Science.gov

Sample records for aberrant cpg methylation

  1. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm. PMID:15289853

  2. Aberrant Methylation of Gene Associated CpG Sites Occurs in Borderline Personality Disorder

    PubMed Central

    Künzel, Natascha; Schmidt, Christian; Kiehl, Steffen; Dammann, Gerhard; Dammann, Reinhard

    2013-01-01

    Borderline personality disorder (BPD) is a complex psychiatric disease with an increased impact in the last years. While the diagnosis and therapy are well established, little is known on the pathogenesis of borderline personality disorder. Previously, a significant increase in DNA methylation of relevant neuropsychiatric genes in BPD patients has been reported. In our study we performed genome wide methylation analysis and revealed specific CpG sites that exhibited increased methylation in 24 female BPD patients compared to 11 female healthy controls. Bead chip technology and quantitative bisulfite pyrosequencing showed a significantly increased methylation at CpG sites of APBA2 (1.1 fold) and APBA3 (1.1 fold), KCNQ1 (1.5 fold), MCF2 (1.1 fold) and NINJ2 (1.2 fold) in BPD patients. For the CpG sites of GATA4 and HLCS an increase in DNA methylation was observed, but was only significant in the bead chip assay. Moreover genome wide methylation levels of blood samples of BPD patients and control samples are similar. In summary, our results show a significant 1.26 fold average increase in methylation at the analyzed gene associated CpG sites in the blood of BPD patients compared to controls samples (p<0.001). This data may provide new insights into epigenetic mechanisms underlying the pathogenesis of BPD. PMID:24367640

  3. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma

    PubMed Central

    Hallberg, Andrea R; Vorrink, Sabine U; Hudachek, Danielle R; Cramer-Morales, Kimberly; Milhem, Mohammed M; Cornell, Robert A; Domann, Frederick E

    2014-01-01

    Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. PMID:25625848

  4. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  5. Role of CpG context and content in evolutionary signatures of brain DNA methylation

    PubMed Central

    Xin, Yurong; O’Donnell, Anne H.; Ge, Yongchao; Chanrion, Benjamin; Milekic, Maria; Rosoklija, Gorazd; Stankov, Aleksandar; Arango, Victoria; Dwork, Andrew J.; Gingrich, Jay A.; Haghighi, Fatemeh G.

    2011-01-01

    DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease. PMID:22048252

  6. CpG methylation increases the DNA binding of 9-aminoacridine carboxamide Pt analogues.

    PubMed

    Kava, Hieronimus W; Murray, Vincent

    2016-10-01

    This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5'-CpG sequences. Their binding to methylated and non-methylated 5'-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5'-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5'-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell's genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use. PMID:27567075

  7. Aberrant methylation during cervical carcinogenesis.

    PubMed

    Virmani, A K; Muller, C; Rathi, A; Zoechbauer-Mueller, S; Mathis, M; Gazdar, A F

    2001-03-01

    We studied the pattern of aberrant methylation during the multistage pathogenesis of cervical cancers. We analyzed a total of 73 patient samples and 10 cervical cancer cell lines. In addition, tissue samples [peripheral blood lymphocytes (n = 10) and buccal epithelial cells (n = 12)] were obtained from 22 healthy volunteers. On the basis of the results of preliminary analysis, the cervical samples were grouped into three categories: (a) nondysplasia/low-grade cervical intraepithelial neoplasia (CIN; n = 37); (b) high-grade CIN (n = 17); and (c) invasive cancer (n = 19). The methylation status of six genes was determined (p16, RARbeta, FHIT, GSTP1, MGMT, and hMLH1). Our main findings are as follows: (a) methylation was completely absent in control tissues; (b) the frequencies of methylation for all of the genes except hMLH1 were >20% in cervical cancers; (c) aberrant methylation commenced early during multistage pathogenesis and methylation of at least one gene was noted in 30% of the nondysplasia/low-grade CIN group; (d) an increasing trend for methylation was seen with increasing pathological change; (e) methylation of RARbeta and GSTP1 were early events, p16 and MGMT methylation were intermediate events, and FHIT methylation was a late, tumor-associated event; and (f) methylation occurred independently of other risk factors including papillomavirus infection, smoking history, or hormone use. Although our findings need to be extended to a larger series, they suggest that the pattern of aberrant methylation in women with or without dysplasia may help identify subgroups at increased risk for histological progression or cancer development. PMID:11297252

  8. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells

    PubMed Central

    HORII, Takuro; HATADA, Izuho

    2016-01-01

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  9. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-08-25

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  10. CpG Distribution and Methylation Pattern in Porcine Parvovirus

    PubMed Central

    Tóth, Renáta; Mészáros, István; Stefancsik, Rajmund; Bartha, Dániel; Bálint, Ádám; Zádori, Zoltán

    2013-01-01

    Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome. PMID:24392033

  11. CpG methylation patterns of human mitochondrial DNA

    PubMed Central

    Liu, Baojing; Du, Qingqing; Chen, Lu; Fu, Guangping; Li, Shujin; Fu, Lihong; Zhang, Xiaojing; Ma, Chunling; Bin, Cong

    2016-01-01

    The epigenetic modification of mitochondrial DNA (mtDNA) is still in controversy. To clarify this point, we applied the gold standard method for DNA methylation, bisulfite pyrosequencing, to examine human mtDNA methylation status. Before bisulfite conversion, BamHI was used to digest DNA to open the loop of mtDNA. The results demonstrated that the linear mtDNA had significantly higher bisulfite conversion efficiency compared with circular mtDNA. Furthermore, the methylation values obtained from linear mtDNA were significantly lower than that of circular mtDNA, which was verified by SEQUENOM MassARRAY. The above impacts of circular structure were also observed in lung DNA samples but not in saliva DNA samples. Mitochondrial genome methylation of blood samples and saliva samples from 14 unrelated individuals was detected. The detected regions covered 83 CpG sites across mtDNA including D-loop, 12 S rRNA, 16 S rRNA, ND1, COXI, ND3, ND4, ND5, CYTB. We found that the average methylation levels of nine regions were all less than 2% for both sample types. In conclusion, our findings firstly show that the circular structure of mtDNA affects bisulfite conversion efficiency, which leads to overestimation of mtDNA methylation values. CpG methylation in human mtDNA is a very rare event at most DNA regions. PMID:26996456

  12. CpG methylation patterns of human mitochondrial DNA.

    PubMed

    Liu, Baojing; Du, Qingqing; Chen, Lu; Fu, Guangping; Li, Shujin; Fu, Lihong; Zhang, Xiaojing; Ma, Chunling; Bin, Cong

    2016-01-01

    The epigenetic modification of mitochondrial DNA (mtDNA) is still in controversy. To clarify this point, we applied the gold standard method for DNA methylation, bisulfite pyrosequencing, to examine human mtDNA methylation status. Before bisulfite conversion, BamHI was used to digest DNA to open the loop of mtDNA. The results demonstrated that the linear mtDNA had significantly higher bisulfite conversion efficiency compared with circular mtDNA. Furthermore, the methylation values obtained from linear mtDNA were significantly lower than that of circular mtDNA, which was verified by SEQUENOM MassARRAY. The above impacts of circular structure were also observed in lung DNA samples but not in saliva DNA samples. Mitochondrial genome methylation of blood samples and saliva samples from 14 unrelated individuals was detected. The detected regions covered 83 CpG sites across mtDNA including D-loop, 12 S rRNA, 16 S rRNA, ND1, COXI, ND3, ND4, ND5, CYTB. We found that the average methylation levels of nine regions were all less than 2% for both sample types. In conclusion, our findings firstly show that the circular structure of mtDNA affects bisulfite conversion efficiency, which leads to overestimation of mtDNA methylation values. CpG methylation in human mtDNA is a very rare event at most DNA regions. PMID:26996456

  13. DNA methylation in human epigenomes depends on local topology of CpG sites

    PubMed Central

    Lövkvist, Cecilia; Dodd, Ian B.; Sneppen, Kim; Haerter, Jan O.

    2016-01-01

    In vertebrates, methylation of cytosine at CpG sequences is implicated in stable and heritable patterns of gene expression. The classical model for inheritance, in which individual CpG sites are independent, provides no explanation for the observed non-random patterns of methylation. We first investigate the exact topology of CpG clustering in the human genome associated to CpG islands. Then, by pooling genomic CpG clusters on the basis of short distances between CpGs within and long distances outside clusters, we show a strong dependence of methylation on the number and density of CpG organization. CpG clusters with fewer, or less densely spaced, CpGs are predominantly hyper-methylated, while larger clusters are predominantly hypo-methylated. Intermediate clusters, however, are either hyper- or hypo-methylated but are rarely found in intermediate methylation states. We develop a model for spatially-dependent collaboration between CpGs, where methylated CpGs recruit methylation enzymes that can act on CpGs over an extended local region, while unmethylated CpGs recruit demethylation enzymes that act more strongly on nearby CpGs. This model can reproduce the effects of CpG clustering on methylation and produces stable and heritable alternative methylation states of CpG clusters, thus providing a coherent model for methylation inheritance and methylation patterning. PMID:26932361

  14. DNA methylation in human epigenomes depends on local topology of CpG sites.

    PubMed

    Lövkvist, Cecilia; Dodd, Ian B; Sneppen, Kim; Haerter, Jan O

    2016-06-20

    In vertebrates, methylation of cytosine at CpG sequences is implicated in stable and heritable patterns of gene expression. The classical model for inheritance, in which individual CpG sites are independent, provides no explanation for the observed non-random patterns of methylation. We first investigate the exact topology of CpG clustering in the human genome associated to CpG islands. Then, by pooling genomic CpG clusters on the basis of short distances between CpGs within and long distances outside clusters, we show a strong dependence of methylation on the number and density of CpG organization. CpG clusters with fewer, or less densely spaced, CpGs are predominantly hyper-methylated, while larger clusters are predominantly hypo-methylated. Intermediate clusters, however, are either hyper- or hypo-methylated but are rarely found in intermediate methylation states. We develop a model for spatially-dependent collaboration between CpGs, where methylated CpGs recruit methylation enzymes that can act on CpGs over an extended local region, while unmethylated CpGs recruit demethylation enzymes that act more strongly on nearby CpGs. This model can reproduce the effects of CpG clustering on methylation and produces stable and heritable alternative methylation states of CpG clusters, thus providing a coherent model for methylation inheritance and methylation patterning. PMID:26932361

  15. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma.

    PubMed

    Hoebeeck, Jasmien; Michels, Evi; Pattyn, Filip; Combaret, Valérie; Vermeulen, Joëlle; Yigit, Nurten; Hoyoux, Claire; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-01-18

    CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers. PMID:18819746

  16. Aberrant methylation of ATG2B, ATG4D, ATG9A and ATG9B CpG island promoter is associated with decreased mRNA expression in sporadic breast carcinoma.

    PubMed

    Zhang, Xuemei; Li, Chuan; Wang, Da; Chen, Qu; Li, Chang-Long; Li, Hong-Jiang

    2016-09-30

    Epigenetic modifications are critical determinants in tumor initiation and progression. This study aims to detect the promoter methylation status and the mRNA expression levels of ATG2B, ATG4D, ATG9A and ATG9B, and then to explore their relationship in invasive ductal carcinomas (IDCs) and matched normal tissues (MNTs) of the breast. Methylation was observed as follows: 61.0% in ATG2B, 46.8% in ATG4D, 56.4% in ATG9A, and 74.0% in ATG9B of IDCs. Meanwhile, their mRNA expression levels of the IDCs was lower than that of the MNTs (P<0.001, P=0.019, P<0.001 and P<0.001, respectively). Methylated IDCs of ATG2B, ATG9A, ATG9B and unmethylated ATG4D, ATG9B showed significantly lower expression values compared to the MNTs (P=0.003, P<0.001, P<0.001, P=0.014 and P=0.002, respectively). The methylations of ATG2B and ATG9B were related to their lower expression levels in IDCs (P=0.017 and P=0.023). Moreover, ATG2B methylation was positively associated with the grade (P=0.024) and TNM stage (P=0.015); Methylation of ATG4D and ATG9A was positively correlated to lymph node involvement (P=0.012 and P=0.018), while methylation of ATG9B appeared susceptible to CK5/6 positive status and deteriorated TNM stages (P=0.003 and P=0.012). Moreover, the decreased expression of ATG2B was related to the ER and PR status (P=0.004 and P=0.003). The ER, HER-2 and lymph node metastasis status are the determinants to reducing the expression of ATG4D, ATG9A and ATG9B (P=0.026, P=0.010 and P=0.011, respectively). This study highlights the transcriptional inactivation mechanisms of ATG2B, ATG4D, ATG9A and ATG9B promoter methylation status and the possible origin of autophagy signal pathway repression in IDCs. PMID:27265029

  17. High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq

    PubMed Central

    2014-01-01

    Background Extensive reprogramming and dysregulation of DNA methylation is an important characteristic of pancreatic cancer (PC). Our study aimed to characterize the genomic methylation patterns in various genomic contexts of PC. The methyl capture sequencing (methylCap-seq) method was used to map differently methylated regions (DMRs) in pooled samples from ten PC tissues and ten adjacent non-tumor (PN) tissues. A selection of DMRs was validated in an independent set of PC and PN samples using methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), and methylation sensitive restriction enzyme-based qPCR (MSRE-qPCR). The mRNA and expressed sequence tag (EST) expression of the corresponding genes was investigated using RT-qPCR. Results A total of 1,131 PC-specific and 727 PN-specific hypermethylated DMRs were identified in association with CpG islands (CGIs), including gene-associated CGIs and orphan CGIs; 2,955 PC-specific and 2,386 PN-specific hypermethylated DMRs were associated with gene promoters, including promoters containing or lacking CGIs. Moreover, 1,744 PC-specific and 1,488 PN-specific hypermethylated DMRs were found to be associated with CGIs or CGI shores. These results suggested that aberrant hypermethylation in PC typically occurs in regions surrounding the transcription start site (TSS). The BSP, MSP, MSRE-qPCR, and RT-qPCR data indicated that the aberrant DNA methylation in PC tissue and in PC cell lines was associated with gene (or corresponding EST) expression. Conclusions Our study characterized the genome-wide DNA methylation patterns in PC and identified DMRs that were distributed among various genomic contexts that might influence the expression of corresponding genes or transcripts to promote PC. These DMRs might serve as diagnostic biomarkers or therapeutic targets for PC. PMID:25276247

  18. Regulation of DNA transposition by CpG methylation and chromatin structure in human cells

    PubMed Central

    2013-01-01

    Background The activity of transposable elements can be regulated by different means. DNA CpG methylation is known to decrease or inhibit transpositional activity of diverse transposons. However, very surprisingly, it was previously shown that CpG methylation of the Sleeping Beauty (SB) transposon significantly enhanced transposition in mouse embryonic stem cells. Results In order to investigate the unexpected response of SB transposition to CpG methylation, related transposons from the Tc1/mariner superfamily, that is, Tc1, Himar1, Hsmar1, Frog Prince (FP) and Minos were tested to see how transposition was affected by CpG methylation. A significant increase of >20-fold in transposition of SB, FP and Minos was seen, whereas Tc1, Himar1 and Hsmar1 showed no difference in transposition upon CpG-methylation. The terminal inverted repeats (TIRs) of the SB, FP and Minos elements share a common structure, in which each TIR contains two functionally important binding sites for the transposase (termed the IR/DR structure). The group of IR/DR elements showed increased excision after CpG methylation compared to untreated transposon donor plasmids. We found that de novo CpG methylation is not required for transposition. A mutated FP donor plasmid with depleted CpG sites in both TIRs was as efficient in transposition as the wild-type transposon, indicating that CpG sites inside the TIRs are not responsible for altered binding of factors potentially modulating transposition. By using an in vivo one-hybrid DNA-binding assay in cultured human cells we found that CpG methylation had no appreciable effect on the affinity of SB transposase to its binding sites. However, chromatin immunoprecipitation indicated that CpG-methylated transposon donor plasmids are associated with a condensed chromatin structure characterized by trimethylated histone H3K9. Finally, DNA compaction by protamine was found to enhance SB transposition. Conclusions We have shown that DNA CpG methylation

  19. CpG Island Methylation in a Mouse Model of Lymphoma Is Driven by the Genetic Configuration of Tumor Cells

    PubMed Central

    Trikha, Prashant; Raval, Aparna; Huang, Yuan; Wu, Yue-Zhong; Rodriguez, Benjamin; Keller, Benjamin; Liyanarachchi, Sandya; Wei, Guo; Davuluri, Ramana V; Weinstein, Michael; Felsher, Dean; Ostrowski, Michael; Leone, Gustavo; Plass, Christoph

    2007-01-01

    Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targeting of DNA methylation activity to specific promoter sequences, or the selection of rare DNA methylation events during disease progression. Using restriction landmark genomic scanning on samples derived from tissue culture and in vivo models of T cell lymphomas, we found that MYC overexpression gave rise to a specific signature of CpG island hypermethylation. This signature reflected gene transcription profiles and was detected only in advanced stages of disease. The further inactivation of the Pten, p53, and E2f2 tumor suppressors in MYC-induced lymphomas resulted in distinct and diagnostic CpG island methylation signatures. Our data suggest that tumor-specific DNA methylation in lymphomas arises as a result of the selection of rare DNA methylation events during the course of tumor development. This selection appears to be driven by the genetic configuration of tumor cells, providing experimental evidence for a causal role of DNA hypermethylation in tumor progression and an explanation for the tremendous epigenetic heterogeneity observed in the evolution of human cancers. The ability to predict genome-wide epigenetic silencing based on relatively few genetic alterations will allow for a more complete classification of tumors and understanding of tumor cell biology. PMID:17907813

  20. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  1. A subset of methylated CpG sites differentiate psoriatic from normal skin

    PubMed Central

    Roberson, Elisha D.O.; Liu, Ying; Ryan, Caitriona; Joyce, Cailin E.; Duan, Shengui; Cao, Li; Martin, Ann; Liao, Wilson; Menter, Alan; Bowcock, Anne M.

    2013-01-01

    Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared to normal skin. However to our knowledge global epigenetic profiling of psoriatic skin is previously unreported. Here we describe a genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional up-regulation are important discriminators of psoriasis. We observed intrinsic epigenetic differences in uninvolved skin. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed reversion of methylation levels towards the non-psoriatic state after one month of anti-TNF-α therapy. PMID:22071477

  2. Frequent aberrant methylation of p16INK4a in primary rat lung tumors.

    PubMed Central

    Swafford, D S; Middleton, S K; Palmisano, W A; Nikula, K J; Tesfaigzi, J; Baylin, S B; Herman, J G; Belinsky, S A

    1997-01-01

    The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat

  3. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues

    SciTech Connect

    Matouskova, Magda; Blazkova, Jana; Pajer, Petr; Pavlicek, Adam; Hejnar, Jiri . E-mail: hejnar@img.cas.cz

    2006-04-15

    Syncytin-1 is a captive envelope glycoprotein encoded by one of human endogenous retroviruses W. It is expressed exclusively in the placental trophoblast where it participates in cell-to-cell fusion during differentiation of syncytiotrophobast. In other tissues, however, syncytin-1 expression must be kept in check because inadvertent cell fusion might be dangerous for tissue organization and integrity. We describe here an inverse correlation between CpG methylation of syncytin-1 5' long terminal repeat and its expression. Hypomethylation of the syncytin-1 5' long terminal repeat in the placenta and in the choriocarcinoma-derived cell line BeWo was detected. However, other analyzed primary cells and cell lines non-expressing syncytin-1 contain proviruses heavily methylated in this sequence. CpG methylation of syncytin-1 is resistant to the effect of the demethylating agent 5-azacytidine. The inhibitory role of CpG methylation is further confirmed by transient transfection of in-vitro-methylated syncytin-1 promoter-driven reporter construct. Altogether, we conclude that CpG methylation plays a principal role in the transcriptional suppression of syncytin-1 in non-placental tissues, and, in contrast, demethylation of the syncytin-1 promoter in trophoblast is a prerequisite for its expression and differentiation of multinucleated syncytiotrophoblast.

  4. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    PubMed

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945

  5. Genomics of CpG Methylation in Developing and Developed Zebrafish

    PubMed Central

    McGaughey, David M.; Abaan, Hatice Ozel; Miller, Ryan M.; Kropp, Peter A.; Brody, Lawrence C.

    2014-01-01

    DNA methylation is a dynamic process through which specific chromatin modifications can be stably transmitted from parent to daughter cells. A large body of work has suggested that DNA methylation influences gene expression by silencing gene promoters. However, these conclusions were drawn from data focused mostly on promoter regions. Regarding the entire genome, it is unclear how methylation and gene transcription patterns are related during vertebrate development. To identify the genome-wide distribution of CpG methylation, we created series of high-resolution methylome maps of Danio rerio embryos during development and in mature, differentiated tissues. We found that embryonic and terminal tissues have unique methylation signatures in CpG islands and repetitive sequences. Fully differentiated tissues have increased CpG and LTR methylation and decreased SINE methylation relative to embryonic tissues. Unsupervised clustering analyses reveal that the embryonic and terminal tissues can be classified solely by their methylation patterning. Novel analyses also identify a previously undescribed genome-wide exon methylation signature. We also compared whole genome methylation with genome-wide mRNA expression levels using publicly available RNA-seq datasets. These comparisons revealed previously unrecognized relationships between gene expression, alternative splicing, and exon methylation. Surprisingly, we found that exonic methylation is a better predictor of mRNA expression level than promoter methylation. We also found that transcriptionally skipped exons have significantly less methylation than retained exons. Our integrative analyses reveal highly complex interplay between gene expression, alternative splicing, development, and methylation patterning in zebrafish. PMID:24657902

  6. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood

    PubMed Central

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 – 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 – 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk. PMID:26646899

  7. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors.

    PubMed

    Planello, Aline C; Ji, Junfeng; Sharma, Vivek; Singhania, Rajat; Mbabaali, Faridah; Müller, Fabian; Alfaro, Javier A; Bock, Christoph; De Carvalho, Daniel D; Batada, Nizar N

    2014-01-01

    The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs) differs from that of embryonic stem cells (ESCs). Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC) or the Thomson factors (OCT4, SOX2, NANOG and LIN28), and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC)-specific and Thomson-iPSC (T-iPSC)-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities. PMID:25408883

  8. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  9. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    PubMed

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  10. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer

    PubMed Central

    Sun, Chang; Reimers, Laura L.; Burk, Robert D.

    2011-01-01

    Objective Invasive cervix cancer (ICC) is the second most common malignant tumor in women. Human papillomavirus 16 (HPV16) causes more than 50% of all ICC and is a major cause of cervix intraepithelial neoplasia (CIN). DNA methylation is a covalent modification predominantly occurring at CpG dinucleotides. Such epigenetic modifications are associated with changes in DNA-protein interactions and gene activation. This study examined the association of viral and host genomic methylation patterns and cervix neoplasia. Methods Exfoliated cervical lavage samples positive for HPV16 from women with and without cytomorphic changes of infection (n=46), CIN2 (n=12), and CIN3+ (n=27) were used to interrogate the methylation patterns of the HPV16 L1 gene and upstream regulatory region (URR), five host nuclear genes (TERT, RARB, DAPK1, MAL, and CADM1), and mitochondrial DNA (mtDNA). DNA isolated from exfoliated cervicovaginal cells was treated with bisulfite, specific regions of the viral and host genome were PCR amplified and CpG methylation was quantified using EpiTYPER and pyrosequencing. Results Methylation at 14 of the tested CpG sites within the HPV16 L1 region were significantly higher in CIN3+ compared to HPV16 genomes from women without CIN3+. In contrast, only 2 out of 16 CpG sites in HPV16 URR, 5/5 in TERT, 1/4 in DAPK1 and 1/3 mtDNA, and 2/5 in RARB were associated with increased methylation in CIN3+. Conclusions These results indicate that increased methylation of CpG sites in the HPV16 L1 ORF is associated with CIN3+ and thus, may constitute a potential biomarker for precancerous and cancerous cervix disease. PMID:21306759

  11. Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states.

    PubMed

    Haerter, Jan O; Lövkvist, Cecilia; Dodd, Ian B; Sneppen, Kim

    2014-02-01

    Inheritance of 5-methyl cytosine modification of CpG (CG/CG) DNA sequences is needed to maintain early developmental decisions in vertebrates. The standard inheritance model treats CpGs as independent, with methylated CpGs maintained by efficient methylation of hemimethylated CpGs produced after DNA replication, and unmethylated CpGs maintained by an absence of de novo methylation. By stochastic simulations of CpG islands over multiple cell cycles and systematic sampling of reaction parameters, we show that the standard model is inconsistent with many experimental observations. In contrast, dynamic collaboration between CpGs can provide strong error-tolerant somatic inheritance of both hypermethylated and hypomethylated states of a cluster of CpGs, reproducing observed stable bimodal methylation patterns. Known recruitment of methylating enzymes by methylated CpGs could provide the necessary collaboration, but we predict that recruitment of demethylating enzymes by unmethylated CpGs strengthens inheritance and allows CpG islands to remain hypomethylated within a sea of hypermethylation. PMID:24288373

  12. Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states

    PubMed Central

    Haerter, Jan O.; Lövkvist, Cecilia; Dodd, Ian B.; Sneppen, Kim

    2014-01-01

    Inheritance of 5-methyl cytosine modification of CpG (CG/CG) DNA sequences is needed to maintain early developmental decisions in vertebrates. The standard inheritance model treats CpGs as independent, with methylated CpGs maintained by efficient methylation of hemimethylated CpGs produced after DNA replication, and unmethylated CpGs maintained by an absence of de novo methylation. By stochastic simulations of CpG islands over multiple cell cycles and systematic sampling of reaction parameters, we show that the standard model is inconsistent with many experimental observations. In contrast, dynamic collaboration between CpGs can provide strong error-tolerant somatic inheritance of both hypermethylated and hypomethylated states of a cluster of CpGs, reproducing observed stable bimodal methylation patterns. Known recruitment of methylating enzymes by methylated CpGs could provide the necessary collaboration, but we predict that recruitment of demethylating enzymes by unmethylated CpGs strengthens inheritance and allows CpG islands to remain hypomethylated within a sea of hypermethylation. PMID:24288373

  13. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands

    PubMed Central

    Talhaoui, Ibtissam; Couve, Sophie; Gros, Laurent; Ishchenko, Alexander A.; Matkarimov, Bakhyt; Saparbaev, Murat K.

    2014-01-01

    The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes. PMID:24692658

  14. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder.

    PubMed

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  15. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    PubMed Central

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10−9), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10−3). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. PMID:25924914

  16. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  17. Aberrant Vimentin Methylation Is Characteristic of Upper Gastrointestinal Pathologies

    PubMed Central

    Moinova, Helen; Leidner, Rom S.; Ravi, Lakshmeswari; Lutterbaugh, James; Barnholtz-Sloan, Jill S.; Chen, Yanwen; Chak, Amitabh; Markowitz, Sanford D.; Willis, Joseph E.

    2012-01-01

    Background We have previously established aberrant DNA methylation of Vimentin exon-1 (VIM methylation) as a common epigenetic event in colon cancer and as a biomarker for detecting colon neoplasia. We now examine VIM methylation in neoplasia of the upper gastrointestinal tract. Methods Using a quantitative real-time Methylation-Specific PCR assay we tested for VIM methylation in archival specimens of esophageal and gastric neoplasia. Results We find that acquisition of aberrant VIM methylation is highly common in these neoplasms, but largely absent in controls. The highest frequency of VIM methylation was detected in lesions of the distal esophagus, including 91% of Barrett’s esophagus (BE, n=11), 100% of high grade dysplasia (HGD, n=5), and 81% of esophageal adenocarcinoma (EAC, n=26), but absent in controls (n=9). VIM methylation similarly was detected in 87% of signet ring (n=15) and 53% of intestinal type gastric cancers (n=17). Moreover, in tests of cytology brushings VIM methylation proved detectable in 100% of BE cases (n=7), 100% of HGD cases (n=4), and 83% of EAC cases (n=18), but was absent in all controls (n=5). Conclusions These findings establish aberrant VIM methylation as a highly common epigenetic alteration in neoplasia of the upper gastrointestinal tract, and demonstrate that Barrett’s esophagus, even without dysplasia, already contains epigenetic alterations characteristic of adenocarcinoma. Impact These findings suggest VIM methylation as a biomarker of upper gastrointestinal neoplasia with potential for development as molecular cytology in esophageal screening. PMID:22315367

  18. Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes

    PubMed Central

    2011-01-01

    Background The Human Papillomavirus (HPV) genome is divided into early and late coding sequences, including 8 open reading frames (ORFs) and a regulatory region (LCR). Viral gene expression may be regulated through epigenetic mechanisms, including cytosine methylation at CpG dinucleotides. We have analyzed the distribution of CpG sites and CpG islands/clusters (CGI) among 92 different HPV genomes grouped in function of their preferential tropism: cutaneous or mucosal. We calculated the proportion of CpG sites (PCS) for each ORF and calculated the expected CpG values for each viral type. Results CpGs are underrepresented in viral genomes. We found a positive correlation between CpG observed and expected values, with mucosal high-risk (HR) virus types showing the smallest O/E ratios. The ranges of the PCS were similar for most genomic regions except E4, where the majority of CpGs are found within islands/clusters. At least one CGI belongs to each E2/E4 region. We found positive correlations between PCS for each viral ORF when compared with the others, except for the LCR against four ORFs and E6 against three other ORFs. The distribution of CpG islands/clusters among HPV groups is heterogeneous and mucosal HR-HPV types exhibit both lower number and shorter island sizes compared to cutaneous and mucosal Low-risk (LR) HPVs (all of them significantly different). Conclusions There is a difference between viral and cellular CpG underrepresentation. There are significant correlations between complete genome PCS and a lack of correlations between several genomic region pairs, especially those involving LCR and E6. L2 and L1 ORF behavior is opposite to that of oncogenes E6 and E7. The first pair possesses relatively low numbers of CpG sites clustered in CGIs while the oncogenes possess a relatively high number of CpG sites not associated to CGIs. In all HPVs, E2/E4 is the only region with at least one CGI and shows a higher content of CpG sites in every HPV type with an

  19. Elucidating the Landscape of Aberrant DNA Methylation in Hepatocellular Carcinoma

    PubMed Central

    Song, Min-Ae; Tiirikainen, Maarit; Kwee, Sandi; Okimoto, Gordon; Yu, Herbert; Wong, Linda L.

    2013-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC. Methods and Findings We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list. Conclusion Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and

  20. Unique DNA methylome profiles in CpG island methylator phenotype colon cancers.

    PubMed

    Xu, Yaomin; Hu, Bo; Choi, Ae-Jin; Gopalan, Banu; Lee, Byron H; Kalady, Matthew F; Church, James M; Ting, Angela H

    2012-02-01

    A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes. PMID:21990380

  1. Profile analysis and prediction of tissue-specific CpG island methylation classes

    PubMed Central

    2009-01-01

    Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes

  2. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia

    PubMed Central

    Sakaguchi, Hirotoshi; Muramatsu, Hideki; Okuno, Yusuke; Makishima, Hideki; Xu, Yinyan; Furukawa-Hibi, Yoko; Wang, Xinan; Narita, Atsushi; Yoshida, Kenichi; Shiraishi, Yuichi; Doisaki, Sayoko; Yoshida, Nao; Hama, Asahito; Takahashi, Yoshiyuki; Yamada, Kiyofumi; Miyano, Satoru; Ogawa, Seishi; Maciejewski, Jaroslaw P.; Kojima, Seiji

    2015-01-01

    Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options. PMID:26720758

  3. CHANGES IN CpG ISLANDS METHYLATION PATTERNS DURING DUCTAL BREAST CARCINOMA PROGRESSION

    PubMed Central

    Hoque, Mohammad Obaidul; Prencipe, Maria; Poeta, Maria Luana; Valori, Vanna Maria; Gallo, Antonietta Pia; Ostrow, Kimberly; Bonghi, Loriana; Vitale, Rita; Maiello, Evaristo; Apicella, Adolfo; Rossiello, Raffaele; Zito, Francesco; Stefania, Tommasi; Paradiso, Angelo; Schittulli, Francesco; Carella, Massimo; Dallapiccola, Bruno; Murgo, Roberto; Carosi, Illuminato; Bisceglia, Michele; Fazio, Vito Michele; Sidransky, David; Parrella, Paola

    2013-01-01

    CpG island hypermethylation is emerging as one of the main mechanisms for inactivation of cancer related genes in breast tumorigenesis. We examined the changes in methylation patterns during ductal breast cancer progression from atypical ductal hyperplasia to in situ and invasive carcinoma. Paired samples of synchronous pre invasive lesions (Atypical Ductal Hyperplasia and/or Ductal Carcinoma in situ) and invasive ductal breast carcinoma from 31 patients, together with isolated lesions from additional 24 patients were studied. Overall, 95 pathological samples and 20 normal breast tissues were analyzed by Quantitative Methylation Specific PCR (QMSP) on a panel of 9 gene promoters (ESR1, APC, CDH1, CTNNB1, GSTPI, THBS1, MGMT, TMS1 and TIMP3). APC, CDH1, and CTNNB1 promoter regions showed an increase in frequency of methylation and increased methylation levels in pathological samples when compared with normal breast tissues. The analysis of the syncronous paired breast lesions demonstrated also an increase in methylation frequency and level for APC, CDH1, and CTNNB1 genes during progression. By establishing a cutoff value, we were able to distinguish among -invasive and invasive lesions. Synchronous methylation of APC, CDH1, and CTNNB1 was associated only with invasive lesions, whereas simultaneous methylation of APC and CDH1 or APC and CTNNB1 were more frequent in ductal carcinoma in situ and invasive carcinoma. Our data point to direct involvement of APC, CDH1, and CTNNB1 CpG island promoter methylation in the early stages of breast cancer progression, and suggest that these molecular alterations might be involved in the transition to an invasive phenotype. PMID:19789364

  4. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos

    PubMed Central

    Zhang, Sheng; Chen, Xin; Wang, Fang; An, Xinglan; Tang, Bo; Zhang, Xueming; Sun, Liguang; Li, Ziyi

    2016-01-01

    DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming of DNA methylation. The results showed that global DNA methylation followed a typical pattern of demethylation and remethylation in IVF preimplantation embryos; however, the global genome remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient demethylation and hypermethylation in the SCNT group. Second, a differentially methylated region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA methylation reprogramming in SCNT embryos in a locus-specific manner. PMID:27456302

  5. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    PubMed

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/. PMID:26797014

  6. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role. PMID:16391867

  7. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells

    SciTech Connect

    Sadikovic, Bekim; Andrews, Joseph; Rodenhiser, David I.

    2007-12-15

    Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes.

  8. Developmentally programmed 3' CpG island methylation confers tissue- and cell-type-specific transcriptional activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During development, a small but significant number of CpG islands (CGIs) becomes methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here we used genome-wid...

  9. Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients

    PubMed Central

    Kimura, Naoki; Nagasaka, Takeshi; Murakami, Jun; Sasamoto, Hiromi; Murakami, Masahiro; Tanaka, Noriaki; Matsubara, Nagahide

    2005-01-01

    Aberrant methylation of DNA has been shown to play an important role in a variety of human cancers, developmental disorders and aging. Hence, aberrant methylation patterns in genes can be a molecular marker for such conditions. Therefore, a reliable but uncomplicated method to detect DNA methylation is preferred, not merely for research purposes but for daily clinical practice. To achieve these aims, we have established a precise system to identify DNA methylation patterns based on an oligonucleotide microarray technology. Our microarray method has an advantage over conventional methods and is unique because it allows the precise measurement of the methylation patterns within a target region. Our simple signal detection system depends on using an avidin–biotinylated peroxidase complex and does not require an expensive laser scanner or hazardous radioisotope. In this study, we applied our technique to detect promoter methylation status of O6-methylguanine-DNA methyltransferase (MGMT) gene. Our easy-handling technology provided reproducible and precise measurement of methylated CpGs in MGMT promoter and, thus, our method may bring about a potential evolution in the handling of a variety of high-throughput DNA methylation analyses for clinical purposes. PMID:15760842

  10. Aberrant methylation patterns in cancer: a clinical view

    PubMed Central

    Paska, Alja Videtic; Hudler, Petra

    2015-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets. PMID:26110029

  11. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development.

    PubMed

    Sakashita, K; Koike, K; Kinoshita, T; Shiohara, M; Kamijo, T; Taniguchi, S; Kubota, T

    2001-10-01

    We examined the kenetics of p15 methylation and expression during myeloid development. We treated human cord blood CD34+ cells with either GM-CSF alone or in combination with stem cell factor and followed methylation at this locus using bisulfite genomic sequencing. CD34+ cells were found to be either fully methylated or completely unmethylated at 27 CpG dinucleotide sites in exon 1 and at 18 CpG sites in the promoter region of the p15 gene. A time-course study showed that the percentage of the allelic methylation of p15 CpG island increased to approximately 50% to 60% until 7 days after cytokine stimulation, then decreased to less than 10% after 21 days. The methylation was also observed in bone marrow CD34+ cells exposed to GM-CSF. p15 expression varied inversely with methylation. Expression was negligible or at low levels until 14 days, after which it increased substantially. The frequency of myeloid colony-forming cells in the progeny decreased and myeloid-specific markers increased in the later stages. Based on our observations on cells grown with GM-CSF and 5-aza-2'-deoxycytidine, DNA methylation of the p15 promoter region CpG island appears to be associated with proliferation rather than differentiation of normal human myeloid progenitors. PMID:11602627

  12. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development

    PubMed Central

    Sakashita, Kazuo; Koike, Kenichi; Kinoshita, Tatsuya; Shiohara, Masaaki; Kamijo, Takehiko; Taniguchi, Shun’ichiro; Kubota, Takeo

    2001-01-01

    We examined the kenetics of p15 methylation and expression during myeloid development. We treated human cord blood CD34+ cells with either GM-CSF alone or in combination with stem cell factor and followed methylation at this locus using bisulfite genomic sequencing. CD34+ cells were found to be either fully methylated or completely unmethylated at 27 CpG dinucleotide sites in exon 1 and at 18 CpG sites in the promoter region of the p15 gene. A time-course study showed that the percentage of the allelic methylation of p15 CpG island increased to approximately 50% to 60% until 7 days after cytokine stimulation, then decreased to less than 10% after 21 days. The methylation was also observed in bone marrow CD34+ cells exposed to GM-CSF. p15 expression varied inversely with methylation. Expression was negligible or at low levels until 14 days, after which it increased substantially. The frequency of myeloid colony-forming cells in the progeny decreased and myeloid-specific markers increased in the later stages. Based on our observations on cells grown with GM-CSF and 5-aza-2′-deoxycytidine, DNA methylation of the p15 promoter region CpG island appears to be associated with proliferation rather than differentiation of normal human myeloid progenitors. PMID:11602627

  13. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  14. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    PubMed Central

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/. PMID:26797014

  15. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction.

    PubMed

    Wang, Yuling; Wee, Eugene J H; Trau, Matt

    2015-07-11

    Sensitive and accurate DNA methylation analysis at CpG resolution was demonstrated using surface-enhanced Raman scattering (SERS) via ligase chain reaction (LCR). The method was sensitive to 10% changes in methylation and the accuracy of methylation estimates in cells and serum DNA validated with sequencing. The LCR/SERS approach may have broad applications as an alternative (epi)genetic detection method. PMID:26063626

  16. Prenatal Tobacco Smoke Exposure Is Associated with Childhood DNA CpG Methylation

    PubMed Central

    Breton, Carrie V.; Siegmund, Kimberly D.; Joubert, Bonnie R.; Wang, Xinhui; Qui, Weiliang; Carey, Vincent; Nystad, Wenche; Håberg, Siri E.; Ober, Carole; Nicolae, Dan; Barnes, Kathleen C.; Martinez, Fernando; Liu, Andy; Lemanske, Robert; Strunk, Robert; Weiss, Scott; London, Stephanie; Gilliland, Frank; Raby, Benjamin

    2014-01-01

    Background Smoking while pregnant is associated with a myriad of negative health outcomes in the child. Some of the detrimental effects may be due to epigenetic modifications, although few studies have investigated this hypothesis in detail. Objectives To characterize site-specific epigenetic modifications conferred by prenatal smoking exposure within asthmatic children. Methods Using Illumina HumanMethylation27 microarrays, we estimated the degree of methylation at 27,578 distinct DNA sequences located primarily in gene promoters using whole blood DNA samples from the Childhood Asthma Management Program (CAMP) subset of Asthma BRIDGE childhood asthmatics (n = 527) ages 5–12 with prenatal smoking exposure data available. Using beta-regression, we screened loci for differential methylation related to prenatal smoke exposure, adjusting for gender, age and clinical site, and accounting for multiple comparisons by FDR. Results Of 27,578 loci evaluated, 22,131 (80%) passed quality control assessment and were analyzed. Sixty-five children (12%) had a history of prenatal smoke exposure. At an FDR of 0.05, we identified 19 CpG loci significantly associated with prenatal smoke, of which two replicated in two independent populations. Exposure was associated with a 2% increase in mean CpG methylation in FRMD4A (p = 0.01) and Cllorf52 (p = 0.001) compared to no exposure. Four additional genes, XPNPEP1, PPEF2, SMPD3 and CRYGN, were nominally associated in at least one replication group. Conclusions These data suggest that prenatal exposure to tobacco smoke is associated with reproducible epigenetic changes that persist well into childhood. However, the biological significance of these altered loci remains unknown. PMID:24964093

  17. Spectroscopic Study of CpG Alternating DNA-Methylene Blue Interaction for Methylation Detection.

    PubMed

    Hosseini, Morteza; Khaki, Fereshteh; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-05-01

    Recognition of methylated DNA sites would be useful strategy due to the important roles of methylation in disease occurrence and developmental processes. The interaction of CpG rich methylated and unmethylated DNA hybrid with methylene blue (MB) as an optical probe has been investigated by absorption, emission, circular dichorism and fluorescence anisotropy analysis. Titration of MB with both sequences caused a hypsochromism and decreased the absorption of MB that indicating an intercalative mode of interaction. The experimental results revealed that MB as the optical indicator could distinguish between the methylated and unmethylated DNA sequences. Under optimum conditions, upon the addition of methylated dsDNA, the fluorescence intensity increased in linear range from 1.0 × 10(-9) to 1.0 × 10(-6) M with detection limit of 7.2 × 10(-10) M and on the other hand, the intensity of MB showed no change with addition of unmethylated dsDNA. PMID:27048226

  18. Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator

    PubMed Central

    2014-01-01

    Background The catechol-O-methyltransferase (COMT) enzyme has been widely studied due to its multiple roles in neurological functioning, estrogen biology, and methylation metabolic pathways. Numerous studies have investigated variation in the large COMT gene, with the majority focusing on single nucleotide polymorphisms (SNPs). This body of work has linked COMT genetic variation with a vast array of conditions, including several neurobehavioral disorders, pain sensitivity, and multiple human cancers. Based on COMT’s numerous biological roles and recent studies suggesting that methylation of the COMT gene impacts COMT gene expression, we comprehensively interrogated methylation in over 200 CpG dinucleotide sequences spanning the length of the COMT gene. Methods Using saliva-derived DNA from a non-clinical sample of human subjects, we tested for associations between COMT CpG methylation and factors reported to interact with COMT genetic effects, including demographic factors and alcohol use. Finally, we tested associations between COMT CpG methylation state and COMT gene expression in breast cancer cell lines. We interrogated >200 CpGs in 13 amplicons spanning the 5’ UTR to the last exon of the CpG dinucleotide-rich COMT gene in n = 48 subjects, n = 11 cell lines and 1 endogenous 18S rRNA control. Results With the exception of the CpG island in the 5’UTR and 1st exon, all other CpG islands were strongly methylated with typical dynamic ranges between 50-90%. In the saliva samples, methylation of multiple COMT loci was associated with socioeconomic status or ethnicity. We found associations between methylation at numerous loci and genotype at the functional Val 158 Met SNP (rs4680), and most of the correlations between methylation and demographic and alcohol use factors were Val 158 Met allele-specific. Methylation at several of these loci also associated with COMT gene expression in breast cancer cell lines. Conclusions We report the first comprehensive

  19. Are clinicopathological features of colorectal cancers with methylation in half of CpG island methylator phenotype panel markers different from those of CpG island methylator phenotype-high colorectal cancers?

