Science.gov

Sample records for aberrant cell proliferation

  1. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells.

    PubMed

    Inoko, Akihito; Matsuyama, Makoto; Goto, Hidemasa; Ohmuro-Matsuyama, Yuki; Hayashi, Yuko; Enomoto, Masato; Ibi, Miho; Urano, Takeshi; Yonemura, Shigenobu; Kiyono, Tohru; Izawa, Ichiro; Inagaki, Masaki

    2012-04-30

    The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.

  2. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy.

    PubMed

    Muto, Masahiro; Manfroi, Benoit; Suzuki, Hitoshi; Joh, Kensuke; Nagai, Masaaki; Wakai, Sachiko; Righini, Christian; Maiguma, Masayuki; Izui, Shozo; Tomino, Yasuhiko; Huard, Bertrand; Suzuki, Yusuke

    2017-04-01

    The TNF family member a proliferation-inducing ligand (APRIL; also known as TNFSF13), produced by myeloid cells, participates in the generation and survival of antibody-producing plasma cells. We studied the potential role of APRIL in the pathogenesis of IgA nephropathy (IgAN). We found that a significant proportion of germinal centers (GCs) in tonsils of patients with IgAN contained cells aberrantly producing APRIL, contributing to an overall upregulation of tonsillar APRIL expression compared with that in tonsils of control patients with tonsillitis. In IgAN GC, antigen-experienced IgD(-)CD38(+/-)CD19(+) B cells expressing a switched IgG/IgA B cell receptor produced APRIL. Notably, these GC B cells expressed mRNA encoding the common cleavable APRIL-α but also, the less frequent APRIL-δ/ζ mRNA, which encodes a protein that lacks a furin cleavage site and is, thus, the uncleavable membrane-bound form. Significant correlation between TLR9 and APRIL expression levels existed in tonsils from patients with IgAN. In vitro, repeated TLR9 stimulation induced APRIL expression in tonsillar B cells from control patients with tonsillitis. Clinically, aberrant APRIL expression in tonsillar GC correlated with greater proteinuria, and patients with IgAN and aberrant APRIL overexpression in tonsillar GC responded well to tonsillectomy, with parallel decreases in serum levels of galactose-deficient IgA1. Taken together, our data indicate that antibody disorders in IgAN associate with TLR9-induced aberrant expression of APRIL in tonsillar GC B cells.

  3. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  4. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  5. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    SciTech Connect

    Oh, J; Deasy, J

    2014-06-15

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  6. Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis.

    PubMed

    Ansil, Puthuparampil Nazarudeen; Prabha, Santhibhavan Prabhakaran; Nitha, Anand; Latha, Mukalel Sankunni

    2013-01-01

    Colorectal cancer is one of the leading causes of cancer death, both in men and women. This study investigated the effects of Amorphophallus campanulatus tuber methanolic extract (ACME) on aberrant crypt foci (ACF) formation, colonic cell proliferation, lipid peroxidative damage and the antioxidant status in a long term preclinical model of 1, 2-dimethylhydrazine (DMH) induced colon carcinogenesis in rats. Male Wistar rats were divided into six groups, viz., group I rats served as controls; group II rats treated as drug controls receiving 250 mg/ kg body weight of ACME orally; group III rats received DMH (20 mg/kg body weight) subcutaneously once a week for the first 15 weeks; groups IV, V and VI rats received ACME along with DMH during the initiation, post- initiation stages and the entire period of the study, respectively. All the rats were sacrificed at the end of 30 weeks and the intestinal and colonic tissues from different groups were subjected to biochemical and histological studies. Administration of DMH resulted in significant (p ≤ 0.05) intestinal and colonic lipid peroxidation (MDA) and reduction of antioxidants such as catalase, glutathione peroxidase, glutathione reductase, glutathione-S- transferase and reduced glutathione. Whereas the supplementation of ACME significantly (p ≤ 0.05) improved the intestinal and colonic MDA and reduced glutathione levels and the activities of antioxidant enzymes in DMH intoxicated rats. ACME administration also significantly suppressed the formation and multiplicity of ACF. In addition, the DMH administered rats showed amplified expression of PCNA in the colon and decreased expression of this proliferative marker was clearly noted with initiation, post-initiation and entire period of ACME treatment regimens. These results indicate that ACME could exert a significant chemopreventive effect on colon carcinogenesis induced by DMH.

  7. Aberrant DNA methylation of the PDGF gene in homocysteine‑mediated VSMC proliferation and its underlying mechanism.

    PubMed

    Han, Xue-Bo; Zhang, Hui-Ping; Cao, Cheng-Jian; Wang, Yan-Hua; Tian, Jue; Yang, Xiao-Ling; Yang, An-Ning; Wang, Jie; Jiang, Yi-Deng; Xu, Hua

    2014-08-01

    It is well established that homocysteine (Hcy) is an independent risk factor for atherosclerosis (AS), which is characterized by vascular smooth muscle cell (VSMC) proliferation. However, the molecular mechanism underlying AS in VSMCs is yet to be elucidated. The aim of this study was to investigate the potential involvement of aberrant DNA methylation of the platelet‑derived growth factor (PDGF) gene in Hcy‑mediated VSMC proliferation and its underlying mechanism. Cultured human VSMCs were treated with varying concentrations of Hcy. VSMC proliferation, PDGF mRNA and protein expression and PDGF promoter demethylation showed a dose‑dependent increase with Hcy concentration, suggesting an association among them. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase, indicating that VSMC proliferation was increased under Hcy treatment. Furthermore, S‑adenosylhomocysteine (SAH) levels were observed to increase and those of S‑adenosylmethionine (SAM) were observed to decrease. The consequent decrease in the ratio of SAM/SAH may partially explain the hypomethylation of PDGF with Hcy treatment. Folate treatment exhibited an antagonistic effect against Hcy‑induced VSMC proliferation, aberrant PDGF methylation and PDGF expression. These data suggest that Hcy may stimulate VSMC proliferation through the PDGF signaling pathway by affecting the epigenetic regulation of PDGF through the demethylation of its promoter region. These findings may provide novel insight into the molecular association between aberrant PDGF gene demethylation and the proliferation of VSMCs in Hcy‑associated AS.

  8. Nuclear anomalies, chromosomal aberrations and proliferation rates in cultured lymphocytes of head and neck cancer patients.

    PubMed

    George, Alex; Dey, Rupraj; Bhuria, Vikas; Banerjee, Shouvik; Ethirajan, Sivakumar; Siluvaimuthu, Ashok; Saraswathy, Radha

    2014-01-01

    Head and neck cancers (HNC) are extremely complex disease types and it is likely that chromosomal instability is involved in the genetic mechanisms of its genesis. However, there is little information regarding the background levels of chromosome instability in these patients. In this pilot study, we examined spontaneous chromosome instability in short-term lymphocyte cultures (72 hours) from 72 study subjects - 36 newly diagnosed HNC squamous cell carcinoma patients and 36 healthy ethnic controls. We estimated chromosome instability (CIN) using chromosomal aberration (CA) analysis and nuclear level anomalies using the Cytokinesis Block Micronucleus Cytome Assay (CBMN Cyt Assay). The proliferation rates in cultures of peripheral blood lymphocytes (PBL) were assessed by calculating the Cytokinesis Block Proliferation Index (CBPI). Our results showed a significantly higher mean level of spontaneous chromosome type aberrations (CSAs), chromatid type aberration (CTAs) dicentric chromosomes (DIC) and chromosome aneuploidy (CANEUP) in patients (CSAs, 0.0294±0.0038; CTAs, 0.0925±0.0060; DICs, 0.0213±0.0028; and CANEUPs, 0.0308±0.0035) compared to controls (CSAs, 0.0005±0.0003; CTAs, 0.0058±0.0015; DICs, 0.0005±0.0003; and CANEUPs, 0.0052±0.0013) where p<0.001. Similarly, spontaneous nuclear anomalies showed significantly higher mean level of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) among cases (MNi, 0.01867±0.00108; NPBs, 0.01561±0.00234; NBUDs, 0.00658±0.00068) compared with controls (MNi, 0.00027±0.00009; NPBs, 0.00002±0.00002; NBUDs, 0.00011±0.00007).The evaluation of CBPI supported genomic instability in the peripheral blood lymphocytes showing a significantly lower proliferation rate in HNC patients (1.525±0.005552) compared to healthy subjects (1.686±0.009520 ) (p<0.0001). In conclusion, our preliminary results showed that visible spontaneous genomic instability and low rate proliferation in the cultured peripheral

  9. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin-depleted foci, and cell proliferation on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in Wistar rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod K; Kruzliak, Peter; Kumari, Archana

    2014-08-01

    Aberrant crypt foci (ACF) and mucin-depleted foci (MDF) are pre-neoplastic lesions identified in the colon of carcinogen-treated rodents and in humans at high risk for colon cancer. The present study was carried out to divulge the protective potential of the probiotic Dahi containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 alone or in combination with piroxicam (PXC) on the development of early biomarkers of colorectal carcinogenesis in male Wistar rats administered 1,2-dimethylhydrazine (DMH). DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 120 male Wistar rats were randomly allocated to five groups, each group having 24 animals. The rats were fed with buffalo milk or probiotic supplement (20 grams) alone or as an adjunct with PXC in addition to a basal diet ad libitum for 32 weeks. Group I was offered buffalo milk (BM) and served as the control group. Group II was administered DMH along with BM and served as the DMH-control group; group III was administered BM-DMH-PXC, in which besides administering BM-DMH, PXC was also offered. Group IV was offered probiotic LaBb Dahi and DMH, and group V was offered both probiotic LaBb Dahi and PXC along with DMH. The rats were euthanized at the 8(th), 16(th), and 32(nd) week of the experiment and examined for development of ACF, aberrant crypts per ACF (AC/ACF), mucin-depleted foci (MDF), large MDF, and proliferating cell nuclear antigen (PCNA) labeling index. Administration of DMH in rats induced pre-neoplastic lesions (ACF and MDF) and increased the PCNA index in colorectal tissue. A significant (p<0.05) reduction in the number of ACF, AC/ACF, MDF, large MDF, and PCNA labeling index were observed in the probiotic LaBb Dahi group compared with the DMH control group. Feeding rats with LaBb Dahi or treatment with PXC diminished the initiation and progression of DMH-induced pre-neoplastic lesions and the PCNA index, and treatment with

  10. Cell Proliferation and Cytotoxicity Assays.

    PubMed

    Adan, Aysun; Kiraz, Yağmur; Baran, Yusuf

    Cell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.

  11. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    1998-10-01

    Cell Death , and Size Regulation PRINCIPAL INVESTIGATOR: Nicholas E. Baker, Ph.D. CONTRACTING ORGANIZATION: Albert Einstein College of Medicine of Yeshiva...SUBTITLE 5. FUNDING NUMBERS Cell Proliferation, Cell Death , and Size Regulation DAMD17-97-1-7034 6. AUTHOR(S) Nicholas E. Baker, Ph.D. 7. PERFORMING...Contains unpublished data 5 CELL PROLIFERATION, CELL DEATH , AND SIZE REGULATION INTRODUCTION Cell proliferation and cell death come to attention through

  12. Assessment of chromosomal aberrations, micronuclei and proliferation rate index in peripheral lymphocytes from Tunisian nurses handling cytotoxic drugs.

    PubMed

    Bouraoui, Sana; Brahem, Aicha; Tabka, Faten; Mrizek, Najib; Saad, Ali; Elghezal, Hatem

    2011-01-01

    Anti-neoplastic agents are widely used in the treatment of cancer and some non-neoplastic diseases. These drugs have been proved to be mutagens, carcinogens and teratogens. To check the eventual effects of anti-cancer drugs on occupationally exposed Tunisian nurses, we used chromosomal aberration assay and micronucleus assay. Both parameters have been used to evaluate cellular DNA damage in the biological monitoring of occupationally exposed workers and each assay has its own aim .We used the proliferation rate index to evaluate the cytotoxic effect of antineoplastic drugs in exposed nurses. The frequency of binucleated micronucleated cells was significantly higher in nurses handling cytostatic drugs than in control. We detected also a significant increase of structural chromosomal aberrations. Control subjects generally had significantly higher values of proliferation rate index compared to expose ones. Our results confirm the genotoxic and the cytotoxic effects of antineoplastic drugs in blood lymphocytes circulation. This study points to the necessity to work under more safe and controlled conditions during the preparation and the administration of anti-cancer drugs.

  13. MORPHOLOGICAL ABERRATION OF ARTHROBACTER GLOBIFORMIS CELLS DUE TO BIOTIN DEFICIENCY.

    PubMed

    CHAN, E C

    1964-03-01

    Chan, E. C. S. (University of New Brunswick, Fredericton, New Brunswick, Canada). Morphological aberration of Arthrobacter globiformis cells due to biotin deficiency. J. Bacteriol. 87:641-651. 1964.-Morphological aberration of Arthrobacter globiformis strain 425 was shown to occur during growth in a chemically defined medium without added biotin. Such aberrant cells could revert back to normal coccoid forms upon inoculation into fresh medium supplemented with the vitamin. This abnormal cellular development occurred even when there was good growth (turbidity) or increase in total cell mass. Light photomicrographs of negative and cell-wall stains of the organism at different times of the morphological growth cycle are presented in support of these observations. The relationship between cellular aberration and the biochemical role of biotin is briefly discussed.

  14. Negative regulators of cell proliferation

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  15. Platelets: cell proliferation and atherosclerosis.

    PubMed

    Ross, R

    1979-04-01

    Intimal smooth muscle proliferation is the hallmark of the lesions of atherosclerosis. Endothelial injury is postulated to precede this intimal smooth muscle proliferative response, which is mediated by a potent mitogenic factor derived from adherence, aggregation, and release by platelets at sites of endothelial injury. Smooth muscle proliferation is accompanied by varying amounts of connective tissue formation and intracellular and extracellular lipid deposition, dependent upon the risk factors encountered in each patient. The platelet-derived mitogen (PF) is a stable, cationic, relatively low molecular weight (10,000-30,000) protein that has been partially purified by ion exchange chromotography and gel filtration. Less than 100 ng of PF/ml culture medium can stimulate sparse 3T3 cells or smooth muscle cells, but not endothelial cells, to undergo multiple cell divisions in the presence of 5% cell-free, plasma-derived serum. The latter contains no mitogenic activity. The interaction of the platelet mitogen and plasma-derived components, including lipoproteins, plays a critical role in smooth muscle proliferation in vitro and in vivo in the induction of the lesions of atherosclerosis.

  16. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  17. Aberrant cytoplasmic expression of the p16 protein in breast cancer is associated with accelerated tumour proliferation.

    PubMed Central

    Emig, R.; Magener, A.; Ehemann, V.; Meyer, A.; Stilgenbauer, F.; Volkmann, M.; Wallwiener, D.; Sinn, H. P.

    1998-01-01

    The p16 protein plays an important role in the transition of cells into the G1 phase of the cell cycle. We have studied the prevalence of p16 protein expression in breast carcinomas in a prospective series of 368 invasive and 52 non-invasive malignancies, as well as in 88 locally recurring tumours and three tumour cell lines. p16 protein expression was evaluated immunohistochemically on paraffin sections using monoclonal and polyclonal anti-p16 antibodies, and by immunoblotting of tumour cell suspensions. Tumour cell lines were also subjected to polymerase chain reaction-single strand polymorphism (PCR-SSCP) analysis and direct DNA sequencing. The results were compared with established prognostic parameters, DNA flow cytometry and p53 protein expression. In 33 (9%) invasive and two (4%) intraductal carcinomas, a cytoplasmic accumulation of the p16 protein was seen. These cases were characterized by poor histological grade of differentiation, loss of of oestrogen receptors and progesterone receptors and frequent overexpression of the p53 protein. In addition, breast carcinomas with aberrant p16 expression demonstrated a high proliferative activity, with median S-phase fractions 74% higher than in the control group and the median Ki67 fractions elevated to 75%. A genetic alteration of the p16 gene was not detectable in three analysed cell lines with cytoplasmic p16 expression applying PCR-SSCP and direct DNA sequencing. These results indicate that cytoplasmic accumulation of the p16 protein identifies a subset of highly malignant breast carcinomas with accelerated tumour proliferation and other unfavourable parameters in breast cancer. The described protein accumulation is apparently not caused by an alteration of the p16 gene. Images Figure 1 Figure 4 PMID:9862580

  18. Cell proliferation in normal epidermis

    SciTech Connect

    Weinstein, G.D.; McCullough, J.L.; Ross, P.

    1984-06-01

    A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from human skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.

  19. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  20. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    SciTech Connect

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed.

  1. A 116-kDa phytoglycoprotein inhibits aberrant crypt foci formation through modulation of manganese superoxide dismutase, inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-kappa B, activator protein-1, and proliferating cell nuclear antigen in 1,2-dimethylhydrazine/dextran sodium sulfate-treated ICR mice.

    PubMed

    Lee, Sei-Jung; Lim, Kye-Taek

    2008-11-01

    The 116-kDa Ulmus davidiana Nakai (UDN) glycoprotein is a naturally occurring phytoglycoprotein found in the stem of UDN. In this study, we investigated the chemopreventive effect of UDN glycoprotein on inflammation-mediated colorectal carcinogenesis induced by 10 mg/kg 1,2-dimethylhydrazine and 2% dextran sodium sulfate in ICR mice. Consumption of UDN glycoprotein (0.01 and 0.02%) significantly reduced the frequency of colonic aberrant crypt foci, the expression of colonic proliferating cell nuclear antigen, and the release of plasma lactate dehydrogenase without any cytotoxic activity at the initiation stage of colorectal carcinogenesis in 1,2-dimethylhydrazine/dextran sodium sulfate-treated mice. In addition, UDN glycoprotein has antioxidative effects on the formation of plasma thiobarbituric acid reactive substances and on the production of plasma inducible nitric oxide, accompanying the normalizing effects on the activity of colonic antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in the mice. UDN glycoprotein intake also remarkably attenuated the expression of inflammation-related factors (inducible nitric oxide synthase and cyclooxygenase-2) and the DNA-binding activity of redox-sensitive transcription factors (nuclear factor-kappa B and activator protein-1) in the mice. Collectively, the results suggest that UDN glycoprotein has chemopreventive potential at the initiation stage of colorectal cancer by reducing the factors responsible for oxidative stress, inflammation, and carcinogenesis.

  2. [Aluminum induces chromosome aberrations in wheat root meristem cells].

    PubMed

    Bulanova, N V; Synzynys, B I; Koz'min, G V

    2001-12-01

    The yield and pattern of chromosome structure aberrations in wheat seedlings treated with aluminum nitrate and aluminum sulfate at various concentrations have been determined by the anaphase method. Aluminum has a genotoxic effect causing genome, chromatid, and chromosome aberrations in apical root meristem cells. The relationship between the total yield of structural mutations and the aluminum concentration follows a bell-shaped curve. The mutagenic activity of aluminum nitrate peaks at 10(-3) mg/ml, which is twice as high as the permissible concentration limit (PCL) of aluminum in potable water. The maximum of the mutagenic activity of aluminum sulfate is observed at 5 x 10(-4) mg/ml, i.e., one PCL. Tap water boiled for 2 h in an aluminum vessel has virtually no genotoxic effect on wheat cells.

  3. Investigation of an Aberrant Cell Voltage During the Filling of a Large Lithium Thionyl Chloride Cell

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Quinzio, Michael V.

    1997-01-01

    The investigation of an aberrant cell voltage during the filling of a large lithium thionyl chloride cell summary is at: an aberrant voltage trace was noted during the review of cell filling data; incident was traced to an interruption during filling; experimentation suggested oxidizable sites within the carbon electrode were responsible for the drop in voltage; the voltage anomaly could be reproduced by interrupting the filling of similar cells; and anomalous voltage dip was not due to a short.

  4. Cell proliferation in human coronary arteries.

    PubMed Central

    Gordon, D; Reidy, M A; Benditt, E P; Schwartz, S M

    1990-01-01

    Despite the lack of direct evidence for cell multiplication, proliferation of smooth muscle cells in human atherosclerotic lesions has been assumed to play a central role in ontogeny of the plaque. We used antibodies to cell cycle-related proteins on tissue sections of human arteries and coronary atherosclerotic plaques. Specific cell types were identified by immunochemical reagents for smooth muscle, monocyte-macrophages, and other blood cells. Low rates of smooth muscle cell proliferation were observed. Macrophages were also observed with rates of proliferation comparable to that of the smooth muscle. Additional replicating cells could not be defined as belonging to specific cell types with the reagents used in this study. These findings imply that smooth muscle replication in advanced plaques is indolent and raise the possibility of a role for proliferating leukocytes. Images PMID:1972277

  5. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation.

  6. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells

    PubMed Central

    Zhang, Chao; Yang, Lei; Geng, Ya-di; An, Fa-liang; Xia, Yuan-zheng; Guo, Chao; Luo, Jian-guang; Zhang, Lu-yong; Guo, Qing-long; Kong, Ling-yi

    2016-01-01

    The aberrant energy homeostasis that characterized by high rate of energy production (glycolysis) and energy consumption (mRNA translation) is associated with the development of cancer. As mammalian target of rapamycin (mTOR) is a critical regulator of aberrant energy homeostasis, it is an attractive target for anti-tumor intervention. The flavonoid compound Icariside II (IS) is a natural mTOR inhibitor derived from Epimedium. Koreanum. Herein, we evaluate the effect of IS on aberrant energy homeostasis. The reduction of glycolysis and mRNA translation in U2OS (osteosarcoma), S180 (fibrosarcoma) and SW1535 (chondrosarcoma) cells observed in our study, indicate that, IS inhibits aberrant energy homeostasis. This inhibition is found to be due to suppression of mammalian target of rapamycin complex 1 (mTORC1)-eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) axis through blocking the assembly of mTORC1. Furthermore, IS inhibits the cap-dependent translation of c-myc through mTORC1-4E-BP1 axis which links the relationship between mRNA translation and glycolysis. Inhibition of aberrant energy homeostasis by IS, contributes to its in vitro and in vivo anti-proliferation activity. These data indicate that IS disrupts aberrant energy homeostasis of sarcoma cells through suppression of mTORC1-4E-BP1 axis, providing a novel mechanism of IS to inhibit cell proliferation in sarcoma cells. PMID:27056897

  7. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  8. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  9. Aberrant genomic imprinting in rhesus monkey embryonic stem cells.

    PubMed

    Fujimoto, Akihisa; Mitalipov, Shoukhrat M; Kuo, Hung-Chih; Wolf, Don P

    2006-03-01

    Genomic imprinting involves modification of a gene or a chromosomal region that results in the differential expression of parental alleles. Disruption or inappropriate expression of imprinted genes is associated with several clinically significant syndromes and tumorigenesis in humans. Additionally, abnormal imprinting occurs in mouse embryonic stem cells (ESCs) and in clonally derived animals. Imprinted gene expression patterns in primate ESCs are largely unknown, despite the clinical potential of the latter in the cell-based treatment of human disease. Because of the possible implications of abnormal gene expression to cell or tissue replacement therapies involving ESCs, we examined allele specific expression of four imprinted genes in the rhesus macaque. Genomic and complementary DNA from embryos and ESC lines containing useful single nucleotide polymorphisms were subjected to polymerase chain reaction-based amplification and sequence analysis. In blastocysts, NDN expression was variable indicating abnormal or incomplete imprinting whereas IGF2 and SNRPN were expressed exclusively from the paternal allele and H19 from the maternal allele as expected. In ESCs, both NDN and SNRPN were expressed from the paternal allele while IGF2 and H19 showed loss of imprinting and biallelic expression. In differentiated ESC progeny, these expression patterns were maintained. The implications of aberrant imprinted gene expression to ESC differentiation in vitro and on ESC-derived cell function in vivo after transplantation are unknown.

  10. Effects of brevetoxins on murine myeloma SP2/O cells: Aberrant cellular division

    USGS Publications Warehouse

    Han, T.K.; Derby, M.; Martin, D.F.; Wright, S.D.; Dao, M.L.

    2003-01-01

    Massive deaths of manatees (Trichechus manatus latirostris) during the red tide seasons have been attributed to brevetoxins produced by the dinoflagellate Karenia brevis (formerly Ptychodiscus breve and Gymnodinium breve). Although these toxins have been found in macrophages and lymphocytes in the lung, liver, and secondary lymphoid tissues of these animals, the molecular mechanisms of brevetoxicosis have not yet been identified. To investigate the effects of brevetoxins on immune cells, a murine myeloma cell line (SP2/O) was used as a model for in vitro studies. By adding brevetoxins to cultures of the SP2/O cells at concentrations ranging from 20 to 600 ng/ml, an apparent increase in proliferation was observed at around 2 hours post challenge as compared to the unchallenged cell cultures. This was followed by a drop in cell number at around 3 hours, suggesting an aberrant effect of brevetoxins on cellular division, the cells generated at 2 hours being apparently short-lived. In situ immunochemical staining of the SP2/O cells at 1 and 2 hour post challenge showed an accumulation of the toxins in the nucleus. A 21-kDa protein was subsequently isolated from the SP2/O cells as having brevetoxin-binding properties, and immunologically identified as p21, a nuclear factor known to down-regulate cellular proliferation through inhibition of cyclin-dependent kinases. These data are the first on a possible effect of brevetoxins on the cell cycle via binding to p21, a phenomenon that needs to be further investigated and validated in normal immune cells.

  11. Lensless imaging system to quantify cell proliferation

    NASA Astrophysics Data System (ADS)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  12. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    SciTech Connect

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-07-15

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations.

  13. Transient fluctuations of intracellular zinc ions in cell proliferation

    SciTech Connect

    Li, Yuan; Maret, Wolfgang

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  14. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin

    PubMed Central

    Ang, W.X. Gladys; Church, Alison M.; Kulis, Mike; Choi, Hae Woong; Burks, A. Wesley

    2016-01-01

    Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses. PMID:27669462

  15. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  16. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?

    PubMed

    Roberts, Anna C; Gohil, Jai; Hudson, Laura; Connolly, Kyle; Warburton, Philip; Suman, Rakesh; O'Toole, Peter; O'Regan, David J; Turner, Neil A; Riches, Kirsten; Porter, Karen E

    2015-01-01

    Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30%) and angiogenesis (~40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  17. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis

    PubMed Central

    Deep, Gagan; Schlaepfer, Isabel R.

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa. PMID:27384557

  18. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia.

  19. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  20. CDO, an Hh-coreceptor, mediates lung cancer cell proliferation and tumorigenicity through Hedgehog signaling.

    PubMed

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.

  1. CDO, an Hh-Coreceptor, Mediates Lung Cancer Cell Proliferation and Tumorigenicity through Hedgehog Signaling

    PubMed Central

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling. PMID:25369201

  2. Polyethylene glycol, unique among laxatives, suppresses aberrant crypt foci, by elimination of cells

    PubMed Central

    Taché, Sylviane; Parnaud, Géraldine; Van Beek, Erik; Corpet, Denis E.

    2006-01-01

    Background Polyethylene glycol (PEG), an osmotic laxative, is a very potent inhibitor of colon cancer in rats. In a search for mechanisms, we tested the hypothesis that fecal bulking and moisture decreases colon carcinogenesis. We also looked for PEG effects on crypt cells in vivo. Methods Fischer 344 rats (N=272) were given an injection of the colon carcinogen azoxymethane. They were then randomized to a standard AIN76 diet containing one of 19 laxative agents (5% w/w in most cases): PEG 8000 and other PEG-like compounds, carboxymethylcellulose, polyvinylpyrrolidone, sodium polyacrylate, calcium polycarbophil, karaya gum, psyllium, mannitol, sorbitol, lactulose, propylene glycol, magnesium hydroxide, sodium phosphate, bisacodyl, docusate, and paraffin oil. Aberrant crypt foci (ACF) and fecal values were measured blindly after a 30-day treatment. Proliferation, apoptosis, and the removal of cells from crypts were studied in control and PEG-fed rats by various methods, including TUNEL and fluorescein dextran labeling. Results PEG 8000 reduced nine-fold the number of ACF in rats (p<0.001). The other PEGs and magnesium-hydroxide modestly suppressed ACF, but not the other laxatives. ACF number did not correlate with fecal weight or moisture. PEG doubled the apoptotic bodies per crypt (p<0.05), increased proliferation by 25–50% (p<0.05) and strikingly increased (>40-fold) a fecal marker of epitheliolysis in the gut (p<0.001). PEG normalized the percentage of fluorescein dextran labeled cells on the top of ACF (p<0.001). Conclusions Among laxatives, only PEG afforded potent chemoprevention. PEG protection was not due to increased fecal bulking, but likely to the elimination of cells from precancerous lesions. PMID:16716974

  3. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    SciTech Connect

    Cao, Donglin Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  4. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells

    PubMed Central

    Li, Li; Grausam, Katie B.; Wang, Jun; Lun, Melody P.; Ohli, Jasmin; Lidov, Hart G. W.; Calicchio, Monica L.; Zeng, Erliang; Salisbury, Jeffrey L.; Wechsler-Reya, Robert J.; Lehtinen, Maria K.; Schüller, Ulrich; Zhao, Haotian

    2016-01-01

    Aberrant Notch signaling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly pediatric brain neoplasms. We developed animal models of CP tumours by inducing sustained expression of Notch1 that recapitulate properties of human CP tumours with aberrant NOTCH signaling. Whole transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate diffferentiation. A Shh-driven signaling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from mono-ciliated progenitors in the roof plate characterized by elevated Notch signaling. Abnormal SHH signaling and distinct ciliogenesis are detected in human CP tumours, suggesting SHH pathway and cilia differentiation as potential therapeutic avenues. PMID:26999738

  5. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis

    PubMed Central

    Kwon, Bumsup; Kumar, Pravir; Lee, Han-Kyu; Zeng, Ling; Walsh, Kenneth; Fu, Qinghao; Barakat, Amey; Querfurth, Henry W.

    2014-01-01

    Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors. PMID:24556217

  6. The Stochastic Theory of Cell Proliferation

    PubMed Central

    Bronk, Burt V.; Dienes, G. J.; Paskin, Arthur

    1968-01-01

    A stochastic theory of cell kinetics has been developed based on a realistic model of cell proliferation. A characteristic transit time, t̄i, has been assigned to each of the four states (G1, S, G2, M) of the cell cycle. The actual transit time, ti, for any cell is represented by a distribution around t̄i with a variance σi2. Analytic and computer formulations have been used to describe the time development of such characteristics as age distribution, labeling experiments, and response to perturbations of the system by, for example, irradiation and temperature. The decay of synchrony is analyzed in detail and is shown to proceed as a damped wave. From the first few peaks of the synchrony decay one can obtain the distribution function for the cell cycle time. The later peaks decay exponentially with a characteristic decay constant, λ, which depends only on the average cell-cycle time, T̄, and the associated variance. It is shown that the system, upon any sudden disturbance, approaches new “equilibrium” proliferation characteristics via damped periodic transients, the damping being characterized by λ. Thus, the response time of the system, T̄/λ, is as basic a parameter of the system as the cell-cycle time. PMID:5696217

  7. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  8. Cell proliferation inhibition in reduced gravity

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  9. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  10. Shared clonal cytogenetic abnormalities in aberrant mast cells and leukemic myeloid blasts detected by single nucleotide polymorphism microarray-based whole-genome scanning.

    PubMed

    Frederiksen, John K; Shao, Lina; Bixby, Dale L; Ross, Charles W

    2016-04-01

    Systemic mastocytosis (SM) is characterized by a clonal proliferation of aberrant mast cells within extracutaneous sites. In a subset of SM cases, a second associated hematologic non-mast cell disease (AHNMD) is also present, usually of myeloid origin. Polymerase chain reaction and targeted fluorescence in situ hybridization studies have provided evidence that, in at least some cases, the aberrant mast cells are related clonally to the neoplastic cells of the AHNMD. In this work, a single nucleotide polymorphism microarray (SNP-A) was used to characterize the cytogenetics of the aberrant mast cells from a patient with acute myeloid leukemia and concomitant mast cell leukemia associated with a KIT D816A mutation. The results demonstrate the presence of shared cytogenetic abnormalities between the mast cells and myeloid blasts, as well as additional abnormalities within mast cells (copy-neutral loss of heterozygosity) not detectable by routine karyotypic analysis. To our knowledge, this work represents the first application of SNP-A whole-genome scanning to the detection of shared cytogenetic abnormalities between the two components of a case of SM-AHNMD. The findings provide additional evidence of a frequent clonal link between aberrant mast cells and cells of myeloid AHNMDs, and also highlight the importance of direct sequencing for identifying uncommon activating KIT mutations.

  11. Wnt11 Signaling Promotes Proliferation, Transformation, and Migration of IEC6 Intestinal Epithelial Cells*

    PubMed Central

    Ouko, Lillian; Ziegler, Thomas R.; Gu, Li H.; Eisenberg, Leonard M.; Yang, Vincent W.

