjing; Liu, Zhi

    2016-01-01

    Non-Hodgkin’s lymphomas (NHLs) are a heterogeneous group of neoplasm in which 90% are B-cell lymphomas and 10% T-cell lymphomas. Although T-helper 17 (Th17) cells have been implicated to be essential in the pathogenesis of autoimmune and inflammatory diseases, its role in B-cell non-Hodgkin’s lymphoma (B-NHL) remains unknown. In this study, we observed a significantly decreased frequency of Th17 cells in peripheral blood from B-NHL patients compared with healthy individuals, accompanied with increased Th1 cells. IL-17AF plasma levels were remarkably decreased in B-NHL patients, accompanied with undetectable IL-17FF and unchangeable IL-17AA. Moreover, Th17 and Th1 cells became normalized after one or two cycles of chemotherapy. Interestingly, in B-NHL, circulating Th17 cells frequencies were significantly higher in relapsed patients than those in untreated patients or normal individuals. Meanwhile, there was no statistical difference regarding the frequencies of Th1 cells between relapsed and untreated patients. Taken these data together, circulating Th17 subset immune response may be associated with the response of patients to treatment and with different stages of disease. PMID:26812681

  3. Aberrant Circulating Th17 Cells in Patients with B-Cell Non-Hodgkin's Lymphoma.

    PubMed

    Lu, Ting; Yu, Shuang; Liu, Yan; Yin, Congcong; Ye, Jingjing; Liu, Zhi; Ma, Daoxin; Ji, Chunyan

    2016-01-01

    Non-Hodgkin's lymphomas (NHLs) are a heterogeneous group of neoplasm in which 90% are B-cell lymphomas and 10% T-cell lymphomas. Although T-helper 17 (Th17) cells have been implicated to be essential in the pathogenesis of autoimmune and inflammatory diseases, its role in B-cell non-Hodgkin's lymphoma (B-NHL) remains unknown. In this study, we observed a significantly decreased frequency of Th17 cells in peripheral blood from B-NHL patients compared with healthy individuals, accompanied with increased Th1 cells. IL-17AF plasma levels were remarkably decreased in B-NHL patients, accompanied with undetectable IL-17FF and unchangeable IL-17AA. Moreover, Th17 and Th1 cells became normalized after one or two cycles of chemotherapy. Interestingly, in B-NHL, circulating Th17 cells frequencies were significantly higher in relapsed patients than those in untreated patients or normal individuals. Meanwhile, there was no statistical difference regarding the frequencies of Th1 cells between relapsed and untreated patients. Taken these data together, circulating Th17 subset immune response may be associated with the response of patients to treatment and with different stages of disease.

  4. Aberrant histone modification in CD19+ B cells of patients with chronic lymphocytic leukemia

    PubMed Central

    Zhou, Keshu; Zhang, Qing; Liu, Yanyan; Xiong, Yuanyuan; Wu, Shengsheng; Yang, Jingke; Zhou, Hu; Liu, Xinjian; Wei, Xudong; Song, Yongping

    2017-01-01

    The aim of this study was to detect the alterations in histone methylation and acetylation in patients with chronic lymphocytic leukemia (CLL). Global histone H3/H4 acetylation and H3K4/H3K9 methylation were detected by the EpiQuik™ global histone H3/H4 acetylation and H3K4/H3K9 methylation assay kits. The mRNA expression of selected chromatin modifier genes was measured by real-time polymerase chain reaction (RT-PCR). Our results found that the global histone H3/H4 hypoacetylation in the CD19+ B cells of patients with CLL (P=0.028 and P=0.03, respectively) and the global histone H3K9 methylation in patients with CLL were significantly increased compared with controls (P=0.02), while there was no significant difference in the global histone H3K4 methylation between the two groups. The level of SIRT1 and EZH2 mRNA expression was upregulated in patients with CLL (P=0.03 and P=0.02, respectively), which increased significantly with progression from Binet stage A to stage C (P=0.015 and P=0.01, respectively) and Rai good to high risk stage (P=0.007 and P=0.008, respectively). The level of HDAC1 and HDAC7 mRNA expression was significantly increased (P=0.02 and P=0.008, respectively) and HDAC2 and P300 mRNA expression was reduced in patients with CLL (P=0.002 and P=0.001, respectively). In conclusion, it is observed that the aberrant histone modification plays an important role in the pathogenesis of CLL. PMID:28260932

  5. Role of PSMA in Aberrant Cell Cycle Progression in Prostate Cancer

    DTIC Science & Technology

    2009-11-01

    tested whether PSMA associates with the core APC complex. We observed that in both PC3-PSMA and MDCK-PSMA cells Cdc 27 co-immunoprecipitated with P...c), 34 (d), and 45 (e) show aneuploi dy. Micronucleus formation (e, arrow and f) and abnormal metaphase (g) in HCT-PSMA cells at passage 45 are...vantage in vivo when grown in the presence of high salt. We tested whether high dietary sodium promotes tumor growth in in vivo xenografts of PC3

  6. Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis

    PubMed Central

    Shi, Chao; Huang, Dengliang; Lu, Nonghua; Chen, Dan; Zhang, Minhong; Yan, Yehong; Deng, Libin; Lu, Quqin; Lu, Hua; Luo, Shiwen

    2016-01-01

    Glioma-associated oncogene 2 (Gli2), a primary transcriptional regulator of Hedgehog (Hh) signaling, is essential for hepatocellular carcinoma (HCC) growth and survival. However, the underlying molecular mechanism and crucial downstream targets of Gli2 in human HCC are not fully understood. Here, we report the identification of kinesin family member 20A (KIF20A) as a novel downstream target of Gli2, which is important for HCC proliferation and tumor growth. Inhibition of Hh signaling leads to a remarkable decrease of KIF20A expression in HCC cells, whereas overexpression of Gli2 elevates KIF20A expression by activating Forkhead Box M1 (FoxM1)-MMB complex-mediated transcription of this kinesin gene. Gli2-induced HCC cell growth requires enhanced expression of KIF20A, and knockdown of Gli2 or KIF20A represses the proliferation of HCC cells in vitro and in vivo. Correlated with these results, analyses of clinical HCC samples show that Gli2, FoxM1 and KIF20A are highly elevated in primary HCC samples and represent significant risk factors for HCC recurrence and survival. Conclusion: KIF20A is an important downstream target gene of Hh signaling. And, the Gli2-KIF20A axis is essential for the proliferation and growth of human HCC cells. Our study also suggests Gli2-KIF20A axis as a potential target for future therapeutic intervention and as an independent prognostic biomarker for HCC. PMID:27036048

  7. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems

    PubMed Central

    Patel, Sapan J; Dao, Su; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190BCR-ABL driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don’t grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won’t survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms. PMID:27429840

  8. Comparison of cell repair mechanisms by means of chromosomal aberration induced by proton and gamma irradiation - preliminary results

    NASA Astrophysics Data System (ADS)

    Kowalska, A.; Czerski, K.; Kaczmarski, M.; Lewocki, M.; Masojć, B.; Łukowiak, A.

    2015-03-01

    DNA damage of peripheral blood lymphocytes exposed to gamma and proton irradiation is studied by means of chromosome aberrations to validate the efficiency of the repair mechanisms of individual cells. A new method based on an observed deviation from the Poisson statistics of the chromosome aberration number is applied for estimation of a repair factor ( RF) defined as a ratio between originally damaged cells to the amount of finally observed aberrations. The repair factors are evaluated by studying the variance of individual damage factors in a collective of healthy persons at a given dose as well as by using the chi-square analysis for the dose-effect curves. The blood samples from fifteen donors have been irradiated by Co60 gamma rays and from nine persons by 150 MeV protons with different doses up to 2 Gy. A standard extraction of lymphocyte has been used whereby dicentrics, acentrics and rings have been scored under a microscope. The RF values determined for the proton radiation are slightly larger than for gamma rays, indicating that up to 70% DNA double strand breaks can be repaired.

  9. Aberrant spindle dynamics and cytokinesis in Dictyostelium discoideum cells that lack glycogen synthase kinase 3.

    PubMed

    Harwood, Adrian J; Forde-Thomas, Josephine E; Williams, Hazel; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-01-01

    Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.

  10. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  11. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    PubMed

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  12. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  13. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  14. Aberrant promoter CpG methylation as a molecular marker for disease monitoring in natural killer cell lymphomas.

    PubMed

    Siu, Lisa L P; Chan, John K C; Wong, Kit F; Choy, Carolyn; Kwong, Yok L

    2003-07-01

    Natural killer (NK) cell lymphomas lack suitable clonal markers for tumour cell detection, making the monitoring of minimal residual lymphoma difficult. Aberrant promoter CpG methylation occurs frequently in NK cell lymphomas. The objective of this study was to assess the potential of aberrant methylation as a surrogate tumour marker. Twenty-five primary tumours and 105 serial biopsies taken at various time points after treatment were examined using a methylation-specific polymerase chain reaction (MSP) for a panel of genes, comprising p73, p16, hMLH1, RARbeta and p15, previously shown to be methylated in NK cell lymphomas. All samples underwent independent morphological examination, supplemented by immunostaining for CD56 and in-situ hybridization for Epstein-Barr-virus-encoded RNA. Primary tumours showed the frequent methylation of the genes p73 (92%), p16 (71%), hMLH1 (61%), RARbeta (56%) and p15 (48%). MSP results in serial post-treatment biopsies were correlated with clinicopathological findings. Results were concordant in 89 follow-up samples (18 samples, histology positive/MSP positive; 71 samples, histology negative/MSP negative) and discordant in 16. Fifteen samples were histology negative/MSP positive, and tumour involvement was subsequently confirmed (positive re-biopsies or relapses at the same sites), indicating that MSP was more sensitive for minimal lymphoma detection. One sample was histology positive/MSP negative; a subsequent histological review and continuous clinical remission of the patient did not support tumour involvement. Our findings suggest that MSP for aberrantly methylated genes is a potentially valuable molecular marker for detecting either residual or relapsed disease in NK cell lymphoma patients.

  15. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  16. Stem cells and aberrant signaling of molecular systems in skin aging.

    PubMed

    Peng, Yan; Xuan, Min; Leung, Victor Y L; Cheng, Biao

    2015-01-01

    The skin is the body's largest organ and it is able to self-repair throughout an individual's life. With advanced age, skin is prone to degenerate in response to damage. Although cosmetic surgery has been widely adopted to rejuvinate skin, we are far from a clear understanding of the mechanisms responsible for skin aging. Recently, adult skin-resident stem/progenitor cells, growth arrest, senescence or apoptotic death and dysfunction caused by alterations in key signaling genes, such as Ras/Raf/MEK/ERK, PI3K/Akt-kinases, Wnt, p21 and p53, have been shown to play a vital role in skin regeneration. Simultaneously, enhanced telomere attrition, hormone exhaustion, oxidative stress, genetic events and ultraviolet radiation exposure that result in severe DNA damage, genomic instability and epigenetic mutations also contribute to skin aging. Therefore, cell replacement and targeting of the molecular systems found in skin hold great promise for controlling or even curing skin aging.

  17. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes

    PubMed Central

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E.; Sheibani, Nader

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes. PMID:23077100

  18. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  19. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    PubMed

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  20. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells

    PubMed Central

    Zhang, Chao; Yang, Lei; Geng, Ya-di; An, Fa-liang; Xia, Yuan-zheng; Guo, Chao; Luo, Jian-guang; Zhang, Lu-yong; Guo, Qing-long; Kong, Ling-yi

    2016-01-01

    The aberrant energy homeostasis that characterized by high rate of energy production (glycolysis) and energy consumption (mRNA translation) is associated with the development of cancer. As mammalian target of rapamycin (mTOR) is a critical regulator of aberrant energy homeostasis, it is an attractive target for anti-tumor intervention. The flavonoid compound Icariside II (IS) is a natural mTOR inhibitor derived from Epimedium. Koreanum. Herein, we evaluate the effect of IS on aberrant energy homeostasis. The reduction of glycolysis and mRNA translation in U2OS (osteosarcoma), S180 (fibrosarcoma) and SW1535 (chondrosarcoma) cells observed in our study, indicate that, IS inhibits aberrant energy homeostasis. This inhibition is found to be due to suppression of mammalian target of rapamycin complex 1 (mTORC1)-eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) axis through blocking the assembly of mTORC1. Furthermore, IS inhibits the cap-dependent translation of c-myc through mTORC1-4E-BP1 axis which links the relationship between mRNA translation and glycolysis. Inhibition of aberrant energy homeostasis by IS, contributes to its in vitro and in vivo anti-proliferation activity. These data indicate that IS disrupts aberrant energy homeostasis of sarcoma cells through suppression of mTORC1-4E-BP1 axis, providing a novel mechanism of IS to inhibit cell proliferation in sarcoma cells. PMID:27056897

  1. Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells

    PubMed Central

    Földes, Gabor; Matsa, Elena; Kriston-Vizi, János; Leja, Thomas; Amisten, Stefan; Kolker, Ljudmila; Kodagoda, Thusharika; Dolatshad, Nazanin F.; Mioulane, Maxime; Vauchez, Karine; Arányi, Tamás; Ketteler, Robin; Schneider, Michael D.; Denning, Chris; Harding, Sian E.

    2014-01-01

    Summary Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease. PMID:25418732

  2. Aberrant expression of circulating Th17, Th1 and Tc1 cells in patients with active and inactive ulcerative colitis.

    PubMed

    Dong, Zhaogang; Du, Lutao; Xu, Xiaofei; Yang, Yongmei; Wang, Haiyan; Qu, Ailin; Qu, Xun; Wang, Chuanxin

    2013-04-01

    Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease, yet its etiology and pathogenesis remain poorly understood. The aberrant expression of T lymphocytes plays an essential role in the progression of UC. This study aimed to evaluate the expression profile of circulating Th17, Th1 and Tc1 cells in patients with active and inactive UC. Our results revealed that the percentage of circulating Th17 cells (CD3+CD8-IL-17+) was significantly increased in patients with active UC when compared with the percentage in patients with inactive UC, Crohn's disease (CD) and healthy controls. The percentages of circulating Th1 (CD3+CD8-IFN-γ+) and Tc1 (CD3+CD8+IFN-γ+) cells were also higher in patients with active UC when compared with the percentages in patients with inactive UC and normal controls, although levels were lower than that in CD. Further analysis showed that Th17 cells were positively correlated with Th1 cells, but not with Tc1 cells. Notably, the three cells had a positive correlation with disease activity, extent of disease, detection of erythrocyte sedimentation rate and c-reactive protein in active UC. Moreover, plasma IL-17 was higher in patients with active UC, and a similar trend applied to the mRNA levels of RORγt and T-bet in peripheral blood mononuclear cells (PBMCs). The levels of p-STAT3 and p-STAT5 in PBMCs, as well as the ratio of p-STAT3/p-STAT5, were also elevated in active UC patients. Taken together, our findings revealed that elevated circulating Th17, Th1 and Tc1 cells and the aberrant activation of the STAT pathway may be implicated in the progression of UC. These findings may provide preliminary experimental clues for the development of new therapies for UC.

  3. Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid derived suppressor cells from the bone marrow

    PubMed Central

    Poh, Tze Wei; Bradley, Judy M.; Mukherjee, Pinku; Gendler, Sandra J.

    2009-01-01

    Myeloid Derived Suppressor Cells (MDSCs) are a heterogeneous population of myeloid cells that inhibit T cell activity and contribute to the immune suppression characteristic of most tumors. We discovered that bone marrow (BM) progenitor cells from the Muc1 knockout (KO) mice differentiated into CD11b+Gr1+ MDSCs in vitro under GM-CSF and IL-4 signaling. MUC1 is a tumor-associated mucin and its cytoplasmic tail (MUC1-CT) can regulate beta-catenin to promote oncogenesis. Given the importance of beta-catenin in hematopoiesis, we hypothesized that the MUC1 regulation of beta-catenin is important for MDSC development. Our current study shows that the aberrant development of BM progenitors into CD11b+Gr1+ MDSCs is dependent on the down regulation of beta-catenin levels that occurs in the absence of Muc1. In light of this, KO mice showed enhanced EL4 tumor growth and were able to better tolerate allogeneic BM185 tumor growth, with an accumulation of CD11b+Gr1+ cells in the blood and tumor draining lymph nodes. WT mice were able to similarly tolerate allogeneic tumor growth when they were injected with CD11b+Gr1+ cells from tumor-bearing KO mice, suggesting that tolerance of allogeneic tumors is dependent on MDSC-mediated immune suppression. This further delineates the ability of Muc1 to control MDSC development which could directly impact tumorigenesis. Knowledge of the biology by which Muc1 regulates the development of myeloid progenitors into MDSCs would also be very useful in enhancing the efficacy of cancer vaccines in the face of tumor immune suppression. PMID:19351842

  4. A Novel, Non-canonical Splice Variant of the Ikaros Gene Is Aberrantly Expressed in B-cell Lymphoproliferative Disorders

    PubMed Central

    Mancarelli, Maria Michela; Verzella, Daniela; Fischietti, Mariafausta; Di Tommaso, Ambra; Maccarone, Rita; Plebani, Sara; Di Ianni, Mauro; Gulino, Alberto; Alesse, Edoardo

    2013-01-01

    The Ikaros gene encodes a Krüppel-like zinc-finger transcription factor involved in hematopoiesis regulation. Ikaros has been established as one of the most clinically relevant tumor suppressors in several hematological malignancies. In fact, expression of dominant negative Ikaros isoforms is associated with adult B-cell acute lymphoblastic leukemia, myelodysplastic syndrome, acute myeloid leukemia and adult and juvenile chronic myeloid leukemia. Here, we report the isolation of a novel, non-canonical Ikaros splice variant, called Ikaros 11 (Ik11). Ik11 is structurally related to known dominant negative Ikaros isoforms, due to the lack of a functional DNA-binding domain. Interestingly, Ik11 is the first Ikaros splice variant missing the transcriptional activation domain. Indeed, we demonstrated that Ik11 works as a dominant negative protein, being able to dimerize with Ikaros DNA-binding isoforms and inhibit their functions, at least in part by retaining them in the cytoplasm. Notably, we demonstrated that Ik11 is the first dominant negative Ikaros isoform to be aberrantly expressed in B-cell lymphoproliferative disorders, such as chronic lymphocytic leukemia. Aberrant expression of Ik11 interferes with both proliferation and apoptotic pathways, providing a mechanism for Ik11 involvement in tumor pathogenesis. Thus, Ik11 could represent a novel marker for B-cell lymphoproliferative disorders. PMID:23874502

  5. In vitro migratory aberrancies of mesenchymal stem cells derived from multiple myeloma patients only partially modulated by bortezomib

    PubMed Central

    Xu, Xinxin; Yang, Jiao; Tang, Yu; Li, Junxia; Zhu, Yan; Lu, Hua; Fei, Xiaoming

    2014-01-01

    Recent studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) derived from multiple myeloma (MM) patients were different from those of normal subjects in a variety of aspects. However, it is largely unknown whether BM-MSCs derived from MM patients display any aberrant chemotactic migration. To this aim, we compared the chemotactic migration of BM-MSCs derived from MM patients with those from normal subjects. Our results showed that BM-MSCs derived from MM patients migrated more vigorously to myeloma cell line. Furthermore, proteasome inhibitor bortezomib was showed to suppress chemotactic migration of BM-MSCs whatever their origins. However, although the chemotactic migration of BM-MSCs derived from MM patients to myeloma cell line was more significantly suppressed by bortezomib treatment, migration to SDF-1 or FBS of BM-MSCs was less compromised. Both SDF-1 and TNF-α enhanced phosphorylation of iκ-Bα in BM-MSCs. Although bortezomib significantly inhibited the iκ-Bα phosphorylation by SDF-1, it had little effect on iκ-Bα phosphorylation by TNF-α. Collectively, our results suggested that aberrant chemotactic migration of BM-MSCs derived from MM patients and the possible migration-regulatory role of bortezomib treatment. PMID:25400750

  6. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell.

    PubMed

    Baudoin, Jean-Pierre; Jinschek, Joerg R; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; de Jonge, Niels

    2013-08-01

    Transmission electron microscopy (TEM) in combination with electron tomography is widely used to obtain nanometer scale three-dimensional (3D) structural information about biological samples. However, studies of whole eukaryotic cells are limited in resolution and/or contrast on account of the effect of chromatic aberration of the TEM objective lens on electrons that have been scattered inelastically in the specimen. As a result, 3D information is usually obtained from sections and not from whole cells. Here, we use chromatic aberration-corrected TEM to record bright-field TEM images of nanoparticles in a whole mount macrophage cell. Tilt series of images are used to generate electron tomograms, which are analyzed to assess the spatial resolution that can be achieved for different vertical positions in the specimen. The uptake of gold nanoparticles coated with low-density lipoprotein (LDL) is studied. The LDL is found to assemble in clusters. The clusters contain nanoparticles taken up on different days, which are joined without mixing their nanoparticle cargo.

  7. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  8. Gene mutations, chromosome aberrations and survivability after X-ray irradiation of Chinese hamster cell culture under conditions of cysteamine protection

    SciTech Connect

    Yesilova, T.V.; Feoktistova, T.P.

    1984-06-01

    Experimental results were reported to the determination of protective action of cysteamine on the yield of genetic mutations, chromosome aberrations and cell kill during reproduction, evidently due to damage of genetic structures. The experiments were performed on transplanted fibroblast cells of Chinese hamsters, clone 431 in which 80% of the cells had pseudodiloidy. A dose-modifying factor of 2 was established for chromosome aberrations and cell inactivation and a factor of 2.8 for the gene mutations. The data obtained led to a conclusion that there are general protective mechanisms which include the reaction of cysteamine on the radiation-chemical level and possible effect on the reparative processes.

  9. Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer

    PubMed Central

    Gomathinayagam, Rohini; Jayaraman, Muralidharan; Husain, Sanam; Liu, Jinsong; Mukherjee, Priyabrata; Reddy, E. Premkumar; Song, Yong Sang; Dhanasekaran, Danny N.

    2016-01-01

    Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy. PMID:27655714

  10. Biomarker for Space Radiation Risk: Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry; Cucinotta, Francis A.; Wu, Honglu

    2007-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Over the years, we have studied chromosomal damage in human fibroblast, epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world. We have also studied chromosome aberrations in astronaut s peripheral blood lymphocytes before and after space flight. Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell. We will summarize the results of the investigations, and discuss the unique radiation signatures and biomarkers for space radiation exposure.

  11. PAX8 is transcribed aberrantly in cervical tumors and derived cell lines due to complex gene rearrangements.

    PubMed

    López-Urrutia, Eduardo; Pedroza-Torres, Abraham; Fernández-Retana, Jorge; De Leon, David Cantu; Morales-González, Fermín; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; García-Mendez, Jorge; García-Castillo, Verónica; Bautista-Isidro, Osvaldo; Pérez-Plasencia, Carlos

    2016-07-01

    The transcription factor PAX8, a member of the paired box-containing gene family with an important role in embryogenesis of the kidney, thyroid gland and nervous system, has been described as a biomarker in tumors of the thyroid, parathyroid, kidney and thymus. The PAX8 gene gives rise to four isoforms, through alternative mRNA splicing, but the splicing pattern in tumors is not yet established. Cervical cancer has a positive expression of PAX8; however, there is no available data determining which PAX8 isoform or isoforms are present in cervical cancer tissues as well as in cervical carcinoma-derived cell lines. Instead of a differential pattern of splicing isoforms, we found numerous previously unreported PAX8 aberrant transcripts ranging from 378 to 542 bases and present in both cervical carcinoma-derived cell lines and tumor samples. This is the first report of PAX8 aberrant transcript production in cervical cancer. Reported PAX8 isoforms possess differential transactivation properties; therefore, besides being a helpful marker for detection of cancer, PAX8 isoforms can plausibly exert differential regulation properties during carcinogenesis.

  12. Shared clonal cytogenetic abnormalities in aberrant mast cells and leukemic myeloid blasts detected by single nucleotide polymorphism microarray-based whole-genome scanning.

    PubMed

    Frederiksen, John K; Shao, Lina; Bixby, Dale L; Ross, Charles W

    2016-04-01

    Systemic mastocytosis (SM) is characterized by a clonal proliferation of aberrant mast cells within extracutaneous sites. In a subset of SM cases, a second associated hematologic non-mast cell disease (AHNMD) is also present, usually of myeloid origin. Polymerase chain reaction and targeted fluorescence in situ hybridization studies have provided evidence that, in at least some cases, the aberrant mast cells are related clonally to the neoplastic cells of the AHNMD. In this work, a single nucleotide polymorphism microarray (SNP-A) was used to characterize the cytogenetics of the aberrant mast cells from a patient with acute myeloid leukemia and concomitant mast cell leukemia associated with a KIT D816A mutation. The results demonstrate the presence of shared cytogenetic abnormalities between the mast cells and myeloid blasts, as well as additional abnormalities within mast cells (copy-neutral loss of heterozygosity) not detectable by routine karyotypic analysis. To our knowledge, this work represents the first application of SNP-A whole-genome scanning to the detection of shared cytogenetic abnormalities between the two components of a case of SM-AHNMD. The findings provide additional evidence of a frequent clonal link between aberrant mast cells and cells of myeloid AHNMDs, and also highlight the importance of direct sequencing for identifying uncommon activating KIT mutations.

  13. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  14. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  15. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  16. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  17. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  18. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma

    PubMed Central

    Morris, Zachary S.; McClatchey, Andrea I.

    2009-01-01

    The epidermal growth factor receptor (EGFR) has frequently been implicated in hyperproliferative diseases of renal tubule epithelia. We have shown that the NF2 tumor suppressor Merlin inhibits EGFR internalization and signaling in a cell contact–dependent manner. Interestingly, despite the paucity of recurring mutations in human renal cell carcinoma (RCC), homozygous mutation of the NF2 gene is found in ≈2% of RCC patient samples in the Sanger COSMIC database. To examine the roles of Merlin and EGFR in kidney tumorigenesis, we generated mice with a targeted deletion of Nf2 in the proximal convoluted epithelium using a Villin-Cre transgene. All of these mice developed intratubular neoplasia by 3 months, which progressed to invasive carcinoma by 6–10 months. Kidneys from these mice demonstrated marked hyperproliferation and a concomitant increase in label-retaining putative progenitor cells. Early lumen-filling lesions in this model exhibited hyperactivation of EGFR signaling, altered solubility of adherens junctions components, and loss of epithelial polarity. Renal cortical epithelial cells derived from either early or late lesions were dependent on EGF for in vitro proliferation and were arrested by pharmacologic inhibition of EGFR or re-expression of Nf2. These cells formed malignant tumors upon s.c. injection into immunocompromised mice before in vitro passage. Treatment of Vil-Cre;Nf2lox/lox mice with the EGFR inhibitor erlotinib halted the proliferation of tumor cells. These studies give added credence to the role of EGFR signaling and perhaps Nf2 deficiency in RCC and describe a rare and valuable mouse model for exploring the molecular basis of this disease. PMID:19487675

  19. Myelomatous plasma cells display an aberrant gene expression pattern similar to that observed in normal memory B cells

    PubMed Central

    Báez, Alicia; Piruat, José I; Caballero-Velázquez, Teresa; Sánchez-Abarca, Luís I; Álvarez-Laderas, Isabel; Barbado, M Victoria; García-Guerrero, Estefanía; Millán-Uclés, África; Martín-Sánchez, Jesús; Medrano, Mayte; Pérez-Simón, José Antonio

    2015-01-01

    Memory B cells (MBCs) remain in a quiescent state for years, expressing pro-survival and anti-apoptotic factors while repressing cell proliferation and activation genes. During their differentiation into plasma cells (PCs), their expression pattern is reversed, with a higher expression of genes related to cell proliferation and activation, and a lower expression of pro-survival genes. To determine whether myelomatous PCs (mPCs) share characteristics with normal PCs and MBCs and to identify genes involved in the pathophysiology of multiple myeloma (MM), we compared gene expression patterns in these three cell sub-types. We observed that mPCs had features intermediate between those of MBCs and normal PCs, and identified 3455 genes differentially expressed in mPCs relative to normal PCs but with a similar expression pattern to that in MBCs. Most of these genes are involved in cell death and survival, cell growth and proliferation and protein synthesis. According to our findings, mPCs have a gene expression pattern closer to a MBC than a PC with a high expression of genes involved in cell survival. These genes should be physiologically inactivated in the transit from MBC to PC, but remain overexpressed in mPCs and thus may play a role in the pathophysiology of the disease. PMID:25628947

  20. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    SciTech Connect

    Su Xiaoming; Takahashi, Akihisa; Guo Guozhen; Mori, Eiichiro; Okamoto, Noritomo; Ohnishi, Ken; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-06-01

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-{mu}mol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 {mu}mol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  1. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice.