    PubMed

    Bae, Jeong Mo; Rhee, Ye-Young; Kim, Kyung Ju; Wen, Xianyu; Song, Young Seok; Cho, Nam-Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2016-01-01

    CpG island methylator phenotype (CIMP)-high (CIMP-H) colorectal cancer (CRC) is defined when a tumor shows methylation at greater than or equal to 60% of CIMP panel markers. Although CRCs with methylation at 50% of panel markers are classified as CIMP-low/CIMP-0 tumors, little is known regarding the clinicopathological and molecular features of CRCs with methylation at 4/8 panel markers (4/8 methylated markers) and whether they are akin to CIMP-H or CIMP-low/CIMP-0 CRCs in terms of their clinicopathological or molecular features. A total of 1164 cases of surgically resected CRC were analyzed for their methylation status in 8 CIMP panel markers, and the frequencies of various clinicopathological and molecular features were compared between CRCs with 0/8, 1/8 to 3/8, 4/8, and 5/8 to 8/8 methylated markers. CRCs with 4/8 methylated markers were closer to CRCs with 5/8 to 8/8 methylated markers in terms of sex distribution, mucin production, serration, nodal metastasis, CK7 expression, CK20 loss, and CDX2 loss frequencies and overall survival rate. CRCs with methylation at 4/8 markers were closer to CRCs with 1/8 to 3/8 methylated markers in terms of less frequent right colon location and poor differentiation. CRCs with 4/8 methylated markers showed the shortest overall survival time compared with CRCs with 0/8, 1/8 to 3/8, 4/8, or 5/8 to 8/8 methylated markers. In terms of clinicopathological and molecular features, CRCs with 4/8 methylated markers appeared to be closer to CIMP-H than to CIMP-low/CIMP-0 and would thus be better classified as CIMP-H if the CRCs require classification into either CIMP-H or CIMP-low/CIMP-0. PMID:26520418

  20. A CPG ISLAND AT THE PROMOTER OF THE PDE8B GENE IS METHYLATED IN PLACENTA AND HYDATIDIFORM MOLES, BUT NOT IN CONTROL DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: We used a genome-wide CpG methylation screen, restriction landmark genome scanning (RLGS) to identify CpG islands that have altered methylation in complete hydatidiform moles (CHM), compared to control genomic DNA. Because CHM are diploid, but of uniparental parental inheritance and uniq...

  1. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers

    PubMed Central

    Li, Lili; Li, Chen; Mao, Haitao; Du, Zhenfang; Chan, Wai Yee; Murray, Paul; Luo, Bing; Chan, Anthony TC; Mok, Tony SK; Chan, Francis KL; Ambinder, Richard F; Tao, Qian

    2016-01-01

    Promoter CpG methylation is a fundamental regulatory process of gene expression. TET proteins are active CpG demethylases converting 5-methylcytosine to 5-hydroxymethylcytosine, with loss of 5 hmC as an epigenetic hallmark of cancers, indicating critical roles of TET proteins in epigenetic tumorigenesis. Through analysis of tumor methylomes, we discovered TET1 as a methylated target, and further confirmed its frequent downregulation/methylation in cell lines and primary tumors of multiple carcinomas and lymphomas, including nasopharyngeal, esophageal, gastric, colorectal, renal, breast and cervical carcinomas, as well as non-Hodgkin, Hodgkin and nasal natural killer/T-cell lymphomas, although all three TET family genes are ubiquitously expressed in normal tissues. Ectopic expression of TET1 catalytic domain suppressed colony formation and induced apoptosis of tumor cells of multiple tissue types, supporting its role as a broad bona fide tumor suppressor. Furthermore, TET1 catalytic domain possessed demethylase activity in cancer cells, being able to inhibit the CpG methylation of tumor suppressor gene (TSG) promoters and reactivate their expression, such as SLIT2, ZNF382 and HOXA9. As only infrequent mutations of TET1 have been reported, compared to TET2, epigenetic silencing therefore appears to be the dominant mechanism for TET1 inactivation in cancers, which also forms a feedback loop of CpG methylation during tumorigenesis. PMID:27225590

  2. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers.

    PubMed

    Li, Lili; Li, Chen; Mao, Haitao; Du, Zhenfang; Chan, Wai Yee; Murray, Paul; Luo, Bing; Chan, Anthony Tc; Mok, Tony Sk; Chan, Francis Kl; Ambinder, Richard F; Tao, Qian

    2016-01-01

    Promoter CpG methylation is a fundamental regulatory process of gene expression. TET proteins are active CpG demethylases converting 5-methylcytosine to 5-hydroxymethylcytosine, with loss of 5 hmC as an epigenetic hallmark of cancers, indicating critical roles of TET proteins in epigenetic tumorigenesis. Through analysis of tumor methylomes, we discovered TET1 as a methylated target, and further confirmed its frequent downregulation/methylation in cell lines and primary tumors of multiple carcinomas and lymphomas, including nasopharyngeal, esophageal, gastric, colorectal, renal, breast and cervical carcinomas, as well as non-Hodgkin, Hodgkin and nasal natural killer/T-cell lymphomas, although all three TET family genes are ubiquitously expressed in normal tissues. Ectopic expression of TET1 catalytic domain suppressed colony formation and induced apoptosis of tumor cells of multiple tissue types, supporting its role as a broad bona fide tumor suppressor. Furthermore, TET1 catalytic domain possessed demethylase activity in cancer cells, being able to inhibit the CpG methylation of tumor suppressor gene (TSG) promoters and reactivate their expression, such as SLIT2, ZNF382 and HOXA9. As only infrequent mutations of TET1 have been reported, compared to TET2, epigenetic silencing therefore appears to be the dominant mechanism for TET1 inactivation in cancers, which also forms a feedback loop of CpG methylation during tumorigenesis. PMID:27225590

  3. CpG Promoter Methylation Status is not a Prognostic Indicator of Gene Expression in Beryllium Challenge

    PubMed Central

    Tooker, Brian C.; Ozawa, Katie; Newman, Lee S.

    2016-01-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the 6 CpG sites tested. H36.12J cell TNFα expression was shown to be metal specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNα promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10−9). These findings suggest that in this cell system, promoter hypo-methylation

  4. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    PubMed

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10(-9)). These findings suggest that, in this cell system, promoter hypo-methylation

  5. Prognostic significance of CpG island methylator phenotype in surgically resected small cell lung carcinoma.

    PubMed

    Saito, Yuichi; Nagae, Genta; Motoi, Noriko; Miyauchi, Eisaku; Ninomiya, Hironori; Uehara, Hirofumi; Mun, Mingyon; Okumura, Sakae; Ohyanagi, Fumiyoshi; Nishio, Makoto; Satoh, Yukitoshi; Aburatani, Hiroyuki; Ishikawa, Yuichi

    2016-03-01

    Methylation is closely involved in the development of various carcinomas. However, few datasets are available for small cell lung cancer (SCLC) due to the scarcity of fresh tumor samples. The aim of the present study is to clarify relationships between clinicopathological features and results of the comprehensive genome-wide methylation profile of SCLC. We investigated the genome-wide DNA methylation status of 28 tumor and 13 normal lung tissues, and gene expression profiling of 25 SCLC tissues. Following unsupervised hierarchical clustering and non-negative matrix factorization, gene ontology analysis was performed. Clustering of SCLC led to the important identification of a CpG island methylator phenotype (CIMP) of the tumor, with a significantly poorer prognosis (P = 0.002). Multivariate analyses revealed that postoperative chemotherapy and non-CIMP were significantly good prognostic factors. Ontology analyses suggested that the extrinsic apoptosis pathway was suppressed, including TNFRSF1A, TNFRSF10A and TRADD in CIMP tumors. Here we revealed that CIMP was an important prognostic factor for resected SCLC. Delineation of this phenotype may also be useful for the development of novel apoptosis-related chemotherapeutic agents for treatment of the aggressive tumor. PMID:26748784

  6. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry

    PubMed Central

    Tost, Jörg; Schatz, Philipp; Schuster, Matthias; Berlin, Kurt; Gut, Ivo Glynne

    2003-01-01

    As the DNA sequence of the human genome is now nearly finished, the main task of genome research is to elucidate gene function and regulation. DNA methylation is of particular importance for gene regulation and is strongly implicated in the development of cancer. Even minor changes in the degree of methylation can have severe consequences. An accurate quantification of the methylation status at any given position of the genome is a powerful diagnostic indicator. Here we present the first assay for the analysis and precise quantification of methylation on CpG positions in simplex and multiplex reactions based on matrix-assisted laser desorption/ ionisation mass spectrometry detection. Calibration curves for CpGs in two genes were established and an algorithm was developed to account for systematic fluctuations. Regression analysis gave R2 ≥ 0.99 and standard deviation around 2% for the different positions. The limit of detection was ∼5% for the minor isomer. Calibrations showed no significant differences when carried out as simplex or multiplex analyses. All variable parameters were thoroughly investigated, several paraffin-embedded tissue biopsies were analysed and results were verified by established methods like analysis of cloned material. Mass spectrometric results were also compared to chip hybridisation. PMID:12711695

  7. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    PubMed

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor. PMID:27000849

  8. Quantification of global mitochondrial DNA methylation levels and inverse correlation with age at two CpG sites

    PubMed Central

    Mawlood, Shakhawan K.; Dennany, Lynn; Watson, Nigel; Dempster, John; Pickard, Benjamin S.

    2016-01-01

    Mammalian ageing features biological attrition evident at cellular, genetic and epigenetic levels. Mutation of mitochondrial DNA, and nuclear DNA methylation changes are well established correlates of ageing. The methylation of mitochondrial DNA (mtDNA) is a new and incompletely described phenomenon with unknown biological control and significance. Here we describe the bisulphite sequencing of mtDNA from 82 individuals aged 18‐91 years. We detected low and variable levels of mtDNA methylation at 54 of 133 CpG sites interrogated. Regression analysis of methylation levels at two CpG sites (M1215 and M1313) located within the 12S ribosomal RNA gene showed an inverse correlation with subject age suggesting their utility as epigenetic markers of ageing. PMID:26887692

  9. Dissecting the role of aberrant DNA methylation in human leukemia

    PubMed Central

    Amabile, Giovanni; Di Ruscio, Annalisa; Müller, Fabian; Welner, Robert S; Yang, Henry; Ebralidze, Alexander K; Zhang, Hong; Levantini, Elena; Qi, Lihua; Martinelli, Giovanni; Brummelkamp, Thijn; Le Beau, Michelle M; Figueroa, Maria E; Bock, Christoph; Tenen, Daniel G

    2015-01-01

    Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder characterized by the genetic translocation t(9;22)(q34;q11.2) encoding for the BCR-ABL fusion oncogene. However, many molecular mechanisms of the disease progression still remain poorly understood. A growing body of evidence suggests that epigenetic abnormalities are involved in tyrosine kinase resistance in CML, leading to leukemic clone escape and disease propagation. Here we show that, by applying cellular reprogramming to primary CML cells, aberrant DNA methylation contributes to the disease evolution. Importantly, using a BCR-ABL inducible murine model, we demonstrate that a single oncogenic lesion triggers DNA methylation changes which in turn act as a precipitating event in leukemia progression. PMID:25997600

  10. Epigenomic Analysis of Sézary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers.

    PubMed

    van Doorn, Remco; Slieker, Roderick C; Boonk, Stéphanie E; Zoutman, Willem H; Goeman, Jelle J; Bagot, Martine; Michel, Laurence; Tensen, Cornelis P; Willemze, Rein; Heijmans, Bas T; Vermeer, Maarten H

    2016-09-01

    Sézary syndrome (Sz) is a malignancy of skin-homing CD4(+) memory T cells that is clinically characterized by erythroderma, lymphadenopathy, and blood involvement. Distinction of Sz from erythroderma secondary to inflammatory skin diseases (erythrodermic inflammatory dermatosis [EID]) is often challenging. Recent studies identified recurrent mutations in epigenetic enzymes involved in DNA modification in Sz. Here we defined the DNA methylomes of purified CD4(+) T cells from patients with Sz, EID, and healthy control subjects. Sz showed extensive global DNA methylation alterations, with 7.8% of 473,921 interrogated autosomal CpG sites showing hypomethylation and 3.2% hypermethylation. Promoter CpG islands were markedly enriched for hypermethylation. The 126 genes with recurrent promoter hypermethylation in Sz included multiple candidate tumor suppressors that showed transcriptional repression, implicating aberrant methylation in the pathogenesis of Sz. Validation in an independent sample set showed promoter hypermethylation of CMTM2, C2orf40, G0S2, HSPB6, PROM1, and PAM in 94-100% of Sz samples but not in EID samples. Notably, promoter hypermethylation of a single gene, the chemokine-like factor CMTM2, was sufficient to accurately distinguish Sz from EID in all cases. This study shows that Sz is characterized by widespread yet distinct DNA methylation alterations, which can be used clinically as epigenetic diagnostic markers. PMID:27113428

  11. Promoter CpG island methylation of RET predicts poor prognosis in stage II colorectal cancer patients.

    PubMed

    Draht, Muriel X G; Smits, Kim M; Tournier, Benjamin; Jooste, Valerie; Chapusot, Caroline; Carvalho, Beatriz; Cleven, Arjen H G; Derks, Sarah; Wouters, Kim A D; Belt, Eric J T; Stockmann, Hein B A C; Bril, Herman; Weijenberg, Matty P; van den Brandt, Piet A; de Bruïne, Adriaan P; Herman, James G; Meijer, Gerrit A; Piard, Françoise; Melotte, Veerle; van Engeland, Manon

    2014-05-01

    Improved prognostic stratification of patients with TNM stage II colorectal cancer (CRC) is desired, since 20-30% of high-risk stage II patients may die within five years of diagnosis. This study was conducted to investigate REarranged during Transfection (RET) gene promoter CpG island methylation as a possible prognostic marker for TNM stage II CRC patients. The utility of RET promoter CpG island methylation in tumors of stage II CRC patients as a prognostic biomarker for CRC related death was studied in three independent series (including 233, 231, and 294 TNM stage II patients, respectively) by using MSP and pyrosequencing. The prognostic value of RET promoter CpG island methylation was analyzed by using Cox regression analysis. In the first series, analyzed by MSP, CRC stage II patients (n = 233) with RET methylated tumors had a significantly worse overall survival as compared to those with unmethylated tumors (HRmultivariable = 2.51, 95%-CI: 1.42-4.43). Despite a significant prognostic effect of RET methylation in stage III patients of a second series, analyzed by MSP, the prognostic effect in stage II patients (n = 231) was not statistically significant (HRmultivariable = 1.16, 95%-CI 0.71-1.92). The third series (n = 294), analyzed by pyrosequencing, confirmed a statistically significant association between RET methylation and poor overall survival in stage II patients (HRmultivariable = 1.91, 95%-CI: 1.04-3.53). Our results show that RET promoter CpG island methylation, analyzed by two different techniques, is associated with a poor prognosis in stage II CRC in two independent series and a poor prognosis in stage III CRC in one series. RET methylation may serve as a useful and robust tool for clinical practice to identify high-risk stage II CRC patients with a poor prognosis. This merits further investigation. PMID:24560444

  12. High Resolution Detection and Analysis of CpG Dinucleotides Methylation Using MBD-Seq Technology

    PubMed Central

    Lan, Xun; Adams, Christopher; Landers, Mark; Dudas, Miroslav; Krissinger, Daniel; Marnellos, George; Bonneville, Russell; Xu, Maoxiong; Wang, Junbai; Huang, Tim H.-M.; Meredith, Gavin; Jin, Victor X.

    2011-01-01

    Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution. PMID:21779396

  13. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology.

    PubMed

    Lan, Xun; Adams, Christopher; Landers, Mark; Dudas, Miroslav; Krissinger, Daniel; Marnellos, George; Bonneville, Russell; Xu, Maoxiong; Wang, Junbai; Huang, Tim H-M; Meredith, Gavin; Jin, Victor X

    2011-01-01

    Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution. PMID:21779396

  14. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    PubMed Central

    Gonzalo, Victoria; Lozano, Juan José; Muñoz, Jenifer; Balaguer, Francesc; Pellisé, Maria; de Miguel, Cristina Rodríguez; Andreu, Montserrat; Jover, Rodrigo; Llor, Xavier; Giráldez, M. Dolores; Ocaña, Teresa; Serradesanferm, Anna; Alonso-Espinaco, Virginia; Jimeno, Mireya; Cuatrecasas, Miriam; Sendino, Oriol; Castellví-Bel, Sergi; Castells, Antoni

    2010-01-01

    Background Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. Methodology/Principal Findings We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple

  15. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites

    PubMed Central

    Gu, Xiaolian; Boldrup, Linda; Coates, Philip J.; Fahraeus, Robin; Nylander, Elisabet; Loizou, Christos; Olofsson, Katarina; Norberg-Spaak, Lena; Gärskog, Ola; Nylander, Karin

    2016-01-01

    Epigenetic modifications are essential regulators of biological processes. Decreased DNA methylation of OAS2 (2′-5′-Oligoadenylate Synthetase 2), encoding an antiviral protein, has been seen in psoriasis. To provide further insight into the epigenetic regulation of OAS2, we performed pyrosequencing to detect OAS2 DNA methylation status at 11 promoter and first exon located CpG sites in psoriasis (n = 12) and two common subtypes of squamous cell carcinoma (SCC) of the head and neck: tongue (n = 12) and tonsillar (n = 11). Compared to corresponding controls, a general hypomethylation was seen in psoriasis. In tongue and tonsillar SCC, hypomethylation was found at only two CpG sites, the same two sites that were least demethylated in psoriasis. Despite differences in the specific residues targeted for methylation/demethylation, OAS2 expression was upregulated in all conditions and correlations between methylation and expression were seen in psoriasis and tongue SCC. Distinctive methylation status at four successively located CpG sites within a genomic area of 63 bp reveals a delicately integrated epigenetic program and indicates that detailed analysis of individual CpGs provides additional information into the mechanisms of epigenetic regulation in specific disease states. Methylation analyses as clinical biomarkers need to be tailored according to disease-specific sites. PMID:27572959

  16. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites.

    PubMed

    Gu, Xiaolian; Boldrup, Linda; Coates, Philip J; Fahraeus, Robin; Nylander, Elisabet; Loizou, Christos; Olofsson, Katarina; Norberg-Spaak, Lena; Gärskog, Ola; Nylander, Karin

    2016-01-01

    Epigenetic modifications are essential regulators of biological processes. Decreased DNA methylation of OAS2 (2'-5'-Oligoadenylate Synthetase 2), encoding an antiviral protein, has been seen in psoriasis. To provide further insight into the epigenetic regulation of OAS2, we performed pyrosequencing to detect OAS2 DNA methylation status at 11 promoter and first exon located CpG sites in psoriasis (n = 12) and two common subtypes of squamous cell carcinoma (SCC) of the head and neck: tongue (n = 12) and tonsillar (n = 11). Compared to corresponding controls, a general hypomethylation was seen in psoriasis. In tongue and tonsillar SCC, hypomethylation was found at only two CpG sites, the same two sites that were least demethylated in psoriasis. Despite differences in the specific residues targeted for methylation/demethylation, OAS2 expression was upregulated in all conditions and correlations between methylation and expression were seen in psoriasis and tongue SCC. Distinctive methylation status at four successively located CpG sites within a genomic area of 63 bp reveals a delicately integrated epigenetic program and indicates that detailed analysis of individual CpGs provides additional information into the mechanisms of epigenetic regulation in specific disease states. Methylation analyses as clinical biomarkers need to be tailored according to disease-specific sites. PMID:27572959

  17. Allelic methylation status of CpG islands on chromosome 21q in patients with Trisomy 21.

    PubMed

    Xia, Yin-Yin; Ding, Yu-Bing; Liu, Xue-Qing; Chen, Xue-Mei; Cheng, Shu-Qun; Li, Lian-Bing; Ma, Ming-Fu; He, Jun-Lin; Wang, Ying-Xiong

    2014-05-01

    Trisomy 21 is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. There has been limited research into the DNA methylation status of CpG islands (CGIs) in trisomy 21, therefore, exploring the DNA methylation status of CGIs in 21q is essential for the development of a series of potential epigenetic biomarkers for prenatal screening of trisomy 21. First, DNA sequences of CGIs in 21q from the USCS database were obtained and 149 sequences and 148 pairs of primers in the BGI YH database were aligned. All 300 cases were analyzed by a heavy methyl-polymerase chain reaction (HM-PCR) assay and a comparison of the DNA methylation status of CGIs was made between trisomy 21 and the control. The HM-PCR assay results did not show a difference in the DNA methylation status between individuals with trisomy 21 and the control. In total, there were 11 CGIs that showed various DNA methylation statuses between Japanese and Chinese patients. Subsequently, bisulfite genomic sequencing found variations in the methylation status of CpG dinucleotides in CGIs (nos. 14, 75, 109, 134 and 146) between trisomy 21 and the control. The different DNA methylation status of CpG dinucleotides in CGIs may be a potential epigenetic marker for diagnosing trisomy 21. No difference was identified in the DNA methylation status of 21q CGIs among Chinese individuals with trisomy 21 and the control. The homogeneity of the DNA methylation status of 21q CGIs in Chinese patients indicates that DNA methylation is likely to be an epigenetic marker distinguishing ethnicities. PMID:24573226

  18. Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients.

    PubMed

    Mur, Pilar; Rodríguez de Lope, Ángel; Díaz-Crespo, Francisco Javier; Hernández-Iglesias, Teresa; Ribalta, Teresa; Fiaño, Concepción; García, Juan Fernando; Rey, Juan Antonio; Mollejo, Manuela; Meléndez, Bárbara

    2015-05-01

    Clinical and molecular prognostic factors in gliomas include age, IDH mutation, the glioma CpG island methylator phenotype (G-CIMP+) and promoter methylation of the O(6)-methylguanine DNA-methyltransferase (MGMT) gene. Among these markers, a predictive value was reported in glioblastomas (GBM) for MGMT promoter methylation, in particular in elderly GBM patients. In this study, methylation data from 46 glioma samples with the Illumina 450K platform were obtained and extended using external data to include a total of 247 glioma samples. Methylation analysis of the whole MGMT gene with this platform revealed two strongly survival-associated CpG regions within the promoter and the gene body, which were confirmed in a reported dataset of high grade-gliomas. Methylation at the promoter (CpG 25, cg12981137 and the prognostic model MGMT-STP27) and at the gene body CpG 165 (cg07933035), were significantly associated with better overall survival, and strongly correlated with G-CIMP+ status. In this series, the prognostic value of MGMT methylation at the promoter was not observed in G-CIMP- cases, although around 50 % of them were MGMT-methylated. These results were also obtained in an homogeneously-treated series of chemoradiated G-CIMP- GBMs analyzed by MSP and qMSP, and confirmed in a reported pyrosequencing-analyzed series of gliomas. Interestingly, in contrast to the MGMT promoter, gene body methylation was of prognostic value in G-CIMP-patients older than 65 years. Our study highlights the relevance of the prognostic value of the different regions of methylation throughout the MGMT gene that could be affected by specific G-CIMP profiles and age groups. PMID:25682093

  19. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    SciTech Connect

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  20. CpG Methylation Analysis—Current Status of Clinical Assays and Potential Applications in Molecular Diagnostics

    PubMed Central

    Sepulveda, Antonia R.; Jones, Dan; Ogino, Shuji; Samowitz, Wade; Gulley, Margaret L.; Edwards, Robin; Levenson, Victor; Pratt, Victoria M.; Yang, Bin; Nafa, Khedoudja; Yan, Liying; Vitazka, Patrick

    2009-01-01

    Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions. The Methylation Working Group of the Clinical Practice Committee of the Association of Molecular Pathology has reviewed the current state of clinical testing in this area. We report here our summary of both the advantages and disadvantages of various methods, as well as the needs for standardization and reporting. We then conclude by summarizing the most promising areas for future clinical testing in cancer molecular diagnostics. PMID:19541921

  1. The Role of the CpG Island Methylator Phenotype on Survival Outcome in Colon Cancer

    PubMed Central

    Kang, Ki Joo; Min, Byung-Hoon; Ryu, Kyung Ju; Kim, Kyoung-Mee; Chang, Dong Kyung; Kim, Jae J.; Rhee, Jong Chul; Kim, Young-Ho

    2015-01-01

    Background/Aims CpG island methylator phenotype (CIMP)- high colorectal cancers (CRCs) have distinct clinicopathological features from their CIMP-low/negative CRC counterparts. However, controversy exists regarding the prognosis of CRC according to the CIMP status. Therefore, this study examined the prognosis of Korean patients with colon cancer according to the CIMP status. Methods Among a previous cohort population with CRC, a total of 154 patients with colon cancer who had available tissue for DNA extraction were included in the study. CIMP-high was defined as 3/5 methylated markers using the five-marker panel (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1). Results CIMP-high and CIMP-low/negative cancers were observed in 27 patients (17.5%) and 127 patients (82.5%), respectively. Multivariate analysis adjusting for age, gender, tumor location, tumor stage and CIMP and microsatellite instability (MSI) statuses indicated that CIMP-high colon cancers were associated with a significant increase in colon cancer-specific mortality (hazard ratio [HR], 3.23; 95% confidence interval [CI], 1.20 to 8.69; p=0.02). In microsatellite stable cancers, CIMP-high cancer had a poor survival outcome compared to CIMP-low/negative cancer (HR, 2.91; 95% CI, 1.02 to 8.27; p=0.04). Conclusions Regardless of the MSI status, CIMP-high cancers had poor survival outcomes in Korean patients. PMID:25167802

  2. Compendium of aberrant DNA methylation and histone modifications in cancer.

    PubMed

    Hattori, Naoko; Ushijima, Toshikazu

    2014-12-01

    Epigenetics now refers to the study or research field related to DNA methylation and histone modifications. Historically, global DNA hypomethylation was first revealed in 1983, and, after a decade, silencing of a tumor suppressor gene by regional DNA hypermethylation was reported. After the proposal of the histone code in the 2000s, alterations of histone methylation were also identified in cancers. Now, it is established that aberrant epigenetic alterations are involved in cancer development and progression, along with mutations and chromosomal losses. Recent cancer genome analyses have revealed a large number of mutations of epigenetic modifiers, supporting their important roles in cancer pathogenesis. Taking advantage of the reversibility of epigenetic alterations, drugs targeting epigenetic regulators and readers have been developed for restoration of normal pattern of the epigenome, and some have already demonstrated clinical benefits. In addition, DNA methylation of specific marker genes can be used as a biomarker for cancer diagnosis, including risk diagnosis, detection of cancers, and pathophysiological diagnosis. In this paper, we will summarize the major concepts of cancer epigenetics, placing emphasis on history. PMID:25194808

  3. CpGIMethPred: computational model for predicting methylation status of CpG islands in human genome

    PubMed Central

    2013-01-01

    DNA methylation is an inheritable chemical modification of cytosine, and represents one of the most important epigenetic events. Computational prediction of the DNA methylation status can be employed to speed up the genome-wide methylation profiling, and to identify the key features that are correlated with various methylation patterns. Here, we develop CpGIMethPred, the support vector machine-based models to predict the methylation status of the CpG islands in the human genome under normal conditions. The features for prediction include those that have been previously demonstrated effective (CpG island specific attributes, DNA sequence composition patterns, DNA structure patterns, distribution patterns of conserved transcription factor binding sites and conserved elements, and histone methylation status) as well as those that have not been extensively explored but are likely to contribute additional information from a biological point of view (nucleosome positioning propensities, gene functions, and histone acetylation status). Statistical tests are performed to identify the features that are significantly correlated with the methylation status of the CpG islands, and principal component analysis is then performed to decorrelate the selected features. Data from the Human Epigenome Project (HEP) are used to train, validate and test the predictive models. Specifically, the models are trained and validated by using the DNA methylation data obtained in the CD4 lymphocytes, and are then tested for generalizability using the DNA methylation data obtained in the other 11 normal tissues and cell types. Our experiments have shown that (1) an eight-dimensional feature space that is selected via the principal component analysis and that combines all categories of information is effective for predicting the CpG island methylation status, (2) by incorporating the information regarding the nucleosome positioning, gene functions, and histone acetylation, the models can achieve

  4. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein.

    PubMed

    Carlone, Diana L; Lee, Jeong-Heon; Young, Suzanne R L; Dobrota, Erika; Butler, Jill Sergesketter; Ruiz, Joseph; Skalnik, David G

    2005-06-01

    Cytosine methylation at CpG dinucleotides is a critical epigenetic modification of mammalian genomes. CpG binding protein (CGBP) exhibits a unique DNA-binding specificity for unmethylated CpG motifs and is essential for early murine development. Embryonic stem cell lines deficient for CGBP were generated to further examine CGBP function. CGBP(-)(/)(-) cells are viable but show an increased rate of apoptosis and are unable to achieve in vitro differentiation following removal of leukemia inhibitory factor from the growth media. Instead, CGBP(-)(/)(-) embryonic stem cells remain undifferentiated as revealed by persistent expression of the pluripotent markers Oct4 and alkaline phosphatase. CGBP(-)(/)(-) cells exhibit a 60 to 80% decrease in global cytosine methylation, including hypo-methylation of repetitive elements, single-copy genes, and imprinted genes. Total DNA methyltransferase activity is reduced by 30 to 60% in CGBP(-)(/)(-) cells, and expression of the maintenance DNA methyltransferase 1 protein is similarly reduced. However, de novo DNA methyltransferase activity is normal. Nearly all aspects of the pleiotropic CGBP(-)(/)(-) phenotype are rescued by introduction of a CGBP expression vector. Hence, CGBP is essential for normal epigenetic modification of the genome by cytosine methylation and for cellular differentiation, consistent with the requirement for CGBP during early mammalian development. PMID:15923607

  5. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues

    PubMed Central

    López Castel, Arturo; Nakamori, Masayuki; Tomé, Stephanie; Chitayat, David; Gourdon, Geneviève; Thornton, Charles A.; Pearson, Christopher E.

    2011-01-01

    Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40–400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues. PMID:21044947

  6. The role of CpG methylation in cell type-specific expression of the aquaporin-5 gene.

    PubMed

    Nomura, Johji; Hisatsune, Akinori; Miyata, Takeshi; Isohama, Yoichiro

    2007-02-23

    Aquaporin-5 (AQP5) is expressed in a cell type-specific manner. Here, we show that the AQP5 gene is regulated by CpG methylation. The AQP5 promoter containing a putative CpG island was highly methylated in NIH-3T3 or freshly isolated alveolar epithelial cells, correlating with the repression of this gene in these cells. In contrast, the AQP5 promoter was hypo-methylated in MLE-12 or cultured alveolar epithelial cells, which express high levels of AQP5. Repression of AQP5 transcription in NIH-3T3 cells could be relieved with 5-azacytidine, and in vitro methylation of the AQP5 promoter resulted in inhibition of transcription of the reporter gene in MLE-12 cells. Chromatin immunoprecipitation assays showed that endogenous Sp1 bound to the hypo-methylated, but not highly methylated, AQP5 promoter region. These results demonstrate that the hypo-methylated state of the AQP5 promoter leading to increased Sp1 binding may play a role in regulation of cell type-specific expression of the AQP5 gene. PMID:17198683

  7. Determination of Methylated CpG Sites in the Promoter Region of Catechol-O-Methyltransferase (COMT) and their Involvement in the Etiology of Tobacco Smoking.

    PubMed

    Xu, Qing; Ma, Jennie Z; Payne, Thomas J; Li, Ming D

    2010-01-01

    We previously reported that catechol-O-methyltransferase (COMT) is significantly associated with nicotine dependence (ND) in humans. In this study, we examined whether there exists any difference in the extent of methylation of CpG dinucleotides in the promoter region of COMT in smokers and non-smokers by analyzing the methylation status of cytosines at 33 CpG sites through direct sequencing of bisulfite-treated DNA (N = 50 per group). The cytosine was methylated at 13 of 33 CpG sites, and two of these sites showed significant differences between smokers and matched non-smoker controls. Specifically, in the -193 CpG site, the degree of methylation was 19.1% in smokers and 13.2% in non-smokers (P < 0.01). This finding was confirmed by methylation-specific PCR using an additional 100 smoker and 100 non-smoker control samples, which showed the degree of methylation to be 22.2% in smokers and 18.3% in non-smokers (P < 0.01). For the -39 CpG site, the degree of methylation was 9.2% in smokers, whereas no methylation was found in non-smoker controls. Together, our findings provide the first molecular explanation at the epigenetic level for the association of ND with methylation of the COMT promoter, implying that methylation plays a role in smoking dependence. PMID:21423427

  8. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma.

    PubMed

    Krause, Lutz; Nones, Katia; Loffler, Kelly A; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J; Watson, David I; Lord, Reginald V; Phillips, Wayne A; Gotley, David; Smithers, B Mark; Whiteman, David C; Hayward, Nicholas K; Grimmond, Sean M; Waddell, Nicola; Barbour, Andrew P

    2016-04-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. PMID:26905591

  9. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma

    PubMed Central

    Krause, Lutz; Nones, Katia; Loffler, Kelly A.; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J.; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J.; Watson, David I.; Lord, Reginald V.; Phillips, Wayne A.; Gotley, David; Smithers, B.Mark; Whiteman, David C.; Hayward, Nicholas K.; Grimmond, Sean M.; Waddell, Nicola; Barbour, Andrew P.

    2016-01-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett’s esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. PMID:26905591

  10. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-01

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis. PMID:27245242

  11. Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo.

    PubMed Central

    Weih, F; Nitsch, D; Reik, A; Schütz, G; Becker, P B

    1991-01-01

    Specific DNA sequences from several DNase I hypersensitive sites located upstream of the tyrosine aminotransferase (TAT) gene are bound by ubiquitous nuclear factors in vitro. Genomic footprinting has shown, however, that proteins are excluded from their potential binding sites in cells where the gene is inactive and that the absence of in vivo footprints is correlated with CpG methylation and altered chromatin structures at these sites. In vitro, interactions of proteins with sequences of the TAT gene, including binding of the transcription factor CREB to the cAMP-responsive element (CRE), are prevented by a methylated CpG dinucleotide in the respective binding sites, suggesting that methylation of DNA might be sufficient to exclude proteins from their sites in vivo. To test directly whether the absence of in vivo footprints is the result of DNA methylation, we treated two different cell lines with 5-azacytidine to demethylate CpG dinucleotides. While genomic sequencing confirmed demethylation at two widely separated regions upstream of the TAT promoter, no footprints appeared in these cell lines, even though proteins capable of binding these sites in vitro were present in the nuclei. Thus, the simple model whereby protein exclusion in vivo is caused solely by DNA methylation is not appropriate in this case. The nucleosomal organization of the potential binding sites suggests that chromatin structure is a dominant determinant in maintaining the inactive state of these sites. Images PMID:1714382

  12. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  13. DNA Methylation in Cosmc Promoter Region and Aberrantly Glycosylated IgA1 Associated with Pediatric IgA Nephropathy

    PubMed Central

    Sun, Qiang; Zhang, Jianqian; Zhou, Nan; Liu, Xiaorong; Shen, Ying

    2015-01-01

    IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2’-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1

  14. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  15. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study.

    PubMed

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982-9.724) and 9.193 (95% CI: 3.624-25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  16. Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation.

    PubMed

    Li, Daofeng; Zhang, Bo; Xing, Xiaoyun; Wang, Ting

    2015-01-15

    DNA CpG methylation is a widespread epigenetic mark in high eukaryotes including mammals. DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and control of gene expression. Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity to measure DNA methylation in a genome-wide fashion, making it possible to comprehensively investigate the role of DNA methylation. Several methods have been developed, such as Whole Genome Bisulfite Sequencing (WGBS), Reduced Representation Bisulfite Sequencing (RRBS), and enrichment-based methods including Methylation Dependent ImmunoPrecipitation followed by sequencing (MeDIP-seq), methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), methyltransferase-directed Transfer of Activated Groups followed by sequencing (mTAG), and Methylation-sensitive Restriction Enzyme digestion followed by sequencing (MRE-seq). These methods differ by their genomic CpG coverage, resolution, quantitative accuracy, cost, and software for analyzing the data. Among these, WGBS is considered the gold standard. However, it is still a cost-prohibitive technology for a typical laboratory due to the required sequencing depth. We found that by integrating two enrichment-based methods that are complementary in nature (i.e., MeDIP-seq and MRE-seq), we can significantly increase the efficiency of whole DNA methylome profiling. By using two recently developed computational algorithms (i.e., M&M and methylCRF), the combination of MeDIP-seq and MRE-seq produces genome-wide CpG methylation measurement at high coverage and high resolution, and robust predictions of differentially methylated regions. Thus, the combination of the two enrichment-based methods provides a cost-effective alternative to WGBS. In this article we describe both the experimental protocols for performing MeDIP-seq and MRE

  17. A distinct group of CpG islands shows differential DNA methylation between replicas of the same cell line in vitro

    PubMed Central

    2013-01-01

    Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769

  18. CpG islands in human ZFX and ZFY and mouse Zfx genes: Sequence similarities and methylation differences

    SciTech Connect

    Luoh, S.W.; Jegalian, K.; Ridley, A.; Page, D.C.

    1995-09-20

    The human ZFX, human ZFY, and mouse Zfx genes have CpG islands near their 5` ends. These islands are typical in that they span about 1.5 kb, contain transcription initiation sites, and encompass some 5` untranslated exons and introns. However, comparative nucleotide sequencing of these humans and mouse islands provided evidence of evolutionary conservation to a degree unprecedented among mammalian 5` CpG islands. In one stretch of 165 nucleotides containing 19 CpGs, mouse Zfx and human ZFX are identical to each other and differ from human ZFY at only 9 nucleotides. In contrast, we found no evidence of homologous CpG islands in the mouse Zfy genes, whose transcription is more circumscribed than that of a human ZFX, human ZFY, and mouse Zfx. Using the isoschizomers HpaII and MspI to examine a highly conserved segment of the ZFX CpG island, we detected methylation on inactive mouse X-chromosomes. These observations parallel the previous findings that mouse Zfx undergoes X inactivation while human ZFX escapes it. 62 refs., 7 figs., 1 tab.

  19. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations.

    PubMed

    Platt, Alexander; Gugger, Paul F; Pellegrini, Matteo; Sork, Victoria L

    2015-08-01

    It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection. PMID:25951436

  20. Methylation of a CpG Island within the Uroplakin Ib Promoter: A Possible Mechanism for Loss of Uroplakin Ib Expression in Bladder Carcinoma1

    PubMed Central

    Varga, Andrea E; Leonardos, Lefta; Jackson, Paul; Marreiros, Alexandra; Cowled, Prue A

    2004-01-01

    Abstract Uroplakin Ib is a structural protein on the surface of urothelial cells. Expression of uroplakin Ib mRNA is reduced or absent in many transitional cell carcinomas (TCCs) but molecular mechanisms underlying loss of expression remain to be determined. Analysis of the uroplakin Ib promoter identified a weak CpG island spanning the proximal promoter, exon 1, and the beginning of intron 1. This study examined the hypothesis that methylation of this CpG island regulates uroplakin Ib expression. Uroplakin Ib mRNA levels were determined by reverse transcription polymerase chain reaction and CpG methylation was assessed by bisulfite modification of DNA, PCR, and sequencing. A correlation was demonstrated in 15 TCC lines between uroplakin Ib mRNA expression and lack of CpG methylation. In support of a regulatory role for methylation, incubating uroplakin Ib-negative lines with 5-aza-2′-deoxycytidine reactivated uroplakin Ib mRNA expression. A trend between uroplakin Ib mRNA expression and CpG methylation was also observed in normal urothelium and bladder carcinomas. In particular, loss of uroplakin Ib expression correlated with methylation of a putative Sp1/NFκB binding motif. The data are consistent with the hypothesis that methylation of specific sites within the uroplakin Ib promoter may be an important factor in the loss of uroplakin Ib expression in TCCs. PMID:15140401

  1. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential

  2. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    PubMed

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  3. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites

    PubMed Central

    Lee, Seung-Tae; Wiemels, Joseph L.

    2016-01-01

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  4. CpG methylation in human papillomavirus (HPV) type 31 long control region (LCR) in cervical infections associated with cytological abnormalities.

    PubMed

    László, Brigitta; Ferenczi, Annamária; Madar, László; Gyöngyösi, Eszter; Szalmás, Anita; Szakács, Levente; Veress, György; Kónya, József

    2016-08-01

    The mechanisms that regulate papillomavirus gene expression include DNA methylation. The transcription of papillomavirus oncogenes E6 and E7 is controlled by certain regulatory elements in the LCR, which include binding sites for the E2 protein, a viral regulator of oncogene expression. In HPV-31-infected exfoliated cervical cells, the CpG methylation of the entire LCR was determined by next-generation sequencing after bisulfite modification. Six of the 22 cases had methylated CpG sites in the HPV-31 LCR, including position 7479 and/or 7485, at the promoter distal E2 binding site, thus suggesting a potential regulatory mechanism for papillomavirus transcription. PMID:27098644

  5. MATERNAL DIETARY METHYL DONOR SUPPLEMENTATION OF "AXIN(FU)/+" MICE PREVENTS TAIL KINKS BY TAIL-SPECIFIC CPG HYPERMETHYLATION AT "AXIN(FU)"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl donor supplementation of the maternal diet alters coat color phenotype of viable yellow agouti "(A[vy]/a)" offspring by a locus-specific increase in CpG methylation. To test the hypothesis that metastable epialleles such as "A[vy]" are, in general, susceptible to early nutritional influences...

  6. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    SciTech Connect

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J.

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  7. Fluorescence polarization-based method with bisulfite conversion-specific one-label extension for quantification of single CpG dinucleotide methylation.

    PubMed

    Li, Shufen; Wang, Zhongju; Zhou, Lin; Luo, Fu; Zhao, Cunyou

    2015-07-01

    To quantify the methylation at individual CpG dinucleotide sites in large biological or clinical samples, we developed a bisulfite conversion-specific one-label extension (BS-OLE) method using visualization by fluorescence polarization (FP) measurement of methylation at single CpG sites in small amounts of genomic DNA. Genomic DNA was treated with sodium bisulfite to convert unmethylated cytosine to uracil leaving 5-methylcytosine unaltered, and BS-PCR was used to generate DNA template containing target CpG sites. BS-OLE uses a BS-primer hybridized immediately upstream of the target CpG site being examined and then fluorescent dCTP or dUTP is incorporated into the methylated (CpG) or unmethylated (TpG) form of the target site through single-nucleotide chain extension, yielding an FP ratio between the fluorescent dCTP- and dUTP-incorporated products as a measure of methylation. This provides stable estimates of the methylation level of human genomic DNA and of a 250-bp plasmid DNA segment containing a single TCGA TaqI cleavage site, in accordance with the results of a combined bisulfite restriction analysis method. We used BS-OLE to measure dose-dependent DNA hypomethylation in human embryonic kidney 293T cells treated with the DNA methyltransferase inhibitor 5-aza-dC. BS-OLE is well suited to high-throughput multi-sample applications in biological and medical studies. PMID:26334496

  8. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy

    PubMed Central

    Lin, Qiong; Weidner, Carola I.; Costa, Ivan G.; Marioni, Riccardo E.; Ferreira, Marcelo R. P.; Deary, Ian J.; Wagner, Wolfgang

    2016-01-01

    DNA-methylation (DNAm) levels at age-associated CpG sites can be combined into epigenetic aging signatures to estimate donor age. It has been demonstrated that the difference between such epigenetic age-predictions and chronological age is indicative for of all-cause mortality in later life. In this study, we tested alternative epigenetic signatures and followed the hypothesis that even individual age-associated CpG sites might be indicative for life-expectancy. Using a 99-CpG aging model, a five-year higher age-prediction was associated with 11% greater mortality risk in DNAm profiles of the Lothian Birth Cohort 1921 study. However, models based on three CpGs, or even individual CpGs, generally revealed very high offsets in age-predictions if applied to independent microarray datasets. On the other hand, we demonstrate that DNAm levels at several individual age-associated CpGs seem to be associated with life expectancy – e.g., at CpGs associated with the genes PDE4C and CLCN6. Our results support the notion that small aging signatures should rather be analysed by more quantitative methods, such as site-specific pyrosequencing, as the precision of age-predictions is rather low on independent microarray datasets. Nevertheless, the results hold the perspective that simple epigenetic biomarkers, based on few or individual age-associated CpGs, could assist the estimation of biological age. PMID:26928272

  9. DNMT1 and HDAC2 Cooperate to Facilitate Aberrant Promoter Methylation in Inorganic Phosphate-Induced Endothelial-Mesenchymal Transition

    PubMed Central

    Tan, Xiaoying; Xu, Xingbo; Zeisberg, Michael; Zeisberg, Elisabeth M.

    2016-01-01

    While phosphorus in the form of inorganic or organic phosphate is critically involved in most cellular functions, high plasma levels of inorganic phosphate levels have emerged as independent risk factor for cardiac fibrosis, cardiovascular morbidity and decreased life-expectancy. While the link of high phosphate and cardiovascular disease is commonly explained by direct cellular effects of phospho-regulatory hormones, we here explored the possibility of inorganic phosphate directly eliciting biological responses in cells. We demonstrate that human coronary endothelial cells (HCAEC) undergo an endothelial-mesenchymal transition (EndMT) when exposed to high phosphate. We further demonstrate that such EndMT is initiated by recruitment of aberrantly phosphorylated DNMT1 to the RASAL1 CpG island promoter by HDAC2, causing aberrant promoter methylation and transcriptional suppression, ultimately leading to increased Ras-GTP activity and activation of common EndMT regulators Twist and Snail. Our studies provide a novel aspect for known adverse effects of high phosphate levels, as eukaryotic cells are commonly believed to have lost phosphate-sensing mechanisms of prokaryotes during evolution, rendering them insensitive to extracellular inorganic orthophosphate. In addition, our studies provide novel insights into the mechanisms underlying specific targeting of select genes in context of fibrogenesis. PMID:26815200

  10. Interaction between Methylation and CpG Single-Nucleotide Polymorphisms in the HTR2A Gene: Association Analysis with Suicide Attempt in Schizophrenia.