    2005-01-01

    Wnts are morphogens with well recognized functions during embryogenesis. Aberrant Wnt signaling has been demonstrated to be important in colorectal carcinogenesis. However, the role of Wnt in regulating normal intestinal epithelial cell proliferation is not well established. Here we determine that Wnt11 is expressed throughout the mouse intestinal tract including the epithelial cells. Conditioned media from Wnt11-secreting cells stimulated proliferation and migration of IEC6 intestinal epithelial cells. Co-culture of Wnt11-secreting cells with IEC6 cells resulted in morphological transformation of the latter as evidenced by the formation of foci, a condition also accomplished by stable transfection of IEC6 with a Wnt11-expressing construct. Treatment of IEC6 cells with Wnt11 conditioned media failed to induce nuclear translocation of β-catenin but led to increased activities of protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Inhibition of protein kinase C resulted in a decreased ability of Wnt11 to induce foci formation in IEC6 cells. Finally, E-cadherin was redistributed in Wnt11-treated IEC6 cells, resulting in diminished E-cadherin-mediated cell-cell contact. We conclude that Wnt11 stimulates proliferation, migration, cytoskeletal rearrangement, and contact-independent growth of IEC6 cells by a β-catenin-independent mechanism. These findings may help understand the molecular mechanisms that regulate proliferation and migration of intestinal epithelial cells. PMID:15084607

  12. Biofilms’ Role in Planktonic Cell Proliferation

    PubMed Central

    Bester, Elanna; Wolfaardt, Gideon M.; Aznaveh, Nahid B.; Greener, Jesse

    2013-01-01

    The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation. PMID:24201127

  13. Endothelial cells regulate the proliferation of monocytes in vitro.

    PubMed

    Pakala, R; Benedict, C R

    1999-11-01

    Monocytes (MPhis) are among the first cells to accumulate in early atherosclerotic lesions and generally are believed to be incapable of proliferation. However, recent studies indicate that the number of MPhis in atherosclerotic lesion may increase due to induction of local proliferation. Since proliferation of hematopoietic lineage cells is strongly influenced by interaction with neighboring cell types, we examined the ability of vascular endothelial cells (EC), smooth muscle cells or fibroblasts to stimulate MPhi proliferation. In this study, we show that only when seeded at high densities MPhis could proliferate in culture. However, when contact co-cultured with EC, MPhis proliferated at a higher rate (260% on day 6) than those cultured alone or co-cultured with smooth muscle cells or fibroblasts. Endothelial cells could stimulate the proliferation of MPhis even at non-proliferating densities. Only EC that were growth arrested or in lag phase could induce MPhi proliferation, whereas those in the exponential proliferating phase were non-stimulatory. Conditioned medium prepared from EC in growth arrested or lag phase failed to stimulate MPhi proliferation. Similarly physical separation of MPhis from EC also resulted in no proliferation. These results suggest that EC induced MPhi proliferation is contact dependent and no soluble factors are involved in this induction. This EC induced MPhi proliferation may have a profound effect on the rate of progression of atherosclerosis.

  14. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  15. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy.

    PubMed

    Tang, Xiaoli; Deng, Libin; Chen, Qi; Wang, Yao; Xu, Rong; Shi, Chao; Shao, Jia; Hu, Guohui; Gao, Meng; Rao, Hai; Luo, Shiwen; Lu, Quqin

    2015-05-01

    Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells. Microarray analysis revealed that differentially expressed genes (DEGs) in human cancer cells are enriched in autophagy pathway in response to the inhibition of Hh signaling. Interestingly, inhibition of Hh signaling induced autophagy, whereas activation of Hh signaling by ligand treatments prevented the induction of autophagy. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed cytotoxicity induced by inhibition of Hh signaling. Finally, in autophagy deficient cells, cytotoxic effect triggered by inhibition of Hh signaling was partially reversed, indicating the modulation of autophagy by Hh signaling is autophagy-specific. These results suggest that inhibition of Hh signaling impedes cancer cell proliferation in part through induction of autophagy.

  16. Beyond cell proliferation in avian facial morphogenesis

    PubMed Central

    Linde-Medina, Marta; Hallgrímsson, Benedikt; Marcucio, Ralph

    2016-01-01

    The upper jaw in vertebrates forms from several prominences that arise around the stomodeum or primitive mouth. These prominences undergo coordinated growth and morphogenesis to fuse and form the face. Undirected, regionalized cell proliferation is thought to be the driving force behind the morphogenesis of the facial prominences. However, recent findings suggest that directed cell behaviors in the mesenchyme (e.g., directed cell division, directed cell movement, convergent extension) might be required for successful face formation. Here we discuss the evidence for this view and how directed behaviors may interact with the basement membrane to regulate morphogenesis of the facial region. We believe that future research in these largely unexplored areas could significantly impact our understanding of facial morphogenesis. PMID:26637960

  17. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. High-LET induced damages are mostly a single track effect. Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET. Biosignatures may depend on the method the samples are collected. Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges. Whether space flight/microgravity affects radiation-induced chromosome aberration frequencies is still an open question.

  18. CD117 immunoexpression in canine mast cell tumours: correlations with pathological variables and proliferation markers

    PubMed Central

    Gil da Costa, Rui M; Matos, Eduarda; Rema, Alexandra; Lopes, Célia; Pires, Maria A; Gärtner, Fátima

    2007-01-01

    Background Cutaneous mast cell tumours are one of the most common neoplasms in dogs and show a highly variable biologic behaviour. Several prognosis tools have been proposed for canine mast cell tumours, including histological grading and cell proliferation markers. CD117 is a receptor tyrosine kinase thought to play a key role in human and canine mast cell neoplasms. Normal (membrane-associated) and aberrant (cytoplasmic, focal or diffuse) CD117 immunoexpression patterns have been identified in canine mast cell tumours. Cytoplasmic CD117 expression has been found to correlate with higher histological grade and with a worsened post-surgical prognosis. This study addresses the role of CD117 in canine mast cell tumours by studying the correlations between CD117 immunoexpression patterns, two proliferation markers (Ki67 and AgNORs) histological grade, and several other pathological variables. Results Highly significant (p < 0,001) correlations were found between CD117 immunostaining patterns and histological grade, cell proliferation markers (Ki67, AgNORs) and tumoral necrosis. Highly significant (p < 0,001) correlations were also established between the two cellular proliferation markers and histological grade, tumour necrosis and epidermal ulceration. A significant correlation (p = 0.035) was observed between CD117 expression patterns and epidermal ulceration. No differences were observed between focal and diffuse cytoplasmic CD117 staining patterns concerning any of the variables studied. Conclusion These findings highlight the key role of CD117 in the biopathology of canine MCTs and confirm the relationship between aberrant CD117 expression and increased cell proliferation and higher histological grade. Further studies are needed to unravel the cellular mechanisms underlying focal and diffuse cytoplasmic CD117 staining patterns, and their respective biopathologic relevance. PMID:17711582

  19. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  20. Plant cell proliferation inside an inorganic host.

    PubMed

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  1. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    2000-10-01

    predicted to encode a novel 582 amino acid protein, perhaps interacting with molybdopterin. It is possible that the pie gene encodes a novel enzyme protecting against cell death during growth and development.

  2. Proliferating cell nuclear antigen: a proteomics view.

    PubMed

    Naryzhny, S N

    2008-11-01

    Proliferating cell nuclear antigen (PCNA), a cell cycle marker protein, is well known as a DNA sliding clamp for DNA polymerase delta and as an essential component for eukaryotic chromosomal DNA replication and repair. Due to its mobility inside nuclei, PCNA is dynamically presented in a soluble or chromatin-associated form. The heterogeneity and specific modifications of PCNA may reflect its multiple functions and the presence of many binding partners in the cell. The recent proteomics approaches applied to characterizing PCNA interactions revealed multiple PCNA partners with a wide spectrum of activity and unveiled the possible existence of new PCNA functions. Since more than 100 PCNA-interacting proteins and several PCNA modifications have already been reported, a proteomics point of view seems exactly suitable to better understand the role of PCNA in cellular functions.

  3. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  4. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  5. The immunosuppressant SR 31747 blocks cell proliferation by inhibiting a steroid isomerase in Saccharomyces cerevisiae.

    PubMed Central

    Silve, S; Leplatois, P; Josse, A; Dupuy, P H; Lanau, C; Kaghad, M; Dhers, C; Picard, C; Rahier, A; Taton, M; Le Fur, G; Caput, D; Ferrara, P; Loison, G

    1996-01-01

    SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion. PMID:8649379

  6. Nuclear aberrations in hair follicle cells of patients receiving cyclophosphamide. A possible in vivo assay for human exposure to genotoxic agents.

    PubMed

    Goldberg, M T; Tackaberry, L E; Hardy, M H; Noseworthy, J H

    1990-01-01

    The toxic effect of cyclophosphamide on the proliferative cell population of hair follicles plucked from the human scalp was examined by the in vivo nuclear aberration assay. Patients participating in an independent clinical trial received oral low dose cyclophosphamide, intravenous high dose cyclophosphamide or oral placebo treatment. The percent of cells with nuclear aberrations (indicating apoptosis, a special form of cell death) and the percent of mitotic cells, in the hair matrix, were calculated for each patient before treatment and at several time points following cyclophosphamide or placebo treatment. The mean percentages of nuclear aberrations in both the treated Low dose and High dose cyclophosphamide patients were significantly higher than those for the pre-treatment and Placebo patients. The nuclear aberrations in hair follicle cells increased from pre-treatment (and Placebo) to treated Low dose and finally to treated High dose patients. The average percentage for pre-treatment samples from all patients was 0.06 +/- 0.03 SE. For 1 week and 1 month samples from Low dose patients it was 0.35 +/- 0.08 SE, and for combined 2,3 and 4 day samples from High dose patients it was 1.08 +/- 0.12 SE. Cyclophosphamide also had a significant effect on mitosis. A decrease in mitotic activity was observed at 1 month following the initial low dose cyclophosphamide treatment and at 24 +/- 2 h following each of the first two high dose cyclophosphamide treatments. The observed increase in nuclear aberrations following low dose as well as high dose cyclophosphamide suggests that it is feasible to use the nuclear aberration assay for in vivo human genotoxicity testing, using proliferating hair follicle cells.

  7. Research Techniques Made Simple: Techniques to Assess Cell Proliferation.

    PubMed

    Romar, George A; Kupper, Thomas S; Divito, Sherrie J

    2016-01-01

    Cell proliferation is commonly assayed in the laboratory for research purposes, but is increasingly used clinically to gauge tumor aggressiveness and potentially guide care. Therefore, both researchers and clinicians should have a basic understanding of techniques used to assess cell proliferation. Multiple cell proliferation assays exist, and the choice of method depends on the laboratory resources available, the types of cells/tissues to be studied, and the specific experimental goals. In this article, we identify four overarching categories of cell proliferation assays that signify various stages of the cell cycle: nucleoside-analog incorporation, cell cycle-associated protein detection, use of cytoplasmic proliferation dyes, and indirect measures of cell proliferation. Each method has strengths and limitations that should guide the dermatology investigator's choice of assay.

  8. Numb-deficient satellite cells have regeneration and proliferation defects

    PubMed Central

    George, Rajani M.; Biressi, Stefano; Beres, Brian J.; Rogers, Erik; Mulia, Amanda K.; Allen, Ronald E.; Rawls, Alan; Rando, Thomas A.; Wilson-Rawls, Jeanne

    2013-01-01

    The adaptor protein Numb has been implicated in the switch between cell proliferation and differentiation made by satellite cells during muscle repair. Using two genetic approaches to ablate Numb, we determined that, in its absence, muscle regeneration in response to injury was impaired. Single myofiber cultures demonstrated a lack of satellite cell proliferation in the absence of Numb, and the proliferation defect was confirmed in satellite cell cultures. Quantitative RT-PCR from Numb-deficient satellite cells demonstrated highly up-regulated expression of p21 and Myostatin, both inhibitors of myoblast proliferation. Transfection with Myostatin-specific siRNA rescued the proliferation defect of Numb-deficient satellite cells. Furthermore, overexpression of Numb in satellite cells inhibited Myostatin expression. These data indicate a unique function for Numb during the initial activation and proliferation of satellite cells in response to muscle injury. PMID:24170859

  9. Calcium channels, external calcium concentration and cell proliferation.

    PubMed

    Borowiec, Anne-Sophie; Bidaux, Gabriel; Pigat, Natascha; Goffin, Vincent; Bernichtein, Sophie; Capiod, Thierry

    2014-09-15

    Evidence for a role for calcium channel proteins in cell proliferation is numerous suggesting that calcium influx is essential in this physiological process. Several studies in the past thirty years have demonstrated that calcium channel expression levels are determinant in cell proliferation. Voltage-gated, store-operated, second messengers and receptor-operated calcium channels have been associated to cell proliferation. However, the relationship between calcium influx and cell proliferation can be uncoupled in transformed and cancer cells, resulting in an external calcium-independent proliferation. Thus, protein expression could be more important than channel function to trigger cell proliferation suggesting that additional channel functions may be responsible to reconcile calcium channel expression and cell proliferation. When needed, external calcium concentration is obviously important for calcium channel function but it also regulates calcium sensing receptor (CaSR) activity. CaSR can up- or down-regulate cell proliferation depending on physiological conditions. CaSR sensitivity to external calcium is within the 0.5 to 5 mM range and therefore, the role of these receptors in cell proliferation must be taken into account. We therefore suggest here that cell proliferation rates could depend on the relative balance between calcium influx and CaSR activation.

  10. Pixantrone induces cell death through mitotic perturbations and subsequent aberrant cell divisions

    PubMed Central

    Beeharry, Neil; Di Rora, Andrea Ghelli Luserna; Smith, Mitchell R; Yen, Timothy J

    2015-01-01

    Pixantrone is a novel aza-anthracenedione active against aggressive lymphoma and is being evaluated for use against various hematologic and solid tumors. The drug is an analog of mitoxantrone, but displays less cardiotoxicity than mitoxantrone or the more commonly used doxorubicin. Although pixantrone is purported to inhibit topoisomerase II activity and intercalate with DNA, exact mechanisms of how it induces cell death remain obscure. Here we evaluated the effect of pixantrone on a panel of solid tumor cell lines to understand its mechanism of cell killing. Initial experiments with pixantrone showed an apparent discrepancy between its anti-proliferative effects in MTS assays (short-term) compared with clonogenic assays (long-term). Using live cell videomicroscopy to track the fates of cells, we found that cells treated with pixantrone underwent multiple rounds of aberrant cell division before eventually dying after approximately 5 d post-treatment. Cells underwent abnormal mitosis in which chromosome segregation was impaired, generating chromatin bridges between cells or within cells containing micronuclei. While pixantrone-treated cells did not display γH2AX foci, a marker of DNA damage, in the main nuclei, such foci were often detected in the micronuclei. Using DNA content analysis, we found that pixantrone concentrations that induced cell death in a clonogenic assay did not impede cell cycle progression, further supporting the lack of canonical DNA damage signaling. These findings suggest pixantrone induces a latent type of DNA damage that impairs the fidelity of mitosis, without triggering DNA damage response or mitotic checkpoint activation, but is lethal after successive rounds of aberrant division. PMID:26177126

  11. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  12. A Novel, Non-canonical Splice Variant of the Ikaros Gene Is Aberrantly Expressed in B-cell Lymphoproliferative Disorders

    PubMed Central

    Mancarelli, Maria Michela; Verzella, Daniela; Fischietti, Mariafausta; Di Tommaso, Ambra; Maccarone, Rita; Plebani, Sara; Di Ianni, Mauro; Gulino, Alberto; Alesse, Edoardo

    2013-01-01

    The Ikaros gene encodes a Krüppel-like zinc-finger transcription factor involved in hematopoiesis regulation. Ikaros has been established as one of the most clinically relevant tumor suppressors in several hematological malignancies. In fact, expression of dominant negative Ikaros isoforms is associated with adult B-cell acute lymphoblastic leukemia, myelodysplastic syndrome, acute myeloid leukemia and adult and juvenile chronic myeloid leukemia. Here, we report the isolation of a novel, non-canonical Ikaros splice variant, called Ikaros 11 (Ik11). Ik11 is structurally related to known dominant negative Ikaros isoforms, due to the lack of a functional DNA-binding domain. Interestingly, Ik11 is the first Ikaros splice variant missing the transcriptional activation domain. Indeed, we demonstrated that Ik11 works as a dominant negative protein, being able to dimerize with Ikaros DNA-binding isoforms and inhibit their functions, at least in part by retaining them in the cytoplasm. Notably, we demonstrated that Ik11 is the first dominant negative Ikaros isoform to be aberrantly expressed in B-cell lymphoproliferative disorders, such as chronic lymphocytic leukemia. Aberrant expression of Ik11 interferes with both proliferation and apoptotic pathways, providing a mechanism for Ik11 involvement in tumor pathogenesis. Thus, Ik11 could represent a novel marker for B-cell lymphoproliferative disorders. PMID:23874502

  13. Chromosome aberrations and cell death by ionizing radiation: Evolution of a biophysical model

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Carante, Mario P.

    2016-11-01

    The manuscript summarizes and discusses the various versions of a radiation damage biophysical model, implemented as a Monte Carlo simulation code, originally developed for chromosome aberrations and subsequently extended to cell death. This extended version has been called BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations). According to the basic assumptions, complex double-strand breaks (called ;Cluster Lesions;, or CLs) produce independent chromosome free-ends, mis-rejoining within a threshold distance d (or un-rejoining) leads to chromosome aberrations, and ;lethal aberrations; (i.e., dicentrics plus rings plus large deletions) lead to clonogenic cell death. The mean number of CLs per Gy and per cell is an adjustable parameter. While in BIANCA the threshold distance d was the second parameter, in a subsequent version, called BIANCA II, d has been fixed as the mean distance between two adjacent interphase chromosome territories, and a new parameter, f, has been introduced to represent the chromosome free-end un-rejoining probability. Simulated dose-response curves for chromosome aberrations and cell survival obtained by the various model versions were compared with literature experimental data. Such comparisons provided indications on some open questions, including the role of energy deposition clustering at the nm and the μm level, the probability for a chromosome free-end to remain un-rejoined, and the relationship between chromosome aberrations and cell death. Although both BIANCA and BIANCA II provided cell survival curves in general agreement with human and hamster fibroblast survival data, BIANCA II allowed for a better reproduction of dicentrics, rings and deletions considered separately. Furthermore, the approach adopted in BIANCA II for d is more consistent with estimates reported in the literature. After testing against aberration and survival data, BIANCA II was applied to investigate the depth-dependence of the radiation

  14. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express Aurora kinase A.

    PubMed

    Yang, Jing; Ikezoe, Takayuki; Nishioka, Chie; Nobumoto, Atsuya; Udaka, Keiko; Yokoyama, Akihito

    2013-12-01

    We previously showed that Aurora kinase A (AURKA) is aberrantly expressed in acute myelogenous leukemia (AML) cells when compared to bone marrow mononuclear cells isolated from healthy volunteers. We have also shown that CD34(+) /CD38(-) AML cells, one of compartments enriched for leukemia stem cells in most leukemia subgroups, were relatively resistant to cytarabine-mediated growth inhibition when compared to their CD34(+) /CD38(+) counterparts. Our study attempted to identify therapeutic targets in CD34(+) /CD38(-) AML cells and found that CD34(+) /CD38(-) AML cells isolated from patients (n = 26) expressed larger amounts of AURKA than their CD34(+) /CD38(+) counterparts and CD34(+) normal hematopoietic stem/progenitor cells isolated from healthy volunteers (n = 6), as measured by real-time reverse-transcriptase polymerase chain reaction. Blockade of AURKA by the specific inhibitor MLN8237 or a short hairpin RNA (shRNA) against AURKA significantly inhibited proliferation, impaired self-renewal capability and induced apoptosis of CD34(+) /CD38(-) AML cells, in association with modulation of levels of Bcl-2 family member proteins. Importantly, inhibition of AURKA in CD34(+) /CD38(-) AML cells by MLN8237 or an shRNA significantly impaired engraftment of these cells in severely immunocompromised mice and appeared to prolong their survival. These results suggest that AURKA is a promising molecular target to eliminate chemotherapy-resistant CD34(+) /CD38(-) AML cells.

  15. The fate of cells with chromosome aberrations after total-body irradiation and bone marrow transplantation

    SciTech Connect

    Carbonell, F.; Ganser, A.; Fliedner, T.M.; Arnold, R.; Kubanek, B.

    1983-03-01

    Cytogenetic studies were done on bone marrow cells and peripheral lymphocytes of four patients (three with acute nonlymphocytic leukemia, one with aplastic anemia) at various intervals up to 861 days after total-body X irradiation (TBI) at doses between 4.5 and 10 Gy (450-1000 rad) followed by syngeneic or allogeneic bone marrow transplantation. Whereas no radiation-induced aberrations could be found in the bone marrow, apart from a transient finding in the patient with the lowest radiation dose, aberrant metaphases were seen in the peripheral lymphocytes of three patients in the range from 2.5 to 46% even at 861 days after the exposure. There were no demonstrable aberrations related to TBI in the only patient developing graft-versus-host disease. The dicentric yield as determined in the aberrant metaphases with 46 centromeres ranged between 3.4 +/- 1.3 and 4.9 +/- 0.4. In one patient it was demonstrated by BUdR-labeling that after 10 Gy (1000 rad) TBI the surviving and heavily damaged lymphocytes can go into cell cycle and reach at least the third mitosis. The percentage of aberrant cells diminished by about 25% at each mitotic division.

  16. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    SciTech Connect

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  17. Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3

    SciTech Connect

    Yi, Fei; Merrill, Bradley J.

    2010-04-01

    A combination of cell intrinsic factors and extracellular signals determine whether mouse embryonic stem cells (ESC) divide, self-renew, and differentiate. Here, we report a new interaction between cell intrinsic aspects of the canonical Wnt/Tcf/{beta}-catenin signaling pathway and extracellular Lif/Jak/Stat3 stimulation that combines to promote self-renewal and proliferation of ESC. Mutant ESC lacking the Tcf3 transcriptional repressor continue to self-renew in the absence of exogenous Lif and through pharmacological inhibition of Lif/Jak/Stat3 signaling; however, proliferation rates of TCF3-/- ESC were significantly decreased by inhibiting Jak/Stat3 activity. Cell mixing experiments showed that stimulation of Stat3 phosphorylation in TCF3-/- ESC was mediated through secretion of paracrine acting factors, but did not involve elevated Lif or LifR transcription. The new interaction between Wnt and Lif/Jak/Stat3 signaling pathways has potential for new insights into the growth of tumors caused by aberrant activity of Wnt/Tcf/{beta}-catenin signaling.

  18. Proliferation status defines functional properties of endothelial cells.

    PubMed

    Lipps, Christoph; Badar, Muhammad; Butueva, Milada; Dubich, Tatyana; Singh, Vivek Vikram; Rau, Sophie; Weber, Axel; Kracht, Michael; Köster, Mario; May, Tobias; Schulz, Thomas F; Hauser, Hansjörg; Wirth, Dagmar

    2017-04-01

    Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell-cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi's sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.

  19. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  20. Aging affects initiation and continuation of T cell proliferation.

    PubMed

    Jiang, Jiu; Gross, Diara; Elbaum, Philip; Murasko, Donna M

    2007-04-01

    Aging is associated with a decline in immune responses, particularly within the T cell compartment. While the expansion of specific T cells in response to virus infections is consistently decreased in aged mice, the differences in T cell activation between young and aged mice as demonstrated in each round of proliferation remain poorly defined. In the present study, we utilized the T cell mitogen, ConA, to explore if fewer T cells of aged mice initiate proliferation upon mitogen stimulation or if similar numbers of T cells of aged mice begin proliferation but undergo fewer rounds of division. We also examined whether these age-associated changes in proliferation are reflected by differences in T cell activation by comparing activation markers (CD25, CD69, CD44, and CD62L) on T cells of young and aged mice at each round of proliferation. Not only was the kinetics of the expression of these markers greatly different between young and aged mice on the entire CD8 T cell population, but also at each round of proliferation. Our results demonstrate that a larger percentage of CD8 T cells of aged mice do not proliferate at all upon stimulation. Of the CD8 T cells of aged mice that do proliferate, a larger percentage start later and stop sooner. These results suggest that multiple levels of alteration may need to be considered when trying to maximize the immune response of aged individuals.

  1. Possible involvement of queuine in regulation of cell proliferation.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2007-01-01

    An increase in cell number is one of the most prominent characteristics of cancer cells. This may be caused by an increase in cell proliferation or decrease in cell death. Queuine is one of the modified base which is found at first anticodon position of specific tRNAs. It is ubiquitously present throughout the living system except mycoplasma and yeast. The tRNAs of Q-family are completely modified to Q-tRNAs in terminally differentiated somatic cells, however hypomodification of Q-tRNA is closely associated with cell proliferation and malignancy. Queuine participates at various cellular functions such as regulation of cell proliferation, cell signaling and alteration in the expression of growth associated proto-oncogenes. Like other proto-oncogenes bcl2 is known to involve in cell survival by inhibiting apoptosis. Queuine or Q-tRNA is suggested to inhibit cell proliferation but the mechanism of regulation of cell proliferation by queuine or Q-tRNA is not well understood. Therefore, in the present study regulation in cell proliferation by queuine in vivo and in vitro as well as the expression of cell death regulatory protein Bcl2 are investigated. For this DLAT cancerous mouse, U87 cell line and HepG2 cell line are treated with different concentrations of queuine and the effect of queuine on cell proliferation and apoptosis are studied. The results indicate that queuine down regulates cell proliferation and expression of Bcl2 protein, suggesting that queuine promotes cell death and participates in the regulation of cell proliferation.

  2. miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3

    PubMed Central

    Chang, Shun-Wu; Yue, Jie; Wang, Bao-Chun; Zhang, Xue-Li

    2015-01-01

    Objective: Colorectal cancer (CRC) is one of the major healthcare problems worldwide. A lot of miRNAs are aberrantly expressed in CRC and involved in its development and progression. The purpose of this study was to investigate the expression and function of miR-503 in CRC. Methods: miR-503 expression was detected in CRC tissues and cell lines by Quantitative real-time PCR. Cell proliferation was assessed by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Moreover, luciferase reporter assay and western blot were performed to determine the potential target of miR-503 in CRC cells. Results: miR-503 was significantly decreased in CRC tissues and cell lines in comparison with controls. Overexpression of miR-503 in CRC cells remarkably inhibited cell proliferation and induced apoptosis. Furthermore, E2F3 was identified as a direct target of miR-503 in CRC cells and down-regulation of E2F3 had a similar effect as miR-503 overexpression on CRC cells. In addition, the expression of E2F3 was negatively correlated with miR-503 level in CRC tissues. Conclusions: miR-503 inhibits cell proliferation and induces apoptosis by directly targeting E2F3 in CRC cells, indicating its potential application in CRC diagnosis and therapy. PMID:26722476

  3. Skin cell proliferation stimulated by microneedles.

    PubMed

    Liebl, Horst; Kloth, Luther C

    2012-03-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7-14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm(2) of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on "ablation" (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument.

  4. Skin Cell Proliferation Stimulated by Microneedles

    PubMed Central

    Liebl, Horst; Kloth, Luther C.

    2012-01-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7–14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm2 of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on “ablation” (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument. PMID:24527373

  5. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  6. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells.

    PubMed

    Natarajan, Adayapalam T; Palitti, Fabrizio; Hill, Mark A; Stevens, David L; Ahnström, Gunnar

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  7. β-Lactoglobulin Influences Human Immunity and Promotes Cell Proliferation

    PubMed Central

    Tai, Chun San; Chen, Yi Yun

    2016-01-01

    β-Lactoglobulin (LG) is suspected to enhance or modulate human immune responses. Moreover, LG is also hypothesized to increase human cell proliferation. However, these potential functions of LG have not been directly or thoroughly addressed. In this study, we demonstrated that LG is a potent stimulator of cell proliferation using a hybridoma cell (a splenocyte fused with a myeloma cell) model. LG's ability to promote cell proliferation was lost when the protein is denatured. To further investigate the influence of LG's conformation on cell proliferation, we chemically modified LG by either carboxymethylation (CM) or acetylation and observed significantly reduced cell proliferation when the protein structure was altered. Furthermore, we proved that LG enhances cell proliferation via receptor-mediated membrane IgM receptor. These data indicated that nondenatured LG is the major component in milk that modulates cell proliferation. Collectively, our study showed that LG plays a key role in enhancing immune responses by promoting cell proliferation through IgM receptor. PMID:27957499

  8. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  9. Comparative studies on radiation-induced micronuclei and chromosomal aberrations in V79 cells

    SciTech Connect

    Keshava, C.; Ong., T. |; Nath, J.

    1994-12-31

    Induction of micronuclei (MN) and structural chromosomal aberrations (SCA) by physical agents extensively in a variety of cell lines for genotoxicity assessment. However, comparative data on the relationship between these two cytogenetic endpoints are limited. This study compares MN and SCA formation in V79 Chinese hamster lung cells treated with X-rays and UV radiation. Four replicate cultures of exponentially growing cells were exposed to four doses of X-rays (100 to 800 rad). For two replicate cultures, cytochalasin B (3 {mu}g/ml) was added and cells harvested 16 h later for MN and cell cycle kinetics assessments. For the remaining two replicate cultures, colcemid (0.025{mu}g/ml) was added 16 h post-treatment and harvested 2 h later for SCA and mitotic index (MI) analysis. This experiment was duplicated using four doses of UV radiation (100 to 800 {mu}joules x 10{sup 2}/cm{sup 2}). In the x-ray experiment, a dose-related decrease in the % of binucleated (BN) cells and MI was noted. Also, there was a clear dose-related increase in micronucleated binucleate (MNBN) and aberrant cells. Similar dose-response, but with lower frequencies, was observed in the UV radiation treatment. These data suggest that there is a good relationship between chromosome damage as measured by the % of MNBN and aberrant cells and cytotoxicity as measured by the % of BN cells and MI in these assays.

  10. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types

  11. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability.

    PubMed

    Leiva, Magdalena; Quintana, Juan A; Ligos, José M; Hidalgo, Andrés

    2016-01-08

    The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment.

  12. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  14. Regulation of global gene expression and cell proliferation by APP

    PubMed Central

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  15. Regulation of global gene expression and cell proliferation by APP.

    PubMed

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-03-03

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer's disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis.

  16. Induction of chromosomal aberrations in bone marrow cells of asbestotic rats

    SciTech Connect

    Fatma, N.; Khan, S.G.; Aslam, M.; Rahman, Q. )

    1992-04-01

    In the present study, cytogenetic effects of Indian chrysotile asbestos in rat bone marrow cells after 290 days of intratracheal inoculation, when it develops massive pulmonary fibrosis, were investigated. The pulmonary fibrosis was confirmed by both histopathological studies and increased collagen content in the lung of the treated animals. In the asbestotic rats a significant increase in chromosomal aberrations was recorded and a decrease in mitotic index of bone marrow cells. The types of chromosomal aberrations in these cells were chromatid gaps and breaks. The results indicate the significant cytogenetic changes in the bone marrow cells of asbestotic rats and also suggest that these changes directly or indirectly may be one of the biological events involved in eliciting the asbestos-mediated toxic responses.

  17. Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines.

    PubMed

    Saferali, Aabida; Grundberg, Elin; Berlivet, Soizik; Beauchemin, Hugues; Morcos, Lisanne; Polychronakos, Constantin; Pastinen, Tomi; Graham, Jinko; McNeney, Brad; Naumova, Anna K

    2010-01-01

    DNA methylation patterns are often poorly conserved through cell culturing. To determine the effect of cell immortalization and culture on DNA methylation profiles, we analyzed methylation in the differentially methylated regions (DMR) of five imprinted domains: the intergenic (IG) DMR on chromosome 14q32; potassium voltage-gated channel, KQT-like subfamily, member 1, (KCNQ1); small nuclear ribonucleoprotein polypeptide N (SNRPN), mesoderm specific transcript homolog (MEST); and H19 in lymphoblastoid cell lines (LCLs). In the IG DMR we found an aberrant methylation pattern that was consistent through all the cell lines tested and significantly different from that of noncultured peripheral blood cells. Using a generalized linear mixed model to compare methylation profiles, we show that recently derived LCLs significantly differ from the CEPH LCLs. This implies a gradual cell-culture related deterioration of DNA methylation in the IG DMR with at least two steps that may be identified: loss of methylation at CG sites 1 and 8; and loss of allelic differences in DNA methylation. The IG DMR methylation profile also confirms the high level of clonality of the CEPH LCLs. We conclude that non-transformed primary cells may be less susceptible to epigenetic anomalies and therefore may provide a more accurate reflection of gene expression in vivo.

  18. Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C

    PubMed Central

    Dey, Neekkan; Chattopadhyay, Dhruba J.; Chatterjee, Indu B.

    2011-01-01

    Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers. PMID:21772844

  19. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  20. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    PubMed Central

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance. PMID:26658759

  1. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  2. The distribution and significance of aberrant ganglion cells in the facial nerve trunk of the cat.

    PubMed

    Satomi, H; Takahashi, K

    1986-01-01

    The distribution and peripheral connections of aberrant ganglion cells in the facial nerve trunk of the cat were studied by means of Klüver-Barrera staining and retrograde transport of horseradish peroxidase (HRP). By the Klüver-Barrera staining, aberrant ganglion cells were observed in the facial nerve trunk between the geniculate ganglion and the junction of the auricular branch of the vagus with the facial nerve trunk, although the number varied considerably with each animal. These cells were generally medium-sized and of round or oval shape, with densely stained Nissl substance, the features of which were essentially similar to those of the geniculate ganglion. In cases where HRP injections were made into the anterior wall of the auricle, several HRP-labeled cells were found ipsilaterally in the facial nerve trunk in addition to cell labeling of the geniculate ganglion. The present study in the cat demonstrated that at least some of the aberrant ganglion cells scattered in the facial nerve trunk are parental to the axons to the auricle, subserving the cutaneous sensory function.

  3. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  4. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines

    PubMed Central

    Cheung, Hannah C.; Hai, Tao; Zhu, Wen; Baggerly, Keith A.; Tsavachidis, Spiridon; Krahe, Ralf

    2009-01-01

    Polypyrimidine tract-binding protein 1 (PTBP1) is a multi-functional RNA-binding protein that is aberrantly overexpressed in glioma. PTBP1 and its brain-specific homologue polypyrimidine tract-binding protein 2 (PTBP2) regulate neural precursor cell differentiation. However, the overlapping and non-overlapping target transcripts involved in this process are still unclear. To determine why PTBP1 and not PTBP2 would promote glial cell-derived tumours, both PTBP1 and PTBP2 were knocked down in the human glioma cell lines U251 and LN229 to determine the role of these proteins in cell proliferation, migration, and adhesion. Surprisingly, removal of both PTBP1 and PTBP2 slowed cell proliferation, with the double knockdown having no additive effects. Decreased expression of both proteins individually and in combination inhibited cell migration and increased adhesion of cells to fibronectin and vitronectin. A global survey of differential exon expression was performed following PTBP1 knockdown in U251 cells using the Affymetrix Exon Array to identify PTBP1-specific splicing targets that enhance gliomagenesis. In the PTBP1 knockdown, previously determined targets were unaltered in their splicing patterns. A single gene, RTN4 (Nogo) had significantly enhanced inclusion of exon 3 when PTBP1 was removed. Overexpression of the splice isoform containing exon 3 decreased cell proliferation to a similar degree as the removal of PTBP1. These results provide the first evidence that RNA-binding proteins affect the invasive and rapid growth characteristics of glioma cell lines. Its actions on proliferation appear to be mediated, in part, through alternative splicing of RTN4. PMID:19506066

  5. Metformin inhibits the proliferation of benign prostatic epithelial cells

    PubMed Central

    Ge, Rongbin; Li, Jijun; Johnson, Cameron W.; Rassoulian, Cyrus; Olumi, Aria F.