    PubMed

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-11-12

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin(-) cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin(-)c-Kit⁺ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.

  2. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    PubMed Central

    2010-01-01

    Background Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Methods Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2. Results Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. Conclusion FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts. PMID:21034500

  3. Nuclear aberrations in hair follicle cells of patients receiving cyclophosphamide. A possible in vivo assay for human exposure to genotoxic agents.

    PubMed

    Goldberg, M T; Tackaberry, L E; Hardy, M H; Noseworthy, J H

    1990-01-01

    The toxic effect of cyclophosphamide on the proliferative cell population of hair follicles plucked from the human scalp was examined by the in vivo nuclear aberration assay. Patients participating in an independent clinical trial received oral low dose cyclophosphamide, intravenous high dose cyclophosphamide or oral placebo treatment. The percent of cells with nuclear aberrations (indicating apoptosis, a special form of cell death) and the percent of mitotic cells, in the hair matrix, were calculated for each patient before treatment and at several time points following cyclophosphamide or placebo treatment. The mean percentages of nuclear aberrations in both the treated Low dose and High dose cyclophosphamide patients were significantly higher than those for the pre-treatment and Placebo patients. The nuclear aberrations in hair follicle cells increased from pre-treatment (and Placebo) to treated Low dose and finally to treated High dose patients. The average percentage for pre-treatment samples from all patients was 0.06 +/- 0.03 SE. For 1 week and 1 month samples from Low dose patients it was 0.35 +/- 0.08 SE, and for combined 2,3 and 4 day samples from High dose patients it was 1.08 +/- 0.12 SE. Cyclophosphamide also had a significant effect on mitosis. A decrease in mitotic activity was observed at 1 month following the initial low dose cyclophosphamide treatment and at 24 +/- 2 h following each of the first two high dose cyclophosphamide treatments. The observed increase in nuclear aberrations following low dose as well as high dose cyclophosphamide suggests that it is feasible to use the nuclear aberration assay for in vivo human genotoxicity testing, using proliferating hair follicle cells.

  4. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  5. Peripheral T-cell lymphomas of follicular helper T-cell type frequently display an aberrant CD3(-/dim)CD4(+) population by flow cytometry: an important clue to the diagnosis of a Hodgkin lymphoma mimic.

    PubMed

    Alikhan, Mir; Song, Joo Y; Sohani, Aliyah R; Moroch, Julien; Plonquet, Anne; Duffield, Amy S; Borowitz, Michael J; Jiang, Liuyan; Bueso-Ramos, Carlos; Inamdar, Kedar; Menon, Madhu P; Gurbuxani, Sandeep; Chan, Ernest; Smith, Sonali M; Nicolae, Alina; Jaffe, Elaine S; Gaulard, Philippe; Venkataraman, Girish

    2016-10-01

    Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73

  6. Elevated TIM3+ hematopoietic stem cells in untreated myelodysplastic syndrome displayed aberrant differentiation, overproliferation and decreased apoptosis.

    PubMed

    Tao, Jing-lian; Li, Li-juan; Fu, Rong; Wang, Hua-quan; Jiang, Hui-juan; Yue, Lan-zhu; Zhang, Wei; Liu, Hui; Ruan, Er-bao; Qu, Wen; Wang, Guo-jin; Wang, Xiao-ming; Wu, Yu-hong; Liu, Hong; Song, Jia; Guan, Jing; Xing, Li-min; Shao, Zong-hong

    2014-06-01

    TIM3, as a negative regulator of anti-tumor immunity, is highly expressed on LSCs, but not on normal HSCs. TIM3 on HSCs in MDS patients has not been clarified. Here, both the percentage of TIM3 on HSCs and the MFI of TIM3+ HSCs were higher in untreated MDS than control and were closed to AML, and excessive TIM3+ HSCs was closely related to clinical parameters: WPSS score, karyotype analysis, morphologic blasts, the number of cytopenia involving hematopoietic lineages, anemia and granulocytopenia. TIM3+ HSCs expressed lower CD11b, TpoR, EpoR, G-CSFR and Annexin V, and higher CD71 and GATA2. TIM3+ HSCs displayed aberrant differentiation, overproliferation and decreased apoptosis. TIM3 might be a promising marker for identifying malignant clone cells in MDS and a candidate for targeted therapy.

  7. The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2017-02-27

    The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS density in cancer and non-cancer cells. For S-NPs, in all cells tested, NLS was unnecessary for nuclear delivery; unmodified S-NPs showed higher nuclear delivery than NLS-S-NPs due to their ability to gain nuclear entry in a passive manner. For L-NPs, L-NLS-L-NPs showed ≈ 8.5, 33, 1.8 and 7.2 fold higher nuclear deliveries than H-NLS-L-NPs in L929 fibroblasts, primary human fibroblasts, HEK 293 and lung cancer cells, respectively. In glioma however, unmodified L-NPs showed highest nuclear delivery, whereas NLS-L-NPs were retained in the cytoplasm. Experiments conducted in the presence of inhibitors of the classical nuclear import pathway indicated that due to overexpression of importin α, classical nuclear import in glioma is impaired leading to aberrant NP intracellular trafficking and nuclear import.

  8. Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats.

    PubMed

    Patlolla, Jagan M R; Zhang, Yuting; Li, Qian; Steele, Vernon E; Rao, Chinthalapally V

    2012-01-01

    Omeprazole is a proton pump inhibitor, a widely used drug to treat ulcers and gastroesophageal refluxdisease. We have evaluated colon cancer chemopreventive properties of omeprazole using azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in male F344 rats and analyzed cell growth inhibition and apoptosis induction in human colon cancer cells. Five-week-old male F344 rats were fed a control or experimental diet containing two doses of omeprazole (200 and 400 ppm). After one week, all animals were s.c. injected with AOM (15 mg/kg body weight, once weekly for two weeks). Rats continued on experimental diets for seven more weeks before being sacrificed. Colons were histopathologically evaluated for ACF. Human colon cancer HCT-116 and HCA-7 cells treated with omeprazole were evaluated for different markers associated with proliferation and apoptotic markers using Western blot technique. Rats fed with 200 and 400 ppm of omeprazole significantly suppressed total colonic ACF formation (~30%, P<0.001) and showed significant suppression of multi-crypt foci (~30-50%, P<0.05-0.001). Omeprazole produced significant dose-response effects on inhibition of multi-crypt foci (≥4). Omeprazole treatment in human colon cancer cell lines HCT-116 and HCA-7 cells resulted in induction of p21waf1/cip1 and decreased the expression of anti-apoptotic proteins Bcl-2, Bcl-XL and survivin in a dose-dependent manner. Anticancer properties observed in colon cancer cell lines suggest that omeprazole may induce key signaling molecules of antiproliferation and inhibition of anti-apoptotic proteins.

  9. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  10. Demonstration of an aberrant mast-cell population with clonal markers in a subset of patients with "idiopathic" anaphylaxis.

    PubMed

    Akin, Cem; Scott, Linda M; Kocabas, Can N; Kushnir-Sukhov, Nataliya; Brittain, Erica; Noel, Pierre; Metcalfe, Dean D

    2007-10-01

    Idiopathic anaphylaxis remains a perplexing disorder in which existing prophylactic therapy is inadequate. In this prospective study, we sought to determine whether patients with idiopathic anaphylaxis might have evidence for a clonal disorder of mast cells related to mastocytosis and for which novel targeted therapies might be considered. We report 12 patients with "idiopathic" anaphylaxis who did not exhibit either urticaria pigmentosa or the characteristic bone marrow biopsy finding of multifocal mast-cell aggregates observed in systemic mastocytosis. Of these 12 patients, 5 had evidence of 1 or more minor criteria for mastocytosis. C-KIT mutational analysis was positive for the 816D>V activating mutation in 3 of 3 patients in CD25(+) bone marrow cells where the analysis was performed. These results demonstrate the presence of an aberrant mast-cell population carrying clonal markers in a subset of patients diagnosed with "idiopathic" anaphylaxis, who may respond to inhibitors targeting mutated C-KIT. This intramural clinical trial was conducted in 2003 and 2004 and was registered at (http://clinicalcenter.nih.gov) with a study number 03-I-0010. Since the study is now closed, it is no longer available online.

  11. QUANTITATION OF ABERRANT INTERLOCUS T-CELL RECEPTOR REARRANGEMENTS IN MOUSE THYMOCYTES AND THE EFFECT OF THE HERBICIDE 2,4- DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Quantitation of aberrant interlocus T-cell receptor rearrangements in mouse thymocytes and the effect of the herbicide 2,4- Dichlorophenoxyacetic acid

    Small studies in human populations have suggested a correlation between the frequency of errors in antigen receptor gene a...

  12. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  13. Endothelial cells' biophysical, biochemical, and chromosomal aberrancies in high-glucose condition within the diabetic range.

    PubMed

    Rezabakhsh, Aysa; Nabat, Elahe; Yousefi, Mina; Montazersaheb, Soheila; Cheraghi, Omid; Mehdizadeh, Amir; Fathi, Farzaneh; Movassaghpour, Ali Akbar; Maleki-Dizaji, Nasrin; Rahbarghazi, Reza; Garjani, Alireza

    2017-03-01

    To date, many studies have been conducted to find out the underlying mechanisms of hyperglycemia-induced complications in diabetes mellitus, attributed to the cellular pathologies of different cells-especially endothelial cells. However, there are still many ambiguities and unresolved issues to be clarified. Here, we investigated the alteration in biophysical and biochemical properties in human umbilical vein endothelial cells exposed to a high-glucose concentration (30mM), comparable to glucose content in type 2 diabetes mellitus, over a course of 120 hours. In addition to a reduction in the rate of cell viability and induction of oxidative stress orchestrated by the high-glucose condition, the dynamic of the fatty acid profile-including polyunsaturated, monounsaturated, and saturated fatty acids-was also altered in favor of saturated fatty acids. Genetic imbalances were also detected at chromosomal level in the cells exposed to the abnormal concentration of glucose after 120 hours. Moreover, the number of tip cells (CD31(+) /CD34(+) ) and in vitro tubulogenesis capability negatively diminished in comparison to parallel control groups. We found that diabetic hyperglycemia was associated with a decrease in the cell-cell tight junction and upregulation in vascular endothelial cadherin and zonula occludens (ZO)-1 molecules after 72 and 120 hours of exposure to the abnormal glucose concentration, which resulted in a profound reduction in transendothelial electrical resistance. The surface plasmon resonance analysis of the human umbilical vein endothelial cells immobilized on gold-coated sensor chips confirmed the loosening of the cell to cell intercellular junction as well as stable attachment of each cell to the basal surface. Our findings highlighted the disturbing effects of a diabetic hyperglycemia on either biochemical or biophysical properties of endothelial cells.

  14. Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms.

    PubMed

    LaGier, Adriana J; Manzo, Nicholas D; Dye, Janice A

    2013-01-01

    Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following injury requires efficient and directed alveolar epithelial cell migration, this study's goal was to understand the mechanisms underlying alveolar epithelial cells response to DEP, particularly when exposure is accompanied with comorbid lung injury. Separate mechanistic steps of directed migration were investigated in confluent murine LA-4 cells exposed to noncytotoxic concentrations (0-100 μg/cm(2)) of either automobile-emitted diesel exhaust particles (DEP(A)) or carbon black (CB) particles. A scratch wound model ascertained how DEP(A) exposure affected directional cell migration and BCECF ratio fluorimetry-monitored intracellular pH (pHi). Cells were immunostained with giantin to assess cell polarity, and with paxillin to assess focal cell adhesions. Cells were immunoblotted for ezrin/radixin/moesin (ERM) to assess cytoskeletal anchoring. Data demonstrate herein that exposure of LA-4 cells to DEP(A) (but not CB) resulted in delayed directional cell migration, impaired de-adhesion of the trailing edge cell processes, disrupted regulation of pHi, and altered Golgi polarity of leading edge cells, along with modified focal adhesions and reduced ERM levels, indicative of decreased cytoskeletal anchoring. The ability of DEP(A) to disrupt directed cell migration at multiple levels suggests that signaling pathways such as ERM/Rho are critical for transduction of ion transport signals into cytoskeletal arrangement responses. These results provide insights into the mechanisms by which chronic exposure to traffic-based emissions may result in decrements in lung capacity.

  15. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    SciTech Connect

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C. . E-mail: hclee2@ym.edu.tw

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.

  16. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  17. Skew aberration: a form of polarization aberration.

    PubMed

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-10-15

    We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.

  18. Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29

    PubMed Central

    Yu, Xiaofeng; Du, Zhenzhen; Sun, Xuhong; Shi, Chuanqin; Zhang, Huaixiang; Hu, Tao

    2015-01-01

    The Tn antigen, which arises from mutation in the Cosmc gene is one of the most common tumor associated carbohydrate antigens. Cosmc resides in X24 encoded by a single gene and functions as a specific molecular chaperone for T-synthase. While the Tn antigen cannot be detected in normal cells, Cosmc mutations inactivate T-synthase and consequently result in Tn antigen expression within certain cancers. In addition to this Cosmc mutation-induced expression, the Tn antigen is also expressed in such cell lines as Jurkat T, LSC and LS174T. Whether the Cosmc mutation is present in the colon cancer cell line HT-29 is still unclear. Here, we isolate HT-29-Tn+ cells from HT-29 cells derived from a female colon cancer patient. These HT-29-Tn+ cells show a loss of the Cosmc gene coding sequence (CDS) leading to an absence of T-synthase activity and Tn antigen expression. Additionally, almost no methylation of Cosmc CpG islands was detected in HT-29-Tn+ as well as in HT-29-Tn- and Tn- tumor cells from male patients. In contrast, the methylation frequency of CpG island of Cosmc in normal female cells was ~50%. Only one active allele of Cosmc existed in HT-29-Tn+ and HT-29-Tn- cells as based upon detection of SNP sites. These results indicate that Tn antigens expression and T-synthase inactivity in HT-29-Tn+ cells can be related to the absence of CDS in Cosmc active alleles, while an inactive allele deletion of Cosmc in HT-29 cells has no influence on Cosmc function. PMID:26045765

  19. Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease.

    PubMed

    Shao, Liang; Lie, Albert K W; Zhang, You; Wong, Cheuk-Hong; Kwong, Yok-Lam

    2015-09-01

    Chronic graft-versus-host disease (cGVHD) is an important complication after allogeneic hematopoietic stem cell transplantation (HSCT). To define the roles of T-cells and B-cells in cGVHD, a murine minor histocompatibility complex-mismatched HSCT model was used. Depletion of donor splenocyte CD4(+) T-cells and B220(+) B-cells alleviated cGVHD. Allogeneic recipients had significantly increased splenic germinal centers (GCs), with significant increases in follicular T-helper (Tfh) cells and GC B-cells. There were increased expressions in Tfh cells of inducible T-cell co-stimulator (ICOS), interleukin (IL)-4 and IL-17, and in GC B-cells of B-cell activating factor receptor and ICOS ligand. Depletion of donor splenocyte CD4(+) T-cells abrogated aberrant GC formation and suppressed Tfh cells and GC B-cells. Interestingly, depletion of donor splenocyte B200(+) B-cells also suppressed Tfh cells in addition to GC B-cells. These results suggested that in cGVHD, both Tfh and GC B-cells were involved, and their developments were mutually dependent. The mammalian target of rapamycin (mTOR) inhibitor everolimus was effective in suppressing cGVHD, Tfh cells, and GC B-cells, either as a prophylaxis or when cGVHD had established. These results implied that therapeutic targeting of both T-cells and B-cells in cGVHD might be effective. Signaling via mTOR may be another useful target in cGVHD.

  20. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms.

    PubMed Central

    Werner, C. A.; Döhner, H.; Joos, S.; Trümper, L. H.; Baudis, M.; Barth, T. F.; Ott, G.; Möller, P.; Lichter, P.; Bentz, M.

    1997-01-01

    Gene amplification is one of the molecular mechanisms resulting in the up-regulation of gene expression. In non-Hodgkin's lymphomas, such gene amplifications have been identified rarely. Using comparative genomic hybridization, a technique that has proven to be very sensitive for the detection of high-level DNA amplifications, we analyzed 108 cases of B-cell neoplasms (42 chronic B-cell leukemias, 5 mantle cell lymphomas, and 61 aggressive B-cell lymphomas). Twenty-four high-level amplifications were identified in 13% of the patients and mapped to 15 different genomic regions. Regions most frequently amplified were bands Xq26-28, 2p23-24, and 2p14-16 as well as 18q21 (three times each). Amplification of several proto-oncogenes and a cell cycle control gene (N-MYC (two cases), BCL2, CCND2, and GLI) located within the amplified regions was demonstrated by Southern blot analysis or fluorescence in situ hybridization to interphase nuclei of tumor cells. These data demonstrate that gene amplifications in B-cell neoplasms are much more frequent than previously assumed. The identification of highly amplified DNA regions and genes included in the amplicons provides important information for further analyses of genetic events involved in lymphomagenesis. Images Figure 2 Figure 3 PMID:9250147

  1. Influence of retinol on carcinogen-induced sister chromatid exchangers and chromosome aberrations in V79 cells

    SciTech Connect

    Qin, S.; Batt, T.; Huang, C.C.

    1985-01-01

    The influence of retinol (Rol) on sister chromatid exchangers (SCE) in V79 cells induced by six indirect and two direct carcinogens, and on chromosome aberration (CA) in V79 cells induced by four indirect carcinogens were studied. The indirect carcinogens used were aflatoxin B/sub 1/ (AFB), cyclophosphamide (CPP), benzo(a)anthracene (BA), benzo(a)pyrene (BP), 9,10-dimethyl-1,2-benz(a)anthracene (DMBA), and 3-methylcholanthrene (MCA). The two direct carcinogens were ethyl methane sulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rol effectively inhibited SCE and CA induced by AFB and CPP in a dose-dependent manner, but it had no effect on SCE induced by BA, BP, DMBA, MCA, EMS, and MNNG. To the contrary, Rol had an enhancing effect on CA induced by BP and DMBA. The possibility that Rol exerts its anticarcinogenic effects by inhibiting certain forms of the cytochrome P-450 isoenzymes required for activation of precarcinogens, such as AFB and CPP but not those enzymes required by BA, BP, DMBA, and MCA, is discussed.

  2. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells.

    PubMed

    Yang, Min; Chen, Ping; Peng, Hong; Zhang, Hongliang; Chen, Yan; Cai, Shan; Lu, Qianjin; Guan, Chaxiang

    2015-03-01

    Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs.

  3. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs.

    PubMed

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-02-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression.

  4. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A.

    2003-01-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  5. Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.

    PubMed

    Campbell, Andrew J; Lyne, Linden; Brown, Philip J; Launchbury, Rosalind J; Bignone, Paola; Chi, Jianxiang; Roncador, Giovanna; Lawrie, Charles H; Gatter, Kevin C; Kusec, Rajko; Banham, Alison H

    2010-04-01

    FOXP2 mutation causes a severe inherited speech and language defect, while the related transcription factors FOXP1, FOXP3 and FOXP4 are implicated in cancer. FOXP2 mRNA and protein expression were characterised in normal human tissues, haematological cell lines and multiple myeloma (MM) patients' samples. FOXP2 mRNA and protein were absent in mononuclear cells from different anatomical sites, lineages and stages of differentiation. However, FOXP2 mRNA and protein was detected in several lymphoma (8/20) and all MM-derived cell lines (n = 4). FOXP2 mRNA was expressed in bone marrow samples from 96% of MM patients (24/25), 66.7% of patients with the pre-neoplastic plasma cell proliferation monoclonal gammopathy of undetermined significance (MGUS) (6/9), but not in reactive plasma cells. The frequency of FOXP2 protein expression in CD138(+) plasma cells was significantly higher in MGUS (P = 0.0005; mean 46.4%) and MM patients (P < or = 0.0001; mean 57.3%) than in reactive marrows (mean 2.5%). FOXP2 (>10% nuclear positivity) was detectable in 90.2% of MM (55/61) and 90.9% of MGUS (10/11) patients, showing more frequent expression than CD56 and labelling 75% of CD56-negative MM (9/12). FOXP2 represents the first transcription factor whose expression consistently differentiates normal and abnormal plasma cells and FOXP2 target genes are implicated in MM pathogenesis.

  6. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy.

    PubMed

    Muto, Masahiro; Manfroi, Benoit; Suzuki, Hitoshi; Joh, Kensuke; Nagai, Masaaki; Wakai, Sachiko; Righini, Christian; Maiguma, Masayuki; Izui, Shozo; Tomino, Yasuhiko; Huard, Bertrand; Suzuki, Yusuke

    2017-04-01

    The TNF family member a proliferation-inducing ligand (APRIL; also known as TNFSF13), produced by myeloid cells, participates in the generation and survival of antibody-producing plasma cells. We studied the potential role of APRIL in the pathogenesis of IgA nephropathy (IgAN). We found that a significant proportion of germinal centers (GCs) in tonsils of patients with IgAN contained cells aberrantly producing APRIL, contributing to an overall upregulation of tonsillar APRIL expression compared with that in tonsils of control patients with tonsillitis. In IgAN GC, antigen-experienced IgD(-)CD38(+/-)CD19(+) B cells expressing a switched IgG/IgA B cell receptor produced APRIL. Notably, these GC B cells expressed mRNA encoding the common cleavable APRIL-α but also, the less frequent APRIL-δ/ζ mRNA, which encodes a protein that lacks a furin cleavage site and is, thus, the uncleavable membrane-bound form. Significant correlation between TLR9 and APRIL expression levels existed in tonsils from patients with IgAN. In vitro, repeated TLR9 stimulation induced APRIL expression in tonsillar B cells from control patients with tonsillitis. Clinically, aberrant APRIL expression in tonsillar GC correlated with greater proteinuria, and patients with IgAN and aberrant APRIL overexpression in tonsillar GC responded well to tonsillectomy, with parallel decreases in serum levels of galactose-deficient IgA1. Taken together, our data indicate that antibody disorders in IgAN associate with TLR9-induced aberrant expression of APRIL in tonsillar GC B cells.

  7. Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis.

    PubMed

    Sorokin, Alexey V; Nair, Binoj C; Wei, Yongkun; Aziz, Kathryn E; Evdokimova, Valentina; Hung, Mien-Chie; Chen, Junjie

    2015-05-01

    The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer.

  8. Painting analysis of chromosome aberrations induced by energetic heavy ions in human cells

    NASA Astrophysics Data System (ADS)

    Wu, H.; Hada, M.; Cucinotta, F. A.

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation genetic mutations and cancer induction Most of these biological endpoints are closely related to chromosomal damage which can be utilized as a biomarker for radiation insults Over the years we have studied chromosomal damage in human fibroblast epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell We will summarize the results of the investigations and discuss the unique radiation signatures and biomarkers for space radiation exposure

  9. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15

    PubMed Central

    Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S.

    2015-01-01

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  10. FGFR1, 2 and 3 protein overexpression and molecular aberrations of FGFR3 in early stage non-small cell lung cancer.

    PubMed

    Theelen, Willemijn Sme; Mittempergher, Lorenza; Willems, Stefan M; Bosma, Astrid J; Peters, Dennis Dgc; van der Noort, Vincent; Japenga, Eva J; Peeters, Ton; Koole, Koos; Šuštić, Tonći; Blaauwgeers, J L; van Noesel, Carel J; Bernards, René; van den Heuvel, Michel M

    2016-10-01

    This study aimed to determine protein expression levels of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in early stage non-small cell lung cancer (NSCLC). Additionally, a screen to define the frequency of FGFR3-TACC3 translocation and FGFR3 amplification was performed. Archived tissues from 653 NSCLC samples (adenocarcinoma (AC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC)) were analysed with immunohistochemistry (IHC) for expression of FGFR1, 2 and 3. Expression levels of FGFR1, 2 and 3 were correlated with clinicopathological features. The presence of FGFR3-TACC3 translocation was detected by RT-PCR and FGFR3 amplification was detected by fluorescence in situ hybridization. FGFR1, 2 and 3 proteins were highly expressed in 64 (10.6%), 76 (12.9%) and 20 (3.3%) NSCLC tumour samples, respectively. Protein expression of FGFR1 was significantly related to worse overall survival in NSCLC. Furthermore, FGFR1 protein expression was associated with light smoking and histological subtype (AC), FGFR2 protein expression with female gender, younger age, histological subtype (AC) and lower tumour stage, and FGFR3 protein was significantly overexpressed in tumours of older patients and SCC histology. The FGFR3-TACC3 fusion was detected in 3.0% (6/200) of NSCLC samples and the FGFR3 gene was amplified in 4.7% of IHC positive NSCLC samples (2/43). FGFR1, 2 and 3 proteins are expressed in a high number of early stage NSCLC and FGFR1 protein expression may serve as a prognostic biomarker. Recurrent translocations and amplifications in FGFR3 can be found in NSCLC. This study shows that FGFR family members are frequently aberrant in NSCLC and could be interesting therapeutic targets for the treatment of NSCLC.