    PubMed

    Bani-Fatemi, Ali; Howe, Aaron S; Matmari, Michelle; Koga, Arthur; Zai, Clement; Strauss, John; De Luca, Vincenzo

    2016-01-01

    Dysfunctional mechanisms in the serotonergic system have been implicated in suicidal behavior among patients with schizophrenia. However, previous association analyses of major serotonin genes have provided inconsistent findings regarding their role in suicidal behavior. The goal of the current study was to identify single-nucleotide polymorphisms (SNP) within HTR2A that directly affect CpG methylation sites in schizophrenic patients with suicidal behavior. Furthermore, direct methylation analysis was performed using genomic DNA from peripheral leukocytes employing bisulfite pyrosequencing to assess the contributions of six CpG sites in HTR2A exon I in 67 schizophrenia patients assessed for lifetime suicide attempt. Potential methylation in 25 CpG SNPs across the entire HTR2A gene was analyzed considering their direct contribution to methylation. When we compared direct methylation between attempters and nonattempters, we found that only the polymorphic T102C (rs6313) was significantly different between the two groups (p = 0.02). Furthermore, in the potential methylation analysis, we found a nominal association with suicide attempt for six of the 25 SNPs analyzed, i.e. rs2770293 (p = 0.045), rs6313 (p = 0.033), rs17068986 (p = 0.029), rs4942578 (p = 0.024), rs1728872 (p = 0.014), and rs9534511 (p = 0.003). The results of this investigation provide preliminary evidence that the combined analysis of CpG SNPs and methylation may be useful for investigating the genetic and epigenetic factors involved in suicidal behavior. PMID:26812280

  11. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation.

    PubMed Central

    Puchta, H; Kocher, S; Hohn, B

    1992-01-01

    Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared. Images PMID:1630452

  12. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  13. DNA CpG Methylation (5-Methylcytosine) and Its Derivative (5-Hydroxymethylcytosine) Alter Histone Posttranslational Modifications at the Pomc Promoter, Affecting the Impact of Perinatal Diet on Leanness and Obesity of the Offspring.

    PubMed

    Marco, Asaf; Kisliouk, Tatiana; Tabachnik, Tzlil; Weller, Aron; Meiri, Noam

    2016-08-01

    A maternal high-fat diet (HFD) alters the offspring's feeding regulation, leading to obesity. This phenomenon is partially mediated by aberrant expression of the hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC). Nevertheless, although some individual offspring suffer from morbid obesity, others escape the malprogramming. It is suggested that this difference is due to epigenetic programming. In this study, we report that in lean offspring of non-HFD-fed dams, essential promoter regions for Pomc expression were enriched with 5-hydroxymethylcytosine (5hmC) together with a reduction in the level of 5-methylcytosine (5mC). Moreover, 5hmC was negatively correlated whereas 5mC was positively correlated with body weight in offspring from both HFD- and control-fed dams. We further found that Pomc expression in obese offspring is determined by a two-step epigenetic inhibitory mechanism in which CpG methylation is linked with histone posttranslational modifications. An increase in CpG methylation at the Poxmc promoter enables binding of methyl-binding domain 1 (MBD1) to 5mC, but not to its derivative 5hmC. MBD1 then interacts with SET domain bifurcated 1 methyltransferase to promote bimethylation on the histone 3 lysine 9 residue, reducing Pomc mRNA expression. These results suggest an epigenetic regulatory mechanism that affects obesity-prone or resilient traits. PMID:27217481

  14. Tissue-specific methylation of individual CpG dinucleotides in the 5{prime} upstream region of the mouse catalase gene (Cas-1)

    SciTech Connect

    Pillay, I.L.; Singh, S.M.

    1994-09-01

    The intracellular antioxidant enzyme, catalase, is encoded by a gene whose level of expression in different organisms, including humans, varies with tissue-type. The {open_quotes}TATA-less{close_quotes} 5{prime} upstream region of the catalase gene, in mice and humans, contains a CpG island. Such CG-rich regions are target sites for cytosine methylation and have been implicated in tissue-specific gene expression. However, the methylation status of individual CpG dinucleotides and their significance in gene expression has not been established. A 275 bp fragment within the 5{prime} region of Cas-1 was evaluated for CpG methylation. HpaII digestion of genomic DNA, followed by polymerase chain reaction amplification (HpaII-PCR), suggests that at least one of three CCGG is not methylated in nine different somatic tissues that express this enzyme at various levels. In contrast, all three CCGG sites are methylated in DNA from sperm and spleen. Further examination of the methylation specificity of individual CCGG sites was conducted using sodium bisulfite modification of genomic DNA followed by HPaII-PCR. Sodium bisulfite modifies non-methylated cytosines to uracils, changing a CG to a TG dinucleotide. This nucleotide substitution eliminates HpaII sites and allows the methylation status of each of the CCGG sites to be assessed. The ability to discern the number and combination of methylated sites within the 5{prime} region of a gene permits the determination of a possible correlation between differential methylation patterns and temporal/spatial gene regulation. Analysis of differential methylation, using the mouse catalase gene as a model, provides further insight into CpG methylation as one mechanism of mammalian gene regulation.

  15. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype

    PubMed Central

    Maletzki, Claudia; Huehns, Maja; Knapp, Patrick; Waukosin, Nancy; Klar, Ernst; Prall, Friedrich; Linnebacher, Michael

    2015-01-01

    Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC) showing CpG island methylator phenotype (CIMP). Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53mut, KRASmut; 3/8 marker methylated; HROC43: APCmut, TP53mut, KRASmut; 4/8 marker methylated; HROC60: APCwt, TP53mut, KRASwt; 4/8 marker methylated; HROC183: APCmut, TP53mut, KRASmut; 6/8 marker methylated). Cell lines were of epithelial origin (EpCAM+) with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan). Of note, most cell lines were sensitive towards “non-classical” CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib). This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo-) therapeutics helps bringing forward the concept of personalized tumor therapy. PMID:26618628

  16. Comparative methylomics reveals gene-body H3K36me3 in Drosophila predicts DNA methylation and CpG landscapes in other invertebrates

    PubMed Central

    Nanty, Lisa; Carbajosa, Guillermo; Heap, Graham A.; Ratnieks, Francis; van Heel, David A.; Down, Thomas A.; Rakyan, Vardhman K.

    2011-01-01

    In invertebrates that harbor functional DNA methylation enzymatic machinery, gene-bodies are the primary targets for CpG methylation. However, virtually all other aspects of invertebrate DNA methylation have remained a mystery until now. Here, using a comparative methylomics approach, we demonstrate that Nematostella vectensis, Ciona intestinalis, Apis mellifera, and Bombyx mori show two distinct populations of genes differentiated by gene-body CpG density. Genome-scale DNA methylation profiles for A. mellifera spermatozoa reveal CpG-poor genes are methylated in the germline, as predicted by the depletion of CpGs. We find an evolutionarily conserved distinction between CpG-poor and GpC-rich genes: The former are associated with basic biological processes, the latter with more specialized functions. This distinction is strikingly similar to that recently observed between euchromatin-associated genes in Drosophila that contain intragenic histone 3 lysine 36 trimethylation (H3K36me3) and those that do not, even though Drosophila does not display CpG density bimodality or methylation. We confirm that a significant number of CpG-poor genes in N. vectensis, C. intestinalis, A. mellifera, and B. mori are orthologs of H3K36me3-rich genes in Drosophila. We propose that over evolutionary time, gene-body H3K36me3 has influenced gene-body DNA methylation levels and, consequently, the gene-body CpG density bimodality characteristic of invertebrates that harbor CpG methylation. PMID:21940836

  17. CpG methylation accounts for a recurrent mutation (c.1222C>T) in the human PAH gene.

    PubMed

    Murphy, B C; Scriver, C R; Singh, S M

    2006-09-01

    The human PAH gene (GenBank: U49897.1 (cDNA), AF404777 (gDNA)) harbors alleles that either cause or are associated with hyperphenylalaninemia and phenylketonuria (http://www.pahdb.mcgill.ca). Mutation analysis has identified approximately 500 alleles of which approximately 30 produce polymorphic core haplotypes. The c.1222C>T allele (p.R408W) is the most prevalent and widely encountered PKU-causing allele. Because it occurs on multiple locus-specific polymorphic haplotypes, it is probably not identical by descent in different populations. This mutation involves a CpG dinucleotide in a so-called "hypermutable" codon suggesting that c.1222C>T could be a recurrent allele following spontaneous methylation-mediated deamination of 5 mC. This concept is widely assumed and accepted but the 5mC status of hypermutable codons has seldom been confirmed. We show that the PAH c.1222C nucleotide is indeed methylated (c.1222 mC) in somatic genomes (leukocyte and brain) of H. sapiens. Examination of a representative region in exon 12 (and also in exon 7) in the PAH gene shows that 5 mC is restricted to cytosines in CpG dinucleotides in the hypermutable codons. The methylation pattern seen in human PAH exon 12 was also observed in the corresponding codon in three nonhuman primates. The finding offers at least one explanation for the high relative frequency of the c.1222C>T (p.R408W) allele in the human population. PMID:16917891

  18. An Observational Study on Aberrant Methylation of Runx3 With the Prognosis in Chronic Atrophic Gastritis Patients.

    PubMed

    Zhao, Chunna; Li, Ping; Zhang, Lili; Wang, Bei; Xiao, Lili; Guo, Feng; Wei, Yueguang

    2016-05-01

    The aim of this study is to discuss whether the methylation levels of Runx3 could be used as the early biomarker for predicting the prognosis in chronic atrophic gastritis (CAG) patients. A total of 200 subjects including 60 controls without CAG (Group 1), 70 patients with mild CAG (Group 2), and 70 patients with moderate and severe CAG (Group 3) were recruited for this cross-sectional investigation in the Department of Gastroenterology in Daqing Oilfield General Hospital from July 2013 to May 2014. The MlALDI-TOF-MS was used to measure the methylation levels of Runx3 in all of the subjects. Real-time quantitative reverse transcription polymerase chain reaction and western blotting were chosen to determine the expression levels of Runx3. The correlations between methylation levels of Runx3 among these CAG patients and their prognosis were shown by logistic regression models. The results demonstrated that the methylation levels of CpG13, CpG14, and CpG15 in Runx3 were higher in Group 3 than those in Groups 1 and 2 (P <0.05), whereas the mRNA and protein expression levels of Runx3 were lower in Group 3 than those in Groups 1 and 2 (P <0.05). There were significantly negative correlations between the methylation levels of Runx3 with its expression and the healing prognosis of CAG patients. In brief, this study proved that the hypermethylation modifications of CpG13, CpG14, and CpG15 in the promoter region of Runx3 could result in the down regulation of Runx3 expression to affect the prognosis of CAG. So the methylation levels of these CpG sites in Runx3 in the peripheral blood can be used as the biomarker for predicting the healing prognosis of CAG patients. PMID:27196446

  19. An Observational Study on Aberrant Methylation of Runx3 With the Prognosis in Chronic Atrophic Gastritis Patients

    PubMed Central

    Zhao, Chunna; Li, Ping; Zhang, Lili; Wang, Bei; Xiao, Lili; Guo, Feng; Wei, Yueguang

    2016-01-01

    Abstract The aim of this study is to discuss whether the methylation levels of Runx3 could be used as the early biomarker for predicting the prognosis in chronic atrophic gastritis (CAG) patients. A total of 200 subjects including 60 controls without CAG (Group 1), 70 patients with mild CAG (Group 2), and 70 patients with moderate and severe CAG (Group 3) were recruited for this cross-sectional investigation in the Department of Gastroenterology in Daqing Oilfield General Hospital from July 2013 to May 2014. The MlALDI-TOF-MS was used to measure the methylation levels of Runx3 in all of the subjects. Real-time quantitative reverse transcription polymerase chain reaction and western blotting were chosen to determine the expression levels of Runx3. The correlations between methylation levels of Runx3 among these CAG patients and their prognosis were shown by logistic regression models. The results demonstrated that the methylation levels of CpG13, CpG14, and CpG15 in Runx3 were higher in Group 3 than those in Groups 1 and 2 (P <0.05), whereas the mRNA and protein expression levels of Runx3 were lower in Group 3 than those in Groups 1 and 2 (P <0.05). There were significantly negative correlations between the methylation levels of Runx3 with its expression and the healing prognosis of CAG patients. In brief, this study proved that the hypermethylation modifications of CpG13, CpG14, and CpG15 in the promoter region of Runx3 could result in the down regulation of Runx3 expression to affect the prognosis of CAG. So the methylation levels of these CpG sites in Runx3 in the peripheral blood can be used as the biomarker for predicting the healing prognosis of CAG patients. PMID:27196446

  20. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  1. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  2. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts.

    PubMed

    Vizoso, Miguel; Puig, Marta; Carmona, F Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-12-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  3. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape

    PubMed Central

    2013-01-01

    Background DNA methylation is an epigenetic modification that changes with age in human tissues, although the mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify tissue-specific age effects. Results We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific ageCGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle ageCGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched within lamina associated domains. Conclusions Our data identified common and tissue-specific DNA methylation changes with age that are reflective of CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation. PMID:24034465

  4. 5-azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation.

    PubMed

    Füller, Mathias; Klein, Miriam; Schmidt, Eva; Rohde, Christian; Göllner, Stefanie; Schulze, Isabell; Qianli, Jiang; Berdel, Wolfgang E; Edemir, Bayram; Müller-Tidow, Carsten; Tschanter, Petra

    2015-03-01

    The DNA methyltransferase (DNMT) inhibitory drugs such as 5-azacytidine induce DNA hypomethylation by inhibiting DNA methyltransferases. While clinically effective, DNMT inhibitors are not curative. A combination with cytotoxic drugs might be beneficial, but this is largely unexplored. In the present study, we analyzed potential synergisms between cytotoxic drugs and 5-azacytidine in acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC) cells. Lung cancer and leukemia cell lines were exposed to low doses of 5-azacytidine with varying doses of cytarabine or etoposide for AML cells (U937 and HL60) as well as cisplatin or gemcitabine for NSCLC cells (A549 and HTB56) for 48 h. Drug interaction and potential synergism was analyzed according to the Chou-Talalay algorithm. Further analyses were based on soft agar colony formation assays, active caspase-3 staining and BrdU incorporation flow cytometry. To identify effects on DNA methylation patterns, we performed genome wide DNA methylation analysis using 450K bead arrays. Azacytidine at low doses was synergistic with cytotoxic drugs in NSCLC and in AML cell lines. Simultaneous exposure to 5-azacytidine with cytotoxic drugs showed strong synergistic activity. In colony formation assays these synergisms were repeatedly verified for 5-azacytidine (25 nM) with low doses of anticancer agents. 5-azacytidine neither affected the cell cycle nor increased apoptosis. 450K methylation bead arrays revealed 1,046 CpG sites in AML and 1,778 CpG sites in NSCLC cells with significant DNA hypomethylation (24-h exposure) to 5-azacytidine combined with the cytotoxic drugs. These CpG-sites were observed in the candidate tumor-suppressor genes MGMT and THRB. Additional incubation time after 24-h treatment led to a 4.1-fold increase of significant hypomethylated CpG-sites in NSCLC cells. These results suggest that the addition of DNA demethylating agents to cytotoxic anticancer drugs exhibits synergistic activity in AML and NSCLC

  5. Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer

    PubMed Central

    Murria, Rosa; Palanca, Sarai; de Juan, Inmaculada; Egoavil, Cecilia; Alenda, Cristina; García-Casado, Zaida; Juan, María J; Sánchez, Ana B; Santaballa, Ana; Chirivella, Isabel; Segura, Ángel; Hervás, David; Llop, Marta; Barragán, Eva; Bolufer, Pascual

    2015-01-01

    This study investigates the relationship of promoter methylation in tumor suppressor genes with copy-number aberrations (CNA) and with tumor markers in breast cancer (BCs). The study includes 98 formalin fixed paraffin-embedded BCs in which promoter methylation of 24 tumour suppressor genes were assessed by Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), CNA of 20 BC related genes by MLPA and ER, PR, HER2, CK5/6, CK18, EGFR, Cadherin-E, P53, Ki-67 and PARP expression by immunohistochemistry (IHC). Cluster analysis classed BCs in two groups according to promoter methylation percentage: the highly-methylated group (16 BCs), containing mostly hyper-methylated genes, and the sparsely-methylated group (82 BCs) with hypo-methylated genes. ATM, CDKN2A, VHL, CHFR and CDKN2B showed the greatest differences in the mean methylation percentage between these groups. We found no relationship of the IHC parameters or pathological features with methylation status, except for Catherin-E (p = 0.008). However the highly methylated BCs showed higher CNA proportion than the sparsely methylated BCs (p < 0.001, OR = 1.62; IC 95% [1.26, 2.07]). CDC6, MAPT, MED1, PRMD14 and AURKA showed the major differences in the CNA percentage between the two groups, exceeding the 22%. Methylation in RASSF1, CASP8, DAPK1 and GSTP1 conferred the highest probability of harboring CNA. Our results show a new link between promoter methylation and CNA giving support to the importance of methylation events to establish new BCs subtypes. Our findings may be also of relevance in personalized therapy assessment, which could benefit the hyper methylated BC patients group. PMID:25628946

  6. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    PubMed Central

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched (P < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  7. Aberrant DNA Methylation: Implications in Racial Health Disparity

    PubMed Central

    Wang, Xuefeng; Ji, Ping; Zhang, Yuanhao; LaComb, Joseph F.; Tian, Xinyu; Li, Ellen; Williams, Jennie L.

    2016-01-01

    Background Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations. Materials and Methods Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit. Results DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients. Conclusion DNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity. PMID:27111221

  8. CpG methylation analysis--current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology.

    PubMed

    Sepulveda, Antonia R; Jones, Dan; Ogino, Shuji; Samowitz, Wade; Gulley, Margaret L; Edwards, Robin; Levenson, Victor; Pratt, Victoria M; Yang, Bin; Nafa, Khedoudja; Yan, Liying; Vitazka, Patrick

    2009-07-01

    Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions. The Methylation Working Group of the Clinical Practice Committee of the Association of Molecular Pathology has reviewed the current state of clinical testing in this area. We report here our summary of both the advantages and disadvantages of various methods, as well as the needs for standardization and reporting. We then conclude by summarizing the most promising areas for future clinical testing in cancer molecular diagnostics. PMID:19541921

  9. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    SciTech Connect

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  10. The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach

    PubMed Central

    Ficz, Gabriella; Wolf, Verena; Walter, Jörn

    2016-01-01

    DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance. PMID:27224554

  11. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review.

    PubMed

    Jia, Min; Gao, Xu; Zhang, Yan; Hoffmeister, Michael; Brenner, Hermann

    2016-01-01

    Contradictory results were reported for the prognostic role of CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Differences in the definitions of CIMP were the most common explanation for these discrepancies. The aim of this systematic review was to give an overview of the published studies on CRC prognosis according to the different definitions of CIMP. A systematic literature search was performed in MEDLINE and ISI Web of Science for articles published until 3 April 2015. Data extraction included information about the study population, the definition of CIMP, and investigated outcomes. Thirty-six studies were included in this systematic review. Among them, 30 studies reported the association of CIMP and CRC prognosis and 11 studies reported the association of CIMP with survival after CRC therapy. Overall, 16 different definitions of CIMP were identified. The majority of studies reported a poorer prognosis for patients with CIMP-positive (CIMP+)/CIMP-high (CIMP-H) CRC than with CIMP-negative (CIMP-)/CIMP-low (CIMP-L) CRC. Inconsistent results or varying effect strengths could not be explained by different CIMP definitions used. No consistent variation in response to specific therapies according to CIMP status was found. Comparative analyses of different CIMP panels in the same large study populations are needed to further clarify the role of CIMP definitions and to find out how methylation information can best be used to predict CRC prognosis and response to specific CRC therapies. PMID:26941852

  12. Altered expression of topoisomerase IIα contributes to cross-resistant to etoposide K562/MX2 cell line by aberrant methylation

    PubMed Central

    Asano, T; Nakamura, K; Fujii, H; Horichi, N; Ohmori, T; Hasegawa, K; Isoe, T; Adachi, M; Otake, N; Fukunaga, Y

    2005-01-01

    KRN 8602 (MX2) is a novel morpholino anthracycline derivative having the chemical structure 3′-deamino-3′-morpholino-13-deoxo-10-hydroxycarminomycin hydrochloride. To investigate the mechanisms of resistance to MX2, we established an MX2-resistant phenotype (K562/MX2) of the human myelogeneous leukaemia cell line (K562/P), by continuously exposing a suspension culture to increasing concentrations of MX2. K562/MX2 cells were more resistant to MX2 than the parent cells, and also showed cross-resistance to etoposide and doxorubicin. Topoisomerase (Topo) IIα protein levels in K562/MX2 cells were lower of those in K562/P cells on immunoblot analysis and decreased expression of Topo IIα mRNA was seen in K562/MX2 cells. Topoisomerase II catalytic activity was also reduced in the nuclear extracts from K562/MX2 cells when compared with K562/P cells. Aberrant methylated CpG of Topo IIα gene was observed in K562/MX2 cells when compared with the parent line on methylation-specific restriction enzyme analysis. To overcome the drug resistance to MX2 and etoposide, we investigated treatment with 5-Aza-2′-deoxycytidine (5AZ), which is a demethylating agent, in K562/MX2 cells. 5-Aza-2′-deoxycytidine treatment increased Topo IIα mRNA expression in K562/MX2 cells, but not in K562/P cells, and increased the cytotoxicity of MX2 and etoposide. Methylated CpG was decreased in K562/MX2 cells after 5AZ treatment. We concluded that the mechanism of drug resistance to MX2 and etoposide in K562/MX2 cells might be the combination of decreased expression of Topo IIα gene and increased methylation, and that 5AZ could prove to be a novel treatment for etoposide-resistant cell lines, such as K562/MX2. PMID:15798770

  13. Aberrant DNA Methylation in Hereditary Non-Polyposis Colorectal Cancer without Mismatch Repair Deficiency

    PubMed Central

    Goel, Ajay; Xicola, Rosa M.; Nguyen, Thuy-Phuong; Doyle, Brian J; Sohn, Vanessa R.; Bandipalliam, Prathap; Reyes, Josep; Cordero, Carmen; Balaguer, Francesc; Castells, Antoni; Jover, Rodrigo; Andreu, Montserrat; Syngal, Sapna; Boland, C. Richard; Llor, Xavier

    2010-01-01

    Background & Aims Approximately half of the families that fulfill Amsterdam criteria for Lynch syndrome or hereditary non-polyposis colorectal cancer (HNPCC) do not have evidence of the germline mismatch repair (MMR) gene mutations that define this syndrome and result in microsatellite instability. The carcinogenic pathways and the best diagnostic approaches to detect microsatellite stable (MSS) HNPCC tumors are unclear. We investigated the contribution of epigenetic alterations to development of MSS HNPCC tumors. Methods Colorectal cancers were divided in four groups: 1. Microsatellite stable, Amsterdam positive (MSS HNPCC) (N=22); 2. Lynch syndrome cancers (identified mismatch repair mutations) (N=21); 3. Sporadic MSS (N=92); 4. Sporadic MSI (N=46). Methylation status was evaluated for CACNAG1, SOCS1, RUNX3, NEUROG1, MLH1, and LINE-1. KRAS and BRAF mutations status was analyzed. Results MSS HNPCC tumors displayed a significantly lower degree of LINE-1 methylation, marker for global methylation, than any other group. Whereas most MSS HNPCC tumors had some degree of CpG island methylation, none presented a high index of methylation. MSS HNPCC tumors had KRAS mutations exclusively in codon 12, but none harbored V600E BRAF mutations. Conclusions Tumors from Amsterdam-positive patients without mismatch repair deficiency (MSS HNPCC) have certain molecular features, including global hypomethylation that distinguish them from all other colorectal cancers. These characteristics could have an important impact on tumor behavior or treatment response. Studies are underway to further assess the cause and effects of these features. PMID:20102720

  14. CpG methylation differences between neurons and glia are highly conserved from mouse to human

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That stud...

  15. Genome-Wide DNA Methylation Analysis in Melanoma Reveals the Importance of CpG Methylation in MITF Regulation.

    PubMed

    Lauss, Martin; Haq, Rizwan; Cirenajwis, Helena; Phung, Bengt; Harbst, Katja; Staaf, Johan; Rosengren, Frida; Holm, Karolina; Aine, Mattias; Jirström, Karin; Borg, Åke; Busch, Christian; Geisler, Jürgen; Lønning, Per E; Ringnér, Markus; Howlin, Jillian; Fisher, David E; Jönsson, Göran

    2015-07-01

    The microphthalmia-associated transcription factor (MITF) is a key regulator of melanocyte development and a lineage-specific oncogene in melanoma; a highly lethal cancer known for its unpredictable clinical course. MITF is regulated by multiple intracellular signaling pathways, although the exact mechanisms that determine MITF expression and activity remain incompletely understood. In this study, we obtained genome-wide DNA methylation profiles from 50 stage IV melanomas, normal melanocytes, keratinocytes, and dermal fibroblasts and utilized The Cancer Genome Atlas data for experimental validation. By integrating DNA methylation and gene expression data, we found that hypermethylation of MITF and its co-regulated differentiation pathway genes corresponded to decreased gene expression levels. In cell lines with a hypermethylated MITF-pathway, overexpression of MITF did not alter the expression level or methylation status of the MITF pathway genes. In contrast, however, demethylation treatment of these cell lines induced MITF-pathway activity, confirming that gene regulation was controlled via methylation. The discovery that the activity of the master regulator of pigmentation, MITF, and its downstream targets may be regulated by hypermethylation has significant implications for understanding the development and evolvement of melanoma. PMID:25705847

  16. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites

    PubMed Central

    Florath, Ines; Butterbach, Katja; Müller, Heiko; Bewerunge-Hudler, Melanie; Brenner, Hermann

    2014-01-01

    Understanding the role of epigenetic modifications, e.g. DNA methylation, in the process of aging requires the characterization of methylation patterns in large cohorts. We analysed >480 000 CpG sites using Infinium HumanMethylation450 BeadChip (Illumina) in whole blood DNA of 965 participants of a population-based cohort study aged between 50 and 75 years. In an exploratory analysis in 400 individuals, 200 CpG sites with the highest Spearman correlation coefficients for the association between methylation and age were identified. Of these 200 CpGs, 162 were significantly associated with age, which was verified in an independent cohort of 498 individuals using mixed linear regression models adjusted for gender, smoking behaviour, age-related diseases and random batch effect and corrected for multiple testing by Bonferroni. In another independent cohort of 67 individuals without history of major age-related diseases and with a follow-up of 8 years, we observed a gain in methylation at 96% (52%, significant) of the positively age-associated CpGs and a loss at all (89%, significant) of the negatively age-associated CpGs in each individual while getting 8 years older. A regression model for age prediction based on 17 CpGs as predicting variables explained 71% of the variance in age with an average accuracy of 2.6 years. In comparison with cord blood samples obtained from the Ulm Birth Cohort Study, we observed a more than 2-fold change in mean methylation levels from birth to older age at 86 CpGs. We were able to identify 65 novel CpG sites with significant association of methylation with age. PMID:24163245

  17. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA

    PubMed Central

    Burghel, George J.; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D.; Brock, Ian W.; Cramp, Helen E.; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S.; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies. PMID:27463681

  18. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation.

    PubMed

    Wu, Haijing; Zhao, Ming; Tan, Lina; Lu, Qianjin

    2016-07-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement. It is characterized by abundant autoantibodies that form immune complex with autoantigens and deposit in organs and cause tissue damage by inducing inflammation. The pathogenesis of SLE has been intensively studied but remains unclear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are believed to contribute to the initiation and development of SLE. The up-to-date research findings point to the relationship between abnormal DNA methylation and SLE, which has attracted considerable interest worldwide. Besides the global hypomethylation on lupus T and B cells, the gene specific and site-specific methylation has been identified and documented to be responsible for SLE. The purpose of this review was to present and summarize the association between aberrant DNA methylation of immune cells and SLE, the possible mechanisms of immune dysfunction caused by DNA methylation, and to better understand the roles of aberrant DNA methylation in the initiation and development of SLE and to provide an insight into the related diagnosis biomarkers and therapeutic options in SLE. PMID:26970492

  19. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding

    PubMed Central

    2014-01-01

    Background X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene. Results We demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST. Conclusions The differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST. PMID:25200388

  20. Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis

    PubMed Central

    Woo, Hye Ryun; Dittmer, Travis A.; Richards, Eric J.

    2008-01-01

    Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing. PMID:18704160

  1. Genetic and physical mapping of a gene encoding a methyl CpG binding protein, Mecp2, to the mouse X chromosome

    SciTech Connect

    Quaderi, N.A.; Brown, S.D.M.; Meehan, R.R.

    1994-08-01

    The methyl CpG binding proteins (MeCP1 and MeCP2) are a class of proteins that bind to templates containing symmetrically methylated CpGs. Using an interspecific backcross segregating a number of X-linked markers, we have localized the Mecp2 gene in mouse to the X chromosome close to the microsatellite marker DXMit1. Detailed physical mapping utilizing an available YAC contig encompassing the DXMit1 locus has localized the Mecp2 gene to a 40-kb region between the L1cam and the Rsvp loci, indicating the probable position of a homologue on the human X chromosome.

  2. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  3. Aberrant methylation of hypermethylated-in-cancer-1 and exocyclic DNA adducts in tobacco smokers.

    PubMed

    Peluso, Marco E M; Munnia, Armelle; Bollati, Valentina; Srivatanakul, Petcharin; Jedpiyawongse, Adisorn; Sangrajrang, Suleeporn; Ceppi, Marcello; Giese, Roger W; Boffetta, Paolo; Baccarelli, Andrea A

    2014-01-01

    Tobacco smoke has been shown to produce both DNA damage and epigenetic alterations. However, the potential role of DNA damage in generating epigenetic changes is largely underinvestigated in human studies. We examined the effects of smoking on the levels of DNA methylation in genes for tumor protein p53, cyclin-dependent kinase inhibitor2A, hypermethylated-in-cancer-1 (HIC1), interleukin-6, Long Interspersed Nuclear Element type1, and Alu retrotransposons in blood of 177 residents in Thailand using bisulfite-PCR andpyrosequencing. Then, we analyzed the relationship of this methylation with the oxidative DNA adduct, M₁dG (a malondialdehyde adduct), measured by ³²P-postlabeling. Multivariate statistical analyses showed that HIC1 methylation levels were significantly increased in smokers compared with nonsmokers (p ≤ .05). A dose response was observed, with the highest HIC1 methylation levels in smokers of ≥ 10 cigarettes/day relative to nonsmokers and intermediate values in smokers of 1-9 cigarettes/day (p for trend ≤ .001). No additional relationships were observed. We also evaluated correlations between M₁dG and the methylation changes at each HIC1 CpG site individually. The levels of this adduct in smokers showed a significant linear correlation with methylation at one of the 3 CpGs evaluated in HIC1: hypermethylation at position 1904864340 was significantly correlated with the adduct M₁dG (covariate-adjusted regression coefficient (β) = .224 ± .101 [SE], p ≤ .05). No other correlations were detected. Our study extends prior work by others associating hypermethylation of HIC1 with smoking; shows that a very specific hypermethylation event can arise from smoking; and encourages future studies that explore a possible role for M₁dG in connecting smoking to this latter hypermethylation. PMID:24154486

  4. CpG Methylation as a Tool to Characterize Cell-Free Kaposi Sarcoma Herpesvirus DNA

    PubMed Central

    Shamay, Meir; Hand, Nicholas; Lemas, M. Victor; Koon, Henry B.; Krown, Susan E.; Wrangle, John; Desai, Prashant; Ramos, Juan Carlos

    2012-01-01

    (See the editorial commentary by Stebbing and Bower, on pages 1032–4.) We studied the presence of Kaposi sarcoma herpesvirus sequences in cell-free DNA (cfDNA) isolated from the blood of patients with AIDS-related Kaposi sarcoma (KS) and primary effusion lymphoma (PEL). The use of paramagnetic beads linked to methyl-CpG binding domain protein allowed separation of virion and cell-derived DNA. Only virion DNA was detected in the blood of KS patients, whereas cell-derived DNA was detected in a patient with AIDS-related PEL. The difference in the origins of cfDNA in these settings may in part reflect very different proliferative indices in KS and PEL tumor tissue. PMID:22357696

  5. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  6. The role for oxidative stress in aberrant DNA methylation in Alzheimer's disease.

    PubMed

    Fleming, Jessica L; Phiel, Christopher J; Toland, Amanda Ewart

    2012-11-01

    Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without highly effective therapies. The etiology of AD is heterogeneous with amyloid-beta plaques, neurofibrillary tangles, oxidative stress, and aberrant DNA methylation all implicated in the disease pathogenesis. DNA methylation is a well-established process for regulating gene expression and has been found to regulate a growing number of important genes involved in AD development and progression. Additionally, aberrations in one-carbon metabolism are a common finding in AD patients with individuals exhibiting low S-adenosylmethionine and high homocysteine levels as well as low folate and vitamin B. Oxidative stress is considered one of the earliest events in AD pathogenesis and is thought to contribute largely to neuronal cell death. Emerging evidence suggests an interaction exists between oxidative stress and DNA methylation; however, the mechanism(s) remain unclear. This review summarizes known and potential genes implicated in AD that are regulated by DNA methylation and oxidative stress. We also highlight the evidence for the role of oxidative damage contributing to DNA hypomethylation in AD patients through several mechanisms as well as implications for disease understanding and therapeutic development. PMID:21605062

  7. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation

    PubMed Central

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R.; Pradhan, Sriharsa

    2015-01-01

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression. PMID:25990724

  8. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation.

    PubMed

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R; Pradhan, Sriharsa

    2015-07-13

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression. PMID:25990724

  9. Molecular Subtype-Specific Expression of MicroRNA-29c in Breast Cancer Is Associated with CpG Dinucleotide Methylation of the Promoter

    PubMed Central

    Poli, Elizabeth; Zhang, Jing; Nwachukwu, Chika; Zheng, Yonglan; Adedokun, Babatunde; Olopade, Olufunmilayo I.; Han, Yoo-Jeong

    2015-01-01

    Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers. PMID:26539832

  10. Association of Cigarette Smoking with Aberrant Methylation of the Tumor Suppressor Gene RARβ2 in Papillary Thyroid Cancer.

    PubMed

    Kiseljak-Vassiliades, Katja; Xing, Mingzhao

    2011-01-01

    Aberrant gene methylation is often seen in thyroid cancer, a common endocrine malignancy. Tobacco smoking has been shown to be associated with aberrant gene methylation in several cancers, but its relationship with gene methylation in thyroid cancer has not been examined. In the present study, we investigated the relationship between smoking of patients and aberrant methylation of tumor suppressor genes for TIMP3, SLC5A8, death-associated protein kinase, and retinoic acid receptor β2 (RARβ2) in papillary thyroid cancer (PTC), the most common type of thyroid cancer. The promoter methylation status of these genes was analyzed using quantitative real-time methylation-specific PCR on bisulfite-treated genomic DNA isolated from tumor tissues and correlated with smoking history of the patients. Among the four genes, methylation of the RARβ2 gene was significantly associated with smoking and other three genes showed a trend of association. Specifically, among the 138 patients investigated, 13/42 (31.0%) ever smokers vs. 10/96 (10.4%) never smokers harbored methylation of the RARβ2 gene (P = 0.003). This association was highly significant also in the subset of conventional variant PTC (P = 0.005) and marginally significant in follicular variant PTC (P = 0.06). The results demonstrate that smoking-associated aberrant methylation of the RARβ2 gene is a specific molecular event that may represent an important mechanism in thyroid tumorigenesis in smokers. PMID:22649395

  11. CpG methylation has differential effects on the binding of YY1 and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes.

    PubMed Central

    Gaston, K; Fried, M

    1995-01-01

    The divergently transcribed Surf-1 and Surf-2 housekeeping genes are separated by a bi-directional, TATA-less promoter which lies within a CpG-rich island. Here we show that CpG methylation severely reduces transcription in the direction of both Surf-1 and Surf-2. Previous work has identified three promoter elements (Su1, Su2 and Su3) which are conserved between the human and mouse Surf-1/Surf-2 promoters. These elements bind transcription factors present in human and mouse cell nuclear extracts in vitro and mutations which prevent factor binding also reduce promoter activity in vivo. Transcription initiation factor YY1 binds to the Su1 site and stimulates transcription in the direction of Surf-1 and, to a lesser extent, Surf-2. Here we show that members of the ETS family of transcription factors bind to the Su2 site. Although the Su1 factor binding site contains three CpG dinucleotides, the binding of YY1 is not affected by CpG methylation. In contrast, CpG methylation abolishes the binding of ETS proteins to the Su2 site; methylation of a single cytosine, at position 3 of the consensus ETS site, is sufficient to prevent factor binding. This direct effect on the binding of ETS proteins is, however, not in itself sufficient to explain the repression of this promoter by CpG methylation. A mutation of the Su2 site which removes the sequence CpG, but which does not prevent ETS factor binding, fails to relieve this promoter from repression by CpG methylation. Images PMID:7731802

  12. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation

    PubMed Central

    Behringer, Megan G.; Hall, David W.

    2015-01-01

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949

  13. The recurrent causal mutation for osteogenesis imperfecta type V occurs at a highly methylated CpG dinucleotide within the IFITM5 gene

    PubMed Central

    Corradi, Massimiliano; Monti, Elena; Venturi, Giacomo; Gandini, Alberto; Mottes, Monica; Antoniazzi, Franco

    2014-01-01

    Recent studies have identified the molecular defect underlying autosomal dominant osteogenesis imperfecta (OI) type V. Unlike all other OI types, which are characterized by high genetic heterogeneity, OI type V appears consistently associated to a unique de novo C>T transition within the 5′ UTR of the IFITM5 gene. Although the precise frequency of OI type V is not known, this recurrent base substitution may well represent a mutational hotspot in the human genome. We show that it occurs at a CpG dinucleotide that is highly methylated in several tissues and particularly in the sperm DNA, suggesting a mutational mechanism common to other de novo recurrent dominant mutations.

  14. Impact of aberrant DNA methylation patterns including CYP1B1 methylation in adolescents and young adults with acute lymphocytic leukemia

    PubMed Central

    DiNardo, CD; Gharibyan, V; Yang, H; Wei, Y; Pierce, S; Kantarjian, HM; Garcia-Manero, G; Rytting, M

    2014-01-01

    Introduction Aberrant promoter DNA methylation is a well-described mechanism of leukemogenesis within hematologic malignancies, including acute lymphoblastic leukemia (ALL). However, the importance of methylation patterns among the adolescent and young adult (AYA) ALL population has not been well established. Methods DNA methylation of 18 candidate genes in 33 AYA ALL patients was analyzed at diagnosis and during treatment, to evaluate the frequency and clinical relevance of aberrant methylation in an AYA population treated on a uniform therapeutic regimen. Results Of 16 informative genes, there was a median of 6 methylated genes per AYA ALL patient. Correlations were identified between increasing number of methylated genes with male sex (p=0.04), increased white blood cell (WBC) count (p=0.04) and increased bone-marrow blast percentage (p=0.04). Increasing age was associated with EPHA5 methylation (p=0.05). Overall, patients experienced favorable outcomes with median survival that was not reached. On univariate analysis, methylation of CYP1B1 was associated with worse overall survival (HR 10.7, 95% CI 1.3–87.6, p=0.03), disease-free survival (HR 3.7, 95% CI 1.1–9.2, p=0.04) and correlated with decreased CYP1B1 gene expression. Conclusions A significant incidence of methylation within the AYA ALL population was identified, with increased methylation associated with distinct clinicopathologic features including male gender and elevated WBC count. Our results suggest aberrant methylation among AYA patients is frequent, and may provide a common pathogenic mechanism. The inferior outcome identified with methylation of the cytochrome p450 gene CYP1B1, an enzyme involved in drug metabolism and steroid synthesis, warrants further investigation. PMID:23757320

  15. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  16. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation

    PubMed Central

    2010-01-01

    Background CpG island methylator phenotype (CIMP), in which multiple genes concordantly methylated, has been demonstrated to be associated with progression, recurrence, as well as overall survival in some types of cancer. Methods We examined the promoter methylation status of seven genes including P16, CDH1, GSTP1, DAPK, XAF1, SOCS1 and SYK in 65 cases of HCC treated with LT by methylation-specific PCR. CIMP+ was defined as having three or more genes that are concordantly methylated. The relationship between CIMP status and clinicopathological parameters, as well as tumor recurrence was further analyzed. Results CIMP+ was more frequent in HCC with AFP > 400 ng/ml than those with AFP ≤ 400 ng/ml (P = 0.017). In addition, patients with CIMP+ were prone to have multiple tumor numbers than those with CIMP- (P = 0.007). Patients with CIMP+ tumors had significantly worse recurrence-free survival (RFS) than patients with CIMP-tumors by Kaplan-Meier estimates (P = 0.004). Multivariate analysis also revealed that CIMP status might be a novel independent prognostic factor of RFS for HCC patients treated with LT (HR: 3.581; 95% CI: 1.473-8.710, P = 0.005). Conclusion Our results suggested that CIMP could serve as a new prognostic biomarker to predict the risk of tumor recurrence in HCC after transplantation. PMID:20678188

  17. Impriniting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching

    SciTech Connect

    Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. )

    1993-07-01

    Genomic imprinting and monoallelic gene expression appear to play a role in human genetic disease and tumorigenesis. The human H19 gene, at chromosome 11p15, has previously been shown to be monoallelically expressed. Since CpG methylation has been implicated in imprinting, the authors analyzed methylation of H19 DNA. In fetal and adult organs the transcriptionally silent H19 allele was extensively hypermethylated through the entire gene and its promoter, and, consistent with a functional role for DNA methylation, expression of an H19 promoter-reporter construct was inhibited by in vitro methylation. Gynogenetic ovarian teratomas were found to contain only hypomethylated H19 DNA, suggesting that the expressed H19 allele might be maternal. This was confirmed by analysis of 11p15 polymorphisms in a patient with Wilms tumor. The tumor had lost the maternal 11p15, and H19 expression in the normal kidney was exclusively from this allele. Imprinting of human H19 appears to be susceptible to tissue-specific modulation in somatic development; in one individual, cerebellar cells were found to express only the otherwise silent allele. Implications of these findings for the role of DNA methylation in imprinting and for H19 as a candidate imprinted tumor-suppressor gene are discussed. 57 refs., 7 figs.