    2017-01-01

    Objective Benign prostatic hyperplasia (BPH) is the most common proliferative abnormality of the prostate affecting elderly men throughout the world. Epidemiologic studies have shown that diabetes significantly increases the risk of developing BPH, although whether anti-diabetic medications preventing the development of BPH remains to be defined. We have previously found that stromally expressed insulin-like growth factor 1 (IGF-1) promotes benign prostatic epithelial cell proliferation through paracrine mechanisms. Here, we seek to understand if metformin, a first line medication for the treatment of type 2 diabetes, inhibits the proliferation of benign prostatic epithelial cells through reducing the expression of IGF-1 receptor (IGF-1R) and regulating cell cycle. Methods BPE cell lines BPH-1 and P69, murine fibroblasts3T3 and primary human prostatic fibroblasts were cultured and tested in this study. Cell proliferation and the cell cycle were analyzed by MTS assay and flow cytometry, respectively. The expression of IGF-1R was determined by western-blot and immunocytochemistry. The level of IGF-1 secretion in culture medium was measured by ELISA. Results Metformin (0.5-10mM, 6-48h) significantly inhibited the proliferation of BPH-1 and P69 cells in a dose-dependent and time-dependent manner. Treatment with metformin for 24 hours lowered the G2/M cell population by 43.24% in P69 cells and 24.22% in BPH-1 cells. On the other hand, IGF-1 (100ng/mL, 24h) stimulated the cell proliferation (increased by 28.81% in P69 cells and 20.95% in BPH-1 cells) and significantly enhanced the expression of IGF-1R in benign prostatic epithelial cells. Metformin (5mM) abrogated the proliferation of benign prostatic epithelial cells induced by IGF-1. In 3T3 cells, the secretion of IGF-1 was significantly inhibited by metformin from 574.31pg/ml to 197.61pg/ml. The conditioned media of 3T3 cells and human prostatic fibroblasts promoted the proliferation of epithelial cells and the

  6. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  7. A Neural Network Based Workstation for Automated Cell Proliferation Analysis

    DTIC Science & Technology

    2001-10-25

    proliferation analysis, of cytological microscope images. The software of the system assists the expert biotechnologist during cell proliferation and...work was supported by the Programa de Apoyo a Proyectos de Desarrollo e Investigacíon en Informática REDII 2000. We thank Blanca Itzel Taboada for

  8. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  9. Aberrant LPL Expression, Driven by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells

    PubMed Central

    Rozovski, Uri; Grgurevic, Srdana; Bueso-Ramos, Carlos; Harris, David M.; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Jain, Preetesh; Wierda, William; Burger, Jan; O’Brien, Susan; Jain, Nitin; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2015-01-01

    While reviewing chronic lymphocytic leukemia (CLL) bone marrow slides we identified cytoplasmic lipid vacuoles in CLL cells but not in normal B cells. Because lipoprotein lipase (LPL), which catalyzes hydrolysis of triglycerides into free fatty acids (FFAs), is aberrantly expressed in CLL, we investigated whether LPL regulates the oxidative metabolic capacity of CLL cells. We found that unlike normal B cells, CLL cells metabolize FFAs. Because STAT3 is constitutively activated in CLL cells and because we identified putative STAT3 binding sites in the LPL promoter, we sought to determine whether STAT3 drives the aberrant expression of LPL. Transfection of luciferase reporter gene constructs driven by LPL promoter fragments into MM1 cells revealed that STAT3 activates the LPL promoter. In addition, chromatin immunoprecipitation (ChIP) confirmed that STAT3 binds to the LPL promoter. Furthermore, transfection of CLL cells with STAT3-shRNA downregulated LPL transcripts and protein levels, confirming that STAT3 activates the LPL gene. Finally, transfection of CLL cells with LPL-siRNAs decreased the capacity of CLL cells to oxidize FFAs and reduced cell viability. PMID:25733697

  10. Identification of Targetable HER2 Aberrations in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Birkeland, Andrew C.; Yanik, Megan; Tillman, Brittny N.; Scott, Megan V.; Foltin, Susan K.; Mann, Jacqueline E.; Michmerhuizen, Nicole L.; Ludwig, Megan L.; Sandelski, Morgan M.; Komarck, Christine M.; Carey, Thomas E.; Prince, Mark E.P.; Bradford, Carol R.; McHugh, Jonathan B.; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Importance HER2 is an important drug target in breast cancer, where anti-HER2 therapy has been shown to lead to improvements in disease recurrence and overall survival. HER2 status in head and neck squamous cell carcinoma (HNSCC) has not been well studied. Identification of HER2 positive tumors and characterization of response to HER2 therapy could lead to targeted treatment options in HNSCC. Objective To identify HER2 aberrations in HNSCCs and investigate potential for HER2 targeted therapy in HNSCCs. Design, Setting, and Participants Retrospective case series of patients with laryngeal and oral cavity SCC enrolled in the University of MichiganSPORE. Publically available sequencing data(TCGA) was reviewed to identify additional mutations and overexpression in HER2 in HNSCC. Established HNSCC cell lines were used for follow-up in vitro analysis. Interventions Using targeted, amplicon-based sequencing with the Oncomine Cancer Panel, we assessed the copy number and mutation status of commonly altered genes in HNSCCs. Immunohistochemical staining was performed on tissue microarrays of HNSCCs to assess expression of HER2. Western blotting for HNSCC cell line HER2 expression, and cell survival assays after treatment with HER2 inhibitors were performed. Main Outcomes and Measures Prevalence of HER2 genetic aberrations and HER2 overexpression in laryngeal and oral cavity squamous cell carcinomas (SCCs). Prevalence of HER2 aberrations in HNSCC in TCGA. HER2 protein expression in HNSCC cell lines. Response of HNSCC cell lines to targeted HER2 inhibitors. Results Forty-two laryngeal SCC samples were screened by targeted sequencing, of which 4 were positive for HER2 amplification. Two samples identified with sequencing showed HER2 overexpression on immunohistochemistry. Two of 94 oral cavity SCC samples were positive for HER2 on immunohistochemistry. Analysis of 288 patients from publicly available HNSCC sequencing data revealed 9 amplifications in HER2. Protein expression

  11. Nanovesicles engineered from ES cells for enhanced cell proliferation.

    PubMed

    Jeong, Dayeong; Jo, Wonju; Yoon, Jaewoong; Kim, Junho; Gianchandani, Sachi; Gho, Yong Song; Park, Jaesung

    2014-11-01

    Extracellular vesicles (Exosomes and microvesicles) have drawn wide attentions in both diagnostic and therapeutic applications, since they are considered to shuttle biological signals intercellularly. However, further research on exosomes is limited by their rarity and heterogeneity even after lengthy isolation processes. In particular, these limitations are challenging in therapeutic applications. To meet these demands, cell-derived nanovesicles that mimic exosomes were generated by extruding living embryonic stem cells through micro-filters. These nanovesicles have an enclosed lipid bilayer and contain cellular contents. The present study investigated the ability of these nanovesicles to improve proliferation by treating primary murine skin fibroblasts with the nanovesicles. The treated skin fibroblasts showed higher expression levels of mRNA, VEGF-α, protein levels of TGF-β collagen I, PCNA, and Ki-67, as well as enhanced cell proliferation rate and number, compared to non-treated cells. The results indicate that treatment with the nanovesicles could potentially contribute to recovery or wound healing process of tissues.

  12. Role of connexin 43 in cadmium-induced proliferation of human prostate epithelial cells.

    PubMed

    Liu, Qingping; Ji, Xiaoli; Ge, Zehe; Diao, Haipeng; Chang, Xiuli; Wang, Lihua; Wu, Qing

    2017-02-08

    Connexins (Cxs), the subunits of gap junction channels, are involved in many physiological processes. Aberrant control of Cxs and gap junction intercellular communication may contribute to many diseases, including the promotion of cancer. Cd exposure is associated with increased risk of human prostate cancer and benign prostatic hyperplasia. The roles of Cxs in the effects of Cd on the prostate have, however, not been reported previously. In this study, the human prostate epithelial cell line RWPE-1 was exposed to Cd. A low dose of Cd stimulated cell proliferation along with a lower degree of gap junction intercellular communication and an elevated level of the protein Cx43. Cd exposure increased the levels of intracellular Ca(2+) and phosphorylated Cx43 at the Ser368 site. Knockdown of Cx43 using siRNA blocked Cd-induced proliferation and interfered with the Cd-induced changes in the protein levels of cyclin D1, cyclin B1, p27(Kip1) (p27) and p21(Waf1/Cip1) (p21). The increase in Cx43 expression induced by Cd was presumably mediated by the androgen receptor, because it was abolished upon treatment with the androgen receptor antagonist, flutamide. Thus, a low dose of Cd promotes cell proliferation in RWPE-1, possibly mediated by Cx43 expression through an effect on cell cycle-associated proteins. Cx43 might be a target for prostatic diseases associated with Cd exposure. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  14. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    2007-01-01

    This viewgraph presentation reviews some of the techniques used to analyze the damage done to chromosome from ion radiation. Fluorescence in situ hybridization (FISH), mFISH, mBAND, telomere and centromereprobes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. There is some comparison of the different results from the various techniques. The results of the study are summarized.

  15. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  16. Andrographolide, a Novel NF-κB Inhibitor, Inhibits Vascular Smooth Muscle Cell Proliferation and Cerebral Endothelial Cell Inflammation

    PubMed Central

    Chang, Chao-Chien; Duann, Yeh-Fang; Yen, Ting-Lin; Chen, Yu-Ying; Jayakumar, Thanasekaran; Ong, Eng-Thiam; Sheu, Joen-Rong

    2014-01-01

    Background Aberrant vascular smooth muscle cell (VSMC) proliferation and cerebral endothelial cell (CEC) dysfunction contribute significantly in the pathogenesis of cardiovascular diseases. Therefore, inhibition of these cellular events would be by candidate agents for treating these diseases. In the present study, the mechanism of anti-proliferative and anti-inflammatory effects of andrographolides, a novel nuclear factor-κB inhibitor, was investigated in VSMC and CEC cells. Methods VSMCs and CECs were isolated from rat artery and mouse brain, respectively, and cultured before experimentation. The effect of andro on platelet-derived growth factor-BB (PDGF-BB) induced VSMC cell proliferation was evaluated by cell number, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of extracellular signal regulated kinase 1/2 (ERK1/2), proliferating cell nuclear antigen (PCNA), and the effects on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and, cyclooxygenase-2 (COX2) were detected by Western blotting. Results Andro significantly inhibited PDGF-BB (10 ng/ml) induced cell proliferation in a concentration (20-100 μM) dependent manner, which may be due to reducing the expression of ERK1/2, and by inhibiting the expression of PCNA. Andro also remarkably diminished LPS-induced iNOS and COX2 expression. Conclusions The results of this study suggested that the effects of andro against VSMCs proliferation and CECs dysfunction may represent a promising approach for treatment of vascular diseases. PMID:27122804

  17. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    PubMed Central

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 μM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55,940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1–0.5 μM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  18. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme.

    PubMed

    Li, Wen-Bo; Ma, Min-Wang; Dong, Li-Jie; Wang, Fei; Chen, Lu-Xia; Li, Xiao-Rong

    2011-09-15

    Aberrant expression of microRNAs (miRNAs) has been implicated in cancer initiation and progression. In this study, we found that microRNA-34a (miR-34a) is significantly downregulated in glioblastoma multiforme (GBM) specimens compared with normal brain tissues. Growth curve and colony formation assays revealed that miR-34a suppresses proliferation of U373MG and SHG44 glioblastoma cells. Overexpression of miR-34a could induce apoptosis of glioblastoma cells. Also, we identified notch1 as a direct target gene of miR-34a. Knockdown of notch1 showed similar cellular functions as overexpression of miR-34a both in vitro and in vivo. Collectively, our findings show that miR-34a is downregulated in GBM cells and inhibits GBM growth by targeting notch1.

  19. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Numerous published studies have reported the Relative Biological Effectiveness (RBE) values for chromosome aberrations induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo has been suggested to show a similar relationship as the quality factor for cancer induction. Therefore, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. However, the RBE value is known to be very different for different types of cancer. Previously, we reported that, even though the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions, the RBE was significantly reduced after multiple cell divisions post irradiation. To test the hypothesis that RBE values for chromosome aberrations are cell type dependent, and different between early and late damages, we exposed human lymphocytes ex vivo, and human mammary epithelial cells in vitro to various charged particles. Chromosome aberrations were quantified using the samples collected at first mitosis post irradiation for initial damages, and the samples collected after multiple generations for the remaining or late arising aberrations. Results of the study suggested that the effectiveness of high-LET charged particles for late chromosome aberrations may be cell type dependent, even though the RBE values are similar for early damages.

  20. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and

  1. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  2. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    SciTech Connect

    Pawelec, K. M. E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.; Wardale, R. J. E-mail: jw626@cam.ac.uk

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  3. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  4. Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss.

    PubMed

    Aarts, Esther; Helmich, Rick C; Janssen, Marcel J R; Oyen, Wim J G; Bloem, Bastiaan R; Cools, Roshan

    2012-02-15

    Dopamine has been implicated in reward-related impulsivity, but the exact relationship between dopamine, reward and impulsivity in humans remains unknown. We address this question in Parkinson's disease (PD), which is characterized by severe dopamine depletion. PD is associated primarily with motor and cognitive inflexibility, but can also be accompanied by reward-related impulsivity. This paradoxical symptom of PD has often been attributed to dopaminergic overstimulation by antiparkinson medication, which is necessary to relieve the motor and cognitive inflexibility. However, factors other than medication may also contribute to aberrant impact of reward. Here we assess whether cognitive inflexibility and aberrant reward impact in PD are two sides of the same coin, namely dopamine cell loss. To measure dopamine cell loss, we employed (123)I-FP-CIT Single Photon Emission Computed Tomography (SPECT) in 32 PD patients (10 never-medicated patients and 22 patients after withdrawal of all medication for >12h) and related the values to behavior on a rewarded task-switching paradigm. Dopamine cell loss was associated not only with cognitive inflexibility (under low reward), but also with aberrant impact of reward. These effects could not be attributed to medication use. Relative to controls (n=26), aberrant reward processing in PD was particularly expressed as reduced capacity to maintain (i.e., repeat) the current task-set under high reward. Our findings demonstrate that factors intrinsically related to PD may underlie the paradoxical symptoms of inflexibility and reward-related impulsivity in PD. The present results concur with observations that low baseline dopamine states predispose to drug and other addictions.

  5. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  6. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    PubMed Central

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  7. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  8. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  9. Chromosomal aberrations induced by the restriction endonucleases EcoR I, Pst I, Sal I and Bam HI in CHO cells.

    PubMed

    Zhang, S Z; Dong, W F

    1987-09-01

    4 widely used cohesive end-producing restriction endonucleases (REs), EcoR I, Pst I, Sal I and Bam HI were tested in CHO cells for their aberration-inducing effects. It was demonstrated that all these REs significantly increased the frequencies of aberrant cells, the aberration frequencies per cell and the aberration frequencies per chromosome. The effects of REs on chromosomal aberrations are similar to ionizing radiation, but more minutes and interchange figures are observed. Polyploid cells are more susceptible to RE treatment, an interesting finding which may be explained by the mechanisms leading to the formation of polyploid cells.

  10. Role of Calmodulin in Cell Proliferation

    NASA Technical Reports Server (NTRS)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  11. Induction of chromosome aberrations in mammalian cells after heavy ion exposure

    NASA Astrophysics Data System (ADS)

    Ritter, S.; Kraft-Weyrather, W.; Scholz, M.; Kraft, G.

    The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/μm). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately.

  12. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  13. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation.

    PubMed

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-09-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy.

  14. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi.

    PubMed

    Parker, Aimee; Maclaren, Oliver J; Fletcher, Alexander G; Muraro, Daniele; Kreuzaler, Peter A; Byrne, Helen M; Maini, Philip K; Watson, Alastair J M; Pin, Carmen

    2017-02-01

    The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.-Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi.

  15. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi

    PubMed Central

    Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen

    2017-01-01

    The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059

  16. Cell cycles and proliferation patterns in Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  17. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  18. Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains

    SciTech Connect

    Larramendy, M.L.; Popescu, N.C.; DiPaolo, J.A.

    1981-01-01

    Sister chromatid exchange (SCE) and chromosome aberration induction were determined for several inorganic metal salts. Arsenic, nickel, and beryllium salts at concentrations effective in causing transformation of Syrian hamster cells (HEC) induced SCE and chromosome aberrations of HEC and human lymphocytes, whereas sodium tungstate, a non-transforming chemical, neither induced SCE nor chromosome aberrations. Normal human and hamster cells exhibited equal sensitivity to SCE induction; nontoxic concentrations of sodium arsenite, beryllium sulfate, and nickel sulfate caused an increase of 8-10 SCE/cell over control values. Sodium arsenite, a trivalent arsenic, and sodium arsenate, a pentavalent arsenic, produced increases in SCE but the former was effective at lower concentrations. Both arsenic salts were less efficient in inducing SCE in human whole blood than in purified lymphocyte cultures. Sodium arsenite, sodium arsenate, nickel sulfate, and beryllium sulfate also caused damage consisting primarily of chromatid type of aberrations. In HEC, with doses most effective in SCE induction , all four metals produced aberrations in 16-21% of cells. In human lymphocytes, 34 and 30% of the cells had chromosome damage after sodium arsenite and sodium arsenate, respectively, whereas beryllium sulfate or nickel sulfate caused damage in about 10% of the cells. The induction of SCE and chromosomal aberrations by metals reemphasizes the sensitivity of cytological assays and their importance for detecting genetic damage caused by carcinogens.

  19. Inflammation and Proliferation Act Together to Mediate Intestinal Cell Fusion

    PubMed Central

    Swain, John R.; Wong, Melissa H.

    2009-01-01

    Cell fusion between circulating bone marrow-derived cells (BMDCs) and non-hematopoietic cells is well documented in various tissues and has recently been suggested to occur in response to injury. Here we illustrate that inflammation within the intestine enhanced the level of BMDC fusion with intestinal progenitors. To identify important microenvironmental factors mediating intestinal epithelial cell fusion, we performed bone marrow transplantation into mouse models of inflammation and stimulated epithelial proliferation. Interestingly, in a non-injury model or in instances where inflammation was suppressed, an appreciable baseline level of fusion persisted. This suggests that additional mediators of cell fusion exist. A rigorous temporal analysis of early post-transplantation cellular dynamics revealed that GFP-expressing donor cells first trafficked to the intestine coincident with a striking increase in epithelial proliferation, advocating for a required fusogenic state of the host partner. Directly supporting this hypothesis, induction of augmented epithelial proliferation resulted in a significant increase in intestinal cell fusion. Here we report that intestinal inflammation and epithelial proliferation act together to promote cell fusion. While the physiologic impact of cell fusion is not yet known, the increased incidence in an inflammatory and proliferative microenvironment suggests a potential role for cell fusion in mediating the progression of intestinal inflammatory diseases and cancer. PMID:19657387

  20. Cholesterol induces proliferation of chicken primordial germ cells.

    PubMed

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  1. Lysophosphatidic acid possesses dual action in cell proliferation.

    PubMed Central

    Tigyi, G; Dyer, D L; Miledi, R

    1994-01-01

    Lysophosphatidic acid (LPA) induces mitogenic responses in cultured fibroblasts through a pertussis toxin-sensitive signaling pathway. In contrast, we have shown that LPA inhibits the proliferation of Sp2/0-Ag14 myeloma cells. To resolve this apparent controversy, LPA-elicited responses in cell proliferation and the underlying second messenger mechanisms were compared in Sp2/0-Ag14 myeloma and NIH 3T3 fibroblast cells. The antimitogenic response was not elicited by micromolar concentrations of phosphatidic acid, phosphatidylglycerol, or diacylglycerol. In NIH 3T3 and Sp2 cells, LPA elicited an increase in inositol trisphosphate and a subsequent transient increase in free cytoplasmic Ca2+. Unlike the mitogenic response in NIH 3T3 cells, the antimitogenic effect was not affected by pertussis toxin; on the contrary, it was accompanied by an increase in cAMP. In Sp2 cells, cAMP analogs, forskolin, and isobutylmethylxanthine inhibited cell proliferation and enhanced LPA action in an additive manner, suggesting that an LPA-elicited increase in cAMP-mediated signaling was responsible for the antimitogenic response. In addition to the mitogenic response in fibroblasts and the antimitogenic response in tumor cell lines, there are some cell types (Jurkat T-cell lymphoma and primary astrocytes) in which LPA is ineffective in altering cell proliferation. The cell-type-specific dual action of LPA suggests that this endogenous lipid mediator when released from activated cells might play an important role as a regulator, rather than a ubiquitous inducer, of cell proliferation. Images PMID:8127904

  2. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  3. miR-200bc/429 Inhibits Osteosarcoma Cell Proliferation and Invasion by Targeting PMP22

    PubMed Central

    Li, Xiaodong; Jiang, Han; Xiao, Lianping; Wang, Shusen; Zheng, Jinxin

    2017-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs which play a crucial role in diverse biological processes and could contribute to cancer development and progression. MiR-200bc/429 have been found to be aberrantly expressed in osteosarcoma (OS). However, the features of miR-200bc/429 in the tumorigenesis and progress of OS remain poorly understood. Material/Methods The miR-200bc/429 expression was firstly identified in human OS clinical samples and cell lines by quantitative real-time PCR (qRT-PCR). After transfection with miR-200bc/429 mimics or negative control in U2OS or MG63 cells, cell proliferation was measured by CCK-8 assay. Following that, wound-healing assay and Transwell invasion assay were performed to evaluate cell migration and invasion, respectively. Finally, luciferase reporter assay and Western blot analysis were performed to determine if peripheral myelin protein-22 (PMP22) is a direct target of miR-200bc/429. Results Results revealed that miR-200bc/429 were significantly depressed in human OS tissues and cell lines by qRT-PCR. Then, restoration of miR-200bc/429 significantly inhibited cell proliferation (P<0.05) and invasion (P<0.05) in vitro. Luciferase reporter assay and Western blot analysis revealed that miR-200bc/429 could directly target PMP22 3′ untranslated region (UTR) and inhibit its expression in U2OS and MG63 cells. Conclusions These findings suggest that miR-200bc/429 inhibit OS cells proliferation and invasion by targeting PMP22, and function as a tumor suppressor and may be a patent molecular marker as well as a potential target for OS therapy. PMID:28234890

  4. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  5. Chromosome aberrations and rogue cells in lymphocytes of Chernobyl clean-up workers.

    PubMed

    Lazutka, J R

    1996-03-09

    A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested.

  6. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  7. Mechanism of inhibition of cell proliferation by Vinca alkaloids.

    PubMed

    Jordan, M A; Thrower, D; Wilson, L

    1991-04-15

    We have used a structure-activity approach to investigate whether the Vinca alkaloids inhibit cell proliferation primarily by means of their effects on mitotic spindle microtubules or by another mechanism or by a combination of mechanisms. Five Vinca alkaloids were used to investigate the relationship in HeLa cells between inhibition of cell proliferation and blockage of mitosis, alteration of spindle organization, and depolymerization of microtubules. Indirect immunofluorescence staining of microtubules and 4,6-diamidino-2-phenylindole staining of chromatin were used to characterize the effects of the drugs on the distributions of cells in stages of the cell cycle and on the organization of microtubules and chromosomes in metaphase spindles. The microtubule polymer was isolated from cells and quantified using a competitive enzyme-linked immunoadsorbent assay for tubulin. We observed a nearly perfect coincidence between the concentration of each Vinca derivative that inhibited cell proliferation and the concentration that caused 50% accumulation of cells at metaphase, despite the fact that the antiproliferative potencies of the drugs varied over a broad concentration range. Inhibition of cell proliferation and blockage of cells at metaphase at the lowest effective concentrations of all Vinca derivatives occurred with little or no microtubule depolymerization or spindle disorganization. With increasing drug concentrations, the organization of microtubules and chromosomes in arrested mitotic spindles deteriorated in a manner that was common to all five congeners. These results indicate that the antiproliferative activity of the Vinca alkaloids at their lowest effective concentrations in HeLa cells is due to inhibition of mitotic spindle function. The results suggest further that the Vinca alkaloids inhibit cell proliferation by altering the dynamics of tubulin addition and loss at the ends of mitotic spindle microtubules rather than by depolymerizing the microtubules

  8. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  9. Anaphase aberrations: a measure of genotoxicity in mutagen-treated fish cells

    SciTech Connect

    Kocan, R.M.; Landolt, M.L.; Sabo, K.M.

    1982-01-01

    Rainbow trout gonad cells (RTG-2) were cultured for various lengths of time in the presence of several classes of known mutagenic chemicals and several related compounds that possessed no known mutagenic/carcinogenic activity. During the course of exposure the cells were examined for the presence of abnormalities in the chromosome arrangement of anaphase figures during mitosis. Untreated and solvent-treated (dimethylsulfoxide-treated) cells exhibited a background abnormality rate of 12% with only minor chromosomal defects being observed. This was also true for those cells exposed to naphthol and anthracene, two chemicals with no proven mutagenic or carcinogenic activity. Conversely, significant increases in the frequency of anaphase aberrations were produced in cells treated with N-methyl-N'-nitro-N-nitrosoguanidine, benzo(a)pyrene, 9-aminoacridine and mitomycin-C. These abnormalities were also far more complex and extensive than those observed in the control and nonmutagen-treated cells. Many species of fish have extremely small and numerous chromosomes, making resolution of chromosome defects such as sister chromatid exchange and deletions more difficult than in most mammalian diploid cells, which generally have larger and fewer chromosomes. Examination of cells during anaphase eliminates the need to observe each chromosome separately as well as the need to produce well-spread metaphase chromosomes. Since the sensitivity of anaphase aberrations to known mutagenic/carcinogenic compounds appears to be quite high in trout cells and since hundreds of suitable cells are available for analysis, this may be an appropriate alternative or addition to some of the more standard chromosome macrolesion tests developed in mammalian systems.

  10. Logistic Proliferation of Cells in Scratch Assays is Delayed.

    PubMed

    Jin, Wang; Shah, Esha T; Penington, Catherine J; McCue, Scott W; Maini, Philip K; Simpson, Matthew J

    2017-03-23

    Scratch assays are used to study how a population of cells re-colonises a vacant region on a two-dimensional substrate after a cell monolayer is scratched. These experiments are used in many applications including drug design for the treatment of cancer and chronic wounds. To provide insights into the mechanisms that drive scratch assays, solutions of continuum reaction-diffusion models have been calibrated to data from scratch assays. These models typically include a logistic source term to describe carrying capacity-limited proliferation; however, the choice of using a logistic source term is often made without examining whether it is valid. Here we study the proliferation of PC-3 prostate cancer cells in a scratch assay. All experimental results for the scratch assay are compared with equivalent results from a proliferation assay where the cell monolayer is not scratched. Visual inspection of the time evolution of the cell density away from the location of the scratch reveals a series of sigmoid curves that could be naively calibrated to the solution of the logistic growth model. However, careful analysis of the per capita growth rate as a function of density reveals several key differences between the proliferation of cells in scratch and proliferation assays. Our findings suggest that the logistic growth model is valid for the entire duration of the proliferation assay. On the other hand, guided by data, we suggest that there are two phases of proliferation in a scratch assay; at short time, we have a disturbance phase where proliferation is not logistic, and this is followed by a growth phase where proliferation appears to be logistic. These two phases are observed across a large number of experiments performed at different initial cell densities. Overall our study shows that simply calibrating the solution of a continuum model to a scratch assay might produce misleading parameter estimates, and this issue can be resolved by making a distinction between the

  11. Cytotoxicity and anaphase aberrations induced by mineral fibres in cultured human mesothelial cells.

    PubMed

    Pelin, K; Husgafvel-Pursiainen, K; Vallas, M; Vanhala, E; Linnainmaa, K

    1992-09-01

    The in vitro cytotoxicity of two amphibole asbestos fibres (amosite and crocidolite), a serpentine asbestos (chrysotile), a non-asbestos fibrous aluminosilicate (erionite) and three different size fractions of both glass wool and rock wool fibres were assessed in an immortalized human mesothelial cell line, MeT-5A. We also investigated the induction of anaphase aberrations by the asbestos and erionite fibres. On a comparison by weight, amosite, crocidolite and chrysotile showed similar toxic effects (2-5 mug/cm(2) of the asbestos fibres caused 50% of cells to die) but erionite was less toxic (10-20 mug/cm(2) was needed for the same effect). When the doses were converted to the number of fibres/cm(2) of culture area, amosite was shown to be about 10 times more cytotoxic than crocidolite and chrysotile. Crocidolite and chrysotile showed similar cytotoxicity, and erionite was again less toxic. Of the man-made mineral fibres (MMMF), thin glass wool was the most cytotoxic (50% cell death for 10-20 mug/cm(2)), followed (in descending order of cytotoxicity) by thin rock wool, coarse glass wool, milled rock wool, milled glass wool and coarse rock wool. In general, the MMMF samples were less toxic than the asbestos and erionite samples. All three asbestos types studied induced anaphase aberrations at high (near toxic) doses. A statistically significant increase in the number of aberrant anaphases was observed in cultures treated with crocidolite or chrysotile at 5 mug/cm(2). The increase was caused by lagging chromatids, chromosomes or chromosome fragments.

  12. Analysis of Heavy Ion-Induced Chromosome Aberrations in Human Fibroblast Cells Using In Situ Hybridization

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2

  13. Software for precise tracking of cell proliferation

    SciTech Connect

    Kurokawa, Hiroshi; Noda, Hisayori; Sugiyama, Mayu; Sakaue-Sawano, Asako; Fukami, Kiyoko; Miyawaki, Atsushi

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We developed software for analyzing cultured cells that divide as well as migrate. Black-Right-Pointing-Pointer The active contour model (Snakes) was used as the core algorithm. Black-Right-Pointing-Pointer The time backward analysis was also used for efficient detection of cell division. Black-Right-Pointing-Pointer With user-interactive correction functions, the software enables precise tracking. Black-Right-Pointing-Pointer The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

  14. NFATc1 balances quiescence and proliferation of skin stem cells

    PubMed Central

    Horsley, Valerie; Aliprantis, Antonios O.; Polak, Lisa; Glimcher, Laurie H.; Fuchs, Elaine

    2008-01-01

    Quiescent adult stem cells reside in specialized niches where they become activated to proliferate and differentiate during tissue homeostasis and injury. How stem cell quiescence is governed is poorly understood. We report here that NFATc1 is preferentially expressed by hair follicle stem cells in their niche, where it's expression is activated by BMP signaling upstream and it acts downstream to transcriptionally repress CDK4 and maintain stem cell quiescence. As stem cells become activated during hair growth, NFATc1 is downregulated, relieving CDK4 repression and activating proliferation. When calcineurin/NFATc1 signaling is suppressed, pharmacologically or via complete or conditional NFATc1 gene ablation, stem cells are activated prematurely, resulting in precocious follicular growth. Our findings may explain why patients receiving cyclosporine A for immunosuppressive therapy display excessive hair growth, and unveil a functional role for calcium-NFATc1-CDK4 circuitry in governing stem cell quiescence. PMID:18243104

  15. Pup exposure elicits hippocampal cell proliferation in the prairie vole.

    PubMed

    Ruscio, Michael G; Sweeny, Timothy D; Hazelton, Julie L; Suppatkul, Patrin; Boothe, Emily; Carter, C Sue

    2008-02-11

    The onset of parental behavior has profound and enduring effects on behavior and neurobiology across a variety of species. In some cases, mere exposure to a foster neonate (and a subsequent parental response) can have similar effects. In the present experiment, we exposed adult male and female prairie voles (Microtus ochrogaster) to two foster pups for 20 min and quantified cell proliferation in the dentate gyrus of the hippocampus (DG), medial amygdala (MeA) and cortical amygdala (CorA). Prairie voles are highly social rodents that typically display biparental care and spontaneous parental care when exposed to foster pups. Comparisons were made between the animals that responded parentally or non-parentally towards the pups, as well as control conditions. Cell proliferation was assessed using injections of 5-bromo-2'-deoxyuridine (BrdU) and immunocytochemical localization of this marker. The phenotype of the cells was determined using double label immunofluoresence for BrdU and TuJ1 (a neuronal marker). An increase in cell proliferation in the DG was seen in animals exposed to pups. However, animals that responded non-parentally had a greater number of BrdU labeled cells in the DG compared to those that responded parentally. The majority of BrdU labeled cells co-expressed TuJ1 across all groups. These results demonstrate that exposure to a foster pup and the behavioral reaction to it (parental or non-parental) are associated with site-specific changes in cell proliferation.

  16. Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility

    PubMed Central

    2010-01-01

    Introduction Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells. Methods Here, we addressed whether the functional relationship between cell growth and RUNX2 gene expression is maintained in breast cancer cells. We also investigated whether the aberrant expression of RUNX2 is linked to phenotypic parameters that could provide a selective advantage to cells during breast cancer progression. Results We find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-MB-231 breast adenocarcinoma cells is enhanced upon growth factor deprivation, as well as upon deactivation of the mitogen-dependent MEK-Erk pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only marginal effects on cell growth and expression of proliferation markers in MDA-MB-231 breast cancer cells. Thus, RUNX2 is not a critical regulator of cell proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-231 cells reduces cell motility, while forced exogenous expression of RUNX2 in MCF7 cells increases cell motility. Conclusions Our results support the emerging concept that the osteogenic transcription factor RUNX2 functions as a metastasis-related oncoprotein in non-osseous cancer cells. PMID:21029421

  17. Intermittent individual housing increases survival of newly proliferated cells.

    PubMed

    Aberg, Elin; Pham, Therese M; Zwart, Mieke; Baumans, Vera; Brené, Stefan

    2005-09-08

    In this study, we analyzed how intermittent individual housing with or without a running wheel influenced corticosterone levels and survival of newly proliferated cells in the dentate gyrus of the hippocampus. Female Balb/c mice, in standard or enhanced housing, were divided into groups that were individually housed with or without running wheels on every second day. Intermittent individual housing without, but not with, running wheels increased survival of proliferated cells in the dentate gyrus as compared with continuous group housing in standard or enhanced conditions. Thus, changes in housing conditions on every second day can, under certain circumstances, have an impact on the survival of newly proliferated cells in the dentate gyrus.