  11. FGFR1, 2 and 3 protein overexpression and molecular aberrations of FGFR3 in early stage non‐small cell lung cancer

    PubMed Central

    Mittempergher, Lorenza; Willems, Stefan M; Bosma, Astrid J; Peters, Dennis DGC; van der Noort, Vincent; Japenga, Eva J; Peeters, Ton; Koole, Koos; Šuštić, Tonći; Blaauwgeers, JL; van Noesel, Carel J; Bernards, René

    2016-01-01

    Abstract This study aimed to determine protein expression levels of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in early stage non‐small cell lung cancer (NSCLC). Additionally, a screen to define the frequency of FGFR3‐TACC3 translocation and FGFR3 amplification was performed. Archived tissues from 653 NSCLC samples (adenocarcinoma (AC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC)) were analysed with immunohistochemistry (IHC) for expression of FGFR1, 2 and 3. Expression levels of FGFR1, 2 and 3 were correlated with clinicopathological features. The presence of FGFR3‐TACC3 translocation was detected by RT‐PCR and FGFR3 amplification was detected by fluorescence in situ hybridization. FGFR1, 2 and 3 proteins were highly expressed in 64 (10.6%), 76 (12.9%) and 20 (3.3%) NSCLC tumour samples, respectively. Protein expression of FGFR1 was significantly related to worse overall survival in NSCLC. Furthermore, FGFR1 protein expression was associated with light smoking and histological subtype (AC), FGFR2 protein expression with female gender, younger age, histological subtype (AC) and lower tumour stage, and FGFR3 protein was significantly overexpressed in tumours of older patients and SCC histology. The FGFR3‐TACC3 fusion was detected in 3.0% (6/200) of NSCLC samples and the FGFR3 gene was amplified in 4.7% of IHC positive NSCLC samples (2/43). FGFR1, 2 and 3 proteins are expressed in a high number of early stage NSCLC and FGFR1 protein expression may serve as a prognostic biomarker. Recurrent translocations and amplifications in FGFR3 can be found in NSCLC. This study shows that FGFR family members are frequently aberrant in NSCLC and could be interesting therapeutic targets for the treatment of NSCLC. PMID:27785367

  12. Intratubular Germ Cell Neoplasia of the Testis, Bilateral Testicular Cancer, and Aberrant Histologies.

    PubMed

    Sharma, Pranav; Dhillon, Jasreman; Sexton, Wade J

    2015-08-01

    Intratubular germ cell neoplasia (ITGCN) is a precursor lesion for testicular germ cell tumors, most of which are early stage. ITGCN is also associated with testicular cancer or ITGCN in the contralateral testis, leading to a risk of bilateral testicular malignancy. Testicular biopsy detects most cases, and orchiectomy is the treatment of choice in patients with unilateral ITGCN. Low-dose radiation therapy is recommended in patients with bilateral ITGCN or ITGCN in the solitary testis, but the long-term risks of infertility and hypogonadism need to be discussed with the patient. Rare histologies of primary testicular cancer are also discussed.

  13. Aberrant EphB/ephrin-B expression in experimental gastric lesions and tumor cells

    PubMed Central

    Uchiyama, Shintaro; Saeki, Noritaka; Ogawa, Kazushige

    2015-01-01

    AIM: To determine whether the expression profiles of EphB receptor and ephrin-B ligand can be used as markers for dysplastic/oncogenic transformation in gastric mucosa. METHODS: The protein expression and localization of EphB and ephrin-B in normal, ulcerated regenerating, and dysplastic gastric mucosa were examined in a rat experimental model by immunolabeling, and mRNA expression was assessed in four human gastric carcinoma cell lines by reverse transcription-polymerase chain reaction. RESULTS: Ephrin-B- and EphB-expressing regions were divided along the pit-gland axis in normal gastric units. EphB2 was transiently upregulated in the experimental ulcer, and its expression domain extended to gastric pits and/or the luminal surface where ephrin-B-expressing pit cells reside. EphB2, B3, and B4 and ephrin-B1 were coexpressed in the experimental gastric dysplasia, and more than one ligand-receptor pair was highly expressed in each of the gastric carcinoma cell lines. CONCLUSION: Robust and stable coexpression of EphB and ephrin-B is a feature common to experimentally induced gastric dysplasia and human gastric carcinoma cell lines as compared to normal gastric and ulcerated regenerating epithelia. Thus, EphB/ephrin-B may be a useful marker combination for dysplastic/oncogenic transformation in gastric cancer. PMID:25593460

  14. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells.

    PubMed

    Inoko, Akihito; Matsuyama, Makoto; Goto, Hidemasa; Ohmuro-Matsuyama, Yuki; Hayashi, Yuko; Enomoto, Masato; Ibi, Miho; Urano, Takeshi; Yonemura, Shigenobu; Kiyono, Tohru; Izawa, Ichiro; Inagaki, Masaki

    2012-04-30

    The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.

  15. M-BAND analysis of chromosome aberration induced by Fe-ions in human epithelial cells cultured in 3-dimensional matrices

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied lowand high-LET radiationinduced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137 Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  16. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  17. Stochastic Gompertz model of tumour cell growth.

    PubMed

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  18. Genotoxic effects of the alkaloids harman and harmine assessed by comet assay and chromosome aberration test in mammalian cells in vitro.

    PubMed

    Boeira, J M; da Silva, J; Erdtmann, B; Henriques, J A

    2001-12-01

    Harman and harmine are beta-carboline alkaloids which are present in plants widely used in medical practice, in beverages used for religious purposes in Brazil, as well as in tobacco smoke and over cooked food. In view of the controversial results observed in the literature about the mutagenic effects of these alkaloids, we studied their cytotoxic and genotoxic effects in V79 Chinese hamster lung fibroblasts in vitro using single-cell gel assay, Comet assay, either in the presence or in absence of an exogenous metabolic activation system (S9-mix), and by the chromosome aberration test without S9-mix. Harmine was more cytotoxic than harman. Both harman and harmine increased aberrant cell frequency and induced DNA damage by the Comet assay. These results suggest that harman and harmine are genotoxic in V79 cells, probably as a consequence of their ability to induce DNA strand breaks.

  19. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and

  20. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells.

    PubMed

    Björkman, Andrea; Qvist, Per; Du, Likun; Bartish, Margarita; Zaravinos, Apostolos; Georgiou, Konstantinos; Børglum, Anders D; Gatti, Richard A; Törngren, Therese; Pan-Hammarström, Qiang

    2015-02-17

    Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.

  1. Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions.

    PubMed

    Claycomb, Kumiko I; Winokur, Paige N; Johnson, Kasey M; Nicaise, Alexandra M; Giampetruzzi, Anthony W; Sacino, Anthony V; Snyder, Evan Y; Barbarese, Elisa; Bongarzone, Ernesto R; Crocker, Stephen J

    2014-10-01

    Globoid cell leukodystrophy (GLD), or Krabbe disease, is a rare and often fatal demyelinating disease caused by mutations in the galactocerebrosidase (galc) gene that result in accumulation of galactosylsphingosine (psychosine). We recently reported that the extracellular matrix (ECM) protease, matrix metalloproteinase-3, is elevated in GLD and that it regulates psychosine-induced microglial activation. Here, we examined central nervous system ECM component expression in human GLD patients and in the twitcher mouse model of GLD using immunohistochemistry. The influence of ECM proteins on primary murine microglial responses to psychosine was evaluated using ECM proteins as substrates and analyzed by quantitative real-time polymerase chain reaction, immunocytochemistry, and ELISA. Functional analysis of microglial cytotoxicity was performed on oligodendrocytes in coculture, and cell death was measured by lactose dehydrogenase assay. Tenascin-C (TnC) was expressed at higher levels in human GLD and in twitcher mice versus controls. Microglial responses to psychosine were enhanced by TnC, as determined by an increase in globoid-like cell formation, matrix metalloproteinase-3 mRNA expression, and higher toxicity toward oligodendrocytes in culture. These findings were consistent with a shift toward the M1 microglial phenotype in TnC-grown microglia. Thus, elevated TnC expression in GLD modified microglial responses to psychosine. These data offer a novel perspective and enhance understanding of the microglial contribution to GLD pathogenesis.

  2. Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells

    PubMed Central

    Aoki, Hitomi; Ogino, Hajime; Tomita, Hiroyuki; Hara, Akira; Kunisada, Takahiro

    2016-01-01

    REST (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells in vitro by preventing precocious expression of neuronal genes. REST expression was then decreased in developing neurons to down-regulate neuronal genes which allow their maturation. However, the function of REST during neurogenesis in vivo remains to be elucidated because of the early embryonic lethal phenotype of conventional Rest knockout mice. In order to investigate the role of REST in ocular tissues, we generated and examined the mice evoking genetic ablation to Rest specifically to neural tissues including ocular tissue. We used a Sox1-Cre allele to excise the floxed Rest gene in the early neural tissues including the lens and retinal primordia. The resulting Rest conditional knockout (CKO) and co cntrol mice were used in comparative morphological, histological, and gene expression analyses. Rest CKO mice had an abnormal lens morphology after birth. The proliferation of lens epithelial cells was likely to be slightly reduced, and vacuoles formed without a visible increase in apoptotic cells. Although the aberrant expression of late onset cataract marker proteins was not detected, the expression of Notch signaling-related genes including a previously identified REST-target gene was up-regulated around birth, and this was followed by the down-regulated expression of lens fiber regulators such as c-Maf and Prox1. Rest CKO induces a unique cataract phenotype just after birth. Augmented Notch signaling and the down-regulated expression of lens fiber regulator genes may be responsible for this phenotype. Our results highlight the significance of REST function in lens fiber formation, which is necessary for maintaining an intact lens structure. PMID:27631609

  3. Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature.

    PubMed

    Cushing, Leah; Costinean, Stefan; Xu, Wei; Jiang, Zhihua; Madden, Lindsey; Kuang, Pingping; Huang, Jingshu; Weisman, Alexandra; Hata, Akiko; Croce, Carlo M; Lü, Jining

    2015-05-01

    Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.

  4. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  5. Investigation of DNA-damage and Chromosomal Aberrations in Blood Cells under the Influence of New Silver-based Antiviral Complex

    PubMed Central

    Plotnikov, Evgenii; Silnikov, Vladimir; Gapeyev, Andrew; Plotnikov, Vladimir

    2016-01-01

    Purpose: The problem of infectious diseases and drug resistance is becoming increasingly important worldwide. Silver is extensively used as an anti-infective agent, but it has significant toxic side effects. In this regard, it is topical to develop new silver compounds with high biological activity and low toxicity. This work is aimed to study DNA damage and chromosomal aberrations in blood cells under the influence of new silver-based compound of general formula C6H19Ag2N4LiO6S2, with antiviral activity. Methods: The comet assay was applied for the genotoxic affects assessment on mice blood leukocytes. DNA damage was determined bases on the percentage of DNA in a comet tail (tail DNA), under the influence of silver complex in different concentrations. Genotoxic effect of the tested substance on the somatic cells was determined by chromosomal aberration test of bone marrow cells of mice. Results: In the course of the experiments, no essential changes in the level of DNA damage in the cells were found, even at highest concentrations. The administration of the substance in doses up to 2.5 g/kg in mice did not cause any increase in the frequency of chromosomal aberration in bone marrow cells. Conclusion: Taking into account known silver drug genotoxic properties, the use of a given complexed silver compound has possible great advantages for potential applications in the treatment of infectious diseases. PMID:27123420

  6. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells

    PubMed Central

    Guo, Xihan; Wang, Xu

    2016-01-01

    The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC. PMID:27598149

  7. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells.

    PubMed

    Guo, Xihan; Wang, Xu

    2016-09-03

    The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.

  8. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation.

    PubMed

    Backteman, K; Ernerudh, J; Jonasson, L

    2014-01-01

    Although reduced natural killer (NK) cell levels have been reported consistently in patients with coronary artery disease (CAD), the clinical significance and persistence of this immune perturbation is not clarified. In this study we characterized the NK cell deficit further by determining (i) differentiation surface markers and cytokine profile of NK cell subsets and (ii) ability to reconstitute NK cell levels over time. Flow cytometry was used to analyse NK cell subsets and the intracellular cytokine profile in 31 patients with non-ST elevation myocardial infarction (non-STEMI), 34 patients with stable angina (SA) and 37 healthy controls. In blood collected prior to coronary angiography, the proportions of NK cells were reduced significantly in non-STEMI and SA patients compared with controls, whereas NK cell subset analyses or cytokine profile measurements did not reveal any differences across groups. During a 12-month follow-up, the proportions of NK cells increased, although not in all patients. Failure to reconstitute NK cell levels was associated with several components of metabolic syndrome. Moreover, interleukin (IL)-6 levels remained high in patients with sustained NK cell deficit, whereas a decline in IL-6 (P < 0·001) was seen in patients with a pronounced increase in NK cells. In conclusion, we found no evidence that reduction of NK cells in CAD patients was associated with aberrations in NK cell phenotype at any clinical stage of the disease. Conversely, failure to reconstitute NK cell levels was associated with a persistent low-grade inflammation, suggesting a protective role of NK cells in CAD.

  9. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer.

    PubMed

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-02-13

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation.

  10. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer

    PubMed Central

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-01-01

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation. DOI: http://dx.doi.org/10.7554/eLife.20183.001 PMID:28191869

  11. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response.

    PubMed

    Riehs-Kearnan, Nina; Gloggnitzer, Jiradet; Dekrout, Bettina; Jonak, Claudia; Riha, Karel

    2012-07-01

    Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control mechanism that eliminates transcripts containing nonsense mutations. NMD has also been shown to affect the expression of numerous genes, and inactivation of this pathway is lethal in higher eukaryotes. However, despite relatively detailed knowledge of the molecular basis of NMD, our understanding of its physiological functions is still limited and the underlying causes of lethality are unknown. In this study, we examined the importance of NMD in plants by analyzing an allelic series of Arabidopsis thaliana mutants impaired in the core NMD components SMG7 and UPF1. We found that impaired NMD elicits a pathogen defense response which appears to be proportional to the extent of NMD deficiency. We also demonstrate that developmental aberrations and lethality of the strong smg7 and upf1 alleles are caused by constitutive pathogen response upregulation. Disruption of pathogen signaling suppresses the lethality of the upf1-3 null allele and growth defects associated with SMG7 dysfunction. Interestingly, infertility and abortive meiosis observed in smg7 mutants is not coupled with impaired NMD suggesting a broader function of SMG7 in cellular metabolism. Taken together, our results uncover a major physiological consequence of NMD deficiency in Arabidopsis and revealed multifaceted roles of SMG7 in plant growth and development.

  12. Induction of Chromosomal Aberrations in Human Cells after Irradiation with Filtered and Unfiltered Beams of 1 Gev/amu Iron Ions

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Williams, A.; Nagasawa, H.; Peng, Y.; Chatterjee, A.; Bedford, J.

    To determine whether shielding materials that might be utilized for radiation protection of astronauts would affect the RBE of HZE particles such as those of concern for deep space missions we irradiated non cycling G0 monolayer cultures of contact inhibited normal human fibroblasts with 1 Gev amu iron ions with and without filtration with various thicknesses of Aluminum Al or polyethylene CH 2 and then measured the frequencies of chromosome-type aberrations dicentrics and excess fragments in the first post-irradiation mitosis Irradiations were carried out at the NRSL facility at Brookhaven National Laboratory For doses ranging up to 4 to 6 Gy the dose response for the total of these aberrations per cell was not significantly affected by beam filtrations up to 5 4 cm Al or up to 11 cm polyethylene relative to the unfiltered beam Neither was the dose response significantly different for unfiltered beams of 300 or 600 Mev amu iron ions relative to the 1 Gev amu iron ions The studies with 1 Gev amu iron ions were repeated four different times over a period of four years in each case with coded samples so the individual scoring aberrations would not know the irradiation conditions employed Comparison of the same effects in parallel experiments using 137 Cs gamma-rays allowed us to estimate that the RBE for aberration induction by these HZE iron ions for these acute high dose-rate exposures was approximately

  13. Aberrant expression of the hematopoietic-restricted minor histocompatibility antigen LRH-1 on solid tumors results in efficient cytotoxic T cell-mediated lysis.

    PubMed

    Overes, Ingrid M; Levenga, T Henriëtte; Vos, Johanna C M; van Horssen-Zoetbrood, Agnes; van der Voort, Robbert; De Mulder, Pieter H; de Witte, Theo M; Dolstra, Harry

    2009-03-01

    CD8(+) T cells recognizing minor histocompatibility antigens (MiHA) on solid tumor cells may mediate effective graft-versus-tumor (GVT) reactivity after allogeneic stem cell transplantation (SCT). Previously, we identified LRH-1 as a hematopoietic-restricted MiHA encoded by the P2X5 gene. Here, we report that LRH-1 is aberrantly expressed on solid tumor cells. P2X5 mRNA expression is demonstrated in a significant portion of solid tumor cell lines, including renal cell carcinoma (RCC), melanoma, colorectal carcinoma, brain cancer and breast cancer. Importantly, P2X5 gene expression was also detected in a subset of primary solid tumor specimens derived from RCC, brain cancer and breast cancer patients. Furthermore, P2X5 expressing solid tumor cells can be effectively targeted by LRH-1-specific cytotoxic T lymphocytes under inflammatory conditions. The expression of HLA-B7 and CD54 on tumor cells increases upon cytokine stimulation resulting in improved T cell activation as observed by higher levels of degranulation and enhanced tumor cell lysis. Overall, hematopoietic-restricted MiHA LRH-1 is aberrantly expressed on solid tumor cells and may be used as target in GVT-specific immunotherapy after SCT.

  14. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors

    PubMed Central

    Kanthala, Shanthi; Pallerla, Sandeep; Jois, Seetharama

    2015-01-01

    Expression of the EGF receptors (EGFRs) is abnormally high in many types of cancer, including 25% of lung cancers. Successful treatments target mutations in the EGFR tyrosine kinase domain with EGFR tyrosine kinase inhibitors (TKIs). However, almost all patients develop resistance to this treatment, and acquired resistance to first-generation TKI has prompted the clinical development of a second generation of EGFR TKI. Because of the development of resistance to treatment of TKIs, there is a need to collect genomic information about EGFR levels in non-small-cell lung cancer patients. Herein, we focus on current molecular targets that have therapies available as well as other targets for which therapies will be available in the near future. PMID:25757687

  15. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.

    PubMed

    Viader, Andreu; Sasaki, Yo; Kim, Sungsu; Strickland, Amy; Workman, Cayce S; Yang, Kui; Gross, Richard W; Milbrandt, Jeffrey

    2013-03-06

    Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.

  16. Cytogenetic aberrations in primary cell cultures of the ovarian surface epithelium.

    PubMed

    Chuaire-Noack, Lilian; Rondón-Lagos, Sandra; Ramírez-Corredor, Amparo; Ibáñez-Pinilla, Milcíades; Ramírez-Clavijo, Sandra

    2010-12-01

    Our objective was to determine the presence of chromosomal abnormalities in primary cultures of ovarian surface epithelial cells in women of different ages with no history of cancer. Throughout conventional cytogenetic techniques, we analyzed chromosome spreads of cultured ovarian epithelial cells from 10 donors who were 50 or more years old (B) and 16 controls between 20 and 49 years old (A), belonging to the mestizo population in Bogota DC, Colombia. Of the 26 cultures that were analyzed in passage 1, 61.5% had an abnormal chromosome complement (62.5% in A, and 60% in B). Abnormalities included polyploidies, endoduplications and monosomies. Deletions in chromosomes 3 and 11 were found in just one metaphase. None of the samples showed weaknesses or breakpoints. After transforming and applying the exact student's t-test for variance heterogeneity, we found significant differences in the frequency of metaphases, that were higher in A than in B (p=0.05), and in the frequency of polyploidies, which were higher in B than in A (p=0.044). Through the application of the Mann-Whitney test, we determined that the frequency of endoduplications was higher in A than in B (p=0.126), without reaching significant differences. There were no significant differences in the frequency of monosomies. The level of significance was set at p < or = 0.05. Taking into account that polyploidization is a marker of chromosomal instability and that the risk of cancer arising from the ovarian surface epithelium augments substantially after menopause, the increase in the frequency of age-associated polyploidies could be used as a predictor of ovarian cancer in women from an ethnically homogeneous population as the mestizo one in Bogota DC.

  17. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma

    SciTech Connect

    Kumar, Abhinav; Mandiyan, Valsan; Suzuki, Yoshihisa; Zhang, Chao; Rice, Julie; Tsai, James; Artis, Dean R.; Ibrahim, Prabha; Bremer, Ryan

    2010-07-19

    Pim1, a serine/threonine kinase, is involved in several biological functions including cell survival, proliferation, and differentiation. While pim1 has been shown to be involved in several hematopoietic cancers, it was also recently identified as a target of aberrant somatic hypermutation in diffuse large cell lymphoma (DLCL), the most common form of non-Hodgkin's lymphoma. The crystal structures of Pim1 in apo form and bound with AMPPNP have been solved and several unique features of Pim1 were identified, including the presence of an extra {beta}-hairpin in the N-terminal lobe and an unusual conformation of the hinge connecting the two lobes of the enzyme. While the apo Pim1 structure is nearly identical with that reported recently, the structure of AMPPNP bound to Pim1 is significantly different. Pim1 is unique among protein kinases due to the presence of a proline residue at position 123 that precludes the formation of the canonical second hydrogen bond between the hinge backbone and the adenine moiety of ATP. One crystal structure reported here shows that changing P123 to methionine, a common residue that offers the backbone hydrogen bond to ATP, does not restore the ATP binding pocket of Pim1 to that of a typical kinase. These unique structural features in Pim1 result in novel binding modes of AMP and a known kinase inhibitor scaffold, as shown by co-crystallography. In addition, the kinase activities of five Pim1 mutants identified in DLCL patients have been determined. In each case, the observed effects on kinase activity are consistent with the predicted consequences of the mutation on the Pim1 structure. Finally, 70 co-crystal structures of low molecular mass, low-affinity compounds with Pim1 have been solved in order to identify novel chemical classes as potential Pim1 inhibitors. Based on the structural information, opportunities for optimization of one specific example are discussed.

  18. Fetal hippocampal CA3 cell grafts enriched with FGF-2 and BDNF exhibit robust long-term survival and integration and suppress aberrant mossy fiber sprouting in the injured middle-aged hippocampus.

    PubMed

    Rao, Muddanna S; Hattiangady, Bharathi; Shetty, Ashok K

    2006-02-01

    Cell transplants that successfully replace the lost neurons and facilitate the reconstruction of the disrupted circuitry in the injured aging hippocampus are invaluable for treating acute head injury, stroke and status epilepticus in the elderly. This is because apt graft integration has the potential to prevent the progression of the acute injury into chronic epilepsy in the elderly. However, neural transplants into the injured middle-aged or aged hippocampus exhibit poor cell survival, suggesting that apt graft augmentation strategies are critical for robust integration of grafted cells into the injured aging hippocampus. We examined the efficacy of pre-treatment and grafting of donor fetal CA3 cells with a blend of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) for lasting survival and integration of grafted cells in the injured middle-aged (12 months old) hippocampus of F344 rats. Grafts were placed at 4 days after the kainic-acid-induced hippocampal injury and were analyzed at 6 months post-grafting. We demonstrate that 80% of grafted cells exhibit prolonged survival and 71% of grafted cells differentiate into CA3 pyramidal neurons. Grafts also receive a robust afferent input from the host mossy fibers and project efferent axons into the denervated zones of the dentate gyrus and the CA1 subfield. Consequently, the aberrant sprouting of the dentate mossy fibers, an epileptogenic change that typically ensues after the hippocampal injury, was suppressed. Thus, grafts of fetal CA3 cells enriched with FGF-2 and BDNF exhibit robust integration and dampen the abnormal mossy fiber sprouting in the injured middle-aged hippocampus. Because the aberrantly sprouted mossy fibers contribute to the generation of seizures, the results suggest that the grafting intervention using FGF-2 and BDNF is efficacious for suppressing epileptogenesis in the injured middle-aged hippocampus.

  19. Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells

    PubMed Central

    Eruslanov, Evgeniy; Daurkin, Irina; Vieweg, Johannes; Daaka, Yehia; Kusmartsev, Sergei

    2011-01-01

    Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin E2 (PGE2) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGE2. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGE2, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGE2 metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue. PMID:21315786

  20. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster (CHO) Cells With and Without Metabolic Activation. Test Article. Diethylene triamine trinitrate (DETN)

    DTIC Science & Technology

    2010-02-25

    chromatid interchanges between chromosomes leading to four-armed configurations. This could be asymmetrical with formation of a dicentric and an acentric...fragment which may be misaligned and a shortened monocentric chromosome , and where there is no sister chromatid union. Dicentric - an asymmetrical...Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation Test

  1. mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate.

    PubMed

    Hada, M; Gersey, B; Saganti, P B; Wilkins, R; Cucinotta, F A; Wu, H

    2010-08-14

    Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures.

  2. Aberrant Methylation Inactivates Somatostatin and Somatostatin Receptor Type 1 in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Misawa, Kiyoshi; Misawa, Yuki; Kondo, Haruki; Mochizuki, Daiki; Imai, Atsushi; Fukushima, Hirofumi; Uehara, Takayuki; Kanazawa, Takeharu; Mineta, Hiroyuki

    2015-01-01

    Purpose The aim of this study was to define somatostatin (SST) and somatostatin receptor type 1 (SSTR1) methylation profiles for head and neck squamous cell carcinoma (HNSCC) tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker. Methods Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP) in HNSCC. Results Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043), stage (P = 0.008), galanin receptor type 2 (GALR2) methylation (P = 0.041), and tachykinin-1 (TAC1) (P = 0.040). SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037), stage (P = 0.037), SST methylation (P < 0.001), and expression of galanin (P = 0.03), GALR2 (P = 0.014), TAC1 (P = 0.023), and tachykinin receptor type 1 (TACR1) (P = 0.003). SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001). Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028). In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002). Conclusions CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker. PMID:25734919

  3. M-BAND Analysis of Chromosome Aberration In Human Epithelial Cells exposed to Gamma-ray and Secondary Neutrons of Low Dose Rate

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's "30L" beam line is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams at an entrance dose rate of 2.5 cGy/hr or gamma-ray at 1.7cGy/hr, and assessed the induction of chromosome aberrations that were identified with mBAND. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results for gamma-rays and 600 MeV/nucleon Fe ions of high dose rate, the neutron data showed a higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. The low dose rate gamma-rays induced a lower frequency of chromosome aberrations than high dose rate gamma-rays, but the inversion spectrum was similar for the same cytotoxic effect. The distribution of damage sites on chromosome 3 for different radiation types will also be discussed.

  4. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Wagener, Rabea; Kreuz, Markus; Kohler, Christian W; Richter, Julia; Pienkowska-Grela, Barbara; Adam, Patrick; Burkhardt, Birgit; Claviez, Alexander; Damm-Welk, Christine; Drexler, Hans G; Hummel, Michael; Jaffe, Elaine S; Küppers, Ralf; Lefebvre, Christine; Lisfeld, Jasmin; Löffler, Markus; Macleod, Roderick A F; Nagel, Inga; Oschlies, Ilske; Rosolowski, Maciej; Russell, Robert B; Rymkiewicz, Grzegorz; Schindler, Detlev; Schlesner, Matthias; Scholtysik, René; Schwaenen, Carsten; Spang, Rainer; Szczepanowski, Monika; Trümper, Lorenz; Vater, Inga; Wessendorf, Swen; Klapper, Wolfram; Siebert, Reiner

    2014-02-20

    The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.

  5. Immunopathogenesis of systemic lupus erythematosus and rheumatoid arthritis: the role of aberrant expression of non-coding RNAs in T cells.

    PubMed

    Lai, N-S; Koo, M; Yu, C-L; Lu, M-C

    2017-03-01

    Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are RNA molecules that do not translate into protein. Both miRNAs and lncRNAs are known to regulate gene expression and to play an essential role in T cell differentiation and function. Both systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disease, and rheumatoid arthritis (RA), a representative disease of inflammatory arthritis, are characterized by a complex dysfunction in the innate and adaptive immunity. T cells play a central role in cell-mediated immune response and multiple defects in T cells from patients with SLE and RA have been observed. Abnormality in T cell signalling, cytokine and chemokine production, T cell activation and apoptosis, T cell differentiation and DNA methylation that are associated closely with the aberrant expression of a number of miRNAs and lncRNAs have been implicated in the immunopathogenesis of SLE and RA. This review aims to provide an overview of the current state of research on the abnormal expression of miRNAs and lncRNAs in T cells and their roles in the immunopathogenesis of SLE and RA. In addition, by comparing the differences in aberrant expression of miRNAs and lncRNAs in T cells between patients with SLE and RA, controversial areas are highlighted that warrant further investigation.

  6. Further studies on aberrant gene expression associated with arsenic-induced malignant transformation in rat liver TRL1215 cells

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Benbrahim-Tallaa, Lamia; Qian Xun; Yu, Limei; Xie Yaxiong; Boos, Jennifer; Qu Wei; Waalkes, Michael P.