  18. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  19. Promoter CpG Island Methylation of Genes in Key Cancer Pathways Associates with Clinical Outcome in High Grade Serous Ovarian Cancer

    PubMed Central

    Masrour, Nahal; Siddiqui, Nadeem; Paul, James; Brown, Robert

    2013-01-01

    Purpose We aimed to identify DNA methylation biomarkers of progression free survival (PFS) to platinum-based chemotherapy in high grade serous ovarian cancer (HGSOC) within biologically relevant ovarian cancer associated pathways. Experimental Design Association with PFS of CpG island (CGI) promoter DNA methylation at genes in the pathways Akt/mTOR, p53, redox and homologous recombination DNA repair was sought with PFS as the primary objective in a prospectively collected ovarian cancer cohort (n=150). Significant loci were validated for associations between PFS, methylation and gene expression in an independent TCGA data set of HGSOC (n=311). Results DNA methylation at 29 CGI loci linked to 28 genes was significantly associated with PFS, independent from conventional clinical prognostic factors (adjusted p<0.05). Of 17 out of the 28 genes represented in the TCGA data set, methylation of VEGFB, VEGFA, HDAC11, FANCA, E2F1, GPX4, PRDX2, RAD54L and RECQL4 was prognostic in this independent patient cohort (one-sided p<0.05, FDR<10%). A multivariate Cox model was constructed, with clinical parameters (age, stage, grade and histological type) and significant loci. The final model included NKD1, VEGFB and PRDX2 as the three best predictors of PFS (p=6.62x10-6, permutation test p<0.05). Focussing only on known VEGFs in the TCGA cohort showed that methylation at promoters of VEGFA, VEGFB and VEGFC was significantly associated with PFS. Conclusions A three loci model of DNA methylation could identify two distinct prognostic groups of ovarian cancer patients (PFS: HR=2.29, p=3.34×10-5; Overall Survival: HR= 1.87, p=0.007) and patients more likely to have poor response to chemotherapy (OR=3.45, p=0.012). PMID:23965899

  20. Systematic CpG Islands Methylation Profiling of Genes in the Wnt Pathway in Epithelial Ovarian Cancer Identifies Biomarkers of Progression-Free Survival

    PubMed Central

    Dai, Wei; Teodoridis, Jens M.; Zeller, Constanze; Graham, Janet; Hersey, Jenny; Flanagan, James M.; Stronach, Euan; Millan, David W.; Siddiqui, Nadeem; Paul, Jim; Brown, Robert

    2011-01-01

    Purpose Wnt pathways control key biological processes that potentially impact on tumour progression and patient survival. We aimed to evaluate DNA methylation at promoter CpG islands (CGIs) of Wnt pathway genes in ovarian tumours at presentation and identify biomarkers of patient progression-free survival (PFS). Experimental Design Epithelial ovarian tumours (screening study n=120, validation study n=61) prospectively collected through a cohort study, were analysed by differential methylation hybridisation (DMH) at 302 loci spanning 189 promoter CGIs at 137 genes in Wnt pathways. The association of methylation and progression free survival was examined by Cox proportional hazards model. Results DNA methylation is associated with PFS at 20/302 loci (p<0.05, n=111), with 5 loci significant at FDR<10%. 11/20 loci retain significance in an independent validation cohort (n=48,p≤0.05,FDR≤10%), and 7 of these loci, at FZD4, DVL1, NFATC3, ROCK1, LRP5, AXIN1 and NKD1 genes, are independent from clinical parameters (adjusted p<0.05). Increased methylation at these loci associates with increased hazard of disease progression. A multivariate Cox model incorporates only NKD1 and DVL1, identifying two groups differing in PFS (HR=2.09; 95%CI (1.39, 3.15); permutation test p<0.005). Methylation at DVL1 and NFATC3 show significant association with response. Consistent with their epigenetic regulation, reduced expression of FZD4, DVL1 and ROCK1 is an indicator of early disease relapse in an independent ovarian tumour cohort (n=311, adjusted p<0.05). Conclusions The data highlights the importance of epigenetic regulation of multiple promoter CGIs of Wnt pathway genes in ovarian cancer and identifies methylation at NKD1 and DVL1 as independent predictors of PFS. PMID:21459799

  1. Methylation of CpG island of p14(ARK), p15(INK4b) and p16(INK4a) genes in coke oven workers.

    PubMed

    Zhang, H; Li, X; Ge, L; Yang, J; Sun, J; Niu, Q

    2015-02-01

    To detect the blood genomic DNA methylation in coke oven workers and find a possible early screening index for occupational lung cancer, 74 coke oven workers as the exposed group and 47 water pump workers as the controls were surveyed, and urine samples and peripheral blood mononuclear cells (PBMCs) were collected. Airborne benzo[a]pyrene (B[a]P) levels in workplace and urinary 1-hydroxypyrene (1-OH-Py) levels were determined by high-performance liquid chromatography. DNA damage of PBMCs and the p14(ARK), p15(INK4b) and p16(INK4a) gene CpG island methylation in the promoter region were detected by comet assay and methylation-specific polymerase chain reaction techniques, respectively. Results show that compared with the controls, concentration of airborne B[a]Ps was elevated in the coke plant, and urinary 1-OH-Py's level and DNA olive tail moment in comet assay were significantly increased in the coke oven workers, and p14(ARK), p15(INK4b) and p16(INK4a) gene methylation rates were also significantly increased. With the working years and urinary 1-OH-Py's level, the rates of p14(ARK) and p16(INK4a) gene methylation were significantly increased while that of p15(INK4b) gene methylation displayed no statistical change. We conclude that PBMCs' p14(ARK) and p16(INK4a) gene methylation may be used for screening and warning lung cancer in coke oven workers. PMID:24837742

  2. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2

    PubMed Central

    Lemmers, Richard J.L.F.; Goeman, Jelle J.; van der Vliet, Patrick J.; van Nieuwenhuizen, Merlijn P.; Balog, Judit; Vos-Versteeg, Marianne; Camano, Pilar; Ramos Arroyo, Maria Antonia; Jerico, Ivonne; Rogers, Mark T.; Miller, Daniel G.; Upadhyaya, Meena; Verschuuren, Jan J.G.M.; Lopez de Munain Arregui, Adolfo; van Engelen, Baziel G.M.; Padberg, George W.; Sacconi, Sabrina; Tawil, Rabi; Tapscott, Stephen J.; Bakker, Bert; van der Maarel, Silvère M.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1–10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle. We measured D4Z4 CpG methylation in control, FSHD1 and FSHD2 individuals and found a significant correlation with the D4Z4 repeat array size. After correction for repeat array size, we show that the variability in clinical severity in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation. In FSHD1, for individuals with D4Z4 repeat arrays of 1–6 units, the clinical severity mainly depends on the size of the D4Z4 repeat. However, in individuals with arrays of 7–10 units, the clinical severity also depends on other factors that regulate D4Z4 methylation because affected individuals, but not non-penetrant mutation carriers, have a greater reduction of D4Z4 CpG methylation than can be expected based on the size of the pathogenic D4Z4 repeat array. In FSHD2, this epigenetic susceptibility depends on the nature of the SMCHD1 mutation in combination with D4Z4 repeat array size with dominant negative mutations being more deleterious than haploinsufficiency mutations. Our study thus identifies an epigenetic basis for the striking variability in onset and disease progression that is considered a clinical hallmark of FSHD. PMID:25256356

  3. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2.

    PubMed

    Lemmers, Richard J L F; Goeman, Jelle J; van der Vliet, Patrick J; van Nieuwenhuizen, Merlijn P; Balog, Judit; Vos-Versteeg, Marianne; Camano, Pilar; Ramos Arroyo, Maria Antonia; Jerico, Ivonne; Rogers, Mark T; Miller, Daniel G; Upadhyaya, Meena; Verschuuren, Jan J G M; Lopez de Munain Arregui, Adolfo; van Engelen, Baziel G M; Padberg, George W; Sacconi, Sabrina; Tawil, Rabi; Tapscott, Stephen J; Bakker, Bert; van der Maarel, Silvère M

    2015-02-01

    Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1-10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle. We measured D4Z4 CpG methylation in control, FSHD1 and FSHD2 individuals and found a significant correlation with the D4Z4 repeat array size. After correction for repeat array size, we show that the variability in clinical severity in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation. In FSHD1, for individuals with D4Z4 repeat arrays of 1-6 units, the clinical severity mainly depends on the size of the D4Z4 repeat. However, in individuals with arrays of 7-10 units, the clinical severity also depends on other factors that regulate D4Z4 methylation because affected individuals, but not non-penetrant mutation carriers, have a greater reduction of D4Z4 CpG methylation than can be expected based on the size of the pathogenic D4Z4 repeat array. In FSHD2, this epigenetic susceptibility depends on the nature of the SMCHD1 mutation in combination with D4Z4 repeat array size with dominant negative mutations being more deleterious than haploinsufficiency mutations. Our study thus identifies an epigenetic basis for the striking variability in onset and disease progression that is considered a clinical hallmark of FSHD. PMID:25256356

  4. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

  5. The induction of SCE and chromosomal aberrations with relation to specific base methylation of DNA in Chinese hamster cells by N-methyl-N-nitrosourea and dimethyl sulphate.

    PubMed

    Connell, J R; Medcalf, A S

    1982-01-01

    Chinese hamster cells (V79) were treated, either as exponentially proliferating cultures or under conditions where they were density-inhibited, with various doses of the potent carcinogen N-methyl-N-nitrosourea (MNU) or the relatively weak carcinogen dimethylsulphate (DMS). The colony forming ability of these cells and the induced frequencies of sister chromatid exchanges (SCEs) and chromosomal aberrations were assayed. Following the exposure of density-inhibited cells to radio-labelled methylating agents (labelled in the methyl group) these phenomena were related to the levels of 7-methylguanine (7-meGua), O6-methylguanine (O6-meGua) and 3-methyladenine (3-me-Ade) in the DNA. At equitoxic doses MNU and DMS induced similar frequencies of SCEs and chromosomal aberrations. Since, at equitoxic doses, MNU produces approximately 20 times more O6-meGua in V79 cell DNA than does DMS, this indicates that the formation of O6-meGua in DNA is not a major cause of SCEs and chromosomal aberrations. DMS-induced SCEs may be mediated via the production of both 3-meAde and 7-meGua in the DNA; these two methylated purines may also be responsible for MNU-induced SCEs. Therefore, no one specific methylated purine was identified as being solely accountable for the formation of SCEs. Also, the repair of lesions in the DNA of non-replicating V79 cells leads to a reduction in the SCE frequency on their subsequent release from the density-inhibited state, suggesting that repair is not intimately responsible for their formation. No association was discernable between chromosomal aberrations and any of the three methylated purines studied. PMID:7094205

  6. Reversibility of Aberrant Global DNA and Estrogen Receptor-α Gene Methylation Distinguishes Colorectal Precancer from Cancer

    PubMed Central

    Shen, Rulong; Tao, Lianhui; Xu, Yiqing; Chang, Shi; Van Brocklyn, James; Gao, Jian-Xin

    2009-01-01

    Alterations in the global methylation of DNA and in specific regulatory genes are two epigenetic alterations found in cancer. However, the significance of epigenetic changes for diagnosis and/or prognosis of colorectal cancer have not been established, although it has been extensively investigated. Recently we have identified a new type of cancer cell called precancerous stem cells (pCSCs) and proposed that cancer may arise from a lengthy development process of tumor initiating cells (TICs) → pCSCs → cancer stem cells (CSCs) → cancer, which is in parallel to histological changes of hyperplasia (TICs) → precancer (pCSCs) → carcinoma (CSCs/cancer cells), accompanied by clonal evolutionary epigenetic and genetic alterations. In this study, we investigated whether aberrant DNA methylation can be used as a biomarker for the differentiation between premalignant and malignant lesions in the colorectum. The profile of global DNA and estrogen receptor (ER)-α gene methylation during cancer development was determined by analysis of 5-methylcytosine (5-MeC) using immunohistochemical (IHC) staining, dot blot analysis or a quantitative gene methylation assay (QGMA). Herein we show that global DNA hypomethylation and ER-α gene hypermethylation are progressively enhanced from hyperplastic polyps (HPs) → adenomatous polyps (APs) → adenomatous carcinoma (AdCa). The aberrant methylation can be completely reversed in APs, but not in AdCa by a nonsteroidal anti-inflammatory drug (NSAID) celecoxib, which is a selective inhibitor of cyclooxygenase-2 (Cox-2), suggesting that the epigenetic alterations between colorectal precancer (AP) and cancer (AdCa) are fundamentally different in response to anti-cancer therapy. In normal colorectal mucosa, while global DNA methylation was not affected by aging, ER-α gene methylation was significantly increased with aging. However, this increase did not reach the level observed in colorectal APs. Taken together, reversibility of

  7. Ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice

    PubMed Central

    Schmelzer, Constance; Kitano, Mitsuaki; Hosoe, Kazunori; Döring, Frank

    2012-01-01

    Coenzyme Q10 is an essential cofactor in the respiratory chain and serves as a potent antioxidant in biological membranes. Recent studies in vitro and in vivo provide evidence that Coenzyme Q10 is involved in inflammatory processes and lipid metabolism via gene expression. To study these effects at the epigenomic level, C57BL6J mice were supplemented for one week with reduced Coenzyme Q10 (ubiquinol). Afterwards, gene expression signatures and DNA promoter methylation patterns of selected genes were analysed. Genome-wide transcript profiling in the liver identified 1112 up-regulated and 571 down-regulated transcripts as differentially regulated between ubiquinol-treated and control animals. Text mining and GeneOntology analysis revealed that the ”top 20” ubiquinol-regulated genes play a role in lipid metabolism and are functionally connected by the PPARα signalling pathway. With regard to the ubiquinol-induced changes in gene expression of about +3.14-fold (p≤0.05), +2.18-fold (p≤0.01), and −2.13-fold (p≤0.05) for ABCA1, ACYP1, and ACSL1 genes, respectively, hepatic DNA methylation analysis of 282 (sense orientation) and 271 (antisense) CpG units in the respective promoter islands revealed no significant effect of ubiquinol. In conclusion, ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changing the promoter DNA methylation status in the liver of mice. PMID:22448092

  8. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    PubMed

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features. PMID:25496513

  9. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype

    PubMed Central

    Whitehall, VLJ; Dumenil, TD; McKeone, DM; Bond, CE; Bettington, ML; Buttenshaw, RL; Bowdler, L; Montgomery, GW; Wockner, LF; Leggett, BA

    2014-01-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features. PMID:25496513

  10. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    PubMed Central

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  11. [THE SOMATIC MUTATIONS AND ABERRANT METHYLATION AS POTENTIAL GENETIC MARKERS OF URINARY BLADDER CANCER].

    PubMed

    Mikhailenko, D S; Kushlinskii, N E

    2016-02-01

    All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers. PMID:27455559

  12. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes.

    PubMed

    Li, Yuxiang; Deng, Heng; Miao, Min; Li, Huirong; Huang, Shengxiong; Wang, Songhu; Liu, Yongsheng

    2016-04-01

    In tomato (Solanum lycopersicum), high pigment mutations (hp-1 and hp-2) were mapped to genes encoding UV-damaged DNA binding protein 1 (DDB1) and de-etiolated-1 (DET1), respectively. Here we characterized a tomato methyl-CpG-binding domain protein SlMBD5 identified by yeast two-hybrid screening using SlDDB1 as a bait. Yeast two-hybrid assay demonstrated that the physical interaction of SlMBD5 with SlDDB1 is mediated by the C-termini of SlMBD5 and the β-propeller-C (BPC) of SlDDB1. Co-immunoprecipitation analyses revealed that SlMBD5 associates with SlDDB1-interacting partners including SlDET1, SlCUL4, SlRBX1a and SlRBX1b in vivo. SlMBD5 was shown to target to nucleus and dimerizes via its MBD motif. Electrophoresis mobility shift analysis suggested that the MBD of SlMBD5 specifically binds to methylated CpG dinucleotides but not to methylated CpHpG or CpHpH dinucleotides. SlMBD5 expressed in protoplast is capable of activating transcription of CG islands, whereas CUL4/DDB1 antagonizes this effect. Overexpressing SlMBD5 resulted in diverse developmental alterations including darker green fruits with increased plastid level and elevated pigmentation, as well as enhanced expression of SlGLK2, a key regulator of plastid biogenesis. Taken together, we hypothesize that the physical interaction of SlMBD5 with the CUL4-DDB1-DET1 complex component may affect its binding activity to methylated DNA and subsequently attenuate its transcription activation of downstream genes. PMID:26551231

  13. Effects of Methylation Status of CpG Sites within the HPV16 Long Control Region on HPV16-Positive Head and Neck Cancer Cells

    PubMed Central

    Pan, Xiaoli; Uehara, Takayuki; Suzuki, Mikio; Xie, Minqiang

    2015-01-01

    Objective To map comprehensively the methylation status of the CpG sites within the HPV16 long control region (LCR) in HPV-positive cancer cells, and to explore further the effects of methylation status of HPV16 LCR on cell bioactivity and E6 and E7 expression. In addition, to analyze the methylation status of the LCR in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods and Materials Methylation patterns of HPV16 LCR in UM-SCC47, CaSki, and SiHa cells and HPV16-positiive OPSCC specimens were detected by bisulfite-sequencing PCR and TA cloning. For cells treated with 5-aza-2′-deoxycytidine and E6 and E7 knockdown, MTS and trypan blue staining, annexin-V and 7-AAD staining, and prodidium iodide were used to evaluate cell growth and cell proliferation, cell apoptosis, and cell cycle arrest, respectively. E6 and E7 mRNA and protein expression were analyzed by quantitative real-time PCR and immunocytochemistry, respectively. Results Hypermethylation status of the LCR in UM-SCC47 (79.8%) and CaSki cells (90.0%) and unmethylation status of the LCR in SiHa cells (0%) were observed. Upon demethylation, the cells with different methylation levels responded differently during growth, apoptosis, and cell cycle arrest, as well as in terms of their E6 and E7 expression. In HPV16-positive OPSCC patients, the methylation rates were 9.5% in the entire LCR region, 13.9% in the 5′-LCR, 6.0% in the E6 enhancer, and 9.5% in the p97 promoter, and hypermethylation of p97 promoter was found in a subset of cases (20.0%, 2/10). Conclusions Our study revealed two different methylation levels of the LCR in HPV16-positive cancer cells and OPSCC patients, which may represent different carcinogenesis mechanisms of HPV-positive cancers cells. Demethylating the meCpGs in HPV16 LCR might be a potential target for a subgroup of HPV16-positive patients with head and neck squamous cell carcinoma. PMID:26509736

  14. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation

    PubMed Central

    Cotton, Allison M.; Price, E. Magda; Jones, Meaghan J.; Balaton, Bradley P.; Kobor, Michael S.; Brown, Carolyn J.

    2015-01-01

    X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. PMID:25381334

  15. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia

    PubMed Central

    Kuang, Shao-Qing; Bai, Hao; Fang, Zhi-Hong; Lopez, Gonzalo; Yang, Hui; Tong, Weigang; Wang, Zack Z.

    2010-01-01

    Eph receptors and their ephrin ligands are involved in normal hematopoietic development and tumorigenesis. Using methylated CpG island amplification/DNA promoter microarray, we identified several EPH receptor and EPHRIN genes as potential hypermethylation targets in acute lymphoblastic leukemia (ALL). We subsequently studied the DNA methylation status of the Eph/ephrin family by bisulfite pyrosequencing. Hypermethylation of EPHA2, -A4, -A5, -A6, -A7, -A10, EPHB1, -B2, -B3, -B4, EFNA1, -A3, -A5, and EFNB1 and -B2 genes was detected in leukemia cell lines and primary ALL bone marrow samples. Expression analysis of EPHB4, EFNB2, and EFNA5 genes demonstrated that DNA methylation was associated with gene silencing. We cloned the promoter region of EPHB4 and demonstrated that promoter hypermethylation can result in EPHB4 transcriptional silencing. Restoration of EPHB4 expression by lentiviral transduction resulted in reduced proliferation and apoptotic cell death in Raji cells in which EPHB4 is methylated and silenced. Finally, we demonstrated that phosphorylated Akt is down-regulated in Raji cells transduced with EPHB4. These results suggest that epigenetic silencing by hypermethylation of EPH/EPHRIN family genes contributes to ALL pathogenesis and that EPHB4 can function as a tumor suppressor in ALL. PMID:20061560

  16. Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG Island Methylation State

    PubMed Central

    Pells, Steve; Koutsouraki, Eirini; Morfopoulou, Sofia; Valencia-Cadavid, Sara; Tomlinson, Simon R.; Kalathur, Ravi; Futschik, Matthias E.; De Sousa, Paul A.

    2015-01-01

    Human embryonic stem cells (hESCs) undergo epigenetic changes in vitro which may compromise function, so an epigenetic pluripotency “signature” would be invaluable for line validation. We assessed Cytosine-phosphate-Guanine Island (CGI) methylation in hESCs by genomic DNA hybridisation to a CGI array, and saw substantial variation in CGI methylation between lines. Comparison of hESC CGI methylation profiles to corresponding somatic tissue data and hESC mRNA expression profiles identified a conserved hESC-specific methylation pattern associated with expressed genes. Transcriptional repressors and activators were over-represented amongst genes whose associated CGIs were methylated or unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic expression in fibroblasts modulated iPSC colony formation. Chromatin immunoprecipitation confirmed interaction between the candidates and the core pluripotency transcription factor network. We thus identify novel pluripotency genes on the basis of a conserved and distinct epigenetic configuration in human stem cells. PMID:26151932

  17. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue. PMID:26880767

  18. Aberrant 5’-CpG Methylation of Cord Blood TNFα Associated with Maternal Exposure to Polybrominated Diphenyl Ethers

    PubMed Central

    Wang, Xiaobin; Tang, Wan-Yee

    2015-01-01

    Growing evidence suggests that maternal exposures to endocrine disrupting chemicals during pregnancy may lead to poor pregnancy outcomes and increased fetal susceptibility to adult diseases. Polybrominated diphenyl ethers (PBDEs), which are ubiquitously used flame-retardants, could leach into the environment; and become persistent organic pollutants via bioaccumulation. In the United States, blood PBDE levels in adults range from 30–100 ng/g- lipid but the alarming health concern revolves around children who have reported blood PBDE levels 3 to 9-fold higher than adults. PBDEs disrupt endocrine, immune, reproductive and nervous systems. However, the mechanism underlying its adverse health effect is not fully understood. Epigenetics is a possible biological mechanism underlying maternal exposure-child health outcomes by regulating gene expression without changes in the DNA sequence. We sought to examine the relationship between maternal exposure to environmental PBDEs and promoter methylation of a proinflammatory gene, tumor necrosis factor alpha (TNFα). We measured the maternal blood PBDE levels and cord blood TNFα promoter methylation levels on 46 paired samples of maternal and cord blood from the Boston Birth Cohort (BBC). We showed that decreased cord blood TNFα methylation associated with high maternal PBDE47 exposure. CpG site-specific methylation showed significantly hypomethylation in the girl whose mother has a high blood PBDE47 level. Consistently, decreased TNFα methylation associated with an increase in TNFα protein level in cord blood. In conclusion, our finding provided evidence that in utero exposure to PBDEs may epigenetically reprogram the offspring’s immunological response through promoter methylation of a proinflammatory gene. PMID:26406892

  19. Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis

    PubMed Central

    Marzese, Diego M.; Scolyer, Richard A.; Huynh, Jamie L.; Huang, Sharon K.; Hirose, Hajime; Chong, Kelly K.; Kiyohara, Eiji; Wang, Jinhua; Kawas, Neal P.; Donovan, Nicholas C.; Hata, Keisuke; Wilmott, James S.; Murali, Rajmohan; Buckland, Michael E.; Shivalingam, Brindha; Thompson, John F.; Morton, Donald L.; Kelly, Daniel F.; Hoon, Dave S.B.

    2014-01-01

    Melanoma brain metastasis (MBM) represents a frequent complication of cutaneous melanoma. Despite aggressive multi-modality therapy, patients with MBM often have a survival rate of <1 year. Alteration in DNA methylation is a major hallmark of tumor progression and metastasis; however, it remains largely unexplored in MBM. In this study, we generated a comprehensive DNA methylation landscape through the use of genome-wide copy number, DNA methylation and gene expression data integrative analysis of melanoma progression to MBM. A progressive genome-wide demethylation in low CpG density and an increase in methylation level of CpG islands according to melanoma progression were observed. MBM-specific partially methylated domains (PMDs) affecting key brain developmental processes were identified. Differentially methylated CpG sites between MBM and lymph node metastasis (LNM) from patients with good prognosis were identified. Among the most significantly affected genes were the HOX family members. DNA methylation of HOXD9 gene promoter affected transcript and protein expression and was significantly higher in MBM than that in early stages. A MBM-specific PMD was identified in this region. Low methylation level of this region was associated with active HOXD9 expression, open chromatin and histone modifications associated with active transcription. Demethylating agent induced HOXD9 expression in melanoma cell lines. The clinical relevance of this finding was verified in an independent large cohort of melanomas (n = 145). Patients with HOXD9 hypermethylation in LNM had poorer disease-free and overall survival. This epigenome-wide study identified novel methylated genes with functional and clinical implications for MBM patients. PMID:24014427

  20. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma.

    PubMed

    Perera, Frederica; Tang, Wan-yee; Herbstman, Julie; Tang, Deliang; Levin, Linda; Miller, Rachel; Ho, Shuk-mei

    2009-01-01

    In a longitudinal cohort of approximately 700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5'-CpG island(s) (5'-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5'-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5'-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m(3) (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5'CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early

  1. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features.

    PubMed

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in "normal" human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  2. Methylation similarities of two CpG sites within exon 5 of human H19 between normal tissues and testicular germ cell tumours of adolescents and adults, without correlation with allelic and total level of expression.

    PubMed Central

    Gillis, A. J.; Verkerk, A. J.; Dekker, M. C.; van Gurp, R. J.; Oosterhuis, J. W.; Looijenga, L. H.

    1997-01-01

    Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis. Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs. To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their nonmalignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant counterparts, in spite of their consistent biallelic expression. Images Figure 1 Figure 3 Figure 4 PMID:9310237

  3. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer

    PubMed Central

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-o; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  4. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer.

    PubMed

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-O; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  5. Bidding the CpG island goodbye

    PubMed Central

    2013-01-01

    Experiments on seven vertebrates suggest that identifying the locations of islands of non-methylated DNA provides more insights into evolutionarily-conserved epigenetic regulatory elements than studies of CpG islands. PMID:23467495

  6. Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress

    PubMed Central

    Bockmühl, Yvonne; Patchev, Alexandre V; Madejska, Arleta; Hoffmann, Anke; Sousa, Joao C; Sousa, Nuno; Holsboer, Florian; Almeida, Osborne F X; Spengler, Dietmar

    2015-01-01

    Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a key role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the endocrine response to stress. We here show that ELS programs the expression of the GR gene (Nr3c1) by site-specific hypermethylation at the CpG island (CGI) shore in hypothalamic neurons that produce corticotropin-releasing hormone (Crh), thus preventing Crh upregulation under conditions of chronic stress. CpGs mapping to the Nr3c1 CGI shore region are dynamically regulated by ELS and underpin methylation-sensitive control of this region's insulation-like function via Ying Yang 1 (YY1) binding. Our results provide new insight into how a genomic element integrates experience-dependent epigenetic programming of the composite proximal Nr3c1 promoter, and assigns an insulating role to the CGI shore. PMID:25793778

  7. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  8. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    PubMed Central

    Richter, Antje M.; Walesch, Sara K.; Dammann, Reinhard H.

    2016-01-01

    Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction. PMID

  9. Protection of CpG islands against de novo DNA methylation during oogenesis is associated with the recognition site of E2f1 and E2f2

    PubMed Central

    2014-01-01

    Background Epigenetic reprogramming during early mammalian embryonic and germ cell development is a genome-wide process. CpG islands (CGIs), central to the regulation of mammalian gene expression, are exceptional in terms of whether, when and how they are affected by epigenetic reprogramming. Results We investigated the DNA sequences of CGIs in the context of genome-wide data on DNA methylation and transcription during oogenesis and early embryogenesis to identify signals associated with methylation establishment and protection from de novo methylation in oocytes and associated with post-fertilisation methylation maintenance. We find no evidence for a characteristic DNA sequence motif in oocyte-methylated CGIs. Neither do we find evidence for a general role of regular CpG spacing in methylation establishment at CGIs in oocytes. In contrast, the resistance of most CGIs to de novo methylation during oogenesis is associated with the motif CGCGC, the recognition site of E2f1 and E2f2, transcription factors highly expressed specifically in oocytes. This association is independent of prominent known hypomethylation-associated factors: CGI promoter activity, H3K4me3, Cfp1 binding or R-loop formation potential. Conclusions Our results support a DNA sequence-independent and transcription-driven model of de novo CGI methylation during oogenesis. In contrast, our results for CGIs that remain unmethylated are consistent with a model of protection from methylation involving sequence recognition by DNA-binding proteins, E2f1 and E2f2 being probable candidates. PMID:25478011

  10. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker

    PubMed Central

    Molano, Monica; Tabrizi, Sepehr N.; Garland, Suzanne M.; Roberts, Jennifer M.; Machalek, Dorothy A.; Phillips, Samuel; Chandler, David; Hillman, Richard J.; Grulich, Andrew E.; Jin, Fengyi; Poynten, I. Mary; Templeton, David J.; Cornall, Alyssa M.

    2016-01-01

    Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL. PMID:27529629

  11. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker.

    PubMed

    Molano, Monica; Tabrizi, Sepehr N; Garland, Suzanne M; Roberts, Jennifer M; Machalek, Dorothy A; Phillips, Samuel; Chandler, David; Hillman, Richard J; Grulich, Andrew E; Jin, Fengyi; Poynten, I Mary; Templeton, David J; Cornall, Alyssa M

    2016-01-01

    Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL. PMID:27529629

  12. HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC

    PubMed Central

    Hu, Jian Ming; Li, Ling; Chen, Yun Zhao; Liu, Chunxia; Cui, Xiaobin; Yin, Liang; Yang, Lan; Zou, Hong; Pang, Lijuan; Zhao, Jin; Qi, Yan; Cao, Yuwen; Jiang, Jinfang; Liang, Weihua; Li, Feng

    2014-01-01

    Human leukocyte antigen II (HLA-II) plays an important role in host immune responses to cancer cells. Changes in gene methylation may result in aberrant expression of HLA-II, serving a key role in the pathogenesis of Kazakh esophageal squamous cell carcinoma (ESCC). We analyzed the expression level of HLA-II (HLA-DP, -DQ, and -DR) by immunohistochemistry, as well as the methylation status of HLA-DRB1 and HLA-DQB1 by MassARRAY spectrometry in Xinjiang Kazakh ESCC. Expression of HLA-II in ESCC was significantly higher than that in cancer adjacent normal (ACN) samples (P < 0.05). Decreased HLA-II expression was closely associated with later clinical stages of ESCC (P < 0.05). Hypomethylation of HLA-DRB1 and hypermethylation of HLA-DQB1 was significantly correlated with occurrence of Kazakh ESCC (P < 0.01), and mainly manifested as hypomethylation of CpG9, CpG10-11, and CpG16 in HLA-DRB1 and hypermethylation of CpG6-7 and CpG16-17 in HLA-DQB1 (P < 0.01). Moreover, hypomethylation of HLA-DQB1 CpG6-7 correlated with poor differentiation in ESCCs, whereas hypermethylation of HLA-DRB1 CpG16 and hypomethylation of HLA-DQB1 CpG16-17 were significantly associated with later stages of ESCC (P < 0.05). A significant inverse association between HLA-DRB1 CpG9 methylation and HLA-II expression was found in ESCC (P < 0.05). These findings suggest aberrant HLA-DRB1 and HLA-DQB1 methylation contributes to the aberrant expression of HLA-II. These molecular changes may influence the immune response to specific tumor epitopes, promoting the occurrence and progression of Kazakh ESCC. PMID:25437052

  13. Tracking the Correlation Between CpG Island Methylator Phenotype and Other Molecular Features and Clinicopathological Features in Human Colorectal Cancers: A Systematic Review and Meta-Analysis

    PubMed Central

    Zong, Liang; Abe, Masanobu; Ji, Jiafu; Zhu, Wei-Guo; Yu, Duonan

    2016-01-01

    Objectives: The controversy of CpG island methylator phenotype (CIMP) in colorectal cancers (CRCs) persists, despite many studies that have been conducted on its correlation with molecular and clinicopathological features. To drive a more precise estimate of the strength of this postulated relationship, a meta-analysis was performed. Methods: A comprehensive search for studies reporting molecular and clinicopathological features of CRCs stratified by CIMP was performed within the PubMed, EMBASE, and Cochrane Library. CIMP was defined by either one of the three panels of gene-specific CIMP markers (Weisenberger panel, classic panel, or a mixture panel of the previous two) or the genome-wide DNA methylation profile. The associations of CIMP with outcome parameters were estimated using odds ratio (OR) or weighted mean difference (WMD) or hazard ratios (HRs) with 95% confidence interval (CI) for each study using a fixed effects or random effects model. Results: A total of 29 studies involving 9,393 CRC patients were included for analysis. We observed more BRAF mutations (OR 34.87; 95% CI, 22.49–54.06) and microsatellite instability (MSI) (OR 12.85 95% CI, 8.84–18.68) in CIMP-positive vs. -negative CRCs, whereas KRAS mutations were less frequent (OR 0.47; 95% CI, 0.30–0.75). Subgroup analysis showed that only the genome-wide methylation profile-defined CIMP subset encompassed all BRAF-mutated CRCs. As expected, CIMP-positive CRCs displayed significant associations with female (OR 0.64; 95% CI, 0.56–0.72), older age at diagnosis (WMD 2.77; 95% CI, 1.15–4.38), proximal location (OR 6.91; 95% CI, 5.17–9.23), mucinous histology (OR 3.81; 95% CI, 2.93–4.95), and poor differentiation (OR 4.22; 95% CI, 2.52–7.08). Although CIMP did not show a correlation with tumor stage (OR 1.10; 95% CI, 0.82–1.46), it was associated with shorter overall survival (HR 1.73; 95% CI, 1.27–2.37). Conclusions: The meta-analysis highlights that CIMP-positive CRCs take their own

  14. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure.

    PubMed

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M Cristina

    2016-03-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  15. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells.

    PubMed

    Yang, Min; Chen, Ping; Peng, Hong; Zhang, Hongliang; Chen, Yan; Cai, Shan; Lu, Qianjin; Guan, Chaxiang

    2015-03-01

    Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs. PMID:25500741

  16. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    PubMed Central

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  17. Regulation of the Bone-restricted IFITM-like (Bril) Gene Transcription by Sp and Gli Family Members and CpG Methylation*

    PubMed Central

    Kasaai, Bahar; Gaumond, Marie-Hélène; Moffatt, Pierre

    2013-01-01

    Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5′-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated. PMID:23530031

  18. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  19. Using peripheral blood circulating DNAs to detect CpG global methylation status and genetic mutations in patients with myelodysplastic syndrome

    SciTech Connect

    Iriyama, Chisako; Tomita, Akihiro; Hoshino, Hideaki; Adachi-Shirahata, Mizuho; Furukawa-Hibi, Yoko; Yamada, Kiyofumi; Kiyoi, Hitoshi; Naoe, Tomoki

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspiration is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic

  20. ∆ DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

    PubMed Central

    Ma, Mark Z.; Lin, Ruxian; Carrillo, José; Bhutani, Manisha; Pathak, Ashutosh; Ren, Hening; Li, Yaokun; Song, Jiuzhou; Mao, Li

    2015-01-01

    Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of DNMT3B) termed DNMT3B/∆DNMT3B-del. In normal bronchial epithelial cells, DNMT3B/ΔDNMT3B and DNMT3B/∆DNMT3B-del displayed equal levels of expression. In contrast, in patients with non-small cell lung cancer NSCLC), 111 (93%) of the 119 tumors predominantly expressed DNMT3B/ΔDNMT3B-del, including 47 (39%) tumors with no detectable DNMT3B/∆DNMT3B. Using a transgenic mouse model, we further demonstrated the biological impact of ∆DNMT3B4-del, the ∆DNMT3B-del isoform most abundantly expressed in NSCLC, in global DNA methylation patterns and lung tumorigenesis. Expression of ∆DNMT3B4-del in the mouse lungs resulted in an increased global DNA hypomethylation, focal DNA hypermethylation, epithelial hyperplastia and tumor formation when challenged with a tobacco carcinogen. Our results demonstrate ∆DNMT3B4-del as a critical factor in developing aberrant DNA methylation patterns during lung tumorigenesis and suggest that ∆DNMT3B4-del may be a target for lung cancer prevention. PMID:26629529

  1. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders

    PubMed Central

    Blanco, Sandra; Dietmann, Sabine; Flores, Joana V; Hussain, Shobbir; Kutter, Claudia; Humphreys, Peter; Lukk, Margus; Lombard, Patrick; Treps, Lucas; Popis, Martyna; Kellner, Stefanie; Hölter, Sabine M; Garrett, Lillian; Wurst, Wolfgang; Becker, Lore; Klopstock, Thomas; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabĕ de Angelis, Martin; Káradóttir, Ragnhildur T; Helm, Mark; Ule, Jernej; Gleeson, Joseph G; Odom, Duncan T; Frye, Michaela

    2014-01-01

    Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5′ tRNA-derived small RNA fragments. Accumulation of 5′ tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5′ tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage. PMID:25063673

  2. Suppression of aflatoxin B1- or methyl methanesulfonate-induced chromosome aberrations in rat bone marrow cells after treatment with S-methyl methanethiosulfonate.

    PubMed

    Ito, Y; Nakamura, Y; Nakamura, Y

    1997-10-24

    The suppressive effect of S-methyl methanethiosulfonate (MMTS) on aflatoxin B1 (AFB1)- or methyl methanesulfonate (MMS)-induced chromosome aberrations (CA) in rat bone marrow cells was studied. MMTS significantly suppressed CA induced by both AFB1 (an indirect-acting carcinogen) and MMS (a direct-acting carcinogen). Suppression was observed at all periods (6, 12, 18, 24 and 48 h) after AFB1 or MMS treatment and in all doses of AFB1 (5, 10 and 20 mg/kg) or MMS (50, 75 and 100 mg/kg) investigated. AFB1-induced CA was potently suppressed by MMTS given between 2 h before and 6 h after the AFB1 injection. The suppression of AFB1-induced CA by MMTS paralleled the dose of MMTS when MMTS was given in a dose range of 1-20 mg/kg body weight. MMS-induced CA was potently suppressed by MMTS given between 2 h before and 2 h after the MMS injection. The suppressive effect of MMTS on MMS-induced CA paralleled the dose of MMTS when MMTS was given in a dose range of 1-15 mg/kg body weight. Diphenyl disulfide, which modifies -SH groups in proteins like MMTS, also significantly suppressed both AFB1- and MMS-induced CA. Although other mechanisms are not excluded, the suppression of carcinogen-induced CA by MMTS may result from the ability of MMTS to modify -SH groups in proteins. The juices of cabbage and onion, which contain considerable amounts of MMTS and S-methyl-L-cysteinesulfoxide (the precursor of MMTS), also significantly suppressed AFB1- or MMS-induced CA. These results suggest that MMTS is a possible chemopreventive agent against cancer. PMID:9393623

  3. Aberrant Promoter Methylation of p16 and MGMT Genes in Lung Tumors from Smoking and Never-Smoking Lung Cancer Patients1

    PubMed Central

    Liu, Yang; Lan, Qing; Siegfried, Jill M; Luketich, James D; Keohavong, Phouthone

    2006-01-01

    Abstract Aberrant methylation in gene promoter regions leads to transcriptional inactivation of cancer-related genes and plays an integral role in tumorigenesis. This alteration has been investigated in lung tumors primarily from smokers, whereas only a few studies involved never-smokers. Here, we applied methylation-specific polymerase chain reaction to compare the frequencies of the methylated promoter of p16 and O6-methylguanine-DNA methyltransferase (MGMT) genes in lung tumors from 122 patients with non-small cell lung cancer, including 81 smokers and 41 never-smokers. Overall, promoter methylation was detected in 52.5% (64 of 122) and 30.3% (37 of 122) of the p16 and MGMT genes, respectively. Furthermore, the frequency of promoter methylation was significantly higher among smokers, compared with never-smokers, for both the p16 [odds ratio (OR) = 3.28; 95% confidence interval (CI) = 1.28-8.39; P = .013] and MGMT (OR = 3.93; 95% CI = 1.27-12.21; P = .018) genes. The trend for a higher promoter methylation frequency of these genes was also observed among female smokers compared with female never-smokers. Our results suggest an association between tobacco smoking and an increased incidence of aberrant promoter methylation of the p16 and MGMT genes in non-small cell lung cancer. PMID:16533425

  4. Repetitive elements and enforced transcriptional repression co-operate to enhance DNA methylation spreading into a promoter CpG-island

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repression of many tumor suppressor genes in cancer is concurrent with aberrantly increased DNA methylation levels at promoter CpG islands (CGIs). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sha...

  5. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).

    PubMed

    Balassiano, Karen; Lima, Sheila; Jenab, Mazda; Overvad, Kim; Tjonneland, Anne; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Canzian, Federico; Kaaks, Rudolf; Boeing, Heiner; Meidtner, Karina; Trichopoulou, Antonia; Laglou, Pagona; Vineis, Paolo; Panico, Salvatore; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Lund, Eiliv; Bueno-de-Mesquita, H Bas; Numans, Mattjis E; Peeters, Petra H M; Ramon Quirós, J; Sánchez, María-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hallmans, Göran; Stenling, Roger; Ehrnström, Roy; Regner, Sara; Allen, Naomi E; Travis, Ruth C; Khaw, Kay-Tee; Offerhaus, G Johan A; Sala, Nuria; Riboli, Elio; Hainaut, Pierre; Scoazec, Jean-Yves; Sylla, Bakary S; Gonzalez, Carlos A; Herceg, Zdenko

    2011-12-01

    Epigenetic events have emerged as key mechanisms in the regulation of critical biological processes and in the development of a wide variety of human malignancies, including gastric cancer (GC), however precise gene targets of aberrant DNA methylation in GC remain largely unknown. Here, we have combined pyrosequencing-based quantitative analysis of DNA methylation in 98 GC cases and 64 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and in cancer tissue and non-tumorigenic adjacent tissue of an independent series of GC samples. A panel of 10 cancer-associated genes (CHRNA3, DOK1, MGMT, RASSF1A, p14ARF, CDH1, MLH1, ALDH2, GNMT and MTHFR) and LINE-1 repetitive elements were included in the analysis and their association with clinicopathological characteristics (sex, age at diagnosis, anatomical sub-site, histological sub-type) was examined. Three out of the 10 genes analyzed exhibited a marked hypermethylation, whereas two genes (ALDH2 and MTHFR) showed significant hypomethylation, in gastric tumors. Among differentially methylated genes, we identified new genes (CHRNA3 and DOK1) as targets of aberrant hypermethylation in GC, suggesting that epigenetic deregulation of these genes and their corresponding cellular pathways may promote the development and progression of GC. We also found that global demethylation of tumor cell genomes occurs in GC, consistent with the notion that abnormal hypermethylation of specific genes occurs concomitantly with genome-wide hypomethylation. Age and gender had no significant influence on methylation states, but an association was observed between LINE-1 and MLH1 methylation levels with histological sub-type and anatomical sub-site. This study identifies aberrant methylation patters in specific genes in GC thus providing information that could be exploited as novel biomarkers in clinics and molecular epidemiology of GC. PMID:21831520

  6. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  7. Genome-Wide Methylation Patterns in Papillary Thyroid Cancer Are Distinct Based on Histological Subtype and Tumor Genotype

    PubMed Central

    Ellis, Ryan J.; Wang, Yonghong; Stevenson, Holly S.; Boufraqech, Myriem; Patel, Dhaval; Nilubol, Naris; Davis, Sean; Edelman, Daniel C.; Merino, Maria J.; He, Mei; Zhang, Lisa; Meltzer, Paul S.

    2014-01-01

    Context: Aberrant DNA methylation is known to be a major factor in oncogenesis and cancer progression, but effects of methylation in papillary thyroid cancer (PTC) are not well defined. Objective: The objective of the study was to identify altered methylation patterns, which may be associated with PTC disease behavior. Design: This study was a genome-wide methylation analysis of PTC. Setting: The study was conducted at the National Institutes of Health Clinical Center. Patients: PTC tissue from 51 patients were analyzed and compared with normal thyroid tissue from seven patients. Interventions: CpG methylation status was assessed using advanced genome-wide methylation bead chips. Outcome Measures: Altered methylation patterns in PTC were analyzed by stage, recurrence, histological subtype of tumor, and tumor genotype. Results: PTC is globally hypomethylated compared with normal thyroid with 2837 differentially methylated CpG sites. The follicular variant of PTC demonstrated less differential methylation with only 569 differentially methylated CpG sites. Tumors with mutations in BRAF, RET/PTC, and RAS demonstrated a 3.6-fold increase in the number of differentially methylated sites compared with wild-type tumors. The differentially methylated genes were associated with oncological pathways including cellular movement, growth, and proliferation. Conclusion: PTC is epigenetically distinct from the follicular variant of PTC and by gene mutation status (BRAF, RET/PTC, and RAS). PMID:24423287

  8. Stabilization of epigenetic states of CpG islands by local cooperation.

    PubMed

    Sormani, Giulia; Haerter, Jan O; Lövkvist, Cecilia; Sneppen, Kim

    2016-06-21

    DNA methylation of CpG sites is an important epigenetic mark in mammals. Active promoters are often associated with unmethylated CpG sites, whereas methylated CpG sites correlate with silenced promoters. Methylation of CpG sites must be generally described as a dynamical process that is mediated by methylation enzymes, such as DNMT1 and DNMT3a/b. However, there are several models of how CpG sites can be protected from methylation and thereby remain unmethylated. In this paper we examine the combination of both: the positive feedbacks of DNA methylation and a short range counterpart which in turn protects-and thereby maintains-the unmethylated state. The emergent dynamics is provided by collaborative, re-enforcing feedbacks in favor of methylated CpG islands and cooperative protection of one CpG site by another in favor of unmethylated CpG sites. Our results suggest that this synthesis of mechanisms provides equally robust maintenance of both the unmethylated and methylated states of CpG islands. PMID:26923344

  9. A new synthesis in epigenetics: towards a unified function of DNA methylation from invertebrates to vertebrates.

    PubMed

    Mandrioli, M

    2007-10-01

    DNA methylation is generally limited to CpG doublets located at the gene promoter with an involvement in gene silencing. Surprisingly, two recent papers showed an extensive methylation affecting coding portions of transcriptionally active genes in human and plants prompting a rethink of DNA methylation in eukaryotes. Actually, gene body methylation is not surprising since it has been repeatedly reported in invertebrates, where it interferes with transcriptional elongation preventing aberrant transcription initiations. As a whole, the published data suggest that the most ancestral function of DNA methylation is the control of genes that are susceptible to transcriptional interference and not to gene silencing. The recruitment of DNA methylation for silencing represents a successive tinkered use. In view of this additional function, the invertebrate-vertebrate transition has been accompanied by new constraints on DNA methylation that resulted in the strong conservation of the DNA methylation machinery in vertebrates and in the non-viability of mutants lacking DNA methylation. PMID:17712527

  10. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture.

    PubMed

    Tesarova, Lenka; Simara, Pavel; Stejskal, Stanislav; Koutna, Irena

    2016-01-01

    The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation. These aberrations were induced during somatic cell reprogramming and their levels were associated with the type of hiPSC source cells. hiPSC population heterogeneity was reduced during prolonged culture and hiPSCs acquired an hESC-like methylation profile. In contrast, the expression of differentiation marker genes in hiPSC lines remained distinguishable from that in hESCs. Taken together, in vitro culture facilitates hiPSC acquisition of hESC epigenetic characteristics. However, differences remain between both pluripotent stem cell types, which must be considered before their use in downstream applications. PMID:27336948

  11. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture

    PubMed Central

    Tesarova, Lenka; Simara, Pavel; Stejskal, Stanislav; Koutna, Irena

    2016-01-01

    The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation. These aberrations were induced during somatic cell reprogramming and their levels were associated with the type of hiPSC source cells. hiPSC population heterogeneity was reduced during prolonged culture and hiPSCs acquired an hESC-like methylation profile. In contrast, the expression of differentiation marker genes in hiPSC lines remained distinguishable from that in hESCs. Taken together, in vitro culture facilitates hiPSC acquisition of hESC epigenetic characteristics. However, differences remain between both pluripotent stem cell types, which must be considered before their use in downstream applications. PMID:27336948

  12. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    PubMed

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  13. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  14. The Role of Methylation in Breast Cancer Susceptibility and Treatment.