  18. Yangjing Capsule Extract Promotes Proliferation of GC-1 Spg Cells

    PubMed Central

    Wang, Zhiqiang; Jin, Baofang; Zhang, Xindong; Cui, Yugui; Sun, Dalin; Gao, Chao

    2014-01-01

    Objective. To investigate the effect of Yangjing Capsule (YC) extract on proliferation of GC-1 spermatogonia (spg) cells and the mechanism. Methods. GC-1 spg cells were treated with 0.01, 0.1, and 1 mg/mL YC extract. MTT assay was performed to detect the cell viability. Flow cytometry was used to measure the cell cycle and apoptosis of GC-1 spg cells. Real-time PCR and western blot were applied to determine the mRNA and protein expression of Oct-4 and Plzf. Gfrα1 knockdown and LY294002 (PI3K inhibitor) were applied to explore the underlying mechanism. Results. After 48 h treatment of YC, the viability of GC-1 spg cells increased significantly and the ratio of apoptotic cells reduced significantly. The increased mRNA and protein expression of Oct-4 and Plzf suggested YC promoted self-renewal of GC-1 spg cells. Both Gfrα1 siRNAs and LY294002 treatments held back YC extract's stimulation effects on mRNA and protein expression of Oct-4 and Plzf and consequently inhibited the proliferation of GC-1 spg cells induced by YC extract. Conclusion. YC extract could stimulate the proliferation of GC-1 spg cells. Partly via Gfrα1, YC extract is able to trigger the activation of PI3K pathway and finally lead to self-renewal of GC-1 spg cells. PMID:24817900

  19. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1.

    PubMed

    Xu, Ran; Zeng, Guang; Gao, Jing; Ren, Yue; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Tao, Hong; Li, Daxu

    2015-10-01

    Aberrant microRNA expression has been suggested to be an important event in the pathologies of various types of cancer. MicroRNA-138 (miR-138) has been reported to be frequently downregulated in various types of human cancer, including oral squamous cell carcinoma (OSCC). However, the precise molecular mechanism of miR-138 underlying OSCC remains largely unknown. The aim of the present study was to investigate the expression of miR-138 in OSCC tumor tissues and several OSCC cell lines and validated its interaction with the 3'-untranslated region (3'-UTR) of Yes-associated protein 1 (YAP1). The results showed that, miR-138 was significantly downregulated in OSCC tumor tissues and cell lines. Overexpression of miR-138 inhibited cell proliferation of OSCC cells whereas the downregulation of miR-138 promoted cell proliferation. A direct interaction between miR-138 and 3'-UTR of YAP1 was validated by dual-luciferase reporter assay. Moreover, overexpression of miR-138 in OSCC cells significantly decreased the expression of YAP1 and downregulation of miR-138 inhibited the expression of YAP1. Specifically, the inhibitory effect of miR-138 on the proliferation of OSCC cells was eliminated by transfection with YAP1 overexpression vectors that did not harbor any specific miR-138 binding specific sequences in 3'-UTR. In addition, the miR-138‑overexpressing OSCC cells exhibited a low growth rate in the xenograft tumor assay with a decreased expression of YAP1 in tumor tissues. The results suggest that miR-138 is a tumor suppressor miRNA in OSCC through targeting YAP1, which serves as a promising therapeutic target for the treatment of OSCC.

  20. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells.

    PubMed

    Bryant, P E; Johnston, P J

    1993-05-01

    Restriction endonucleases (RE) can be used to mimic and model the clastogenic effects of ionising radiation. With the development of improved techniques for cell poration: electroporation and recently streptolysin O (SLO), it has become possible more confidently to study the relationships between DNA double-strand breaks (dsb) of various types (e.g. blunt or cohesive-ended) and the frequencies of induced metaphase chromosomal aberrations or micronuclei in cytokinesis-blocked cells. Although RE-induced dsb do not mimic the chemical end-structure of radiation-induced dsb (i.e. the 'dirty' ends of radiation-induced dsb), it has become clear that cohesive-ended dsb, which are thought to be the major type of dsb induced by radiation, are much less clastogenic than blunt-ended dsb. It has also been possible, with the aid of electroporation or SLO to measure the kinetics of dsb in cells as a function of time after treatment. These experiments have shown that some RE (e.g. Pvu II) are extremely stable inside CHO cells and at high concentrations persist and induce dsb over a period of many hours following treatment. Cutting of DNA by RE is thought to be at specific recognition sequences (as in free DNA) although the frequencies of sites in native chromatin available to RE is not yet known. DNA condensation and methylation are both factors limiting the numbers of available cutting sites. Relatively little is known about the kinetics of incision or repair of RE-induced dsb in cells. Direct ligation may be a method used by cells to rejoin the bulk of RE-induced dsb, since inhibitors such as araA, araC and aphidicolin appear not prevent rejoining, although these inhibitors have been found to lead to enhanced frequencies of chromosomal aberrations. 3-Aminobenzimide, the poly-ADP ribose polymerase inhibitor is the only agent that has so far been shown to inhibit rejoining of RE-induced dsb. Data from the radiosensitive xrs5 cell line, where chromosomal aberration frequencies are

  1. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells

    PubMed Central

    Kaid, Carolini; Silva, Patrícia B G; Cortez, Beatriz A; Rodini, Carolina O; Semedo-Kuriki, Patricia; Okamoto, Oswaldo K

    2015-01-01

    In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer. PMID:26250335

  2. Fluidic control over cell proliferation and chemotaxis

    NASA Astrophysics Data System (ADS)

    Groisman, Alex

    2006-03-01

    Microscopic flows are almost always stable and laminar that allows precise control of chemical environment in micro-channels. We describe design and operation of several microfluidic devices, in which various types of environments are created for different experimental assays with live cells. In a microfluidic chemostat, colonies of non-adherent bacterial and yeast cells are trapped in micro-chambers with walls permeable for chemicals. Fast chemical exchange between the chambers and nearby flow-through channels creates essentially chemostatic medium conditions in the chambers and leads to exponential growth of the colonies up to very high cell densities. Another microfluidic device allows creation of linear concentration profiles of a pheromone (α-factor) across channels with non-adherent yeast cells, without exposure of the cells to flow or other mechanical perturbation. The concentration profile remains stable for hours enabling studies of chemotropic response of the cells to the pheromone gradient. A third type of the microfluidic devices is used to study chemotaxis of human neutrophils exposed to gradients of a chemoattractant (fMLP). The devices generate concentration profiles of various shapes, with adjustable steepness and mean concentration. The ``gradient'' of the chemoattractant can be imposed and reversed within less than a second, allowing repeated quantitative experiments.

  3. Immunological control of cell cycle aberrations for the avoidance of oncogenesis: the case of tetraploidy.

    PubMed

    Senovilla, Laura; Galluzzi, Lorenzo; Castedo, Maria; Kroemer, Guido

    2013-05-01

    Tetraploid cells--cells that contain twice the normal amount of DNA--are more prone to neoplastic transformation than their normal, diploid counterparts since they are genomically unstable and frequently undergo asymmetric, multipolar cell divisions. Similar to many other genomic aberrations, tetraploidization is normally avoided by multiple, nonredundant cell-intrinsic mechanisms that are tied to cell cycle checkpoints. Unexpectedly, tetraploidization is also under the control of a cell-extrinsic mechanism determined by the immune system. Indeed, oncogene- or carcinogen-induced cancers developing in immunodeficient mice contain cells with a higher DNA content than similar tumors growing in immunocompetent hosts. Moreover, cancer cell lines that have been rendered tetraploid in vitro grow normally in immunodeficient mice, yet almost fail to generate tumors in immunocompetent animals. One of the mechanisms whereby the immune system recognizes tetraploid cells originates from tetraploidy causing an endoplasmic reticulum (ER) stress response that culminates in the exposure of the ER protein calreticulin on the cell surface. Hence, tetraploidy exemplifies a potentially oncogenic alteration that is repressed by a combination of cell-autonomous mechanisms and immunosurveillance. Oncogenesis and tumor progression require the simultaneous failure of both such control systems.

  4. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  5. Development of bioengineering system for stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  6. Aberrant Expression of MICO1 and MICO1OS in Deceased Somatic Cell Nuclear Transfer Calves.

    PubMed

    Wang, Guan-Nan; Yang, Wen-Zhi; Xu, Da; Li, Dong-Jie; Zhang, Cui; Chen, Wei-Na; Li, Shi-Jie

    2017-04-06

    Incomplete reprogramming of a donor nucleus following somatic cell nuclear transfer (SCNT) results in aberrant expression of developmentally important genes, and is the primary source of the phenotypic abnormalities observed in cloned animals. Expression of non-coding RNAs in the murine Dlk1-Dio3 imprinted domain was previously shown to correlate with the pluripotency of mouse induced pluripotent stem cells. In this study, we examined the transcription of the bovine orthologs from this locus, MICO1 (Maternal intergenic circadian oscillating 1) and MICO1OS (MICO1 opposite strand), in tissues from artificially inseminated and SCNT calves that died during the perinatal period. A single-nucleotide polymorphism (SNP), a T-to-C transition, was used to analyze the allelic transcription of MICO1. Our results indicate monoallelic expression of the MICO1 C allele among the six analyzed tissues (heart, liver, spleen, lung, kidney, and brain) of artificially inseminated calves, indicating that this gene locus may be imprinted in bovine. Conversely, we observed variable allelic transcription of MICO1 in SCNT calves. We asked if DNA methylation regulated the monoallelic expression of MICO1 and MICO1OS by evaluating the methylation levels of six regions within or around this locus in tissues with normal or aberrant MICO1 transcription; all of the samples from either artificially inseminated or SCNT calves exhibited hypermethylation, implying that DNA methylation may not be involved in regulating its monoallelic expression. Furthermore, three imprinted genes (GTL2, MEG9, and DIO3) nearby MICO1 showed monoallelic expression in SCNT calves with aberrant MICO1 transcription, indicating that not all of the genes in the bovine DLK1-DIO3 domain are mis-regulated. This article is protected by copyright. All rights reserved.

  7. Interphase cytogenetics of multicentric renal cell tumours confirm associations of specific aberrations with defined cytomorphologies

    PubMed Central

    Amo-Takyi, B K; Mittermayer, C; Günther, K; Handt, S

    2000-01-01

    To demonstrate associations of certain chromosomal aberrations with defined renal cell tumour (RCT) subtypes, we analysed 239 tumour nephrectomy cases for specimens with multicentric tumours. Chromosomal in situ hybridization was then performed on 15 cases with 34 foci (16 conventional renal cell carcinomas (RCCs), and 18 papillary RCTs (11 carcinomas and seven adenomas) for specific chromosomal aberrations, using α-satellite probes for chromosomes 3, 7 or 17. Particular preference was given to cases which had separate foci with different cytomorphologies. Furthermore, we compared aberrations in relation to tumour size, stage, grade and between different foci in a specimen. Thirty-four cases had multiple tumours. Forty-seven per cent of the multicentric tumours were conventional RCCs and 53% papillary RCTs (against 83% solitary conventional RCCs and 5% solitary papillary RCTs). Three conventional RCCs sized 8 mm (G3), 13 cm (pT2, G2) and 15 cm (pT3b, G3), respectively, revealed monosomy 3, and 13 were disomic. Seventeen papillary RCTs (11 carcinomas and six adenomas) displayed trisomy 17, irrespective of size or grade. Four papillary carcinomas and six papillary adenomas had trisomy 7, and the rest (seven papillary carcinomas and one papillary adenoma) revealed disomy 7. In conclusion, papillary RCTs were tendentially multicentric. Although specific for conventional RCCs heedless of size, monosomy 3 was only observed in high-grade and/or advanced tumours. Trisomy 17 was only detectable in papillary RCTs irrespective of tumour state, showing increased copies with tumour growth. Papillary RCTs also appeared to lose some copies of chromosome 7 with tumour progress, possibly reflecting malignancy. © 2000 Cancer Research Campaign PMID:10780519

  8. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    SciTech Connect

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian; Jia, Jihui

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  9. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  10. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Numerous published studies have reported the RBE values for chromosome chromosomes induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo showed a similar relationship as the quality factor for cancer induction. Consequently, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. The RBE value is known to be very different for different types of cancer. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. After multiple cell divisions post irradiation, the RBE was significantly smaller. To test the hypothesis that the RBE values for chromosome aberrations are different between early and late damages and also different between different cell types, we exposed human lymphocytes ex vivo, and human fibroblast cells and human mammary epithelial cells in vitro to 600 MeV/u Fe ions. Post irradiation, the cells were collected at first mitosis, or cultured for multiple generations for collections of remaining or late arising chromosome aberrations. The chromosome aberrations were quantified using fluorescent in situ hybridization (FISH) with whole chromosome specific probes. This study attempts to offer an explanation for the varying RBE values for different cancer types.

  11. Stabilization of telomeres in nonlinear models of proliferating cell lines.

    PubMed

    Dyson, Janet; Sánchez, Eva; Villella-Bressan, Rosanna; Webb, Glenn F

    2007-02-07

    We analyse an age-structured model of telomere loss in a proliferating cell population. The cell population is divided into telomere classes, which shorten each round of division. The model consists of a nonlinear system of partial differential equations for the telomere classes. We prove that if the highest telomere class is exempted from mortality, then all the classes stabilize to a nontrivial equilibrium dependent on the initial state of cells in the highest telomere class.

  12. Promoter Methylation Analysis Reveals that KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

    PubMed Central

    Ryland, Katherine E; Hawkins, Allegra G.; Weisenberger, Daniel J.; Punj, Vasu; Borinstein, Scott C.; Laird, Peter W.; Martens, Jeffrey R.; Lawlor, Elizabeth R.

    2015-01-01

    Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via post-translational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft tissue tumor that is characterized by over-expression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared to non-malignant adult tissues. Ion channels regulate a variety of biological processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of Kv1.5 channel function. Implications This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dyregulation to tumorigenesis. PMID:26573141

  13. Control of cell proliferation in human glioma by glucocorticoids.

    PubMed

    Freshney, R I; Sherry, A; Hassanzadah, M; Freshney, M; Crilly, P; Morgan, D

    1980-06-01

    Survival and proliferation of cell cultures from human anaplastic astrocytomas were shown to be enhanced by glucocorticoids with an optimal concentration of approximately 2.5 x 10(-5)M (10 micrograms/ml). The stimulation of proliferation was only observed in a clonal growth assay and was reversed as the size of individual colonies reached approximately 50 cells. Above this size, and in regular monolayer cultures, glucocorticoids were found to inhibit cell proliferation as measured by direct cell counting and incorporation of [3H] thymidine. Cultures grown to maximum cell densities in non-limiting medium conditions reached a lower terminal cell density, and had a reduced labelling index with [3H] thymidine in the presence of glucocorticoids. Although there was little difference between the actions of beta-methasone, dexamethasone and ethyl prednisolone, methyl prednisolone was found to be more effective, both in terms of stimulation of clonal growth and inhibition of growth at high cell densities. There was no evidence of cytotoxicity with glucocorticoids up to 5 x 10(-5)M (20 micrograms/ml) and it is suggested that glucocorticoids act via a normal regulatory process, perhaps enhancing cell-cell recognition.

  14. Control of cell proliferation in human glioma by glucocorticoids.

    PubMed Central

    Freshney, R. I.; Sherry, A.; Hassanzadah, M.; Freshney, M.; Crilly, P.; Morgan, D.

    1980-01-01

    Survival and proliferation of cell cultures from human anaplastic astrocytomas were shown to be enhanced by glucocorticoids with an optimal concentration of approximately 2.5 x 10(-5)M (10 micrograms/ml). The stimulation of proliferation was only observed in a clonal growth assay and was reversed as the size of individual colonies reached approximately 50 cells. Above this size, and in regular monolayer cultures, glucocorticoids were found to inhibit cell proliferation as measured by direct cell counting and incorporation of [3H] thymidine. Cultures grown to maximum cell densities in non-limiting medium conditions reached a lower terminal cell density, and had a reduced labelling index with [3H] thymidine in the presence of glucocorticoids. Although there was little difference between the actions of beta-methasone, dexamethasone and ethyl prednisolone, methyl prednisolone was found to be more effective, both in terms of stimulation of clonal growth and inhibition of growth at high cell densities. There was no evidence of cytotoxicity with glucocorticoids up to 5 x 10(-5)M (20 micrograms/ml) and it is suggested that glucocorticoids act via a normal regulatory process, perhaps enhancing cell-cell recognition. Images Fig. 2 Fig. 3 PMID:7426310

  15. VUV modification promotes endothelial cell proliferation on PTFE vascular grafts

    NASA Astrophysics Data System (ADS)

    Cezeaux, J. L.; Romoser, C. E.; Benson, R. S.; Buck, C. K.; Sackman, J. E.

    1998-05-01

    Small diameter (⩽6 mm ID ) synthetic vascular grafts, used as lower-limb vessel replacements in patients without suitable autologous saphenous veins, have a failure rate of 53% after 4 yr. Graft failure is due to thrombosis and intimal hyperplasia, an increase in smooth muscle cells in the lumen of the vessel which leads to progressive closing and ultimate occlusion of the vessel. In an effort to increase patency rates of synthetic grafts, investigators have seeded vascular grafts with endothelial cells prior to implantation in an attempt to control both thrombosis and smooth muscle proliferation. This technique has been successful for the development of an endothelial monolayer in animal trials, but has met with limited success in humans. The hydrophobicity, low surface energy, and weak electrical charge of expanded polytetrafluoroethylene (ePTFE) provides conditions which are not optimal for endothelial cell attachment. The purpose of this study is to evaluate the effect of vacuum ultraviolet (VUV) modification of ePTFE on endothelial cell adhesion and proliferation. Pieces of ePTFE graft material were exposed to 10, 20 or 40 W VUV radiation for 10, 20 or 40 min using a UV excimer lamp. Prior to cell adhesion and proliferation experiments, the grafts pieces were autoclaved and cut into pledgets. Half of the pledgets were precoated with fibronectin ( 20 μg/ml). Cell adhesion was measured by seeding 3H-thymidine labeled human umbilical vein endothelial cells (HUVEC) onto the pledgets for 60 min. The pledgets were then washed and the remaining radioactivity assayed using scintillation counting. For the cell proliferation experiments, pledgets were seeded with unlabeled HUVEC which were allowed to adhere to the graft material for 18 h. The cells were then exposed to 3H-thymidine ( 1 μCi/ml) for approximately 48 h and then washed to remove any unincorporated 3H-thymidine. Incorporation of 3H-thymidine was measured using scintillation counting. Four replicate

  16. Repression of DOK7 mediated by DNMT3A promotes the proliferation and invasion of KYSE410 and TE-12 ESCC cells.

    PubMed

    Yang, Shou-Mei; Li, Su-Yi; Yu, Hao-Bin; Li, Jie-Ru; Sun, Lei-Lei

    2017-03-23

    Increasing evidence shows that aberrant epigenetic regulation of tumor suppressor genes is a contributing factor to their altered expression in esophageal squamous cell carcinoma (ESCC). In the current study, we investigate the role of DOK7 in ESCC cells. We found that enforced expression of DOK7 inhibited the proliferation and invasion of ESCC cells. We also found that treatment of ESCC cells with the DNA methylation inhibitor, 5-aza-2-deoxycytidine (5-azadC), induced the demethylation of DOK7 in promoter and DOK7 expression. Moreover, silencing DNMT3A decreased methylation of DOK7 and increased DOK7 expression, followed by repressing the proliferation and invasion of ESCC cells. Collectively, our data indicated that silencing DNMT3A inhibits proliferation and invasion in ESCC cells by inducing demethylation of DOK7.

  17. The cell proliferation antigen Ki-67 organises heterochromatin

    PubMed Central

    Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel

    2016-01-01

    Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251

  18. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    SciTech Connect

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  19. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  20. Effect of cancer/testis antigen NY-SAR-35 on the proliferation, migration and invasion of cancer cells

    PubMed Central

    Song, Myung-Ha; Kim, Ye-Rin; Bae, Jae-Ho; Lee, Chang-Hun; Lee, Sang-Yull

    2017-01-01

    NY-SAR-35 is a cancer/testis (CT) antigen that was identified by serological analysis of recombinant complementary DNA expression libraries. The gene encoding NY-SAR-35 is located on the × chromosome and is aberrantly expressed in a number of cancer types and germ cells, such as those in the testes, but not in normal tissue. It has been reported that treatment with a demethylating agent induced the expression of NY-SAR-35 in several types of cancer cells. However, the function of NY-SAR-35 in cancer remains undetermined. In present study, the role of NY-SAR-35 in human lung adenocarcinoma (SK-LC-14) and hepatocellular carcinoma (SNU-449) cells was investigated following stable transfection of the NY-SAR-35 gene. NY-SAR-35 was observed to be expressed in the cytoplasm of the cells. In addition, the bromodeoxyuridine incorporation assay and immunofluorescence staining for proliferating cell nuclear antigen and Ki-67 demonstrated that proliferation was increased in cells transfected with NY-SAR-35. In addition, the trypan blue exclusion assay indicated that NY-SAR-35 increased cancer cell viability. Furthermore, NY-SAR-35 increased the migration and invasion of the cells. These results indicate that NY-SAR-35 increases cancer cell viability, proliferation, migration and invasion. PMID:28356959

  1. Downregulation of N-myc downstream regulated gene 1 caused by the methylation of CpG islands of NDRG1 promoter promotes proliferation and invasion of prostate cancer cells.

    PubMed

    Li, Yalin; Pan, Pan; Qiao, Pengfei; Liu, Ranlu

    2015-09-01

    Current studies tend to consider N-myc downstream regulated gene 1 (NDRG1) as a tumor suppressor gene, inhibiting cell proliferation and invasion. NDRG1 expression in cancer cells is generally low, but the molecular mechanism is unclear. Aberrant methylation of CpG islands (CGIs) in gene promoter was able to inactivate tumor suppressor genes and activate oncogenes, disordering cell proliferation and apoptosis, playing a promotion role in tumor occurrence and progression. The present study was performed to investigate the effect of epigenetic modification of NDRG1 on prostate cancer (PCa) cells. The protein expression in human specimens was measured by immunohistochemical staining. The expression level of NDRG1 was changed by plasmid vectors in PCa cells. These cells were used to study proliferation and invasiveness. NDRG1 expression in normal prostate cells was higher than that in PCa cells. Downregulation of NDRG1 expression enhanced cell proliferation and invasiveness. In contrast, its upregulation could reduce cell proliferation and invasiveness. In PCa cells, the methylation rate of CGIs in the promoter region of NDRG1 was higher than that in normal prostate cells. 5-Aza-CdR, a methylation inhibitor, was able to effectively reverse the aberrant methylation of NDRG1, enhancing its expression, inhibiting cell growth. NDRG1 can inhibit the cell proliferation and invasion of PCa, but its expression level is low. The aberrant methylation of NDRG1 promoter is an important mechanism for gene silencing, playing an important role in tumor occurrence and progression. Therefore, reversing the aberrant methylation of NDRG1 may be used for PCa treatment.

  2. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  3. Evidence for a role of Collapsin response mediator protein-2 in signaling pathways that regulate the proliferation of non-neuronal cells

    SciTech Connect

    Tahimic, Candice Ginn T.; Tomimatsu, Nozomi; Nishigaki, Ryuichi |; Fukuhara, Akiko; Toda, Tosifusa; Kaibuchi, Kozo; Shiota, Goshi; Oshimura, Mitsuo |; Kurimasa, Akihiro |. E-mail: kurimasa@grape.med.tottori-u.ac.jp

    2006-02-24

    Collapsin response mediator protein-2 or Crmp-2 plays a critical role in the establishment of neuronal polarity. In this study, we present evidence that apart from its functions in neurodevelopment, Crmp-2 is also involved in pathways that regulate the proliferation of non-neuronal cells through its phosphorylation by regulatory proteins. We show that Crmp-2 undergoes dynamic phosphorylation changes in response to contact inhibition-induced quiescence and that hyperphosphorylation of Crmp-2 occurs in a tumor. We further suggest that de-regulation of Crmp-2 phosphorylation levels at certain amino acid residues may lead to aberrant cell proliferation and consequently, tumorigenesis.

  4. UTX and MLL4 Coordinately Regulate Transcriptional Programs for Cell Proliferation and Invasiveness in Breast Cancer Cells

    PubMed Central

    Kim, Jae-Hwan; Sharma, Amrish; Dhar, Shilpa S.; Lee, Sung-Hun; Gu, Bingnan; Chan, Chia-Hsin; Lin, Hui-Kuan; Lee, Min Gyu

    2014-01-01

    Histone methyltransferases and demethylases reversibly modulate histone lysine methylation, which is considered a key epigenetic mark associated with gene regulation. Recently, aberrant regulation of gene expression by histone methylation modifiers has emerged as an important mechanism for tumorigenesis. However, it remains largely unknown how histone methyltransferases and demethylases co-regulate transcriptional profiles for cancer cell characteristics. Here, we show that in breast cancer cells, the histone H3 lysine 27 (H3K27) demethylase UTX (also known as KDM6A) positively regulates gene expression programs associated with cell proliferation and invasion. The majority of UTX-controlled genes, including a cohort of oncogenes and pro-metastatic genes, are co-regulated by the H3K4 methyltransferase mixed lineage leukemia 4 (MLL4, also called ALR, KMT2D, and MLL2). UTX interacted with a C-terminal region of MLL4. UTX knockdown resulted in significant decreases in the proliferation and invasiveness of breast cancer cells in vitro and in a mouse xenograft model. Such defective cellular characteristics of UTX-depleted cells were phenocopied by MLL4 knockdown cells. UTX-catalyzed demethylation of trimethylated H3K27 and MLL4-mediated trimethylation at H3K4 occurred inter-dependently at co-target genes of UTX and MLL4. Clinically, high levels of UTX or MLL4 were associated with poor prognosis in breast cancer patients. Taken together, these findings uncover that coordinated regulation of gene expression programs by a histone methyltransferase and a histone demethylase is coupled to the proliferation and invasion of breast cancer cells. PMID:24491801

  5. Autophagy is involved in aldosterone-induced mesangial cell proliferation

    PubMed Central

    Yang, Min; Wang, Bin; Miao, Liying; Xu, Xianlin; He, Xiaozhou

    2016-01-01

    The aim of the present study was to investigate whether autophagy is involved in aldosterone (Aldo)-induced mesangial cell (MC) proliferation. MCs were incubated with 10−7 M Aldo for 24 h. Proliferation of MCs, and the underlying mechanisms, were subsequently analyzed using [3H]thymidine assay, cell counting assay, western blotting and RNA interference (RNAi). Aldo was revealed to induce autophagy, as indicated by the increased conversion from microtubule-associated protein 1A/1B-light chain 3 (LC3)-I to LC3-II, the increased expression levels of autophagy-related gene 7 (Atg7) and the increased degradation of p62, which was accompanied by MC proliferation. Notably, pharmacological inhibition of autophagy or RNAi-mediated knockdown of Atg7 attenuated Aldo-induced MC proliferation, suggesting that autophagy was at least partially responsible for this effect. The results of the present study provided evidence that autophagy is critical for regulating Aldo-induced MC proliferation. PMID:27748808

  6. Fractal Dimensions of In Vitro Tumor Cell Proliferation

    PubMed Central

    Lambrou, George I.

    2015-01-01

    Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases. PMID:25883653

  7. Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission.

    PubMed

    Sonobe, Seiji; Aoyama, Kazue; Suzuki, Chihiro; Saito, Ko-hei; Nagata, Kumiko; Shimmen, Teruo; Nagata, Yoko

    2010-07-01

    Pyrobaculum islandicum is a hyperthermophilic archaeon. P. islandicum cells have been suggested to multiply by constriction, budding and branching, as no septa were observed in cells by phase-contrast light microscopy. In this study, we observed the cells using transmission electron microscopy, scanning electron microscopy, and light microscopy with dark-field image analyses, and we report binary fission via septum formation to be the main mode of P. islandicum's proliferation. "Long cells" reported previously were found to comprise several cylindrical cells that align in tandem.

  8. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.

    PubMed

    Höglinger, Günter U; Rizk, Pamela; Muriel, Marie P; Duyckaerts, Charles; Oertel, Wolfgang H; Caille, Isabelle; Hirsch, Etienne C

    2004-07-01

    Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

  9. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP(+) memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP(+) memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.

  10. Poisson-event-based analysis of cell proliferation.

    PubMed

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture.

  11. Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells

    PubMed Central

    Aoki, Hitomi; Ogino, Hajime; Tomita, Hiroyuki; Hara, Akira; Kunisada, Takahiro

    2016-01-01

    REST (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells in vitro by preventing precocious expression of neuronal genes. REST expression was then decreased in developing neurons to down-regulate neuronal genes which allow their maturation. However, the function of REST during neurogenesis in vivo remains to be elucidated because of the early embryonic lethal phenotype of conventional Rest knockout mice. In order to investigate the role of REST in ocular tissues, we generated and examined the mice evoking genetic ablation to Rest specifically to neural tissues including ocular tissue. We used a Sox1-Cre allele to excise the floxed Rest gene in the early neural tissues including the lens and retinal primordia. The resulting Rest conditional knockout (CKO) and co cntrol mice were used in comparative morphological, histological, and gene expression analyses. Rest CKO mice had an abnormal lens morphology after birth. The proliferation of lens epithelial cells was likely to be slightly reduced, and vacuoles formed without a visible increase in apoptotic cells. Although the aberrant expression of late onset cataract marker proteins was not detected, the expression of Notch signaling-related genes including a previously identified REST-target gene was up-regulated around birth, and this was followed by the down-regulated expression of lens fiber regulators such as c-Maf and Prox1. Rest CKO induces a unique cataract phenotype just after birth. Augmented Notch signaling and the down-regulated expression of lens fiber regulator genes may be responsible for this phenotype. Our results highlight the significance of REST function in lens fiber formation, which is necessary for maintaining an intact lens structure. PMID:27631609

  12. Proliferation and cell cycle dynamics in the developing stellate ganglion.

    PubMed

    Gonsalvez, David G; Cane, Kylie N; Landman, Kerry A; Enomoto, Hideki; Young, Heather M; Anderson, Colin R

    2013-04-03

    Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.

  13. Anaphase aberrations: a measure of genotoxicity in mutagen-treated fish cells

    SciTech Connect

    Kocan, R.M.; Landolt, M.L.; Sabo, K.M.

    1982-01-01

    Rainbow trout gonad cells (RTG-2) were cultured for various lengths of time in the presence of several classes of known mutagenic chemicals and several related compounds that possessed no known mutagenic/carcinogenic activity. During the course of exposure the cells were examined for the presence of abnormalities in the chromosome arrangement of anaphase figures during mitosis. Untreated and solvent-treated (dimethylsulfoxide-treated) cells exhibited a background abnormality rate of 12% with only minor chromosomal defects being observed. This was also true for those cells exposed to naphthol and anthracene, two chemicals with no proven mutagenic or carcinogenic activity. Conversely, significant increases in the frequency of anaphase aberrations were produced in cells treated with N-methyl-N'-nitro-N-nitrosoguanidine, benzo(a)pyrene, 9-aminoacridine and mitomycin-C. These abnormalities were also far more complex and extensive than those observed in the control and nonmutagen-treated cells. Many species of fish have extremely small and numerous chromosomes, making resolution of chromosome defects such as sister chromatid exchange and deletions more difficult than in most mammalian diploid cells, which generally have larger and fewer chromosomes. Examination of cells during anaphase eliminates the need to observed each chromosome separately as well as the need to produce well-spread metaphase chromosomes. (JMT)

  14. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations

    PubMed Central

    Guntermann, Christine; Piaia, Alessandro; Hamel, Marie-Laure; Theil, Diethilde; Rubic-Schneider, Tina; del Rio-Espinola, Alberto; Dong, Linda; Billich, Andreas; Kaupmann, Klemens; Dawson, Janet; Hoegenauer, Klemens; Orain, David; Hintermann, Samuel; Stringer, Rowan; Patel, Dhavalkumar D.; Doelemeyer, Arno; Deurinck, Mark

    2017-01-01

    Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with neoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk. PMID:28289717

  15. Proliferation control in neural stem and progenitor cells

    PubMed Central

    Homem, Catarina CF; Repic, Marko; Knoblich, Juergen A

    2015-01-01

    Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number due to disease. Unlike many other organs, the brain is unable to compensate for such changes by increasing cell numbers or altering the size of the cells. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and mammalian neural stem and progenitor cells these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly. PMID:26420377

  16. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  17. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    SciTech Connect

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) is equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.

  18. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  19. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells.

    PubMed

    Cang, Yong; Zhang, Jianxuan; Nicholas, Sally A; Bastien, Jayson; Li, Baojie; Zhou, Pengbo; Goff, Stephen P

    2006-12-01

    DDB1, a component of the Cul4 ubiquitin ligase complex, promotes protein ubiquitination in diverse cellular functions, including nuclear excision repair, regulation of the cell cycle, and DNA replication. To investigate its physiological significance, we generated mice with null and floxed alleles of the DDB1 gene. Here we report that null mutation of DDB1 caused early embryonic lethality, while conditional inactivation of the gene in brain and lens led to neuronal and lens degeneration, brain hemorrhages, and neonatal death. These defects stemmed from a selective elimination of nearly all proliferating neuronal progenitor cells and lens epithelial cells by apoptosis. The cell death was preceded by aberrant accumulation of cell cycle regulators and increased genomic instability and could be partially rescued by removal of the tumor suppressor protein p53. Our results indicate that DDB1 plays an essential role in maintaining viability and genomic integrity of dividing cells.