    2006-11-01

    Chronic arsenic exposure of rat liver epithelial TRL1215 cells induced malignant transformation in a concentration-dependent manner. To further define the molecular events of these arsenic-transformed cells (termed CAsE cells), gene expressions associated with arsenic carcinogenesis or influenced by methylation were examined. Real-time RT-PCR showed that at carcinogenic concentrations (500 nM, and to a less extent 250 nM of arsenite), the expressions of {alpha}-fetoprotein (AFP), Wilm's tumor protein-1 (WT-1), c-jun, c-myc, H-ras, c-met and hepatocyte growth factor, heme oxygenase-1, superoxide dismutase-1, glutathione-S-transferase-{pi} and metallothionein-1 (MT) were increased between 3 to 12-fold, while expressions of insulin-like growth factor II (IGF-II) and fibroblast growth factor receptor (FGFR1) were essentially abolished. These changes were not significant at the non-carcinogenic concentration (125 nM), except for IGF-II. The positive cell-cycle regulators cyclin D1 and PCNA were overexpressed in CAsE cells, while the negative regulators p21 and p16 were suppressed. Western-blot confirmed increases in AFP, WT-1, cyclin D1 and decreases in p16 and p21 protein in CAsE cells. The CAsE cells over-expressed MT but the demethylating agent 5-aza-deoxycytidine (5-aza-dC, 2.5 {mu}M, 72 h) stimulated further MT expression. 5-Aza-deoxycytidine restored the loss of expression of p21 in CAsE cells to control levels, but did not restore the expression of p16, IGF-II, or FGFR1, indicating the loss of expression of these genes is due to factors other than DNA methylation changes. Overall, an intricate variety of gene expression changes occur in arsenic-induced malignant transformation of liver cells including oncogene activation and alterations in expression of genes critical to growth regulation.

  7. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation.

    PubMed

    Yamaguchi, Kazunori; Takanashi, Tomoka; Nasu, Kentaro; Tamai, Keiichi; Mochizuki, Mai; Satoh, Ikuro; Ine, Shoji; Sasaki, Osamu; Satoh, Kennichi; Tanaka, Nobuyuki; Harigae, Hideo; Sugamura, Kazuo

    2016-05-01

    The transplantation of human cancer cells into immunodeficient NOD/SCID/IL-2Rγc(null) (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T-cell leukemia-derived cell lines, ST1-N6 and TL-Om1-N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL-Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1-N6 and TL-Om1-N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK-2206 attenuated the progression of tumors induced by ST1-N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T-cell leukemia-derived cells.

  8. A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected].

    PubMed

    Miyazaki, Yusei; Li, Rui; Rezk, Ayman; Misirliyan, Hétoum; Moore, Craig; Farooqi, Nasr; Solis, Mayra; Goiry, Lorna Galleguillos; de Faria Junior, Omar; Dang, Van Duc; Colman, David; Dhaunchak, Ajit Singh; Antel, Jack; Gommerman, Jennifer; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2014-01-01

    Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines. However, the mechanisms underlying the observed B cell cytokine dysregulation in MS remain unknown. We hypothesized that aberrant expression of particular microRNAs might be involved in the dysregulated pro-inflammatory cytokine responses of B cells of patients with MS. Through screening candidate microRNAs in activated B cells of MS patients and matched healthy subjects, we discovered that abnormally increased secretion of lymphotoxin and tumor necrosis factor α by MS B cells is associated with abnormally increased expression of miR-132. Over-expression of miR-132 in normal B cells significantly enhanced their production of lymphotoxin and tumor necrosis factor α. The over-expression of miR-132 also suppressed the miR-132 target, sirtuin-1. We confirmed that pharmacological inhibition of sirtuin-1 in normal B cells induces exaggerated lymphotoxin and tumor necrosis factor α production, while the abnormal production of these cytokines by MS B cells can be normalized by resveratrol, a sirtuin-1 activator. These results define a novel miR-132-sirtuin-1 axis that controls pro-inflammatory cytokine secretion by human B cells, and demonstrate that a dysregulation of this axis underlies abnormal pro-inflammatory B cell cytokine responses in patients with MS.

  9. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  10. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  11. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  12. Aberrantly regulated dysadherin and B-cell lymphoma 2/B-cell lymphoma 2-associated X enhances tumorigenesis and DNA targeting drug resistance of liver cancer stem cells

    PubMed Central

    JIANG, NAN; CHEN, WEI; ZHANG, JIAN-WEN; LI, YANG; ZENG, XIAN-CHENG; ZHANG, TONG; FU, BIN-SHENG; YI, HUI-MIN; ZHANG, QI

    2015-01-01

    Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) are frequently resistant to current therapeutic regimens and therefore responsible for tumor recurrence. Previous studies have reported that expression levels of dysadherin in CSCs may be used as a prognostic indicator, which is also responsible for treatment failure and poor survival rates. The present study analyzed the association of enhanced dysadherin levels with drug resistance and evasion of apoptosis in human HCC SP cells. An SP of 3.7% was isolated from human HCC cells using fluorescence-activated cell sorting. These SP cells displayed elevated levels of dysadherin and stemness proteins as well as high resistance to chemotherapeutic drugs and apoptosis. In order to reveal the possible link between dysadherin levels and tumorigenesis of SP cells, small interfering RNA technology was used to knockdown the expression of dysadherin in SP cells. Of note, the siRNA-transfected SP cells showed significantly reduced levels of stemness proteins, and were more sensitive to DNA-targeting drugs and apoptotic cell death as compared to non-transfected cells. Furthermore, in vivo experiments in NON/SCID mice indicated that dysadherin-expressing SP cells were highly tumorigenic, as they were able to induce tumor growth. The SP cell-derived tumor tissues in turn showed elevated dysadherin levels. The results of the present study therefore suggested that knockdown of dysadherin suppressed the tumorigenic properties of cancer stem-like SP cells. Hence, dysadherin is a valuable potential target for the development of novel anti-cancer drugs. PMID:26458963

  13. Chicago aberration correction work.

    PubMed

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  14. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  15. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  16. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  17. Hormone dependency of chromosome aberrations induced by 7,12-dimethylbenz(a)anthracene in rat bone marrow cells: site-specific increase by erythropoietin

    SciTech Connect

    Ueda, N.; Suglyama, T.; Chattopadhyay, S.C.; Goto-Mimura, K.; Maeda, S.

    1981-08-01

    The frequency of chromosome aberrations (CA) 6 hours after iv injection of 50 mg 7,12-dimethylbenz(a)anthracene (DMBA0/kg was studied in bone marrow cells of the noninbred Long-Evans rat under various hematopoietic conditions. The percentage of metaphase cells with CA was enhanced by anemia and suppressed by polycythemia. The low incidence of CA in polycythemic rats was reversed by 6 U of sheep erythropoietin (EP) injected at the time of DMBA treatment. The interchromosomal and intrachromosomal distribution of CA indicated that hematopoietic stimuli, more specifically EP, greatly enhanced DMBA-induced CA in specific chromosomal regions.

  18. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  19. Nicotine derived genotoxic effects in human primary parotid gland cells as assessed in vitro by comet assay, cytokinesis-block micronucleus test and chromosome aberrations test.

    PubMed

    Ginzkey, Christian; Steussloff, Gudrun; Koehler, Christian; Burghartz, Marc; Scherzed, Agmal; Hackenberg, Stephan; Hagen, Rudolf; Kleinsasser, Norbert H

    2014-08-01

    Genotoxic effects of nicotine were described in different human cells including salivary gland cells. Based on the high nicotine concentration in saliva of smokers or patients using therapeutic nicotine patches, the current study was performed to evaluate the genotoxic potential of nicotine in human salivary gland cells. Therefore, primary salivary gland cells from 10 patients undergoing parotid gland surgery were exposed to nicotine concentrations between 1 μM and 1000 μM for 1 h in the absence of exogenous metabolic activation. The acinar phenotype was proven by immunofluorescent staining of alpha-amylase. Genotoxic effects were evaluated using the Comet assay, the micronucleus test and the chromosome aberration test. Cytotoxicity and apoptosis were determined by trypan blue exclusion test and Caspase-3 assay. Nicotine was able to induce genotoxic effects in all three assays. The chromosome aberration test was the most sensitive and increases in numerical and structural (chromatid-type and chromosome-type) aberrations were seen at ≥1 μM, whereas increases in micronuclei frequency were detected at 10 μM and DNA damage as measured in the Comet assay was noted at >100 μM. No cytotoxic damage or influence of apoptosis could be demonstrated. Nicotine as a possible risk factor for tumor initiation in salivary glands is still discussed controversially. Our results demonstrated the potential of nicotine to induce genotoxic effects in salivary gland cells. These results were observed at saliva nicotine levels similar to those found after oral or transdermal exposure to nicotine and suggest the necessity of careful monitoring of the use of nicotine in humans.

  20. Induction of chromosomal aberrations in mouse zygotes by acrylamide treatment of male germ cells and their correlation with dominant lethality and heritable translocations

    SciTech Connect

    Marchetti, F.; Lowe, X.; Wyrobek, A.J.; Bishop, J.

    1997-12-31

    The objectives of this research were: (1) to investigate the time course of the cytogenetic defects induced by acrylamide (AA) treatment (5 x 50 mg/kg) of male germ cells in first-cleavage zygote metaphases using PAINT/DAPI analysis, and (2) to characterize the correlation between chromosomal aberrations at first cleavage, dominant lethality, and heritable translocations. PAINT/DAPI analysis employs multicolor fluorescence in situ hybridization painting plus DAPI staining to detect both stable and unstable chromosomal aberrations at first-cleavage metaphase of the zygote. High levels of chromosomally defective zygotes were detected after mating at all postmeiotic stages (20-190-fold, P < 0.001). Early spermatozoa (6.5 d post-treatment) were the most sensitive, with 76% of the zygotes carrying cytogenetic defects. A significant 10-fold increase was also detected 27.5 d post-treatment, indicating that AA had a cytogenetic effect on meiotic stages. PAINT/DAPI analysis revealed that: (1) AA-induced chromosomal breaks occurred at random, and (2) the frequencies of symmetrical and asymmetrical exchanges were similar at all mating days, except 9.5 d after AA treatment, where significantly (P < 0.02) more asymmetrical aberrations were found. 33 refs., 5 figs., 4 tabs.

  1. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  2. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  3. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  4. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro

    PubMed Central

    Piltonen, T.T.; Chen, J.C.; Khatun, M.; Kangasniemi, M.; Liakka, A.; Spitzer, T.; Tran, N.; Huddleston, H.; Irwin, J.C.; Giudice, L.C.

    2015-01-01

    STUDY QUESTION Do endometrial stromal fibroblasts (eSF) in women with polycystic ovary syndrome (PCOS) (eSFpcos) exhibit altered estrogen and/or progesterone (P4) responses, which may explain some of the adverse reproductive outcomes and endometrial pathologies in these women? SUMMARY ANSWER In vitro, eSF from women with PCOS exhibit an aberrant decidualization response and concomitant changes in pro-inflammatory cytokine, chemokine and matrix metalloproteinase (MMP) release and immune cell chemoattraction. In vivo these aberrations may result in suboptimal implantation and predisposition to endometrial cancer. WHAT IS KNOWN ALREADY The endometrium in women with PCOS has several abnormalities including progesterone (P4) resistance at the gene expression level, likely contributing to subfertility, pregnancy complications and increased endometrial cancer risk in PCOS women. STUDY DESIGN, SIZE, DURATION Prospective, university-based, case–control, in vitro study. PARTICIPANTS/MATERIALS, SETTING, METHODS Cultures of eSFPCOS (n = 12, Rotterdam and NIH criteria) and eSFControl (Ctrl) (n = 6, regular cycle length, no signs of hyperandrogenism) were treated with vehicle, estradiol (E2, 10 nM) or E2P4 (10 nM/1 μM) for 14 days. Progesterone receptor (PGR) mRNA was assessed with quantitative real-time PCR (qRT–PCR) and eSF decidualization was confirmed by insulin-like growth factor-binding protein-1 (IGFBP-1) transcript and protein expression. Fractalkine (CX3CL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 6, 8 and 11, macrophage chemoattractant protein (MCP) 1 and 3, CCL5 (RANTES) and MMPs (MMP1, 2, 3, 7, 9, 10 and 12) were measured in conditioned media by Luminex multiplex assays, and chemotactic activity of the conditioned media was tested in a migration assay using CD14+ monocyte and CD4+ T-cell migration assay. Effects of IL-6 (0.02, 0.2, 2 or 20 ng/ml) or IL-8 (0.04, 0.4, 4, or 40 ng/ml) or combination (0.2 ng/ml IL-6 and 4.0 ng

  5. Cell metabolism: an essential link between cell growth and apoptosis

    PubMed Central

    Mason, Emily F.; Rathmell, Jeffrey C.

    2010-01-01

    Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. PMID:20816705

  6. Regulatory T-cell depletion in the gut caused by integrin β7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity.

    PubMed

    Zhang, H L; Zheng, Y J; Pan, Y D; Xie, C; Sun, H; Zhang, Y H; Yuan, M Y; Song, B L; Chen, J F

    2016-03-01

    Integrin α4β7 controls lymphocyte trafficking into the gut and has essential roles in inflammatory bowel disease (IBD). The α4β7-blocking antibody vedolizumab is approved for IBD treatment; however, high dose of vedolizumab aggravates colitis in a small percentage of patients. Herein, we show that integrin β7 deficiency results in colonic regulatory T (Treg) cell depletion and exacerbates dextran sulfate sodium (DSS) colitis by evoking aberrant innate immunity. In DSS-treated β7-deficient mice, the loss of colonic Treg cells induces excessive macrophage infiltration in the colon via upregulation of colonic epithelial intercellular adhesion molecule 1 and increases proinflammatory cytokine expression, thereby exacerbating DSS-induced colitis. Moreover, reconstitution of the colonic Treg cell population in β7-deficient mice suppresses aberrant innate immune response in the colon and attenuates DSS colitis. Thus, integrin α4β7 is essential for suppression of DSS colitis as it regulates the colonic Treg cell population and innate immunity.

  7. Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy.

    PubMed

    Biello, Federica; Burrafato, Giovanni; Rijavec, Erika; Genova, Carlo; Barletta, Giulia; Truini, Anna; Coco, Simona; Bello, Maria Giovanna Dal; Alama, Angela; Boccardo, Francesco; Grossi, Francesco

    2016-01-01

    Lung cancer is still the leading cause of cancer related death worldwide. Fibroblast growth factor receptor (FGFR) is a tirosine-kinase receptor that is seen to be amplified or mutated in non-small cell lung cancer (NSCLC) and it plays a crucial role in tumour development and maintenance. The authors analyzed the state of the art of FGFR by reviewing the current literature. Fibroblast growth factor (FGF)-FGFR pathway and their aberrations are described, with the evaluation of their possible prognostic role in NSCLC and in particular in squamous cell carcinomas, in which FGFR is more often amplified. New therapeutic agents targeting FGFR signaling have been developed and are now in clinical evaluation. Dysregulation of FGF signaling in tumour cells is related to FGFR gene amplification or mutation, although it is still uncertain which of these aberrations represents a real predictor of response to specific inhibitors. However, recent evidence has questioned whether FGFR is a real target in squamous cell histology. The effectiveness of FGFR inhibitors is also still unclear since there are no clinical data on selected patients. Moreover, the management of specific side effects related to inhibition of the physiological role of FGF should be more thorough.

  8. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    PubMed

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  9. Aberrant Overexpression of the Rgl2 Ral Small GTPase-specific Guanine Nucleotide Exchange Factor Promotes Pancreatic Cancer Growth through Ral-dependent and Ral-independent Mechanisms*

    PubMed Central

    Vigil, Dominico; Martin, Timothy D.; Williams, Falina; Yeh, Jen Jen; Campbell, Sharon L.; Der, Channing J.

    2010-01-01

    Our recent studies established essential and distinct roles for RalA and RalB small GTPase activation in K-Ras mutant pancreatic ductal adenocarcinoma (PDAC) cell line tumorigencity, invasion, and metastasis. However, the mechanism of Ral GTPase activation in PDAC has not been determined. There are four highly related mammalian RalGEFs (RalGDS, Rgl1, Rgl2, and Rgl3) that can serve as Ras effectors. Whether or not they share distinct or overlapping functions in K-Ras-mediated growth transformation has not been explored. We found that plasma membrane targeting to mimic persistent Ras activation enhanced the growth-transforming activities of RalGEFs. Unexpectedly, transforming activity did not correlate directly with total cell steady-state levels of Ral activation. Next, we observed elevated Rgl2 expression in PDAC tumor tissue and cell lines. Expression of dominant negative Ral, which blocks RalGEF function, as well as interfering RNA suppression of Rgl2, reduced PDAC cell line steady-state Ral activity, growth in soft agar, and Matrigel invasion. Surprisingly, the effect of Rgl2 on anchorage-independent growth could not be rescued by constitutively activated RalA, suggesting a novel Ral-independent function for Rgl2 in transformation. Finally, we determined that Rgl2 and RalB both localized to the leading edge, and this localization of RalB was dependent on endogenous Rgl2 expression. In summary, our observations support nonredundant roles for RalGEFs in Ras-mediated oncogenesis and a key role for Rgl2 in Ral activation and Ral-independent PDAC growth. PMID:20801877

  10. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  11. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  12. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells.

    PubMed

    Cunha, Micaela; Testa, Etienne; Komova, Olga V; Nasonova, Elena A; Mel'nikova, Larisa A; Shmakova, Nina L; Beuve, Michaël

    2016-03-01

    The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.

  13. Folate deficiency and aberrant expression of cell adhesion molecule 1 are potential indicators of prognosis in laryngeal squamous cell carcinoma

    PubMed Central

    Chang, Hao; Ma, Min; Ma, Rui; Zhang, Chao; Zeng, Wei; Xing, Lu Qi

    2016-01-01

    The etiology of laryngeal squamous cell carcinoma (LSCC) has not yet been adequately examined. Therefore, the present study aimed to investigate the association between serum folate deficiency and abnormal expression of the cell adhesion molecule 1 (CADM1) protein in the progression of LSCC. Samples were collected from 60 patients with LSCC and 30 healthy people. Radioimmunoassays and immunohistochemical staining were performed to measure serum folate levels and CADM1 protein expression, respectively. The results demonstrated that CADM1 expression in LSCC specimens was significantly lower than in adjacent normal tissues (χ2=28.229, P<0.001), which was associated with histological differentiation and clinical stage (P=0.010 and 0.020, respectively). Levels of serum folate in patients with LSCC were significantly lower than those observed in healthy individuals (P=0.002). Furthermore, TSLCl expression and serum folate levels were positively correlated in LSCC (r=0.642, P=0.001). Thus, the present study determined that decreased CADM1 protein expression and low levels of serum folate were correlated with an increased severity of LSCC. PMID:28105160

  14. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  15. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  16. Apoptosis induction in colon cancer cell lines and alteration of aberrant crypt foci in rat colon by purple rice (Oryza sativa L. var. glutinosa) extracts.

    PubMed

    Wongjaikam, Suwakon; Summart, Ratasak; Chewonarin, Teera

    2014-01-01

    Crude ethanol extracts (CEE) of purple rice was fractionated to obtain hexane soluble (HSF) and ethyl acetate soluble fractions (EASF). Total antioxidant capacity was higher in CEE than the HSF and EASF. However, HSF exhibited strong antiproliferation and apoptosis induction against colon cancer cell lines, both p53 wild-type (RKO) and mutant (SW620) strains. Then, the CEE was used to determine the effects on the progression of aberrant crypt foci (ACF), a preneoplastic lesion seen in colon carcinogenesis in rats. Male Wistar rats were subcutaneously injected of 40 mg/kg body weight dimethylhydrazin (DMH) once weekly for 2 wk. After 2 wk, rats were orally administered ethanol extract at 100 and 1000 mg/kg body weight, for 4 wk. Rats fed with only the high dose of CEE had significantly decreased numbers of ACF per rat (45.56%) and crypt multiplicity (AC/focus) (16.67%) compared to rats that received DMH alone. The result also demonstrated that CEE induced apoptosis in colonic epithelium cells of rat received colon carcinogen as detected the increasing of caspase-3 activity. This finding could be concluded that purple rice extracts inhibited aberrant colonic epithelial cell progression via apoptosis induction.

  17. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  18. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    PubMed

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells.

  19. The cell biology of bone growth.

    PubMed

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  20. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  1. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  2. Monocarboxylate transporter 8 in neuronal cell growth.

    PubMed

    James, S R; Franklyn, J A; Reaves, B J; Smith, V E; Chan, S Y; Barrett, T G; Kilby, M D; McCabe, C J

    2009-04-01

    Thyroid hormones are essential for the normal growth and development of the fetus, and even small alterations in maternal thyroid hormone status during early pregnancy may be associated with neurodevelopmental abnormalities in childhood. Mutations in the novel and specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) have been associated with severe neurodevelopmental impairment. However, the mechanism by which MCT8 influences neural development remains poorly defined. We have therefore investigated the effect of wild-type (WT) MCT8, and the previously reported L471P mutant, on the growth and function of human neuronal precursor NT2 cells as well as MCT8-null JEG-3 cells. HA-tagged WT MCT8 correctly localized to the plasma membrane in NT2 cells and increased T(3) uptake in both cell types. In contrast, L471P MCT8 was largely retained in the endoplasmic reticulum and displayed no T(3) transport activity. Transient overexpression of WT and mutant MCT8 proteins failed to induce endoplasmic reticular stress or apoptosis. However, MCT8 overexpression significantly repressed cell proliferation in each cell type in both the presence and absence of the active thyroid hormone T(3) and in a dose-dependent manner. In contrast, L471P MCT8 showed no such influence. Finally, small interfering RNA depletion of endogenous MCT8 resulted in increased cell survival and decreased T(3) uptake. Given that T(3) stimulated proliferation in embryonic neuronal NT2 cells, whereas MCT8 repressed cell growth, these data suggest an entirely novel role for MCT8 in addition to T(3) transport, mediated through the modulation of cell proliferation in the developing brain.

  3. Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum.

    PubMed

    Donovan, Catriona; Schauss, Astrid; Krämer, Reinhard; Bramkamp, Marc

    2013-01-01

    Spatial and temporal regulation of bacterial cell division is imperative for the production of viable offspring. In many rod-shaped bacteria, regulatory systems such as the Min system and nucleoid occlusion ensure the high fidelity of midcell divisome positioning. However, regulation of division site selection in bacteria lacking recognizable Min and nucleoid occlusion remains less well understood. Here, we describe one such rod-shaped organism, Corynebacterium glutamicum, which does not always place the division septum precisely at midcell. Here we now show at single cell level that cell growth and division site selection are spatially and temporally regulated by chromosome segregation. Mutants defective in chromosome segregation have more variable cell growth and aberrant placement of the division site. In these mutants, division septa constrict over and often guillotine the nucleoid, leading to nonviable, DNA-free cells. Our results suggest that chromosome segregation or some nucleoid associated factor influences growth and division site selection in C. glutamicum. Understanding growth and regulation of C. glutamicum cells will also be of importance to develop strains for industrial production of biomolecules, such as amino acids.

  4. Chromosome Segregation Impacts on Cell Growth and Division Site Selection in Corynebacterium glutamicum

    PubMed Central

    Donovan, Catriona; Schauss, Astrid; Krämer, Reinhard; Bramkamp, Marc

    2013-01-01

    Spatial and temporal regulation of bacterial cell division is imperative for the production of viable offspring. In many rod-shaped bacteria, regulatory systems such as the Min system and nucleoid occlusion ensure the high fidelity of midcell divisome positioning. However, regulation of division site selection in bacteria lacking recognizable Min and nucleoid occlusion remains less well understood. Here, we describe one such rod-shaped organism, Corynebacterium glutamicum, which does not always place the division septum precisely at midcell. Here we now show at single cell level that cell growth and division site selection are spatially and temporally regulated by chromosome segregation. Mutants defective in chromosome segregation have more variable cell growth and aberrant placement of the division site. In these mutants, division septa constrict over and often guillotine the nucleoid, leading to nonviable, DNA-free cells. Our results suggest that chromosome segregation or some nucleoid associated factor influences growth and division site selection in C. glutamicum. Understanding growth and regulation of C. glutamicum cells will also be of importance to develop strains for industrial production of biomolecules, such as amino acids. PMID:23405112

  5. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth.

    PubMed

    Rucker, Frances J; Wallman, Josh

    2009-07-01

    Longitudinal chromatic aberration (LCA) causes short wavelengths to be focused in front of long wavelengths. This chromatic signal is evidently used to guide ocular accommodation. We asked whether chick eyes exposed to static gratings simulating the chromatic effects of myopic or hyperopic defocus would "compensate" for the simulated defocus. We alternately exposed one eye of each chick to a sine-wave grating (5 or 2 cycle/deg) simulating myopic defocus ("MY defocus": image focused in front of retina; hence, red contrast higher than blue) and the other eye to a grating of the same spatial frequency simulating hyperopic defocus ("HY defocus": blue contrast higher than red). The chicks were placed in a drum with one eye covered with one grating, and then switched to another drum with the other grating with the other eye covered. To minimize the effects of altered eye-growth on image contrast, we studied only the earliest responses: first, we measured changes in choroidal thickness 45 min to 1 h after one 15-min episode in the drum, then we measured glycosaminoglycans (GAG) synthesis in sclera and choroid (by the incorporation of labeled sulfate in tissue culture) after a day of four 30-min episodes in the drum. The eyes compensated in the appropriate directions: The choroids of the eyes exposed to the HY simulation showed significantly more thinning (less thickening) over the course of the experiment than the choroids of the eyes exposed to the MY simulation (all groups mean:-17 microm; 5 c/d groups: -24 microm; paired t-test (one-tailed): p=0.0006). The rate of scleral GAG synthesis in the eye exposed to the HY simulation was significantly greater than in the eye exposed to the MY simulation (HY/MY ratio=1.20; one sample t-test (one-tailed): p=0.015). There was no significant interaction between the sign of the simulated defocus and either the spatial frequency or the presence of a +3 D lens used to compensate for the 33 cm distance of the drum. Although previous

  6. DNA methyltransferase inhibition may limit cancer cell growth by disrupting ribosome biogenesis.

    PubMed

    Moss, Tom

    2011-02-01

    "Mutations" in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene "mutation" and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers, and it has been assumed these effects are due to the reversal of "mutant" gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.

  7. [Cytogenetic aberrations in histologically benign infiltratively growing sphenoid wing meningiomas].

    PubMed

    Korshunov, A G; Cherekaev, V A; Bekiashev, A Kh; Sycheva, R V

    2007-01-01

    Meningiomas of the sphenoid wing (SW) frequently show an invasive pattern of growth and cause destruction of the adjacent structures. As a result, the rate of recurrent SW meningiomas is as high as 30%. Cytogenetic investigations showed no aberrations specific to invasively growing meningiomas. During this study, the authors evaluated 10 invasive and 5 non-invasive SW meningiomas via comparative genome hybridization (CGH) (matrix CGH), by using the gene chips of GenoSensor Array micromatrixes. The mean number of aberrations in the tumor cells was much greater in case of invasive meningiomas (67.4 versus 40.5 in case of non-invasive SW meningiomas. Furthermore, in invasive SW meningiomas, there were frequently losses in loci 1p, 6q, and 14q and gains in loci 15q and 10, which had been predetermined as molecular markers of stepwise progression of meningioma. Thus, the presence of a complex cytogenetic profile and progression-associated chromosome aberrations in benign SW meningiomas is linked with the increase of their invasive potential. Due to the fact that there are no well-defined adjuvant therapy regimens for recurring meningiomas at present, the revealed genomic aberrations may become potential targets for searching for drugs and a therapeutic intervention in future.