    PubMed

    Pouliot, Marie-Christine; Labrie, Yvan; Diorio, Caroline; Durocher, Francine

    2015-09-01

    DNA methylation is a critical mechanism of epigenetic modification involved in gene expression programming, that can promote the development of several cancers, including breast cancer. The methylation of CpG islands by DNA methyltransferases is reversible and has been shown to modify the transcriptional activity of key proliferation genes or transcription factors involved in suppression or promotion of cell growth. Indeed, aberrant methylation found in gene promoters is a hallmark of cancer that could be used as non-intrusive biomarker in body fluids such as blood and plasma for early detection of breast cancer. Many biomarker genes have been evaluated for breast cancer detection. However, in the absence of a unique biomarker having the sufficient specificity and sensitivity, a panel of multiple genes should be used. Treatments targeting aberrant methylation by DNA methyltransferase inhibitors, which trigger re-expression of silenced genes, are now available and allow for better treatment efficiency. PMID:26254344

  15. Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region

    PubMed Central

    Ortmann, Christina A.; Burchert, Andreas; Hölzle, Katharina; Nitsche, Andreas; Wittig, Burghardt; Neubauer, Andreas; Schmidt, Manuel

    2005-01-01

    Although the bcr-abl translocation has been shown to be the causative genetic aberration in chronic myeloid leukemia (CML), there is mounting evidence that the deregulation of other genes, such as the transcription factor interferon regulatory factor 4 (IRF-4), is also implicated in the pathogenesis of CML. Promoter methylation of CpG target sites or direct deletions/insertions of genes are mechanisms of a reversible or permanent silencing of gene expression, respectively. Therefore, we investigated whether IRF-4 promoter methylation or mutation may be involved in the regulation of IRF-4 expression in leukemia cells. Whereas promoter mutations or structural rearrangements could be excluded as a cause of altered IRF-4 expression in hematopoietic cells, the IRF-4 promoter methylation status was found to significantly influence IRF-4 transcription. First, treatment of IRF-4-negative lymphoid, myeloid and monocytic cell lines with the methylation-inhibitor 5-aza-2-deoxycytidine resulted in a time- and concentration-dependent increase of IRF-4 mRNA and protein levels. Second, using a restriction-PCR-assay and bisulfite-sequencing we identified specifically methylated CpG sites in IRF-4-negative but not in IRF-4-positive cells. Third, we clearly determined promoter methylation as a mechanism for IRF-4 down-regulation via reporter gene assays, but did not detect an association of methylational status and mRNA expression of DNA methyltransferases or methyl-CpG-binding proteins. Together, these data suggest CpG site-specific IRF-4 promoter methylation as a putative mechanism of down-regulated IRF-4 expression in leukemia. PMID:16396836

  16. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation

    PubMed Central

    Zamiri, Bita; Mirceta, Mila; Bomsztyk, Karol; Macgregor, Robert B.; Pearson, Christopher E.

    2015-01-01

    Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K+, Na+ or Li+), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes. PMID:26432832

  17. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation.

    PubMed

    Zamiri, Bita; Mirceta, Mila; Bomsztyk, Karol; Macgregor, Robert B; Pearson, Christopher E

    2015-11-16

    Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes. PMID:26432832

  18. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate.

    PubMed

    Rank, J; Nielsen, M H

    1997-04-24

    The Allium anaphase-telophase assay was used to show genotoxicity of N-methyl-N-nitrosourea (MNU), maleic hydrazide (MH), sodium azide (NaN3) and ethyl methanesulfonate (EMS). All agents induced chromosome aberrations at statistically significant levels. The rank of the lowest doses with positive effect was as follows: NaN3 0.3 mg/l < MH 1 mg/l < MNU 41 mg/l < EMS 100 mg/l. The results were compared with results from other plant assays (Arabidopsis, Vicia, Tradescantia) and for MH and MNU the values were found to be within the same range, whereas the results in the Allium test for NaN3 and EMS were in a lower range than that found for the other plant assays. EMS and MMS (methyl methanesulfonate), two chemicals used as positive controls in mutagenicity testing, were compared in the Allium test, and MMS was found to be about ten times more potent in inducing chromosome aberrations than EMS. Recording of micronuclei in interphase cells showed that this endpoint does not give more information of clastogenicity than recording of chromosome aberrations in anaphase-telophase cells. PMID:9150760

  19. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

    PubMed Central

    Ostler, KR; Davis, EM; Payne, SL; Gosalia, BB; Expósito-Céspedes, J; Le Beau, MM; Godley, LA

    2008-01-01

    Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells. PMID:17353906

  20. CpG island mapping by epigenome prediction.

    PubMed

    Bock, Christoph; Walter, Jörn; Paulsen, Martina; Lengauer, Thomas

    2007-06-01

    CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria, which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although widely used, the current CpG island criteria incur significant disadvantages: (1) reliance on arbitrary threshold parameters that bear little biological justification, (2) failure to account for widespread heterogeneity among CpG islands, and (3) apparent lack of specificity when applied to the human genome. This study is driven by the idea that a quantitative score of "CpG island strength" that incorporates epigenetic and functional aspects can help resolve these issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an open and transcriptionally competent chromatin structure. We extensively validate our results on independent datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and cell types, and we derive improved maps of predicted "bona fide" CpG islands. The mapping of CpG islands by epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links CpG island detection to their characteristic

  1. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder.

    PubMed

    Dammann, Gerhard; Teschler, Stefanie; Haag, Tanja; Altmüller, Franziska; Tuczek, Frederik; Dammann, Reinhard H

    2011-12-01

    Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p ≤ 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p ≤ 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD. PMID:22139575

  2. An AscI Boundary Library for the Studies of Genetic and Epigenetic Alterations in CpG Islands

    PubMed Central

    Dai, Zunyan; Weichenhan, Dieter; Wu, Yue-Zhong; Hall, Julia L; Rush, Laura J.; Smith, Laura T.; Raval, Aparna; Yu, Li; Kroll, Daniela; Muehlisch, Joerg; Frühwald, Michael C.; de Jong, Pieter; Catanese, Joe; Davuluri, Ramana V.; Smiraglia, Dominic J.; Plass, Christoph

    2002-01-01

    Knudson's two-hit hypothesis postulates that genetic alterations in both alleles are required for the inactivation of tumor-suppressor genes. Genetic alterations include small or large deletions and mutations. Over the past years, it has become clear that epigenetic alterations such as DNA methylation are additional mechanisms for gene silencing. Restriction Landmark Genomic Scanning (RLGS) is a two-dimensional gel electrophoresis that assesses the methylation status of thousands of CpG islands. RLGS has been applied successfully to scan cancer genomes for aberrant DNA methylation patterns. So far, the majority of this work was done using NotI as the restriction landmark site. Here, we describe the development of RLGS using AscI as the restriction landmark site for genome-wide scans of cancer genomes. The availability of AscI as a restriction landmark for RLGS allows for scanning almost twice as many CpG islands in the human genome compared with using NotI only. We describe the development of an AscI–EcoRV boundary library that supports the cloning of novel methylated genes. Feasibility of this system is shown in three tumor types, medulloblastomas, lung cancers, and head and neck cancers. We report the cloning of 178 AscI RLGS fragments via two methods by use of this library. [Supplemental material is available online at http://www.genome.org.] PMID:12368252

  3. Dual Functions of the RFTS Domain of Dnmt1 in Replication-Coupled DNA Methylation and in Protection of the Genome from Aberrant Methylation

    PubMed Central

    Kimura, Hironobu; Sharif, Jafar; Muto, Masahiro; Koseki, Haruhiko; Takahashi, Saori; Suetake, Isao; Tajima, Shoji

    2015-01-01

    In mammals, DNA methylation plays important roles in embryogenesis and terminal differentiation via regulation of the transcription-competent chromatin state. The methylation patterns are propagated to the next generation during replication by maintenance DNA methyltransferase, Dnmt1, in co-operation with Uhrf1. In the N-terminal regulatory region, Dnmt1 contains proliferating cell nuclear antigen (PCNA)-binding and replication foci targeting sequence (RFTS) domains, which are thought to contribute to maintenance methylation during replication. To determine the contributions of the N-terminal regulatory domains to the DNA methylation during replication, Dnmt1 lacking the RFTS and/or PCNA-binding domains was ectopically expressed in embryonic stem cells, and then the effects were analyzed. Deletion of both the PCNA-binding and RFTS domains did not significantly affect the global DNA methylation level. However, replication-dependent DNA methylation of the differentially methylated regions of three imprinted genes, Kcnq1ot1/Lit1, Peg3, and Rasgrf1, was impaired in cells expressing the Dnmt1 with not the PCNA-binding domain alone but both the PCNA-binding and RFTS domains deleted. Even in the absence of Uhrf1, which is a prerequisite factor for maintenance DNA methylation, Dnmt1 with both the domains deleted apparently maintained the global DNA methylation level, whilst the wild type and the forms containing the RFTS domain could not perform global DNA methylation under the conditions used. This apparent maintenance of the global DNA methylation level by the Dnmt1 lacking the RFTS domain was dependent on its own DNA methylation activity as well as the presence of de novo-type DNA methyltransferases. We concluded that the RFTS domain, not the PCNA-binding domain, is solely responsible for the replication-coupled DNA methylation. Furthermore, the RFTS domain acts as a safety lock by protecting the genome from replication-independent DNA methylation. PMID:26383849

  4. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P

    PubMed Central

    Inoue, A; Okamoto, K; Fujino, Y; Nakagawa, T; Muguruma, N; Sannomiya, K; Mitsui, Y; Takaoka, T; Kitamura, S; Miyamoto, H; Okahisa, T; Fujimori, T; Imoto, I; Takayama, T

    2015-01-01

    Background: Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor of colon cancer with microsatellite instability (MSI). However, the developmental mechanism of SSA/P remains unknown. We performed genetic analysis and genome-wide DNA methylation analysis in aberrant crypt foci (ACF), SSA/P, and cancer in SSA/P specimens to show a close association between ACF and the SSA/P-cancer sequence. We also evaluated the prevalence and number of ACF in SSA/P patients. Methods: ACF in the right-side colon were observed in 36 patients with SSA/Ps alone, 2 with cancers in SSA/P, and 20 normal subjects and biopsied under magnifying endoscopy. B-RAF mutation and MSI were analysed by PCR–restriction fragment length polymorphism (RFLP) and PCR–SSCP, respectively, in 15 ACF, 20 SSA/P, and 2 cancer specimens. DNA methylation array analysis of seven ACF, seven SSA/P, and two cancer in SSA/P specimens was performed using the microarray-based integrated analysis of methylation by isochizomers (MIAMI) method. Results: B-RAF mutations were frequently detected in ACF, SSA/P, and cancer in SSA/P tissues. The number of methylated genes increased significantly in the order of ACFmethylated genes in SSA/P were PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2. Some of these genes were methylated in ACF, whereas all genes were methylated in cancers. Immunohistochemistry revealed their silenced expression. Microsatellite instability and MLH1 methylation were observed only in cancer. The prevalence and number of ACF were significantly higher in SSA/P patients than in normal subjects. A significant correlation was seen between the numbers of SSA/P and ACF in SSA/P patients. Conclusions: Our results suggest that ACF are precursor lesions of the SSA/P-cancer sequence in patients with SSA/P, where ACF arise by B-RAF mutation and methylation of some of the six identified genes and develop into SSA/Ps through accumulated methylation of these genes. PMID

  5. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  6. HPVbase – a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas

    PubMed Central

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  7. CpG and TpA frequencies in the plant system.

    PubMed Central

    Boudraa, M; Perrin, P

    1987-01-01

    Higher plant nuclear sequences reveal avoidance of CpG and TpA doublets. Chloroplast sequences avoid the TpA doublet in all codon positions. The chloroplast genome is not methylated but codon positions II-III and untranslated regions avoid CpG. The mitochondrial genome, also unmethylated, avoids CpG in all codon positions. We therefore deduce that methylation is not sufficient to explain CpG avoidance in the higher plant systems. Other factors must be taken into account such as amino acid composition, codon choices and perhaps stability of the DNA helix. PMID:3497385

  8. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells in Behçet’s disease

    PubMed Central

    Hughes, Travis; Ture-Ozdemir, Filiz; Alibaz-Oner, Fatma; Coit, Patrick; Direskeneli, Haner; Sawalha, Amr H

    2014-01-01

    Objective Behçet’s disease (BD) is an inflammatory disease characterized by multi-system involvement including recurrent oral and genital ulcers, cutaneous lesions, and uveitis. The pathogenesis of BD remains poorly understood. We performed a genome-wide DNA methylation study in BD before and after disease remission, and in healthy matched controls. Methods We examined genome-wide DNA methylation in monocytes and CD4+ T cells from a set of 16 untreated male BD patients and age, sex, and ethnicity-matched controls. Additional samples were collected from 12 of the same BD patients after treatment and disease remission. Genome-wide DNA methylation patterns were assessed using the HumanMethylation450 DNA Analysis BeadChip array which includes over 485,000 individual methylation sites across the genome. Results We identified 383 differentially methylated CpG sites between BD patients and controls in monocytes and 125 differentially methylated CpG sites in CD4+ T cells. Bioinformatic analysis revealed a pattern of aberrant DNA methylation among genes that regulate cytoskeletal dynamics suggesting that aberrant DNA methylation of multiple classes of structural and regulatory proteins of the cytoskeleton might contribute to the pathogenesis of BD. Further, DNA methylation changes associated with treatment act to restore methylation differences observed between patients and controls. Indeed, among CpG sites differentially methylated before and after disease remission, there was almost exclusive reversal of the direction of aberrant DNA methylation observed between patients and healthy controls. Conclusions We performed the first epigenome-wide study in BD and provide strong evidence that epigenetic modification of cytoskeletal dynamics underlies the pathogenesis and therapeutic response in BD. PMID:24574333

  9. DIETARY ARSENITE AFFECTS DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION IN COLON AND GLOBAL DNA METHYLATION IN LIVER OF RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work has shown that arsenic (As) affects methionine metabolism. Alterations in methionine metabolism can affect cancer processes. To determine the effect of dietary As on DMH-induced aberrant crypt formation in colon Fisher-344 male, weanling rats (N=20/group) were fed diets containing 0, 0...

  10. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    PubMed Central

    2010-01-01

    Background The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1) or are involved in synaptic vesicle cycling (dynamin 1). RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP) analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited. PMID:20420693

  11. Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer

    PubMed Central

    Diede, Scott J; Yao, Zizhen; Keyes, C Chip; Tyler, Ashlee E; Dey, Joyoti; Hackett, Christopher S; Elsaesser, Katrina; Kemp, Christopher J; Neiman, Paul E; Weiss, William A; Olson, James M; Tapscott, Stephen J

    2013-01-01

    Genetic and epigenetic alterations are essential for the initiation and progression of human cancer. We previously reported that primary human medulloblastomas showed extensive cancer-specific CpG island DNA hypermethylation in critical developmental pathways. To determine whether genetically engineered mouse models (GEMMs) of medulloblastoma have comparable epigenetic changes, we assessed genome-wide DNA methylation in three mouse models of medulloblastoma. In contrast to human samples, very few loci with cancer-specific DNA hypermethylation were detected, and in almost all cases the degree of methylation was relatively modest compared with the dense hypermethylation in the human cancers. To determine if this finding was common to other GEMMs, we examined a Burkitt lymphoma and breast cancer model and did not detect promoter CpG island DNA hypermethylation, suggesting that human cancers and at least some GEMMs are fundamentally different with respect to this epigenetic modification. These findings provide an opportunity to both better understand the mechanism of aberrant DNA methylation in human cancer and construct better GEMMs to serve as preclinical platforms for therapy development. PMID:24107773

  12. Nucleosome dynamics and maintenance of epigenetic states of CpG islands

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Dodd, Ian B.

    2016-06-01

    Methylation of mammalian DNA occurs primarily at CG dinucleotides. These CpG sites are located nonrandomly in the genome, tending to occur within high density clusters of CpGs (islands) or within large regions of low CpG density. Cluster methylation tends to be bimodal, being dominantly unmethylated or mostly methylated. For CpG clusters near promoters, low methylation is associated with transcriptional activity, while high methylation is associated with gene silencing. Alternative CpG methylation states are thought to be stable and heritable, conferring localized epigenetic memory that allows transient signals to create long-lived gene expression states. Positive feedback where methylated CpG sites recruit enzymes that methylate nearby CpGs, can produce heritable bistability but does not easily explain that as clusters increase in size or density they change from being primarily methylated to primarily unmethylated. Here, we show that an interaction between the methylation state of a cluster and its occupancy by nucleosomes provides a mechanism to generate these features and explain genome wide systematics of CpG islands.

  13. Nucleosome dynamics and maintenance of epigenetic states of CpG islands.

    PubMed

    Sneppen, Kim; Dodd, Ian B

    2016-06-01

    Methylation of mammalian DNA occurs primarily at CG dinucleotides. These CpG sites are located nonrandomly in the genome, tending to occur within high density clusters of CpGs (islands) or within large regions of low CpG density. Cluster methylation tends to be bimodal, being dominantly unmethylated or mostly methylated. For CpG clusters near promoters, low methylation is associated with transcriptional activity, while high methylation is associated with gene silencing. Alternative CpG methylation states are thought to be stable and heritable, conferring localized epigenetic memory that allows transient signals to create long-lived gene expression states. Positive feedback where methylated CpG sites recruit enzymes that methylate nearby CpGs, can produce heritable bistability but does not easily explain that as clusters increase in size or density they change from being primarily methylated to primarily unmethylated. Here, we show that an interaction between the methylation state of a cluster and its occupancy by nucleosomes provides a mechanism to generate these features and explain genome wide systematics of CpG islands. PMID:27415308

  14. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies.

    PubMed

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan; An, Han-Xiang; Zhang, Yun

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12-15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42-0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  15. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

    PubMed Central

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12–15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42–0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  16. DNA Methylation in Osteoarthritis

    PubMed Central

    den Hollander, Wouter; Meulenbelt, Ingrid

    2015-01-01

    Osteoarthritis (OA) is a prevalent disease of articular joints and primarily characterized by degradation and calcification of articular cartilage. Presently, no effective treatment other than pain relief exists and patients ultimately need to undergo replacement surgery of the affected joint. During disease progression articular chondrocytes, the single cell type present in articular cartilage, show altered transcriptional profiles and undergo phenotypic changes that resemble the terminal differentiation route apparent in growth plate chondrocytes. Hence, given its prominent function in both regulating gene expression and maintaining cellular phenotypes, DNA methylation of CpG dinucleotides is intensively studied in the context of OA. An increasing number of studies have been published that employed a targeted approach on genes known to play a role in OA pathophysiology. As of such, it has become clear that OA responsive DNA methylation changes seem to mediate disease associated aberrant gene expression. Furthermore, established OA susceptibility alleles such as GDF5 and DIO2 appear to confer OA risk via DNA methylation and respective pathophysiological expression changes. In more recent years, genome wide profiling of DNA methylation in OA affected articular cartilage has emerged as a powerful tool to address the epigenetic changes in their entirety, which has resulted in the identification of putative patient subgroups as well as generic OA associated pathways. PMID:27019616

  17. DNA Methylation in Osteoarthritis.

    PubMed

    den Hollander, Wouter; Meulenbelt, Ingrid

    2015-12-01

    Osteoarthritis (OA) is a prevalent disease of articular joints and primarily characterized by degradation and calcification of articular cartilage. Presently, no effective treatment other than pain relief exists and patients ultimately need to undergo replacement surgery of the affected joint. During disease progression articular chondrocytes, the single cell type present in articular cartilage, show altered transcriptional profiles and undergo phenotypic changes that resemble the terminal differentiation route apparent in growth plate chondrocytes. Hence, given its prominent function in both regulating gene expression and maintaining cellular phenotypes, DNA methylation of CpG dinucleotides is intensively studied in the context of OA. An increasing number of studies have been published that employed a targeted approach on genes known to play a role in OA pathophysiology. As of such, it has become clear that OA responsive DNA methylation changes seem to mediate disease associated aberrant gene expression. Furthermore, established OA susceptibility alleles such as GDF5 and DIO2 appear to confer OA risk via DNA methylation and respective pathophysiological expression changes. In more recent years, genome wide profiling of DNA methylation in OA affected articular cartilage has emerged as a powerful tool to address the epigenetic changes in their entirety, which has resulted in the identification of putative patient subgroups as well as generic OA associated pathways. PMID:27019616

  18. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    PubMed

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p < .01), both in dose-response manner. Similarly, cigarette smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p < .05 for p16, and 3.66, p < .05 for DAPK). The highest risk of BPDE-DNA adducts was detected among individuals with cigarette smoking for more than 40 pack-years (OR = 4.21, p < .01). Furthermore, the present study did not show that BPDE-DNA adducts are significantly associated with abnormal TSGs methylations in NSCLC, including SCC and AdO, respectively. Conclusively, cigarette smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC. PMID:27042875

  19. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC

    PubMed Central

    Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo

    2016-01-01

    Background Promoter hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. Results The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Methods Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Conclusions Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance. PMID:26862732

  20. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    SciTech Connect

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  1. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer

    PubMed Central

    Li, Junnan; Li, Xiaobo; Wang, Dong; Su, Yonghui; Niu, Ming; Zhong, Zhenbin; Wang, Ji; Zhang, Xianyu; Kang, Wenli; Pang, Da

    2016-01-01

    Detection of breast cancer at an early stage is the key for successful treatment and improvement of outcome. However the limitations of mammography are well recognized, especially for those women with premenopausal breast cancer. Novel approaches to breast cancer screening are necessary, especially in the developing world where mammography is not feasible. In this study, we examined the promoter methylation of six genes (SFN, P16, hMLH1, HOXD13, PCDHGB7 and RASSF1a) in circulating free DNA (cfDNA) extracted from serum. We used a high-throughput DNA methylation assay (MethyLight) to examine serum from 749 cases including breast cancer patients, patients with benign breast diseases and healthy women. The six-gene methylation panel test achieved 79.6% and 82.4% sensitivity with a specificity of 72.4% and 78.1% in diagnosis of breast cancer when compared with healthy and benign disease controls, respectively. Moreover, the methylation panel positive group showed significant differences in the following independent variables: (a) involvement of family history of tumors; (b) a low proliferative index, ki-67; (c) high ratios in luminal subtypes. Additionally the panel also complemented some breast cancer cases which were neglected by mammography or ultrasound. These data suggest that epigenetic markers in serum have potential for diagnosis of breast cancer. PMID:26918343

  2. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer.

    PubMed

    Shan, Ming; Yin, Huizi; Li, Junnan; Li, Xiaobo; Wang, Dong; Su, Yonghui; Niu, Ming; Zhong, Zhenbin; Wang, Ji; Zhang, Xianyu; Kang, Wenli; Pang, Da

    2016-04-01

    Detection of breast cancer at an early stage is the key for successful treatment and improvement of outcome. However the limitations of mammography are well recognized, especially for those women with premenopausal breast cancer. Novel approaches to breast cancer screening are necessary, especially in the developing world where mammography is not feasible. In this study, we examined the promoter methylation of six genes (SFN, P16, hMLH1, HOXD13, PCDHGB7 and RASSF1a) in circulating free DNA (cfDNA) extracted from serum. We used a high-throughput DNA methylation assay (MethyLight) to examine serum from 749 cases including breast cancer patients, patients with benign breast diseases and healthy women. The six-gene methylation panel test achieved 79.6% and 82.4% sensitivity with a specificity of 72.4% and 78.1% in diagnosis of breast cancer when compared with healthy and benign disease controls, respectively. Moreover, the methylation panel positive group showed significant differences in the following independent variables: (a) involvement of family history of tumors; (b) a low proliferative index, ki-67; (c) high ratios in luminal subtypes. Additionally the panel also complemented some breast cancer cases which were neglected by mammography or ultrasound. These data suggest that epigenetic markers in serum have potential for diagnosis of breast cancer. PMID:26918343

  3. The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity.

    PubMed

    Leoh, Lai Sum; van Heertum, Bart; De Rijck, Jan; Filippova, Maria; Rios-Colon, Leslimar; Basu, Anamika; Martinez, Shannalee R; Tungteakkhun, Sandy S; Filippov, Valeri; Christ, Frauke; De Leon, Marino; Debyser, Zeger; Casiano, Carlos A

    2012-03-01

    The lens epithelium-derived growth factor p75 (LEDGF/p75) is a transcription coactivator that promotes resistance to oxidative stress- and chemotherapy-induced cell death. LEDGF/p75 is also known as the dense fine speckles autoantigen of 70 kDa (DFS70) and has been implicated in cancer, HIV-AIDS, autoimmunity, and inflammation. To gain insights into mechanisms by which LEDGF/p75 protects cancer cells against stress, we initiated an analysis of its interactions with other transcription factors and the influence of these interactions on stress gene activation. We report here that both LEDGF/p75 and its short splice variant LEDGF/p52 interact with MeCP2, a methylation-associated transcriptional modulator, in vitro and in various human cancer cells. These interactions were established by several complementary approaches: transcription factor protein arrays, pull-down and AlphaScreen assays, coimmunoprecipitation, and nuclear colocalization by confocal microscopy. MeCP2 was found to interact with the N-terminal region shared by LEDGF/p75 and p52, particularly with the PWWP-CR1 domain. Like LEDGF/p75, MeCP2 bound to and transactivated the Hsp27 promoter (Hsp27pr). LEDGF/p75 modestly enhanced MeCP2-induced Hsp27pr transactivation in U2OS osteosarcoma cells, whereas this effect was more pronounced in PC3 prostate cancer cells. LEDGF/p52 repressed Hsp27pr activity in U2OS cells. Interestingly, siRNA-induced silencing of LEDGF/p75 in U2OS cells dramatically elevated MeCP2-mediated Hsp27pr transactivation, whereas this effect was less pronounced in PC3 cells depleted of LEDGF/p75. These results suggest that the LEDGF/p75-MeCP2 interaction differentially influences Hsp27pr activation depending on the cellular and molecular context. These findings are of significance in understanding the contribution of this interaction to the activation of stress survival genes. PMID:22275515

  4. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses

    PubMed Central

    Winans, Bethany; Nagari, Anusha; Chae, Minho; Post, Christina M.; Ko, Chia-I; Puga, Alvaro; Kraus, W. Lee; Lawrence, B. Paige

    2015-01-01

    Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8+ T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8+ T cells prior to and during infection. Altered transcriptional profiles in CD8+ T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8+ T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life. PMID:25810390

  5. Aberrant Methylation of RASSF1A gene Contribute to the Risk of Renal Cell Carcinoma: a Meta-Analysis.

    PubMed

    Yu, Gan-Shen; Lai, Cai-Yong; Xu, Yin; Bu, Chen-Feng; Su, Ze-Xuan

    2015-01-01

    The aim of this study was to assess the diagnostic value of RASSF1A methylation in renal cell carcinoma. Systematically search were performed using the Pubmed, ProQest and Web of Science for all articles on the association between RASSF1A methylation and renal cell carcinoma before 15 April 2015. After the filtration, 13 studies involving 677 cases and 497 controls met our criteria. Our meta-analysis suggested that hypermethylation of RASSF1A gene was associated with the increased risk of RCC(OR:4.14, 95%CI:1.06-16.1). Stratified analyses showed a similar risk in qualitative detection method(OR:28.4, 95%CI:10.2-79.6), body fluid sample(OR:12.8, 95%CI:5.35-30.8), and American(OR:10.5, 95%CI:1.97-55.9). Our result identified that RASSF1A methylation had a strong potential in prediction the risk of Renal cell carcinoma. PMID:26107221

  6. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein.

  7. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. PMID:23623297

  8. DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia

    PubMed Central

    Numata, Shusuke; Ye, Tianzhang; Herman, Mary; Lipska, Barbara K.

    2014-01-01

    Background: Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5–1.0%. The pathophysiology of schizophrenia still remains obscure. Accumulating evidence indicates that DNA methylation, which is the addition of a methyl group to the cytosine in a CpG dinucleotide, might play an important role in the pathogenesis of schizophrenia. Methods: To gain further insight into the molecular mechanisms underlying schizophrenia, a genome-wide DNA methylation profiling (27,578 CpG dinucleotides spanning 14,495 genes) of the human dorsolateral prefrontal cortex (DLPFC) was conducted in a large cohort (n = 216) of well characterized specimens from individuals with schizophrenia and non-psychiatric controls, combined with an analysis of genetic variance at ~880,000 SNPs. Results: Aberrant DNA methylation in schizophrenia was identified at 107 CpG sites at 5% Bonferroni correction (p < 1.99 × 10−6). Of these significantly altered sites, hyper-DNA methylation was observed at 79 sites (73.8%), mostly in the CpG islands (CGIs) and in the regions flanking CGIs (CGI: 31 sites; CGI shore: 35 sites; CGI shelf: 3 sites). Furthermore, a large number of cis-methylation quantitative trait loci (mQTL) were identified, including associations with risk SNPs implicated in schizophrenia. Conclusions: These results suggest that altered DNA methylation might be involved in the pathophysiology and/or treatment of schizophrenia, and that a combination of epigenetic and genetic approaches will be useful to understanding the molecular mechanism of this complex disorder. PMID:25206360

  9. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer

    PubMed Central

    Song, Binbin; Ai, Jiang; Kong, Xianghong; Liu, Dexin; Li, Jun

    2013-01-01

    Objective: We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). Methods: 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. Conclusion: We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer. PMID:24550949

  10. Characterization of tumor cells and stem cells by differential nuclear methylation imaging

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.

    2008-02-01

    DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.

  11. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors

    PubMed Central

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    ABSTRACT Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development. PMID:26786290

  12. DNA methylation: potential biomarker in Hepatocellular Carcinoma

    PubMed Central

    2014-01-01

    Hepatocellular Carcinoma (HCC) is one of the most common cancers in the world and it is often associated with poor prognosis. Liver transplantation and resection are two currently available curative therapies. However, most patients cannot be treated with such therapies due to late diagnosis. This underscores the urgent need to identify potential markers that ensure early diagnosis of HCC. As more evidences are suggesting that epigenetic changes contribute hepatocarcinogenesis, DNA methylation was poised as one promising biomarker. Indeed, genome wide profiling reveals that aberrant methylation is frequent event in HCC. Many studies showed that differentially methylated genes and CpG island methylator phenotype (CIMP) status in HCC were associated with clinicopathological data. Some commonly studied hypermethylated genes include p16, SOCS1, GSTP1 and CDH1. In addition, studies have also revealed that methylation markers could be detected in patient blood samples and associated with poor prognosis of the disease. Undeniably, increasing number of methylation markers are being discovered through high throughput genome wide data in recent years. Proper and systematic validation of these candidate markers in prospective cohort is required so that their actual prognostication and surveillance value could be accurately determined. It is hope that in near future, methylation marker could be translate into clinical use, where patients at risk could be diagnosed early and that the progression of disease could be more correctly assessed. PMID:24635883

  13. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer.

    PubMed

    Lamy, Aude; Sesboüé, Richard; Bourguignon, Jeannette; Dautréaux, Brigitte; Métayer, Josette; Frébourg, Thierry; Thiberville, Luc

    2002-07-10

    Among the identified factors involved in malignant transformation, abnormal methylation of the CDKN2A/p16(INK4a) gene promoter has been described as an early event, particularly in bronchial cell cancerization. Precancerous bronchial lesions (n = 70) prospectively sampled during fluorescence endoscopy in a series of 37 patients at high risk for lung cancer were studied with respect to the methylation status of the CDKN2A gene. Methylation-specific polymerase chain reaction was performed on DNA extracted from pure bronchial cell populations derived from biopsies and detection of p16 protein was studied by immunohistochemistry on contiguous parallel biopsies. Aberrant methylation of the CDKN2A gene promoter was found in 19% of preinvasive lesions and its frequency increased with the histologic grade of the lesions. Methylation in at least 1 bronchial site was significantly more frequent in patients with cancer history, although there was no difference in the outcome of patients with or without methylation in bronchial epithelium. The other risk factors studied (tobacco and asbestos exposure) did not influence the methylation status. There was no relationship between CDKN2A methylation and the evolutionary character of the lesions. Our results confirm that abnormal methylation of the CDKN2A gene promoter is an early event in bronchial cell cancerization, which can persist for several years after carcinogen exposure cessation, and show that this epigenetic alteration cannot predict the evolution of precancerous lesions within a 2-year follow-up. PMID:12115568

  14. Identification and Comparison of Aberrant Key Regulatory Networks in Breast, Colon, Liver, Lung, and Stomach Cancers through Methylome Database Analysis

    PubMed Central

    Kim, Byungtak; Kang, Seongeun; Jeong, Gookjoo; Park, Sung-Bin; Kim, Sun Jung

    2014-01-01

    Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon, liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value <0.05; methylation difference >0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway analysis identified that either the “cancer” related network or the “cancer” related bio-function appeared as the highest confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel methylation markers could be applied to establish markers for cancer prognosis. PMID:24842468

  15. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing

    PubMed Central

    Hodges, Emily; Smith, Andrew D.; Kendall, Jude; Xuan, Zhenyu; Ravi, Kandasamy; Rooks, Michelle; Zhang, Michael Q.; Ye, Kenny; Bhattacharjee, Arindam; Brizuela, Leonardo; McCombie, W. Richard; Wigler, Michael; Hannon, Gregory J.; Hicks, James B.

    2009-01-01

    DNA methylation stabilizes developmentally programmed gene expression states. Aberrant methylation is associated with disease progression and is a common feature of cancer genomes. Presently, few methods enable quantitative, large-scale, single-base resolution mapping of DNA methylation states in desired regions of a complex mammalian genome. Here, we present an approach that combines array-based hybrid selection and massively parallel bisulfite sequencing to profile DNA methylation in genomic regions spanning hundreds of thousands of bases. This single molecule strategy enables methylation variable positions to be quantitatively examined with high sampling precision. Using bisulfite capture, we assessed methylation patterns across 324 randomly selected CpG islands (CGI) representing more than 25,000 CpG sites. A single lane of Illumina sequencing permitted methylation states to be definitively called for >90% of target sties. The accuracy of the hybrid-selection approach was verified using conventional bisulfite capillary sequencing of cloned PCR products amplified from a subset of the selected regions. This confirmed that even partially methylated states could be successfully called. A comparison of human primary and cancer cells revealed multiple differentially methylated regions. More than 25% of islands showed complex methylation patterns either with partial methylation states defining the entire CGI or with contrasting methylation states appearing in specific regional blocks within the island. We observed that transitions in methylation state often correlate with genomic landmarks, including transcriptional start sites and intron-exon junctions. Methylation, along with specific histone marks, was enriched in exonic regions, suggesting that chromatin states can foreshadow the content of mature mRNAs. PMID:19581485

  16. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer.

    PubMed

    Chen, Bi-Feng; Gu, Shen; Suen, Yick-Keung; Li, Lu; Chan, Wai-Yee

    2014-01-01

    It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3'-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT. PMID:23959088

  17. γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells.

    PubMed

    Kim, Sung-Eun; Hinoue, Toshinori; Kim, Michael S; Sohn, Kyoung-Jin; Cho, Robert C; Cole, Peter D; Weisenberger, Daniel J; Laird, Peter W; Kim, Young-In

    2015-01-01

    γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways. PMID:25502219

  18. DNA methylation profiles in placenta and its association with gestational diabetes mellitus.

    PubMed

    Rong, C; Cui, X; Chen, J; Qian, Y; Jia, R; Hu, Y

    2015-05-01

    Emerging evidences indicate that placenta plays a critical role in gestational diabetes mellitus (GDM). DNA methylation could be associated with altered placental development and functions. This study is to uncover the genome-wide DNA methylation patterns in this disorder. DNA methylation was measured at >385,000 CpG sites using methylated DNA immunoprecipitation (MeDIP) and a huamn CpG island plus promoter microarray. We totally identified 6,641 differentially methylated regions (DMRs) targeting 3,320 genes, of which 2,729 DMRs targeting 1,399 genes, showed significant hypermethylation in GDM relative to the controls, whereas 3,912 DMRs targeting 1,970 genes showed significant hypomethylation. Functional analysis divided these genes into different functional networks, which mainly involved in the pathways of cell growth and death regulation, immune and inflammatory response and nervous system development. In addition, the methylation profiles and expressions of 4 loci (RBP4, GLUT3, Resistin and PPARα) were validated by BSP for their higher log2 ratio and potential functions with energy metabolism. This study demonstrates aberrant patterns of DNA methylation in GDM which may be involved in the pathophysiology of GDM and reflect the fetal development. Future work will assess the potential prognostic and therapeutic value for these findings in GDM. PMID:25962407

  19. miRNA and methylation: a multifaceted liaison.

    PubMed

    Chhabra, Ravindresh

    2015-01-19

    miRNAs and DNA methylation are both critical regulators of gene expression. Aberration in miRNA expression or DNA methylation is a causal factor for numerous pathological conditions. DNA methylation can inhibit the transcription of miRNAs, just like coding genes, by methylating the CpG islands in the promoter regions of miRNAs. Conversely, certain miRNAs can directly target DNA methyltransferases and bring about their inhibition, thereby affecting the whole genome methylation pattern. Recently, methylation patterns have also been revealed in mRNA. Surprisingly, the two most commonly studied methylation states in mRNA (m6A and m5C) are found to be enriched in 3'-UTRs (untranslated regions), the target site for the majority of miRNAs. Whereas m5C is reported to stabilise mRNA, m6A has a destabilising effect on mRNA. However, the effect of mRNA methylation on its interaction with miRNAs is largely unexplored. The review highlights the complex interplay between microRNA and methylation at DNA and mRNA level. PMID:25469751

  20. Alterations of DNA methylation and clinicopathological diversity of human cancers.

    PubMed

    Kanai, Yae

    2008-09-01

    Alterations of DNA methylation can account for the histological heterogeneity, reflected in the stepwise progression and complex biological characteristics of human cancers, that genetic alterations alone cannot explain. Analysis of DNA methylation status in tissue samples can be an aid to understanding the molecular mechanisms of multistage carcinogenesis. Human cancer cells show a drastic change in DNA methylation status, that is, overall DNA hypomethylation and regional DNA hypermethylation, which results in chromosomal instability and silencing of tumor-suppressor genes. Overexpression of DNA methyltransferase (DNMT) 1 is not a secondary result of increased cell proliferative activity but may underline the CpG island methylator phenotype of cancers. Splicing alteration of DNMT3B may result in chromosomal instability through DNA hypomethylation of pericentromeric satellite regions. Alterations of DNA methylation are observed even in the precancerous stage frequently associated with chronic inflammation and/or persistent viral infection or with cigarette smoking. Precancerous conditions showing alterations of DNA methylation may generate more malignant cancers. Aberrant DNA methylation is significantly associated with aggressiveness of cancers and poorer outcome of cancer patients. Genome-wide analysis of DNA methylation status based on array-based technology may identify DNA methylation profiles that can be used as appropriate indicators for carcinogenetic risk estimation and prognostication. PMID:18801069

  1. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis.

    PubMed

    Dadmehr, Mehdi; Hosseini, Morteza; Hosseinkhani, Saman; Ganjali, Mohammad Reza; Sheikhnejad, Reza

    2015-11-15

    Epigenetic changes such as DNA methylation of CpG islands located in the promoter region of some tumor suppressor genes are very common in human diseases such as cancer. Detection of aberrant methylation pattern could serve as an excellent diagnostic approach. Recently, the direct detection of methylated DNA sequences without using chemical and enzymatic treatments or antibodies has received great deal of attentions. In this study, we report a colorimetric and fluorimetric technique for direct detection of DNA methylation. Here, the DNA is being used as an effective template for fluorescent silver nanoclusters formation without any chemical modification or DNA labeling. The sensitivity test showed that upon the addition of target methylated DNA, the fluorescence intensity is decreased in a linear range when the concentration of methylated DNA has increased from 2.0×10(-9) to 6.3 ×10(-7) M with the detection limit of 9.4×10(-10) M. The optical and fluorescence spectral behaviors were highly reproducible and clearly discriminated between unmethylated, methylated and even partially methylated DNA in CpG rich sequences. The results were also reproducible when the human plasma was present in our assay system. PMID:26056954

  2. Identification of a Novel Methylated Gene in Nasopharyngeal Carcinoma: TTC40

    PubMed Central

    Ayadi, Wajdi; Allaya, Nesrine; Frikha, Hanèn; Trigui, Emna; Khabir, Abdelmajid; Ghorbel, Abdelmonem; Daoud, Jamel; Frikha, Mounir; Mokdad-Gargouri, Raja

    2014-01-01

    To further explore the epigenetic changes in nasopharyngeal carcinoma (NPC), methylation-sensitive arbitrarily primed PCR was performed on NPC biopsies and nontumor nasopharyngeal samples. We have shown mainly two DNA fragments that appeared to be differentially methylated in NPCs versus nontumors. The first, defined as hypermethylated, corresponds to a CpG island at the 5′-end of the tetratricopeptide repeat domain 40 (TTC40) gene, whereas the second, defined as hypo-methylated, is located on repetitive sequences at chromosomes 16p11.1 and 13.1. Thereafter, the epigenetic alteration on the 5′-TTC40 gene was confirmed by methylation-specific PCR, showing a significant aberrant methylation in NPCs, compared to nontumors. In addition, the bisulfite sequencing analysis has shown a very high density of methylated cytosines in C15, C17, and X666 NPC xenografts. To assess whether TTC40 gene is silenced by aberrant methylation, we examined the gene expression by reverse transcription-PCR. Our analysis showed that the mRNA expression was significantly lower in tumors than in nontumors, which is associated with 5′-TTC40 gene hypermethylation. In conclusion, we found that the 5′-TTC40 gene is frequently methylated and is associated with the loss of mRNA expression in NPCs. Hypermethylation of 5′-TTC40 gene might play a role in NPC development; nevertheless, other studies are needed. PMID:25101295

  3. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures

    PubMed Central

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Background Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. Methods We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. Results All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. Conclusions The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the

  4. A global profile of gene promoter methylation in treatment-naïve urothelial cancer

    PubMed Central

    Ibragimova, Ilsiya; Dulaimi, Essel; Slifker, Michael J; Chen, David DY; Uzzo, Robert G; Cairns, Paul

    2014-01-01

    The epigenetic alteration of aberrant hypermethylation in the promoter CpG island of a gene is associated with repression of transcription. In neoplastic cells, aberrant hypermethylation is well described as a mechanism of allele inactivation of particular genes with a tumor suppressor function. To investigate the role of aberrant hypermethylation in the biology and progression of urothelial cancer, we examined 101 urothelial (transitional cell) carcinomas (UC), broadly representative of the disease at presentation, with no prior immunotherapy, chemotherapy or radiotherapy, by Infinium HM27 containing 14,495 genes. The genome-wide signature of aberrant promoter hypermethylation in UC consisted of 729 genes significant by a Wilcoxon test, hypermethylated in a CpG island within 1 kb of the transcriptional start site and unmethylated in normal urothelium from aged individuals. We examined differences in gene methylation between the two main groups of UC: the 75% that are superficial, which often recur but rarely progress, and the 25% with muscle invasion and poor prognosis. We further examined pairwise comparisons of the pathologic subgroups of high or low grade, invasive or non-invasive (pTa), and high grade superficial or low grade superficial UC. Pathways analysis indicated over-representation of genes involved in cell adhesion or metabolism in muscle-invasive UC. Notably, the TET2 epigenetic regulator was one of only two genes more frequently methylated in superficial tumors and the sole gene in low grade UC. Other chromatin remodeling genes, MLL3 and ACTL6B, also showed aberrant hypermethylation. The Infinium methylation value for representative genes was verified by pyrosequencing. An available mRNA expression data set indicated many of the hypermethylated genes of interest to be downregulated in UC. Unsupervised clustering of the most differentially methylated genes distinguished muscle invasive from superficial UC. After filtering, cluster analysis showed a CpG

  5. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  6. Global Patterns of Methylation in Sézary Syndrome Provide Insight into the Role of Epigenetics in Cutaneous T-Cell Lymphoma.