  20. [Identification of proliferating cells in Taenia solium cysts].

    PubMed

    Orrego-Solano, Miguel Ángel; Cangalaya, Carla; Nash, Theodore E; Guerra-Giraldez, Cristina

    2014-01-01

    Neoblasts are totipotent cells, solely responsible for the proliferation and maturation of tissues in free-living flatworms. Similar cells have been isolated from parasitic flatworms such as Echinococcus. Taenia solium causes human taeniasis (intestinal) and cysticercosis in humans and pigs. Brain infection with larvae (cysts) of T. solium results in neurocysticercosis which is hyperendemic in Peru, and its treatment is associated with serious neurological symptoms. The proliferative capacity and development stages of T. solium have not been described and the neoblasts of this parasite have not been characterized We looked for cell proliferation in T. solium cysts collected from an infected pig, which were identified when replicating and incorporating bromodeoxyuridine nucleotide detected with a monoclonal antibody. A stable cell line of neoblasts would be useful for systematic in vitro studies on drug efficacy and the biology of T. solium.

  1. Substrate rigidity regulates human T cell activation and proliferation.

    PubMed

    O'Connor, Roddy S; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W; Kam, Lance C; Milone, Michael C

    2012-08-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.

  2. Substrate rigidity regulates human T cell activation and proliferation1

    PubMed Central

    O’Connor, Roddy S.; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W.; Kam, Lance; Milone, Michael C.

    2012-01-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane) (PDMS), a biocompatible silicone elastomer. We show that softer (Young’s Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4+ and CD8+ T cells compared with stiffer substrates (E >2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (non-significant) towards a greater proportion of CD62Lneg, effector-differentiated CD4+ and CD8+ T cells. Naïve CD4+ T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ producing TH1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation and TH differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands. PMID:22732590

  3. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  4. Epigenetic regulation of IL-12-dependent T cell proliferation

    PubMed Central

    Schaller, Matthew; Ito, Toshihiro; Allen, Ronald M.; Kroetz, Danielle; Kittan, Nicolai; Ptaschinski, Catherine; Cavassani, Karen; Carson, William F.; Godessart, Nuria; Grembecka, Jolanta; Cierpicki, Tomasz; Dou, Yali; Kunkel, Steven L.

    2015-01-01

    It is well established that the cytokine IL-12 and the transcription factor STAT4, an essential part of the IL-12 signaling pathway, are critical components of the Th1 differentiation process in T cells. In response to pathogenic stimuli, this process causes T cells to proliferate rapidly and secrete high amounts of the cytokine IFN-γ, leading to the Th1 proinflammatory phenotype. However, there are still unknown components of this differentiation pathway. We here demonstrated that the expression of the histone methyltransferase Mll1 is driven by IL-12 signaling through STAT4 in humans and mice and is critical for the proper differentiation of a naïve T cell to a Th1 cell. Once MLL1 is up-regulated by IL-12, it regulates the proliferation of Th1 cells. As evidence of this, we show that Th1 cells from Mll1+/− mice are unable to proliferate rapidly in a Th1 environment in vitro and in vivo. Additionally, upon restimulation with cognate antigen Mll1+/−, T cells do not convert to a Th1 phenotype, as characterized by IFN-γ output. Furthermore, we observed a reduction in IFN-γ production and proliferation in human peripheral blood stimulated with tetanus toxoid by use of a specific inhibitor of the MLL1/menin complex. Together, our results demonstrate that the MLL1 gene plays a previously unrecognized but essential role in Th1 cell biology and furthermore, describes a novel pathway through which Mll1 expression is regulated. PMID:26059830

  5. Inhibition of Pancreatic Cancer Cell Proliferation by LRH-1 Inhibitors

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0396 TITLE: INHIBITION OF PANCREATIC CANCER CELL...DATES COVERED 15September2012–14September2013 4. TITLE AND SUBTITLE INHIBITION OF PANCREATIC CANCER CELL PROLIFERATION BY LRH-1 INHIBITORS 5a...of pancreatic cancer is devastating, with mortality rates nearing its incidence rates. To date, there are no effective targeted anti-pancreatic

  6. Plumericin inhibits proliferation of vascular smooth muscle cells by blocking STAT3 signaling via S-glutathionylation

    PubMed Central

    Heiss, Elke H; Liu, Rongxia; Waltenberger, Birgit; Khan, Shafaat; Schachner, Daniel; Kollmann, Paul; Zimmermann, Kristin; Cabaravdic, Muris; Uhrin, Pavel; Stuppner, Hermann; Breuss, Johannes M; Atanasov, Atanas G; Dirsch, Verena M

    2016-01-01

    The etiology of atherosclerosis and restenosis involves aberrant inflammation and proliferation, rendering compounds with both anti-inflammatory and anti-mitogenic properties as promising candidates for combatting vascular diseases. A recent study identified the iridoid plumericin as a new scaffold inhibitor of the pro-inflammatory NF-κB pathway in endothelial cells. We here examined the impact of plumericin on the proliferation of primary vascular smooth muscle cells (VSMC). Plumericin inhibited serum-stimulated proliferation of rat VSMC. It arrested VSMC in the G1/G0-phase of the cell cycle accompanied by abrogated cyclin D1 expression and hindered Ser 807/811-phosphorylation of retinoblastoma protein. Transient depletion of glutathione by the electrophilic plumericin led to S-glutathionylation as well as hampered Tyr705-phosphorylation and activation of the transcription factor signal transducer and activator of transcription 3 (Stat3). Exogenous addition of glutathione markedly prevented this inhibitory effect of plumericin on Stat3. It also overcame downregulation of cyclin D1 expression and the reduction of biomass increase upon serum exposure. This study revealed an anti-proliferative property of plumericin towards VSMC which depends on plumericin’s thiol reactivity and S-glutathionylation of Stat3. Hence, plumericin, by targeting at least two culprits of vascular dysfunction –inflammation and smooth muscle cell proliferation -might become a promising electrophilic lead compound for vascular disease therapy. PMID:26858089

  7. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

    PubMed Central

    Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo

    2014-01-01

    Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654

  8. Oleanolic acid inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα

    PubMed

    Li, Hongmei; He, Ning; Li, Xueyan; Zhou, Li; Zhao, Mingyu; Jiang, Hairui; Zhang, Xiaojie

    2013-10-01

    Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid contained in a variety of plant species, exhibits broad biological properties, including anticancer effects. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. APL has a unique and specific chromosomal aberration, t(15;17), which results in the formation of a fusion gene and protein PML/RARα, which is not only necessary for the diagnosis of APL, but is also critical for APL pathogenesis. In the present study, the cytotoxic effect of OA on NB4 cells was investigated. Cell viability was assessed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of bax and bcl-2 mRNA were determined by quantitative PCR. Apoptosis was analyzed using DNA fragment analysis and cell cycle distributions were analyzed by flow cytometry. The activity of caspase-3 and caspase-9 was determined by colorimetric assays. The expression of the PML/RARα fusion protein was analyzed by western blotting. The MTT assay showed that OA inhibited the proliferation of the NB4 cells. The expression levels of pro-apoptotic bax mRNA were increased and the levels of anti-apoptotic bcl-2 mRNA were decreased following the treatment of the NB4 cells with OA at 80 μmol/l. Treatment of the NB4 cells with OA at 80 μmol/l induced apoptosis and G1 phase arrest, while caspase-9 and caspase-3 activity was significantly increased. Furthermore, the expression of the PML/RARα fusion protein was decreased. Together, these data suggest that OA exerts a cytotoxic effect that inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα, making it a potent therapeutic agent against leukemia.

  9. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    NASA Astrophysics Data System (ADS)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  10. Pancreatic β-Cell Proliferation in Obesity12

    PubMed Central

    Linnemann, Amelia K.; Baan, Mieke; Davis, Dawn Belt

    2014-01-01

    Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study. PMID:24829474

  11. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    PubMed

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  12. Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling

    SciTech Connect

    Huang, Hao; Song, Yuhua; Wu, Yan; Guo, Ning; Ma, Yuanfang; Qian, Lu

    2015-07-31

    Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein when the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis. - Highlights: • Erbin loss leads to cancer cell excessive proliferation in vitro and in vivo. • Erbin loss accelerates cell cycle though down-regulating p21 and p27 expression. • Erbin is a novel negative modulator of Akt1-Skp2-p27 signaling pathway. • Our study suggests that Erbin loss contributes to Skp2 oncogenic function.

  13. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    PubMed

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.

  14. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries

    PubMed Central

    Tian, Ai; Benchabane, Hassina; Wang, Zhenghan; Ahmed, Yashi

    2016-01-01

    Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries. PMID:26845150

  15. Human β-Cell Proliferation and Intracellular Signaling: Part 3

    PubMed Central

    Hussain, Mehboob A.; García-Ocaña, Adolfo; Vasavada, Rupangi C.; Bhushan, Anil; Bernal-Mizrachi, Ernesto

    2015-01-01

    This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin–nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal–related kinase, cadherins and integrins, G-protein–coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes. PMID:25999530

  16. Constitutive activation of neuronal Src causes aberrant dendritic morphogenesis in mouse cerebellar Purkinje cells.

    PubMed

    Kotani, Takenori; Morone, Nobuhiro; Yuasa, Shigeki; Nada, Shigeyuki; Okada, Masato

    2007-02-01

    Src family tyrosine kinases are essential for neural development, but their in vivo functions remain elusive because of functional compensation among family members. To elucidate the roles of individual Src family members in vivo, we generated transgenic mice expressing the neuronal form of c-Src (n-Src), Fyn, and their constitutively active forms in cerebellar Purkinje cells using the L7 promoter. The expression of the constitutively active n-Src retarded the postnatal development of Purkinje cells and disrupted dendritic morphogenesis, whereas the wild-type n-Src had only moderate effects. Neither wild-type nor constitutively active Fyn over-expression significantly affected Purkinje-cell morphology. The aberrant Purkinje cells in n-Src transgenic mice retained multiple dendritic shafts extending in non-polarized directions and were located heterotopically in the molecular layer. Ultrastructural observation of the dendritic shafts revealed that the microtubules of n-Src transgenic mice were more densely and irregularly arranged, and had structural deformities. In primary culture, Purkinje cells from n-Src transgenic mice developed abnormally thick dendritic shafts and large growth-cone-like structures with poorly extended dendrites, which could be rescued by treatment with a selective inhibitor of Src family kinases, PP2. These results suggest that n-Src activity regulates the dendritic morphogenesis of Purkinje cells through affecting microtubule organization.

  17. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma

    SciTech Connect

    Kumar, Abhinav; Mandiyan, Valsan; Suzuki, Yoshihisa; Zhang, Chao; Rice, Julie; Tsai, James; Artis, Dean R.; Ibrahim, Prabha; Bremer, Ryan

    2010-07-19

    Pim1, a serine/threonine kinase, is involved in several biological functions including cell survival, proliferation, and differentiation. While pim1 has been shown to be involved in several hematopoietic cancers, it was also recently identified as a target of aberrant somatic hypermutation in diffuse large cell lymphoma (DLCL), the most common form of non-Hodgkin's lymphoma. The crystal structures of Pim1 in apo form and bound with AMPPNP have been solved and several unique features of Pim1 were identified, including the presence of an extra {beta}-hairpin in the N-terminal lobe and an unusual conformation of the hinge connecting the two lobes of the enzyme. While the apo Pim1 structure is nearly identical with that reported recently, the structure of AMPPNP bound to Pim1 is significantly different. Pim1 is unique among protein kinases due to the presence of a proline residue at position 123 that precludes the formation of the canonical second hydrogen bond between the hinge backbone and the adenine moiety of ATP. One crystal structure reported here shows that changing P123 to methionine, a common residue that offers the backbone hydrogen bond to ATP, does not restore the ATP binding pocket of Pim1 to that of a typical kinase. These unique structural features in Pim1 result in novel binding modes of AMP and a known kinase inhibitor scaffold, as shown by co-crystallography. In addition, the kinase activities of five Pim1 mutants identified in DLCL patients have been determined. In each case, the observed effects on kinase activity are consistent with the predicted consequences of the mutation on the Pim1 structure. Finally, 70 co-crystal structures of low molecular mass, low-affinity compounds with Pim1 have been solved in order to identify novel chemical classes as potential Pim1 inhibitors. Based on the structural information, opportunities for optimization of one specific example are discussed.

  18. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  19. Ethanol inhibits human bone cell proliferation and function in vitro

    SciTech Connect

    Friday, K.E.; Howard, G.A. )

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  20. Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks.

    PubMed

    Pan, Y; Li, M; Yi, X; Zhao, Q; Lieberwirth, C; Wang, Z; Zhang, Z

    2013-01-01

    Food hoarding, especially scatter hoarding and retrieving food caches, requires spatial learning and memory and is an adaptive behavior important for an animal's survival and reproductive success. In the present study, we examined the effects of hoarding behavior on cell proliferation and survival in the hippocampus of male and female Siberian chipmunks (Tamias sibiricus). We found that chipmunks in a semi-natural enclosure displayed hoarding behavior with large individual variations. Males ate more scatter-hoarded seeds than females. In addition, the display of hoarding behavior was associated with increased cell proliferation in the hippocampus and this increase occurred in a brain region-specific manner. These data provide further evidence to support the notion that new cells in the adult hippocampus are affected by learning and memory tasks and may play an important role in adaptive behavior.

  1. Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells

    PubMed Central

    Kim, Yong-Hee; Lee, Dong Gu; Kim, Bang-Jin; Kim, Ki-Jung; Kim, Byung-Gak; Oh, Myeong-Geun; Han, Chan Kyu; Lee, Sanghyun; Ryu, Buom-Yong

    2015-01-01

    Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility. PMID:26207817

  2. Control of cell proliferation by microRNAs in plants.

    PubMed

    Rodriguez, Ramiro E; Schommer, Carla; Palatnik, Javier F

    2016-12-01

    Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.

  3. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures.

    PubMed

    Chung, Soobin; Kim, Seol-Hee; Seo, Yuri; Kim, Sook-Kyung; Lee, Ji Youn

    2017-04-04

    Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.

  4. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  5. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells

    PubMed Central

    Schaak, S; Cussac, D; Cayla, C; Devedjian, J; Guyot, R; Paris, H; Denis, C

    2000-01-01

    BACKGROUND AND AIMS—Previous studies on rodents have suggested that catecholamines stimulate proliferation of the intestinal epithelium through activation of α2 adrenoceptors located on crypt cells. The occurrence of this effect awaits demonstration in humans and the molecular mechanisms involved have not yet been elucidated. Here, we examined the effect of α2 agonists on a clone of Caco2 cells expressing the human α2A adrenoceptor.
METHODS—Cells were transfected with a bicistronic plasmid containing the α2C10 and neomycin phosphotransferase genes. G418 resistant clones were assayed for receptor expression using radioligand binding. Receptor functionality was assessed by testing its ability to couple Gi proteins and to inhibit cAMP production. Mitogen activated protein kinase (MAPK) phosphorylation was followed by western blot, and cell proliferation was estimated by measuring protein and DNA content.
RESULTS—Permanent transfection of Caco2 cells allowed us to obtain a clone (Caco2-3B) expressing α2A adrenoceptors at a density similar to that found in normal human intestinal epithelium. Caco2-3B retained morphological features and brush border enzyme expression characteristic of enterocytic differentiation. The receptor was coupled to Gi2/Gi3 proteins and its stimulation caused marked diminution of forskolin induced cAMP production. Treatment of Caco2-3B with UK14304 (α2 agonist) induced a rapid increase in the phosphorylation state of MAPK, extracellular regulated protein kinase 1 (Erk1), and 2 (Erk2). This event was totally abolished in pertussis toxin treated cells and in the presence of kinase inhibitors (genistein or PD98059). It was unaffected by protein kinase C downregulation but correlated with a transient increase in Shc tyrosine phosphorylation. Finally, sustained exposure of Caco2-3B to UK14304 resulted in modest but significant acceleration of cell proliferation. None of these effects was observed in the parental cell line Caco2.

  6. The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia.

    PubMed

    Nakamura, Satoki; Hirano, Isao; Okinaka, Keiji; Takemura, Tomonari; Yokota, Daisuke; Ono, Takaaki; Shigeno, Kazuyuki; Shibata, Kiyoshi; Fujisawa, Shinya; Ohnishi, Kazunori

    2010-11-01

    FOXM1 is an important cell cycle regulator and regulates cell proliferation. In addition, FOXM1 has been reported to contribute to oncogenesis in various cancers. However, it is not clearly understood how FOXM1 contributes to acute myeloid leukemia (AML) cell proliferation. In this study, we investigated the cellular and molecular function of FOXM1 in AML cells. The FOXM1 messenger RNA (mRNA) expressed in AML cell lines was predominantly the FOXM1B isoform, and its levels were significantly higher than in normal high aldehyde dehydrogenase activity (ALDH(hi)) cells. Reduction of FOXM1 expression in AML cells inhibited cell proliferation compared with control cells, through induction of G(2)/M cell cycle arrest, a decrease in the protein expression of Aurora kinase B, Survivin, Cyclin B1, S-phase kinase-associated protein 2 and Cdc25B and an increase in the protein expression of p21(Cip1) and p27(Kip1). FOXM1 messenger RNA (mRNA) was overexpressed in all 127 AML clinical specimens tested (n = 21, 56, 32 and 18 for M1, M2, M4 and M5 subtypes, respectively). Compared with normal ALDH(hi) cells, FOXM1 gene expression was 1.65- to 2.26-fold higher in AML cells. Moreover, the FOXM1 protein was more strongly expressed in AML-derived ALDH(hi) cells compared with normal ALDH(hi) cells. In addition, depletion of FOXM1 reduced colony formation of AML-derived ALDH(hi) cells due to inhibition of Cdc25B and Cyclin B1 expression. In summary, we found that FOXM1B mRNA is predominantly expressed in AML cells and that aberrant expression of FOXM1 induces AML cell proliferation through modulation of cell cycle progression. Thus, inhibition of FOXM1 expression represents an attractive target for AML therapy.

  7. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    PubMed

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  8. Liver cyst cytokines promote endothelial cell proliferation and development.

    PubMed

    Brodsky, Kelley S; McWilliams, Ryan R; Amura, Claudia R; Barry, Nicholas P; Doctor, R Brian

    2009-10-01

    Autosomal dominant polycystic kidney (ADPKD) is highly prevalent genetic disease. Liver cyst disease is the most common extrarenal manifestation in ADPKD and accounts for up to 10% of ADPKD morbidity and mortality. The clinical features of ADPKD liver disease arise from dramatic increases in liver cyst volumes. To identify mechanisms that promote liver cyst growth, the present study characterized the degree of vascularization of liver cyst walls and determined that cyst-specific cytokines and growth factors can drive endothelial cell proliferation and development. Microscopic techniques demonstrated liver cyst walls are well vascularized. A comparative analysis found the vascular density in free liver cyst walls was greater in mice than in humans. Treatment of human micro-vascular endothelial cells (HMEC-1) with human liver cyst fluid (huLCF) induced a rapid increase in vascular endothelium growth factor receptor 2 (VEGFR2) phosphorylation that persisted for 45-60 min and was blocked by 20 microM SU5416, a VEGFR tyrosine kinase inhibitor. Similarly, huLCF treatment of HMEC-1 cells induced an increase in the cell proliferation rate (131 +/- 6% of control levels; P > 0.05) and the degree of vascular development ('tube' diameter assay: 92 +/- 14 microm for huLCF vs. 12 +/- 7 microm for vehicle); P > 0.05). Both cell proliferation and vascular development were sensitive to SU5416. These studies indicate that factors secreted by liver cyst epithelia can activate VEGF signaling pathways and induce endothelial cell proliferation and differentiation. The present studies suggest that targeting VEGFR2-dependent angiogenesis may be an effective therapeutic strategy in blocking ADPKD liver cyst vascularization and growth.

  9. METTL13 is downregulated in bladder carcinoma and suppresses cell proliferation, migration and invasion

    PubMed Central

    Zhang, Zhe; Zhang, Guojun; Kong, Chuize; Zhan, Bo; Dong, Xiao; Man, Xiaojun

    2016-01-01

    The incidence of bladder cancer has increased in the last few decades, thus novel markers for early diagnosis and more efficacious treatment are urgently needed. It found that METTTL13 protein is aberrant expression in variety of human cancers and METTL13 was involved in oncogenic pathways. However, the role of METTL13 has been unexplored in bladder cancer to date. Here, expression of METTL13 was lower in bladder cancer tissue samples and cancer cell lines than in normal bladder tissue and cell lines. METTL13 was downregulated in the late stages of the disease and was maintained at low level throughout the tumor progression process based on tumor node metastasis (TNM) staging. Further research suggested that METTL13 negatively regulates cell proliferation in bladder cancer and reinstates G1/S checkpoint via the coordinated downregulation of CDK6, CDK4 and CCND1, decreased phosphorylation of Rb and subsequent delayed cell cycle progression. Moreover, METTL13-dependent inhibition of bladder cancer cell migration and invasion is mediated by downregulation of FAK (Focal adhesion kinase) phosphorylation, AKT (v-akt murine thymoma viral oncogene) phosphorylation, β-catenin expression and MMP-9 expression. These integrated efforts have identified METTL13 as a tumor suppressor and might provide promising approaches for bladder cancer treatment and prevention. PMID:26763933

  10. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation

    PubMed Central

    2012-01-01

    Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease. PMID:22458943

  11. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells.

    PubMed

    Miyoshi, Noriyuki; Uchida, Koji; Osawa, Toshihiko; Nakamura, Yoshimasa

    2007-02-01

    In the present study, experiments using presynchronization culture cells demonstrated that benzyl ITC (BITC), previously isolated from a tropical papaya fruit extract, induced the cytotoxic effect preferentially in the proliferating human colon CCD-18Co cells to the quiescent ones. Quiescent CCD-18Co cells were virtually unaffected by BITC and marginal cytotoxicity was observed at 15 microM. We observed that BITC dramatically induced the p53 phosphorylation and stabilization only in the quiescent (G(0)/G(1) phase-arrested) cells, but not significantly in the proliferating human colon CCD-18Co cells when compared with quiescent ones. We also observed ataxia telangiectasia-mutated (ATM) phosphorylation in the quiescent cells. The BITC-induced p53 phosphorylation was counteracted by caffeine treatment, implying the involvement of an ATM/ataxia telangiectasia and Rad3-related kinase signaling pathway. Moreover, downregulation of p53 by a siRNA resulted in the enhancement of susceptibility to undergo apoptosis by BITC. We also showed here that depletion of p53 abrogated G(0)/G(1) arrest accompanied by the declined expression of p21(waf1/cip1) and p27(kip1) in CCD-18Co cells. In conclusion, we identified p53 as a potential negative regulator of the apoptosis induction by BITC in the normal colon CCD-18Co cells through the inhibition of cell-cycle progression at the G(0)/G(1) phase.

  12. The aberrancy of immunophenotype and immunoglobulin status as indicators of prognosis in B cell diffuse large cell lymphoma.

    PubMed Central

    Spier, C. M.; Grogan, T. M.; Lippman, S. M.; Slymen, D. J.; Rybski, J. A.; Miller, T. P.

    1988-01-01

    To assess the prognostic significance of the immunophenotype in diffuse large cell lymphoma (DLCL), 105 DLCL patients were studied between 1978 and 1987 using a panel of 40 monoclonal antibodies applied to frozen tissue. Eighty-three patients were found to have B cell phenotypes, and 20 patients had T cell phenotypes. Focusing on markers relevant to clinical outcome among B cell LCL showed that lack of expression of the pan B antigens Leu14 and Leu16 were correlated with decreased survival (Leu14, P = 0.01; Leu16, P = 0.06; log-rank). HLA-DR activity also showed that lack of expression of this antigen correlated with poor survival (P = 0.004, log-rank). Kappa light chain immunoglobulin lack of expression showed predictive value for decreased survival as well (P = 0.005, log-rank). Multivariate analyses of known clinically important variables and the immune phenotypes confirm that the loss of HLA-DR and B cell aberrancy are independent factors predicting a poor clinical outcome. Losing some B activation/kappa antigens appears to be a broad biologic phenomenon linking surface antigen lack of expression with decreased survival. This suggests that aberrancy of immunophenotype and immunoglobulin status are key predictors of survival in B-LCL. PMID:3140668

  13. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  14. Aberrant Transforming Growth Factor-β Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia.

    PubMed

    Wang, Long; Xie, Liang; Tintani, Francis; Xie, Hui; Li, Changjun; Cui, Zhuang; Wan, Mei; Zu, Xiongbing; Qi, Lin; Cao, Xu

    2017-02-01

    Benign prostatic hyperplasia (BPH) is the overgrowth of prostate tissues with high prevalence in older men. BPH pathogenesis is not completely understood, but it is believed to be a result of de novo overgrowth of prostatic stroma. In this study, we show that aberrant activation of transforming growth factor-β (TGF-β) mobilizes mesenchymal/stromal stem cells (MSCs) in circulating blood, which are recruited for the prostatic stromal hyperplasia. Elevated levels of active TGF-β were observed in both a phenylephrine-induced prostatic hyperplasia mouse model and human BPH tissues. Nestin lineage tracing revealed that 39.6% ± 6.3% of fibroblasts and 73.3% ± 4.2% smooth muscle cells were derived from nestin(+) cells in Nestin-Cre, Rosa26-YFP(flox/+) mice. Nestin(+) MSCs were increased in the prostatic hyperplasia mice. Our parabiosis experiment demonstrate that nestin(+) MSCs were mobilized and recruited to the prostatic stroma of wild-type mice and gave rise to the fibroblasts. Moreover, injection of a TGF-β neutralizing antibody (1D11) inhibits mobilization of MSCs, their recruitment to the prostatic stroma and hyperplasia. Importantly, knockout of TβRII in nestin(+) cell lineage ameliorated stromal hyperplasia. Thus, elevated levels of TGF-β-induced mobilization and recruitment of MSCs to the reactive stroma resulting in overgrowth of prostate tissues in BPH and, thus, inhibition of TGF-β activity could be a potential therapy for BPH. Stem Cells Translational Medicine 2017;6:394-404.

  15. Inhibition of proliferation of retinal vascular endothelial cells more effectively than choroidal vascular endothelial cell proliferation by bevacizumab

    PubMed Central

    Mynampati, Bharani Krishna; Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V.

    2017-01-01

    AIM To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular endothelial cells (RVECs) in vitro. METHODS VEGF (400 ng/mL) enriched CVECs and RVECs were treated with escalating doses of bevacizumab (0.1, 0.5, 1, 1.5 and 2 mg/mL). Cell proliferation changes were analyzed with WST-1 assay and trypan blue exclusion assay at 48, 72h and 1wk. Morphological changes were recorded with bright field microscopy. RESULTS VEGF enriched RVECs showed significantly more decline of cell viability than CVECs after bevacizumab treatment. One week after treatment, RVEC cell proliferation decreased by 29.7%, 37.5%, 52.8%, 35.9% and 45.6% at 0.1, 0.5, 1.0, 1.5 and 2 mg/mL bevacizumab respectively compared to CVEC proliferation decrease of 4.1%, 7.7%, 2.4%, 4.1% and 17.7% (P<0.05) by WST-1 assay. Trypan blue exclusion assay also revealed similar decrease in RVEC proliferation of 20%, 60%, 73.3%, 80% and 93.3% compared to CVEC proliferation decrease of 4%, 12%, 22.9%, 16.7% and 22.2% respectively (P<0.05). The maximum differential effect between the two cell types was observed at bevacizumab doses of 1.0 and 1.5 mg/mL at all time points. RVECs were 22 fold more sensitive (P<0.01) compared to CVECs (52.8% vs 2.4%) at concentration of 1.0 mg/mL, and 8.7 fold more at 1.5 mg/mL (35.9% vs 4.1%) 1wk after treatment (P<0.05 respectively). CONCLUSION VEGF-enriched RVECs are more susceptible to bevacizumab inhibition than CVECs at clinically used dosage of 1.25 mg and this differential sensitivity between two cell types should be taken into consideration in dosage selection. PMID:28149771

  16. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2

    SciTech Connect

    Fu, Jing; Xu, Xiaojie; Kang, Lei; Zhou, Liying; Wang, Shibin; Lu, Juming; Cheng, Long; Fan, Zhongyi; Yuan, Bin; Tian, Peirong; Zheng, Xiaofei; Yu, Chengze; Ye, Qinong; Lv, Zhaohui

    2014-03-07

    Highlights: • miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. • The miR-30a/EYA2 axis regulates breast cancer cell proliferation and migration. • The miR-30a/EYA2 axis modulates G1/S cell cycle progression. • The miR-30a/EYA2 axis is dysregulated in breast cancer patients. - Abstract: Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.

  17. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  18. Induction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.

    PubMed

    Hada, Megumi; Chappell, Lori J; Wang, Minli; George, Kerry A; Cucinotta, Francis A

    2014-10-01

    The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with oxygen (77 keV/μm), silicon (99 keV/μm) or Fe (175 keV/μm), Fe (195 keV/μm) or Fe (240 keV/μm) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Nonlinear regression models were used to evaluate possible linear and nonlinear dose-response models based on these data. Dose responses for simple exchanges for human fibroblasts irradiated under confluent culture conditions were best fit by nonlinear models motivated by a nontargeted effect (NTE). The best fits for dose response data for human lymphocytes irradiated in blood tubes were a linear response model for all particles. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low-particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high-LET radiation at the relevant range of low doses.

  19. DEPTOR is a direct NOTCH1 target that promotes cell proliferation and survival in T-cell leukemia.

    PubMed

    Hu, Y; Su, H; Liu, C; Wang, Z; Huang, L; Wang, Q; Liu, S; Chen, S; Zhou, J; Li, P; Chen, Z; Liu, H; Qing, G

    2017-02-23

    Aberrant activation of NOTCH1 signaling plays a vital role in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). Yet the molecular events downstream of NOTCH1 that drive T-cell leukemogenesis remain incompletely understood. Starting from genome-wide gene-expression profiling to seek important NOTCH1 transcriptional targets, we identified DEP-domain containing mTOR-interacting protein (DEPTOR), which was previously shown to be important in multiple myeloma but remains functionally unclear in other hematological malignancies. Mechanistically, we demonstrated NOTCH1 directly bound to and activated the human DEPTOR promoter in T-ALL cells. DEPTOR depletion abolished cellular proliferation, attenuated glycolytic metabolism and enhanced cell death, while ectopically expressed DEPTOR significantly promoted cell growth and glycolysis. We further showed that DEPTOR depletion inhibited while its overexpression enhanced AKT activation in T-ALL cells. Importantly, AKT inhibition completely abrogated DEPTOR-mediated cell growth advantages. Moreover, DEPTOR depletion in a human T-ALL xenograft model significantly delayed T-ALL onset and caused a substantial decrease of AKT activation in leukemic blasts. We thus reveal a novel mechanism involved in NOTCH1-driven leukemogenesis, identifying the transcriptional control of DEPTOR and its regulation of AKT as additional key elements of the leukemogenic program activated by NOTCH1.

  20. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    PubMed

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  1. DNMT1 regulates human endometrial carcinoma cell proliferation

    PubMed Central

    Wang, Xinjing; Li, Bilan

    2017-01-01

    Endometrial carcinoma (EC) is the most common gynecologic malignancy, but the molecular events involved in the development and progression of EC remain unclear. This study aimed to investigate the role of DNA methyltransferase 1 (DNMT1), a member of DNA methyltransferases, in EC. AN3CA cells were transfected with DNMT1 siRNA. The proliferation, cell cycle, and apoptosis of AN3CA cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The expression of related genes was detected by polymerase chain reaction and Western blot analysis. Knockdown of DNMT1 inhibited the proliferation, induced apoptosis, and G0/G1 phase arrest of AN3CA cells. Furthermore, knockdown of DNMT1 upregulated the expression of nuclear factor kappa-B-inhibitor alpha (NF-κBIA) and Bax and downregulated the expression of Bcl-2 and CCND1/2 in AN3CA cells. In conclusion, this study provides the first evidence that knockdown of DNMT1 affects the expression of cell cycle- and apoptosis-associated proteins in EC cells, suggesting the potential of DNMT1 in EC therapy.

  2. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1

    PubMed Central

    Guo, Yang; Zhang, Peidong; Zhang, Hongtian; Zhang, Peng; Xu, Ruxiang

    2017-01-01

    Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas. PMID:28243115

  3. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    PubMed Central

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  4. Differential sensitivity of a mouse myeloid leukemia cell line and normal mouse bone marrow cells to X-ray-induced chromosome aberrations

    SciTech Connect

    Aardema, M.J.; Au, W.W.; Hand, R.E. Jr.; Preston, R.J.

    1985-11-01

    Cell line ML-1 was established from a myelogenous leukemia of an RFM mouse. The ML-1 cells and in vitro normal mouse bone marrow cells were analyzed to determine if there was a differential sensitivity to X-ray-induced chromosome aberrations in G1 cells and/or differences in postirradiation cell cycle progression. Cells identified as being in G1 at the time of irradiation by their staining pattern after replication in 5-bromodeoxyuridine were analyzed for all types of chromosomal aberrations following X-ray doses of 0.5, 1.0, 1.5, and 2.0 Gy. ML-1 cells showed a greater sensitivity to the induction of both chromosome-type aberrations and chromatid-type aberrations compared to normal mouse bone marrow cells, which only contained chromosome-type aberrations. The presence of chromatid-type aberrations in the ML-1 cells and not normal bone marrow cells suggested a differential progression through the cell cycle for the two cell types after irradiation. Mitotic index and flow cytometric analyses were performed and showed that both cell types have a delay in progression from G2 into mitosis, but only the normal mouse bone marrow cells have a delay in progression from G1 into S, as well as delayed progression through the S phase following X-irradiation. These results indicate that the ML-1 leukemia cells have an increased radiosensitivity. These same characteristics have been observed in ataxia telangiectasia cells and may well represent a general feature of cells with increased radiosensitivity.