  8. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division

    PubMed Central

    Anderson-Furgeson, James C.; Zupan, John R.; Grangeon, Romain

    2016-01-01

    in several alphaproteobacteria, including Agrobacterium tumefaciens. Essential components for unipolar growth are largely uncharacterized, and the mechanism constraining growth to one pole of a wild-type cell is unknown. Here, we report that the deletion of a polar development gene, podJAt, results in cells exhibiting ectopic polar growth, including multiple growth poles and aberrant localization of cell division and polar growth-associated proteins. These data suggest that PodJAt is a critical factor in normal polar growth and impacts cell division in A. tumefaciens. PMID:27137498

  9. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  10. Vibration Induces BAFF Overexpression and Aberrant O-Glycosylation of IgA1 in Cultured Human Tonsillar Mononuclear Cells in IgA Nephropathy

    PubMed Central

    Ye, Muyao; Liu, Chan; Yan, Wenzhe; Peng, Xiaofei; He, Liyu; Liu, Hong; Liu, Fuyou

    2016-01-01

    Objective. To investigate the influence of in vitro vibratory stimulation of human tonsillar mononuclear cells (TMCs). Methods. Fourteen IgA nephropathy (IgAN) patients with chronic tonsillitis (CT) and 12 CT patients with no renal pathology were enrolled. Group A TMCs were collected after 24 hours of culture and used to determine baseline levels. TMCs in groups B, C, D, E, and F were exposed to vibratory stimulation (60 Hz) for 0 (as the control group), 1, 3, 5, and 10 minutes, respectively. Results. Baseline concentrations of B-cell-activation factor (BAFF) and IgA1, BAFF mRNA expression, and aberrant O-glycosylation IgA1 level were higher in the IgAN group as compared to that in the CT group, and all increased after vibratory stimulation. Baseline mRNA expressions of core β1,3-galactosyltransferase (C1GALT1) and core β1,3GalT-specific molecular chaperone (Cosmc) were lower in the IgAN group; the levels decreased further after vibratory stimulation. Conclusion. In patients with IgAN, vibratory stimulation of TMCs appears to induce IgA1 secretion through activation of BAFF release and to aberrant O-glycosylation IgA1 by suppressing C1GALT1 and Cosmc expression. In vitro vibratory stimulation of human TMCs mimics the vibratory simulation of palatine tonsils produced by vocal cords during phonation. PMID:27672662

  11. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation.

    PubMed

    Sudo, Hiroko; Garbe, James; Stampfer, Martha R; Barcellos-Hoff, Mary Helen; Kronenberg, Amy

    2008-07-01

    The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.

  12. Aberrant cell divisions in root meristeme of maize following exposure to X-rays low doses compared to similar effects of 50 Hz electromagnetic exposure

    NASA Astrophysics Data System (ADS)

    Focea, R.; Capraru, G.; Racuciu, M.; Creanga, D.; Luchian, T.

    2012-04-01

    The response of maize to radiation exposure was investigated by two cytogenetic methods considering the importance of the geno-toxic effect for environmental and agricultural purposes. Uniform genophond seeds, freshly germinated, were exposed to relatively low radiation doses using a radiotherapy X-ray applicator from a hospital irradiation device and to a 50 Hz electromagnetic field with about 10 mT magnetic induction (generated within laboratory assembled electromagnetic coils). Radicular meristeme tissue aliquots were prevailed for cytogenetic investigation based on microscopic observations and cell counting. Microscope slides were prepared following a specific procedure (squash technique and Feulgen method based on modified Carr reactive coloration). Mitotic index as well as chromosomal aberration percentage were calculated for more than 30,000 cells taken into account. From a qualitative viewpoint, chromosomal aberrations such as interchromatidian bridges, lagging and expelled chromosomes and multipolar divisions were evidenced - no distinct situation for either ionizing radiation or electromagnetic field being identified. The main quantitative difference consisted in the increased mitotic index for electromagnetic exposure increased times compared with the diminished mitotic index in the case of low X-ray doses.

  13. Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro.

    PubMed

    Ruosaari, Salla T; Nymark, Penny E H; Aavikko, Mervi M; Kettunen, Eeva; Knuutila, Sakari; Hollmén, Jaakko; Norppa, Hannu; Anttila, Sisko L

    2008-05-01

    Exposure to asbestos is known to induce lung cancer, and our previous studies have suggested that specific chromosomal regions, such as 19p13, are preferentially aberrant in lung tumours of asbestos-exposed patients. Here, we further examined the association between the 19p region and exposure to asbestos using array comparative genomic hybridization and fluorescence in situ hybridization (FISH) in lung tumours and FISH characterization of asbestos-induced micronuclei (MN) in human bronchial epithelial BEAS 2B cells in vitro. We detected an increased number of 19p losses in the tumours of asbestos-exposed patients in comparison with tumours from non-exposed subjects with similar distribution of tumour histology in both groups (13/33; 39% versus 3/25; 12%, P = 0.04). In BEAS 2B cells, a 48 h exposure to crocidolite asbestos (2.0 microg/cm(2)) was found to induce centromere-negative MN-harbouring chromosomal fragments. Furthermore, an increased frequency of rare MN containing a 19p fragment was observed after the crocidolite treatment in comparison with untreated controls (6/6000 versus 1/10 000, P = 0.01). The results suggest that 19p has significance in asbestos-associated carcinogenesis and that asbestos may be capable of inducing specific chromosome aberrations.

  14. Cell metabolism: Growth and environment. Volume I

    SciTech Connect

    Subramanian, T.A.V.

    1986-01-01

    This book describes: Protein metabolism in relation to secondary biosynthesis; nucleic acid metabolism in relation to growth; the spatial organization of secondary metabolism in microbial and plant cells; aflatoxin bioysynthesis; role of oxygenases in the metabolism of phenolic compounds; regulation of secondary metabolism by trace metals; and index.

  15. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL(-1) levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL(-1) ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL(-1) .

  16. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  17. Elastic Deformations During Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  18. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  19. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies

    PubMed Central

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M.; Petit, Patrice X.

    2016-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic

  20. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  1. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth.

    PubMed Central

    Costigan, C; Gehrung, S; Snyder, M

    1992-01-01

    The Saccharomyces cerevisiae SPA2 protein localizes at sites involved in polarized cell growth in budding cells and mating cells. spa2 mutants have defects in projection formation during mating but are healthy during vegetative growth. A synthetic lethal screen was devised to identify mutants that require the SPA2 gene for vegetative growth. One mutant, called slk-1 (for synthetic lethal kinase), has been characterized extensively. The SLK1 gene has been cloned, and sequence analysis predicts that the SLK1 protein is 1,478 amino acid residues in length. Approximately 300 amino acids at the carboxy terminus exhibit sequence similarity with the catalytic domains of protein kinases. Disruption mutations have been constructed in the SLK1 gene. slk1 null mutants cannot grow at 37 degrees C, but many cells can grow at 30, 24, and 17 degrees C. Dead slk1 mutant cells usually have aberrant cell morphologies, and many cells are very small, approximately one-half the diameter of wild-type cells. Surviving slk1 cells also exhibit morphogenic defects; these cells are impaired in their ability to form projections upon exposure to mating pheromones. During vegetative growth, a higher fraction of slk1 cells are unbudded compared with wild-type cells, and under nutrient limiting conditions, slk1 cells exhibit defects in cell cycle arrest. The different slk1 mutant defects are partially rescued by an extra copy of the SSD1/SRK1 gene. SSD1/SRK1 has been independently isolated as a suppressor of mutations in genes involved in growth control, sit4, pde2, bcy1, and ins1 (A. Sutton, D. Immanuel, and K.T. Arnat, Mol. Cell. Biol. 11:2133-2148, 1991; R.B. Wilson, A.A. Brenner, T.B. White, M.J. Engler, J.P. Gaughran, and K. Tatchell, Mol. Cell. Biol. 11:3369-3373, 1991). These data suggest that SLK1 plays a role in both cell morphogenesis and the control of cell growth. We speculate that SLK1 may be a regulatory link for these two cellular processes. Images PMID:1545797

  2. Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato

    PubMed Central

    Cui, Baolu; Hu, Zongli; Hu, Jingtao; Zhang, Yanjie; Yin, Wencheng; Zhu, Zhiguo; Feng, Ye; Chen, Guoping

    2016-01-01

    upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways. PMID:27025226

  3. Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato.

    PubMed

    Cui, Baolu; Hu, Zongli; Hu, Jingtao; Zhang, Yanjie; Yin, Wencheng; Zhu, Zhiguo; Feng, Ye; Chen, Guoping

    2016-03-30

    upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.

  4. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  5. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in HER2-positive gastric cancer cells.

    PubMed

    Wang, Hongbin; Wang, Wenqian; Xu, Yongping; Yang, Yong; Chen, Xiaoyan; Quan, Haitian; Lou, Liguang

    2017-04-07

    T-DM1 (Kadcyla), an antibody-drug conjugate (ADC) consisting of HER2-targeted monoclonal antibody trastuzumab linked to anti-microtubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. To date, acquired resistance arises to be a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much lesser in N87-KR cells. Furthermore, lysosome acidification, achieved by V-ATPase, was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase-selective inhibitor Baf-A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-MMAE, were capable of efficiently overcoming this resistance. Our results demonstrate for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADC containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance. This article is protected by copyright. All rights reserved.

  6. Proepithelin Regulates Prostate Cancer Cell Biology by Promoting Cell Growth, Migration, and Anchorage-Independent Growth

    PubMed Central

    Monami, Giada; Emiliozzi, Velia; Bitto, Alessandro; Lovat, Francesca; Xu, Shi-Qiong; Goldoni, Silvia; Fassan, Matteo; Serrero, Ginette; Gomella, Leonard G.; Baffa, Raffaele; Iozzo, Renato V.; Morrione, Andrea

    2009-01-01

    The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors. PMID:19179604

  7. Metabolism, cell growth and the bacterial cell cycle

    PubMed Central

    Wang, Jue D.; Levin, Petra A.

    2010-01-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the ‘wild’. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division. PMID:19806155

  8. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features

    PubMed Central

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in “normal” human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  9. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis

    PubMed Central

    Estrada, J C; Albo, C; Benguría, A; Dopazo, A; López-Romero, P; Carrera-Quintanar, L; Roche, E; Clemente, E P; Enríquez, J A; Bernad, A; Samper, E

    2012-01-01

    Expansion of human stem cells before cell therapy is typically performed at 20% O2. Growth in these pro-oxidative conditions can lead to oxidative stress and genetic instability. Here, we demonstrate that culture of human mesenchymal stem cells at lower, physiological O2 concentrations significantly increases lifespan, limiting oxidative stress, DNA damage, telomere shortening and chromosomal aberrations. Our gene expression and bioenergetic data strongly suggest that growth at reduced oxygen tensions favors a natural metabolic state of increased glycolysis and reduced oxidative phosphorylation. We propose that this balance is disturbed at 20% O2, resulting in abnormally increased levels of oxidative stress. These observations indicate that bioenergetic pathways are intertwined with the control of lifespan and decisively influence the genetic stability of human primary stem cells. We conclude that stem cells for human therapy should be grown under low oxygen conditions to increase biosafety. PMID:22139129

  10. FNC efficiently inhibits mantle cell lymphoma growth.

    PubMed

    Zhang, Yan; Zhang, Rong; Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC.

  11. FNC efficiently inhibits mantle cell lymphoma growth

    PubMed Central

    Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC. PMID:28333959

  12. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  13. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia-Parkinsonism.

    PubMed

    Fremont, Rachel; Tewari, Ambika; Khodakhah, Kamran

    2015-10-01

    Loss-of-function mutations in the α3 isoform of the sodium pump are responsible for Rapid Onset Dystonia-Parkinsonism (RDP). A pharmacologic model of RDP replicates the most salient features of RDP, and implicates both the cerebellum and basal ganglia in the disorder; dystonia is associated with aberrant cerebellar output, and the parkinsonism-like features are attributable to the basal ganglia. The pharmacologic agent used to generate the model, ouabain, is selective for sodium pumps. However, close to the infusion sites in vivo it likely affects all sodium pump isoforms. Therefore, it remains to be established whether selective loss of α3-containing sodium pumps replicates the pharmacologic model. Moreover, while the pharmacologic model suggested that aberrant firing of Purkinje cells was the main cause of abnormal cerebellar output, it did not allow the scrutiny of this hypothesis. To address these questions RNA interference using small hairpin RNAs (shRNAs) delivered via adeno-associated viruses (AAV) was used to specifically knockdown α3-containing sodium pumps in different regions of the adult mouse brain. Knockdown of the α3-containing sodium pumps mimicked both the behavioral and electrophysiological changes seen in the pharmacologic model of RDP, recapitulating key aspects of the human disorder. Further, we found that knockdown of the α3 isoform altered the intrinsic pacemaking of Purkinje cells, but not the neurons of the deep cerebellar nuclei. Therefore, acute knockdown of proteins associated with inherited dystonias may be a good strategy for developing phenotypic genetic mouse models where traditional transgenic models have failed to produce symptomatic mice.

  14. Targeting Stat3 induces senescence in tumor cells and elicits prophylactic and therapeutic immune responses against breast cancer growth mediated by NK cells and CD4+ T cells.

    PubMed

    Tkach, Mercedes; Coria, Lorena; Rosemblit, Cinthia; Rivas, Martín A; Proietti, Cecilia J; Díaz Flaqué, María Celeste; Beguelin, Wendy; Frahm, Isabel; Charreau, Eduardo H; Cassataro, Juliana; Elizalde, Patricia V; Schillaci, Roxana

    2012-08-01

    Aberrant Stat3 activation and signaling contribute to malignant transformation by promoting cell cycle progression, inhibiting apoptosis, and mediating tumor immune evasion. Stat3 inhibition in tumor cells induces the expression of chemokines and proinflammatory cytokines, so we proposed to apply Stat3-inhibited breast cancer cells as a source of immunogens to induce an antitumor immune response. Studies were performed in two murine breast cancer models in which Stat3 is activated: progestin-dependent C4HD cells and 4T1 cells. We immunized BALB/c mice with irradiated cancer cells previously transfected with a dominant-negative Stat3 vector (Stat3Y705F) in either a prophylactic or a therapeutic manner. Prophylactic administration of breast cancer cells transfected with Stat3Y705F (Stat3Y705F-breast cancer cells) inhibited primary tumor growth compared with administration of empty vector-transfected cells in both models. In the 4T1 model, 50% of the challenged mice were tumor free, and the incidence of metastasis decreased by 90%. In vivo assays of C4HD tumors showed that the antitumor immune response involves the participation of CD4(+) T cells and cytotoxic NK cells. Therapeutic immunization with Stat3Y705F-breast cancer cells inhibited tumor growth, promoted tumor cell differentiation, and decreased metastasis. Furthermore, inhibition of Stat3 activation in breast cancer cells induced cellular senescence, contributing to their immunogenic phenotype. In this work, we provide preclinical proof of concept that ablating Stat3 signaling in breast cancer cells results in an effective immunotherapy against breast cancer growth and metastasis. Moreover, our findings showing that Stat3 inactivation results in induction of a cellular senescence program disclose a potential mechanism for immunotherapy research.

  15. Aberrant apoptotic machinery confers melanoma dual resistance to BRAFV600E inhibitor and immune effector cells: immunosensitization by a histone deacetylase inhibitor

    PubMed Central

    Jazirehi, Ali R; Nazarian, Ramin; Torres-Collado, Antoni Xavier; Economou, James S

    2014-01-01

    BRAFV600E-inhibitors (BRAFi; e.g., vemurafenib) and modern immune-based therapies such as PD-1/PD-L1 and CTLA-4 checkpoints blockade and adoptive cell transfer (ACT) have significantly improved the care of melanoma patients. Having these two effective (BRAFi and immunotherapy) therapies raises the question whether there is a rational biological basis for using them in combination. We developed an in vitro model to determine whether tumor resistance mechanisms to a small molecule inhibitor of a driver oncogene, and to cytotoxic T lymphocyte (CTL)- and natural killer (NK) cell-delivered apoptotic death signals were exclusive or intersecting. We generated melanoma sublines resistant to BRAFi vemurafenib and to CTL recognizing the MART-1 melanoma antigen. Vemurafenib-resistant (VemR) sublines were cross-resistant to MART CTL and NK cells indicating that a common apoptotic pathway governing tumor response to both modalities was disrupted. Pretreatment of VemR melanomas with a histone deacetylase inhibitor (HDACi) restored sensitivity to MART CTL and NK apoptosis by skewing the apoptotic gene programs towards a proapoptotic phenotype. Our in vitro findings suggest that during the course of acquisition of BRAFi resistance, melanomas develop cross-resistance to CTL- and NK-killing. Further, aberrant apoptotic pathways, amenable by an FDA-approved chromatin remodeling drug, regulate tumor resistance mechanisms to immune effector cells. These results may provide rational molecular basis for further investigations to combine these therapies clinically. PMID:24660121

  16. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing

    PubMed Central

    2010-01-01

    Background Cancer cells undergo massive alterations to their DNA methylation patterns that result in aberrant gene expression and malignant phenotypes. However, the mechanisms that underlie methylome changes are not well understood nor is the genomic distribution of DNA methylation changes well characterized. Results Here, we performed methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) to obtain whole-genome DNA methylation profiles for eight human breast cancer cell (BCC) lines and for normal human mammary epithelial cells (HMEC). The MeDIP-seq analysis generated non-biased DNA methylation maps by covering almost the entire genome with sufficient depth and resolution. The most prominent feature of the BCC lines compared to HMEC was a massively reduced methylation level particularly in CpG-poor regions. While hypomethylation did not appear to be associated with particular genomic features, hypermethylation preferentially occurred at CpG-rich gene-related regions independently of the distance from transcription start sites. We also investigated methylome alterations during epithelial-to-mesenchymal transition (EMT) in MCF7 cells. EMT induction was associated with specific alterations to the methylation patterns of gene-related CpG-rich regions, although overall methylation levels were not significantly altered. Moreover, approximately 40% of the epithelial cell-specific methylation patterns in gene-related regions were altered to those typical of mesenchymal cells, suggesting a cell-type specific regulation of DNA methylation. Conclusions This study provides the most comprehensive analysis to date of the methylome of human mammary cell lines and has produced novel insights into the mechanisms of methylome alteration during tumorigenesis and the interdependence between DNA methylome alterations and morphological changes. PMID:20181289

  17. Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN-deficient human fibroblasts.

    PubMed

    Saha, Bidisha; Cypro, Alexander; Martin, George M; Oshima, Junko

    2014-06-01

    Werner syndrome (WS), caused by mutations at the WRN helicase gene, is a progeroid syndrome characterized by multiple features consistent with accelerated aging. Aberrant double-strand DNA damage repair leads to genomic instability and reduced replicative lifespan of somatic cells. We observed increased autophagy in WRN knockdown cells; this was further increased by short-term rapamycin treatment. Long-term rapamycin treatment resulted in improved growth rate, reduced accumulation of DNA damage foci and improved nuclear morphology; autophagy markers were reduced to near-normal levels, possibly due to clearance of damaged proteins. These data suggest that protein aggregation plays a role in the development of WS phenotypes and that the mammalian target of rapamycin complex 1 pathway is a potential therapeutic target of WS.

  18. Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN-deficient human fibroblasts

    PubMed Central

    Saha, Bidisha; Cypro, Alexander; Martin, George M; Oshima, Junko

    2014-01-01

    Werner syndrome (WS), caused by mutations at the WRN helicase gene, is a progeroid syndrome characterized by multiple features consistent with accelerated aging. Aberrant double-strand DNA damage repair leads to genomic instability and reduced replicative lifespan of somatic cells. We observed increased autophagy in WRN knockdown cells; this was further increased by short-term rapamycin treatment. Long-term rapamycin treatment resulted in improved growth rate, reduced accumulation of DNA damage foci and improved nuclear morphology; autophagy markers were reduced to near-normal levels, possibly due to clearance of damaged proteins. These data suggest that protein aggregation plays a role in the development of WS phenotypes and that the mammalian target of rapamycin complex 1 pathway is a potential therapeutic target of WS. PMID:24308646

  19. Knockdown of TCTN1 Strongly Decreases Growth of Human Colon Cancer Cells

    PubMed Central

    Dai, Xiaoyu; Dong, Mingjun; Yu, Hua; Xie, Yangyang; Yu, Yongming; Cao, Yisheng; Kong, Zhenfang; Zhou, Baofeng; Xu, Yidong; Yang, Tong; Li, Keqiang

    2017-01-01

    Background Tectonic family member 1 (TCTN1), a member of the tectonic family, is involved in several developmental processes and is aberrantly expressed in multiple solid tumors. However, the expression and regulation of TCTN1 in human colorectal cancer (CRC) is still not clear. Material/Methods The expression of TCTN1 mRNA was first explored by using Oncomine microarray datasets. TCTN1 expression was silenced in human CRC cell lines HCT116 and SW1116 via RNA interference (RNAi). Furthermore, we investigated the effect of TCTN1 depletion on CRC cell growth by MTT, colony formation, and flow cytometry in vitro. Results In this study, meta-analysis showed that the expressions of TCTN1 mRNA in CRC specimens were significantly higher than that in normal specimens. Knockdown of TCTN1 expression potently inhibited the abilities of cell proliferation and colony formation as determined. Flow cytometry analysis showed that depletion of TCTN1 could cause cell cycle arrest at the G2/M phase. In addition, Annexin V/7-AAD double-staining indicated that TCTN1 silencing promoted cell apoptosis through down-regulation of caspase 3 and Bcl-2 and upregulation of cleaved caspase 3 and PARP. Conclusions Our results indicate that TCTN1 may be crucial for CRC cell growth, providing a novel alternative to target therapies of CRC. Further research on this topic is warranted. PMID:28123172

  20. Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density

    PubMed Central

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells. PMID:27725845

  1. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  2. Inferring a role for methylation of intergenic DNA in the regulation of genes aberrantly expressed in precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Almamun, Md; Kholod, Olha; Stuckel, Alexei J; Levinson, Benjamin T; Johnson, Nathan T; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2017-01-17

    A complete understanding of the mechanisms involved in the development of pre-B ALL is lacking. In this study, we integrated DNA methylation data and gene expression data to elucidate the impact of aberrant intergenic DNA methylation on gene expression in pre-B ALL. We found a subset of differentially methylated intergenic loci that were associated with altered gene expression in pre-B ALL patients. Notably, 84% of these regions were also bound by transcription factors (TF) known to play roles in differentiation and B-cell development in a lymphoblastoid cell line. Further, an overall downregulation of eRNA transcripts was observed in pre-B ALL patients and these transcripts were associated with the downregulation of putative target genes involved in B-cell migration, proliferation, and apoptosis. The identification of novel putative regulatory regions highlights the significance of intergenic DNA sequences and may contribute to the identification of new therapeutic targets for the treatment of pre-B ALL.

  3. Heparin Inhibits Hepatocyte Growth Factor Induced Motility and Invasion of Hepatocellular Carcinoma Cells through Early Growth Response Protein 1

    PubMed Central

    Ozen, Evin; Gozukizil, Aysim; Erdal, Esra; Uren, Aykut; Bottaro, Donald P.; Atabey, Nese

    2012-01-01

    The Hepatocyte Growth Factor (HGF)/c-Met signaling pathway regulates hepatocyte proliferation, and pathway aberrations are implicated in the invasive and metastatic behaviors of hepatocellular carcinoma (HCC). In addition to c-Met, heparin acts as a co-receptor to modulate pathway activity. Recently, anti-metastatic and anti-cancer effects of heparin have been reported. However, the role of heparin in the regulation of HGF signaling remains controversial and the effects of heparin on HGF-induced biological responses during hepatocarcinogenesis is not yet defined. In this study we determined the effects of heparin on HGF-induced activities of HCC cells and the underlying molecular mechanisms. Here, we report for the first time that heparin inhibits HGF-induced adhesion, motility and invasion of HCC cells. In addition, heparin reduced HGF-induced activation of c-Met and MAPK in a dose-dependent manner, as well as decreased transcriptional activation and expression of Early growth response factor 1 (Egr1). HGF-induced MMP-2 and MMP-9 activation, and MT1-MMP expression, also were inhibited by heparin. Stable knockdown of Egr1 caused a significant decrease in HGF-induced invasion, as well as the activation and expression of MMPs. Parallel to these findings, the overexpression of Egr1 increased the invasiveness of HCC cells. Our results suggest that Egr1 activates HGF-induced cell invasion through the regulation of MMPs in HCC cells and heparin inhibits HGF-induced cellular invasion via the downregulation of Egr1. Therefore, heparin treatment might be a therapeutic approach to inhibit invasion and metastasis of HCC, especially for patients with active HGF/c-Met signaling. PMID:22912725

  4. The New Immortalized Uroepithelial Cell Line HBLAK Contains Defined Genetic Aberrations Typical of Early Stage Urothelial Tumors

    PubMed Central

    Hoffmann, Michèle J.; Koutsogiannouli, Evangelia; Skowron, Margaretha A.; Pinkerneil, Maria; Niegisch, Günter; Brandt, Artur; Stepanow, Stefanie; Rieder, Harald; Schulz, Wolfgang A.

    2016-01-01

    Background: Cell culture models of normal urothelial cells are important for studying differentiation, disease mechanisms and anticancer drug development. Beyond primary cultures with their limitations in lifespan, interindividual heterogeneity and supply, few conditionally immortalized cell lines with limited applicability due to partial transformation or impaired differentiation capacity are available. We describe characteristics of the new spontaneously immortalized cell line HBLAK derived from a primary culture of uroepithelial cells. Objective: To characterize utility and limitations of HBLAK cells as an urothelial cell culture model. Methods: Differentiation markers were investigated by immunofluorescence and RT-PCR, genetic changes by standard karyotyping, array-CGH, PCR, RT-PCR and exome sequencing; expression of p53 and p21 by Western blotting. Results: HBLAK cells proliferated for >50 passages without senescing. They expressed cytokeratins of basal urothelial cells. Terminal differentiation markers appeared only after induction of differentiation by specific protocols. The karyotype was stable, with few chromosomal changes, especially gains of chromosomes 5 and 20 and a chromosome 9p21 deletion resulting in p16INK4A loss. A C228T TERT promoter mutation was present, but no other mutation typical of urothelial carcinoma. TP53 was wild-type and the cell cycle was arrested in response to genomic stress. Conclusions: HBLAK cells retain some differentiation potential and respond to cytotoxic agents similar to normal urothelial cells, but contain genetic changes contributing to immortalization in urothelial tumors. HBLAK may be valuable for evaluating the tumor specificity of novel cancer drugs, but may also be applied as an urothelial in vitro carcinogenesis model. PMID:28035326

  5. Deficient for endoplasmic reticulum calcium sensors Stim1 and Stim2 affects aberrant antibody affinity maturation in B cells

    PubMed Central

    Mao, Xuhua; Zhang, Jianfeng; Han, Yue; Luan, Chao; Hu, Yu; Hao, Zhimin; Chen, Min

    2016-01-01

    Antigen specific B cells undergo a process termed affinity maturation in the germinal centers of secondary lymphoid organs where B cells with high affinity receptors are selected to mature into antibody-producing cells or to the memory B cell pool. It is known that B cell antigen receptor (BCR) signaling plays pivotal role in this selection process. Calcium influx is an essential component of BCR signaling. The current report is to determine the effect of calcium influx on antibody affinity maturation. In our studies, mice deficient for both endoplasmic reticulum calciumsensor Stim1 and Stim2 was immunized with T-cell dependent and independent antigens. Antibody affinity was measured by ELISA. We demonstrated that Stim1 &Stim2 deficient B cells exhibit accelerated pace of affinity maturation compared to wild type controls while the overall antibody production was not dramatically impaired to T-independent antigen immunization. In conclusion, calcium influx plays an important role in antibody affinity maturation in humoral immune responses. The knowledge can be used in manipulate humoral immune response for the design of effective vaccines. PMID:27572320

  6. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling

    PubMed Central

    Tang, Yi; Kitisin, Krit; Jogunoori, Wilma; Li, Cuiling; Deng, Chu-Xia; Mueller, Susette C.; Ressom, Habtom W.; Rashid, Asif; He, Aiwu Ruth; Mendelson, Jonathan S.; Jessup, John M.; Shetty, Kirti; Zasloff, Michael; Mishra, Bibhuti; Reddy, E. P.; Johnson, Lynt; Mishra, Lopa

    2008-01-01

    Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf+/− mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf+/− mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. PMID:18263735

  7. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses

    PubMed Central

    Winans, Bethany; Nagari, Anusha; Chae, Minho; Post, Christina M.; Ko, Chia-I; Puga, Alvaro; Kraus, W. Lee; Lawrence, B. Paige

    2015-01-01

    Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8+ T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8+ T cells prior to and during infection. Altered transcriptional profiles in CD8+ T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8+ T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life. PMID:25810390

  8. Primary mediastinal (thymic) large B cell lymphoma with aberrant expression of CD3: a case report with review of the literature.