    PubMed

    Whittaker, Sean

    2016-09-01

    van Doorn et al. have defined the DNA methylomes of Sézary cells based on a genome-wide methylation analysis using the Illumina 450K array platform (Illumina, San Diego, CA). Their results show aberrant DNA methylation patterns in CD4-enriched T cells from peripheral blood samples, patterns that are distinct from those of patients with inflammatory erythroderma and from healthy volunteers. Whereas 7.8% of 473,921 5'-cytosine-phosphate-guanine-3' (CpG) sites were hypomethylated, 3.2% showed marked enrichment and selection for hypermethylated CpG sites within the proximal region of gene promoters, including some genes that have previously been shown to be hypermethylated in cutaneous T-cell lymphomas (CTCLs), using standard bisulfite modification techniques. PMID:27542296

  7. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  8. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpathanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Whorton, Elbert B

    2015-11-01

    Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 Me

  9. DNA methylation detection based on difference of base content

    NASA Astrophysics Data System (ADS)

    Sato, Shinobu; Ohtsuka, Keiichi; Honda, Satoshi; Sato, Yusuke; Takenaka, Shigeori

    2016-04-01

    Methylation frequently occurs in cytosines of CpG sites to regulate gene expression. The identification of aberrant methylation of certain genes is important for cancer marker analysis. The aim of this study was to determine the methylation frequency in DNA samples of unknown length and/or concentration. Unmethylated cytosine is known to be converted to thymine following bisulfite treatment and subsequent PCR. For this reason, the AT content in DNA increases with an increasing number of methylation sites. In this study, the fluorescein-carrying bis-acridinyl peptide (FKA) molecule was used for the detection of methylation frequency. FKA contains fluorescein and two acridine moieties, which together allow for the determination of the AT content of double-stranded DNA fragments. Methylated and unmethylated human genomes were subjected to bisulfide treatment and subsequent PCR using primers specific for the CFTR, CDH4, DBC1, and NPY genes. The AT content in the resulting PCR products was estimated by FKA, and AT content estimations were found to be in good agreement with those determined by DNA sequencing. This newly developed method may be useful for determining methylation frequencies of many PCR products by measuring the fluorescence in samples excited at two different wavelengths.

  10. Contrasting chromatin organization of CpG islands and exons in the human genome

    PubMed Central

    2010-01-01

    Background CpG islands and nucleosome-free regions are both found in promoters. However, their association has never been studied. On the other hand, DNA methylation is absent in promoters but is enriched in gene bodies. Intragenic nucleosomes and their modifications have been recently associated with RNA splicing. Because the function of intragenic DNA methylation remains unclear, I explored the possibility of its involvement in splicing regulation. Results Here I show that CpG islands were associated not only with methylation-free promoters but also with nucleosome-free promoters. Nucleosome-free regions were observed only in promoters containing a CpG island. However, the DNA sequences of CpG islands predicted the opposite pattern, implying a limitation of sequence programs for the determination of nucleosome occupancy. In contrast to the methylation-and nucleosome-free states of CpG-island promoters, exons were densely methylated at CpGs and packaged into nucleosomes. Exon-enrichment of DNA methylation was specifically found in spliced exons and in exons with weak splice sites. The enrichment patterns were less pronounced in initial exons and in non-coding exons, potentially reflecting a lower need for their splicing. I also found that nucleosomes, DNA methylation, and H3K36me3 marked the exons of transcripts with low, medium, and high gene expression levels, respectively. Conclusions Human promoters containing a CpG island tend to remain nucleosome-free as well as methylation-free. In contrast, exons demonstrate a high degree of methylation and nucleosome occupancy. Exonic DNA methylation seems to function together with exonic nucleosomes and H3K36me3 for the proper splicing of transcripts with different expression levels. PMID:20602769

  11. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  12. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  13. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    PubMed Central

    2012-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a disorder associated to cigarette smoke and lung cancer (LC). Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs) are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23), LC (n = 26), as well as in healthy subjects (CTR) (n = 33), using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP). The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR) (p < 0.0001), respectively. Methylation status of CDKN2A and MGMT was significantly higher in COPD and LC patients compared with CTR group (p < 0.0001). Frequency of CDH1 methylation only showed a statistically significant difference between LC patients and CTR group (p < 0.05). Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD) in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160 PMID:22818553

  14. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia.

    PubMed

    Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan

    2014-04-01

    The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated

  15. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes.

    PubMed

    Sathyanarayana, Ubaradka G; Maruyama, Riichiroh; Padar, Asha; Suzuki, Makoto; Bondaruk, Jolanta; Sagalowsky, Arthur; Minna, John D; Frenkel, Eugene P; Grossman, H Barton; Czerniak, Bogdan; Gazdar, Adi F

    2004-02-15

    Laminin-5 (LN5) anchors epithelial cells to the underlying basement membrane, and it is encoded by three distinct genes: LAMA3, LAMB3, and LAMC2. To metastasize and grow, cancer cells must invade and destroy the basement membrane. Our previous work has shown that epigenetic inactivation is a major mechanism of silencing LN5 genes in lung cancers. We extended our methylation studies to resected bladder tumors (n = 128) and exfoliated cell samples (bladder washes and voided urine; n = 71) and correlated the data with clinicopathologic findings. Nonmalignant urothelium had uniform expression of LN5 genes and lacked methylation. The methylation frequencies for LN5 genes in tumors were 21-45%, and there was excellent concordance between methylation in tumors and corresponding exfoliated cells. Methylation of LAMA3 and LAMB3 and the methylation index were correlated significantly with several parameters of poor prognosis (tumor grade, growth pattern, muscle invasion, tumor stage, and ploidy pattern), whereas methylation of LAMC2 and methylation index were associated with shortened patient survival. Of particular interest, methylation frequencies of LAMA3 helped to distinguish invasive (72%) from noninvasive (12%) tumors. These results suggest that methylation of LN5 genes has potential clinical applications in bladder cancers. PMID:14973053

  16. Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    PubMed Central

    2010-01-01

    Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903

  17. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy.

    PubMed

    Lin, Ying-Li; Deng, Qiu-Kui; Wang, Yu-Hao; Fu, Xing-Li; Ma, Jian-Guo; Li, Wen-Ping

    2015-01-01

    BACKGROUND Prostate cancer is a one of the most common malignant diseases in men worldwide. Now it is a challenge to identify patients at higher risk for relapse and progression after surgery, and more novel prognostic biomarkers are needed. The aim of this study was to investigate the clinical significance of protocadherin17 (PCDH17) methylation in serum and its predictive value for biochemical recurrence (BCR) after radical prostatectomy. MATERIAL AND METHODS We evaluated the methylation status of PCDH17 in serum samples of 167 early-stage prostate cancer patients and 44 patients with benign prostatic hyperplasia (BPH) using methylation-specific PCR (MSP), and then evaluated the relationship between PCDH17 methylation and clinicopathologic features. Kaplan-Meier survival analysis and Cox analysis were used to evaluate its predictive value for BCR. RESULTS The ratio of PCDH17 methylation in prostate cancer patients was higher than in patients with BPH. Moreover, PCDH17 methylation was significantly associated with advanced pathological stage, higher Gleason score, higher preoperative PSA levels, and BCR. Kaplan-Meier survival analysis indicated that patients with methylated PCDH17 had shorter BCR-free survival time compared to patients with unmethylated PCDH17. Cox regression analysis indicated that PCDH17 methylation was an independent predictive factor for the BCR of patients after radical prostatectomy. CONCLUSIONS PCDH17 methylation in serum is a frequent event in early-stage prostate cancer, and it is an independent predictor of BCR after radical prostatectomy. PMID:26683656

  18. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy

    PubMed Central

    Lin, Ying-Li; Deng, Qiu-Kui; Wang, Yu-Hao; Fu, Xing-Li; Ma, Jian-Guo; Li, Wen-Ping

    2015-01-01

    Background Prostate cancer is a one of the most common malignant diseases in men worldwide. Now it is a challenge to identify patients at higher risk for relapse and progression after surgery, and more novel prognostic biomarkers are needed. The aim of this study was to investigate the clinical significance of protocadherin17 (PCDH17) methylation in serum and its predictive value for biochemical recurrence (BCR) after radical prostatectomy. Material/Methods We evaluated the methylation status of PCDH17 in serum samples of 167 early-stage prostate cancer patients and 44 patients with benign prostatic hyperplasia (BPH) using methylation-specific PCR (MSP), and then evaluated the relationship between PCDH17 methylation and clinicopathologic features. Kaplan-Meier survival analysis and Cox analysis were used to evaluate its predictive value for BCR. Results The ratio of PCDH17 methylation in prostate cancer patients was higher than in patients with BPH. Moreover, PCDH17 methylation was significantly associated with advanced pathological stage, higher Gleason score, higher preoperative PSA levels, and BCR. Kaplan-Meier survival analysis indicated that patients with methylated PCDH17 had shorter BCR-free survival time compared to patients with unmethylated PCDH17. Cox regression analysis indicated that PCDH17 methylation was an independent predictive factor for the BCR of patients after radical prostatectomy. Conclusions PCDH17 methylation in serum is a frequent event in early-stage prostate cancer, and it is an independent predictor of BCR after radical prostatectomy. PMID:26683656

  19. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites

    PubMed Central

    Bellacosa, Alfonso; Drohat, Alexander C.

    2016-01-01

    Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, Methyl Binding Domain 4 (MBD4) and Thymine DNA Glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC. PMID:26021671

  20. Lung Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis Exhibit Genome-Wide Differences in DNA Methylation Compared to Fibroblasts from Nonfibrotic Lung

    PubMed Central

    Huang, Steven K.; Scruggs, Anne M.; McEachin, Richard C.; White, Eric S.; Peters-Golden, Marc

    2014-01-01

    Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These

  1. Identification of GABRA1 and LAMA2 as new DNA methylation markers in colorectal cancer.

    PubMed

    Lee, Sunwoo; Oh, Taejeong; Chung, Hyuncheol; Rha, Sunyoung; Kim, Changjin; Moon, Youngho; Hoehn, Benjamin D; Jeong, Dongjun; Lee, Seunghoon; Kim, Namkyu; Park, Chanhee; Yoo, Miae; An, Sungwhan

    2012-03-01

    Aberrant methylation of CpG islands in the promoter region of genes is a common epigenetic phenomenon found in early cancers. Therefore conducting genome-scale methylation studies will enhance our understanding of the epigenetic etiology behind carcinogenesis by providing reliable biomarkers for early detection of cancer. To discover novel hypermethylated genes in colorectal cancer by genome-wide search, we first defined a subset of genes epigenetically reactivated in colon cancer cells after treatment with a demethylating agent. Next, we identified another subset of genes with relatively down-regulated expression patterns in colorectal primary tumors when compared with normal appearing-adjacent regions. Among 29 genes obtained by cross-comparison of the two gene-sets, we subsequently selected, through stepwise subtraction processes, two novel genes, GABRA1 and LAMA2, as methylation targets in colorectal cancer. For clinical validation pyrosequencing was used to assess methylation in 134 matched tissue samples from CRC patients. Aberrant methylation at target CpG sites in GABRA1 and LAMA2 was observed with high frequency in tumor tissues (92.5% and 80.6%, respectively), while less frequently in matched tumor-adjacent normal tissues (33.6% for GABRA1 and 13.4% for LAMA2). Methylation levels in primary tumors were not significantly correlated with clinico-pathological features including age, sex, survival and TNM stage. Additionally, we found that ectopic overexpression of GABRA1 in colon cancer cell lines resulted in strong inhibition of cell growth. These results suggest that two novel hypermethylated genes in colorectal cancer, GABRA1 and LAMA2, may have roles in colorectal tumorigenesis and could be potential biomarkers for the screening and the detection of colorectal cancer in clinical practice. PMID:22038115

  2. Human-specific CpG "beacons" identify loci associated with human-specific traits and disease.

    PubMed

    Bell, Christopher G; Wilson, Gareth A; Butcher, Lee M; Roos, Christian; Walter, Lutz; Beck, Stephan

    2012-10-01

    Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed "CpG beacons") as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10(-3)) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10(-3)). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs. PMID:22968434

  3. Technology evaluation: CpG-7909, Coley.

    PubMed

    Paul, Stéphane

    2003-10-01

    Coley Pharmaceutical (formerly CpG ImmunoPharmaceuticals) is developing CpG-7909 (ProMune) for use in the potential treatment of cancer and as a vaccine adjuvant. By April 2000, CpG-7909 had entered phase I/II trials for cancer and in March 2002, Coley initiated a phase I trial in non-Hodgkin's lymphoma in combination with rituximab (Rituxan). By October 2002, CpG-7909 was in phase II trials as a vaccine adjuvant. Cpg-7909 is currently also undergoing phase II trials for melanoma. PMID:14601526

  4. Effect of CpG dinucleotides within IgH switch region repeats on immunoglobulin class switch recombination.

    PubMed

    Zhang, Zheng Z; Hsieh, Chih-Lin; Okitsu, Cindy Yen; Han, Li; Yu, Kefei; Lieber, Michael R

    2015-08-01

    Immunoglobulin (Ig) heavy chains undergo class switch recombination (CSR) to change the heavy chain isotype from IgM to IgG, A or E. The switch regions are several kilobases long, repetitive, and G-rich on the nontemplate strand. They are also relatively depleted of CpG (also called CG) sites for unknown reasons. Here we use synthetic switch regions at the IgH switch alpha (Sα) locus to test the effect of CpG sites and to try to understand why the IgH switch sequences evolved to be relatively depleted of CpG. We find that even just two CpG sites within an 80 bp synthetic switch repeat iterated 15 times (total switch region length of 1200 bp containing 30 CpG sites) are sufficient to dramatically reduce both Ig CSR and transcription through the switch region from the upstream Iα sterile transcript promoter, which is the promoter that directs transcripts through the Sα region. De novo DNA methylation occurs at the four CpG sites in and around the Iα promoter when each 80 bp Iα switch repeat contains the two CpG sites. Thus, a relatively low density of CpG sites within the switch repeats can induce upstream CpG methylation at the IgH alpha locus, and cause a substantial decrease in transcription from the sterile transcript promoter. This effect is likely the reason that switch regions evolved to contain very few CpG sites. We discuss these findings as they relate to DNA methylation and to Ig CSR. PMID:25899867

  5. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  6. Array-based identification of common DNA methylation alterations in ulcerative colitis

    PubMed Central

    KOIZUMI, KEI; ALONSO, SERGIO; MIYAKI, YUICHIRO; OKADA, SHINICHIRO; OGURA, HIROYUKI; SHIIYA, NORIHIKO; KONISHI, FUMIO; TAYA, TOSHIKI; PERUCHO, MANUEL; SUZUKI, KOICHI

    2012-01-01

    Patients with long-standing ulcerative colitis (UC) have higher risk of developing colorectal cancer. Albeit the causes remain to be understood, epigenetic alterations have been suggested to play a role in the long-term cancer risk of these patients. In this work, we developed a novel microarray platform based on methylation-sensitive amplified fragment length polymorphism (MS-AFLP) DNA fingerprinting. The over 10,000 NotI sites of the human genome were used to generate synthetic primers covering these loci that are equally distributed into CpG rich regions (promoters and CpG islands) and outside the CpG islands, providing a panoramic view of the methylation alterations in the genome. The arrays were first tested using the colon cancer cell line CW-2 showing the reproducibility and sensitivity of the approach. We next investigated DNA methylation alterations in the colonic mucosa of 14 UC patients. We identified epigenetic alterations affecting genes putatively involved in UC disease, and in susceptibility to develop colorectal cancer. There was a strong concordance of methylation alterations (both hypermethylation and hypomethylation) shared by the cancer cells of the CW-2 cell line and the non-cancer UC samples. To the best of our knowledge, this work defines the first high-throughput aberrant DNA methylation profiles of the colonic mucosa of UC patients. These epigenetic profiles provide novel and relevant knowledge on the molecular alterations associated to the UC pathology. Some of the detected alterations could be exploited as cancer risk predictors underlying a field defect for cancerization in UC-associated carcinogenesis. PMID:22159500

  7. The CpG Island Encompassing the Promoter and First Exon of Human DNMT3L Gene Is a PcG/TrX Response Element (PRE)

    PubMed Central

    Basu, Amitava; Dasari, Vasanthi; Mishra, Rakesh K.; Khosla, Sanjeev

    2014-01-01

    DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis. PMID:24743422

  8. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer

    PubMed Central

    Pimson, Charinya; Pientong, Chamsai; Promthet, Supannee; Putthanachote, Nuntiput; Suwanrungruang, Krittika; Wiangnon, Surapon

    2016-01-01

    Background. Assessment of DNA methylation of specific genes is one approach to the diagnosis of cancer worldwide. Early stage detection is necessary to reduce the mortality rate of cancers, including those occurring in the stomach. For this purpose, tumor cells in circulating blood offer promising candidates for non-invasive diagnosis. Transcriptional inactivation of tumor suppressor genes, like PCDH10 and RASSF1A, by methylation is associated with progression of gastric cancer, and such methylation can therefore be utilized as a biomarker. Methods. The present research was conducted to evaluate DNA methylation in these two genes using blood samples of gastric cancer cases. Clinicopathological data were also analyzed and cumulative survival rates generated for comparison. Results. High frequencies of PCDH10 and RASSF1A methylations in the gastric cancer group were noted (94.1% and 83.2%, respectively, as compared to 2.97% and 5.45% in 202 matched controls). Most patients (53.4%) were in severe stage of the disease, with a median survival time of 8.4 months after diagnosis. Likewise, the patients with metastases, or RASSF1A and PCDH10 methylations, had median survival times of 7.3, 7.8, and 8.4 months, respectively. A Kaplan–Meier analysis showed that cumulative survival was significantly lower in those cases positive for methylation of RASSF1A than in their negative counterparts. Similarly, whereas almost 100% of patients positive for PCDH10 methylation had died after five years, none of the negative cases died over this period. Notably, the methylations of RASSF1A and PCDH10 were found to be higher in the late-stage patients and were also significantly correlated with metastasis and histology. Conclusions. PCDH10 and RASSF1A methylations in blood samples can serve as potential non-invasive diagnostic indicators in blood for gastric cancer. In addition to RASSF1A methylation, tumor stage proved to be a major prognostic factor in terms of survival rates. PMID

  9. Effects of non-CpG site methylation on DNA thermal stability: a fluorescence study

    PubMed Central

    Nardo, Luca; Lamperti, Marco; Salerno, Domenico; Cassina, Valeria; Missana, Natalia; Bondani, Maria; Tempestini, Alessia; Mantegazza, Francesco

    2015-01-01

    Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed. PMID:26354864

  10. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis.

    PubMed Central

    Issa, J P; Vertino, P M; Boehm, C D; Newsham, I F; Baylin, S B

    1996-01-01

    We have previously linked aging, carcinogenesis, and de novo methylation within the promoter of the estrogen receptor (ER) gene in human colon. We now examine the dynamics of this process for the imprinted gene for insulin-like growth factor II (IGF2). In young individuals, the P2-4 promoters of IGF2 are methylated exclusively on the silenced maternal allele. During aging, this promoter methylation becomes more extensive and involves the originally unmethylated allele. Most adult human tumors, including colon, breast, lung, and leukemias, exhibit increased methylation at the P2-4 IGF2 promoters, suggesting further spreading during the neoplastic process. In tumors, this methylation is associated with diminished or absent IGF2 expression from the methylated P3 promoter but maintained expression from P1, an upstream promoter that is not contained within the IGF2 CpG island. Our results demonstrate a remarkable evolution of methylation patterns in the imprinted promoter of the IGF2 gene during aging and carcinogenesis, and provide further evidence for a potential link between aberrant methylation and diseases of aging. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8876210

  11. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. PMID:26285059

  12. Comprehensive analysis of CpG islands in human chromosomes 21 and 22

    NASA Astrophysics Data System (ADS)

    Takai, Daiya; Jones, Peter A.

    2002-03-01

    CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.

  13. Interleukin-6 Promotes Tumorigenesis by Altering DNA Methylation in Oral Cancer Cells

    PubMed Central

    Gasche, Jacqueline A.; Hoffmann, Jürgen; Boland, C. Richard; Goel, Ajay

    2011-01-01

    Worldwide oral squamous cell carcinoma (OSCC) accounts for more than 100,000 deaths each year. Chronic inflammation constitutes one of the key risk factors for OSCC. Accumulating evidence suggests that aberrant DNA methylation may contribute to OSCC tumorigenesis. This study investigated whether chronic inflammation alters DNA methylation and expression of cancer-associated genes in OSCC. We established an in-vitro model of interleukin (IL)-6 mediating chronic inflammation in OSCC cell lines. Thereafter, we measured the ability of IL-6 to induce global hypomethylation of LINE-1 sequences, as well as CpG methylation changes using multiple methodologies including quantitative pyrosequencing, methylation-specific multiplex ligation-dependent probe amplification, and sensitive melting analysis after real-time methylation specific PCR. Gene expression was investigated by quantitative Reverse Transcriptase-PCR. IL-6 induced significant global LINE-1 hypomethylation (p=0.016) in our in-vitro model of inflammatory stress in OSCC cell lines. Simultaneously, IL-6 induced CpG promoter methylation changes in several important putative tumor suppressor genes including CHFR, GATA5, and PAX6. Methylation changes correlated inversely with the changes in the expression of corresponding genes. Our results indicate that IL-6-induced inflammation promotes tumorigenesis in the oral cavity by altering global LINE-1 hypomethylation. In addition, concurrent hypermethylation of multiple tumor suppressor genes by IL-6 suggests that epigenetic gene silencing may be an important consequence of chronic inflammation in the oral cavity. These findings have clinical relevance, as both methylation and inflammation are suitable targets for developing novel preventive and therapeutic measures. PMID:21710491

  14. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  15. Epigenetic inactivation and aberrant transcription of CSMD1 in squamous cell carcinoma cell lines

    PubMed Central

    Richter, Toni M; Tong, Benton D; Scholnick, Steven B

    2005-01-01

    Background The p23.2 region of human chromosome 8 is frequently deleted in several types of epithelial cancer and those deletions appear to be associated with poor prognosis. Cub and Sushi Multiple Domains 1 (CSMD1) was positionally cloned as a candidate for the 8p23 suppressor but point mutations in this gene are rare relative to the frequency of allelic loss. In an effort to identify alternative mechanisms of inactivation, we have characterized CSMD1 expression and epigenetic modifications in head and neck squamous cell carcinoma cell lines. Results Only one of the 20 cell lines examined appears to express a structurally normal CSMD1 transcript. The rest express transcripts which either lack internal exons, terminate abnormally or initiate at cryptic promoters. None of these truncated transcripts is predicted to encode a functional CSMD1 protein. Cell lines that express little or no CSMD1 RNA exhibit DNA methylation of a specific region of the CpG island surrounding CSMD1's first exon. Conclusion Correlating methylation patterns and expression suggests that it is modification of the genomic DNA preceding the first exon that is associated with gene silencing and that methylation of CpG dinucleotides further 3' does not contribute to inactivation of the gene. Taken together, the cell line data suggest that epigenetic silencing and aberrant splicing rather than point mutations may be contributing to the reduction in CSMD1 expression in squamous cancers. These mechanisms can now serve as a focus for further analysis of primary squamous cancers. PMID:16153303

  16. DIETARY SELENIUIM (SE) AND FOLATE AFFECT DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION, GLOBAL DNA METHYLATION AND ONE-CARBON METABOLISM IN RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several observations implicate a role for DNA methylation in cancer pathogenesis. Although both Se and folate deficiency have been shown to cause global DNA hypomethylation and increased cancer susceptibility, the nutrients have different effects on one-carbon metabolism. Thus, the purpose of this s...

  17. Methylation-sensitive Regulation of TMS1/ASC by the Ets Factor, GA-binding Protein-α*S⃞

    PubMed Central

    Lucas, Mary E.; Crider, Krista S.; Powell, Doris R.; Kapoor-Vazirani, Priya; Vertino, Paula M.

    2009-01-01

    Epigenetic silencing involving the aberrant DNA methylation of promoter-associated CpG islands is one mechanism leading to the inactivation of tumor suppressor genes in human cancers. However, the molecular mechanisms underlying this event remains poorly understood. TMS1/ASC is a novel proapoptotic signaling factor that is subject to epigenetic silencing in human breast and other cancers. The TMS1 promoter is embedded within a CpG island that is unmethylated in normal cells and is spanned by three DNase I-hypersensitive sites (HS). Silencing of TMS1 in cancer cells is accompanied by local alterations in histone modification, remodeling of the HS, and hypermethylation of DNA. In this study, we probed the functional significance of the CpG island-specific HS. We identified a methylation-sensitive complex that bound a 55-bp intronic element corresponding to HS2. Affinity chromatography and mass spectrometry identified a component of this complex to be the GA-binding protein (GABP) α. Supershift analysis indicated that the GABPα binding partner, GABPβ1, was also present in the complex. The HS2 element conferred a 3-fold enhancement in TMS1 promoter activity, which was dependent on both intact tandem ets binding sites and the presence of GABPα/β1 in trans. GABPα was selectively enriched at HS2 in human cells, and its occupancy was inversely correlated with CpG island methylation. Down-regulation of GABPα led to a concomitant decrease in TMS1 expression. These data indicate that the intronic HS2 element acts in cis to maintain transcriptional competency at the TMS1 locus and that this activity is mediated by the ets transcription factor, GABPα. PMID:19324871

  18. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1).

    PubMed

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-05-31

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  19. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas

    PubMed Central

    2013-01-01

    Background High-grade soft tissue sarcomas are a heterogeneous, complex group of aggressive malignant tumors showing mesenchymal differentiation. Recently, soft tissue sarcomas have increasingly been classified on the basis of underlying genetic alterations; however, the role of aberrant DNA methylation in these tumors is not well understood and, consequently, the usefulness of methylation-based classification is unclear. Results We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14 representative sarcoma cell lines. The primary samples were partitioned into seven stable clusters. A classification algorithm identified 216 CpG sites, mapping to 246 genes, showing different degrees of DNA methylation between these seven groups. The differences between the clusters were best represented by a set of eight CpG sites located in the genes SPEG, NNAT, FBLN2, PYROXD2, ZNF217, COL14A1, DMRT2 and CDKN2A. By integrating DNA methylation and mRNA expression data, we identified 27 genes showing negative and three genes showing positive correlation. Compared with non-neoplastic fat, NNAT showed DNA hypomethylation and inverse gene expression in myxoid liposarcomas, and DNA hypermethylation and inverse gene expression in dedifferentiated and pleomorphic liposarcomas. Recovery of NNAT in a hypermethylated myxoid liposarcoma cell line decreased cell migration and viability. Conclusions Our analysis represents the first comprehensive integration of DNA methylation and transcriptional data in primary high-grade soft tissue sarcomas. We propose novel biomarkers and genes relevant for pathogenesis, including NNAT as a potential tumor suppressor in myxoid liposarcomas. PMID:24345474

  20. Exploiting CpG hypermutability to identify phenotypically significant variation within human protein-coding genes.

    PubMed

    Ying, Hua; Huttley, Gavin

    2011-01-01

    The CpG dinucleotide is disproportionately represented in human genetic variation due to the hypermutability of 5-methyl-cytosine (5mC). We exploit this hypermutability and a novel codon substitution model to identify candidate functionally important exonic nucleotides. Population genetic theory suggests that codon positions with high cross-species CpG frequency will derive from stronger purifying selection. Using the phylogeny-based maximum likelihood inference framework, we applied codon substitution models with context-dependent parameters to measure the mutagenic and selective processes affecting CpG dinucleotides within exonic sequence. The suitability of these models was validated on >2,000 protein coding genes from a naturally occurring biological control, four yeast species that do not methylate their DNA. As expected, our analyses of yeast revealed no evidence for an elevated CpG transition rate or for substitution suppression affecting CpG-containing codons. Our analyses of >12,000 protein-coding genes from four primate lineages confirm the systemic influence of 5mC hypermutability on the divergence of these genes. After adjusting for confounding influences of mutation and the properties of the encoded amino acids, we confirmed that CpG-containing codons are under greater purifying selection in primates. Genes with significant evidence of enhanced suppression of nonsynonymous CpG changes were also shown to be significantly enriched in Online Mendelian Inheritance in Man. We developed a method for ranking candidate phenotypically influential CpG positions in human genes. Application of this method indicates that of the ∼1 million exonic CpG dinucleotides within humans, ∼20% are strong candidates for both hypermutability and disease association. PMID:21398426

  1. Asymmetrical distribution of CpG in an 'average' mammalian gene.

    PubMed Central

    McClelland, M; Ivarie, R

    1982-01-01

    The frequency and distribution of the rare dinucleotide CpG was examined in 15 mammalian genes. CpG is highly methylated at cytosine in mammalian DNA (1,2) and 5-methylcytosine (5mC) is thought to undergo a transition mutation via deamination to produce thymine (3). This would result in the accumulation of TpG and CpA and depletion of CpG during evolution (4). Consistent with this hypothesis, the gene sample of 26,541 dinucleotides contained CpG at 40% the frequency expected by base composition and the CpG transition products, TpG+CpA, were significantly elevated at 124% of expected random frequency. However, because CpG occurs at only 25% of expected random frequency in the genome, the sampled genes were considerably enriched in this dinucleotide. CpGs were asymmetrically distributed in sequences flanking the genes. 5'-flanking sequences were enriched in CpG at 135% of the frequency expected assuming a symmetrical distribution of all the CpGs in the sampled genes (p less than 0.01), while 3'-flanking regions were depleted in CpG at 40% of expected values (p less than 0.0001). This asymmetry may reflect the role of 5-methylcytosine in gene expression. In contrast the frequencies of GpC and GpT+ ApC did not differ significantly from that predicted by base composition and these dinucleotides were not asymmetrically distributed. PMID:7155899

  2. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction

    PubMed Central

    Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T

    2013-01-01

    Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. PMID:23996961

  3. Promoter methylation of candidate genes associated with familial testicular cancer.

    PubMed

    Mirabello, Lisa; Kratz, Christian P; Savage, Sharon A; Greene, Mark H

    2012-01-01

    Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted. PMID:23050052

  4. Advances in genome-wide DNA methylation analysis

    PubMed Central

    Gupta, Romi; Nagarajan, Arvindhan; Wajapeyee, Narendra

    2013-01-01

    The covalent DNA modification of cytosine at position 5 (5-methylcytosine; 5mC) has emerged as an important epigenetic mark most commonly present in the context of CpG dinucleotides in mammalian cells. In pluripotent stem cells and plants, it is also found in non-CpG and CpNpG contexts, respectively. 5mC has important implications in a diverse set of biological processes, including transcriptional regulation. Aberrant DNA methylation has been shown to be associated with a wide variety of human ailments and thus is the focus of active investigation. Methods used for detecting DNA methylation have revolutionized our understanding of this epigenetic mark and provided new insights into its role in diverse biological functions. Here we describe recent technological advances in genome-wide DNA methylation analysis and discuss their relative utility and drawbacks, providing specific examples from studies that have used these technologies for genome-wide DNA methylation analysis to address important biological questions. Finally, we discuss a newly identified covalent DNA modification, 5-hydroxymethylcytosine (5hmC), and speculate on its possible biological function, as well as describe a new methodology that can distinguish 5hmC from 5mC. PMID:20964631

  5. DNA methylation in PRDM8 is indicative for dyskeratosis congenita

    PubMed Central

    Weidner, Carola I.; Lin, Qiong; Birkhofer, Carina; Gerstenmaier, Uwe; Kaifie, Andrea; Kirschner, Martin; Bruns, Heiko; Balabanov, Stefan; Trummer, Arne; Stockklausner, Clemens; Höchsmann, Britta; Schrezenmeier, Hubert; Wlodarski, Marcin; Panse, Jens; Brümmendorf, Tim H.

    2016-01-01

    Dyskeratosis congenita (DKC) is associated with impaired telomere maintenance and with clinical features of premature aging. In this study, we analysed global DNA methylation (DNAm) profiles of DKC patients. Age-associated DNAm changes were not generally accelerated in DKC, but there were significant differences to DNAm patterns of healthy controls, particularly in CpG sites related to an internal promoter region of PR domain containing 8 (PRDM8). Notably, the same genomic region was also hypermethylated in aplastic anemia (AA) – another bone marrow failure syndrome. Site-specific analysis of DNAm level in PRDM8 with pyrosequencing and MassARRAY validated aberrant hypermethylation in 11 DKC patients and 27 AA patients. Telomere length, measured by flow-FISH, did not directly correlate with DNAm in PRDM8. Therefore the two methods may be complementary to also identify patients with still normal telomere length. In conclusion, blood of DKC patients reveals aberrant DNAm patterns, albeit age-associated DNAm patterns are not generally accelerated. Aberrant hypermethylation is particularly observed in PRDM8 and this may support identification and classification of bone marrow failure syndromes. PMID:26909595

  6. DNA methylation in PRDM8 is indicative for dyskeratosis congenita.

    PubMed

    Weidner, Carola I; Lin, Qiong; Birkhofer, Carina; Gerstenmaier, Uwe; Kaifie, Andrea; Kirschner, Martin; Bruns, Heiko; Balabanov, Stefan; Trummer, Arne; Stockklausner, Clemens; Höchsmann, Britta; Schrezenmeier, Hubert; Wlodarski, Marcin; Panse, Jens; Brümmendorf, Tim H; Beier, Fabian; Wagner, Wolfgang

    2016-03-01

    Dyskeratosis congenita (DKC) is associated with impaired telomere maintenance and with clinical features of premature aging. In this study, we analysed global DNA methylation (DNAm) profiles of DKC patients. Age-associated DNAm changes were not generally accelerated in DKC, but there were significant differences to DNAm patterns of healthy controls, particularly in CpG sites related to an internal promoter region of PR domain containing 8 (PRDM8). Notably, the same genomic region was also hypermethylated in aplastic anemia (AA) - another bone marrow failure syndrome. Site-specific analysis of DNAm level in PRDM8 with pyrosequencing and MassARRAY validated aberrant hypermethylation in 11 DKC patients and 27 AA patients. Telomere length, measured by flow-FISH, did not directly correlate with DNAm in PRDM8. Therefore the two methods may be complementary to also identify patients with still normal telomere length. In conclusion, blood of DKC patients reveals aberrant DNAm patterns, albeit age-associated DNAm patterns are not generally accelerated. Aberrant hypermethylation is particularly observed in PRDM8 and this may support identification and classification of bone marrow failure syndromes. PMID:26909595

  7. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.

    PubMed

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-07-01

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. PMID:26969735

  8. Repurposing the CRISPR-Cas9 system for targeted DNA methylation

    PubMed Central

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-01-01

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co–expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. PMID:26969735

  9. Chromosome aberrations induced by zebularine in triticale.

    PubMed

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation. PMID:27334255

  10. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    PubMed

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS. PMID:25579386

  11. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. Methods We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. Results When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. Conclusions The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease. PMID:23116433

  12. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity.

    PubMed

    Guerrero-Preston, Rafael; Hadar, Tal; Ostrow, Kimberly Laskie; Soudry, Ethan; Echenique, Miguel; Ili-Gangas, Carmen; Pérez, Gabriela; Perez, Jimena; Brebi-Mieville, Priscilla; Deschamps, José; Morales, Luisa; Bayona, Manuel; Sidransky, David; Matta, Jaime

    2014-08-01

    Methylation alterations of CpG islands, CpG island shores and first exons are key events in the formation and progression of human cancer, and an increasing number of differentially methylated regions and genes have been identified in breast cancer. Recent studies of the breast cancer methylome using deep sequencing and microarray platforms are providing a novel insight on the different roles aberrant methylation plays in molecular subtypes of breast cancer. Accumulating evidence from a subset of studies suggests that promoter methylation of tumor-suppressor genes associated with breast cancer can be quantified in circulating DNA. However, there is a paucity of studies that examine the combined presence of genetic and epigenetic alterations associated with breast cancer using blood-based assays. Dysregulation of DNA repair capacity (DRC) is a genetic risk factor for breast cancer that has been measured in lymphocytes. We isolated plasma DNA from 340 participants in a breast cancer case control project to study promoter methylation levels of five genes previously shown to be associated with breast cancer in frozen tissue and in cell line DNA: MAL, KIF1A, FKBP4, VGF and OGDHL. Methylation of at least one gene was found in 49% of the cases compared to 20% of the controls. Three of the four genes had receiver characteristic operator curve values of ≥ 0.50: MAL (0.64), KIF1A (0.51) and OGDHL (0.53). KIF1A promoter methylation was associated with breast cancer and inversely associated with DRC. This is the first evidence of a significant association between genetic and epigenetic alterations in breast cancer using blood-based tests. The potential diagnostic utility of these biomarkers and their relevance for breast cancer risk prediction should be examined in larger cohorts. PMID:24927296

  13. Whole-exome sequencing and genome-wide methylation analyses identify novel disease associated mutations and methylation patterns in idiopathic hypereosinophilic syndrome

    PubMed Central

    Andersen, Christen Lykkegaard; Nielsen, Helene Myrtue; Kristensen, Lasse Sommer; Søgaard, Alexandra; Vikeså, Jonas; Jønson, Lars; Nielsen, Finn Cilius; Hasselbalch, Hans; Bjerrum, Ole Weis; Punj, Vasu; Grønbæk, Kirsten

    2015-01-01

    A thorough understanding of the idiopathic hypereosinophilic syndrome (IHES) and further optimization of diagnostic work-up procedures are warranted. We analyzed purified eosinophils from patients with IHES by next-generation whole-exome sequencing and compared DNA methylation profiles from reactive eosinophilic conditions to known clonal and suspected clonal eosinophilia. Somatic missense mutations in cancer-related genes were detected in three IHES patients. These included the spliceosome gene PUF60 and the cadherin gene CDH17. Furthermore, reactive eosinophilia samples could be differentiated from known- and suspected clonal eosinophilia samples based on 285 differentially methylated CpG sites corresponding to 128 differentially methylated genes. Using Ingenuity pathway analysis, we found that differentially methylated genes were highly enriched in functional pathways such as cancer, cell death and survival, and hematological disease. Our data show that a subset of IHES may be of clonal origin not related to the classical molecular aberrations of FGFR, PDGFRA/B, or T-cells, and that the initiating hits could be point mutations in a variety of genes, including spliceosome mutations or hypermethylated tumor suppressor genes. In addition, we identified a DNA methylation signature that is relevant for distinguishing clonal and suspected clonal eosinophilia from reactive eosinophilia per se, which may be useful in daily clinical work. PMID:26497854

  14. Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing

    PubMed Central

    Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna

    2016-01-01

    Background Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Objective Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. Methods We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. Results We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. Conclusion The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing. PMID

  15. Formulation of vaccines containing CpG oligonucleotides and alum

    PubMed Central

    Aebig, Joan A.; Mullen, Gregory E. D.; Dobrescu, Gelu; Rausch, Kelly; Lambert, Lynn; Ajose-Popoola, Olubunmi; Long, Carole A.; Saul, Allan; Miles, Aaron P.

    2007-01-01

    CpG oligodeoxynucleotides are potent immunostimulants. For parenterally delivered alum based vaccines, the immunostimulatory effect of CpG depends on the association of the CpG and antigen to the alum. We describe effects of buffer components on the binding of CPG 7909 to aluminum hydroxide (Alhydrogel), assays for measuring binding of CPG 7909 to alum and CPG 7909 induced dissociation of antigen from the alum. Free CPG 7909 is a potent inducer of IP-10 in mice. However the lack of IP-10 production from formulations containing bound CPG 7909 suggested that CPG 7909 does not rapidly dissociate from the alum after injection. It also suggests that IP-10 assays are not a good basis for potency assays for alum based vaccines containing CPG 7909. PMID:17512533

  16. Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia.

    PubMed

    Qu, Xiaoyu; Davison, Jerry; Du, Liping; Storer, Barry; Stirewalt, Derek L; Heimfeld, Shelly; Estey, Elihu; Appelbaum, Frederick R; Fang, Min

    2015-01-01

    Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation. PMID:25996682

  17. Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia

    PubMed Central

    Qu, Xiaoyu; Davison, Jerry; Du, Liping; Storer, Barry; Stirewalt, Derek L; Heimfeld, Shelly; Estey, Elihu; Appelbaum, Frederick R; Fang, Min

    2015-01-01

    Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation. PMID:25996682

  18. Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    PubMed Central

    Chuang, Li-Yeh; Huang, Hsiu-Chen; Lin, Ming-Cheng; Yang, Cheng-Hong

    2011-01-01

    Background Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5′ end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. Methodology/Principal Findings We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. Conclusions/Significance Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome. PMID:21738602

  19. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    PubMed Central

    Shilpa, V.; Bhagat, Rahul; Premalata, C.S.; Pallavi, V.R.; Ramesh, G.; Krishnamoorthy, Lakshmi

    2014-01-01

    Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O6-position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression. PMID:25579142

  20. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites

    PubMed Central

    Grandi, Fiorella C.; Rosser, James M.; Newkirk, Simon J.; Yin, Jun; Jiang, Xiaoling; Xing, Zhuo; Whitmore, Leanne; Bashir, Sanum; Ivics, Zoltán; Izsvák, Zsuzsanna; Ye, Ping; Yu, Y. Eugene; An, Wenfeng

    2015-01-01

    Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as “sloping shores.” Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated. PMID:25995269

  1. Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells from Adipose Tissue

    PubMed Central

    Noer, Agate; Sørensen, Anita L.; Boquest, Andrew C.

    2006-01-01

    Mesenchymal stem cells from adipose tissue can differentiate into mesodermal lineages. Differentiation potential, however, varies between clones of adipose stem cells (ASCs), raising the hypothesis that epigenetic differences account for this variability. We report here a bisulfite sequencing analysis of CpG methylation of adipogenic (leptin [LEP], peroxisome proliferator-activated receptor gamma 2 [PPARG2], fatty acid-binding protein 4 [FABP4], and lipoprotein lipase [LPL]) promoters and of nonadipogenic (myogenin [MYOG], CD31, and GAPDH) loci in freshly isolated human ASCs and in cultured ASCs, in relation to gene expression and differentiation potential. Uncultured ASCs display hypomethylated adipogenic promoters, in contrast to myogenic and endothelial loci, which are methylated. Adipogenic promoters exhibit mosaic CpG methylation, on the basis of heterogeneous methylation between cells and of variation in the extent of methylation of a given CpG between donors, and both between and within clonal cell lines. DNA methylation reflects neither transcriptional status nor potential for gene expression upon differentiation. ASC culture preserves hypomethylation of adipogenic promoters; however, between- and within-clone mosaic methylation is detected. Adipogenic differentiation also maintains the overall CpG hypomethylation of LEP, PPARG2, FABP4, and LPL despite demethylation of specific CpGs and transcriptional induction. Furthermore, enhanced methylation at adipogenic loci in primary differentiated cells unrelated to adipogenesis argues for ASC specificity of the hypomethylated state of these loci. Therefore, mosaic hypomethylation of adipogenic promoters may constitute a molecular signature of ASCs, and DNA methylation does not seem to be a determinant of differentiation potential of these cells. PMID:16760426

  2. Increased DNA methylation in the suicide brain.

    PubMed

    Haghighi, Fatemeh; Xin, Yurong; Chanrion, Benjamin; O'Donnell, Anne H; Ge, Yongchao; Dwork, Andrew J; Arango, Victoria; Mann, J John

    2014-09-01

    Clinical studies find that childhood adversity and stressful life events in adulthood increase the risk for major depression and for suicide. The predispositions to either major depression or suicide are thought to depend on genetic risk factors or epigenetic effects. We investigated DNA methylation signatures postmortem in brains of suicides with diagnosis of major depressive disorder. DNA methylation levels were determined at single C-phosphate-G (CpG) resolution sites within ventral prefrontal cortex of 53 suicides and nonpsychiatric controls, aged 16 to 89 years. We found that DNA methylation increases throughout the lifespan. Suicides showed an 8-fold greater number of methylated CpG sites relative to controls (P < 2.2 x 10(-16)), with greater DNA methylation changes over and above the increased methylation observed in normal aging. This increased DNA methylation may be a significant contributor to the neuropathology and psychopathology underlying the risk of suicide in depression. PMID:25364291

  3. Link between Epigenomic Alterations and Genome-Wide Aberrant Transcriptional Response to Allergen in Dendritic Cells Conveying Maternal Asthma Risk

    PubMed Central

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V.

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes. PMID:23950928

  4. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence from 40 studies.