  5. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  6. Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1

    PubMed Central

    Xie, Jianling; Wang, Hua; Xie, Chanlu; Lee, C.Soon; Fahey, Paul; Dong, Qihan; Xu, Hongxi

    2016-01-01

    Hepatocellular carcinoma (HCC) is an aggressive malignancy and the 5-year survival rate of advanced HCC is < 10%. Guttiferone K (GUTK) isolated from the Garcinia genus inhibited HCC cells migration and invasion in vitro and metastasis in vivo without apparent toxicity. Proteomic analysis revealed that actin-binding protein profilin 1 (PFN1) was markedly increased in the presence of GUTK. Over-expression of PFN1 mimicked the effect of GUTK on HCC cell motility and metastasis. The effect of GUTK on cell motility was diminished when PFN1 was over-expressed or silenced. Over-expression of PFN1 or incubation with GUTK decreased F-actin levels and the expression of proteins involved in actin nucleation, branching and polymerization. Moreover, a reduction of PFN1 protein levels was common in advanced human HCC and associated with poor survival rate. In conclusion, GUTK effectively suppresses the motility and metastasis of HCC cells mainly by restoration of aberrantly reduced PFN1 protein expression. PMID:27494863

  7. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection.

    PubMed

    González, Andrea E; Lay, Margarita K; Jara, Evelyn L; Espinoza, Janyra A; Gómez, Roberto S; Soto, Jorge; Rivera, Claudia A; Abarca, Katia; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2016-12-02

    Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.

  8. Cell proliferation in type C gastritis affecting the intact stomach

    PubMed Central

    Mac, D; Willis, P; Prescott, R; Lamonby, S; Lynch, D

    2000-01-01

    Aims—Type C gastritis caused by bile reflux has a characteristic appearance, similar to that seen in other forms of chemical gastritis, such as those associated with NSAIDs or alcohol. An increase in mucosal cell proliferation increases the likelihood of a neoplastic clone of epithelial cells emerging, particularly where there is chronic epithelial injury associated with bile reflux. It has been shown previously that type C gastritis is associated with increased cell proliferation in the postsurgical stomach. The aim of this study was to determine cell proliferation in type C gastritis caused by bile reflux affecting the intact stomach. Methods—Specimens from 15 patients with a histological diagnosis of type C gastritis on antral biopsy were obtained from the pathology archives between 1994 and 1997. A control group of nine normal antral biopsies was also selected and all underwent MIB-1 immunostaining. The gastric glands were divided into three zones (zone 1, gastric pit; zone 2, isthmus; and zone 3, gland base) and the numbers of positively staining nuclei for 500 epithelial cell nuclei were counted in each zone to determine the percentage labelling index (LI%). Results—Cell proliferation was significantly higher in all three zones of the gastric glands with type C gastritis compared with controls as follows: zone 1, median LI% in type C gastritis 64.7 (range, 7.8–99.2), controls 4.7 (range, 2.0–11.3); zone 2, median LI% in type C gastritis 94.7 (range, 28.8–98.7), controls 40.2 (range, 23.1–70.3); and zone 3, median LI% in type C gastritis 20.0 (range, 1.3–96.0), controls 2.6 (range, 0.9–8.7). Conclusions—Bile reflux is thought to act as a promoter of gastric carcinogenesis in the postsurgical stomach. The same may be true in the intact stomach. Key Words: cell proliferation • epithelial kinetics • chemical gastritis PMID:11064674

  9. Cell proliferation during the early stages of human eye development.

    PubMed

    Bozanić, Darka; Saraga-Babić, Mirna

    2004-08-01

    The distribution as well as the ultrastructural and biochemical characteristics of proliferating cells in the human eye were investigated in five conceptuses of 5-9 postovulatory weeks, using morphological techniques and Ki-67 immunostaining. The Ki-67 nuclear protein was used as a proliferation marker because of its expression in all phases of the cell cycle except the resting phase (G0). The labelling indices of Ki-67-positive cells were analysed by means of the Kruskal-Wallis ANOVA test and the Wilcoxon matched-pairs test. In the 5th week, mitotic cells were the most numerous between the two layers of the optic cup, the optic cup and stalk, and between the lens pit and the surface ectoderm. During the 6th week, cells were observed in the lens epithelium covering the whole cavity of the lens vesicle as well as in the neuroblast zone and the pigmented epithelium of the retina. At later stages (7th-9th weeks), Ki-67-positive cells were restricted to the anterior lens epithelium, the outer neuroblast zone, and the pigmented retina. Throughout all stages examined, mitotic figures were found lying exclusively adjacent to the intraretinal space. Early in the lens pit, they were confined to the free epithelial surface, and later were facing the cavity of the lens vesicle. The proliferative activity was the most intensive in the 6th week, whereas it decreased significantly in the later stages. Additionally, when proliferative activities were compared, the peripheral retina appeared to be less mature than the central before the 9th week. In the earliest analysed stage, cell proliferation might be associated with the sculpturing of the optic cup and stalk, the cornea, and the lens. In the 6th week, the most intensive proliferation seems to be involved not only in the further morphogenesis of the optic cup and the lens vesicle but also in the retinal neurogenesis. At later stages, the decreased proliferation might participate in the neurogenesis of the outer neuroblast zone

  10. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    PubMed

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal.

  11. Modification of granulocytopoietic cell proliferation by granulocyte extracts.

    PubMed

    Lord, B I

    1975-07-31

    Saline extracts of mature granulocytes have been partially purified by an ultrafiltration technique. The fraction in the 500-2000 daltons molecular weight range was retained and tested in a variety of experimental systems. Comparable fractions of erythrocyte and lymphocyte extracts were used for control purposes. Measurement of the structuredness of the cytoplasmic matrix (SCM) of cells is shown to be a very sensitive measure of the effects of the extract. Specific and reversible increases in SCM of proliferating granulocytic cell populations indicate changes compatible with reduced proliferation and these are confirmed by autoradiographic observations following tritiated thymidine labelling. Repeated labelling experiments to obtain the rate of flow of cells through the cycle gave a mean cell cycle time of 15 hrs in the controls but in animals treated with the granulocyte extract this was increased to about 30 hrs. The duration of DNA synthesis was increased slightly but there was no effect on G2 as measured by the stathmokinetic index method. Cell production in developing spleen colonies was reduced by repeated doses of the extract over a period of 4 days. Approximately two cell doublings were lost during this period due to the prolonged cell cycle.

  12. Aging and immortality in a cell proliferation model.

    PubMed

    Antal, T; Blagoev, K B; Trugman, S A; Redner, S

    2007-10-07

    We investigate a model of cell division in which the length of telomeres within a cell regulates its proliferative potential. At each division, telomeres undergo a systematic length decrease as well as a superimposed fluctuation due to exchange of telomere DNA between the two daughter cells. A cell becomes senescent when one or more of its telomeres become shorter than a critical length. We map this telomere dynamics onto a biased branching-diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. Using first-passage ideas, we find a phase transition between finite lifetime and immortality (infinite proliferation) of the cell population as a function of the influence of telomere shortening, fluctuations, and cell division.

  13. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes.

    PubMed

    Nakano, M; Kodama, Y; Ohtaki, K; Itoh, M; Awa, A A; Cologne, J; Kusunoki, Y; Nakamura, N

    2004-03-01

    Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.

  14. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    PubMed

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  15. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  16. Oxytocin and oxytocin receptors in cancer cells and proliferation.

    PubMed

    Cassoni, P; Sapino, A; Marrocco, T; Chini, B; Bussolati, G

    2004-04-01

    The hypothalamic nonapeptide oxytocin plays a crucial role in many reproductive and behavioural functions. However, in recent years, an additional new role for oxytocin has been identified in neoplastic pathology. In tumours, oxytocin acts as a growth regulator, through the activation of a specific G-coupled transmembrane receptor, the oxytocin receptor. In vitro, oxytocin inhibits proliferation of neoplastic cells of either epithelial (mammary and endometrial), nervous or bone origin, all expressing oxytocin receptor. Furthermore, an oxytocin growth-inhibiting effect was also tested and confirmed in vivo in mouse and rat mammary carcinomas. In neoplastic cells derived from two additional oxytocin target tissues, trophoblast and endothelium, oxytocin was found to promote cell proliferation, an effect opposite to that previously described in all other neoplastic oxytocin-responsive cells. The signal transduction pathways coupled to the biological effects of oxytocin are different in oxytocin growth-inhibited or growth-stimulated cells, and may depend on the membrane localization of the oxytocin receptor itself. The inhibitory effect of oxytocin is apparently mediated by activation of the cAMP-protein kinase A pathway, a nonconventional oxytocin signalling pathway, whereas the mitogenic effect is coupled to the increase of intracellular [Ca(2+)] and tyrosine phosphorylation, 'classical' oxytocin transducers. Moreover, the oxytocin receptor localization in lipid rafts enriched in caveolin-1 turns the inhibition of cell growth into a proliferative response, eliciting different epidermal growth factor receptor/mitogen-activated protein kinase activation patterns. This unexpected role of oxytocin (and oxytocin analogues) in regulating cell proliferation, as well as the widespread expression of oxytocin receptors in neoplastic tissues of different origin, opens up new perspectives on the biological role of the oxytocin-oxytocin receptor system in cancer.

  17. Cell proliferation and plant development under novel altered gravity environments.

    PubMed

    Herranz, R; Medina, F J

    2014-01-01

    Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in

  18. Selective inhibitors of aurora kinases inhibit proliferation, reduce cell viability and impair cell cycle progression in papillary thyroid carcinoma cells.

    PubMed

    Baldini, E; Tuccilli, C; Prinzi, N; Sorrenti, S; Antonelli, A; Fallahi, P; Mian, C; Barollo, S; Catania, A; Morrone, S; Tartaglia, F; Mascagni, D; Coccaro, C; Pepe, M; Filippini, A; D'Armiento, M; Ulisse, S

    2015-01-01

    The three members of the Aurora kinase family, Aurora-A, -B and -C, regulate several aspects of the mitotic process, and their aberrant expression and/or function causes mitotic abnormalities leading either to cell death or aneuploidy. They are found overexpressed in several human malignancies, including the papillary thyroid carcinoma (PTC). In the present study, we sought to establish whether Aurora kinase inhibition could be of any therapeutic value in the treatment of aggressive forms of PTC, enduring to radioactive iodide (RAI) ablation. To this end, the effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on 3 human PTC cell lines expressing either wild-type (K1 and TPC1) or mutant p53 (BCPAP). The two inhibitors were capable of reducing cell proliferation in a time- and dose-dependent manner, with IC₅₀ comprised between 65.4 and 114.9 nM for MLN8237, and between 26.6 and 484.6 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited Aurora-B phosphorylation of histone H3 on Ser10, however, it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Time-lapse videomicroscopy evidenced that both inhibitors prevented the completion of cytokinesis, and cytofluorimetric analysis showed accumulation of cells in G2/M phase and/or polyploidy. Apoptosis was induced in all the cells by both inhibitors independently from the p53 status. In conclusion, in the present preclinical study MLN8237 and AZD1152 have emerged as promising drug candidates for RAI-insensitive PTC.

  19. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  20. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation.

    PubMed

    Zolea, Fabiana; Biamonte, Flavia; Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism.

  1. Myelomatous plasma cells display an aberrant gene expression pattern similar to that observed in normal memory B cells

    PubMed Central

    Báez, Alicia; Piruat, José I; Caballero-Velázquez, Teresa; Sánchez-Abarca, Luís I; Álvarez-Laderas, Isabel; Barbado, M Victoria; García-Guerrero, Estefanía; Millán-Uclés, África; Martín-Sánchez, Jesús; Medrano, Mayte; Pérez-Simón, José Antonio

    2015-01-01

    Memory B cells (MBCs) remain in a quiescent state for years, expressing pro-survival and anti-apoptotic factors while repressing cell proliferation and activation genes. During their differentiation into plasma cells (PCs), their expression pattern is reversed, with a higher expression of genes related to cell proliferation and activation, and a lower expression of pro-survival genes. To determine whether myelomatous PCs (mPCs) share characteristics with normal PCs and MBCs and to identify genes involved in the pathophysiology of multiple myeloma (MM), we compared gene expression patterns in these three cell sub-types. We observed that mPCs had features intermediate between those of MBCs and normal PCs, and identified 3455 genes differentially expressed in mPCs relative to normal PCs but with a similar expression pattern to that in MBCs. Most of these genes are involved in cell death and survival, cell growth and proliferation and protein synthesis. According to our findings, mPCs have a gene expression pattern closer to a MBC than a PC with a high expression of genes involved in cell survival. These genes should be physiologically inactivated in the transit from MBC to PC, but remain overexpressed in mPCs and thus may play a role in the pathophysiology of the disease. PMID:25628947

  2. Cancer cell proliferation is inhibited by specific modulation frequencies

    PubMed Central

    Zimmerman, J W; Pennison, M J; Brezovich, I; Yi, N; Yang, C T; Ramaker, R; Absher, D; Myers, R M; Kuster, N; Costa, F P; Barbault, A; Pasche, B

    2012-01-01

    Background: There is clinical evidence that very low and safe levels of amplitude-modulated electromagnetic fields administered via an intrabuccal spoon-shaped probe may elicit therapeutic responses in patients with cancer. However, there is no known mechanism explaining the anti-proliferative effect of very low intensity electromagnetic fields. Methods: To understand the mechanism of this novel approach, hepatocellular carcinoma (HCC) cells were exposed to 27.12 MHz radiofrequency electromagnetic fields using in vitro exposure systems designed to replicate in vivo conditions. Cancer cells were exposed to tumour-specific modulation frequencies, previously identified by biofeedback methods in patients with a diagnosis of cancer. Control modulation frequencies consisted of randomly chosen modulation frequencies within the same 100 Hz–21 kHz range as cancer-specific frequencies. Results: The growth of HCC and breast cancer cells was significantly decreased by HCC-specific and breast cancer-specific modulation frequencies, respectively. However, the same frequencies did not affect proliferation of nonmalignant hepatocytes or breast epithelial cells. Inhibition of HCC cell proliferation was associated with downregulation of XCL2 and PLP2. Furthermore, HCC-specific modulation frequencies disrupted the mitotic spindle. Conclusion: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology. PMID:22134506

  3. Iron chelators target both proliferating and quiescent cancer cells

    PubMed Central

    Fryknäs, Mårten; Zhang, Xiaonan; Bremberg, Ulf; Senkowski, Wojciech; Olofsson, Maria Hägg; Brandt, Peter; Persson, Ingmar; D’Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Schughart, Leoni Kunz; Linder, Stig; Larsson, Rolf

    2016-01-01

    Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells. PMID:27924826

  4. Serglycin in Quiescent and Proliferating Primary Endothelial Cells

    PubMed Central

    Reine, Trine M.; Vuong, Tram T.; Rutkovskiy, Arkady; Meen, Astri J.; Vaage, Jarle; Jenssen, Trond G.; Kolset, Svein O.

    2015-01-01

    Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development. PMID:26694746

  5. SerpinB1 Promotes Pancreatic β Cell Proliferation

    SciTech Connect

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  6. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.

    PubMed

    Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M

    2007-05-01

    Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.

  7. Mobile phone radiation alters proliferation of hepatocarcinoma cells.

    PubMed

    Ozgur, Elcin; Guler, Goknur; Kismali, Gorkem; Seyhan, Nesrin

    2014-11-01

    This study investigated the effects of intermittent exposure (15 min on, 15 min off for 1, 2, 3, or 4 h, at a specific absorption rate of 2 W/kg) to enhanced data rates for global system for mobile communication evolution-modulated radiofrequency radiation (RFR) at 900- and 1,800-MHz frequencies on the viability of the Hepatocarcinoma cells (Hep G2). Hep G2 cell proliferation was measured by a colorimetric assay based on the cleavage of the tetrazolium salt WST-1 by mitochondrial dehydrogenases in viable cells. Cell injury was evaluated by analyzing the levels of lactate dehydrogenase (LDH) and glucose released from lysed cells into the culture medium. Morphological observation of the nuclei was carried out by 4',6-diamidino-2-phenylindole (DAPI) staining using fluorescence microscopy. In addition, TUNEL assay was performed to confirm apoptotic cell death. It was observed that cell viability, correlated with the LDH and glucose levels, changed according to the frequency and duration of RFR exposure. Four-hour exposure produced more pronounced effects than the other exposure durations. 1,800-MHz RFR had a larger impact on cell viability and Hep G2 injury than the RFR at 900 MHz. Morphological observations also supported the biochemical results indicating that most of the cells showed irregular nuclei pattern determined by using the DAPI staining, as well as TUNEL assay which shows DNA damage especially in the cells after 4 h of exposure to 1,800-MHz RFR. Our results indicate that the applications of 900- and 1,800-MHz (2 W/kg) RFR cause to decrease in the proliferation of the Hep G2 cells after 4 h of exposure. Further studies will be conducted on other frequency bands of RFR and longer duration of exposure.

  8. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells

    PubMed Central

    Baykal, Ahmet T.; Jain, Mohit R.

    2009-01-01

    Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. PMID:19774105

  9. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    PubMed

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  10. Alkylindole-sensitive receptors modulate microglial cell migration and proliferation

    PubMed Central

    Fung, Susan; Cherry, Allison E.; Xu, Cong; Stella, Nephi

    2015-01-01

    Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2. Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process. PMID:25914169

  11. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    PubMed Central

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  12. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells.

    PubMed

    Brockhausen, I; Yang, J M; Burchell, J; Whitehouse, C; Taylor-Papadimitriou, J

    1995-10-15

    The product of the MUC1 gene, the polymorphic epithelial mucin (PEM) is aberrantly glycosylated in breast and other carcinomas, resulting in exposure of normally cryptic peptide epitopes. PEM expressed by breast cancer cells contains more sialylated O-glycans and has a lower GlcNAc content than that expressed by normal cells. The exposure of peptide epitopes is thus thought to be due to the sugar side chains being shorter on the tumour-associated mucin. To investigate possible mechanisms underlying the different pattern of glycosylation in breast cancer cells, we analysed the pathways involved in the biosynthesis of O-glycan chains of mucins in normal and cancerous mammary epithelial cells. An immortalized mammary epithelial cells line originating from normal human milk. MTSV1-7, and three human breast cancer cell lines, BT20, MCF-7 and T47D, were studied. Glycosyltransferase activities assembling, elongating and terminating O-glycan core-1 [Gal beta 1-3GalNAc alpha-R] and core-2 [GlcNac beta 1-6 (Gal beta 1-3) GalNAc alpha-R] were present in the normal mammary cell line. Many of the glycosyltransferase activities were also expressed at variable levels in breast cancer cells. However, a sialyltransferase activity (CMP-sialic acid Gal beta 1-3GalNAc alpha 3-sialyltransferase) was increased several fold in all three cancer cell lines. Moreover, mammary cancer cell lines BT20 and T47D have lost the ability to synthesize core-2, as shown by the lack of UDP-GlcNAc: Gal beta 1-3GalNAc (GlcNAc to GalNAc) beta 6-GlcNAc-transferase activity, which corresponded to the absence of the mRNA transcript. However, MCF-7 breast cancer cells expressed this enzyme. Thus, the mechanism for the exposure of peptide epitopes in BT20 and T47D cells is proposed to be the loss of core-2 branching leading to shorter, sialylated O-glycan chains. A different mechanism is proposed for MCF-7 breast cancer cells.

  13. Association between SET expression and glioblastoma cell apoptosis and proliferation.

    PubMed

    He, Kunyan; Shi, Lihong; Jiang, Tingting; Li, Qiang; Chen, Yao; Meng, Chuan

    2016-10-01

    Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG(-SET) and U251(-SET) cells, respectively. In

  14. In Vitro Proliferation of Porcine Pancreatic Islet Cells for β-Cell Therapy Applications

    PubMed Central

    Niu, Guoguang; McQuilling, John P.; Zhou, Yu; Opara, Emmanuel C.; Orlando, Giuseppe

    2016-01-01

    β-Cell replacement through transplantation is the only curative treatment to establish a long-term stable euglycemia in diabetic patients. Owing to the shortage of donor tissue, attempts are being made to develop alternative sources of insulin-secreting cells. Stem cells differentiation and reprograming as well as isolating pancreatic progenitors from different sources are some examples; however, no approach has yet yielded a clinically relevant solution. Dissociated islet cells that are cultured in cell numbers by in vitro proliferation provide a promising platform for redifferentiation towards β-cells phenotype. In this study, we cultured islet-derived cells in vitro and examined the expression of β-cell genes during the proliferation. Islets were isolated from porcine pancreases and enzymatically digested to dissociate the component cells. The cells proliferated well in tissue culture plates and were subcultured for no more than 5 passages. Only 10% of insulin expression, as measured by PCR, was preserved in each passage. High glucose media enhanced insulin expression by about 4–18 fold, suggesting a glucose-dependent effect in the proliferated islet-derived cells. The islet-derived cells also expressed other pancreatic genes such as Pdx1, NeuroD, glucagon, and somatostatin. Taken together, these results indicate that pancreatic islet-derived cells, proliferated in vitro, retained the expression capacity for key pancreatic genes, thus suggesting that the cells may be redifferentiated into insulin-secreting β-like cells. PMID:28050568

  15. A selective inhibitor of cell proliferation from normal serum.

    PubMed Central

    Harrington, W N; Godman, G C

    1980-01-01

    A factor in normal serum that selectively and reversibly inhibits proliferation of cells in culture has been enriched 160-fold from calf serum by sequential ammonium sulfate precipitation, gel filtration, and lectin-affinity chromatography. DNA synthesis of normal (but not transformed) rat hepatocytes, human lymphoblast lines, and mitogen-stimulated murine spleen cells is inhibited by greater than 90%, and Vero, murine myeloma, MELC, and a human colon carcinoma cell line to a lesser extent. Growth of other cell lines tested was not affected. Responsive cells are arrested apparently in G1 by this inhibitor, the effect of which is maximal by 24 hr and is spontaneously reversible thereafter unless it is renewed. The active fraction is a protein that migrates with the alpha 2-globulins; it is not a lipoprotein, and it is of high apparent molecular weight. PMID:6928635

  16. Overexpression of Dicer as a Result of Reduced let-7 microRNA Levels Contributes to Increased Cell Proliferation of Oral Cancer Cells

    PubMed Central

    Jakymiw, Andrew; Patel, Rushi S.; Deming, Natasha; Bhattacharyya, Indraneel; Shah, Priya; Lamont, Richard J.; Stewart, Carol M.; Cohen, Donald M.; Chan, Edward K.L.

    2010-01-01

    Recent reports have demonstrated that Dicer, an RNase III endonuclease required for microRNA (miRNA) maturation, is aberrantly expressed in different types of cancer. Furthermore, Dicer has been reported to be regulated by the let-7 family of miRNA genes. We hypothesize that Dicer is aberrantly expressed in oral cancer cells due to altered expressions of let-7, and that Dicer contributes to the development and progression of the disease. Western blot examination of Dicer protein levels in four head and neck squamous cell carcinoma (HNSCC) cell lines, including two oral cancer cell lines, demonstrated that Dicer had between 4 to 24 fold higher expression levels when compared to normal human primary gingival epithelial cells. Furthermore, five of six oral cancer tissues analyzed by indirect immunofluorescence had increased Dicer protein expression, compared to normal gingival epithelial tissue. The Dicer mRNA levels were not found to correlate well with protein expression in the HNSCC cell lines, suggesting that Dicer protein expression was post-transcriptionally regulated. Analysis of let-7a and let-7b levels in HNSCC cell lines by real-time PCR demonstrated that let-7b, but not let-7a, was significantly reduced in the HNSCC cell lines compared to control cells. Lastly, transfection of oral cancer cells with chemically synthesized let-7b and small interfering RNAs targeting Dicer significantly inhibited cell proliferation up to 83% and >100%, respectively, as early as three days post-transfection. Together, these data demonstrate that elevated expression levels of Dicer in oral cancer cells correlate with down-regulation of let-7b and increased cell proliferation. PMID:20232482

  17. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background

    PubMed Central

    2017-01-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. PMID:28288157

  18. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background.

    PubMed

    Vibert, Julien; Thomas-Vaslin, Véronique

    2017-03-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific "signature" that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures.

  19. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to High and Low LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Wilkins, R.; Saganti, P. B.; Gersey, B.; Cucinotta, F. A.; Wu, H.

    2006-01-01

    Energetic heavy ions pose a health risk to astronauts in extended ISS and future Mars missions. High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human epithelial cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells (CH184B5F5/M10) were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory, high energy neutron at the Los Alamos Nuclear Science Center (LANSCE) or Cs-137-gamma radiation source at the University of Texas, MD Anderson Cancer Center. After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The results of the mBAND study showed a higher ratio of inversion involved with interchromosomal exchange in heavy ions compared to -ray irradiation. Analysis of chromosome aberrations using mBAND has the potential to provide useful information on human cell response to space-like radiation.

  20. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma.

    PubMed

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-12-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required.

  1. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma

    PubMed Central

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-01-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required. PMID:28105237

  2. An essential role for Gα(i2) in Smoothened-stimulated epithelial cell proliferation in the mammary gland.

    PubMed

    Villanueva, Hugo; Visbal, Adriana P; Obeid, Nadine F; Ta, Andrew Q; Faruki, Adeel A; Wu, Meng-Fen; Hilsenbeck, Susan G; Shaw, Chad A; Yu, Peng; Plummer, Nicholas W; Birnbaumer, Lutz; Lewis, Michael T

    2015-09-15

    Hedgehog (Hh) signaling is critical for organogenesis, tissue homeostasis, and stem cell maintenance. The gene encoding Smoothened (SMO), the primary effector of Hh signaling, is expressed aberrantly in human breast cancer, as well as in other cancers. In mice that express a constitutively active form of SMO that does not require Hh stimulation in mammary glands, the cells near the transgenic cells proliferate and participate in hyperplasia formation. Although SMO is a seven-transmembrane receptor like G protein-coupled receptors (GPCRs), SMO-mediated activation of the Gli family of transcription factors is not known to involve G proteins. However, data from Drosophila and mammalian cell lines indicate that SMO functions as a GPCR that couples to heterotrimeric G proteins of the pertussis toxin (PTX)-sensitive Gαi class. Using genetically modified mice, we demonstrated that SMO signaling through G proteins occurred in the mammary gland in vivo. SMO-induced stimulation of proliferation was PTX-sensitive and required Gαi2, but not Gαi1, Gαi3, or activation of Gli1 or Gli2. Our findings show that activated SMO functions as a GPCR to stimulate proliferation in vivo, a finding that may have clinical importance because most SMO-targeted agents have been selected based largely on their ability to block Gli-mediated transcription.

  3. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  4. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea

    PubMed Central

    Iyer, Harini; Collins, James J.; Newmark, Phillip A.

    2016-01-01

    Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis. PMID:27304889

  5. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  6. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  7. Cell proliferation and migration in silk fibroin 3D scaffolds.

    PubMed

    Mandal, Biman B; Kundu, Subhas C

    2009-05-01

    Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200-250microm diameter were formed by slow cooling at temperatures of -20 and -80 degrees C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at -196 degrees C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.

  8. Zinc signals promote IL-2-dependent proliferation of T cells.

    PubMed

    Kaltenberg, Jennifer; Plum, Laura M; Ober-Blöbaum, Julia L; Hönscheid, Andrea; Rink, Lothar; Haase, Hajo

    2010-05-01

    Zinc signals, i.e. a change of the intracellular concentration of free zinc ions in response to receptor stimulation, are involved in signal transduction in several immune cells. Here, the role of zinc signals in T-cell activation by IL-2 was investigated in the murine cytotoxic T-cell line CTLL-2 and in primary human T cells. Measurements with the fluorescent dyes FluoZin-3 and Zinquin showed that zinc is released from lysosomes into the cytosol in response to stimulation of the IL-2-receptor. Activation of the ERK-pathway was blocked by chelation of free zinc with N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, whereas zinc was not required for STAT5 phosphorylation. In addition, the key signaling molecules MEK and ERK were activated in response to elevated free intracellular zinc, induced by incubation with zinc and the ionophore pyrithione. Downstream of ERK activation, ERK-specific gene expression of c-fos and IL-2-induced proliferation was found to depend on zinc. Further experiments indicated that inhibition of MEK and ERK-dephosphorylating protein phosphatases is the molecular mechanism for the influence of zinc on this pathway. In conclusion, an increase of cytoplasmic free zinc is required for IL-2-induced ERK signaling and proliferation of T cells.

  9. Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation

    PubMed Central

    Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.

    2016-01-01

    Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414

  10. Biodiesel from soybean promotes cell proliferation in vitro.

    PubMed

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses.

  11. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    PubMed

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  12. Nitric oxide inhibits irreversibly P815 cell proliferation: involvement of potassium channels.

    PubMed

    Costa, R S A; Assreuy, J

    2002-12-01

    Nitric oxide (NO) has been shown to inhibit both normal and cancer cell proliferation. Potassium channels are involved in cell proliferation and, as NO activates these channels, we investigated the effect of NO on the proliferation of murine mastocytoma cell lines and the putative involvement of potassium channels. NO (in the form of NO donors) caused dose-dependent inhibition of cell proliferation in the P815 cell line inducing growth arrest in the mitosis phase. Incubation with NO donor for 4 or 24 h had a similar inhibitory effect on cell proliferation, indicating that this effect is irreversible. The inhibitory effect of NO was completely prevented by the blockade of voltage- and calcium-dependent potassium channels, but not by blockade of ATP-dependent channels. NO inhibition of cell proliferation was unaffected by guanylate cyclase and by cytoskeleton disruptors. Therefore, NO inhibits cell proliferation irreversibly via a potassium channel-dependent but guanylate cyclase-independent pathway in murine mastocytoma cells.

  13. Cell proliferation contributes to PNEC hyperplasia after acute airway injury.

    PubMed

    Stevens, T P; McBride, J T; Peake, J L; Pinkerton, K E; Stripp, B R

    1997-03-01

    Pulmonary neuroendocrine cells (PNECs) are airway epithelial cells that are capable of secreting a variety of neuropeptides. PNECs are scattered throughout the bronchial tree either as individual cells or clusters of cells termed neuroepithelial bodies (NEBs). PNECs and their secretory peptides have been considered to play a role in fetal lung development. Although the normal physiological function of PNECs and neuropeptides in normal adult lungs and in repair from lung injury is not known, PNEC hyperplasia has been associated with chronic lung diseases, such as bronchopulmonary dysplasia, and with chronic exposures, such as hypoxia, tobacco smoke, nitrosamines, and ozone. To evaluate changes in PNEC number and distribution after acute airway injury, FVB/n mice were treated with either naphthalene or vehicle. Naphthalene is an aromatic hydrocarbon that, at the dose used in this study, selectively destroys nonciliated bronchial epithelial cells (Clara cells) through cytochrome P-450-mediated metabolic activation into cytotoxic epoxides. PNECs were identified by immunohistochemical analysis of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR). Proliferating cells were marked with [(3)H]thymidine incorporation. Acute naphthalene toxicity results in PNEC hyperplasia that is detectable after 5 days of recovery. PNEC hyperplasia is characterized by increased numbers of NEBs without significant changes in the number of isolated PNECs and by increased [(3)H]thymidine labeling of CGRP-IR cells. These data show that cell proliferation contributes to PNEC hyperplasia after acute airway injury and suggest that PNECs may be capable of more rapidly increasing their number in response to injury than previously recognized.

  14. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells.

    PubMed

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C; San Miguel, Jesus F; Orfao, Alberto

    2013-02-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138(+) microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥ 98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  15. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells

    PubMed Central

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C.; San Miguel, Jesus F.; Orfao, Alberto

    2013-01-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  16. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    PubMed Central

    Vossen, J H; Müller, W H; Lipke, P N; Klis, F M

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structures. The majority of the cell wall protein precursors that eventually left the ER were not covalently incorporated into the cell wall but were secreted into the growth medium. Despite the inefficient incorporation of cell wall proteins, there was no net effect on the protein level in the cell wall. It is postulated that the availability of GPI-dependent cell wall proteins determines the rate of cell wall construction and limits growth rate. PMID:9079905

  17. TORC1 is required to balance cell proliferation and cell death in planarians.

    PubMed

    Tu, Kimberly C; Pearson, Bret J; Sánchez Alvarado, Alejandro

    2012-05-15

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion.

  18. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  19. Induction of proliferation in vitro of resting human natural killer cells

    SciTech Connect

    London, L.

    1986-01-01

    Experiments examined the cellular and humoral factors necessary to induce proliferation of purified NK cells in vitro and analyzed the phenotypic characteristics of these proliferating cells. The authors experiments demonstrated that NK cells do not proliferate in response to typical T cell mitogens or to allogeneic stimulation. However, NK cells are readily induced to proliferate in response to either natural or recombinant IL-2. The proliferative response of NK cells to IL-2 is enhanced in the presence of irradiated B lymphoblastoid ell lines. Proliferating NK cells maintain the expression of surface markers characteristic of freshly isolated NK cells which newly expressing surface activation antigens including the IL-2 and transferric receptors and the HLA-DR antigen. The majority of NK cells initiate proliferation in response to IL-2. Greater than 50 U/ml of IL-2 is necessary to induce maximal tritiated thymidine (/sup 3/H-TdR) incorporation by NK cells, and the interaction of IL-2 with the Tac IL-2 receptor is required for the maintenance of NK cell proliferation. NK cells do not proliferate in response to irradiated Daudi cells alone, which, in the presence of IL-2, may act by maintaining continuous proliferation of the cells originally responsive to IL-2. Unlike NK cells, the authors have shown that only a minor subset of T cells proliferate in response to IL-2 alone.

  20. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells.