    PubMed

    Wang, Endi; Stoecker, Maggie

    2010-04-01

    We report the first case of primary mediastinal large B cell lymphoma (PMBL) with aberrant expression of CD3. PMBL is a subtype of diffuse large B cell lymphoma (DLBCL) and usually presents with bulky mediastinal lesions. Lineage ambiguity/infidelity is uncommon in DLBCL but has been described in sporadic case reports/series. A literature search identifies 13 additional cases of DLBCL expressing CD3, with the majority displaying cytoplasmic expression. Of the 14 total cases, 6 are pyothorax-associated lymphoma, 4 are conventional DLBCL, 2 are plasmablastic lymphoma, one is primary effusion lymphoma and one is PMBL. Two cases show genotypic ambiguity/infidelity with dual clonal IG and TCR gene rearrangements in addition to ambiguous immunophenotypes. Of the 13 cases tested for EBV status, 11 are positive, suggesting an important role of EBV in promoting lineage ambiguity/infidelity. A low threshold for testing EBV status is advocated in DLBCL with phenotypic ambiguity along with panels of immunohistochemical and molecular studies.

  9. M-FISH Analysis of Chromosome Aberrations in Human Fibroblast Cells After In Vitro Exposure to Low- and High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis

    2002-01-01

    The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.

  10. Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells.

    PubMed

    Akinboro, Akeem; Mohamed, Kamaruzaman Bin; Asmawi, Mohd Zaini; Sulaiman, Shaida Fariza; Sofiman, Othman Ahmad

    2011-11-01

    In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals' scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P ≤ 0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.

  11. Genome-Wide Loss of Heterozygosity and DNA Copy Number Aberration in HPV-Negative Oral Squamous Cell Carcinoma and Their Associations with Disease-Specific Survival.

    PubMed

    Chen, Chu; Zhang, Yuzheng; Loomis, Melissa M; Upton, Melissa P; Lohavanichbutr, Pawadee; Houck, John R; Doody, David R; Mendez, Eduardo; Futran, Neal; Schwartz, Stephen M; Wang, Pei

    2015-01-01

    Oral squamous cell cancer of the oral cavity and oropharynx (OSCC) is associated with high case-fatality. For reasons that are largely unknown, patients with the same clinical and pathologic staging have heterogeneous response to treatment and different probability of recurrence and survival, with patients with Human Papillomavirus (HPV)-positive oropharyngeal tumors having the most favorable survival. To gain insight into the complexity of OSCC and to identify potential chromosomal changes that may be associated with OSCC mortality, we used Affymtrix 6.0 SNP arrays to examine paired DNA from peripheral blood and tumor cell populations isolated by laser capture microdissection to assess genome-wide loss of heterozygosity (LOH) and DNA copy number aberration (CNA) and their associations with risk factors, tumor characteristics, and oral cancer-specific mortality among 75 patients with HPV-negative OSCC. We found a highly heterogeneous and complex genomic landscape of HPV-negative tumors, and identified regions in 4q, 8p, 9p and 11q that seem to play an important role in oral cancer biology and survival from this disease. If confirmed, these findings could assist in designing personalized treatment or in the creation of models to predict survival in patients with HPV-negative OSCC.

  12. Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells

    PubMed Central

    Akinboro, Akeem; Mohamed, Kamaruzaman Bin; Asmawi, Mohd Zaini; Sulaiman, Shaida Fariza; Sofiman, Othman Ahmad

    2011-01-01

    In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals’ scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P≤0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent. PMID:22042656

  13. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma

    PubMed Central

    Choueiri, Toni K.; Fay, André P.; Gagnon, Robert; Lin, Ying; Bahamon, Brittany; Brown, Victoria; Rosenberg, Jonathan E.; Hutson, Thomas E.; Baker-Neblett, Katherine L.; Carpenter, Christopher; Liu, Yuan; Pandite, Lini; Signoretti, Sabina

    2015-01-01

    Purpose Inactivation of von Hippel-Lindau (VHL) gene in clear-cell renal cell carcinoma (RCC) leads to increased levels of hypoxia-inducible factors (HIFs) and overexpression of HIF target genes, such as vascular endothelial growth factor (VEGF) and others. VEGF-targeted agents are standard in advanced clear-cell RCC but biomarkers of activity are lacking. Patients and Methods We analyzed tumor tissue samples from metastatic clear-cell RCC patients who received pazopanib as part of clinical trial VEG102616. We evaluated several components of the VHL/HIF pathway: VHL gene inactivation (mutation and/or methylation), HIF1α and HIF2α immunohistochemistry staining, and HIF1α transcriptional signature. We evaluated the association of these biomarkers with best overall response rate and progression-free survival to pazopanib, a standard first-line VEGF-targeted agent. Results The VEG102616 trial enrolled 225 patients, from whom 78 samples were available for tumor DNA extraction. Of these, 70 patients had VHL mutation or methylation. VHL gene status did not correlate with overall response rate or progression-free survival. Similarly, HIF1α (65 samples) and HIF2α (66 samples) protein levels (high vs. low) did not correlate with overall response rate or progression-free survival to pazopanib. The HIF1α transcriptional signature (46 samples) was enriched in tumors expressing high HIF1α levels. However, the HIF1α gene expression signature was not associated with clinical outcome to pazopanib. Conclusion In patients with advanced clear-cell RCC, several potential biomarkers along the VHL/HIF1α/HIF2α axis were not found to be predictive for pazopanib activity. Additional efforts must continue to identify biomarkers associated with clinical outcome to VEGF-targeted agents in metastatic RCC. PMID:23881929

  14. Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation.

    PubMed

    Baracho, G V; Miletic, A V; Omori, S A; Cato, M H; Rickert, R C

    2011-04-01

    Phosphoinositide 3-kinase (PI3K) defines a family of lipid kinases that direct a wide range of cellular processes and cell fate decisions. Since its discovery, and that of its enzymatic antagonist PTEN, much of the focus on PI3K has been on its oncogenic potential. In recent years, studies on PI3K signaling in B lymphocytes have established the importance of this pathway in effecting B cell differentiation and associated molecular events such as V(D)J recombination and class switch recombination. Intriguing new findings also indicate that there is specificity in the PI3K pathway in B cells, including preferential expression or usage of particular PI3K isoforms and counter-regulation by the PTEN and SHIP phosphatases. The role of PI3K adaptor proteins (CD19, BCAP, and TC21) has also undergone revision to reflect both shared and unique properties. The emergence of Foxo1 as a critical PI3K regulatory target for B cell differentiation has united membrane proximal regulatory events orchestrated by PI3K/PTEN/SHIP with key transcriptional targets. Insights into the regulation and impact of PI3K signaling have been brought to bear in new treatments for B cell malignancies, and will also be an important topic of consideration for B cell-dependent autoimmune diseases.

  15. Aberrant DNA hypermethylation reduces the expression of the desmosome-related molecule periplakin in esophageal squamous cell carcinoma

    PubMed Central

    Otsubo, Takeshi; Hagiwara, Teruki; Tamura-Nakano, Miwa; Sezaki, Takuhito; Miyake, Oki; Hinohara, Chihaya; Shimizu, Toshio; Yamada, Kazuhiko; Dohi, Taeko; Kawamura, Yuki I

    2015-01-01

    Periplakin (PPL), a member of the plakin family of proteins that localizes to desmosomes and intermediate filaments, is downregulated in human esophageal squamous cell carcinoma (ESCC). Little is known, however, about the molecular mechanism underlying the regulation of PPL expression and the contribution of PPL loss to the malignant property of the cancer is unclear. We demonstrated that PPL mRNA expression was significantly reduced in ESCC tissues compared with that in normal tissues. Therefore, we hypothesized that CpG hypermethylation is the cause of the downregulation of PPL. Bisulfite-pyrosequencing of 17 cases demonstrated that the frequency of PPL methylation was higher in ESCC tissues than in normal tissues. When human ESCC cell lines were treated with 5-aza-2′-deoxycytidine (5-aza-dC), a DNA-methyltransferase inhibitor, PPL transcription was induced. Human KYSE270 ESCC cells do not stratify under ordinary culture conditions and rarely produce desmosomes; however, the forced expression of PPL promoted cell stratification. PPL induction also promoted adhesion to extracellular matrix but delayed cell migration. The abundance of desmosome-like structures was greatly increased in PPL transfectant as determined by transmission electron microscopy. Very low expression of another desmosome protein EVPL in ESCC, even in PPL transfectant, also supported the significant role of PPL in desmosome formation and cell stratification. Our results first indicate that the downregulation of PPL mediated by DNA hypermethylation, which may play an important role in the loss of ESCC stratification and likely in metastatic phenotype. PMID:25583674

  16. Aberrant expression of p-STAT3 in peripheral blood CD4+ and CD8+ T cells related to hepatocellular carcinoma development.

    PubMed

    Wang, Xu; Xin, Wenbin; Zhang, Hua; Zhang, Fengmei; Gao, Meilan; Yuan, Lingling; Xu, Xiaoyan; Hu, Xuemei; Zhao, Mingdong

    2014-11-01

    Hepatocellular carcinoma (HCC) is one of the most common cancer types worldwide. The signal transducer and activator of transcription 3 (STAT3) protein is a member of the STAT transcription factor family. Oncogenesis, invasion, and metastasis of HCC are associated with activation of STAT3. However, whether aberrant expression of phosphorylated STAT3 (p-STAT3) in peripheral CD4+ and CD8+ T cells relates to HCC pathogenesis remains unclear. In this study, the expression of p-STAT3 in CD4+ and CD8+ T cells, and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), IL-6 and IL-10 in the human hepatoma cell line Huh7 co-cultured with peripheral blood mononucleated cells (PBMCs) of healthy volunteers were measured. The correlations between p-STAT3 and IFN-γ/IL-4, IFN-γ, IL-4, IL-6 and IL-10 were then analyzed. Results showed that the p-STAT3 level is higher in CD4+ and CD8+ T cells in the peripheral blood of HCC patients, and in PBMCs co-cultured with Huh7 cells compared to controls. The cytokine (IL-4, IL-6 and IL-10) levels were increased and the IFN-γ level was decreased in the serum of HCC patients and in supernatants of PBMCs co-cultured with Huh7 cells. Correlation analyses demonstrated that the IFN-γ/IL-4 ratio and the IFN-γ level negatively correlate to the p-STAT3 level in CD4+ and CD8+ T cells in samples from patients and in cells cultured in vitro. By contrast, the levels of IL-4, IL-6 and IL-10 positively correlated to the p-STAT3 level. This study indicated that the expression of p-STAT3 is upregulated in peripheral CD4+ and CD8+ T cells of HCC patients, and which may result in abnormal immune surveillance and thereby, contribute to HCC pathogenesis.

  17. Controlling mechanisms in directional growth of aggregated archaeal cells.

    PubMed

    Milkevych, Viktor; Batstone, Damien J

    2014-12-28

    Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.

  18. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  19. The aberrant expression of microRNAs and correlations with T cell subsets in patients with immune thrombocytopenia

    PubMed Central

    He, Na; Li, Zhao; Ma, Daoxin

    2016-01-01

    Both microRNAs and T helper (Th) cells involve in autoimmune diseases and their effects and interactions in immune thrombocytopenia (ITP) remain unclear. In the present study, we investigated the expression profiles of seven immune-related microRNAs (miR-155, 146a, 326, 142-3p, 17-5p, 21 and 181a) and the frequencies of four Th cells (Th1, Th2, Th17 and Treg) in peripheral blood mononuclear cell (PBMCs) of ITP patients and healthy controls. Platelet autoantibodies specific for GPIIb/IIIa or GPIb/IX were measured using MAIPA method. The regulating effect of miR-146a on Th differentiation was evaluated after using agomir. Our results showed that the expression of miR-146a, miR-326 or miR-142-3p in ITP patients was lower than that of controls. The frequencies of Treg cells were decreased, whereas the frequencies of Th17 and Th22 cells were increased significantly in ITP patients compared to those in controls. The expression levels of miR-142-3p and miR-146a were negatively correlated with Th17 cells, respectively. The expression of miR-146a was positively correlated with the frequencies of Treg cells and platelet counts. No significant correlation was found between the miRNAs expression and different autoantibody groups. The up-regulated miR-146a expression with agomir contributed to the differentiation of Th17 and Treg in ITP patients. Moreover, miR-146a was increased in the presence of DEX in PBMCs of ITP patients in vitro. Our study represents the abnormal expression profile of immune-related miRNAs in ITP patients, and miR-146a may be involved in Tregs differentiation and function. PMID:27802180

  20. Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas.

    PubMed

    Kondratiev, Svetlana; Duraisamy, Sekhar; Unitt, Christine L; Green, Michael R; Pinkus, Geraldine S; Shipp, Margaret A; Kutok, Jeffery L; Drapkin, Ronny I; Rodig, Scott J

    2011-10-01

    Tumor necrosis factor-α-inducible protein-2 (TNFAIP2) is a protein upregulated in cultured cells treated with tumor necrosis factor α (TNF), but its expression in normal and neoplastic tissues remains largely unknown. Here, we use standard immunohistochemical techniques to demonstrate that TNFAIP2 is normally expressed by follicular dendritic cells, interdigitating dendritic cells, and macrophages but not by lymphoid cells in secondary lymphoid tissues. Consistent with this expression pattern, we found strong TNFAIP2 staining of tumor cells in 4 of 4 cases (100%) of follicular dendritic cell sarcoma and in 3 of 3 cases (100%) of histiocytic sarcoma. Although TNFAIP2 is not expressed by the small and intermediate-sized neoplastic B cells comprising follicular lymphoma, small lymphocytic lymphoma, mantle cell lymphoma, or marginal zone lymphoma, we observed strong TNFAIP2 staining of the large, neoplastic cells in 31 of 31 cases (100%) of classical Hodgkin lymphoma, in 12 of 12 cases (100%) of nodular lymphocyte-predominant Hodgkin lymphoma, and in 27 of 31 cases (87%) of primary mediastinal (thymic) large B-cell lymphoma. In contrast, TNFAIP2 was expressed by malignant cells in only 2 of 45 cases (4%) of diffuse large B-cell lymphoma, not otherwise specified, in 2 of 18 cases (11%) of Burkitt lymphoma, and in 1 of 19 cases (5%) of anaplastic large cell lymphoma. Further analysis indicates that TNFAIP2, as a single diagnostic marker, is more sensitive (sensitivity=87%) and specific (specificity=96%) than TRAF1, nuclear cRel, or CD23 for distinguishing the malignant B cells of primary mediastinal (thymic) large B-cell lymphoma from those of its morphologic and immunophenotypic mimic, diffuse large B-cell lymphoma, not otherwise specified. Thus, TNFAIP2 may serve as a useful new marker of dendritic and histiocytic sarcomas, the aberrant expression of which in the malignant cells of classical Hodgkin lymphoma and primary mediastinal (thymic) large B-cell lymphoma

  1. Delivery of iron to human cells by bovine transferrin. Implications for the growth of human cells in vitro.

    PubMed Central

    Young, S P; Garner, C

    1990-01-01

    Following suggestions that transferrin present in fetal-bovine serum, a common supplement used in tissue-culture media, may not bind well to human cells, we have isolated the protein and investigated its interaction with both human and bovine cells. Bovine transferrin bound to a human cell line, K562, at 4 degrees C with a kd of 590 nM, whereas human transferrin bound with a kd of 3.57 nM, a 165-fold difference. With a bovine cell line, NBL4, bovine transferrin bound with the higher affinity, kd 9.09 nM, whereas human transferrin bound with a kd of 41.7 nM, only a 5-fold difference. These values were reflected in an 8.6-fold difference in the rate of iron delivery by the two proteins to human cells, whereas delivery to bovine cells was the same. Nevertheless, the bovine transferrin was taken up by the human cells by a specific receptor-mediated process. Human cells cultured in bovine diferric transferrin at 40 micrograms/ml, the concentration expected in the presence of 10% fetal-bovine serum, failed to thrive, whereas cells cultured in the presence of human transferrin proliferated normally. These results suggest that growth of human cells in bovine serum could give rise to a cellular iron deficiency, which may in turn lead to the selection of clones of cells adapted for survival with less iron. This has important consequences for the use of such cells as models, since they may have aberrant iron-dependent pathways and perhaps other unknown alterations in cell function. PMID:2302189

  2. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    SciTech Connect

    Oh, J; Deasy, J

    2014-06-15

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  3. The role of suppressor of cytokine signaling 1 as a negative regulator for aberrant expansion of CD8alpha+ dendritic cell subset.

    PubMed

    Tsukada, Jun; Ozaki, Akemi; Hanada, Toshikatsu; Chinen, Takatoshi; Abe, Ryo; Yoshimura, Akihiko; Kubo, Masato

    2005-09-01

    The suppressor of cytokine signaling (SOCS) 1 is a negative regulator in multiple cytokine-related aspects to maintain immunological homeostasis. Here, we studied a role of SOCS1 on dendritic cell (DC) maturation in the mice lacking either TCRalpha chain or CD28 in SOCS1-deficient background, and found that the SOCS1 could restore acute phase of inflammatory response in SOCS1-deficient mice. The CD11c+ CD8- DC population in freshly isolated splenic DCs from normal mice highly expressed SOCS1. However, in SOCS1-deficient environment, the proportion of CD8alpha+ DCs (CD8 DCs) noticeably increased without affecting the cell number of conventional and plasmacytoid DC populations. This population revealed the CD11cdull CD8alpha+ CD11b- CD45RA- B220- phenotype, which is a minor population in normal mice. Localization of the abnormal CD8 DCs in splenic microenvironments was mainly restricted to deep within red pulp. The CD8 DCs secrete a large amount of IFN-gamma, IL-12 and B lymphocyte stimulator/B cell activation factor of the tumor necrosis factor family in response to LPS and CpG stimulation. This is responsible for the development of DC-mediated systemic autoimmunity in the old age of SOCS1-deficient mice. Moreover, the CD8 DC subsets expressed more indoleamine 2,3-dioxygenase and IL-10, and hence inhibit the allogeneic proliferative T cell response and antigen-induced Th1 responses. Therefore, SOCS1 expression during DC maturation plays a role in surveillance in controlling the aberrant expansion of abnormal DC subset to maintain homeostasis of immune system.

  4. Truncated variants of hyaluronan-binding protein 1 bind hyaluronan and induce identical morphological aberrations in COS-1 cells.

    PubMed Central

    Sengupta, Aniruddha; Tyagi, Rakesh K; Datta, Kasturi

    2004-01-01

    Hyaluronan (HA)-binding protein 1 (HABP1) is multifunctional in nature and exists as a trimer through coiled-coil interaction between alpha-helices at its N- and C-termini. To investigate the importance of trimeric assemblage and HA-binding ability of HABP1, we generated and overexpressed variants of HABP1 by truncating the alpha-helices at its termini. Subsequently, these variants were transiently expressed in COS-1 cells to examine the influence of these structural variations on normal cell morphology, as compared with those imparted by HABP1. Substantiating the centrality of coiled-coil interaction for maintaining the trimeric assembly of HABP1, we demonstrate that disruption of trimerization does not alter the affinity of variants towards its ligand HA. Transient expression of HABP1 altered the morphology of COS-1 cells by generating numerous cytoplasmic vacuoles along with disruption of the f-actin network. Interestingly, the truncated variants also imparted identical morphological changes. Characterization of the cytoplasmic vacuoles revealed that most of these vacuoles were autophagic in nature, resembling those generated under stress conditions. The identical morphological changes manifested in COS-1 cells on transient expression of HABP1 or its variants is attributed to their comparable HA-binding ability, which in concert with endogenous HABP1, may deplete the cellular HA pool. Such quenching of HA below a threshold level in the cellular milieu could generate a stress condition, manifested through cytoplasmic vacuoles and a disassembly of the f-actin network. PMID:15005653

  5. Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma

    PubMed Central

    Yoshino, Hirofumi; Yamasaki, Takeshi; Yamada, Yasutoshi; Nohata, Nijiro; Fuse, Miki; Nakagawa, Masayuki; Enokida, Hideki

    2012-01-01

    MicroRNAs (miRNA) are non-coding RNAs, approximately 22 nucleotides in length, which function as post-transcriptional regulators. A large body of evidence indicates that miRNAs regulate the expression of cancer-related genes involved in proliferation, migration, invasion, and metastasis. The aim of this study was to identify novel cancer networks in renal cell carcinoma (RCC) based on miRNA expression signatures obtained from RCC clinical specimens. Expression signatures revealed that 103 miRNAs were significantly downregulated (< 0.5-fold change) in RCC specimens. Functional screening (cell proliferation assays) was performed to identify tumor suppressive activities of 20 downregulated miRNAs. Restoration of mature miRNAs in cancer cells showed that 14 miRNAs (miR-1285, miR-206, miR-1, miR-135a, miR-429, miR-200c, miR-1291, miR-133b, miR-508-3p, miR-360-3p, miR-509-5p, miR-218, miR-335, miR-1255b and miR-1285) markedly inhibited cancer cell proliferation, suggesting that these miRNAs were candidate tumor suppressive miRNAs in RCC. We focused on miR-1285 because it significantly inhibited cancer cell proliferation, invasion, and migration following its transfection. We addressed miR-1285-regulated cancer networks by using genome-wide gene expression analysis and bioinformatics. The data showed that transglutaminase 2 (TGM2) was directly regulated by miR-1285. Silencing of the target gene demonstrated significant inhibition of cell proliferation and invasion in the RCC cells. Furthermore, immunohistochemistry showed that TGM2 expression levels in RCC specimens were significantly higher than those in normal renal tissues. Downregulation of tumor suppressive miR-1285, which targets oncogenic genes including TGM2, might contribute to RCC development. Thus, miR-1285 modulates a novel molecular target and provides new insights into potential mechanisms of RCC oncogenesis. PMID:22294552

  6. Optical aberrations of intraocular lenses measured in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Marcos, Susana; Jiménez-Alfaro, Ignacio

    2003-10-01

    Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL's physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.

  7. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes.

    PubMed Central

    Pfeifer, A M; Lechner, J F; Masui, T; Reddel, R R; Mark, G E; Harris, C C

    1989-01-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous [e.g., transforming growth factor beta 1 (TGF-beta 1) and serum] and exogenous [e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes] modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells. PMID:2538323

  8. HER2 aberrations in cancer: implications for therapy.

    PubMed

    Yan, Min; Parker, Barbara A; Schwab, Richard; Kurzrock, Razelle

    2014-07-01

    Although anti-HER2 (human epidermal growth factor receptor 2) therapy is currently approved for breast, gastric, and gastroesophageal cancers overexpressing the HER2 protein or amplified for the HER2 gene, HER2 aberrations (gene amplification, gene mutations, and protein overexpression) are reported in other diverse malignancies. Indeed, about 1-37% of tumors of the following types harbor HER2 aberrations: bladder, cervix, colon, endometrium, germ cell, glioblastoma, head and neck, liver, lung, ovarian, pancreas, and salivary duct. Four HER2-targeted therapies have been approved for HER2-positive breast cancer: two antibodies (trastuzumab and pertuzumab), an antibody-drug conjugate (ado-trastuzumab emtansine), and a small molecule kinase inhibitor (lapatinib). In addition, afatinib, a small molecule kinase inhibitor that causes irreversible inhibition of EGFR (epidermal growth factor receptor) and HER2, was recently approved for EGFR-mutated non-small cell lung cancer. A large number of novel HER2-targeted agents are also in clinical trials. Herein we discuss the state of the art in understanding and targeting HER2 across anatomic tumor types.

  9. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  10. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  11. THE TOPOGRAPHY OF TIP GROWTH IN A PLANT CELL

    PubMed Central

    Castle, Edward S.

    1958-01-01

    Tips of young Phycomyces sporangiophores were dusted with starch grains, and growth photographically recorded. Rates of longitudinal displacement from the cell tip of individual markers were determined, also corresponding rates of change of cell diameter. From these the magnitude and spatial distribution of "relative elemental growth rates" along both longitudinal and circumferential axes of the cell were obtained. Growth rates in these two directions are functions of distance from the cell apex, and have different spatial distributions. In particular, rates of growth in cell circumference are complexly patterned. Relative elemental growth rates in length and in girth are approximately equal and maximal at the cell's apex, with a value of 2.4 mm. mm.–1 hr.–1. The characteristic shape of the tip is maintained constant in the face of its changing substance and position. This shape reflects a steady state of the cell's constituent growth patterns. At every point the growing membrane simultaneously expands in the two dimensions of its surface. The degree of polarization or directional preference of growth is measured by the ratio of longitudinal to circumferential relative elemental growth rate at any point. The ratio is not constant, but changes with position along the tip. This fact does not support the idea that membrane growth is based upon a quantal "growth event." Possible causal factors in oriented membrane growth are discussed. PMID:13525674

  12. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  13. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway

    PubMed Central

    Ocak, S; Yamashita, H; Udyavar, AR; Miller, AN; Gonzalez, AL; Zou, Y; Jiang, A; Yi, Y; Shyr, Y; Estrada, L; Quaranta, V; Massion, PP

    2015-01-01

    Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr397 by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications. PMID:20802517

  14. Enhancement and reduction by methylated oxypurines of the frequencies of chromatid aberrations induced by camptothecin in root-tip cells of Vicia faba.

    PubMed

    Kihlman, B A; Andersson, H C

    1992-10-01

    In root-tip cells of Vicia faba the frequencies of chromatid aberrations induced by 3-h treatments with 0.05 microM camptothecin were strongly modified when the treatments were carried out in the presence of caffeine at concentrations above 1 mM. Depending on the concentration of caffeine, the clastogenic effect of camptothecin was either enhanced or reduced. At concentrations between 1 and 6 mM, caffeine increased the camptothecin-induced chromosome damage, the strongest enhancement being obtained at 5 mM. A reduction of the chromosome damage was apparent at caffeine concentrations above 10 mM, and in the presence of 20 mM caffeine the clastogenic effect of camptothecin was almost completely suppressed. When present during the camptothecin treatment, theophylline, 8-chlorocaffeine and 1,3,7,9-tetramethyluric acid influenced the induced chromosome damage in a similar way as caffeine, although with varying efficiency. If the concentrations required to produce the two types of modifying effect are used as a criterion, 8-chlorocaffeine was the most effective and 1,3,7,9-tetramethyluric acid the least, whereas caffeine and theophylline were about equally effective.