    PubMed

    Zhang, Li; Long, Xinghua

    2015-01-01

    Breast cancer susceptibility gene 1 (BRCA1) located at chromosome 17q12-21 is a classic tumor suppressor gene, and has been considered as a significant role in hereditary breast cancers. Moreover, numerous studies demonstrated the methylation status of CpG islands in the promoter regions of BRCA1 gene was aberrant in patients with sporadic breast tumors compared with healthy females or patients with benign diseases. However, these conclusions were not always consistent. Hence, a meta-analysis was performed to get a more precise estimate for these associations. Crude odds ratio with 95% confidence interval were used to assess the association of BRCA1 promoter methylation and the risk or clinicopathologic characteristics of breast cancers under fixed or random effect model. A total of 40 studies were eligible for this present study. We observed the frequency of BRCA1 promoter methylation was statistically significant higher in breast cancers than non-cancer controls. Furthermore, BRCA1 methylation was statistically associated with lymph node metastasis, histological grade 3, ER(-), PR(-), triple-negative phenotype, and decreased or lack levels of BRCA1 protein expression. In conclusion, this study indicated that BRCA1 promoter methylation appeared to be a useful predictive or prognostic biomarker for breast cancers in clinical assessment. PMID:26643130

  5. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence from 40 studies

    PubMed Central

    Zhang, Li; Long, Xinghua

    2015-01-01

    Breast cancer susceptibility gene 1 (BRCA1) located at chromosome 17q12-21 is a classic tumor suppressor gene, and has been considered as a significant role in hereditary breast cancers. Moreover, numerous studies demonstrated the methylation status of CpG islands in the promoter regions of BRCA1 gene was aberrant in patients with sporadic breast tumors compared with healthy females or patients with benign diseases. However, these conclusions were not always consistent. Hence, a meta-analysis was performed to get a more precise estimate for these associations. Crude odds ratio with 95% confidence interval were used to assess the association of BRCA1 promoter methylation and the risk or clinicopathologic characteristics of breast cancers under fixed or random effect model. A total of 40 studies were eligible for this present study. We observed the frequency of BRCA1 promoter methylation was statistically significant higher in breast cancers than non-cancer controls. Furthermore, BRCA1 methylation was statistically associated with lymph node metastasis, histological grade 3, ER(-), PR(-), triple-negative phenotype, and decreased or lack levels of BRCA1 protein expression. In conclusion, this study indicated that BRCA1 promoter methylation appeared to be a useful predictive or prognostic biomarker for breast cancers in clinical assessment. PMID:26643130

  6. Methylation-mediated downregulation of long noncoding RNA LOC100130476 in gastric cardia adenocarcinoma.

    PubMed

    Guo, Wei; Dong, Zhiming; Shi, Yabin; Liu, Shengnan; Liang, Jia; Guo, Yanli; Guo, Xin; Shen, Supeng; Wang, Guiying

    2016-06-01

    Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play important roles in several biological processes and dysregulated lncRNAs are involved in different kinds of cancer and are associated with carcinogenesis, metastasis, and prognosis of cancer. The role of a new lncRNA LOC100130476 in gastric cardia adenocarcinoma (GCA) has remained unknown. The present study investigated the role and methylation status of LOC100130476 in the pathogenesis of GCA, and further evaluated the potential prognostic role of LOC100130476 in GCA. Significant downregulation of LOC100130476 was detected in SGC-7901 and BGC-823 cell lines and primary GCA tissues. Methylation frequency of LOC100130476 was gradually increased from exon 1 to exon 2 both in tumor tissues and corresponding normal tissues; however, methylation status of region 1 closing to the transcription start site was more tumor-specific among the three regions examined. The findings of the association between LOC100130476 expression, methylation and TNM stage, pathological differentiation, and GCA patients' survival further identified the role of LOC100130476 as a tumor suppressor gene. Furthermore, the hypermethylation of LOC100130476 was also detected in peripheral white blood cells of GCA cases. Thus, LOC100130476 may be act as a tumor suppressor gene in GCA carcinogenesis and aberrant methylation at the CpG sites near the transcription start site within exon 1 may be critical for gene silencing. In addition, aberrant methylation of LOC100130476 in peripheral white blood cells and GCA tissues may be used as a potential valuable biomarker in GCA diagnosis and prognosis. PMID:27189370

  7. Clinical Potential of DNA Methylation in Gastric Cancer: A Meta-Analysis

    PubMed Central

    Sapari, Nur Sabrina; Loh, Marie; Vaithilingam, Aparna; Soong, Richie

    2012-01-01

    Background Accumulating evidence indicates aberrant DNA methylation is involved in gastric tumourigenesis, suggesting it may be a useful clinical biomarker for the disease. The aim of this study was to consolidate and summarize published data on the potential of methylation in gastric cancer (GC) risk prediction, prognostication and prediction of treatment response. Methods Relevant studies were identified from PubMed using a systematic search approach. Results were summarized by meta-analysis. Mantel-Haenszel odds ratios were computed for each methylation event assuming the random-effects model. Results A review of 589 retrieved publications identified 415 relevant articles, including 143 case-control studies on gene methylation of 142 individual genes in GC clinical samples. A total of 77 genes were significantly differentially methylated between tumour and normal gastric tissue from GC subjects, of which data on 62 was derived from single studies. Methylation of 15, 4 and 7 genes in normal gastric tissue, plasma and serum respectively was significantly different in frequency between GC and non-cancer subjects. A prognostic significance was reported for 18 genes and predictive significance was reported for p16 methylation, although many inconsistent findings were also observed. No bias due to assay, use of fixed tissue or CpG sites analysed was detected, however a slight bias towards publication of positive findings was observed. Conclusions DNA methylation is a promising biomarker for GC risk prediction and prognostication. Further focused validation of candidate methylation markers in independent cohorts is required to develop its clinical potential. PMID:22558417

  8. ASSESSING THE EFFECTS OF HIGH METHIONINE INTAKE ON DNA METHYLATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylation of DNA occurs at cytosines within CpG (cytosine-guanine) dinucleotides and is one of several epigenetic mechanisms that serve to establish and maintain tissue-specific patterns of gene expression. The methyl groups transferred in mammalian DNA methylation reactions are ultimately derived...

  9. CpG DNA as mucosal adjuvant.

    PubMed

    McCluskie, M J; Davis, H L

    1999-09-01

    We have previously found synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs to be a potent adjuvant to protein administered by intramuscular injection or intranasal inhalation to BALB/c mice. Herein we have further evaluated the potential of CpG ODN as a mucosal adjuvant to purified hepatitis B surface antigen (HBsAg) when administered alone or with cholera toxin (CT). CpG ODN and CT both augmented systemic (humoral and cellular) and mucosal immune responses against HBsAg, and these could be further enhanced with higher doses of adjuvant or boosting. Overall, antibody isotypes with CT alone were predominantly IgG1 (Th2-like) whereas they were predominantly IgG2a (Th1-like) with CpG ODN alone or in combination with CT. Results from this study indicate that stimulatory CpG ODN are promising new adjuvants for mucosal vaccination strategies, whether used alone or in combination with other mucosal adjuvants. PMID:10506647

  10. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells.

    PubMed

    Xu, Min; Bian, Shihui; Li, Jie; He, Junbo; Chen, Hui; Ge, Lu; Jiao, Zhijun; Zhang, Youli; Peng, Wanxin; Du, Fengyi; Mo, Yinyuan; Gong, Aihua

    2016-03-22

    LIN28A aberrant expression contributes to the development of human malignancies. However, the LIN28A expression profile remains to be clarified. Herein, we report that LIN28A expression is directly associated with the methylation status of its two CpG island sites in pancreatic cancer cells. First, Bisulfite sequencing reveals that PANC1 cells possess the higher methylation rate at LIN28A CpG islands compared with SW1990 and PaTu8988 cells. Subsequently, LIN28A expression is increased at both mRNA and protein levels in pancreatic cancer cells treated with 5-Aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor. Further Chromatin immunoprecipitation (ChIP) assays indicate that methyl-CpG-binding protein 2 (MeCP2) binds preferentially to the two hypermethylated CpG islands sites at LIN28A promoter compare to MBD3. Expectedly, MeCP2 knockdown transcriptionally activates LIN28A expression in above cells, rather than MBD3 knockdown. Moreover, LIN28A overexpression remarkably improves OCT4, NANOG and SOX2 expression, and the ability of sphere and colony formation, and enhances the capacities of invasion in PaTu8988 and SW1990 cells, whereas LIN28A knockdown significantly inhibits the above malignant behaviors in PANC1 cells. These findings suggest that LIN28A is epigenetically regulated via MeCP2 binding to methylated-CpG islands, and may play a crucial role in pancreatic cancer progression. PMID:26910839

  11. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells

    PubMed Central

    He, Junbo; Chen, Hui; Ge, Lu; Jiao, Zhijun; Zhang, Youli; Peng, Wanxin; Du, Fengyi; Mo, Yinyuan; Gong, Aihua

    2016-01-01

    LIN28A aberrant expression contributes to the development of human malignancies. However, the LIN28A expression profile remains to be clarified. Herein, we report that LIN28A expression is directly associated with the methylation status of its two CpG island sites in pancreatic cancer cells. First, Bisulfite sequencing reveals that PANC1 cells possess the higher methylation rate at LIN28A CpG islands compared with SW1990 and PaTu8988 cells. Subsequently, LIN28A expression is increased at both mRNA and protein levels in pancreatic cancer cells treated with 5-Aza-2′-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor. Further Chromatin immunoprecipitation (ChIP) assays indicate that methyl-CpG-binding protein 2 (MeCP2) binds preferentially to the two hypermethylated CpG islands sites at LIN28A promoter compare to MBD3. Expectedly, MeCP2 knockdown transcriptionally activates LIN28A expression in above cells, rather than MBD3 knockdown. Moreover, LIN28A overexpression remarkably improves OCT4, NANOG and SOX2 expression, and the ability of sphere and colony formation, and enhances the capacities of invasion in PaTu8988 and SW1990 cells, whereas LIN28A knockdown significantly inhibits the above malignant behaviors in PANC1 cells. These findings suggest that LIN28A is epigenetically regulated via MeCP2 binding to methylated-CpG islands, and may play a crucial role in pancreatic cancer progression. PMID:26910839

  12. Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion.

    PubMed

    Ilvesaro, Joanna M; Merrell, Melinda A; Li, Li; Wakchoure, Savita; Graves, David; Brooks, Sonja; Rahko, Eeva; Jukkola-Vuorinen, Arja; Vuopala, Katri S; Harris, Kevin W; Selander, Katri S

    2008-10-01

    Toll-like receptor 9 (TLR9) belongs to the innate immune system and recognizes microbial and vertebrate DNA. We showed previously that treatment with the TLR9-agonistic ODN M362 (a CpG sequence containing oligonucleotide) induces matrix metalloproteinase-13-mediated invasion in TLR9-expressing human cancer cell lines. Here, we further characterized the role of the TLR9 pathway in this process. We show that CpG oligonucleotides induce invasion in macrophages from wild-type C57/B6 and MyD88 knockout mice and in human MDA-MB-231 breast cancer cells lacking MyD88 expression. This effect was significantly inhibited in macrophages from TLR9 knockout mice and in human MDA-MB-231 breast cancer cells stably expressing TLR9 small interfering RNA or dominant-negative tumor necrosis factor receptor-associated factor 6 (TRAF6). Sequence modifications to the CpG oligonucleotides that targeted the stem loop and other secondary structures were shown to influence the invasion-inducing effect in MDA-MB-231 cells. In contrast, methylation of the cytosine residues of the parent CpG oligonucleotide did not affect the TLR9-mediated invasion compared with the unmethylated parent CpG oligonucleotide. Finally, expression of TLR9 was studied in clinical breast cancer samples and normal breast epithelium with immunohistochemistry. TLR9 staining localized in epithelial cells in both cancer and normal samples. The mean TLR9 staining intensity was significantly increased in the breast cancer cells compared with normal breast epithelial cells. In conclusion, our results suggest that TLR9 expression is increased in breast cancer and CpG oligonucleotide-induced cellular invasion is mediated via TLR9 and TRAF6, independent of MyD88. Further, our findings suggest that the structure and/or stability of DNA may influence the induction of TLR9-mediated invasion in breast cancer. PMID:18922969

  13. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns

    PubMed Central

    Edwards, John R.; O'Donnell, Anne H.; Rollins, Robert A.; Peckham, Heather E.; Lee, Clarence; Milekic, Maria H.; Chanrion, Benjamin; Fu, Yutao; Su, Tao; Hibshoosh, Hanina; Gingrich, Jay A.; Haghighi, Fatemeh; Nutter, Robert; Bestor, Timothy H.

    2010-01-01

    Abnormalities of genomic methylation patterns are lethal or cause disease, but the cues that normally designate CpG dinucleotides for methylation are poorly understood. We have developed a new method of methylation profiling that has single-CpG resolution and can address the methylation status of repeated sequences. We have used this method to determine the methylation status of >275 million CpG sites in human and mouse DNA from breast and brain tissues. Methylation density at most sequences was found to increase linearly with CpG density and to fall sharply at very high CpG densities, but transposons remained densely methylated even at higher CpG densities. The presence of histone H2A.Z and histone H3 di- or trimethylated at lysine 4 correlated strongly with unmethylated DNA and occurred primarily at promoter regions. We conclude that methylation is the default state of most CpG dinucleotides in the mammalian genome and that a combination of local dinucleotide frequencies, the interaction of repeated sequences, and the presence or absence of histone variants or modifications shields a population of CpG sites (most of which are in and around promoters) from DNA methyltransferases that lack intrinsic sequence specificity. PMID:20488932

  14. DNA methylation analysis of secreted frizzled-related protein 2 gene for the early detection of colorectal cancer in fecal DNA

    PubMed Central

    Babaei, Hadi; Mohammadi, Mohsen; Salehi, Rasoul

    2016-01-01

    Background: The early detection of colorectal cancer (CRC) with high sensitivity screening is essential for the reduction of cancer-specific mortality. Abnormally methylated genes that are responsible for the pathogenesis of cancers can be used as biomarkers for the detection of CRC. The methylation status of the secreted frizzled-related protein 2 (SFRP2) gene was evaluated for their use as a marker in the noninvasive detection of CRC. Materials and Methods: Methylation-specific polymerase chain reaction was performed to analyze the promoter CpG methylation of SFRP2 in the fecal DNA of 25 patients with CRC and 25 individuals exhibiting normal colonoscopy results. Results: Promoter methylation levels of SFRP2 in CRC patients and in healthy controls were 60% and 8%, respectively. Methylation of the SFRP2 promoter in fecal DNA is associated with the presence of colorectal tumors. Conclusion: Hence, the detection of aberrantly methylated DNA in fecal samples may present a promising, noninvasive screening method for CRC.

  15. Conserved and Divergent Patterns of DNA Methylation in Higher Vertebrates

    PubMed Central

    Jiang, Ning; Wang, Lin; Chen, Jing; Wang, Luwen; Leach, Lindsey; Luo, Zewei

    2014-01-01

    DNA methylation in the genome plays a fundamental role in the regulation of gene expression and is widespread in the genome of eukaryotic species. For example, in higher vertebrates, there is a “global” methylation pattern involving complete methylation of CpG sites genome-wide, except in promoter regions that are typically enriched for CpG dinucleotides, or so called “CpG islands.” Here, we comprehensively examined and compared the distribution of CpG sites within ten model eukaryotic species and linked the observed patterns to the role of DNA methylation in controlling gene transcription. The analysis revealed two distinct but conserved methylation patterns for gene promoters in human and mouse genomes, involving genes with distinct distributions of promoter CpGs and gene expression patterns. Comparative analysis with four other higher vertebrates revealed that the primary regulatory role of the DNA methylation system is highly conserved in higher vertebrates. PMID:25355807

  16. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.

    PubMed

    Pulling, Leah C; Vuillemenot, Brian R; Hutt, Julie A; Devereux, Theodora R; Belinsky, Steven A

    2004-06-01

    Loss of expression of the death-associated protein (DAP)-kinase gene by aberrant promoter methylation may play an important role in cancer development and progression. The purpose of this investigation was to determine the commonality for inactivation of the DAP-kinase gene in adenocarcinomas induced in mice by chronic exposure to mainstream cigarette smoke, the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and vinyl carbamate, and the occupational carcinogen methylene chloride. The timing for inactivation was also determined in alveolar hyperplasias that arise in lung cancer induced in the A/J mouse by NNK. The DAP-kinase gene was not expressed in three of five NNK-induced lung tumor-derived cell lines or in a spontaneously arising lung tumor-derived cell line. Treatment with 5-aza-2'-deoxycytidine restored expression; dense methylation throughout the DAP-kinase CpG island detected by bisulfite sequencing supported methylation as the inactivating event in these cell lines. Methylation-specific PCR detected inactivation of the DAP-kinase gene in 43% of tumors associated with cigarette smoke, a frequency similar to those reported in human non-small cell lung cancer. In addition, DAP-kinase methylation was detected in 52%, 60%, and 50% of tumors associated with NNK, vinyl carbamate, and methylene chloride, respectively. Methylation was observed at similar prevalence in both NNK-induced hyperplasias and adenocarcinomas (46% versus 52%), suggesting that inactivation of this gene is one pathway for tumor development in the mouse lung. Bisulfite sequencing of both premalignant and malignant lesions revealed dense methylation, substantiating that this gene is functionally inactivated at the earliest histological stages of adenocarcinoma development. This study is the first to use a murine model of cigarette smoke-induced lung cancer and demonstrate commonality for inactivation by promoter hypermethylation of a gene implicated in the development

  17. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis.

    PubMed

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  18. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis

    PubMed Central

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  19. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the

  20. Intra-Monozygotic Twin Pair Discordance and Longitudinal Variation of Whole-Genome Scale DNA Methylation in Adults

    PubMed Central

    Zhang, Su-Hua; Chen, Jinzhong; Lu, Daru; Shen, Min; Li, Chengtao

    2015-01-01

    Monozygotic twins share identical genomic DNA and are indistinguishable using conventional genetic markers. Increasing evidence indicates that monozygotic twins are epigenetically distinct, suggesting that a comparison between DNA methylation patterns might be useful to approach this forensic problem. However, the extent of epigenetic discordance between healthy adult monozygotic twins and the stability of CpG loci within the same individual over a short time span at the whole-genome scale are not well understood. Here, we used Infinium HumanMethylation450 Beadchips to compare DNA methylation profiles using blood collected from 10 pairs of monozygotic twins and 8 individuals sampled at 0, 3, 6, and 9 months. Using an effective and unbiased method for calling differentially methylated (DM) CpG sites, we showed that 0.087%–1.530% of the CpG sites exhibit differential methylation in monozygotic twin pairs. We further demonstrated that, on whole-genome level, there has been no significant epigenetic drift within the same individuals for up to 9 months, including one monozygotic twin pair. However, we did identify a subset of CpG sites that vary in DNA methylation over the 9-month period. The magnitude of the intra-pair or longitudinal methylation discordance of the CpG sites inside the CpG islands is greater than those outside the CpG islands. The CpG sites located on shores appear to be more suitable for distinguishing between MZ twins. PMID:26248206

  1. Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs

    PubMed Central

    Zhou, Dan; Li, Zhenli; Yu, Dan; Wan, Ledong; Zhu, Yimin; Lai, Maode; Zhang, Dandan

    2015-01-01

    Some single nucleotide polymorphisms (SNPs) influence the existence of CpG sites, the basis of DNA modification such as methylation and hydroxymethylation. These polymorphisms can lead to gain or loss of CpG sites and were defined as CpG site related SNPs (cgSNPs) in this study. The cgSNPs change DNA sequence and might potentially affect DNA modification such as methylation. However, the functional consequence of cgSNPs is poorly understood. We observed that a considerable proportion (23.0%) of common variants were cgSNPs in human genome. Mutations involving loss of CpG sites were associated with reduced levels of methylation (~20.2%) using The Cancer Genome Atlas (TCGA) data. Using public databases (SCAN and seeQTL) of expression quantitative trait loci (eQTLs), we found that the cgSNPs were significantly enriched in eQTLs via logistic regression and simulation test. Furthermore, we observed that cgSNPs were more likely to be trait-associated loci especially cancers using a catalog of published genome-wide association studies (GWAS) recorded by National Human Genome Research Institute (NHGRI). Our results indicated that cgSNP might be meaningful as annotation either in SNP functional prediction or in screening for trait-associated SNPs. PMID:26503467

  2. CHST11 gene expression and DNA methylation in breast cancer

    PubMed Central

    HERMAN, DAMIR; LEAKEY, TATIANA I.; BEHRENS, ALICE; YAO-BORENGASSER, AIWEI; COONEY, CRAIG A.; JOUSHEGHANY, FARIBA; PHANAVANH, BOUNLEUT; SIEGEL, ERIC R.; SAFAR, A. MAZIN; KOROURIAN, SOHEILA; KIEBER-EMMONS, THOMAS; MONZAVI-KARBASSI, BEHJATOLAH

    2015-01-01

    Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the

  3. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies

    PubMed Central

    Zhang, Qiuyi; Zhao, Yang; Zhang, Ruyang; Wei, Yongyue; Yi, Honggang; Shao, Fang; Chen, Feng

    2016-01-01

    An epigenome-wide association study (EWAS) is a large-scale study of human disease-associated epigenetic variation, specifically variation in DNA methylation. High throughput technologies enable simultaneous epigenetic profiling of DNA methylation at hundreds of thousands of CpGs across the genome. The clustering of correlated DNA methylation at CpGs is reportedly similar to that of linkage-disequilibrium (LD) correlation in genetic single nucleotide polymorphisms (SNP) variation. However, current analysis methods, such as the t-test and rank-sum test, may be underpowered to detect differentially methylated markers. We propose to test the association between the outcome (e.g case or control) and a set of CpG sites jointly. Here, we compared the performance of five CpG set analysis approaches: principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), sequence kernel association test (SKAT), and sliced inverse regression (SIR) with Hotelling’s T2 test and t-test using Bonferroni correction. The simulation results revealed that the first six methods can control the type I error at the significance level, while the t-test is conservative. SPCA and SKAT performed better than other approaches when the correlation among CpG sites was strong. For illustration, these methods were also applied to a real methylation dataset. PMID:27258058

  4. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies.

    PubMed

    Zhang, Qiuyi; Zhao, Yang; Zhang, Ruyang; Wei, Yongyue; Yi, Honggang; Shao, Fang; Chen, Feng

    2016-01-01

    An epigenome-wide association study (EWAS) is a large-scale study of human disease-associated epigenetic variation, specifically variation in DNA methylation. High throughput technologies enable simultaneous epigenetic profiling of DNA methylation at hundreds of thousands of CpGs across the genome. The clustering of correlated DNA methylation at CpGs is reportedly similar to that of linkage-disequilibrium (LD) correlation in genetic single nucleotide polymorphisms (SNP) variation. However, current analysis methods, such as the t-test and rank-sum test, may be underpowered to detect differentially methylated markers. We propose to test the association between the outcome (e.g case or control) and a set of CpG sites jointly. Here, we compared the performance of five CpG set analysis approaches: principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), sequence kernel association test (SKAT), and sliced inverse regression (SIR) with Hotelling's T2 test and t-test using Bonferroni correction. The simulation results revealed that the first six methods can control the type I error at the significance level, while the t-test is conservative. SPCA and SKAT performed better than other approaches when the correlation among CpG sites was strong. For illustration, these methods were also applied to a real methylation dataset. PMID:27258058

  5. CpG Sites Associated with Cigarette Smoking: Analysis of Epigenome-Wide Data from the Sister Study

    PubMed Central

    Harlid, Sophia; Xu, Zongli; Panduri, Vijayalakshmi; Sandler, Dale P.

    2014-01-01

    Background: Smoking increases the risk of many diseases, and it is also linked to blood DNA methylation changes that may be important in disease etiology. Objectives: We sought to identify novel CpG sites associated with cigarette smoking. Methods: We used two epigenome-wide data sets from the Sister Study to identify and confirm CpG sites associated with smoking. One included 908 women with methylation measurements at 27,578 CpG sites using the HumanMethylation27 BeadChip; the other included 200 women with methylation measurements for 473,844 CpG sites using the HumanMethylation450 BeadChip. Significant CpGs from the second data set that were not included in the 27K assay were validated by pyrosequencing in a subset of 476 samples from the first data set. Results: Our study successfully confirmed smoking associations for 9 previously established CpGs and identified 2 potentially novel CpGs: cg26764244 in GNG12 (p = 9.0 × 10–10) and cg22335340 in PTPN6 (p = 2.9 × 10–05). We also found strong evidence of an association between smoking status and cg02657160 in CPOX (p = 7.3 × 10–7), which has not been previously reported. All 12 CpGs were undermethylated in current smokers and showed an increasing percentage of methylation in former and never-smokers. Conclusions: We identified 2 potentially novel smoking related CpG sites, and provided independent replication of 10 previously reported CpGs sites related to smoking, one of which is situated in the gene CPOX. The corresponding enzyme is involved in heme biosynthesis, and smoking is known to increase heme production. Our study extends the evidence base for smoking-related changes in DNA methylation. Citation: Harlid S, Xu Z, Panduri V, Sandler DP, Taylor JA. 2014. CpG sites associated with cigarette smoking: analysis of epigenome-wide data from the Sister Study. Environ Health Perspect 122:673–678; http://dx.doi.org/10.1289/ehp.1307480 PMID:24704585

  6. Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for their Lineage and Stage Specificity

    PubMed Central

    Tsai, Albert G.; Lu, Haihui; Raghavan, Sathees C.; Muschen, Markus; Hsieh, Chih-Lin; Lieber, Michael R.

    2008-01-01

    SUMMARY We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using this database, we show that although the CpG dinucleotide constitutes only 1% of the human genome, it accounts for 40–70% of breakpoints at proB/pre-B stage translocation regions – specifically, those near the bcl-2, bcl-1, and E2A genes. We do not observe CpG hotspots in rearrangements involving lymphoid-myeloid progenitors, mature B cells, or T cells. The stage-specificity, lineage-specificity, CpG targeting, and unique breakpoint distributions at these cluster regions may be explained by a lesion-specific double-strand breakage mechanism involving the RAG complex acting at AID-deaminated methyl-CpGs. PMID:19070581

  7. Methylation of cell-free circulating DNA in the diagnosis of cancer

    PubMed Central

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. Unlike mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. Since DNA methylation is reflected within circDNA, detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA) for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker. PMID:25988180

  8. Methylation Landscape of Human Breast Cancer Cells in Response to Dietary Compound Resveratrol.

    PubMed

    Medina-Aguilar, Rubiceli; Pérez-Plasencia, Carlos; Marchat, Laurence A; Gariglio, Patricio; García Mena, Jaime; Rodríguez Cuevas, Sergio; Ruíz-García, Erika; Astudillo-de la Vega, Horacio; Hernández Juárez, Jennifer; Flores-Pérez, Ali; López-Camarillo, César

    2016-01-01

    Aberrant DNA methylation is a frequent epigenetic alteration in cancer cells that has emerged as a pivotal mechanism for tumorigenesis. Accordingly, novel therapies targeting the epigenome are being explored with the aim to restore normal DNA methylation patterns on oncogenes and tumor suppressor genes. A limited number of studies indicate that dietary compound resveratrol modulates DNA methylation of several cancer-related genes; however a complete view of changes in methylome by resveratrol has not been reported yet. In this study we performed a genome-wide survey of DNA methylation signatures in triple negative breast cancer cells exposed to resveratrol. Our data showed that resveratrol treatment for 24 h and 48 h decreased gene promoter hypermethylation and increased DNA hypomethylation. Of 2476 hypermethylated genes in control cells, 1,459 and 1,547 were differentially hypomethylated after 24 h and 48 h, respectively. Remarkably, resveratrol did not induce widespread non-specific DNA hyper- or hypomethylation as changes in methylation were found in only 12.5% of 27,728 CpG loci. Moreover, resveratrol restores the hypomethylated and hypermethylated status of key tumor suppressor genes and oncogenes, respectively. Importantly, the integrative analysis of methylome and transcriptome profiles in response to resveratrol showed that methylation alterations were concordant with changes in mRNA expression. Our findings reveal for the first time the impact of resveratrol on the methylome of breast cancer cells and identify novel potential targets for epigenetic therapy. We propose that resveratrol may be considered as a dietary epidrug as it may exert its anti-tumor activities by modifying the methylation status of cancer -related genes which deserves further in vivo characterization. PMID:27355345

  9. Methylation Landscape of Human Breast Cancer Cells in Response to Dietary Compound Resveratrol

    PubMed Central

    Medina-Aguilar, Rubiceli; Pérez-Plasencia, Carlos; Marchat, Laurence A.; Gariglio, Patricio; García Mena, Jaime; Rodríguez Cuevas, Sergio; Ruíz-García, Erika; Astudillo-de la Vega, Horacio; Hernández Juárez, Jennifer; Flores-Pérez, Ali; López-Camarillo, César

    2016-01-01

    Aberrant DNA methylation is a frequent epigenetic alteration in cancer cells that has emerged as a pivotal mechanism for tumorigenesis. Accordingly, novel therapies targeting the epigenome are being explored with the aim to restore normal DNA methylation patterns on oncogenes and tumor suppressor genes. A limited number of studies indicate that dietary compound resveratrol modulates DNA methylation of several cancer-related genes; however a complete view of changes in methylome by resveratrol has not been reported yet. In this study we performed a genome-wide survey of DNA methylation signatures in triple negative breast cancer cells exposed to resveratrol. Our data showed that resveratrol treatment for 24 h and 48 h decreased gene promoter hypermethylation and increased DNA hypomethylation. Of 2476 hypermethylated genes in control cells, 1,459 and 1,547 were differentially hypomethylated after 24 h and 48 h, respectively. Remarkably, resveratrol did not induce widespread non-specific DNA hyper- or hypomethylation as changes in methylation were found in only 12.5% of 27,728 CpG loci. Moreover, resveratrol restores the hypomethylated and hypermethylated status of key tumor suppressor genes and oncogenes, respectively. Importantly, the integrative analysis of methylome and transcriptome profiles in response to resveratrol showed that methylation alterations were concordant with changes in mRNA expression. Our findings reveal for the first time the impact of resveratrol on the methylome of breast cancer cells and identify novel potential targets for epigenetic therapy. We propose that resveratrol may be considered as a dietary epidrug as it may exert its anti-tumor activities by modifying the methylation status of cancer -related genes which deserves further in vivo characterization. PMID:27355345

  10. DNA Methylation and Colorectal Cancer

    PubMed Central

    Ashktorab, Hassan; Brim, Hassan

    2014-01-01

    Colorectal cancer (CRC) is one of the major cancers in the world and second death-causing cancer in the US. CRC development involves genetic and epigenetic alterations. Changes in DNA methylation status are believed to be involved at different stages of CRC. Promoter silencing via DNA methylation and hypomethylation of oncogenes alter genes’ expression, and can be used as a tool for the early detection of colonic lesions. DNA methylation use as diagnostic and prognostic marker has been described for many cancers including CRC. CpG Islands Methylator Phenotype (CIMP) is one of the underlying CRC mechanisms. This review aims to define methylation signatures in CRC. The analysis of DNA methylation profile in combination with the pathological diagnosis would be useful in predicting CRC tumors’ evolution and their prognostic behavior. PMID:25580099

  11. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.

    PubMed

    Kesäniemi, Jenni E; Heikkinen, Liisa; Knott, K Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  12. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans

    PubMed Central

    Kesäniemi, Jenni E.; Heikkinen, Liisa; Knott, K. Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  13. Methylation Alterations at Imprinted Genes Detected Among Long Term Shiftworkers

    PubMed Central

    Jacobs, Daniel I.; Hansen, Johnni; Fu, Alan; Stevens, Richard G.; Tjonneland, Anne; Vogel, Ulla B.; Zheng, Tongzhang; Zhu, Yong

    2016-01-01

    Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation. PMID:23193016

  14. MiR-185 Targets the DNA Methyltransferases 1 and Regulates Global DNA Methylation in human glioma

    PubMed Central

    2011-01-01

    Background Perturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples. Methods MeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR. Results A total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1. Conclusion These comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas. PMID:21962230

  15. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  16. Age-related methylation profiles of equine blood leukocytes in the RNASEL locus.

    PubMed

    Ząbek, T; Semik, E; Szmatoła, T; Oklejewicz, B; Fornal, A; Bugno-Poniewierska, M

    2016-08-01

    Methylation profiles across three CpG islands of the RNASEL gene were determined in blood leukocyte samples of Anglo-Arabian and Hucul horses. Bisulfite sequencing revealed hypomethylated state of the RNASEL promoter coinciding with methylated CpG island placed inside the gene. Several CpG sites were identified for which the methylation state was influenced by DNA polymorphism. Two of them showed monoallelic methylation. One of the CpG sites revealed functional polymorphism. A number of partially methylated CpG sites have been observed in the promoter area of RNASEL, which were used for the comparison of breed- and age-related effects. Clone bisulfite sequencing of blood leukocyte samples collected at different ages from particular individuals of AA and HC breeds and, also, BSPCR sequencing of 50 samples of juvenile and old AA and HC horses revealed increased methylation in particular CpG sites during aging. The age-related heterogeneity of white blood cells was hypothesized as being one of the potential causes of observed variability of methylation profiles in the RNASEL promoter. PMID:26553552

  17. Methylation-Associated Gene Silencing of RARB in Areca Carcinogens Induced Mouse Oral Squamous Cell Carcinoma

    PubMed Central

    Tsou, Yung-An; Fan, Shin-Ru; Tsai, Ming-Hsui; Chen, Hsiao-Ling; Chang, Nai-Wen; Cheng, Ju-Chien

    2014-01-01

    Regarding oral squamous cell carcinoma (OSCC) development, chewing areca is known to be a strong risk factor in many Asian cultures. Therefore, we established an OSCC induced mouse model by 4-nitroquinoline-1-oxide (4-NQO), or arecoline, or both treatments, respectively. These are the main two components of the areca nut that could increase the occurrence of OSCC. We examined the effects with the noncommercial MCGI (mouse CpG islands) microarray for genome-wide screening the DNA methylation aberrant in induced OSCC mice. The microarray results showed 34 hypermethylated genes in 4-NQO plus arecoline induced OSCC mice tongue tissues. The examinations also used methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing to realize the methylation pattern in collected mouse tongue tissues and human OSCC cell lines of different grades, respectively. These results showed that retinoic acid receptor β (RARB) was indicated in hypermethylation at the promoter region and the loss of expression during cancer development. According to the results of real-time PCR, it was shown that de novo DNA methyltransferases were involved in gene epigenetic alternations of OSCC. Collectively, our results showed that RARB hypermethylation was involved in the areca-associated oral carcinogenesis. PMID:25197641

  18. The role of DNA methylation in the development and progression of lung adenocarcinoma.

    PubMed

    Kerr, Keith M; Galler, Janice S; Hagen, Jeffrey A; Laird, Peter W; Laird-Offringa, Ite A

    2007-01-01

    Lung cancer, caused by smoking in approximately 87% of cases, is the leading cause of cancer death in the United States and Western Europe. Adenocarcinoma is now the most common type of lung cancer in men and women in the United States, and the histological subtype most frequently seen in never-smokers and former smokers. The increasing frequency of adenocarcinoma, which occurs more peripherally in the lung, is thought to be at least partially related to modifications in cigarette manufacturing that have led to a change in the depth of smoke inhalation. The rising incidence of lung adenocarcinoma and its lethal nature underline the importance of understanding the development and progression of this disease. Alterations in DNA methylation are recognized as key epigenetic changes in cancer, contributing to chromosomal instability through global hypomethylation, and aberrant gene expression through alterations in the methylation levels at promoter CpG islands. The identification of sequential changes in DNA methylation during progression and metastasis of lung adenocarcinoma, and the elucidation of their interplay with genetic changes, will broaden our molecular understanding of this disease, providing insights that may be applicable to the development of targeted drugs, as well as powerful markers for early detection and patient classification. PMID:17325423

  19. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC

    PubMed Central

    Ibragimova, Ilsiya; Maradeo, Marie E.; Dulaimi, Essel; Cairns, Paul

    2013-01-01

    Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC. PMID:23644518

  20. Enhancing vaccines with immune stimulatory CpG DNA.

    PubMed

    Krieg, A M; Davis, H L

    2001-02-01

    Certain vertebrate immune cells have evolved receptors that detect the presence of pathogen DNA based on its content of unmethylated CpG dinucleotides in particular base contexts. This 'CpG DNA' acts as a 'danger signal', triggering protective innate and acquired immune responses. The activity of CpG DNA can be mimicked with synthetic oligodeoxynucleotides, which when added to a vaccine greatly boost the resulting immune response. PMID:11249727

  1. CpG Oligodeoxynucleotides Enhance Host Defense during Murine Tuberculosis

    PubMed Central

    Juffermans, Nicole P.; Leemans, Jaklien C.; Florquin, Sandrine; Verbon, Annelies; Kolk, Arend H.; Speelman, Peter; van Deventer, Sander J. H.; van der Poll, Tom

    2002-01-01

    Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate immune cells to produce cytokines. CpG ODNs protect mice against infections with intracellular bacteria by the induction of a T helper 1 (Th1) response. To determine the effect of CpG ODNs in pulmonary tuberculosis, mice were treated with CpG ODNs or control ODNs at the time of intranasal infection. CpG ODNs reduced mycobacterial outgrowth for up to 5 weeks after Mycobacterium tuberculosis infection and were associated with a decrease in inflammation in lung tissue. CpG treatment was also associated with elevated levels of gamma interferon (IFN-γ) and decreased levels of interleukin 4 in the lungs and an increased capacity of splenocytes to secrete Th1-type cytokines. CpG ODNs given 2 weeks after infection were still able to reduce mycobacterial outgrowth and to enhance a Th1 response 5 weeks postinfection. Administration of CpG ODNs to IFN-γ-gene-deficient mice failed to reduce mycobacterial outgrowth. These data suggest that CpG ODNs improve host defense during pulmonary tuberculosis by an IFN-γ-dependent mechanism. PMID:11748176

  2. CpG DNA: A pathogenic factor in systemic lupus erythematosus?

    SciTech Connect

    Krieg, A.M.

    1995-11-01

    Systemic lupus erythematosus (SLE) is a multifactorial disease of unknown etiology. Characteristic features of SLE include (1) polyclonal B cell activation, (2) overexpression of the immune stimulatory cytokine interleukin-6 (IL-6), (3) defective tolerance to self antigens, and (4) production of anti-DNA antibodies (Ab). Bacterial infection has been suspected as a triggering factor for lupus. Bacterial DNA differs from vertebrate DNA in the frequency and methylation of CpG dinucleotides. These CpG motifs in bacterial DNA induce a variety of immune effects, including (1) polyclonal activation of murine and human B cells, (2) IL-6 secretion, and (3) resistance to apoptosis, thereby potentially allowing the survival of autoreactive cells. These results suggest that microbial DNA could therefore be a pathogenic factor in SLE. SLE patients have elevated levels of circulating plasma DNA which is reportedly enriched in hypomethylated CpGs. Genomic DNA is also hypomethylated in SLE. The purpose of this review is to summarize the immune effects of CpG motifs and to present the evidence for their possible involvement in the pathogenesis of SLE. 77 refs.

  3. The rates of G:C[yields]T:A and G:C[yields]C:G transversions at CpG dinucleotides in the human factor IX gene

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.; Sommer, S.S. )

    1994-05-01

    The authors have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in the sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P<0.1). The aggregate data suggest that the two types of CpG transversions (G:C[yields]T:A and G:C[yields]C:G) possess similar mutation rates (24.8 [times] 10[sup [minus]10] and 20.6 [times] 10[sup [minus]10], respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggest that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined. 28 refs., 2 tabs.

  4. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma.

    PubMed

    Ammerpohl, Ole; Pratschke, Johann; Schafmayer, Clemens; Haake, Andrea; Faber, Wladimir; von Kampen, Oliver; Brosch, Mario; Sipos, Bence; von Schönfels, Witigo; Balschun, Katharina; Röcken, Christoph; Arlt, Alexander; Schniewind, Bodo; Grauholm, Jonas; Kalthoff, Holger; Neuhaus, Peter; Stickel, Felix; Schreiber, Stefan; Becker, Thomas; Siebert, Reiner; Hampe, Jochen

    2012-03-15

    Abberrant DNA methylation is one of the hallmarks of cancerogenesis. Our study aims to delineate differential DNA methylation in cirrhosis and hepatic cancerogenesis. Patterns of methylation of 27,578 individual CpG loci in 12 hepatocellular carcinomas (HCCs), 15 cirrhotic controls and 12 normal liver samples were investigated using an array-based technology. A supervised principal component analysis (PCA) revealed 167 hypomethylated loci and 100 hypermethylated loci in cirrhosis and HCC as compared to normal controls. Thus, these loci show a "cirrhotic" methylation pattern that is maintained in HCC. In pairwise supervised PCAs between normal liver, cirrhosis and HCC, eight loci were significantly changed in all analyses differentiating the three groups (p < 0.0001). Of these, five loci showed highest methylation levels in HCC and lowest in control tissue (LOC55908, CELSR1, CRMP1, GNRH2, ALOX12 and ANGPTL7), whereas two loci showed the opposite direction of change (SPRR3 and TNFSF15). Genes hypermethylated between normal liver to cirrhosis, which maintain this methylation pattern during the development of HCC, are depleted for CpG islands, high CpG content promoters and polycomb repressive complex 2 (PRC2) targets in embryonic stem cells. In contrast, genes selectively hypermethylated in HCC as compared to nonmalignant samples showed an enrichment of CpG islands, high CpG content promoters and PRC2 target genes (p < 0.0001). Cirrhosis and HCC show distinct patterns of differential methylation with regards to promoter structure, PRC2 targets and CpG islands. PMID:21500188

  5. DNA Methylation Profiling Identifies Global Methylation Differences and Markers of Adrenocortical Tumors

    PubMed Central

    Rechache, Nesrin S.; Wang, Yonghong; Stevenson, Holly S.; Killian, J. Keith; Edelman, Daniel C.; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A.; Meltzer, Paul S.

    2012-01-01

    Context: It is not known whether there are any DNA methylation alterations in adrenocortical tumors. Objective: The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Methods: Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Results: Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Conclusions: Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors. PMID:22472567

  6. Structural basis for Klf4 recognition of methylated DNA.

    PubMed

    Liu, Yiwei; Olanrewaju, Yusuf Olatunde; Zheng, Yu; Hashimoto, Hideharu; Blumenthal, Robert M; Zhang, Xing; Cheng, Xiaodong

    2014-04-01

    Transcription factor Krüppel-like factor 4 (Klf4), one of the factors directing cellular reprogramming, recognizes the CpG dinucleotide (whether methylated or unmodified) within a specific G/C-rich sequence. The binding affinity of the mouse Klf4 DNA-binding domain for methylated DNA is only slightly stronger than that for an unmodified oligonucleotide. The structure of the C-terminal three Krüppel-like zinc fingers (ZnFs) of mouse Klf4, in complex with fully methylated DNA, was determined at 1.85 Å resolution. An arginine and a glutamate interact with the methyl group. By comparison with two other recently characterized structures of ZnF protein complexes with methylated DNA, we propose a common principle of recognition of methylated CpG by C2H2 ZnF proteins, which involves a spatially conserved Arg-Glu pair. PMID:24520114

  7. The Aberration Corrected SEM

    SciTech Connect

    Joy, David C.

    2005-09-09

    The performance of the conventional low-energy CD-SEM is limited by the aberrations inherent in the probe forming lens. Multi-pole correctors are now available which can reduce or eliminate these aberrations. An SEM equipped with such a corrector offers higher spatial resolution and more probe current from a given electron source, and other aspects of the optical performance are also improved, but the much higher numerical aperture associated with an aberration corrected lens results in a reduction in imaging depth of field.

  8. Differential Methylation of the Oxytocin Receptor Gene in Patients with Anorexia Nervosa: A Pilot Study

    PubMed Central

    Kim, Mi Jeong; Treasure, Janet

    2014-01-01

    Background and Aim Recent studies in patients with anorexia nervosa suggest that oxytocin may be involved in the pathophysiology of anorexia nervosa. We examined whether there was evidence of variation in methylation status of the oxytocin receptor (OXTR) gene in patients with anorexia nervosa that might account for these findings. Methods We analyzed the methylation status of the CpG sites in a region from the exon 1 to the MT2 regions of the OXTR gene in buccal cells from 15 patients and 36 healthy women using bisulfite sequencing. We further examined whether methylation status was associated with markers of illness severity or form. Results We identified six CpG sites with significant differences in average methylation levels between the patient and control groups. Among the six differentially methylated CpG sites, five showed higher than average methylation levels in patients than those in the control group (64.9–88.8% vs. 6.6–45.0%). The methylation levels of these five CpG sites were negatively associated with body mass index (BMI). BMI, eating disorders psychopathology, and anxiety were identified in a regression analysis as factors affecting the methylation levels of these CpG sites with more variation accounted for by BMI. Conclusions Epigenetic misregulation of the OXTR gene may be implicated in anorexia nervosa, which may either be a mechanism linking environmental adversity to risk or may be a secondary consequence of the illness. PMID:24523928

  9. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  10. CpG DNA as a vaccine adjuvant.

    PubMed

    Bode, Christian; Zhao, Gan; Steinhagen, Folkert; Kinjo, Takeshi; Klinman, Dennis M

    2011-04-01

    Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines. PMID:21506647

  11. Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis

    PubMed Central

    Fu, Li-hong; Ma, Chun-ling; Cong, Bin; Li, Shu-jin; Chen, Hai-ying; Zhang, Jing-ge

    2011-01-01

    Aim: The promoter of human interleukin-10 (IL10), a cytokine crucial for suppressing inflammation and regulating immune responses, contains an interspecies-conserved sequence with CpG motifs. The aim of this study was to investigate whether methylation of CpG motifs could regulate the expression of IL10 in rheumatoid arthritis (RA). Methods: Bioinformatic analysis was conducted to identify the interspecies-conserved sequence in human, macaque and mouse IL10 genes. Peripheral blood mononuclear cells (PBMCs) from 20 RA patients and 20 health controls were collected. The PBMCs from 6 patients were cultured in the presence or absence of 5-azacytidine (5 μmol/L). The mRNA and protein levels of IL10 were examined using RT-PCR and ELISA, respectively. The methylation of CpGs in the IL10 promoter was determined by pyrosequencing. Chromatin immunoprecipitation (ChIP) assays were performed to detect the cyclic AMP response element-binding protein (CREB)-DNA interactions. Results: One interspecies-conserved sequence was found within the IL10 promoter. The upstream CpGs at −408, −387, −385, and −355 bp were hypermethylated in PBMCs from both the RA patients and healthy controls. In contrast, the proximal CpG at −145 was hypomethylated to much more extent in the RA patients than in the healthy controls (P=0.016), which was correlated with higher IL10 mRNA and serum levels. In the 5-azacytidine-treated PBMCs, the CpG motifs were demethylated, and the expression levels of IL10 mRNA and protein was significantly increased. CHIP assays revealed increased phospho-CREB binding to the IL10 promoter. Conclusion: The methylation of the proximal CpGs in the IL10 promoter may regulate gene transcription in RA. PMID:21986577

  12. CpG oligodeoxynucleotides as immunotherapy in cancer

    PubMed Central

    Jahrsdörfer, Bernd; Weiner, George J.