    PubMed

    Wan, Jing; Shi, Fang; Xu, Zhanzhan; Zhao, Min

    2015-12-01

    Eukaryotic initiation factor 4E (eIF4E) plays an important role in cap-dependent translation. The overexpression of eIF4E gene has been found in a variety of human malignancies. In this study, we attempted to identify the potential effects of eIF4E and explore the possibility of eIF4E as a therapeutic target for the treatment of human ovarian cancer. First the activation of eIF4E protein was detected with m7-GTP cap binding assays in ovarian cancer and control cells. Next, the eIF4E-shRNA expression plasmids were used to specifically inhibit eIF4E activity in ovarian cancer cells line A2780 and C200. The effects of knockdown eIF4E gene on cell proliferation, migration and invasion were investigated in vitro. Moreover, the changes of cell cycle and apoptosis of ovarian cancer cells were detected by flow cytometry. Finally, we investigated the effect of knockdown of eIF4E on the chemosensitivity of ovarian cancer cells to cisplatin in vitro. Our results show there is elevated activation of eIF4E in ovarian cancer cells compared with normal human ovarian epithelial cell line. The results of BrdU incorporation and FCM assay indicate that knockdown of eIF4E efficiently suppressed cell growth and induce cell cycle arrest in G1 phase and subsequent apoptosis in ovarian cancer cells. From Transwell assay analysis, knockdown eIF4E significantly decrease cellular migration and invasion of ovarian cancer cells. We also confirmed that knockdown eIF4E could synergistically enhance the cytotoxicity effects of cisplatin to cancer cells and sensitized cisplatin-resistant C200 cells in vitro. This study demonstrates that the activation of eIF4E gene is an essential component of the malignant phenotype in ovarian cancer, and aberration of eIF4E expression is associated with proliferation, migration, invasion and chemosensitivity to cisplatin in ovarian cancer cells. Knockdown eIF4E gene can be used as a potential therapeutic target for the treatment of human ovarian cancer.

  1. Conditional telomerase induction causes proliferation of hair follicle stem cells

    PubMed Central

    Sarin, Kavita Y.; Cheung, Peggie; Gilison, Daniel; Lee, Eunice; Tennen, Ruth I.; Wang, Estee; Artandi, Maja K.; Oro, Anthony E.; Artandi, Steven E.

    2005-01-01

    TERT, the protein component of telomerase1,2, serves to maintain telomere function through the de novo addition of telomere repeats to chromosome ends and is reactivated in 90% of human cancers. In normal tissues, TERT is expressed in stem cells and in progenitor cells3, but its role in these compartments is not fully understood. Here, we show that conditional transgenic induction of TERT in mouse skin epithelium causes a rapid transition from telogen, the resting phase of the hair follicle cycle, to anagen, the active phase, thereby facilitating robust hair growth. TERT overexpression promotes this developmental transition by causing proliferation of quiescent, multipotent stem cells in the hair follicle bulge region. This new function for TERT does not require the telomerase RNA component (TERC), which encodes the template for telomere addition, and therefore operates through a novel mechanism independent of its activity in synthesizing telomere repeats. These data indicate that, in addition to its established role in extending telomeres, TERT can promote proliferation of resting stem cells through a non-canonical pathway. PMID:16107853

  2. Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis

    PubMed Central

    Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio

    2014-01-01

    Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152

  3. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  4. NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia.

    PubMed

    D'Amico, Agata Grazia; Scuderi, Soraya; Maugeri, Grazia; Cavallaro, Sebastiano; Drago, Filippo; D'Agata, Velia

    2014-11-01

    Hyperglycemia has been identified as a risk factor responsible for micro- and macrovascular complications in diabetes. NAP (Davunetide) is a peptide whose neuroprotective actions are widely demonstrated, although its biological role on endothelial dysfunctions induced by hyperglycemia remains uninvestigated. In the present study we hypothesized that NAP could play a protective role on hyperglycemia-induced endothelial cell proliferation. To this end we investigated the effects of NAP on an in vitro model of murine microvascular endothelial cells grown in high glucose for 7 days. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and cyclin D1 protein expression analysis revealed that NAP treatment significantly reduces viability and proliferation of the cells. Hyperglycemia induced the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphatidylinositol-3 kinase/Akt pathways in a time-dependent manner. NAP treatment reduced the phosphorylation levels of ERK and AKT in cells grown in high glucose. These evidences suggest that NAP might be effective in the regulation of endothelial dysfunction induced by hyperglycemia.

  5. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  6. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  7. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    PubMed

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  8. MicroRNA-497 suppresses cell proliferation and induces apoptosis through targeting PBX3 in human multiple myeloma

    PubMed Central

    Yu, Tianhua; Zhang, Xuanhe; Zhang, Lirong; Wang, Yali; Pan, Hongjuan; Xu, Zhihua; Pang, Xiaochuan

    2016-01-01

    Aberrant expression of microRNA-497 (miRN-497) is implicated in development and progression of multiple types of cancers. However, the biological function and underlying mechanism of miR-497 in multiple myeloma (MM) remains unclear. Thus, we studied the potential biological roles of miR-497 in MM. The expression of miR-497 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Biological functions of miR-497 were analyzed using cell proliferation, colony formation, cell cycle, apoptosis and luciferase assays in vitro, as well as via tumorigenicity in vivo analysis. Here, we observed reduced expression of miR-497 in MM plasma samples and cell lines. Ectopic expression of miR-497 dramatically suppressed cell proliferation and clonogenicity, as well as induced cell arrest at G0/G1 stage and apoptosis in vitro. Mechanistic investigation assays showed that Pre-B-cellleukemia transcription factor 3 (PBX3) was a novel and direct downstream target of miR-497. Interestingly, overexpression of PBX3 partially reverted the effect of miR-497 in MM cells. In xenograft model, overexpression of miR-497 inhibited tumorigenicity by repressing PBX3. These findings collectively suggested that miR-497 functioned as tumor suppressor in MM by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for MM therapy. PMID:28042507

  9. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  10. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  11. SIRT1 controls cell proliferation by regulating contact inhibition.

    PubMed

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition.

  12. Inhibition of cell proliferation by the Mad1 transcriptional repressor.

    PubMed Central

    Roussel, M F; Ashmun, R A; Sherr, C J; Eisenman, R N; Ayer, D E

    1996-01-01

    Mad1 is a basic helix-loop-helix-leucine zipper protein that is induced upon differentiation of a number of distinct cell types. Mad1 dimerizes with Max and recognizes the same DNA sequences as do Myc:Max dimers. However, Mad1 and Myc appear to have opposing functions. Myc:Max heterodimers activate transcription while Mad:Max heterodimers repress transcription from the same promoter. In addition Mad1 has been shown to block the oncogenic activity of Myc. Here we show that ectopic expression of Mad1 inhibits the proliferative response of 3T3 cells to signaling through the colony-stimulating factor-1 (CSF-1) receptor. The ability of over-expressed Myc and cyclin D1 to complement the mutant CSF-1 receptor Y809F (containing a Y-to-F mutation at position 809) is also inhibited by Mad1. Cell cycle analysis of proliferating 3T3 cells transfected with Mad1 demonstrates a significant decrease in the fraction of cells in the S and G2/M phases and a concomitant increase in the fraction of G1 phase cells, indicating that Mad1 negatively influences cell cycle progression from the G1 to the S phase. Mutations in Mad1 which inhibit its activity as a transcription repressor also result in loss of Mad1 cell cycle inhibitory activity. Thus, the ability of Mad1 to inhibit cell cycle progression is tightly coupled to its function as a transcriptional repressor. PMID:8649388

  13. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    PubMed Central

    Fayazi, Mehri; Salehnia, Mojdeh; Ziaei, Saeideh

    2016-01-01

    Background: Stem cell factor (SCF) is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS) into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146+ cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01). Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146+ cells and it has important implications for medical sciences and cell therapies. PMID:27525327

  14. Hepassocin regulates cell proliferation of the human hepatic cells L02 and hepatocarcinoma cells through different mechanisms.

    PubMed

    Cao, Meng-Meng; Xu, Wang-Xiang; Li, Chang-Yan; Cao, Chuan-Zeng; Wang, Zhi-Dong; Yao, Jia-Wei; Yu, Miao; Zhan, Yi-Qun; Wang, Xiao-Hui; Tang, Liu-Jun; Chen, Hui; Li, Wei; Ge, Chang-Hui; Yang, Xiao-Ming

    2011-10-01

    Hepassocin (HPS) is a specific mitogenic active factor for hepatocytes, and inhibits growth by overexpression in hepatocellular carcinoma (HCC) cells. However, the mechanism of HPS regulation on growth of liver-derived cells still remains largely unknown. In this study, we found that HPS was expressed and secreted into the extracellular medium in cultured L02 human hepatic cells; conditional medium of L02 cells promoted proliferation of L02 cells and this activity could be blocked by anti-HPS antibody. Moreover, we identified the presence of receptor for HPS on L02 cells and HepG2 human hepatoma cells. Overproduction of truncated HPS, which signal peptide was deleted, significantly inhibited the proliferation of HCC cells and induced cell cycle arrest. These findings suggest that HPS promotes hepatic cell line L02 cells proliferation via an autocrine mechanism and inhibits HCC cells proliferation by an intracrine pathway.

  15. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation.

    PubMed

    Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma.

  16. Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation

    PubMed Central

    Daniel, P; Filiz, G; Brown, D V; Hollande, F; Gonzales, M; D'Abaco, G; Papalexis, N; Phillips, W A; Malaterre, J; Ramsay, R G; Mantamadiotis, T

    2014-01-01

    The cyclic-AMP response element binding (CREB) protein has been shown to have a pivotal role in cell survival and cell proliferation. Transgenic rodent models have revealed a role for CREB in higher-order brain functions, such as memory and drug addiction behaviors. CREB overexpression in transgenic animals imparts oncogenic properties on cells in various tissues, and aberrant CREB expression is associated with tumours. It is the central position of CREB, downstream from key developmental and growth signalling pathways, which gives CREB this ability to influence a spectrum of cellular activities, such as cell survival, growth and differentiation, in both normal and cancer cells. We show that CREB is highly expressed and constitutively activated in patient glioma tissue and that this activation closely correlates with tumour grade. The mechanism by which CREB regulates glioblastoma (GBM) tumour cell proliferation involves activities downstream from both the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways that then modulate the expression of three key cell cycle factors, cyclin B, D and proliferating cell nuclear antigen (PCNA). Cyclin D1 is highly CREB-dependent, whereas cyclin B1 and PCNA are co-regulated by both CREB-dependent and -independent mechanisms. The precise regulatory network involved appears to differ depending on the tumour-suppressor phosphatase and tensin homolog status of the GBM cells, which in turn allows CREB to regulate the activity of the PI3K itself. Given that CREB sits at the hub of key cancer cell signalling pathways, understanding the role of glioma-specific CREB function may lead to improved novel combinatorial anti-tumour therapies, which can complement existing PI3K-specific drugs undergoing early phase clinical trials. PMID:24979279

  17. Proliferating cells in suborbital tissue drive eye migration in flatfish.

    PubMed

    Bao, Baolong; Ke, Zhonghe; Xing, Jubin; Peatman, Eric; Liu, Zhanjiang; Xie, Caixia; Xu, Bing; Gai, Junwei; Gong, Xiaoling; Yang, Guimei; Jiang, Yan; Tang, Wenqiao; Ren, Daming

    2011-03-01

    The left/right asymmetry of adult flatfishes (Pleuronectiformes) is remarkable given the external body symmetry of the larval fish. The best-known change is the migration of their eyes: one eye migrates from one side to the other. Two extinct primitive pleuronectiformes with incomplete orbital migration have again attracted public attention to the mechanism of eye migration, a subject of speculation and research for over a century. Cranial asymmetry is currently believed to be responsible for eye migration. Contrary to that hypothesis, we show here that the initial migration of the eye is caused by cell proliferation in the suborbital tissue of the blind side and that the twist of frontal bone is dependent on eye migration. The inhibition of cell proliferation in the suborbital area of the blind side by microinjected colchicine was able to prevent eye migration and, thereafter, cranial asymmetry in juvenile Solea senegalensis (right sideness, Soleidae), Cynoglossus semilaevis (left sideness, Cynoglossidae), and Paralichthys olivaceus (left sideness, Paralichthyidae) with a bottom-dwelling lifestyle. Our results correct the current misunderstanding that eye migration is driven by the cranial asymmetry and simplify the explanation for broken left/right eye-symmetry. Our findings should help to focus the search on eye migration-related genes associated with cell proliferation. Finally, a novel model is proposed in this research which provides a reasonable explanation for differences in the migrating eye between, and sometimes within, different species of flatfish and which should aid in our overall understanding of eye migration in the ontogenesis and evolution of Pleuronectiformes.

  18. Stromelysin generates a fibronectin fragment that inhibits Schwann cell proliferation

    PubMed Central

    1992-01-01

    Our previous report (Muir, D., S. Varon, and M. Manthorpe. 1990. J. Cell Biol. 109:2663-2672) described the isolation and partial characterization of a 55-kD antiproliferative protein found in Schwann cell (SC) and schwannoma cell line-conditioned media and we concluded that SC proliferation is under negative autocrine control. In the present study the 55-kD protein was found to possess metalloprotease activity and stromelysin immunoreactivity. The SC-derived metalloprotease shares many properties with stromelysin isolated from other sources including the ability to cleave fibronectin (FN). Furthermore, limited proteolysis of FN by the SC-derived protease generated a FN fragment which itself expresses a potent antiproliferative activity for SCs. The active FN fragment corresponds to the 29-kD amino-terminal region of the FN molecule which was also identified as an active component in SC CM. Additional evidence that a proteolytic fragment of FN can possess antiproliferative activity for SCs was provided by the finding that plasmin can generate an amino- terminal FN fragment which mimicked the activity of the SC metalloprotease-generated antiproliferative FN fragment. Both the 55-kD SC metalloprotease and the 29-kD FN fragment could completely and reversibly inhibit proliferation of SCs treated with various mitogens and both were largely ineffective at inhibiting proliferation by immortalized or transformed SC lines. Normal and transformed SC types do secrete the proform of stromelysin, however, transformed cultures do not produce activated stromelysin and thus cannot generate the antiproliferative fragment of FN. These results suggest that, once activated, a SC-derived protease similar to stromelysin cleaves FN and generates an antiproliferative activity which can maintain normal SC quiescence in vitro. PMID:1730742

  19. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    SciTech Connect

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D. )

    1991-03-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05.

  20. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  1. Genistein affects proliferation and migration of bovine oviductal epithelial cells.

    PubMed

    García, Daniela C; Valdecantos, Pablo A; Miceli, Dora C; Roldán-Olarte, Mariela

    2017-03-08

    Genistein is one of the most abundant isoflavones in soybean. This molecule induces cell cycle arrest and apoptosis in different normal and cancer cells. Genistein has been of considerable interest due to its adverse effects on bovine reproduction, altering estrous cycle, implantation and fetal development and producing subfertility or infertility. The objective of this work was to study the effects of genistein on the expression of selected genes involved in the regulation of cell cycle and apoptosis. Primary cultures of bovine oviductal epithelial cells (BOEC) were treated with different genistein concentrations (0.2, 2 and 10μM) to analyze CYCLIN B1, BCL-2 and BAX gene expression by Real-time RT-PCR. Results showed that genistein down-regulated CYCLIN B1 expression, affecting cell cycle progression, and caused a decrease in the BCL-2/BAX ratio starting at 2μM of genistein. In addition, in order to determine if genistein affects BOEC migration, in vitro wound healing assays were performed. A significant reduction in cell migration after 12h of culture was observed at both 0.2 and 10μM genistein concentrations. Also, in the presence of genistein the percentage of mitotic cells decreased, although apoptotic cells percentages were not affected. These findings indicate that genistein has an inhibitory effect on BOEC proliferation and migration, suggesting that it could influence the normal physiology of the oviductal epithelium.

  2. The aberrant expression and localization of DNA methyltransferase 3B in endometriotic stromal cells

    PubMed Central

    Dyson, Matthew T.; Kakinuma, Toshiyuki; Pavone, Mary Ellen; Monsivais, Diana; Navarro, Antonia; Malpani, Saurabh S.; Ono, Masanori; Bulun, Serdar E.

    2015-01-01

    Objective To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. Design Basic science. Setting University research center. Patients Premenopausal women with or without endometriosis. Interventions Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 µM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. Main Outcome Measure(s) DNMT1, DNMT3A, and DNMT3B expression in E-IUM and E-OSIS were assessed by qRT-PCR and immunoblotting. DNMT3B recruitment to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation Results IVD treatment reduced DNMT3B mRNA (74%) and protein levels (81%) only in E-IUM. DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. DNMT3B enrichment across three ESR1 promoters was reduced in E-IUM after IVD, although the more distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. Conclusions The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones. PMID:26239024

  3. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells.

    PubMed

    Kang, Seongeun; Kim, Byungtak; Kang, Han-Sung; Jeong, Gookjoo; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Kim, Sun Jung

    2015-11-01

    Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (p<0.01) and downregulation (p<0.05) in breast cancer tissues. Pathway analysis after the downregulation of SCTR by siRNA in MCF-10A cells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.

  4. Aberrant Expression Profile of Long Noncoding RNA in Human Sinonasal Squamous Cell Carcinoma by Microarray Analysis

    PubMed Central

    Meng, Ling-zhao; Sun, Jing-wu; Yang, Fan

    2016-01-01

    Objectives. This study aimed to identify aberrantly expressed long noncoding RNAs (lncRNAs) profile of sinonasal squamous cell carcinoma (SSCC) and explore their potential functions. Methods. We investigated lncRNA and mRNA expression in SSCC and paired adjacent noncancerous tissues obtained from 6 patients with microarrays. Gene ontology (GO) analysis and pathway analysis were utilized to investigate the gene function. Gene signal-network and lncRNA-mRNA network were depicted. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to validate 5 lncRNAs in a second set of paired SSCC and adjacent noncancerous tissues obtained from 22 additional patients. Results. We identified significantly differentially expressed lncRNAs (n = 3146) and mRNAs (n = 2208) in SSCC relative to noncancerous tissues. The GO annotation indicated that there are some core gene products that may be attributed to the progress of SSCC. The pathway analysis identified many pathways associated with cancer. The results of lncRNA-mRNA network and gene signal-network implied some core lncRNAs/mRNAs might play important roles in SSCC pathogenesis. The results of qRT-PCR showed that all of the 5 lncRNAs were differentially expressed and consistent with the microarray results. Conclusion. Our study is the first screening and analysis of lncRNAs expression profile in SSCC and may offer new insights into pathogenesis of this disease. PMID:28044124

  5. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  6. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

    PubMed Central

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon

    2017-01-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer. PMID:28280409

  7. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression

    PubMed Central

    Su, Jing-Ran; Kuai, Jing-Hua; Li, Yan-Qing

    2016-01-01

    AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future. PMID:28018113

  8. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells.

    PubMed

    Guo, Qian; Jian, Zhixiang; Jia, Baoqing; Chang, Liang

    2017-02-01

    CXCL7 is an important chemoattractant cytokine, which signals through binding to its receptor CXCR2. Recent studies have demonstrated that the CXCL7/CXCR2 signaling plays a promoting role in several common malignancies, including lung, renal, colon, and breast cancer. However, the regulatory role of CXCL7, in cholangiocarcinoma, as well as the underlying mechanism, has not been previously reported. Herein, we found more positive expression of CXCL7 in cholangiocarcinoma tissues compared to adjacent non-tumor tissues. High CXCL7 expression was significantly correlated with poor differentiation, lymph node metastasis, vascular invasion and advanced clinical stage, but was not associated with age, gender, or tumor size. Besides, the expression of CXCL7 was significantly associated with the Ki67 expression, but not associated with CA199, AFP, or P53 expression in cholangiocarcinoma. Moreover, the overall survival of cholangiocarcinoma patients with high CXCL7 expression was significantly shorter than those with low CXCL7 expression. In vitro study indicated that CXCL7 and CXCR2 were also positively expressed in several common cholangiocarcinoma cell lines, including HuCCT1, HuH28, QBC939, EGI-1, OZ and WITT. SiRNA-induced inhibition of CXCL7 significantly reduced the proliferation and invasion of QBC939 cells. On the contrary, overexpression of CXCL7 markedly promoted these malignant phenotypes of QBC939 cells. Of note, the conditioned medium of CXCL7-overexpresing human hepatic stellate cells could also promote the proliferation and invasion of QBC939 cells, suggesting that CXCL7 may also play an oncogenic role in cholangiocarcinoma in a paracrine-dependent manner, not only in an autocrine-dependent manner. Molecular assay data suggested that the AKT signaling pathway was involved in the CXCL7-mediated malignant phenotypes of QBC939 cells. In summary, our study suggests that CXCL7 plays a promoting role in regulating the growth and metastasis of cholangiocarcinoma.

  9. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration

    PubMed Central

    2011-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration. PMID:22040534

  10. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  11. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  12. An assay for macrophage-mediated regulation of endothelial cell proliferation.

    PubMed

    Khan, Aslam Ali; Apte, Rajendra S

    2008-01-01

    We have developed an assay that quantifies the potential of macrophages to regulate proliferation of endothelial cells. We show that young mice macrophages can be distinguished from old mice macrophages by their ability to inhibit vascular endothelial cell proliferation. While young mice macrophages robustly inhibit proliferation, old mice macrophages fail to do so and actually promote the proliferation of endothelial cells. In this report, we outline a technique that directly assesses the effect of macrophages on modulation of endothelial cell proliferation. This assay will help us in understanding the mechanisms of macrophage function in several disease states characterized by abnormal angiogenesis including cancers, angiogenic eye disease and atherosclerotic heart disease.

  13. Proliferation and differentiation of neural stem cells irradiated with X-rays in logarithmic growth phase.

    PubMed

    Isono, Mayu; Otsu, Masahiro; Konishi, Teruaki; Matsubara, Kana; Tanabe, Toshiaki; Nakayama, Takashi; Inoue, Nobuo

    2012-07-01

    Exposure of the fetal brain to ionizing radiation causes congenital brain abnormalities. Normal brain formation requires regionally and temporally appropriate proliferation and differentiation of neural stem cells (NSCs) into neurons and glia. Here, we investigated the effects of X-irradiation on proliferating homogenous NSCs prepared from mouse ES cells. Cells irradiated with X-rays at a dose of 1Gy maintained the capabilities for proliferation and differentiation but stopped proliferation temporarily. In contrast, the cells ceased proliferation following irradiation at a dose of >5Gy. These results suggest that irradiation of the fetal brain at relatively low doses may cause congenital brain abnormalities as with relatively high doses.

  14. Induction of chromosomal aberrations by the fuel additive methylcyclopentadienyl-manganese tricarbonyl (MMT) in Chinese hamster ovary cells

    SciTech Connect

    Blakey, D.H.; Bayley, J.M.

    1995-11-01

    Methylcyclopentadienyl-manganese tricarbonyl (MMT) is a fuel additive used throughout Canada as replacement for lead-based antiknock compounds in gasoline and as an anti-smoking compound in other fuels. Because of the widespread use of MMT in Canadian gasoline, it is important to determine whether MMT is a safe alternative to alkyllead as a fuel additive. Although environmental exposure to MMT is unlikely because it is almost completely consumed during combustion and any MMT exhaust emissions would be degraded rapidly, human contact can occur occupationally through accidental exposure, or incidentally while refuelling gasoline-powered engines. In order to determine the intrinsic mutagenicity of MMT, an in vitro chromosomal aberration assay was performed using Chinese hamster ovary cells. In the presence of metabolic activation, MMT was a potent inducer of structural chromosomal aberrations. There was significant (p{le}0.0114), reproducible increase in chromosomal aberrations at concentrations as low as 0.02 {mu}l/ml (0.12 mM). Without metabolic activation, MMT failed to induce a significant increase in chromosomal aberrations following either a 3 hr (p = 0.412) or continuous (p = 0.178) exposure. In order to determine whether the intrinsic mutagenicity identified in vitro is expressed in vivo, a mouse bone marrow micronucleus assay will be performed. In addition, the mutagenicity of MMT combustion byproducts will be evaluated.

  15. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.

  16. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  17. Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43

    PubMed Central

    de Laurentiis, Annamaria; Fiume, Giuseppe; Borrelli, Antonella; Tassone, Pierfrancesco; Scala, Iris; Buonaguro, Franco Maria; Quinto, Ileana; Scala, Giuseppe

    2014-01-01

    Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb) to identify aberrant CD43 glycoforms. PMID:24689054

  18. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  19. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  20. MiR-613 suppresses retinoblastoma cell proliferation, invasion, and tumor formation by targeting E2F5.

    PubMed

    Zhang, Yiting; Zhu, Xinyue; Zhu, Xiaomin; Wu, Yan; Liu, Yajun; Yao, Borui; Huang, Zhenping

    2017-03-01

    Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3'-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.

  1. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.

    PubMed

    Feng, Jianfang; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Sun, Qianqian; Zang, Wenqiao; Zhao, Guoqiang

    2015-10-01

    Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

  2. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    PubMed

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.

  3. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  4. Promoting cell proliferation using water dispersible germanium nanowires.

    PubMed

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve; Ryan, Kevin M; Kiely, Patrick A

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  5. Effects of spaceflight on the proliferation of jejunal mucosal cells

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Moeller, C. L.; Sawyer, Heywood R.; Smirnov, K. L.

    1991-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  6. Annexin 2A sustains glioblastoma cell dissemination and proliferation

    PubMed Central

    Maule, Francesca; Bresolin, Silvia; Rampazzo, Elena; Boso, Daniele; Puppa, Alessandro Della; Esposito, Giovanni; Porcù, Elena; Mitola, Stefania; Lombardi, Giuseppe; Accordi, Benedetta; Tumino, Manuela; Basso, Giuseppe; Persano, Luca

    2016-01-01

    Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients. PMID:27429043

  7. Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.

    PubMed

    Campbell, Andrew J; Lyne, Linden; Brown, Philip J; Launchbury, Rosalind J; Bignone, Paola; Chi, Jianxiang; Roncador, Giovanna; Lawrie, Charles H; Gatter, Kevin C; Kusec, Rajko; Banham, Alison H

    2010-04-01

    FOXP2 mutation causes a severe inherited speech and language defect, while the related transcription factors FOXP1, FOXP3 and FOXP4 are implicated in cancer. FOXP2 mRNA and protein expression were characterised in normal human tissues, haematological cell lines and multiple myeloma (MM) patients' samples. FOXP2 mRNA and protein were absent in mononuclear cells from different anatomical sites, lineages and stages of differentiation. However, FOXP2 mRNA and protein was detected in several lymphoma (8/20) and all MM-derived cell lines (n = 4). FOXP2 mRNA was expressed in bone marrow samples from 96% of MM patients (24/25), 66.7% of patients with the pre-neoplastic plasma cell proliferation monoclonal gammopathy of undetermined significance (MGUS) (6/9), but not in reactive plasma cells. The frequency of FOXP2 protein expression in CD138(+) plasma cells was significantly higher in MGUS (P = 0.0005; mean 46.4%) and MM patients (P < or = 0.0001; mean 57.3%) than in reactive marrows (mean 2.5%). FOXP2 (>10% nuclear positivity) was detectable in 90.2% of MM (55/61) and 90.9% of MGUS (10/11) patients, showing more frequent expression than CD56 and labelling 75% of CD56-negative MM (9/12). FOXP2 represents the first transcription factor whose expression consistently differentiates normal and abnormal plasma cells and FOXP2 target genes are implicated in MM pathogenesis.

  8. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen.

    PubMed

    Wang, Jianling; Wang, Gangduo; Khan, M Firoze

    2015-01-01

    Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs), molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day) in drinking water or drinking water only (controls) for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and potentially to a

  9. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to Space-like Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, F. A.; Gonda, S. R.; Wu, H.

    2005-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells and lymphocytes were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory (Upton, NY) or Cs-137 gamma radiation source at the Baylor College (Houston, TX). After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The possible relationship between the frequency of inter- and intra-chromosomal exchanges and the track structure of radiation is discussed. The work was supported by the NASA Space Radiation Health Program.

  10. Effects of Perivitelline Fluid Obtained from Horseshoe Crab on The Proliferation and Genotoxicity of Dental Pulp Stem Cells

    PubMed Central

    Musa, Marahaini; Mohd Ali, Khadijah; Kannan, Thirumulu Ponnuraj; Azlina, Ahmad; Omar, Nor Shamsuria; Chatterji, Anil; Mokhtar, Khairani Idah

    2015-01-01

    Objective Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA) and mutagenicity of the dental pulp stem cells (DPSCs). Materials and Methods This is an in vitro experimental study. PVF samples were collected from horseshoe crabs from beaches in Malaysia and the crude extract was prepared. DPSCs were treated with different concentrations of PVF crude extract in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (cytotoxicity test). We choose two inhibitory concentrations (IC50 and IC25) and two PVF concentrations which produced more cell viability compared to a negative control (100%) for further tests. Quantitative analysis of the proliferation activity of PVF was studied using the AlamarBlue®assay for 10 days. Population doubling times (PDTs) of the treatment groups were calculated from this assay. Genotoxicity was evaluated based on the CA and Ames tests. Statistical analysis was carried out using independent t test to calculate significant differences in the PDT and mitotic indices in the CA test between the treatment and negative control groups. Significant differences in the data were P<0.05. Results A total of four PVF concentrations retrieved from the MTT assay were 26.887 mg/ml (IC50), 14.093 mg/ml (IC25), 0.278 mg/ml (102% cell viability) and 0.019 mg/ml (102.5% cell viability). According to the AlamarBlue®assay, these PVF groups produced comparable proliferation activities compared to the negative (untreated) control. PDTs between PVF groups and the negative control were insignificantly different (P>0.05). No significant aberrations in chromosomes were observed in the PVF groups and the Ames test on the PVF showed the absence of significant positive results. Conclusion PVF from horseshoe crabs produced insignificant proliferative

  11. Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells

    PubMed Central

    Thakor, Parth; Song, Wenzhe; Subramanian, Ramalingam B.; Thakkar, Vasudev R.; Vesey, David A.

    2017-01-01

    Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  12. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    SciTech Connect

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  13. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  14. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.

  15. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  16. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration

    PubMed Central

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-01-01

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway. PMID:26360608

  17. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration

    PubMed Central

    Yee, Christopher W; Toychiev, Abduqodir H; Ivanova, Elena; Sagdullaev, Botir T

    2014-01-01

    Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here, we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30–60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward’s method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having 5 clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration. PMID:25099614

  18. Influence of Flow Behavior of Alginate-Cell Suspensions on Cell Viability and Proliferation.

    PubMed

    Ning, Liqun; Guillemot, Arthur; Zhao, Jingxuan; Kipouros, Georges; Chen, Xiongbiao

    2016-07-01

    Tissue scaffolds with living cells fabricated by three-dimensional bioprinting/plotting techniques are becoming more prevalent in tissue repair and regeneration. In the bioprinting process, cells are subject to process-induced forces (such as shear force) that can result in cell damage and loss of cell function. The flow behavior of the biomaterial solutions that encapsulate living cells in this process plays an important role. This study used a rheometer to examine the flow behavior of alginate solution and alginate-Schwann cell (RSC96), alginate-fibroblast cell (NIH-3T3), and alginate-skeletal muscle cell (L8) suspensions during shearing with respect to effects on cell viability and proliferation. The flow behavior of all the alginate-cell suspensions varied with alginate concentration and cell density and had a significant influence on the viability and proliferation of the cells once sheared as well as on the recovery of the sheared cells. These findings provide a mean to preserve cell viability and/or retain cell proliferation function in the bioprinting process by regulating the flow behavior of cell-biomaterial suspensions and process parameters.

  19. Ultraviolet light-induced chromosomal aberrations in cultured cells from Cockayne syndrome and complementation group C xeroderma pigmentosum patients: lack of correlation with cancer susceptibility

    SciTech Connect

    Seguin, L.R.; Tarone, R.E.; Liao, K.H.; Robbins, J.H.

    1988-03-01

    Both Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are inherited diseases with defective repair of damage induced in DNA by UV. Patients with XP, but not those with CS, have an increased susceptibility to formation of sunlight-induced skin tumors. We determined the frequency of UV-induced chromosomal aberrations in cultured lymphoblastoid cell lines from five CS patients and three complementation-group-C XP patients to determine whether such aberrations were abnormally increased only in the XP cells. We found that CS cells had the same abnormally increased number of induced aberrations as the XP cells, indicating that the number of UV-induced aberrations in XP group C cells does not account for the susceptibility of these XP patients to sunlight-induced skin cancer.

  20. Circadian variation of cell proliferation in HTR-8/SVneo cell line.

    PubMed

    Lunghi, Laura; Frigato, Elena; Ferretti, Maria Enrica; Biondi, Carla; Bertolucci, Cristiano

    2011-12-01

    Circadian clock controls several physiological processes such as cell proliferation. Extravillous trophoblast proliferation is a tightly regulated function playing a fundamental role in maternal vessel remodeling. We recently demonstrated that clock genes Per2 and Dec1 as well as the clock-controlled genes Dbp and Vegf are rhythmically expressed in human extravillous trophoblast-derived HTR-8/SVneo cells. Analyzing the time course of HTR-8/SVneo cell proliferation, a circadian variation in cell number was found. Moreover, we showed a rhythmic expression of mRNAs for Wee1 and stathmin, two genes involved in cell cycle progression. We suggest that circadian clockwork may orchestrate the functionality of the several factors involved in the control of human trophoblast functions that are fundamental for a successfully pregnancy outcome.