  15. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype

    PubMed Central

    Su, Y-J; Chang, Y-W; Lin, W-H; Liang, C-L; Lee, J-L

    2015-01-01

    Several studies suggest that Wnt signaling contributes to reprogramming and maintenance of cancer stem cell (CSC) states activated by loss of membranous E-cadherin expression. However, E-cadherin's exact role in Wnt/β-catenin-mediated promotion of the CSC phenotype remains unclear. Recently, a significant positive correlation has been observed between the expression of nuclear (an aberrant nuclear localization) E-cadherin and β-catenin in gastric and colorectal carcinomas. Here we conducted a series of in-vitro and in-vivo studies to show that the β-catenin/TCF4 interaction was abolished by E-cadherin and was correlated with its nuclear localization, and consequently decreased β-catenin/TCF4 transcriptional activity. Nuclear E-cadherin was a negative regulator of Wnt/β-Catenin-elicited promotion of the CSC phenotype. Using immunohistochemistry on lung cancer tissue microarrays, we found that changes in subcellular location of E-cadherin may be described by tumor grade and stage, suggesting cellular redistribution during lung tumorigenesis. Furthermore, nuclear E-cadherin expression was more significantly inversely correlated with CD133 (a lung CSC marker) expression (P<0.005) than total E-cadherin expression (P<0.05), suggesting that lung cancer as defined by nuclear E-cadherinLow/nuclear β-cateninHigh/CD133High biomarkers has superior prognostic value over total E-cadherinLow/nuclear β-cateninHigh/CD133High. PMID:26075748

  16. Aberrant microRNA Expression Likely Controls RAS Oncogene Activation During Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic

    PubMed Central

    Ngalame, Ntube N. O.; Tokar, Erik J.; Person, Rachel J.; Xu, Yuanyuan; Waalkes, Michael P.

    2014-01-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants. PMID:24431212

  17. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells.

    PubMed

    Li, Chun; Ma, Yu; Zhang, Kunshan; Gu, Junjie; Tang, Fan; Chen, Shengdi; Cao, Li; Li, Siguang; Jin, Ying

    2016-08-16

    Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations.Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.

  18. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells

    PubMed Central

    Li, Chun; Ma, Yu; Zhang, Kunshan; Gu, Junjie; Tang, Fan; Chen, Shengdi; Cao, Li; Li, Siguang; Jin, Ying

    2016-01-01

    Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease. PMID:27449084

  19. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection.

    PubMed

    Wu, Xi; Tanaka, Hiromi

    2015-10-06

    Excessive telomere shortening is observed in breast cancer lesions when compared to adjacent non-cancerous tissues, suggesting that telomere length may represent a key biomarker for early cancer detection. Because tumor-derived, cell-free DNA (cfDNA) is often released from cancer cells and circulates in the bloodstream, we hypothesized that breast cancer development is associated with changes in the amount of telomeric cfDNA that can be detected in the plasma. To test this hypothesis, we devised a novel, highly sensitive and specific quantitative PCR (qPCR) assay, termed telomeric cfDNA qPCR, to quantify plasma telomeric cfDNA levels. Indeed, the internal reference primers of our design correctly reflected input cfDNA amount (R(2) = 0.910, P = 7.82 × 10(-52)), implying accuracy of this assay. We found that plasma telomeric cfDNA levels decreased with age in healthy individuals (n = 42, R(2) = 0.094, P = 0.048), suggesting that cfDNA is likely derived from somatic cells in which telomere length shortens with increasing age. Our results also showed a significant decrease in telomeric cfDNA level from breast cancer patients with no prior treatment (n = 47), compared to control individuals (n = 42) (P = 4.06 × 10(-8)). The sensitivity and specificity for the telomeric cfDNA qPCR assay was 91.49% and 76.19%, respectively. Furthermore, the telomeric cfDNA level distinguished even the Ductal Carcinoma In Situ (DCIS) group (n = 7) from the healthy group (n = 42) (P = 1.51 × 10(-3)). Taken together, decreasing plasma telomeric cfDNA levels could be an informative genetic biomarker for early breast cancer detection.

  20. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    PubMed

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  1. Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum.

    PubMed

    Poloz, Yekaterina; Catalano, Andrew; O'Day, Danton H

    2012-04-01

    Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.

  2. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins.

    PubMed Central

    Bonilla, I; Mergold-Villaseñor, C; Campos, M E; Sánchez, N; Pérez, H; López, L; Castrejón, L; Sánchez, F; Cassab, G I

    1997-01-01

    B-deficient bean (Phaseolus vulgaris L.) nodules examined by light microscopy showed dramatic anatomical changes, mainly in the parenchyma region. Western analysis of total nodule extracts examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that one 116-kD polypeptide was recognized by antibodies raised against hydroxyproline-rich glycoproteins (HRGPs) from the soybean (Glycine max) seed coat. A protein with a comparable molecular mass of 116 kD was purified from the cell walls of soybean root nodules. The amino acid composition of this protein is similar to the early nodulin (ENOD2) gene. Immunoprecipitation of the soybean ENOD2 in vitro translation product showed that the soybean seed coat anti-HRGP antibodies recognized this early nodulin. Furthermore, we used these antibodies to localize the ENOD2 homolog in bean nodules. Immunocytochemistry revealed that in B-deficient nodules ENOD2 was absent in the walls of the nodule parenchyma. The absence of ENOD2 in B-deficient nodules was corroborated by performing hydroxyproline assays. Northern analysis showed that ENOD2 mRNA is present in B-deficient nodules; therefore, the accumulation of ENOD2 is not affected by B deficiency, but its assembly into the cell wall is. B-deficient nodules fix much less N2 than control nodules, probably because the nodule parenchyma is no longer an effective O2 barrier. PMID:9414547

  3. Comprehensive investigation of aberrant microRNAs expression in cells culture model of MnCl2-induced neurodegenerative disease.

    PubMed

    He, Rong; Xie, Xiaoyun; Lv, Linyue; Huang, Yongqi; Xia, Xianmin; Chen, Xiaowu; Zhang, Lei

    2017-04-29

    Manganese (Mn) is required in various human physiological processes. Excessive Mn exposure causes manganism, a progressive neurodegenerative disorder similar to idiopathic Parkinson's disease (IPD). However, the detailed mechanism of Mn-induced neurotoxicity is not yet fully understood. MicroRNAs (miRNAs) play important roles in gene expression regulation, and miRNA expression profile provides additional biological and prognostic information of diseases. In our study, RNA sequencing was performed to profile miRNAs in the SH-SY5Y cells following MnCl2 treatment. Expressions of 73 miRNAs were altered following excessive Mn treatment. Furthermore, has-miR-4306 was identified to target 3'UTR of ATP13A2 (PARK9) directly. Inhibition of has-miR-4306 efficiently restored Mn-induced cytotoxicity. Thus, for the first time, we revealed the miRNA effects of Mn ions to neuron cells, highlighted the involvement of miRNA regulation in neurodegeneration caused by Mn exposure, and provided a potential application of miRNAs in future therapeutic intervention.

  4. Germline mutations in the VHL tumor suppresssor gene are similar to somatic VHL aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.

    1994-09-01

    A candidate gene for von Hippel Lindau disease was recently identified that led to the isolation of a partial cDNA clone with extended open reading frame without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and non-hereditary tumors, we performed mutation analyses and studied its expresssion in normal and tumor tissue. We identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs, and all (6/6) sporadic RCC cell lines analyzed, showed mutations within the VHL gene. Both germline and somatic mutations included deletions, insertions, splice site mutations, missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame including an alternatively-spliced exon of 123 nucleotides in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic renal cell carcinomas, acts as a recessive tumor suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  5. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells.

    PubMed

    Raju, Jayadev; Patlolla, Jagan M R; Swamy, Malisetty V; Rao, Chinthalapally V

    2004-08-01

    Trigonella foenum graecum (fenugreek) is traditionally used to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Recent studies suggest that fenugreek and its active constituents may possess anticarcinogenic potential. We evaluated the preventive efficacy of dietary fenugreek seed and its major steroidal saponin constituent, diosgenin, on azoxymethane-induced rat colon carcinogenesis during initiation and promotion stages. Preneoplastic colonic lesions or aberrant crypt foci (ACF) were chosen as end points. In addition, we assessed the mechanism of tumor growth inhibition of diosgenin in HT-29 human colon cancer cells. To evaluate the effect of the test agent during the initiation and postinitiation stages, 7-week-old male F344 rats were fed experimental diets containing 0% or 1% fenugreek seed powder (FSP) or 0.05% or 0.1% diosgenin for 1 week and were injected with azoxymethane (15 mg/kg body weight). Effects during the promotional stage were studied by feeding 1% FSP or 0.1% diosgenin 4 weeks after the azoxymethane injections. Rats were sacrificed 8 weeks after azoxymethane injection, and their colons were evaluated for ACF. We found that, by comparison with control, continuous feeding of 1% FSP and 0.05% and 0.1% diosgenin suppressed total colonic ACF up to 32%, 24%, and 42%, respectively (P < or = 0.001 to 0.0001). Dietary FSP at 1% and diosgenin at 0.1% fed only during the promotional stage also inhibited total ACF up to 33% (P < or = 0.001) and 39% (P < or = 0.0001), respectively. Importantly, continuous feeding of 1% FSP or 0.05% or 0.1% diosgenin reduced the number of multicrypt foci by 38%, 20%, and 36% by comparison with the control assay (P < or = 0.001). In addition, 1% FSP or 0.1% diosgenin fed during the promotional stage caused a significant reduction (P < or = 0.001) of multicrypt foci compared with control. Dietary diosgenin at 0.1% and 0.05% inhibited total colonic ACF and multicrypt foci

  6. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  7. Deformation of Platonic foam cells: effect on growth rate.

    PubMed

    Evans, Myfanwy E; Zirkelbach, Johannes; Schröder-Turk, Gerd E; Kraynik, Andrew M; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  8. Deformation of Platonic foam cells: Effect on growth rate

    NASA Astrophysics Data System (ADS)

    Evans, Myfanwy E.; Zirkelbach, Johannes; Schröder-Turk, Gerd E.; Kraynik, Andrew M.; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  9. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus.

    PubMed

    Hartmann, Sylvia; Gesk, Stefan; Scholtysik, René; Kreuz, Markus; Bug, Stefanie; Vater, Inga; Döring, Claudia; Cogliatti, Sergio; Parrens, Marie; Merlio, Jean-Philippe; Kwiecinska, Anna; Porwit, Anna; Piccaluga, Pier Paolo; Pileri, Stefano; Hoefler, Gerald; Küppers, Ralf; Siebert, Reiner; Hansmann, Martin-Leo

    2010-02-01

    Little is known about genomic aberrations in peripheral T cell lymphoma, not otherwise specified (PTCL NOS). We studied 47 PTCL NOS by 250k GeneChip single nucleotide polymorphism arrays and detected genomic imbalances in 22 of the cases. Recurrent gains and losses were identified, including gains of chromosome regions 1q32-43, 2p15-16, 7, 8q24, 11q14-25, 17q11-21 and 21q11-21 (> or = 5 cases each) as well as losses of chromosome regions 1p35-36, 5q33, 6p22, 6q16, 6q21-22, 8p21-23, 9p21, 10p11-12, 10q11-22, 10q25-26, 13q14, 15q24, 16q22, 16q24, 17p11, 17p13 and Xp22 (> or = 4 cases each). Genomic imbalances affected several regions containing members of nuclear factor-kappaB signalling and genes involved in cell cycle control. Gains of 2p15-16 were confirmed in each of three cases analysed by fluorescence in situ hybridization (FISH) and were associated with breakpoints at the REL locus in two of these cases. Three additional cases with gains of the REL locus were detected by FISH among 18 further PTCL NOS. Five of 27 PTCL NOS investigated showed nuclear expression of the REL protein by immunohistochemistry, partly associated with genomic gains of the REL locus. Therefore, in a subgroup of PTCL NOS gains/rearrangements of REL and expression of REL protein may be of pathogenetic relevance.

  10. Inhibition of Aberrant MicroRNA-133a Expression in Endothelial Cells by Statin Prevents Endothelial Dysfunction by Targeting GTP Cyclohydrolase 1 in Vivo

    PubMed Central

    Li, Peng; Yin, Ya-Ling; Guo, Tao; Sun, Xue-Ying; Ma, Hui; Zhu, Mo-Li; Zhao, Fan-Rong; Xu, Ping; Chen, Yuan; Wan, Guang-Rui; Jiang, Fan; Peng, Qi-Sheng; Liu, Chao; Liu, Li-Ying

    2016-01-01

    Background: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation. Methods: Endothelial function was assessed by measuring acetylcholine-induced vasorelaxation in the organ chamber. MiR-133a expression was assessed by quantitative reverse transcription polymerase chain reaction and fluorescence in situ hybridization. Results: We first demonstrated that GCH1 mRNA is a target of miR-133a. In endothelial cells, miR-133a was robustly induced by cytokines/oxidants and inhibited by lovastatin. Furthermore, lovastatin upregulated GCH1 and tetrahydrobiopterin, and recoupled endothelial nitric oxide synthase in stressed endothelial cells. These actions of lovastatin were abolished by enforced miR-133a expression and were mirrored by a miR-133a antagomir. In mice, hyperlipidemia- or hyperglycemia-induced ectopic miR-133a expression in the vascular endothelium, reduced GCH1 protein and tetrahydrobiopterin levels, and impaired endothelial function, which were reversed by lovastatin or miR-133a antagomir. These beneficial effects of lovastatin in mice were abrogated by in vivo miR-133a overexpression or GCH1 knockdown. In rats, multiple cardiovascular risk factors including hyperglycemia, dyslipidemia, and hyperhomocysteinemia resulted in increased miR-133a vascular expression, reduced GCH1 expression, uncoupled endothelial nitric oxide synthase function, and induced endothelial dysfunction, which were prevented by lovastatin. Conclusions: Statin inhibits aberrant miR-133a expression in the vascular endothelium to prevent endothelial dysfunction by targeting GCH1. Therefore, miR-133a represents an important therapeutic target for preventing cardiovascular diseases. PMID:27765794

  11. Relative biological effectiveness of 25 and 10 kV X-rays for the induction of chromosomal aberrations in two human mammary epithelial cell lines.

    PubMed

    Beyreuther, Elke; Dörr, Wolfgang; Lehnert, Anna; Lessmann, Elisabeth; Pawelke, Jörg

    2009-08-01

    Administration of ionizing radiation for diagnostic purposes can be associated with a risk for the induction of tumors. Therefore, particularly with regard to general screening programs, e.g. with mammography, cost-benefit considerations must be discussed including risk estimation depending upon the radiation quality administered. The present study was initiated to investigate the in vitro X-ray energy dependence for the induction of chromosomal aberrations in the two mammary epithelial cell lines, 184A1 and MCF-12A. The induced excess fragments, dicentric chromosomes and centric rings were analyzed and the relative biological effectiveness (RBE) was determined for 10 and 25 kV X-rays relative to 200 kV X-rays. The assumed energy dependence with higher values for 10 kV X-rays was confirmed for the excess fragments, with RBE(M) values of 1.92 +/- 0.26 and 1.40 +/- 0.12 for 10 kV X-rays and 1.17 +/- 0.12 and 0.97 +/- 0.10 for 25 kV photons determined for cell lines 184A1 and MCF-12A, respectively. Meaningful results for the induction of dicentric chromosomes and centric rings were obtained only for higher doses with RBE values of 1.31 +/- 0.21 and 1.70 +/- 0.29 for 184A1 and 1.08 +/- 0.08 and 1.43 +/- 0.12 for MCF-12A irradiated with 25 and 10 kV X-rays, respectively.

  12. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  13. Aberrant immunoarchitecture distinguishes hyperplastic germinal centres in pattern 1 angioimmunoblastic T-cell lymphoma from reactive follicles.

    PubMed

    Tan, Leonard Hwan-Cheong; Tan, Soo-Yong

    2014-09-01

    We compare 30 biopsies each of Pattern 1 angioimmunoblastic T-cell lymphoma (AITL1) and reactive lymphoid hyperplasia (RLH) by immunohistology, in-situ hybridization for Epstein-Barr virus-encoded RNA and T-cell receptor-γ (TRG)-clonality. AITL1 cases, more often than RLH controls, were older [median ages 61 (range 23-79) vs 46 (range 11-59) years, p < 10(-4)], non-Chinese [16/30 (53%) vs 8/28 (29%), p = 0.035], presented nodally [29/30 (97%) vs 23/30 (77%), p = 0.024], showed: pan-T cell antigen attenuation [25/29 (86%) vs 5/21 (24%), p = 1.0 × 10(-5)], CD4 predominance [25/28 (89%) vs 12/23 (52%), p = 3.4 × 10(-3)], interfollicular lymphoid CD10-positivity [16/30 (53%) vs 1/29 (3%), p = 1.5 × 10(-5)], TRG clonality [16/28 (57%) vs 1/20 (5%), p = 1.4 × 10(-4)], higher maximum number of Epstein-Barr virus-encoded RNA + nuclei per 0.5-mm high-power field [median 6 (range 0-70) vs 1 (range 0-40), p = 0.012] and interfollicular Ki-67 proliferation fraction [median 40% (range 10-80%) vs 20% (range 5-40), p < 10(-4)], whereas their germinal centres (GCs) more often showed attenuation of CD10 [30/30 (100%) vs 11/29 (38%), p = 5.3 × 10(-8)] and CD57 [18/25 (72%) vs 4/22 (18%), p = 2.4 × 10(-4)] (respectively). GC-predominant PD-1 and ICOS immunoreactivity were more often seen in RLH [20/22 and 9/19 controls (91% and 47%)] than AITL1 [9/25 and 3/19 cases (36% and 16%), p = 1.0 × 10(-4) and 0.033, respectively]. Significant independent predictors against AITL1 were: solid GC CD10 immunoreactivity {p = 0.023, odds ratio (OR) for AITL1 0.01 [95% confidence interval (CI): 0.0002-0.529]}; lower interfollicular proliferation fraction [p = 0.047, OR for AITL1 1.1 (95% CI: 1.001-1.209) per % rise in Ki-67]; younger presenting age [p = 0.028, OR for AITL1 1.136 (95% CI: 1.014-1.272) per year older]. Hence, GCs and perifollicular zones in AITL1 are distinct from those in RLH.

  14. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  15. Novel CARD11 Mutations in Human Cutaneous Squamous Cell Carcinoma Lead to Aberrant NF-κB Regulation

    PubMed Central

    Watt, Stephen A.; Purdie, Karin J.; den Breems, Nicoline Y.; Dimon, Michelle; Arron, Sarah T.; McHugh, Angela T.; Xue, Dylan J.; Dayal, Jasbani H.S.; Proby, Charlotte M.; Harwood, Catherine A.; Leigh, Irene M.; South, Andrew P.

    2016-01-01

    NF-κB signaling plays a crucial role in regulating proliferation and differentiation in the epidermis. Alterations in the NF-κB pathway can lead to skin pathologies with a significant burden to human health such as psoriasis and cutaneous squamous cell carcinoma (cSCC). Caspase recruitment domain (CARD)-containing scaffold proteins are key regulators of NF-κB signaling by providing a link between membrane receptors and NF-κB transcriptional subunits. Mutations in the CARD family member, CARD14, have been identified in patients with the inflammatory skin diseases psoriasis and pityriasis rubra pilaris. Here, we describe that the gene coding for another CARD scaffold protein, CARD11, is mutated in more than 38% of 111 cSCCs, and show that novel variants outside of the coiled-coil domain lead to constitutively activated NF-κB signaling. CARD11 protein expression was detectable in normal skin and increased in all cSCCs tested. CARD11 mRNA levels were comparable with CARD14 in normal skin and CARD11 mRNA was increased in cSCC. In addition, we identified CARD11 mutations in peritumoral and sun-exposed skin, suggesting that CARD11-mediated alterations in NF-κB signaling may be an early event in the development of cSCC. PMID:26212909

  16. Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors

    PubMed Central

    Salgia, Ravi

    2014-01-01

    With the introduction of targeted agents primarily applicable to non-small cell lung cancer (NSCLC) of adenocarcinoma histology, there is a heightened unmet need in the squamous cell carcinoma population. Targeting the angiogenic fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway is among the strategies being explored in squamous NSCLC; these efforts are supported by growth-promoting effects of FGF signaling in preclinical studies (including interactions with other pathways) and observations suggesting that FGF/FGFR-related aberrations may be more common in squamous versus adenocarcinoma and other histologies. A number of different anti-FGF/FGFR approaches have shown promise in preclinical studies. Clinical trials of two multitargeted tyrosine kinase inhibitors are restricting enrollment to patients with squamous NSCLC: a phase I/II trial of nintedanib added to first-line gemcitabine/cisplatin and a phase II trial of ponatinib for previously treated advanced disease, with the latter requiring not only squamous disease but also a confirmed FGFR kinase amplification or mutation. There are several ongoing clinical trials of multitargeted agents in general NSCLC populations, including but not limited to patients with squamous disease. Other FGF/FGFR-targeted agents are in earlier clinical development. While results are awaited from these clinical investigations in squamous NSCLC and other disease settings, additional research is needed to elucidate the role of FGF/FGFR signaling in the biology of NSCLC of different histologies. PMID:24711160

  17. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells.

    PubMed

    Yan, F; Shen, N; Pang, J X; Zhang, Y W; Rao, E Y; Bode, A M; Al-Kali, A; Zhang, D E; Litzow, M R; Li, B; Liu, S J

    2016-12-02

    Obesity is becoming more prevalent worldwide and is a major risk factor for cancer development. Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a frequently fatal disease. Here we investigated the molecular mechanisms by which obesity favors AML growth and uncovered the fatty acid-binding protein 4 (FABP4) and DNA methyltransferase 1 (DNMT1) regulatory axis that mediates aggressive AML in obesity. We showed that leukemia burden was much higher in high-fat diet-induced obese mice, which had higher levels of FABP4 and interleukin (IL)-6 in the sera. Upregulation of environmental and cellular FABP4 accelerated AML cell growth in both a cell-autonomous and cell-non-autonomous manner. Genetic disruption of FABP4 in AML cells or in mice blocked cell proliferation in vitro and induced leukemia regression in vivo. Mechanistic investigations showed that FABP4 upregulation increased IL-6 expression and signal transducer and activator of transcription factor 3 phosphorylation leading to DNMT1 overexpression and further silencing of the p15(INK4B) tumor-suppressor gene in AML cells. Conversely, FABP4 ablation reduced DNMT1-dependent DNA methylation and restored p15(INK4B) expression, thus conferring substantial protection against AML growth. Our findings reveal the FABP4/DNMT1 axis in the control of AML cell fate in obesity and suggest that interference with the FABP4/DNMT1 axis might be a new strategy to treat leukemia.Leukemia advance online publication, 2 December 2016; doi:10.1038/leu.2016.349.

  18. Connecting chromosome replication with cell growth in bacteria.

    PubMed

    Murray, Heath

    2016-12-01

    For bacteria to proliferate they must duplicate their genetic material so that it can be passed to their progeny. This requires that DNA replication is coordinated with cell growth and division. In the natural environment bacterial growth is dynamic and strongly influenced by changes in nutrient availability. Recent studies have found that bacteria utilize a range of regulatory systems, many of them species-specific, to coordinate DNA replication with cell growth. This variability likely reflects the diverse lifestyles of different bacterial types.

  19. Role of Fetuin-A in Breast Tumor Cell Growth

    DTIC Science & Technology

    2009-03-01

    Growth PRINCIPAL INVESTIGATOR: Josiah Ochieng, Ph.D. CONTRACTING ORGANIZATION: Meharry Medical College Nashville, TN 37208...COVERED (From - To) 4. TITLE AND SUBTITLE Role of fetuin-A in Breast Tumor Cell Growth 5a. CONTRACT NUMBER W81XWH-07-1-0254 5b. GRANT NUMBER...hypothesis of this grant is that fetuin-A is a major serum derived growth factor for breast carcinoma cells and creates a favorable environment for the

  20. Morphological aberrations of nutritionally deficient streptococci: association with pyridoxal (vitamin B6) concentration and potential role in antibiotic resistance.

    PubMed Central

    Clark, R B; Gordon, R E; Bottone, E J; Reitano, M

    1983-01-01

    A strain of a nutritionally deficient streptococcus was shown to undergo morphological aberrations according to pyridoxal concentrations in the growth medium. Filamentous rod-shaped cells, observed by electron microscopy, predominated in the presence of decreasing concentrations. Multiple invaginations in the outer cell wall suggested inhibition of binary fission. Penicillin antimicrobial studies performed in the presence of similar pyridoxal concentrations indicated a relationship between filamentous forms and penicillin susceptibility. Images PMID:6618670

  1. Can Insulin Production Suppress β Cell Growth?

    PubMed

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation.

  2. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  3. Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis.

    PubMed

    Ansil, Puthuparampil Nazarudeen; Prabha, Santhibhavan Prabhakaran; Nitha, Anand; Latha, Mukalel Sankunni

    2013-01-01

    Colorectal cancer is one of the leading causes of cancer death, both in men and women. This study investigated the effects of Amorphophallus campanulatus tuber methanolic extract (ACME) on aberrant crypt foci (ACF) formation, colonic cell proliferation, lipid peroxidative damage and the antioxidant status in a long term preclinical model of 1, 2-dimethylhydrazine (DMH) induced colon carcinogenesis in rats. Male Wistar rats were divided into six groups, viz., group I rats served as controls; group II rats treated as drug controls receiving 250 mg/ kg body weight of ACME orally; group III rats received DMH (20 mg/kg body weight) subcutaneously once a week for the first 15 weeks; groups IV, V and VI rats received ACME along with DMH during the initiation, post- initiation stages and the entire period of the study, respectively. All the rats were sacrificed at the end of 30 weeks and the intestinal and colonic tissues from different groups were subjected to biochemical and histological studies. Administration of DMH resulted in significant (p ≤ 0.05) intestinal and colonic lipid peroxidation (MDA) and reduction of antioxidants such as catalase, glutathione peroxidase, glutathione reductase, glutathione-S- transferase and reduced glutathione. Whereas the supplementation of ACME significantly (p ≤ 0.05) improved the intestinal and colonic MDA and reduced glutathione levels and the activities of antioxidant enzymes in DMH intoxicated rats. ACME administration also significantly suppressed the formation and multiplicity of ACF. In addition, the DMH administered rats showed amplified expression of PCNA in the colon and decreased expression of this proliferative marker was clearly noted with initiation, post-initiation and entire period of ACME treatment regimens. These results indicate that ACME could exert a significant chemopreventive effect on colon carcinogenesis induced by DMH.

  4. Array-Based Comparative Genomic Hybridization Analysis Reveals Chromosomal Copy Number Aberrations Associated with Clinical Outcome in Canine Diffuse Large B-Cell Lymphoma

    PubMed Central

    Bresolin, Silvia; Marconato, Laura; Comazzi, Stefano; Te Kronnie, Geertruy; Aresu, Luca

    2014-01-01

    Canine Diffuse Large B-cell Lymphoma (cDLBCL) is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs) by high-resolution array comparative genomic hybridization (aCGH) in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30%) were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%). In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL. PMID:25372838

  5. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  6. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  7. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  8. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpathanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Whorton, Elbert B

    2015-11-01

    Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 Me

  9. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.

  10. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  11. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  12. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  13. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of Acetogenin Annomuricin E in HT-29 cells: a bioassay-guided approach.

    PubMed

    Zorofchian Moghadamtousi, Soheil; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Firoozinia, Mohammad; Ameen Abdulla, Mahmood; Abdul Kadir, Habsah

    2015-01-01

    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the

  14. The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Firoozinia, Mohammad; Ameen Abdulla, Mahmood; Abdul Kadir, Habsah

    2015-01-01

    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the

  15. Antizyme (AZ) regulates intestinal cell growth independently of polyamines

    PubMed Central

    Ray, Ramesh M.; Bhattacharya, Sujoy; Bavaria, Mitul N.; Viar, Mary Jane; Johnson, Leonard R.

    2014-01-01

    Since antizyme (AZ) is known to inhibit cell proliferation and to increase apoptosis, the question arises as to whether these effects occur independently of polyamines. Intestinal epithelial cells (IEC-6) were grown in control medium and medium containing 5mM difluoromethylornithine (DFMO) to inhibit ODC, DFMO + 5μM spermidine (SPD), DFMO+ 5μM spermine (SPM), or DFMO+ 10 μM putrescine (PUT) for 4 days and various parameters of growth were measured along with AZ levels. Cell counts were significantly decreased and mean doubling times were significantly increased by DFMO. Putrescine restored growth in the presence of DFMO. However, both SPD and SPM when added with DFMO caused a much greater inhibition of growth than did DFMO alone, and both of these polyamines caused a dramatic increase in AZ. The addition of SPD or SPM to media containing DFMO + PUT significantly inhibited growth and caused a significant increase in AZ. IEC-6 cells transfected with AZ-siRNA grew more than twice as rapidly as either control cells or those incubated with DFMO, indicating that removal of AZ increases growth in cells in which polyamine synthesis is inhibited as well as in control cells. In a separate experiment the addition of SPD increased AZ levels and inhibited growth of cells incubated with DFMO by 50%. The addition of 10 mM asparagine (ASN) prevented the increase in AZ and restored growth to control levels. These results show that cell growth in the presence or absence of ODC activity and in the presence or absence of polyamines depends only on the levels of AZ. Therefore, the effects of AZ on cell growth are independent of polyamines. PMID:24930035

  16. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins

    PubMed Central

    van Andel, Harmen; Ren, Zemin; Koopmans, Iris; Joosten, Sander P. J.; Kocemba, Kinga A.; de Lau, Wim; Kersten, Marie José; de Bruin, Alexander M.; Guikema, Jeroen E. J.; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T.

    2017-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also affected by, or even addicted to, signals from the microenvironment. As therapeutic targets, these extrinsic signals may be equally significant as mutated oncogenes. In multiple myeloma (MM), a plasma cell malignancy, most tumors display hallmarks of active Wnt signaling but lack activating Wnt-pathway mutations, suggesting activation by autocrine Wnt ligands and/or paracrine Wnts emanating from the bone marrow (BM) niche. Here, we report a pivotal role for the R-spondin/leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis in driving aberrant Wnt/β-catenin signaling in MM. We show that LGR4 is expressed by MM plasma cells, but not by normal plasma cells or B cells. This aberrant LGR4 expression is driven by IL-6/STAT3 signaling and allows MM cells to hijack R-spondins produced by (pre)osteoblasts in the BM niche, resulting in Wnt (co)receptor stabilization and a dramatically increased sensitivity to auto- and paracrine Wnts. Our study identifies aberrant R-spondin/LGR4 signaling with consequent deregulation of Wnt (co)receptor turnover as a driver of oncogenic Wnt/β-catenin signaling in MM cells. These results advocate targeting of the LGR4/R-spondin interaction as a therapeutic strategy in MM. PMID:28028233

  17. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins.

    PubMed

    van Andel, Harmen; Ren, Zemin; Koopmans, Iris; Joosten, Sander P J; Kocemba, Kinga A; de Lau, Wim; Kersten, Marie José; de Bruin, Alexander M; Guikema, Jeroen E J; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-01-10

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also affected by, or even addicted to, signals from the microenvironment. As therapeutic targets, these extrinsic signals may be equally significant as mutated oncogenes. In multiple myeloma (MM), a plasma cell malignancy, most tumors display hallmarks of active Wnt signaling but lack activating Wnt-pathway mutations, suggesting activation by autocrine Wnt ligands and/or paracrine Wnts emanating from the bone marrow (BM) niche. Here, we report a pivotal role for the R-spondin/leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis in driving aberrant Wnt/β-catenin signaling in MM. We show that LGR4 is expressed by MM plasma cells, but not by normal plasma cells or B cells. This aberrant LGR4 expression is driven by IL-6/STAT3 signaling and allows MM cells to hijack R-spondins produced by (pre)osteoblasts in the BM niche, resulting in Wnt (co)receptor stabilization and a dramatically increased sensitivity to auto- and paracrine Wnts. Our study identifies aberrant R-spondin/LGR4 signaling with consequent deregulation of Wnt (co)receptor turnover as a driver of oncogenic Wnt/β-catenin signaling in MM cells. These results advocate targeting of the LGR4/R-spondin interaction as a therapeutic strategy in MM.

  18. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  19. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    PubMed Central

    Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko

    2016-01-01

    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with

  20. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  1. Laying the groundwork for growth: Cell-cell and cell-ECM interactions in cardiovascular development.

    PubMed

    Bowers, Stephanie L K; Baudino, Troy A

    2010-03-01

    Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell-cell and cell-ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders.

  2. Microtubules Growth Rate Alteration in Human Endothelial Cells

    PubMed Central

    Alieva, Irina B.; Zemskov, Evgeny A.; Kireev, Igor I.; Gorshkov, Boris A.; Wiseman, Dean A.; Black, Stephen M.; Verin, Alexander D.

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC) and “fast” (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules. PMID:20445745

  3. Microtubules growth rate alteration in human endothelial cells.

    PubMed

    Alieva, Irina B; Zemskov, Evgeny A; Kireev, Igor I; Gorshkov, Boris A; Wiseman, Dean A; Black, Stephen M; Verin, Alexander D

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with "normal" (similar to those in monolayer EC) and "fast" (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  4. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  5. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer

    PubMed Central

    Vasconcelos-dos-Santos, Andréia; Oliveira, Isadora A.; Lucena, Miguel Clodomiro; Mantuano, Natalia Rodrigues; Whelan, Stephen A.; Dias, Wagner Barbosa; Todeschini, Adriane Regina

    2015-01-01

    Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs. PMID:26161361

  6. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  7. Stromal interaction molecule 1 (STIM1) silencing inhibits tumor growth and promotes cell cycle arrest and apoptosis in hypopharyngeal carcinoma.

    PubMed

    Sun, Yuanhao; Cui, Xiaobo; Wang, Jun; Wu, Shuai; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Fang, Jugao

    2015-05-01

    As an important pathway maintaining the balance of intracellular calcium (Ca(2+)), store-operated Ca(2+) entry (SOCE) is critical for cellular functions. Stromal interaction molecule 1 (STIM1), a key component of SOCE, plays a dual role as an endoplasmic reticulum Ca(2+) receptor and an SOCE exciter. Aberrant expression of STIM1 could be discovered in several human cancer cells. However, the role of STIM1 in regulating human hypopharyngeal carcinoma still remains unclear. Real-time polymerase chain reaction (PCR) was used to detect expression of STIM1 in human hypopharyngeal carcinoma cell line FaDu. STIM1 on FaDu cells was knocked down by lentiviral transduction method. The biological impacts after knocking down of STIM1 on FaDu cells were investigated in vitro and in vivo. The result of real-time PCR showed that STIM1 was expressed in FaDu cells. Lentiviral transduction efficiently downregulated the expression of STIM1 in FaDu cells at both mRNA and protein levels. Significant downregulation of STIM1 on FaDu cells inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, promoted cell apoptosis, and restrained cell growth rate. The antigrowth effect of STIM1 silencing was also discovered in FaDu hypopharyngeal tumor model. Our findings indicate that STIM1 is likely to become a new therapeutic target for hypopharyngeal carcinoma treatment.

  8. Growth rate and cell size: a re-examination of the growth law.

    PubMed

    Vadia, Stephen; Levin, Petra Anne

    2015-04-01

    Research into the mechanisms regulating bacterial cell size has its origins in a single paper published over 50 years ago. In it Schaechter and colleagues made the observation that the chemical composition and size of a bacterial cell is a function of growth rate, independent of the medium used to achieve that growth rate, a finding that is colloquially referred to as 'the growth law'. Recent findings hint at unforeseen complexity in the growth law, and suggest that nutrients rather than growth rate are the primary arbiter of size. The emerging picture suggests that size is a complex, multifactorial phenomenon mediated through the varied impacts of central carbon metabolism on cell cycle progression and biosynthetic capacity.

  9. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors.

    PubMed

    Snowden, Andrew W; Zhang, Lei; Urnov, Fyodor; Dent, Carolyn; Jouvenot, Yann; Zhong, Xiaohong; Rebar, Edward J; Jamieson, Andrew C; Zhang, H Steven; Tan, Siyuan; Case, Casey C; Pabo, Carl O; Wolffe, Alan P; Gregory, Philip D

    2003-12-15

    Angiogenic factors are necessary for tumor proliferation and thus are attractive therapeutic targets. In this study, we have used engineered zinc finger protein (ZFP) transcription factors (TFs) to repress expression of vascular endothelial growth factor (VEGF)-A in human cancer cell lines. We create potent transcriptional repressors by fusing a designed ZFP targeted to the VEGF-A promoter with either the ligand-binding domain of thyroid hormone receptor alpha or its viral relative, vErbA. Moreover, this ZFP-vErbA repressor binds its intended target site in vivo and mediates the specific deacetylation of histones H3 and H4 at the targeted promoter, a result that emulates the natural repression mechanism of these domains. The potential therapeutic relevance of ZFP-mediated VEGF-A repression was addressed using the highly tumorigenic glioblastoma cell line U87MG. Despite the aberrant overexpression of VEGF-A in this cell line, engineered ZFP TFs were able to repress the expression of VEGF-A by >20-fold. The VEGF-A levels observed after ZFP TF-mediated repression were comparable to those of a nonangiogenic cancer line (U251MG), suggesting that the degree of repression obtained with the ZFP TF would be sufficient to suppress tumor angiogenesis. Thus, engineered ZFP TFs are shown to be potent regulators of gene expression with therapeutic promise in the treatment of disease.

  10. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  11. The Histone Deacetylase Inhibitor Vaproic Acid Induces Cell Growth Arrest in Hepatocellular Carcinoma Cells via Suppressing Notch Signaling

    PubMed Central

    Sun, Guangchun; Mackey, Lily V.; Coy, David H.; Yu, Cui-Yun; Sun, Lichun

    2015-01-01

    Hepatocellular carcinoma (HCC) is a type of malignant cancer. Notch signaling is aberrantly expressed in HCC tissues with more evidence showing that this signaling plays a critical role in HCCs. In the present study, we investigate the effects of the anti-convulsant drug valproic acid (VPA) in HCC cells and its involvement in modulating Notch signaling. We found that VPA, acting as a histone deacetylase (HDAC) inhibitor, induced a decrease in HDAC4 and an increase in acetylated histone 4 (AcH4) and suppressed HCC cell growth. VPA also induced down-regulation of Notch signaling via suppressing the expression of Notch1 and its target gene HES1, with an increase of tumor suppressor p21 and p63. Furthermore, Notch1 activation via overexpressing Notch1 active form ICN1 induced HCC cell proliferation and anti-apoptosis, indicating Notch signaling played an oncogenic role in HCC cells. Meanwhile, VPA could reverse Notch1-induced increase of cell proliferation. Interestingly, VPA was also observed to stimulate the expression of G protein-coupled somatostatin receptor type 2 (SSTR2) that has been used in receptor-targeting therapies. This discovery supports a combination therapy of VPA with the SSTR2-targeting agents. Our in vitro assay did show that the combination of VPA and the peptide-drug conjugate camptothecin-somatostatin (CPT-SST) displayed more potent anti-proliferative effects on HCC cells than did each alone. VPA may be a potential drug candidate in the development of anti-HCC drugs via targeting Notch signaling, especially in combination with receptor-targeting cytotoxic agents. PMID:26366213

  12. Wave aberrations in rhesus monkeys with vision-induced ametropias.

    PubMed

    Ramamirtham, Ramkumar; Kee, Chea-Su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L

    2007-09-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development.

  13. Using bacterial cell growth to template catalytic asymmetry.

    PubMed

    Kaehr, Bryan; Brinker, C Jeffrey

    2010-08-07

    We report an approach to position gold nanoparticle catalysts for metal reduction asymmetrically on a biological template (E. coli) by exploiting the polarity of the bacterial cell envelope undergoing growth and division.

  14. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  15. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  16. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  17. Adaptation to optimal cell growth through self-organized criticality.

    PubMed

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells.

  18. Genomic aberrations in spitzoid tumours and their implications for diagnosis, prognosis and therapy

    PubMed Central

    Wiesner, Thomas; Kutzner, Heinz; Cerroni, Lorenzo; Mihm, Martin J.; Busam, Klaus J.; Murali, Rajmohan

    2016-01-01

    Summary Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas conventional naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion, may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or reduce and alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic

  19. TOR and paradigm change: cell growth is controlled.

    PubMed

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  20. TOR and paradigm change: cell growth is controlled

    PubMed Central

    Hall, Michael N.

    2016-01-01

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. PMID:27634743

  1. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    SciTech Connect

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-15

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor {alpha} (TNF{alpha})-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNF{alpha}-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect.

  2. Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis

    SciTech Connect

    Zhao Yanhua; Zhang Yan; Yang Zhen; Li, Albert; Dong Jianli

    2008-06-06

    Abnormal BRAF and p16INK4A co-exist in 60% of melanomas. BRAF mutation also occurs in 80% of benign nevi where it turns-on p16INK4A resulting in proliferative senescence; loss of p16INK4A removes the inhibitory block leading to melanoma development. Since only melanomas with wild-type BRAF have amplified CDK4 and cyclin D1 genes, p16INK4A-CDK4/6-cyclin D pathway is viewed as linearly downstream of BRAF. Thus, co-occurrence of aberrant BRAF and INK4A may be remnant of changes during melanoma formation without functional significance. To explore this notion, we simultaneously knocked down BRAF (via siRNA) and expressed INK4A cDNA in melanoma cells and observed enhanced growth inhibition. Notably, although each alone had no statistically significant effect on apoptosis, co-expression of BRAF siRNA and INK4A cDNA caused potent apoptosis, which was associated with up-regulation of BIM and down-regulation of BCL2. Our results suggest that aberrant BRAF and INK4A cooperate to promote proliferation and survival of melanoma cells.

  3. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  4. S-Fms signalobody enhances myeloid cell growth and migration.

    PubMed

    Kawahara, Masahiro; Hitomi, Azusa; Nagamune, Teruyuki

    2014-07-01

    Since receptor tyrosine kinases (RTKs) control various cell fates in many types of cells, mimicry of RTK functions is promising for artificial control of cell fates. We have previously developed single-chain Fv (scFv)/receptor chimeras named signalobodies that can mimic receptor signaling in response to a specific antigen. While the RTK-based signalobodies enabled us to control cell growth and migration, further extension of applicability in another cell type would underlie the impact of the RTK-based signalobodies. In this study, we applied the scFv-c-Fms (S-Fms) signalobody in a murine myeloid progenitor cell line, FDC-P1. S-Fms transduced a fluorescein-conjugated BSA (BSA-FL)-dependent growth signal and activated downstream signaling molecules including MEK, ERK, Akt, and STAT3, which are major constituents of Ras/MAPK, PI3K/Akt, and JAK/STAT signaling pathways. In addition, S-Fms transduced a migration signal as demonstrated by the transwell-based migration assay. Direct real-time observation of the cells further confirmed that FDC/S-Fms cells underwent directional cell migration toward a positive gradient of BSA-FL. These results demonstrated the utility of the S-Fms signalobody for controlling growth and migration of myeloid cells. Further extension of our approach includes economical large-scale production of practically relevant blood cells as well as artificial control of cell migration for tissue regeneration and immune response.

  5. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  6. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  7. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  8. Intercellular propagation of individually programmed growth bursts in FRTL-5 cells. Implications for interpreting growth factor actions

    SciTech Connect

    Derwahl, M.; Studer, H.; Huber, G.; Gerber, H.; Peter, H.J. )

    1990-11-01

    Five methods are commonly used to quantify FRTL-5 cells' and other thyrocytes' growth in vitro and the impact of growth inhibiting or stimulating maneuvers: Total cell count, mitotic index, DNA measurement, total (3H)thymidine incorporation, and the fraction of (3H)thymidine labeled cells. All of them assess cell growth as though all cells were homogeneous with an identical response to growth factors. We demonstrate here that this assumption is not valid. Rather, some intrinsically growth-prone cells appear to pass a growth signal to neighboring cells so that variably sized colonies of synchronized cells within each cluster growing from monodispersed cells are formed. This is true for FRTL-5 cells growing in vitro in monolayers and in three-dimensional, collagen embedded spheroids. The pattern is the same when cell suspensions or collagen-embedded spheroids are implanted onto nude mice. Patches with alternating high and low growth become particularly prominent in the large tumor-like organoids grown from monodispersed cells in nude mice. The pattern much reminds of similar observations in growing intact thyroids. Since there is no significant correlation between the fraction of (3H)thymidine labeled cells and the size of two- or three-dimensional clusters in any experiment, growth of signal-spreading cells is assumed to occur in leaps and bounds. Growth velocity in each subclone of a cell population depends on the mean interval between bursts of replications and on the number of cells synchronized by cell-to-cell diffusion of the growth signal emanating from one dividing cell. Thus, growth-promoting and growth-inhibiting factors may not only act on the mean interval between successive growth bursts, but they may also change cell-to-cell spreading of growth signals.

  9. Simultaneous optical measurements of cell motility and growth.

    PubMed

    Sridharan, Shamira; Mir, Mustafa; Popescu, Gabriel

    2011-10-01

    It has recently been shown that spatial light interference microscopy (SLIM) developed in our laboratory can be used to quantify the dry mass growth of single cells with femtogram sensitivity [M. Mir et al., Proc. Nat. Acad. Sci. 108, 32 (2011)]. Here we show that it is possible to measure the motility of single cells in conjunction with the dry mass measurements. Specifically the effect of poly-L-lysine substrate on the dry mass growth of Drosophila S2 cells is studied. By measuring the mean square displacement of single cells and clusters it is shown that cells that adhere better to the surface are unable to grow. Using such a technique it is possible to measure both growth and morphogenesis, two of the cornerstones of developmental biology.

  10. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    PubMed Central

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  11. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    PubMed

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature.

  12. Statistical interpretation of the overdispersed distribution of radiation-induced dicentric chromosome aberrations at high LET

    SciTech Connect

    Virsik, R.P.; Harder, D.

    1981-01-01

    The hypothesis that overdispersion of the chromosome aberration number per cell results from multiple aberrations per particle traversal is investigated in mathematical terms. At a given absorbed dose, Poisson distributions are assumed both for the number of ionizing particles traversing a cell nucleus and for the number of aberrations induced by a single particle traversal. The resulting distribution of the number of aberrations per cell is the Neyman type A distribution, a special case of the generalized Poisson distribution. This function is generally overdispersed, its relative variance 1 + lambda being determined by the expectation value lambda of aberrations per particle traversal. Data from experiments with neutrons and ..cap alpha.. particles are found to agree with this theory. The developed formalism provides a method to determine the efficiency of aberration induction per particle traversal, lambda, from the frequency distribution of aberrations.

  13. Molecular mobility of scaffolds' biopolymers influences cell growth.

    PubMed

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  14. Hormonal modulation of brain tumour growth: a cell culture study.

    PubMed

    Gibelli, N; Zibera, C; Butti, G; Assietti, R; Sica, G; Scerrati, M; Iacopino, F; Roselli, R; Paoletti, P; Robustelli della Cuna, G

    1989-01-01

    Tissue samples derived from two neuroepithelial tumours and five meningiomas were obtained at surgery from seven patients and cultured in order to study the effect of dexamethasone (DEX) and testosterone acetate (TA) on cell proliferation. Glucocorticoid and androgen receptors (GR, AR) were determined both on tissue samples (7 cases) and on five out of the seven cell cultures obtained by tumours. GR and AR were present respectively in 5 and in 4 out of the tumour specimens assayed and in 4/5 and 2/3 of the tested cell cultures. DEX activity on cell growth was tested on six cell cultures. Four of them showed a significant growth inhibition at the highest drug concentration. On the contrary, a significant growth stimulation was observed in four out of the five cultures, where GR were present, using low hormone concentrations. Treatment with pharmacological doses of TA caused a significant cytotoxicity in all the tested cultures. Low TA concentrations inhibited cell growth in one out of the two cell cultures which contained AR, but were ineffective in cultures lacking AR. Our preliminary results suggest a possible role in growth regulation by DEX and TA in intracranial tumours, on the basis of the presence of specific hormone receptors.

  15. Dual control of cell growth by somatomedins and platelet-derived growth factor.

    PubMed Central

    Stiles, C D; Capone, G T; Scher, C D; Antoniades, H N; Van Wyk, J J; Pledger, W J

    1979-01-01

    Quiescent BALB/c 3T3 cells exposed briefly to a platelet-derived growth factor (PDGF) become "competent" to replicate their DNA but do not "progress" into S phase unless incubated with growth factors contained in platelet-poor plasma. Plasma from hypophysectomized rats is deficient in progression activity; it does not stimulate PDGF-treated competent cells to synthesize DNA, demonstrating that somatomedin C is required for progression. Various growth factors were tested for progression activity and competence activity by using BALB/c 3T3 tissue culture assays. Multiplication stimulating activity and other members of the somatomedin family of growth factors are (like somatomedin C) potent mediators of progression. Other mitogenic agents, such as fibroblast growth factor, are (like PDGF) potent inducers of competence. Growth factors with potent progression activity have little or no competence activity and vice versa. In contrast, simian virus 40 provides both competence and progression activity. Coordinate control of BALB/c 3T3 cell growth in vitro by competence factors and somatomedins may be a specific example of a common pattern of growth regulation in animal tissues. PMID:312500

  16. Regulation of rat ovarian cell growth and steroid secretion

    PubMed Central

    Johnson, CC; Dawson, WE; Turner, JT; Wyche, JH

    1980-01-01

    A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin. PMID:6995465

  17. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

    PubMed Central

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido

    2014-01-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286

  18. Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth

    PubMed Central

    2011-01-01

    Background Homeobox genes murine Rhox5 and human RHOXF1 are expressed in early embryonic stages and then mostly restricted to germline tissues in normal adult, yet they are aberrantly expressed in cancer cells in vitro and in vivo . Here we study the epigenetic regulation and potential functions of Rhox5 gene. Findings In Rhox5 -silenced or extremely low expresser cells, we observed low levels of active histone epigenetic marks (H3ac, H4ac and H3K4me2) and high levels of repressive mark H3K9me2 along with DNA hypermethylation in the promoter. In Rhox5 low expresser cells, we typically observed modest levels of both active and repressive histone marks along with moderate DNA methylation. In Rhox5 highly expressed CT26 cancer cells, we observed DNA hypomethylation along with high levels of both active and repressive histone marks. Epigenetic drugs (retinoic acid and MS-275) induced F9 cell differentiation with enhanced Rhox5 expression and dynamic changes of epigenetic marks. Finally, Rhox5 knockdown by small hairpin RNA (shRNA) in CT26 colon cancer decreased cell proliferation and migration in vitro and tumor growth in vivo . Conclusions Both DNA methylation and histone methylation/acetylation play key roles in modulating Rhox5 expression in various cell types. The stem cell-like "bivalent domain", an epigenetic feature originally identified in key differentiation genes within stem cells, exists in the Rhox5 gene promoter in not only embryonic stem cells but also cancer cells, cancer stem cells, and differentiated Sertoli cells. As Ras signaling-dependent Rhox5 expression promotes tumor growth, Rhox5 may be an ideal target for therapeutic intervention in cancer. PMID:21609483

  19. Tumor-Derived Tissue Factor Aberrantly Activates Complement and Facilitates Lung Tumor Progression via Recruitment of Myeloid-Derived Suppressor Cells

    PubMed Central

    Han, Xiao; Zha, Haoran; Yang, Fei; Guo, Bo; Zhu, Bo

    2017-01-01

    The initiator of extrinsic coagulation, tissue factor (TF), and its non-coagulant isoform alternatively spliced TF (asTF) are closely associated with tumor development. In the tumor microenvironment, the role of TF-induced coagulation in tumor progression remains to be fully elucidated. Using TF-knockdown lung tumor cells, we showed that TF is the dominant component of procoagulant activity but is dispensable in the cellular biology of tumor cells. In a xenograft model, using immunohistochemical analysis and flow cytometry analysis of the tumor microenvironment, we demonstrated that TF-induced fibrin deposition, which is correlated with complement activation and myeloid-derived suppressor cell (MDSC) recruitment, is positively associated with tumor progression. C5aR antagonism blunted the effect of TF on tumor progression and decreased MDSC recruitment. In conclusion, our data suggested that in tumor microenvironment, TF-induced coagulation activated the complement system and subsequently recruited myeloid-derived suppressor cells to promote tumor growth, which brings new insights into the coagulation-induced complement activation within the tumor microenvironment during tumor progression. PMID:28106852

  20. Tumor-Derived Tissue Factor Aberrantly Activates Complement and Facilitates Lung Tumor Progression via Recruitment of Myeloid-Derived Suppressor Cells.

    PubMed

    Han, Xiao; Zha, Haoran; Yang, Fei; Guo, Bo; Zhu, Bo

    2017-01-19

    The initiator of extrinsic coagulation, tissue factor (TF), and its non-coagulant isoform alternatively spliced TF (asTF) are closely associated with tumor development. In the tumor microenvironment, the role of TF-induced coagulation in tumor progression remains to be fully elucidated. Using TF-knockdown lung tumor cells, we showed that TF is the dominant component of procoagulant activity but is dispensable in the cellular biology of tumor cells. In a xenograft model, using immunohistochemical analysis and flow cytometry analysis of the tumor microenvironment, we demonstrated that TF-induced fibrin deposition, which is correlated with complement activation and myeloid-derived suppressor cell (MDSC) recruitment, is positively associated with tumor progression. C5aR antagonism blunted the effect of TF on tumor progression and decreased MDSC recruitment. In conclusion, our data suggested that in tumor microenvironment, TF-induced coagulation activated the complement system and subsequently recruited myeloid-derived suppressor cells to promote tumor growth, which brings new insights into the coagulation-induced complement activation within the tumor microenvironment during tumor progression.

  1. Oxygen modulates growth of human cells at physiologic partial pressures

    PubMed Central

    1984-01-01

    We have examined the growth of human diploid fibroblasts (WI-38 and IMR90) as a function of initial seeding density and oxygen tension. Cells at young and mid-passage levels were subcultivated in Dulbecco's modified Eagle's medium with 10% fetal bovine serum at 0.005, 0.01, 0.03, 0.1, 0.3, 1, and 2 X 10(4) cells/cm2. Flasks were equilibrated before and after seeding with 1 of 10 gas mixtures