    2008-01-01

    Preclinical and early clinical trials indicate synthetic oligodeoxynucleotides containing unmethylated CG dinucleotides (CpG ODN) have potent immunostimulatory effects and can enhance the anti-cancer activity of a variety of cancer treatments. Synergy between CpG ODN and monoclonal antibodies has been noted in various preclinical models. Early clinical trials indicate CpG ODN and monoclonal antibodies can be administered safely together. Preclinical models indicate CpG ODN can enhance the anti-tumor activity of both chemotherapy and radiation therapy. Thus, one possible approach to the use of CpG ODN was to use it in combination with cytotoxic chemotherapy with the goal of enhancing presentation of tumor antigen from dying cancer cells. Promising results in a randomized phase II trial in patients with non-small cell lung cancer led to initiation of two large randomized phase III trials comparing CpG ODN plus chemotherapy to chemotherapy alone. Unfortunately, interim analysis of these trials indicated CpG ODN was unlikely to enhance efficacy of chemotherapy, and they were stopped. CpG ODN also holds promise as a component of cancer vaccines including those composed of protein antigen, peptides, whole tumor cells, and antigen-pulsed dendritic cells. Finally, CpG ODN has been combined with a variety of cytokines to enhance NK activation, promote development of an active anti-tumor immune response or induce apoptosis of malignant cells that express the TLR9 receptor. Overall, both preclinical and early clinical trials suggest CpG ODN may be a valuable component of a variety of approaches to cancer therapy. However, clinical development of this recently discovered, novel class of immunostimulatory agents is just beginning, and we still have much to learn about the optimal approach to their use, and their potential. PMID:19255607

  13. Structure of DNMT1-DNA Complex Reveals a Role for Autoinhibition in Maintenance DNA Methylation

    SciTech Connect

    J Song; O Rechkoblit; T Bestor; D Patel

    2011-12-31

    Maintenance of genomic methylation patterns is mediated primarily by DNA methyltransferase-1 (DNMT1). We have solved structures of mouse and human DNMT1 composed of CXXC, tandem bromo-adjacent homology (BAH1/2), and methyltransferase domains bound to DNA-containing unmethylated CpG sites. The CXXC specifically binds to unmethylated CpG dinucleotide and positions the CXXC-BAH1 linker between the DNA and the active site of DNMT1, preventing de novo methylation. In addition, a loop projecting from BAH2 interacts with the target recognition domain (TRD) of the methyltransferase, stabilizing the TRD in a retracted position and preventing it from inserting into the DNA major groove. Our studies identify an autoinhibitory mechanism, in which unmethylated CpG dinucleotides are occluded from the active site to ensure that only hemimethylated CpG dinucleotides undergo methylation.

  14. Large-scale structure of genomic methylation patterns.

    PubMed

    Rollins, Robert A; Haghighi, Fatemeh; Edwards, John R; Das, Rajdeep; Zhang, Michael Q; Ju, Jingyue; Bestor, Timothy H

    2006-02-01

    The mammalian genome depends on patterns of methylated cytosines for normal function, but the relationship between genomic methylation patterns and the underlying sequence is unclear. We have characterized the methylation landscape of the human genome by global analysis of patterns of CpG depletion and by direct sequencing of 3073 unmethylated domains and 2565 methylated domains from human brain DNA. The genome was found to consist of short (<4 kb) unmethylated domains embedded in a matrix of long methylated domains. Unmethylated domains were enriched in promoters, CpG islands, and first exons, while methylated domains comprised interspersed and tandem-repeated sequences, exons other than first exons, and non-annotated single-copy sequences that are depleted in the CpG dinucleotide. The enrichment of regulatory sequences in the relatively small unmethylated compartment suggests that cytosine methylation constrains the effective size of the genome through the selective exposure of regulatory sequences. This buffers regulatory networks against changes in total genome size and provides an explanation for the C value paradox, which concerns the wide variations in genome size that scale independently of gene number. This suggestion is compatible with the finding that cytosine methylation is universal among large-genome eukaryotes, while many eukaryotes with genome sizes <5 x 10(8) bp do not methylate their DNA. PMID:16365381

  15. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.

    PubMed

    Ghosh, Manosij; Bhadra, Sreetama; Adegoke, Aremu; Bandyopadhyay, Maumita; Mukherjee, Anita

    2015-04-01

    Advances in nanotechnology have led to the large-scale production of nanoparticles, which, in turn, increases the chances of environmental exposure. While humans (consumers/workers) are primarily at risk of being exposed to the adverse effect of nanoparticles, the effect on plants and other components of the environment cannot be ignored. The present work investigates the cytotoxic, genotoxic, and epigenetic (DNA methylation) effect of MWCNT on the plant system- Allium cepa. MWCNT uptake in root cells significantly altered cellular morphology. Membrane integrity and mitochondrial function were also compromised. The nanotubes induced significant DNA damage, micronucleus formation and chromosome aberration. DNA laddering assay revealed the formation of internucleosomal fragments, which is indicative of apoptotic cell death. This finding was confirmed by an accumulation of cells in the sub-G0 phase of the cell cycle. An increase in CpG methylation was observed using the isoschizomers MspI/HpaII. HPLC analysis of DNA samples revealed a significant increase in the levels of 5-methyl-deoxy-cytidine (5mdC). These results confirm the cyto-genotoxic effect of MWCNT in the plant system and simultaneously highlight the importance of this epigenetic study in nanoparticle toxicity. PMID:25829105

  16. Orphan CpG islands identify numerous conserved promoters in the mammalian genome.

    PubMed

    Illingworth, Robert S; Gruenewald-Schneider, Ulrike; Webb, Shaun; Kerr, Alastair R W; James, Keith D; Turner, Daniel J; Smith, Colin; Harrison, David J; Andrews, Robert; Bird, Adrian P

    2010-09-01

    CpG islands (CGIs) are vertebrate genomic landmarks that encompass the promoters of most genes and often lack DNA methylation. Querying their apparent importance, the number of CGIs is reported to vary widely in different species and many do not co-localise with annotated promoters. We set out to quantify the number of CGIs in mouse and human genomes using CXXC Affinity Purification plus deep sequencing (CAP-seq). We also asked whether CGIs not associated with annotated transcripts share properties with those at known promoters. We found that, contrary to previous estimates, CGI abundance in humans and mice is very similar and many are at conserved locations relative to genes. In each species CpG density correlates positively with the degree of H3K4 trimethylation, supporting the hypothesis that these two properties are mechanistically interdependent. Approximately half of mammalian CGIs (>10,000) are "orphans" that are not associated with annotated promoters. Many orphan CGIs show evidence of transcriptional initiation and dynamic expression during development. Unlike CGIs at known promoters, orphan CGIs are frequently subject to DNA methylation during development, and this is accompanied by loss of their active promoter features. In colorectal tumors, however, orphan CGIs are not preferentially methylated, suggesting that cancer does not recapitulate a developmental program. Human and mouse genomes have similar numbers of CGIs, over half of which are remote from known promoters. Orphan CGIs nevertheless have the characteristics of functional promoters, though they are much more likely than promoter CGIs to become methylated during development and hence lose these properties. The data indicate that orphan CGIs correspond to previously undetected promoters whose transcriptional activity may play a functional role during development. PMID:20885785

  17. A DNA methylation fingerprint of 1628 human samples

    PubMed Central

    Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409

  18. DNA methylation contributes to natural human variation

    PubMed Central

    Heyn, Holger; Moran, Sebastian; Hernando-Herraez, Irene; Sayols, Sergi; Gomez, Antonio; Sandoval, Juan; Monk, Dave; Hata, Kenichiro; Marques-Bonet, Tomas; Wang, Liewei; Esteller, Manel

    2013-01-01

    DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation. PMID:23908385

  19. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas.

    PubMed

    Oster, Bodil; Thorsen, Kasper; Lamy, Philippe; Wojdacz, Tomasz K; Hansen, Lise Lotte; Birkenkamp-Demtröder, Karin; Sørensen, Karina D; Laurberg, Søren; Orntoft, Torben F; Andersen, Claus L

    2011-12-15

    In our study, whole-genome methylation arrays were applied to identify novel genes with tumor specific DNA methylation of promoter CpG islands in pre-malignant and malignant colorectal lesions. Using a combination of Illumina HumanMethylation27 beadchips, Methylation-Sensitive High Resolution Melting (MS-HRM) analysis, and Exon arrays (Affymetrix) the DNA methylation pattern of ∼14,000 genes and their transcript levels were investigated in six normal mucosas, six adenomas and 30 MSI and MSS carcinomas. Sixty eight genes with tumor-specific hypermethylation were identified (p < 0.005). Identified hypermethylated sites were validated in an independent sample set of eight normal mucosas, 12 adenomas, 40 MSS and nine MSI cancer samples. The methylation patterns of 15 selected genes, hypermethylated in adenomas and carcinomas (FLI1, ST6GALNAC5, TWIST1, ADHFE1, JAM2, IRF4, CNRIP1, NRG1 and EYA4), in carcinomas only (ABHD9, AOX1 and RERG), or in MSI but not MSS carcinomas (RAMP2, DSC3 and MLH1) were validated using MS-HRM. Four of these genes (MLH1, AOX1, EYA4 and TWIST1) had previously been reported to be hypermethylated in CRC. Eleven genes, not previously known to be affected by CRC specific hypermethylation, were identified and validated. Inverse correlation to gene expression was observed for six of the 15 genes with Spearman correlation coefficients ranging from -0.39 to -0.60. For six of these genes the altered methylation patterns had a profound transcriptional association, indicating that methylation of these genes may play a direct regulatory role. The hypermethylation changes often occurred already in adenomas, indicating that they may be used as biomarkers for early detection of CRC. PMID:21400501

  20. DNA methylation Landscape of body size variation in sheep

    PubMed Central

    Cao, Jiaxue; Wei, Caihong; Liu, Dongming; Wang, Huihua; Wu, Mingming; Xie, Zhiyuan; Capellini, Terence D.; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Lu, Jian; Liu, Ruizao; Zhang, Shifang; Du, Yongfei; Zhang, Hongping; Du, Lixin

    2015-01-01

    Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation – sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the “development process” (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective. PMID:26472088

  1. Wp specific methylation of highly proliferated LCLs

    SciTech Connect

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman . E-mail: suman@cha.ac.kr

    2007-06-29

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

  2. 75 FR 13555 - Compliance Policy Guide Sec. 540.375 Canned Salmon - Adulteration Involving Decomposition (CPG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Register on March 28, 2006 (71 FR 15422 at 15453), FDA included the Compliance Policy Guides Manual, which.... 540.375 Canned Salmon -- Adulteration Involving Decomposition (CPG 7108.10); Withdrawal of Guidance... -- Adulteration Involving Decomposition (CPG 7108.10) (CPG Sec. 540.375). CPG Sec. 540.375 is included in...

  3. Murine diet/tissue and human brain tumorigenesis alter Mthfr/MTHFR 5'-end methylation.

    PubMed

    Lévesque, Nancy; Leclerc, Daniel; Gayden, Tenzin; Lazaris, Anthoula; De Jay, Nicolas; Petrillo, Stephanie; Metrakos, Peter; Jabado, Nada; Rozen, Rima

    2016-04-01

    Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5' to the upstream translational start site or in another region 3' to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies. PMID:26951114

  4. A methylation-dependent DNA-binding activity recognising the methylated promoter region of the mouse Xist gene.

    PubMed

    Huntriss, J; Lorenzi, R; Purewal, A; Monk, M

    1997-06-27

    Differential methylation of CpG sites in the promoter region of the mouse Xist gene is correlated with Xist expression and X-chromosome inactivation in the female. Using oligonucleotides encompassing the differentially methylated sites as probes in band-shift assays, we have identified a nuclear protein which binds to a specific region of the promoter (between base pairs -45 and -30 upstream from the transcription start site) only when CpG sites within the CG rich region (GCGCCGCGG, -44 to -36) are methylated. Competition experiments with methylated or unmethylated heterologous oligonucleotides demonstrate that the activity is sequence-specific as well as methylation-dependent. Analysis by Southwestern blot identifies a protein of approximately 100 kDa molecular weight and confirms strong binding to the methylated Xist promoter oligonucleotide. Using a 233bp Xist-promoter luciferase construct in which the cytosines in the three CpG sites in the -44 to -36 region are mutated to thymine, we have established that this region is required for transcription from the mouse Xist promoter. Therefore, we suggest that the binding of the 100kDa protein to the methylated sequence leads to repression of transcription from the methylated Xist allele, thus suggesting a role in the regulation of both imprinted and random Xist transcription and X-chromosome inactivation. PMID:9207230

  5. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines

    PubMed Central

    Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura

    2013-01-01

    The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212

  6. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    PubMed

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %. PMID:27029617

  7. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis.

    PubMed

    Shargh, Vahid Heravi; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jaafari, Iman; Jalali, Seyed Amir; Abbasi, Azam; Badiee, Ali

    2012-06-01

    First generation Leishmania vaccines consisting of whole killed parasites with or without adjuvants have reached phase 3 trial and failed to show enough efficacy mainly due to the lack of an appropriate adjuvant. In this study, the nuclease-resistant phosphorothioate CpG oligodeoxynucleotides (PS CpG) or nuclease-sensitive phosphodiester CpG ODNs (PO CpG) were used as adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Due to the susceptibility of PO CpG to nuclease degradation, an efficient liposomal delivery system was developed to protect them from degradation. 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid was used because of its unique adjuvanticity and electrostatic interaction with negatively charged CpG ODNs. To evaluate the role of liposomal formulation in protection rate and enhanced immune response, BALB/c mice were immunized subcutaneously with liposomal soluble Leishmania antigens (SLA) co-incorporated with PO CpG (Lip-SLA-PO CpG), Lip-SLA-PS CpG, SLA+PO CpG, SLA+PS CpG, SLA or buffer. As criteria for protection, footpad swelling at the site of challenge, parasite loads, the levels of IFN-γ and IL-4, and the IgG subtypes were evaluated. The groups of mice receiving Lip-SLA-PO CpG or Lip-SLA-PS CpG showed a high protection rate compared with the control groups. In addition, there was no significant difference in immune response generation between mice immunized with PS CpG and the group receiving PO CpG when incorporated into the liposomes. The results suggested that liposomal form of PO CpG might be used instead of PS CpG in future vaccine formulations as an efficient adjuvant. PMID:22465747

  8. Genomic Aberrations Drive Clonal Evolution of Neuroendocrine Tumors.

    PubMed

    Kaushik, Akash Kumar; Sreekumar, Arun

    2016-05-01

    Molecular features of castration-resistant neuroendocrine prostate cancer (CRPC-NE) are not well characterized. A recent study that investigated genomic aberrations of CRPC-NE tumors suggests their clonal evolution from CRPC adenocarcinoma. Furthermore, the existence of a distinct DNA methylation profile in CRPC-NE implicates a critical role for epigenetic modification in the development of CRPC-NE. PMID:27037211

  9. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  10. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians.

    PubMed

    Marsh, Adam G; Hoadley, Kenneth D; Warner, Mark E

    2016-01-01

    Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in

  11. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians

    PubMed Central

    Marsh, Adam G.; Hoadley, Kenneth D.; Warner, Mark E.

    2016-01-01

    Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in

  12. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  13. Prenatal antiepileptic exposure associates with neonatal DNA methylation differences.

    PubMed

    Smith, Alicia K; Conneely, Karen N; Newport, D Jeffrey; Kilaru, Varun; Schroeder, James W; Pennell, Page B; Knight, Bettina T; Cubells, Joseph C; Stowe, Zachary N; Brennan, Patricia A

    2012-05-01

    Antiepileptic drugs (AEDs) are used to treat a variety of neuropsychiatric illnesses commonly encountered in women during their reproductive years, including epilepsy and bipolar disorder. Despite their widespread use, the impact of prenatal exposure on fetal development remains obscure. To evaluate whether AEDs taken by pregnant mothers influence DNA methylation patterns in their neonates, DNA was extracted from the umbilical cord blood of 201 neonates whose mothers were treated for neuropsychiatric illness during pregnancy and interrogated across 27,578 CpG sites using the Illumina HumanMethylation27 BeadChip. The association of each methylation value with the cumulative duration of prenatal AED exposure was examined using a linear mixed model. The average methylation level across all CpG sites was calculated for each subject, and this global methylation measure was evaluated similarly. Neonates with a longer duration of AED exposure in pregnancy showed a decrease in average global methylation (p = 0.0045). Further, DNA methylation of CpG sites in 14 genes significantly decreased with the duration of prenatal AED exposure even after adjusting for multiple comparisons (FDR < 0.05). For a small subset (n = 19) of these neonates, a second tissue, placenta, was available in addition to cord blood. Methylation of 3 of these 14 CpG sites was also significantly decreased in placental tissue. These novel data suggest decreased DNA methylation in neonates of mothers who took AEDs during pregnancy. The long-term stability and potential impact of these changes warrant further attention, and caution may be warranted before prescribing AEDs to pregnant women. PMID:22419127

  14. DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai

    PubMed Central

    Marsh, Adam G.; Pasqualone, Annamarie A.

    2014-01-01

    Epigenetic modifications of DNA and histones are a primary mechanism by which gene expression activities may be modified in response to environmental stimuli. Here we characterize patterns of methyl-cytosine composition in the marine polychaete Spiophanes tcherniai from McMurdo Sound, Antarctica. We cultured adult worms at two temperatures, −1.5°C (ambient control) and +4°C (warm treatment), for 4 weeks. We observed a rapid capacity for S. tcherniai organismal respiration rates and underlying catalytic rates of citrate synthase at +4°C to return to control levels in less than 4 weeks. We profiled changes in the methylation states of CpG sites in these treatments using an NGS strategy to computationally reconstruct and quantify methylation status across the genome. In our analysis we recovered 120,000 CpG sites in assembled contigs from both treatments. Of those, we were able to align 28,000 CpG sites in common between the two sample groups. In comparing these aligned sites between treatments, only 3000 (11%) evidenced a change in methylation state, but over 85% of changes involved a gain of a 5-methyl group on a CpG site (net increase in methyation). The ability to score CpG sites as partially methylated among gDNA copies in a sample opens up a new avenue for assessing DNA methylation responses to changing environments. By quantitatively distinguishing a “mixed” population of copies of one CpG site, we can begin to identify dynamic, non-binary, continuous-response reactions in DNA methylation intensity or density that previously may have been overlooked as noise. PMID:24847277

  15. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays

    PubMed Central

    Aleman, A; Adrien, L; Lopez-Serra, L; Cordon-Cardo, C; Esteller, M; Belbin, T J; Sanchez-Carbayo, M

    2007-01-01

    CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer. PMID:18087279

  16. Chapter 9 - Methylation Analysis by Microarray

    PubMed Central

    Deatherage, Daniel E.; Potter, Dustin; Yan, Pearlly S.; Huang, Tim H.-M.; Lin, Shili

    2010-01-01

    Differential Methylation Hybridization (DMH) is a high-throughput DNA methylation screening tool that utilizes methylation-sensitive restriction enzymes to profile methylated fragments by hybridizing them to a CpG island microarray. This array contains probes spanning all the 27,800 islands annotated in the UCSC Genome Browser. Herein we describe a DMH protocol with clearly identified quality control points. In this manner, samples that are unlikely to provide good read-outs for differential methylation profiles between the test and the control samples will be identified and repeated with appropriate modifications. The step-by-step laboratory DMH protocol is described. In addition, we provide descriptions regarding DMH data analysis, including image quantification, background correction, and statistical procedures for both exploratory analysis and more formal inferences. Issues regarding quality control are addressed as well. PMID:19488875

  17. DNA methylation as a universal biomarker

    PubMed Central

    Levenson, Victor V

    2010-01-01

    Cell-free circulating DNA carries not only tumor-specific changes in its sequence but also distinctive epigenetic marks, namely DNA methylation, in certain GC-rich fragments. These fragments are usually located within the promoters and first exons of many genes, comprising CpG islands. Analysis of DNA methylation using cell-free circulating DNA can facilitate development of very accurate biomarkers for detection, diagnosis, prediction of response to therapy and prognosis of outcomes. Recent data suggest that benign and inflammatory diseases have very specific methylation patterns within cell-free circulating DNA, which are different from the pattern of a malignant tumor of the same organ. In addition, specific methylation patterns have been detected for cancers of different organs, so a differential diagnosis of site-specific cancer appears feasible. Currently, cancer-related applications dominate the field, although methylation-based biomarkers may also be possible for other diseases, including neurodegenerative and psychiatric disorders. PMID:20465502

  18. DMEAS: DNA methylation entropy analysis software

    PubMed Central

    He, Jianlin; Sun, Xinxi; Shao, Xiaojian; Liang, Liji; Xie, Hehuang

    2013-01-01

    Summary: DMEAS is the first user-friendly tool dedicated to analyze the distribution of DNA methylation patterns for the quantification of epigenetic heterogeneity. It supports the analysis of both locus-specific and genome-wide bisulfite sequencing data. DMEAS progressively scans the mapping results of bisulfite sequencing reads to extract DNA methylation patterns for contiguous CpG dinucleotides. It determines the DNA methylation level and calculates methylation entropy for genomic segments to enable the quantitative assessment of DNA methylation variations observed in cell populations. Availability and implementation: DMEAS program, user guide and all the testing data are freely available from http://sourceforge.net/projects/dmeas/files/ Contact: davidxie@vt.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23749987

  19. Comprehensive Analysis of Preeclampsia-Associated DNA Methylation in the Placenta

    PubMed Central

    Chu, Tianjiao; Bunce, Kimberly; Shaw, Patricia; Shridhar, Varsha; Althouse, Andrew; Hubel, Carl; Peters, David

    2014-01-01

    Background A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome. Methods We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing. Results Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET) although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age. Conclusion Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary. PMID:25247495

  20. Identification of a new locus and validation of previously reported loci showing differential methylation associated with smoking. The REGICOR study.

    PubMed

    Sayols-Baixeras, Sergi; Lluís-Ganella, Carla; Subirana, Isaac; Salas, Lucas A; Vilahur, Nadia; Corella, Dolores; Muñoz, Dani; Segura, Antonio; Jimenez-Conde, Jordi; Moran, Sebastián; Soriano-Tárraga, Carolina; Roquer, Jaume; Lopez-Farré, Antonio; Marrugat, Jaume; Fitó, Montse; Elosua, Roberto

    2015-01-01

    Smoking increases the risk of many diseases and could act through changes in DNA methylation patterns. The aims of this study were to determine the association between smoking and DNA methylation throughout the genome at cytosine-phosphate-guanine (CpG) site level and genomic regions. A discovery cross-sectional epigenome-wide association study nested in the follow-up of the REGICOR cohort was designed and included 645 individuals. Blood DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip. Smoking status was self-reported using a standardized questionnaire. We identified 66 differentially methylated CpG sites associated with smoking, located in 38 genes. In most of these CpG sites, we observed a trend among those quitting smoking to recover methylation levels typical of never smokers. A CpG site located in a novel smoking-associated gene (cg06394460 in LNX2) was hypomethylated in current smokers. Moreover, we validated two previously reported CpG sites (cg05886626 in THBS1, and cg24838345 in MTSS1) for their potential relation to atherosclerosis and cancer diseases, using several different approaches: CpG site methylation, gene expression, and plasma protein level determinations. Smoking was also associated with higher THBS1 gene expression but with lower levels of thrombospondin-1 in plasma. Finally, we identified differential methylation regions in 13 genes and in four non-coding RNAs. In summary, this study replicated previous findings and identified and validated a new CpG site located in LNX2 associated with smoking. PMID:26829059

  1. Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2

    PubMed Central

    Kinde, Benyam; Gabel, Harrison W.; Gilbert, Caitlin S.; Griffith, Eric C.; Greenberg, Michael E.

    2015-01-01

    DNA methylation at CpG dinucleotides is an important epigenetic regulator common to virtually all mammalian cell types, but recent evidence indicates that during early postnatal development neuronal genomes also accumulate uniquely high levels of two alternative forms of methylation, non-CpG methylation and hydroxymethylation. Here we discuss the distinct landscape of DNA methylation in neurons, how it is established, and how it might affect the binding and function of protein readers of DNA methylation. We review studies of one critical reader of DNA methylation in the brain, the Rett syndrome protein methyl CpG-binding protein 2 (MeCP2), and discuss how differential binding affinity of MeCP2 for non-CpG and hydroxymethylation may affect the function of this methyl-binding protein in the nervous system. PMID:25739960

  2. DREAM: A Simple Method for DNA Methylation Profiling by High-throughput Sequencing.

    PubMed

    Jelinek, Jaroslav; Madzo, Jozef

    2016-01-01

    The digital restriction enzyme analysis of methylation (DREAM) is a simple method for DNA methylation analysis at tens of thousands of CpG sites across the genome. The method creates specific signatures at unmethylated and methylated CpG sites by sequential digests of genomic DNA with restriction endonucleases SmaI and XmaI, respectively. Both enzymes have the same CCCGGG recognition site; however, they differ in their sensitivity to CpG methylation and their cutting pattern. SmaI cuts only unmethylated sites leaving blunt 5'-GGG ends. XmaI cuts remaining methylated CC(me)CGG sites leaving 5'-CCGGG ends. Restriction fragments with distinct signatures at their ends are ligated to Illumina sequencing adaptors with sample-specific barcodes. High-throughput sequencing of pooled libraries follows. Sequencing reads are mapped to the restriction sites in the reference genome, and signatures corresponding to methylation status of individual DNA molecules are resolved. Methylation levels at target CpG sites are calculated as the proportion of sequencing reads with the methylated signature to the total number of reads mapping to the particular restriction site. Aligning the reads to the reference genome of any species is straightforward, since the method does not rely on bisulfite conversion of DNA. Sequencing of 25 million reads per human DNA library yields over 50,000 unique CpG sites with high coverage enabling accurate determination of DNA methylation levels. DREAM has a background less than 1 % making it suitable for accurate detection of low methylation levels. In summary, the method is simple, robust, highly reproducible, and cost-effective. PMID:27581143

  3. Genome-wide DNA Methylation Profiles in Hepatocellular Carcinoma

    PubMed Central

    Shen, Jing; Wang, Shuang; Zhang, Yu-Jing; Kappil, Maya; Wu, Hui-Chen; Kibriya, Muhammad G.; Wang, Qiao; Jasmine, Farzana; Ahsan, Habib; Lee, Po-Huang; Yu, Ming-Whei; Chen, Chien-Jen; Santella, Regina M.

    2012-01-01

    Alterations in DNA methylation frequently occur in hepatocellular cancer (HCC). We have previously demonstrated that hypermethylation in candidate genes can be detected in plasma DNA prior to HCC diagnosis. To identify with a genome-wide approach additional genes hypermethylated in HCC that could be used for more accurate analysis of plasma DNA for early diagnosis, we analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Illumina methylation arrays that screen 26,486 autosomal CpG sites. After Bonferroni adjustment, a total of 2,324 CpG sites significantly differed in methylation level, with 684 CpG sites significantly hypermethylated and 1,640 hypomethylated in tumor compared to non-tumor tissues. Array data were validated with pyrosequencing in a subset of 5 of these genes; correlation coefficients ranged from 0.92 to 0.97. Analysis of plasma DNA from 38 cases demonstrated that 37% to 63% of cases had detectable hypermethylated DNA (≥5% methylation) for these 5 genes individually. At least one of these genes was hypermethylated in 87% of cases, suggesting that measurement of DNA methylation in plasma samples is feasible. The panel of methylated genes indentified in the current study will be further tested in large cohort of prospectively collected samples to determine their utility as early biomarkers of hepatocellular carcinoma. PMID:22234943

  4. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation.

    PubMed

    McDonald, James I; Celik, Hamza; Rois, Lisa E; Fishberger, Gregory; Fowler, Tolison; Rees, Ryan; Kramer, Ashley; Martens, Andrew; Edwards, John R; Challen, Grant A

    2016-01-01

    Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate. PMID:27170255

  5. Comprehensive DNA methylation analysis of hepatitis B virus genome in infected liver tissues.

    PubMed

    Jain, Surbhi; Chang, Ting-Tsung; Chen, Sitong; Boldbaatar, Batbold; Clemens, Adam; Lin, Selena Y; Yan, Ran; Hu, Chi-Tan; Guo, Haitao; Block, Timothy M; Song, Wei; Su, Ying-Hsiu

    2015-01-01

    Hepatitis B virus (HBV) is a hepatotropic virus causing hepatitis, cirrhosis and hepatocellular carcinoma (HCC). The methylation status of the HBV DNA in its different forms can potentially provide insight into the pathogenesis of HBV-related liver diseases, including HCC, however this is unclear. The goal of this study is to obtain comprehensive DNA methylation profiles of the three putative CpG islands in the HBV DNA in infected livers, with respect to liver disease progression. The extent of methylation in these CpG islands was first assessed using bisulfite PCR sequencing with a small set of tissue samples, followed by analysis using both quantitative bisulfite-specific PCR and quantitative methylation-specific PCR assays in a larger sample size (n = 116). The level of HBV CpG island 3 methylation significantly correlated with hepatocarcinogenesis. We also obtained, for the first time, evidence of rare, non-CpG methylation in CpG island 2 of the HBV genome in infected liver. Comparing methylation of the HBV genome to three known HCC-associated host genes, APC, GSTP1, and RASSF1A, we did not identify a significant correlation between these two groups. PMID:26000761

  6. Comprehensive DNA methylation analysis of hepatitis B virus genome in infected liver tissues

    PubMed Central

    Jain, Surbhi; Chang, Ting-Tsung; Chen, Sitong; Boldbaatar, Batbold; Clemens, Adam; Lin, Selena Y.; Yan, Ran; Hu, Chi-Tan; Guo, Haitao; Block, Timothy M.; Song, Wei; Su, Ying-Hsiu

    2015-01-01

    Hepatitis B virus (HBV) is a hepatotropic virus causing hepatitis, cirrhosis and hepatocellular carcinoma (HCC). The methylation status of the HBV DNA in its different forms can potentially provide insight into the pathogenesis of HBV-related liver diseases, including HCC, however this is unclear. The goal of this study is to obtain comprehensive DNA methylation profiles of the three putative CpG islands in the HBV DNA in infected livers, with respect to liver disease progression. The extent of methylation in these CpG islands was first assessed using bisulfite PCR sequencing with a small set of tissue samples, followed by analysis using both quantitative bisulfite-specific PCR and quantitative methylation-specific PCR assays in a larger sample size (n = 116). The level of HBV CpG island 3 methylation significantly correlated with hepatocarcinogenesis. We also obtained, for the first time, evidence of rare, non-CpG methylation in CpG island 2 of the HBV genome in infected liver. Comparing methylation of the HBV genome to three known HCC-associated host genes, APC, GSTP1, and RASSF1A, we did not identify a significant correlation between these two groups. PMID:26000761

  7. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation

    PubMed Central

    McDonald, James I.; Celik, Hamza; Rois, Lisa E.; Fishberger, Gregory; Fowler, Tolison; Rees, Ryan; Kramer, Ashley; Martens, Andrew; Edwards, John R.

    2016-01-01

    ABSTRACT Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate. PMID:27170255

  8. Longitudinal analysis of DNA methylation associated with birth weight and gestational age

    PubMed Central

    Simpkin, Andrew J.; Suderman, Matthew; Gaunt, Tom R.; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Tilling, Kate; Davey Smith, George; Relton, Caroline L.

    2015-01-01

    Gestational age (GA) and birth weight have been implicated in the determination of long-term health. It has been hypothesized that changes in DNA methylation may mediate these long-term effects. We obtained DNA methylation profiles from cord blood and peripheral blood at ages 7 and 17 in the same children from the Avon Longitudinal Study of Parents and Children. Repeated-measures data were used to investigate changes in birth-related methylation during childhood and adolescence. Ten developmental phenotypes (e.g. height) were analysed to identify possible mediation of health effects by DNA methylation. In cord blood, methylation at 224 CpG sites was found to be associated with GA and 23 CpG sites with birth weight. Methylation changed in the majority of these sites over time, but neither birth characteristic was strongly associated with methylation at age 7 or 17 (using a conservative correction for multiple testing of P < 1.03 × 10–7), suggesting resolution of differential methylation by early childhood. Associations were observed between birth weight-associated CpG sites and phenotypic characteristics in childhood. One strong association involved birth weight, methylation of a CpG site proximal to the NFIX locus and bone mineral density at age 17. Analysis of serial methylation from birth to adolescence provided evidence for a lack of persistence of methylation differences beyond early childhood. Sites associated with birth weight were linked to developmental genes and have methylation levels which are associated with developmental phenotypes. Replication and interrogation of causal relationships are needed to substantiate whether methylation differences at birth influence the association between birth weight and development. PMID:25869828

  9. CpG 7909: PF 3512676, PF-3512676.

    PubMed

    2006-01-01

    CpG 7909 [PF-3512676] is an immunomodulating synthetic oligonucleotide designed to specifically agonise the Toll-like receptor 9 (TLR9). It is being developed for the treatment of cancer [ProMune] as a monotherapy and in combination with chemotherapeutic agents, and it is also under development as an adjuvant [VaxImmune] for vaccines against cancer and infectious diseases. CpG 7909, acting through the TLR9 receptor present in B cells and plasmacytoid dendritic cells, stimulates human B-cell proliferation, enhances antigen-specific antibody production and induces interferon-alpha production, interleukin-10 secretion and natural killer cell activity. Coley Pharmaceutical Group originally developed CpG 7909 using its CpG DNA technology. In March 2005, Coley granted Pfizer an exclusive global license to develop and commercialise CPG 7909 [ProMune] for the treatment, control and prevention of multiple cancer indications. Coley licensed CpG 7909 [VaxImmune] to Chiron Corporation for adjuvant use with Chiron's prophylactic vaccine candidates against infectious diseases in December 2003. Chiron was acquired by and merged into Novartis in April 2006. In 2002, GlaxoSmithKline (GSK) was granted a worldwide, non-exclusive licence to Coley's CpG immunostimulatory oligonucleotides, including CpG 7909 [VaxImmune], for their use as adjuvants for cancer vaccines. In 2000, Coley entered into a co-exclusive licensing agreement with GSK for the development of therapeutic and prophylactic vaccines against infectious diseases. This licensing agreement included CpG 7909 [VaxImmune] and other CpG-based immunostimulatory oligonucleotides. In September 2004, Coley Pharmaceuticals was awarded a 16.9 million US dollars, 5-year contract from the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), to support the development of novel immune-activating drugs for defense against bioterror agents. This contract will be used to expand Coley

  10. The p16-specific reactivation and inhibition of cell migration through demethylation of CpG islands by engineered transcription factors.

    PubMed

    Zhang, Baozhen; Xiang, Shengyan; Zhong, Qiming; Yin, Yanru; Gu, Liankun; Deng, Dajun

    2012-10-01

    Methylation of CpG islands inactivates transcription of tumor suppressor genes including p16 (CDKN2A). Inhibitors of DNA methylation and histone deacylation are recognized as useful cancer therapeutic chemicals through reactivation of the expression of methylated genes. However, these inhibitors are not target gene-specific, so that they lead to serious side effects as regular cytotoxic chemotherapy agents. To explore the feasibility of methylated gene-specific reactivation by artificial transcription factors, we engineered a set of Sp1-like seven-finger zinc-finger proteins (7ZFPs) targeted to a 21-bp sequence of the p16 promoter and found that these 7ZFPs could bind specifically to the target p16 promoter probe. Then the p16-specific artificial transcription factors (p16ATFs) were made from these 7ZFPs and the transcription activator VP64. Results showed that transient transfection of some p16ATFs selectively up-regulated the endogenous p16 expression in the p16-active 293T cells. Moreover, the transient transfection of the representative p16ATF-6I specifically reactivated p16 expression in the p16-methylated H1299 and AGS cells pretreated with a nontoxic amount of 5'-aza-deoxycytidine (20 and 80 nM, respectively). In addition, stable transfection of the p16ATF induced demethylation of p16 CpG island and trimethylation of histone H3K4, and inhibited recruitment of DNA methyltransferase 1 and trimethylation of H3K9 and H3K27 in the p16 promoter in H1299 cells without 5'-aza-deoxycytidine pretreatment. Notably, inhibition of cell migration and invasion was observed in these p16-reactivated cells induced by transient and stable p16ATF transfection. These results demonstrate that p16ATF not only specifically reactivates p16 expression through demethylation of CpG islands, but also restores methylated p16 function. PMID:22738793

  11. CPG Network Optimization for a Biomimetic Robotic Fish via PSO.

    PubMed

    Yu, Junzhi; Wu, Zhengxing; Wang, Ming; Tan, Min

    2016-09-01

    In this brief, we investigate the parameter optimization issue of a central pattern generator (CPG) network governed forward and backward swimming for a fully untethered, multijoint biomimetic robotic fish. Considering that the CPG parameters are tightly linked to the propulsive performance of the robotic fish, we propose a method for determination of relatively optimized control parameters. Within the framework of evolutionary computation, we use a combination of dynamic model and particle swarm optimization (PSO) algorithm to seek the CPG characteristic parameters for an enhanced performance. The PSO-based optimization scheme is validated with extensive experiments conducted on the actual robotic fish. Noticeably, the optimized results are shown to be superior to previously reported forward and backward swimming speeds. PMID:26259223

  12. CpG still rocks! Update on an accidental drug.

    PubMed

    Krieg, Arthur M

    2012-04-01

    The discovery of the CpG motif in 1995 led to a change in the perception of the immune stimulatory effects of oligodeoxynucleotides (ODN) from an unwanted nonspecific effect to a highly evolved immune defense that can be selectively triggered for a wide range of therapeutic applications. Over the last decade dozens of human clinical trials have been conducted with different CpG ODN in thousands of humans for applications ranging from vaccine adjuvant to immunotherapies for allergy, cancer, and infectious diseases. Along with many positive results have come some failures showing the limitations of several therapeutic approaches. This review summarizes these results to provide an overview of the clinical development of CpG ODN. PMID:22352814

  13. Gene Expression and DNA Methylation Status of Glutathione S-Transferase Mu1 and Mu5 in Urothelial Carcinoma

    PubMed Central

    Wang, Shou-Chieh; Huang, Chin-Chin; Shen, Cheng-Huang; Lin, Lei-Chen; Zhao, Pei-Wen; Chen, Shih-Ying; Deng, Yu-Chiao; Liu, Yi-Wen

    2016-01-01

    Bladder cancer is highly recurrent after therapy, which has an enormous impact on the health and financial condition of the patient. It is worth developing diagnostic tools for bladder cancer. In our previous study, we found that the bladder carcinogen BBN increased urothelial global DNA CpG methylation and decreased GSTM1 protein expression in mice. Here, the correlation of BBN-decreased GSTM1 and GSTM gene CpG methylation status was analyzed in mice bladders. BBN treatment decreased the protein and mRNA expression of GSTM1, and the CpG methylation ratio of GSTM1 gene promoter was slightly increased in mice bladders. Unlike mouse GSTM1, the human GSTM1 gene tends to be deleted in bladder cancers. Among 7 human bladder cancer cell lines, GSTM1 gene is really null in 6 cell lines except one, T24 cells. The CpG methylation level of GSTM1 was 9.9% and 5-aza-dC did not significantly increase GSTM1 protein and mRNA expression in T24 cells; however, the GSTM5 gene was CpG hypermethylated (65.4%) and 5-aza-dC also did not affect the methylation ratio and mRNA expression. However, in other cell lines without GSTM1, 5-aza-dC increased GSTM5 expression and decreased its CpG DNA methylation ratio from 84.6% to 61.5% in 5637, and from 97.4% to 75% in J82 cells. In summary, two biomarkers of bladder tumor were provided. One is the GSTM1 gene which is down-regulated in mice bladder carcinogenesis and is usually deleted in human urothelial carcinoma, while the other is the GSTM5 gene, which is inactivated by DNA CpG methylation. PMID:27404495

  14. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing

    PubMed Central

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient’s response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation. PMID:25755756

  15. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing

    PubMed Central

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient’s response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation. PMID:25973069

  16. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  17. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.

    PubMed

    Asmar, Fazila; Punj, Vasu; Christensen, Jesper; Pedersen, Marianne T; Pedersen, Anja; Nielsen, Anders B; Hother, Christoffer; Ralfkiaer, Ulrik; Brown, Peter; Ralfkiaer, Elisabeth; Helin, Kristian; Grønbæk, Kirsten

    2013-12-01

    The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10(-30)). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells. PMID:23831920

  18. Induced Pluripotent Mesenchymal Stromal Cell Clones Retain Donor-derived Differences in DNA Methylation Profiles

    PubMed Central

    Shao, Kaifeng; Koch, Carmen; Gupta, Manoj K; Lin, Qiong; Lenz, Michael; Laufs, Stephanie; Denecke, Bernd; Schmidt, Manfred; Linke, Matthias; Hennies, Hans C; Hescheler, Jürgen; Zenke, Martin; Zechner, Ulrich; Šarić, Tomo; Wagner, Wolfgang

    2013-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is an epigenetic phenomenon. It has been suggested that iPSC retain some tissue-specific memory whereas little is known about interindividual epigenetic variation. We have reprogrammed mesenchymal stromal cells from human bone marrow (iP-MSC) and compared their DNA methylation profiles with initial MSC and embryonic stem cells (ESCs) using high-density DNA methylation arrays covering more than 450,000 CpG sites. Overall, DNA methylation patterns of iP-MSC and ESC were similar whereas some CpG sites revealed highly significant differences, which were not related to parental MSC. Furthermore, hypermethylation in iP-MSC versus ESC occurred preferentially outside of CpG islands and was enriched in genes involved in epidermal differentiation indicating that these differences are not due to random de novo methylation. Subsequently, we searched for CpG sites with donor-specific variation. These “epigenetic fingerprints” were highly enriched in non-promoter regions and outside of CpG islands–and they were maintained upon reprogramming. In conclusion, iP-MSC clones revealed relatively little intraindividual variation but they maintained donor-derived epigenetic differences. In the absence of isogenic controls, it would therefore be more appropriate to compare iPSC from different donors rather than a high number of different clones from the same patient. PMID:23032973

  19. Genome-Wide Methylation Analysis of Prostate Tissues Reveals Global Methylation Patterns of Prostate Cancer

    PubMed Central

    Luo, Jian-Hua; Ding, Ying; Chen, Rui; Michalopoulos, George; Nelson, Joel; Tseng, George; Yu, Yan P.

    2014-01-01

    Altered genome methylation is a hallmark of human malignancies. In this study, high-throughput analyses of concordant gene methylation and expression events were performed for 91 human prostate specimens, including prostate tumor (T), matched normal adjacent to tumor (AT), and organ donor (OD). Methylated DNA in genomic DNA was immunoprecipitated with anti-methylcytidine antibodies and detected by Affymetrix human whole genome SNP 6.0 chips. Among the methylated CpG islands, 11,481 islands were found located in the promoter and exon 1 regions of 9295 genes. Genes (7641) were methylated frequently across OD, AT, and T samples, whereas 239 genes were differentially methylated in only T and 785 genes in both AT and T but not OD. Genes with promoter methylation and concordantly suppressed expression were identified. Pathway analysis suggested that many of the methylated genes in T and AT are involved in cell growth and mitogenesis. Classification analysis of the differentially methylated genes in T or OD produced a specificity of 89.4% and a sensitivity of 85.7%. The T and AT groups, however, were only slightly separated by the prediction analysis, indicating a strong field effect. A gene methylation prediction model was shown to predict prostate cancer relapse with sensitivity of 80.0% and specificity of 85.0%. These results suggest methylation patterns useful in predicting clinical outcomes of prostate cancer. PMID:23583283

  20. Analysis of DNA Methylation by Pyrosequencing

    PubMed Central

    Delaney, Colin; Garg, Sanjay K.; Yung, Raymond

    2016-01-01

    Pyrosequencing is a technique that uses a sequencing-by-synthesis system which is designed to quantify single-nucleotide polymorphisms (SNPs). Artificial C/T SNP creation via bisulfite modification permits measurement of DNA methylation locally and globally in real time. Alteration in DNA methylation has been implicated in aging, as well as aging-related conditions such as cancer, as well as cardiovascular, neurodegenerative, and autoimmune diseases. Considering its ubiquitous presence in divergent clinical pathologies, quantitative analysis of DNA CpG methylation both globally and at individual genes helps to elucidate the regulation of genes involved in pathophysiological conditions. The ability to detect and quantify the methylation pattern of DNA has the potential to serve as an early detection marker and potential drug target for several diseases. Here, we provide a detailed technical protocol for pyrosequencing supplemented by critical information about assay design and nuances of the system that provides a strong foundation for beginners in the field. PMID:26420722

  1. CPG OLIGODEOXYNUCLEOTIDES-MEDIATED IMMUNOMODULATION OF MIC2 RECOMBINANT VACCINE-INDUCED PROTECTION AGAINST COCCIDIOSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies form our laboratory demonstrated that short oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODNs) exert a positive effect on weight loss and oocyst shedding associated with Eimeria infection when injected in vivo. The present w