  1. Aberrant Circulating Th17 Cells in Patients with B-Cell Non-Hodgkin’s Lymphoma

    PubMed Central

    Lu, Ting; Yu, Shuang; Liu, Yan; Yin, Congcong; Ye, Jingjing; Liu, Zhi

    2016-01-01

    Non-Hodgkin’s lymphomas (NHLs) are a heterogeneous group of neoplasm in which 90% are B-cell lymphomas and 10% T-cell lymphomas. Although T-helper 17 (Th17) cells have been implicated to be essential in the pathogenesis of autoimmune and inflammatory diseases, its role in B-cell non-Hodgkin’s lymphoma (B-NHL) remains unknown. In this study, we observed a significantly decreased frequency of Th17 cells in peripheral blood from B-NHL patients compared with healthy individuals, accompanied with increased Th1 cells. IL-17AF plasma levels were remarkably decreased in B-NHL patients, accompanied with undetectable IL-17FF and unchangeable IL-17AA. Moreover, Th17 and Th1 cells became normalized after one or two cycles of chemotherapy. Interestingly, in B-NHL, circulating Th17 cells frequencies were significantly higher in relapsed patients than those in untreated patients or normal individuals. Meanwhile, there was no statistical difference regarding the frequencies of Th1 cells between relapsed and untreated patients. Taken these data together, circulating Th17 subset immune response may be associated with the response of patients to treatment and with different stages of disease. PMID:26812681

  2. Aberrant Circulating Th17 Cells in Patients with B-Cell Non-Hodgkin's Lymphoma.

    PubMed

    Lu, Ting; Yu, Shuang; Liu, Yan; Yin, Congcong; Ye, Jingjing; Liu, Zhi; Ma, Daoxin; Ji, Chunyan

    2016-01-01

    Non-Hodgkin's lymphomas (NHLs) are a heterogeneous group of neoplasm in which 90% are B-cell lymphomas and 10% T-cell lymphomas. Although T-helper 17 (Th17) cells have been implicated to be essential in the pathogenesis of autoimmune and inflammatory diseases, its role in B-cell non-Hodgkin's lymphoma (B-NHL) remains unknown. In this study, we observed a significantly decreased frequency of Th17 cells in peripheral blood from B-NHL patients compared with healthy individuals, accompanied with increased Th1 cells. IL-17AF plasma levels were remarkably decreased in B-NHL patients, accompanied with undetectable IL-17FF and unchangeable IL-17AA. Moreover, Th17 and Th1 cells became normalized after one or two cycles of chemotherapy. Interestingly, in B-NHL, circulating Th17 cells frequencies were significantly higher in relapsed patients than those in untreated patients or normal individuals. Meanwhile, there was no statistical difference regarding the frequencies of Th1 cells between relapsed and untreated patients. Taken these data together, circulating Th17 subset immune response may be associated with the response of patients to treatment and with different stages of disease.

  3. Aberrant histone modification in CD19+ B cells of patients with chronic lymphocytic leukemia

    PubMed Central

    Zhou, Keshu; Zhang, Qing; Liu, Yanyan; Xiong, Yuanyuan; Wu, Shengsheng; Yang, Jingke; Zhou, Hu; Liu, Xinjian; Wei, Xudong; Song, Yongping

    2017-01-01

    The aim of this study was to detect the alterations in histone methylation and acetylation in patients with chronic lymphocytic leukemia (CLL). Global histone H3/H4 acetylation and H3K4/H3K9 methylation were detected by the EpiQuik™ global histone H3/H4 acetylation and H3K4/H3K9 methylation assay kits. The mRNA expression of selected chromatin modifier genes was measured by real-time polymerase chain reaction (RT-PCR). Our results found that the global histone H3/H4 hypoacetylation in the CD19+ B cells of patients with CLL (P=0.028 and P=0.03, respectively) and the global histone H3K9 methylation in patients with CLL were significantly increased compared with controls (P=0.02), while there was no significant difference in the global histone H3K4 methylation between the two groups. The level of SIRT1 and EZH2 mRNA expression was upregulated in patients with CLL (P=0.03 and P=0.02, respectively), which increased significantly with progression from Binet stage A to stage C (P=0.015 and P=0.01, respectively) and Rai good to high risk stage (P=0.007 and P=0.008, respectively). The level of HDAC1 and HDAC7 mRNA expression was significantly increased (P=0.02 and P=0.008, respectively) and HDAC2 and P300 mRNA expression was reduced in patients with CLL (P=0.002 and P=0.001, respectively). In conclusion, it is observed that the aberrant histone modification plays an important role in the pathogenesis of CLL. PMID:28260932

  4. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    PubMed Central

    Au-Yeung, Byron B.; Zikherman, Julie; Mueller, James L.; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M.; Weiss, Arthur

    2014-01-01

    T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77–eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery. PMID:25136127

  5. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    SciTech Connect

    Liu, P.-S.; Chen, C.-Y.

    2010-05-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.

  6. Inferring a role for methylation of intergenic DNA in the regulation of genes aberrantly expressed in precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Almamun, Md; Kholod, Olha; Stuckel, Alexei J; Levinson, Benjamin T; Johnson, Nathan T; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2017-01-17

    A complete understanding of the mechanisms involved in the development of pre-B ALL is lacking. In this study, we integrated DNA methylation data and gene expression data to elucidate the impact of aberrant intergenic DNA methylation on gene expression in pre-B ALL. We found a subset of differentially methylated intergenic loci that were associated with altered gene expression in pre-B ALL patients. Notably, 84% of these regions were also bound by transcription factors (TF) known to play roles in differentiation and B-cell development in a lymphoblastoid cell line. Further, an overall downregulation of eRNA transcripts was observed in pre-B ALL patients and these transcripts were associated with the downregulation of putative target genes involved in B-cell migration, proliferation, and apoptosis. The identification of novel putative regulatory regions highlights the significance of intergenic DNA sequences and may contribute to the identification of new therapeutic targets for the treatment of pre-B ALL.

  7. Vascular endothelial growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer.

    PubMed

    Devery, Aoife M; Wadekar, Rekha; Bokobza, Sivan M; Weber, Anika M; Jiang, Yanyan; Ryan, Anderson J

    2015-09-01

    Vascular endothelial growth factor (VEGF) is a key stimulator of physiological and pathological angiogenesis. VEGF signals primarily through VEGF receptor 2 (VEGFR2), a receptor tyrosine kinase whose expression is found predominantly on endothelial cells. The purpose of this study was to determine the role of VEGFR2 expression in NSCLC cells. NSCLC cells and tissue sections were stained for VEGFR2 expression by immunohistochemistry (IHC). Immunoblotting and ELISA were used to determine the activation and inhibition of VEGFR2 and its downstream signalling pathways. Five-day proliferation assays were carried out in the presence or absence of VEGF. IHC analysis of NSCLC demonstrated tumour cell VEGFR2 expression in 20% of samples. Immunoblot analysis showed expression of VEGFR2 protein in 3/8 NSCLC cell lines that correlated with VEGFR2 mRNA expression levels. VEGF-dependent VEGFR2 activation was apparent in NSCLC cells, and was associated with increased tumor cell proliferation. Cediranib treatment or siRNA against VEGFR2 inhibited VEGF-dependent increases in cell proliferation. Inhibition of VEGFR2 tyrosine kinase activity using cediranib was more effective than inhibition of AKT (MK2206) or MEK (AZD6244) for overcoming VEGFR2-driven cell proliferation. VEGF treatment did not affect cell survival following treatment with radiation, cisplatin, docetaxel or gemcitabine. Our data suggest that a subset of NSCLC tumour cells express functional VEGFR2 which can act to promote VEGF-dependent tumour cell growth. In this tumour subset, therapies targeting VEGFR2 signalling, such as cediranib, have the potential to inhibit both tumour cell proliferation and angiogenesis.

  8. Differential modulation of mitogen driven proliferation and homeostasis driven proliferation of T cells by rapamycin, Ly294002 and chlorophyllin.

    PubMed

    Sharma, Deepak; Kumar, Sandur Santosh; Raghu, Rashmi; Khanam, Shazia; Sainis, Krishna Balaji

    2007-04-01

    Homeostasis driven proliferation (HDP) of naïve CD4+ T cells depends upon T cell receptor ligation with self-MHC II along with availability of interleukin-7. But the exact nature of downstream signaling events involved in HDP of helper T cells remains elusive. To identify the specific involvement of signaling molecules in HDP, purified CD4+ T cells were treated with either mTOR inhibitor rapamycin or PI3kinase inhibitor Ly294002 or with an antioxidant chlorophyllin (CHL) in vitro. Rapamycin treated cells failed to proliferate, expressed anergic T cell specific transcription factor genes egr-2 and egr-3 and showed diminished IFN-gamma production in response to Con A stimulation in vitro. Although CHL treated cells also failed to proliferate, they showed a normal IFN-gamma production during primary stimulation and did not upregulate egr-2 and egr-3 genes following restimulation in vitro. Ly294002 treated cells failed to express IL-2 and IFN-gamma and did not divide in response to Con A stimulation in vitro. While all these inhibitors significantly inhibited CD4+ T cell proliferation in response to the mitogen in vitro, only CHL treatment could inhibit their HDP in lymphopenic mice. Our results also demonstrate that combined treatment with rapamycin and Ly294002 did not inhibit HDP of CD4+ T cells. Thus, the present study, for the first time, shows a non-essential role of mTOR and PI3kinase during HDP of CD4+ T cells and also describes its possible regulation by an antioxidant.

  9. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  10. Diverse functions of ceramide in cancer cell death and proliferation.

    PubMed

    Saddoughi, Sahar A; Ogretmen, Besim

    2013-01-01

    Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.

  11. Promotion of cell proliferation using atmospheric-pressure radical source

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Okachi, Masashi; Koizumi, Takayoshi; Oh, Jun-Seok; Hashizume, Hiroshi; Murata, Tomiyasu; Hori, Masaru

    2016-09-01

    In this study, we have focused on the effects of neutral radicals on cell proliferation and treated budding yeasts and mouse fibroblast cells in solutions using neutral radical source, which can selectively supply neutral radicals without charged species and optical emissions. The activation and inactivation effects of neutral oxygen or nitrogen-oxide radicals on cells were investigated using a cell count and a colony count method, respectively. The radical densities supplied from the radical source were measured using VUVAS and UVAS. Based on the measurements of free residual chloride and hydrogen peroxide concentrations in the solutions treated with radicals, we have investigated their effects on the activation and the inactivation. From these results, we have concluded that the main factor for the inactivation in PBS solutions is due to the hypochlorous acid generated in the PBS irradiated with oxygen radicals. On the other hand, we have found that the main factor for the promotion is not the hypochlorous acid but other radicals. This work was partly supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1511021), JSPS KAKENHI Grant Numbers 26286072 and project for promoting Research Center in Meijo University.

  12. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    PubMed Central

    Yang, Chun-ming; Ji, Shan; Li, Yan; Fu, Li-ye; Jiang, Tao; Meng, Fan-dong

    2017-01-01

    β-Catenin (CTNNB1 gene coding protein) is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC) cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC. PMID:28260916

  13. Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation

    PubMed Central

    Zeng, Yi; Broxmeyer, Hal E.; Staser, Karl; Chitteti, Brahmananda Reddy; Park, Su-Jung; Hahn, Seongmin; Cooper, Scott; Sun, Zejin; Jiang, Li; Yang, XianLin; Yuan, Jin; Kosoff, Rachelle; Sandusky, George; Srour, Edward F.; Chernoff, Jonathan; Clapp, Wade

    2015-01-01

    p21-activated kinase 2 (Pak2), a serine/threonine kinase, has been previously shown to be essential for hematopoietic stem cell (HSC) engraftment. However, Pak2 modulation of long-term hematopoiesis and lineage commitment remain unreported. Utilizing a conditional Pak2 knock out (KO) mouse model, we found that disruption of Pak2 in HSCs induced profound leukopenia and a mild macrocytic anemia. Although loss of Pak2 in HSCs leads to less efficient short- and long-term competitive hematopoiesis than wild type (WT) cells, it does not affect HSC self-renewal per se. Pak2 disruption decreased the survival and proliferation of multi-cytokine stimulated immature progenitors. Loss of Pak2 skewed lineage differentiation toward granulocytopoiesis and monocytopoiesis in mice as evidenced by 1) a three to six-fold increase in the percentage of peripheral blood granulocytes and a significant increase in the percentage of granulocyte-monocyte progenitors (GMPs) in mice transplanted with Pak2-disrupted BM; 2) Pak2-disrupted BM and c-kit+ cells yielded higher numbers of more mature subsets of granulocyte-monocyte colonies and polymophonuclear neutrophils (PMNs), respectively, when cultured in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF). Pak2 disruption resulted respectively in decreased and increased gene expression of transcription factors JunB and c-Myc, which may suggest underlying mechanisms by which Pak2 regulates granulocyte-monocyte lineage commitment. Furthermore, Pak2 disruption led to 1) higher percentage of CD4+CD8+ double positive T cells and lower percentages of CD4+CD8− or CD4−CD8+ single positive T cells in thymus and 2) decreased numbers of mature B cells and increased numbers of Pre-Pro B cells in BM, suggesting defects in lymphopoiesis. PMID:25586960

  14. Comparison of cell repair mechanisms by means of chromosomal aberration induced by proton and gamma irradiation - preliminary results

    NASA Astrophysics Data System (ADS)

    Kowalska, A.; Czerski, K.; Kaczmarski, M.; Lewocki, M.; Masojć, B.; Łukowiak, A.

    2015-03-01

    DNA damage of peripheral blood lymphocytes exposed to gamma and proton irradiation is studied by means of chromosome aberrations to validate the efficiency of the repair mechanisms of individual cells. A new method based on an observed deviation from the Poisson statistics of the chromosome aberration number is applied for estimation of a repair factor ( RF) defined as a ratio between originally damaged cells to the amount of finally observed aberrations. The repair factors are evaluated by studying the variance of individual damage factors in a collective of healthy persons at a given dose as well as by using the chi-square analysis for the dose-effect curves. The blood samples from fifteen donors have been irradiated by Co60 gamma rays and from nine persons by 150 MeV protons with different doses up to 2 Gy. A standard extraction of lymphocyte has been used whereby dicentrics, acentrics and rings have been scored under a microscope. The RF values determined for the proton radiation are slightly larger than for gamma rays, indicating that up to 70% DNA double strand breaks can be repaired.

  15. Intracellular activated Notch1 is critical for proliferation of Kaposi's sarcoma-associated herpesvirus-associated B-lymphoma cell lines in vitro.

    PubMed

    Lan, Ke; Choudhuri, Tathagata; Murakami, Masanao; Kuppers, Daniel A; Robertson, Erle S

    2006-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus expressing latent antigens critical for pathogenesis. The mechanism by which KSHV mediates oncogenesis has not been fully elucidated. Notch signaling is an evolutionarily conserved pathway controlling diverse events related to development, proliferation, and tissue homeostasis. Deregulation of Notch signaling has also been shown to be highly correlated with oncogenesis. Here we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in latently KSHV-infected pleural effusion lymphoma cells and results in increased proliferation. Specifically, growth of the infected cells was dramatically inhibited at the G(1) phase by treatment with a gamma-secretase inhibitor which specifically blocks the production of ICN. Increased ICN also up-regulated the cyclin D1 cell cycle regulator. Taken together, these studies define an important mechanism directly linking latent KSHV infection to induction of oncogenesis through dysregulation of the conserved Notch signaling pathway.

  16. Mechanisms of hormonal regulation of sertoli cell development and proliferation: a key process for spermatogenesis.

    PubMed

    Escott, Gustavo M; da Rosa, Luciana A; Loss, Eloisa da Silveira

    2014-01-01

    In adulthood, the main function of the testes is the production of male gametes. In this process, Sertoli cells are essential for sustained spermatogenesis, providing the developing germ cells with the physical and nutritional support required. The total number of Sertoli cells in adulthood determines the daily gamete production, since Sertoli cells can support only a limited number of developing germ cells. Considering that Sertoli cell proliferation only occurs during the immature period, proper development and proliferation of the Sertoli cells during the proliferative phase are crucial to male reproductive health in adulthood. The proliferation process of the Sertoli cells is finely regulated by an assortment of hormonal and paracrine/autocrine factors, which regulate the rate and extent of proliferation. In the present review, we discuss the most important hormonal and paracrine factors involved in the regulation of Sertoli cell proliferation, as well as the signaling mechanisms by which they exert their effects.

  17. Cells, cancer, and rare events: Homeostatic metastability in stochastic nonlinear dynamical models of skin cell proliferation

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.

    2009-09-01

    A recently proposed model for skin cell proliferation [E. Clayton , Nature (London) 446, 185 (2007)] is extended to incorporate mitotic autoregulation, and hence homeostasis as a fixed point of the dynamics. Unlimited cell proliferation in such a model can be viewed as a model for carcinogenesis. One way in which this can arise is homeostatic metastability, in which the cell populations escape from the homeostatic basin of attraction by a large but rare stochastic fluctuation. Such an event can be viewed as the final step in a multistage model of carcinogenesis. Homeostatic metastability offers a possible explanation for the peculiar epidemiology of lung cancer in ex-smokers.

  18. T-Cell Proliferation Assay: Determination of Immunodominant T-Cell Epitopes of Food Allergens.

    PubMed

    Masilamani, Madhan; Pascal, Mariona; Sampson, Hugh A

    2017-01-01

    Characterization of allergen-specific T cells is critical to understand their contribution to disease pathogenesis. The identification of immunodominant T-cell epitopes is crucial for development of T-cell-based vaccines. Peptide-specific T-cell proliferation studies are usually performed in a library of short synthetic peptides (15mer or 20mer) with 3 or 5 offset spanning the entire length of the allergen. T-cell peptide epitopes lack the primary and tertiary structure of the native protein to cross-link IgE, but retain the ability to stimulate T cells. The peptides sequences can also be obtained either by in silico approaches and in vitro binding assays. The efficacy of T-cell epitope-based peptide immunotherapy has been proven in certain allergies. The present methodology describes T-cell proliferation assays using whole blood sample from allergic subjects.

  19. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    PubMed

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  20. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    PubMed

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells.

  1. Effects of trichostatin A on HDAC8 expression, proliferation and cell cycle of Molt-4 cells.

    PubMed

    He, Jing; Liu, Hongli; Chen, Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 microg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 microg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  2. The effects of adiponectin and leptin on human endothelial cell proliferation: a live-cell study.

    PubMed

    Alvarez, Granada; Visitación Bartolomé, M; Miana, María; Jurado-López, Raquel; Martín, Ruben; Zuluaga, Pilar; Martinez-Martinez, Ernesto; Nieto, M Luisa; Alvarez-Sala, Luis A; Millán, Jesús; Lahera, Vicente; Cachofeiro, Victoria

    2012-01-01

    The effect of adiponectin and leptin on the proliferation of the human microvascular endothelial cell line (HMEC-1) was studied in the absence or presence of fetal bovine serum (FBS). The participation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt (PI-3K/Akt) pathways in this effect were evaluated. We studied the effect of both adipokines on the motility, mitosis, proliferation and cell death processes of HMEC-1 cells using live-cell imaging techniques. Adiponectin but not leptin further increased the proliferative effect induced by FBS on HMEC-1. This effect seems to be the consequence of an increase in the mitotic index in adiponectin-treated cells when compared to untreated ones. The presence of either the mitogen-activated protein kinase (MAPK) inhibitor (PD98059), or PI-3K inhibitor (LY294002), reduced the effect of adiponectin in a dose-dependent manner. Neither adipokine was able to affect HMEC-1 proliferation in FBS-free conditions. Duration of mitosis, cell motility and the cell death process were similar in all conditions. These data suggest that adiponectin and leptin exert different effects on endothelial cell function. Adiponectin was able to potentiate proliferation of HMEC-1. This effect involves the activation of both PI3-K/Akt and ERK/MAPK pathways. However, it seems to exert minimal effects on HMEC-1 function in the case of leptin.

  3. Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva Satish; Mahato, Krishna Kishore

    2015-03-01

    Low power laser irradiation (LPLI) is becoming an increasingly popular and fast growing therapeutic modality in dermatology to treat various ailments without any reported side effects. In the present study an attempt was made to investigate the proliferative potential of red laser light during tissue repair in Swiss albino mice. To this end, full thickness excisional wounds of diameter 15 mm created on mice were exposed to single dose of Helium-Neon laser (632.8 nm; 7 mW; 4.02 mWcm-2; Linear polarization) at 2 Jcm-2 and 10 Jcm-2 along with un-illuminated controls. The granulation tissues from all the respective experimental groups were harvested on day 10 post-wounding following euthanization. Subsequently, tissue regeneration potential of these laser doses under study were evaluated by monitoring proliferating cell nuclear antigen and Ki-67 following the laser treatment and comparing it with the un-illuminated controls. The percentages of Ki-67 or PCNA positive cells were determined by counting positive nuclei (Ki-67/PCNA) and total nuclei in five random fields per tissue sections. Animal wounds treated with single exposure of the 2 Jcm-2 indicated significant elevation in PCNA (P<0.01) and Ki-67 (P<0.05 compared to un-illuminated control and P<0.01 compared to 10 Jcm-2) expression as compared to other tested experimental groups as evidenced by the microscopy results in the study. In summary, the findings of the present study have clearly demonstrated the regulation of cell proliferation by LPLI via PCNA and Ki-67 expression during tissue regeneration.

  4. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  5. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  6. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration.

    PubMed

    Liu, Xing; Bi, Yongyi

    2016-10-03

    BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.

  7. Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation

    PubMed Central

    Poulton, John S; Cuningham, John C; Peifer, Mark

    2014-01-01

    Summary Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome mis-segregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the Spindle Assembly Checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia, but also demonstrate the robust compensatory mechanisms at the cellular and organismal level. PMID:25241934

  8. Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry?

    PubMed

    Treloar, Katrina K; Simpson, Matthew J; McElwain, D L Sean; Baker, Ruth E

    2014-09-07

    Cells respond to various biochemical and physical cues during wound-healing and tumour progression. in vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour-like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound-like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time-evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.

  9. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    SciTech Connect

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  10. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    PubMed

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  11. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  12. Expression of CDX2 in gastric cardia adenocarcinoma and its correlation with H. pylori and cell proliferation

    PubMed Central

    Bi, Chao; Xiao, Yinping; Liu, Zhaoyong

    2016-01-01

    Background Gastric cardia cancer (GCC) is located in the distal stomach, and strongly correlates with atrophic gastritis and Helicobacter pylori(H.pylori) infection. Caudal-related homeobox transcription factor 2 (CDX2) is homeobox gene encoding an intestine-specific transcription factor usually expressed in the intestinal epithelium cells. However, in several recent published papers, CDX2 was found to be aberrantly expressed in gastric, thyroid and ovarian cancer. Results Higher expression of CDX2 was found in GCC tissues in comparison with non-malignant cardia mucosa (p<0.05). Moreover, immunohistochemical analysis demonstrated that CDX2 expression correlated with lymphatic metastasis. In addition, we found that CDX2 expression progressively increased with the level of H. pylori infection (p<0.05), and also correlated with cell proliferation, based on Ki67 staining. Methods To investigate the relationship between CDX2, cell proliferation and H. pylori infection, we detected CDX2, Ki62 and H.pylori expression in 83 non-malignant gastric cardia mucosacases and 60 GCC specimens in the Chaoshan area, a high-risk region for esophageal and gastric cardia cancer. Conclusion These findings provide pathological evidence that H. pylori infectionis a driving force of gastric cardia carcinogenesis by upregulating CDX2 and inducing inflammation. These results provide new pathological evidence that H. pylori infection induces GCC tumorigenesis. PMID:27384681

  13. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  14. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters.

    PubMed

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  15. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters

    PubMed Central

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M.

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  16. Aberrant promoter CpG methylation as a molecular marker for disease monitoring in natural killer cell lymphomas.

    PubMed

    Siu, Lisa L P; Chan, John K C; Wong, Kit F; Choy, Carolyn; Kwong, Yok L

    2003-07-01

    Natural killer (NK) cell lymphomas lack suitable clonal markers for tumour cell detection, making the monitoring of minimal residual lymphoma difficult. Aberrant promoter CpG methylation occurs frequently in NK cell lymphomas. The objective of this study was to assess the potential of aberrant methylation as a surrogate tumour marker. Twenty-five primary tumours and 105 serial biopsies taken at various time points after treatment were examined using a methylation-specific polymerase chain reaction (MSP) for a panel of genes, comprising p73, p16, hMLH1, RARbeta and p15, previously shown to be methylated in NK cell lymphomas. All samples underwent independent morphological examination, supplemented by immunostaining for CD56 and in-situ hybridization for Epstein-Barr-virus-encoded RNA. Primary tumours showed the frequent methylation of the genes p73 (92%), p16 (71%), hMLH1 (61%), RARbeta (56%) and p15 (48%). MSP results in serial post-treatment biopsies were correlated with clinicopathological findings. Results were concordant in 89 follow-up samples (18 samples, histology positive/MSP positive; 71 samples, histology negative/MSP negative) and discordant in 16. Fifteen samples were histology negative/MSP positive, and tumour involvement was subsequently confirmed (positive re-biopsies or relapses at the same sites), indicating that MSP was more sensitive for minimal lymphoma detection. One sample was histology positive/MSP negative; a subsequent histological review and continuous clinical remission of the patient did not support tumour involvement. Our findings suggest that MSP for aberrantly methylated genes is a potentially valuable molecular marker for detecting either residual or relapsed disease in NK cell lymphoma patients.

  17. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation

    PubMed Central

    Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    2016-01-01

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism. PMID:27657916

  18. Influence of well-defined mineral fibers on proliferating cells.

    PubMed Central

    Tilkes, F; Beck, E G

    1983-01-01

    The effects of well-defined asbestos and man-made mineral fibers, as well as glass and synthetic fluoroamphibole, on phagocytizing permanent rat tumor cells were tested. The following parameters were compared: cell proliferation as determined by cell count and 3H-thymidine incorporation, RNA synthesis by 3H-uridine uptake, protein synthesis by incorporation of 3H-labeled amino acids, protein content and plasma membrane permeability by release of lactic dehydrogenase. The dosage of most of the dusts was estimated gravimetrically, but for some dusts also numerically. Because of the wide range of different fibers lengths, diameters and specific weights, it was sometimes difficult to compare chemically and physically differing fiber fractions with the same fiber counts. In some cases, resulting weights are so different that a direct comparison of the conclusions is impossible. The results with fibers of diverse sources showed the same trends: the toxicity of fibers increases with increasing length and dose. In this test system we found an inhibition of DNA and RNA synthesis. Protein synthesis as measured by amino acid uptake per total cell culture decreased, but the protein content of the single cell increased as determined by the Lowry method. The increase of plasma membrane permeability as determined by lactic dehydrogenase was also dependent on fiber length and concentration. Generally the thinner the fiber, the greater the toxicity when gravimetrical dosage and the same length distributions are employed. Beyond that we can state that the toxicity of fibers from different sources with similar fiber dimensions is similar. One of the glass fiber fractions has a comparable geometry (length, diameter) to the UICC fraction of chrysotile and exhibits the same high toxicity. PMID:6196187

  19. Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage.

    PubMed

    Zhang, Qiao; Shalaby, Nevine A; Buszczak, Michael

    2014-01-17

    Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process within specific lineages remain poorly understood. Here, we identify a Drosophila RNA polymerase I (Pol I) regulatory complex composed of Under-developed (Udd), TAF1B, and a TAF1C-like factor. Disruption of udd or TAF1B results in reduced ovarian germline stem cell (GSC) proliferation. Female GSCs display high levels of ribosomal RNA (rRNA) transcription, and Udd becomes enriched in GSCs relative to their differentiating daughters. Increasing Pol I transcription delays differentiation, whereas reducing rRNA production induces both morphological changes that accompany multicellular cyst formation and specific decreased expression of the bone morphogenetic protein (BMP) pathway component Mad. These findings demonstrate that modulating rRNA synthesis fosters changes in the cell fate, growth, and proliferation of female Drosophila GSCs and their daughters.

  20. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  1. Chromatin Remodeling, Cell Proliferation and Cell Death in Valproic Acid-Treated HeLa Cells

    PubMed Central

    Felisbino, Marina Barreto; Tamashiro, Wirla M. S. C.; Mello, Maria Luiza S.

    2011-01-01

    Background Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells. Methodology/Principal Findings Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA. Conclusions/Significance The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death. PMID:22206001

  2. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts.

    PubMed

    Nagasawa, H; Latt, S A; Lalande, M E; Little, J B

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation (D0 = 40-45 rad). Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D0's (100-110 rad) slightly lower than those for normal fibroblasts (D0 = 120-140 rad). There were three different response groups for a G1 phase block induced by 400 rad of X-rays: (1) minimal or no G1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells.

  3. Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells.

    PubMed

    Liu, Yawei; Dai, Bing; Fu, Lili; Jia, Jieshuang; Mei, Changlin

    2010-06-01

    Abnormal proliferation is an important pathological feature of autosomal dominant polycystic kidney disease (ADPKD). Many drugs inhibiting cell proliferation have been proved to be effective in slowing the disease progression in ADPKD. Recent evidence has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have anti-neoplasm effects through inhibiting cell growth and inducing cell apoptosis in various cancer cells. In the present study, we examined the expression of PPARgamma in human ADPKD kidney tissues and cyst-lining epithelial cell line, and found that the expression of PPARgamma was greater in ADPKD kidney tissues and cyst-lining epithelial cell line than in normal kidney tissues and human kidney cortex (HKC) cell line. Rosiglitazone inhibited significantly proliferation of cyst-lining epithelial cells in a concentration- and time-dependent manner. These effects were diminished by GW9662, a specific PPARgamma antagonist. Cell cycle analysis showed a G0/G1 arrest in human ADPKD cyst-lining epithelial cells with rosiglitazone treatment. Analysis of cell cycle regulatory proteins revealed that rosiglitazone decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, cyclin D2 and Cdk4 but increased the levels of p21 and p27 in a dose-dependent manner. Rosiglitazone also induced apoptosis in cyst-lining epithelial cells, which was correlated with increased bax expression and decreased bcl-2 expression. These results suggest PPARgamma agonist might serve as a promising drug for the treatment of ADPKD.

  4. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors.

  5. Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways.

    PubMed

    Lin, Jiumao; Chen, Youqin; Wei, Lihui; Shen, Aling; Sferra, Thomas J; Hong, Zhenfeng; Peng, Jun

    2013-10-01

    The development of colorectal cancer (CRC) is strongly correlated with the aberrant activation of multiple intracellular signaling transduction cascades including STAT3, ERK, JNK and p38 pathways which usually function redundantly. In addition, crosstalk between these pathways forms a complicated signaling network that is regulated by compensatory mechanisms. Therefore, most of the currently used and single-target-based antitumor agents might not always be therapeutically effective. Moreover, long-term use of these agents often generates drug resistance. These problems highlight the urgent need for the development of novel anticancer chemotherapies. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used for the clinical treatment of CRC. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its tumoricidal activity are not well understood. In the present study, using CRC mouse xenograft model and the HT-29 human colon carcinoma cell line, we evaluated the efficacy of UA against tumor growth in vivo and in vitro and investigated the underlying molecular mechanisms. We found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation. These data demonstrate that UA possesses a broad range of anticancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment.

  6. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC.

  7. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    SciTech Connect

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  8. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    PubMed

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  9. PinX1 inhibits cell proliferation, migration and invasion in glioma cells.

    PubMed

    Mei, Peng-Jin; Chen, Yan-Su; Du, Ying; Bai, Jin; Zheng, Jun-Nian

    2015-03-01

    PinX1 induces apoptosis and suppresses cell proliferation in some cancer cells, and the expression of PinX1 is frequently decreased in some cancer and negatively associated with metastasis and prognosis. However, the precise roles of PinX1 in gliomas have not been studied. In this study, we found that PinX1 obviously reduced the gliomas cell proliferation through regulating the expressions of cell cycle-relative molecules to arrest cell at G1 phase and down-regulating the expression of component telomerase reverse transcriptase (hTERT in human), which is the hardcore of telomerase. Moreover, PinX1 could suppress the abilities of gliomas cell wound healing, migration and invasion via suppressing MMP-2 expression and increasing TIMP-2 expression. In conclusion, our results suggested that PinX1 may be a potential suppressive gene in the progression of gliomas.

  10. Concepts, labeling procedures, and design of cell proliferation studies relating to carcinogenesis.

    PubMed Central

    Goldsworthy, T L; Butterworth, B E; Maronpot, R R

    1993-01-01

    Chemicals may induce cell proliferation directly as mitogens or indirectly via cell death with subsequent proliferation to replace lost cells. Chemically induced proliferation has been demonstrated to play a role in the carcinogenic process. A wide range of procedures and techniques are currently being used to define the quantitative relationship between the extent and duration of chemically induced cell proliferation and carcinogenic potential in different species and target organs. However, a limited database and nonstandard protocols and procedures for measuring cell proliferation have made it difficult to compare results between laboratories. Comparison of frequencies of S phase between control and treated animals is the most commonly used end point in cell proliferation studies and may be regarded as an indirect indication of a proliferative response. This response can be ascertained as labeling indexes (LI; percentage of cells in S phase) after the administration of the DNA precursor labels (tritiated thymidine; 3H-TdR; bromodeoxyuridine, BrdU) or through immunostaining of the endogenous cell replication marker, proliferating cell nuclear antigen (PCNA). Both approaches are applicable to tissue sections. An important issue in the design of experimental studies for measuring LI is determining how and when to investigate proliferative responses in relation to the chemical treatment regimen. Variables to consider when designing cell proliferation studies include the animal's age, chemical dose and method of treatment, choice and dose of label, time and length that the label is administered, and methods of quantitation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7912190

  11. [Pentapeptides prevent enterovirus 71 proliferation in rhabdomyosarcoma cells and mice].

    PubMed

    Yang, Zhuo; Tian, Bo

    2014-04-01

    Enterovirus 71 (EV71) is the main causative agent of hand, foot, and mouth disease (HFMD). This article presented the inhibitory activity of pentapeptides on the EV71 infection in rhabdomyosarcoma (RD) and suckling mice. The EV71 VP1 capsid protein expression levels and mRNA levels were analyzed by Western blotting and real-time PCR. The antiviral activity of pentapeptides in vivo was evaluated by weight changes and EV71 VP1 protein expression levels in intestines of suckling mice. Results revealed that the pentapeptide P010157 was able to inhibit EV71 replication in RD cells. After being incubated with the P010157 at a concentration of 100 microg x mL(-1) for 48 h, the level of EV71 vp1 mRNA in RD cells decreased by (92.0 +/- 6.3)%. The estimated EC50 was 2.2 microg x mL(-1). P010157 was able to inhibit EV 71-induced cytopathic effect (CPE) in RD cells. The cytotoxic activity of the compound was evaluated against RD cells by MTS assay. The results showed that P010157 had no obvious toxicity. In addition, the treated mice with P010157 did not exhibit weight loss, as was observed in untreated mice. EV71 replication reduced significantly as revealed by Western blotting. These findings suggest that P010157 could prevent EV71 proliferation in vitro and in vivo. P010157 is a novel compound for antiviral therapies against EV71, which merited further investigation.

  12. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion

    PubMed Central

    Lu, Xiao-Yu; Yan, Yan; Zhai, Yu-Jia; Bao, Qing; Doetsch, Paul W.; Deng, Xingming; Thai, Tiffany L.; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Ma, He-Ping

    2017-01-01

    Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockd